Upload 3 files
Browse filesnew version of e3c using bigbio format
- README.md +122 -79
- bigbiohub.py +587 -0
- e3c.py +247 -375
README.md
CHANGED
@@ -1,86 +1,128 @@
|
|
1 |
---
|
2 |
dataset_info:
|
3 |
features:
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
splits:
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
download_size: 230213492
|
83 |
-
dataset_size:
|
84 |
---
|
85 |
|
86 |
# Dataset Card for E3C
|
@@ -88,6 +130,7 @@ dataset_info:
|
|
88 |
## Dataset Description
|
89 |
|
90 |
- **Homepage:** https://github.com/hltfbk/E3C-Corpus
|
|
|
91 |
- **Public:** True
|
92 |
- **Tasks:** NER,RE
|
93 |
|
@@ -109,4 +152,4 @@ information about clinical entities based on medical taxonomies, to be used for
|
|
109 |
url = {https://uts.nlm.nih.gov/uts/umls/home},
|
110 |
year = {2021},
|
111 |
}
|
112 |
-
```
|
|
|
1 |
---
|
2 |
dataset_info:
|
3 |
features:
|
4 |
+
- name: id
|
5 |
+
dtype: string
|
6 |
+
- name: document_id
|
7 |
+
dtype: int32
|
8 |
+
- name: text
|
9 |
+
dtype: string
|
10 |
+
- name: passages
|
11 |
+
list:
|
12 |
+
- name: id
|
13 |
+
dtype: string
|
14 |
+
- name: text
|
15 |
+
dtype: string
|
16 |
+
- name: offsets
|
17 |
+
list: int32
|
18 |
+
- name: entities
|
19 |
+
list:
|
20 |
+
- name: id
|
21 |
+
dtype: string
|
22 |
+
- name: type
|
23 |
+
dtype: string
|
24 |
+
- name: text
|
25 |
+
dtype: string
|
26 |
+
- name: offsets
|
27 |
+
list: int32
|
28 |
+
- name: semantic_type_id
|
29 |
+
dtype: string
|
30 |
+
- name: role
|
31 |
+
dtype: string
|
32 |
+
- name: relations
|
33 |
+
list:
|
34 |
+
- name: id
|
35 |
+
dtype: string
|
36 |
+
- name: type
|
37 |
+
dtype: string
|
38 |
+
- name: contextualAspect
|
39 |
+
dtype: string
|
40 |
+
- name: contextualModality
|
41 |
+
dtype: string
|
42 |
+
- name: degree
|
43 |
+
dtype: string
|
44 |
+
- name: docTimeRel
|
45 |
+
dtype: string
|
46 |
+
- name: eventType
|
47 |
+
dtype: string
|
48 |
+
- name: permanence
|
49 |
+
dtype: string
|
50 |
+
- name: polarity
|
51 |
+
dtype: string
|
52 |
+
- name: functionInDocument
|
53 |
+
dtype: string
|
54 |
+
- name: timex3Class
|
55 |
+
dtype: string
|
56 |
+
- name: value
|
57 |
+
dtype: string
|
58 |
+
- name: concept_1
|
59 |
+
dtype: string
|
60 |
+
- name: concept_2
|
61 |
+
dtype: string
|
62 |
+
config_name: e3c_source
|
63 |
splits:
|
64 |
+
- name: en.layer1
|
65 |
+
num_bytes: 1645819
|
66 |
+
num_examples: 84
|
67 |
+
- name: en.layer2
|
68 |
+
num_bytes: 881290
|
69 |
+
num_examples: 171
|
70 |
+
- name: en.layer2.validation
|
71 |
+
num_bytes: 101379
|
72 |
+
num_examples: 19
|
73 |
+
- name: en.layer3
|
74 |
+
num_bytes: 7672589
|
75 |
+
num_examples: 9779
|
76 |
+
- name: es.layer1
|
77 |
+
num_bytes: 1398186
|
78 |
+
num_examples: 81
|
79 |
+
- name: es.layer2
|
80 |
+
num_bytes: 907515
|
81 |
+
num_examples: 162
|
82 |
+
- name: es.layer2.validation
|
83 |
+
num_bytes: 103936
|
84 |
+
num_examples: 18
|
85 |
+
- name: es.layer3
|
86 |
+
num_bytes: 6656630
|
87 |
+
num_examples: 1876
|
88 |
+
- name: eu.layer1
|
89 |
+
num_bytes: 2217479
|
90 |
+
num_examples: 90
|
91 |
+
- name: eu.layer2
|
92 |
+
num_bytes: 306291
|
93 |
+
num_examples: 111
|
94 |
+
- name: eu.layer2.validation
|
95 |
+
num_bytes: 95276
|
96 |
+
num_examples: 10
|
97 |
+
- name: eu.layer3
|
98 |
+
num_bytes: 4656179
|
99 |
+
num_examples: 1232
|
100 |
+
- name: fr.layer1
|
101 |
+
num_bytes: 1474138
|
102 |
+
num_examples: 81
|
103 |
+
- name: fr.layer2
|
104 |
+
num_bytes: 905084
|
105 |
+
num_examples: 168
|
106 |
+
- name: fr.layer2.validation
|
107 |
+
num_bytes: 101701
|
108 |
+
num_examples: 18
|
109 |
+
- name: fr.layer3
|
110 |
+
num_bytes: 457927491
|
111 |
+
num_examples: 25740
|
112 |
+
- name: it.layer1
|
113 |
+
num_bytes: 1036560
|
114 |
+
num_examples: 86
|
115 |
+
- name: it.layer2
|
116 |
+
num_bytes: 888138
|
117 |
+
num_examples: 174
|
118 |
+
- name: it.layer2.validation
|
119 |
+
num_bytes: 99549
|
120 |
+
num_examples: 18
|
121 |
+
- name: it.layer3
|
122 |
+
num_bytes: 86243680
|
123 |
+
num_examples: 10213
|
124 |
download_size: 230213492
|
125 |
+
dataset_size: 575318910
|
126 |
---
|
127 |
|
128 |
# Dataset Card for E3C
|
|
|
130 |
## Dataset Description
|
131 |
|
132 |
- **Homepage:** https://github.com/hltfbk/E3C-Corpus
|
133 |
+
- **PubMed** False
|
134 |
- **Public:** True
|
135 |
- **Tasks:** NER,RE
|
136 |
|
|
|
152 |
url = {https://uts.nlm.nih.gov/uts/umls/home},
|
153 |
year = {2021},
|
154 |
}
|
155 |
+
```
|
bigbiohub.py
ADDED
@@ -0,0 +1,587 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# mypy: ignore-errors
|
2 |
+
# flake8: noqa
|
3 |
+
import logging
|
4 |
+
from collections import defaultdict
|
5 |
+
from dataclasses import dataclass
|
6 |
+
from enum import Enum
|
7 |
+
from pathlib import Path
|
8 |
+
from types import SimpleNamespace
|
9 |
+
from typing import TYPE_CHECKING, Dict, Iterable, List, Tuple
|
10 |
+
|
11 |
+
import datasets
|
12 |
+
|
13 |
+
if TYPE_CHECKING:
|
14 |
+
import bioc
|
15 |
+
|
16 |
+
logger = logging.getLogger(__name__)
|
17 |
+
|
18 |
+
|
19 |
+
BigBioValues = SimpleNamespace(NULL="<BB_NULL_STR>")
|
20 |
+
|
21 |
+
|
22 |
+
@dataclass
|
23 |
+
class BigBioConfig(datasets.BuilderConfig):
|
24 |
+
"""BuilderConfig for BigBio."""
|
25 |
+
|
26 |
+
name: str = None
|
27 |
+
version: datasets.Version = None
|
28 |
+
description: str = None
|
29 |
+
schema: str = None
|
30 |
+
subset_id: str = None
|
31 |
+
|
32 |
+
|
33 |
+
class Tasks(Enum):
|
34 |
+
NAMED_ENTITY_RECOGNITION = "NER"
|
35 |
+
NAMED_ENTITY_DISAMBIGUATION = "NED"
|
36 |
+
EVENT_EXTRACTION = "EE"
|
37 |
+
RELATION_EXTRACTION = "RE"
|
38 |
+
COREFERENCE_RESOLUTION = "COREF"
|
39 |
+
QUESTION_ANSWERING = "QA"
|
40 |
+
TEXTUAL_ENTAILMENT = "TE"
|
41 |
+
SEMANTIC_SIMILARITY = "STS"
|
42 |
+
TEXT_PAIRS_CLASSIFICATION = "TXT2CLASS"
|
43 |
+
PARAPHRASING = "PARA"
|
44 |
+
TRANSLATION = "TRANSL"
|
45 |
+
SUMMARIZATION = "SUM"
|
46 |
+
TEXT_CLASSIFICATION = "TXTCLASS"
|
47 |
+
|
48 |
+
|
49 |
+
entailment_features = datasets.Features(
|
50 |
+
{
|
51 |
+
"id": datasets.Value("string"),
|
52 |
+
"premise": datasets.Value("string"),
|
53 |
+
"hypothesis": datasets.Value("string"),
|
54 |
+
"label": datasets.Value("string"),
|
55 |
+
}
|
56 |
+
)
|
57 |
+
|
58 |
+
pairs_features = datasets.Features(
|
59 |
+
{
|
60 |
+
"id": datasets.Value("string"),
|
61 |
+
"document_id": datasets.Value("string"),
|
62 |
+
"text_1": datasets.Value("string"),
|
63 |
+
"text_2": datasets.Value("string"),
|
64 |
+
"label": datasets.Value("string"),
|
65 |
+
}
|
66 |
+
)
|
67 |
+
|
68 |
+
qa_features = datasets.Features(
|
69 |
+
{
|
70 |
+
"id": datasets.Value("string"),
|
71 |
+
"question_id": datasets.Value("string"),
|
72 |
+
"document_id": datasets.Value("string"),
|
73 |
+
"question": datasets.Value("string"),
|
74 |
+
"type": datasets.Value("string"),
|
75 |
+
"choices": [datasets.Value("string")],
|
76 |
+
"context": datasets.Value("string"),
|
77 |
+
"answer": datasets.Sequence(datasets.Value("string")),
|
78 |
+
}
|
79 |
+
)
|
80 |
+
|
81 |
+
text_features = datasets.Features(
|
82 |
+
{
|
83 |
+
"id": datasets.Value("string"),
|
84 |
+
"document_id": datasets.Value("string"),
|
85 |
+
"text": datasets.Value("string"),
|
86 |
+
"labels": [datasets.Value("string")],
|
87 |
+
}
|
88 |
+
)
|
89 |
+
|
90 |
+
text2text_features = datasets.Features(
|
91 |
+
{
|
92 |
+
"id": datasets.Value("string"),
|
93 |
+
"document_id": datasets.Value("string"),
|
94 |
+
"text_1": datasets.Value("string"),
|
95 |
+
"text_2": datasets.Value("string"),
|
96 |
+
"text_1_name": datasets.Value("string"),
|
97 |
+
"text_2_name": datasets.Value("string"),
|
98 |
+
}
|
99 |
+
)
|
100 |
+
|
101 |
+
kb_features = datasets.Features(
|
102 |
+
{
|
103 |
+
"id": datasets.Value("string"),
|
104 |
+
"document_id": datasets.Value("string"),
|
105 |
+
"passages": [
|
106 |
+
{
|
107 |
+
"id": datasets.Value("string"),
|
108 |
+
"type": datasets.Value("string"),
|
109 |
+
"text": datasets.Sequence(datasets.Value("string")),
|
110 |
+
"offsets": datasets.Sequence([datasets.Value("int32")]),
|
111 |
+
}
|
112 |
+
],
|
113 |
+
"entities": [
|
114 |
+
{
|
115 |
+
"id": datasets.Value("string"),
|
116 |
+
"type": datasets.Value("string"),
|
117 |
+
"text": datasets.Sequence(datasets.Value("string")),
|
118 |
+
"offsets": datasets.Sequence([datasets.Value("int32")]),
|
119 |
+
"normalized": [
|
120 |
+
{
|
121 |
+
"db_name": datasets.Value("string"),
|
122 |
+
"db_id": datasets.Value("string"),
|
123 |
+
}
|
124 |
+
],
|
125 |
+
}
|
126 |
+
],
|
127 |
+
"events": [
|
128 |
+
{
|
129 |
+
"id": datasets.Value("string"),
|
130 |
+
"type": datasets.Value("string"),
|
131 |
+
# refers to the text_bound_annotation of the trigger
|
132 |
+
"trigger": {
|
133 |
+
"text": datasets.Sequence(datasets.Value("string")),
|
134 |
+
"offsets": datasets.Sequence([datasets.Value("int32")]),
|
135 |
+
},
|
136 |
+
"arguments": [
|
137 |
+
{
|
138 |
+
"role": datasets.Value("string"),
|
139 |
+
"ref_id": datasets.Value("string"),
|
140 |
+
}
|
141 |
+
],
|
142 |
+
}
|
143 |
+
],
|
144 |
+
"coreferences": [
|
145 |
+
{
|
146 |
+
"id": datasets.Value("string"),
|
147 |
+
"entity_ids": datasets.Sequence(datasets.Value("string")),
|
148 |
+
}
|
149 |
+
],
|
150 |
+
"relations": [
|
151 |
+
{
|
152 |
+
"id": datasets.Value("string"),
|
153 |
+
"type": datasets.Value("string"),
|
154 |
+
"arg1_id": datasets.Value("string"),
|
155 |
+
"arg2_id": datasets.Value("string"),
|
156 |
+
"normalized": [
|
157 |
+
{
|
158 |
+
"db_name": datasets.Value("string"),
|
159 |
+
"db_id": datasets.Value("string"),
|
160 |
+
}
|
161 |
+
],
|
162 |
+
}
|
163 |
+
],
|
164 |
+
}
|
165 |
+
)
|
166 |
+
|
167 |
+
|
168 |
+
TASK_TO_SCHEMA = {
|
169 |
+
Tasks.NAMED_ENTITY_RECOGNITION.name: "KB",
|
170 |
+
Tasks.NAMED_ENTITY_DISAMBIGUATION.name: "KB",
|
171 |
+
Tasks.EVENT_EXTRACTION.name: "KB",
|
172 |
+
Tasks.RELATION_EXTRACTION.name: "KB",
|
173 |
+
Tasks.COREFERENCE_RESOLUTION.name: "KB",
|
174 |
+
Tasks.QUESTION_ANSWERING.name: "QA",
|
175 |
+
Tasks.TEXTUAL_ENTAILMENT.name: "TE",
|
176 |
+
Tasks.SEMANTIC_SIMILARITY.name: "PAIRS",
|
177 |
+
Tasks.TEXT_PAIRS_CLASSIFICATION.name: "PAIRS",
|
178 |
+
Tasks.PARAPHRASING.name: "T2T",
|
179 |
+
Tasks.TRANSLATION.name: "T2T",
|
180 |
+
Tasks.SUMMARIZATION.name: "T2T",
|
181 |
+
Tasks.TEXT_CLASSIFICATION.name: "TEXT",
|
182 |
+
}
|
183 |
+
|
184 |
+
SCHEMA_TO_TASKS = defaultdict(set)
|
185 |
+
for task, schema in TASK_TO_SCHEMA.items():
|
186 |
+
SCHEMA_TO_TASKS[schema].add(task)
|
187 |
+
SCHEMA_TO_TASKS = dict(SCHEMA_TO_TASKS)
|
188 |
+
|
189 |
+
VALID_TASKS = set(TASK_TO_SCHEMA.keys())
|
190 |
+
VALID_SCHEMAS = set(TASK_TO_SCHEMA.values())
|
191 |
+
|
192 |
+
SCHEMA_TO_FEATURES = {
|
193 |
+
"KB": kb_features,
|
194 |
+
"QA": qa_features,
|
195 |
+
"TE": entailment_features,
|
196 |
+
"T2T": text2text_features,
|
197 |
+
"TEXT": text_features,
|
198 |
+
"PAIRS": pairs_features,
|
199 |
+
}
|
200 |
+
|
201 |
+
|
202 |
+
def get_texts_and_offsets_from_bioc_ann(ann: "bioc.BioCAnnotation") -> Tuple:
|
203 |
+
|
204 |
+
offsets = [(loc.offset, loc.offset + loc.length) for loc in ann.locations]
|
205 |
+
|
206 |
+
text = ann.text
|
207 |
+
|
208 |
+
if len(offsets) > 1:
|
209 |
+
i = 0
|
210 |
+
texts = []
|
211 |
+
for start, end in offsets:
|
212 |
+
chunk_len = end - start
|
213 |
+
texts.append(text[i : chunk_len + i])
|
214 |
+
i += chunk_len
|
215 |
+
while i < len(text) and text[i] == " ":
|
216 |
+
i += 1
|
217 |
+
else:
|
218 |
+
texts = [text]
|
219 |
+
|
220 |
+
return offsets, texts
|
221 |
+
|
222 |
+
|
223 |
+
def remove_prefix(a: str, prefix: str) -> str:
|
224 |
+
if a.startswith(prefix):
|
225 |
+
a = a[len(prefix) :]
|
226 |
+
return a
|
227 |
+
|
228 |
+
|
229 |
+
def parse_brat_file(
|
230 |
+
txt_file: Path,
|
231 |
+
annotation_file_suffixes: List[str] = None,
|
232 |
+
parse_notes: bool = False,
|
233 |
+
) -> Dict:
|
234 |
+
"""
|
235 |
+
Parse a brat file into the schema defined below.
|
236 |
+
`txt_file` should be the path to the brat '.txt' file you want to parse, e.g. 'data/1234.txt'
|
237 |
+
Assumes that the annotations are contained in one or more of the corresponding '.a1', '.a2' or '.ann' files,
|
238 |
+
e.g. 'data/1234.ann' or 'data/1234.a1' and 'data/1234.a2'.
|
239 |
+
Will include annotator notes, when `parse_notes == True`.
|
240 |
+
brat_features = datasets.Features(
|
241 |
+
{
|
242 |
+
"id": datasets.Value("string"),
|
243 |
+
"document_id": datasets.Value("string"),
|
244 |
+
"text": datasets.Value("string"),
|
245 |
+
"text_bound_annotations": [ # T line in brat, e.g. type or event trigger
|
246 |
+
{
|
247 |
+
"offsets": datasets.Sequence([datasets.Value("int32")]),
|
248 |
+
"text": datasets.Sequence(datasets.Value("string")),
|
249 |
+
"type": datasets.Value("string"),
|
250 |
+
"id": datasets.Value("string"),
|
251 |
+
}
|
252 |
+
],
|
253 |
+
"events": [ # E line in brat
|
254 |
+
{
|
255 |
+
"trigger": datasets.Value(
|
256 |
+
"string"
|
257 |
+
), # refers to the text_bound_annotation of the trigger,
|
258 |
+
"id": datasets.Value("string"),
|
259 |
+
"type": datasets.Value("string"),
|
260 |
+
"arguments": datasets.Sequence(
|
261 |
+
{
|
262 |
+
"role": datasets.Value("string"),
|
263 |
+
"ref_id": datasets.Value("string"),
|
264 |
+
}
|
265 |
+
),
|
266 |
+
}
|
267 |
+
],
|
268 |
+
"relations": [ # R line in brat
|
269 |
+
{
|
270 |
+
"id": datasets.Value("string"),
|
271 |
+
"head": {
|
272 |
+
"ref_id": datasets.Value("string"),
|
273 |
+
"role": datasets.Value("string"),
|
274 |
+
},
|
275 |
+
"tail": {
|
276 |
+
"ref_id": datasets.Value("string"),
|
277 |
+
"role": datasets.Value("string"),
|
278 |
+
},
|
279 |
+
"type": datasets.Value("string"),
|
280 |
+
}
|
281 |
+
],
|
282 |
+
"equivalences": [ # Equiv line in brat
|
283 |
+
{
|
284 |
+
"id": datasets.Value("string"),
|
285 |
+
"ref_ids": datasets.Sequence(datasets.Value("string")),
|
286 |
+
}
|
287 |
+
],
|
288 |
+
"attributes": [ # M or A lines in brat
|
289 |
+
{
|
290 |
+
"id": datasets.Value("string"),
|
291 |
+
"type": datasets.Value("string"),
|
292 |
+
"ref_id": datasets.Value("string"),
|
293 |
+
"value": datasets.Value("string"),
|
294 |
+
}
|
295 |
+
],
|
296 |
+
"normalizations": [ # N lines in brat
|
297 |
+
{
|
298 |
+
"id": datasets.Value("string"),
|
299 |
+
"type": datasets.Value("string"),
|
300 |
+
"ref_id": datasets.Value("string"),
|
301 |
+
"resource_name": datasets.Value(
|
302 |
+
"string"
|
303 |
+
), # Name of the resource, e.g. "Wikipedia"
|
304 |
+
"cuid": datasets.Value(
|
305 |
+
"string"
|
306 |
+
), # ID in the resource, e.g. 534366
|
307 |
+
"text": datasets.Value(
|
308 |
+
"string"
|
309 |
+
), # Human readable description/name of the entity, e.g. "Barack Obama"
|
310 |
+
}
|
311 |
+
],
|
312 |
+
### OPTIONAL: Only included when `parse_notes == True`
|
313 |
+
"notes": [ # # lines in brat
|
314 |
+
{
|
315 |
+
"id": datasets.Value("string"),
|
316 |
+
"type": datasets.Value("string"),
|
317 |
+
"ref_id": datasets.Value("string"),
|
318 |
+
"text": datasets.Value("string"),
|
319 |
+
}
|
320 |
+
],
|
321 |
+
},
|
322 |
+
)
|
323 |
+
"""
|
324 |
+
|
325 |
+
example = {}
|
326 |
+
example["document_id"] = txt_file.with_suffix("").name
|
327 |
+
with txt_file.open() as f:
|
328 |
+
example["text"] = f.read()
|
329 |
+
|
330 |
+
# If no specific suffixes of the to-be-read annotation files are given - take standard suffixes
|
331 |
+
# for event extraction
|
332 |
+
if annotation_file_suffixes is None:
|
333 |
+
annotation_file_suffixes = [".a1", ".a2", ".ann"]
|
334 |
+
|
335 |
+
if len(annotation_file_suffixes) == 0:
|
336 |
+
raise AssertionError(
|
337 |
+
"At least one suffix for the to-be-read annotation files should be given!"
|
338 |
+
)
|
339 |
+
|
340 |
+
ann_lines = []
|
341 |
+
for suffix in annotation_file_suffixes:
|
342 |
+
annotation_file = txt_file.with_suffix(suffix)
|
343 |
+
if annotation_file.exists():
|
344 |
+
with annotation_file.open() as f:
|
345 |
+
ann_lines.extend(f.readlines())
|
346 |
+
|
347 |
+
example["text_bound_annotations"] = []
|
348 |
+
example["events"] = []
|
349 |
+
example["relations"] = []
|
350 |
+
example["equivalences"] = []
|
351 |
+
example["attributes"] = []
|
352 |
+
example["normalizations"] = []
|
353 |
+
|
354 |
+
if parse_notes:
|
355 |
+
example["notes"] = []
|
356 |
+
|
357 |
+
for line in ann_lines:
|
358 |
+
line = line.strip()
|
359 |
+
if not line:
|
360 |
+
continue
|
361 |
+
|
362 |
+
if line.startswith("T"): # Text bound
|
363 |
+
ann = {}
|
364 |
+
fields = line.split("\t")
|
365 |
+
|
366 |
+
ann["id"] = fields[0]
|
367 |
+
ann["type"] = fields[1].split()[0]
|
368 |
+
ann["offsets"] = []
|
369 |
+
span_str = remove_prefix(fields[1], (ann["type"] + " "))
|
370 |
+
text = fields[2]
|
371 |
+
for span in span_str.split(";"):
|
372 |
+
start, end = span.split()
|
373 |
+
ann["offsets"].append([int(start), int(end)])
|
374 |
+
|
375 |
+
# Heuristically split text of discontiguous entities into chunks
|
376 |
+
ann["text"] = []
|
377 |
+
if len(ann["offsets"]) > 1:
|
378 |
+
i = 0
|
379 |
+
for start, end in ann["offsets"]:
|
380 |
+
chunk_len = end - start
|
381 |
+
ann["text"].append(text[i : chunk_len + i])
|
382 |
+
i += chunk_len
|
383 |
+
while i < len(text) and text[i] == " ":
|
384 |
+
i += 1
|
385 |
+
else:
|
386 |
+
ann["text"] = [text]
|
387 |
+
|
388 |
+
example["text_bound_annotations"].append(ann)
|
389 |
+
|
390 |
+
elif line.startswith("E"):
|
391 |
+
ann = {}
|
392 |
+
fields = line.split("\t")
|
393 |
+
|
394 |
+
ann["id"] = fields[0]
|
395 |
+
|
396 |
+
ann["type"], ann["trigger"] = fields[1].split()[0].split(":")
|
397 |
+
|
398 |
+
ann["arguments"] = []
|
399 |
+
for role_ref_id in fields[1].split()[1:]:
|
400 |
+
argument = {
|
401 |
+
"role": (role_ref_id.split(":"))[0],
|
402 |
+
"ref_id": (role_ref_id.split(":"))[1],
|
403 |
+
}
|
404 |
+
ann["arguments"].append(argument)
|
405 |
+
|
406 |
+
example["events"].append(ann)
|
407 |
+
|
408 |
+
elif line.startswith("R"):
|
409 |
+
ann = {}
|
410 |
+
fields = line.split("\t")
|
411 |
+
|
412 |
+
ann["id"] = fields[0]
|
413 |
+
ann["type"] = fields[1].split()[0]
|
414 |
+
|
415 |
+
ann["head"] = {
|
416 |
+
"role": fields[1].split()[1].split(":")[0],
|
417 |
+
"ref_id": fields[1].split()[1].split(":")[1],
|
418 |
+
}
|
419 |
+
ann["tail"] = {
|
420 |
+
"role": fields[1].split()[2].split(":")[0],
|
421 |
+
"ref_id": fields[1].split()[2].split(":")[1],
|
422 |
+
}
|
423 |
+
|
424 |
+
example["relations"].append(ann)
|
425 |
+
|
426 |
+
# '*' seems to be the legacy way to mark equivalences,
|
427 |
+
# but I couldn't find any info on the current way
|
428 |
+
# this might have to be adapted dependent on the brat version
|
429 |
+
# of the annotation
|
430 |
+
elif line.startswith("*"):
|
431 |
+
ann = {}
|
432 |
+
fields = line.split("\t")
|
433 |
+
|
434 |
+
ann["id"] = fields[0]
|
435 |
+
ann["ref_ids"] = fields[1].split()[1:]
|
436 |
+
|
437 |
+
example["equivalences"].append(ann)
|
438 |
+
|
439 |
+
elif line.startswith("A") or line.startswith("M"):
|
440 |
+
ann = {}
|
441 |
+
fields = line.split("\t")
|
442 |
+
|
443 |
+
ann["id"] = fields[0]
|
444 |
+
|
445 |
+
info = fields[1].split()
|
446 |
+
ann["type"] = info[0]
|
447 |
+
ann["ref_id"] = info[1]
|
448 |
+
|
449 |
+
if len(info) > 2:
|
450 |
+
ann["value"] = info[2]
|
451 |
+
else:
|
452 |
+
ann["value"] = ""
|
453 |
+
|
454 |
+
example["attributes"].append(ann)
|
455 |
+
|
456 |
+
elif line.startswith("N"):
|
457 |
+
ann = {}
|
458 |
+
fields = line.split("\t")
|
459 |
+
|
460 |
+
ann["id"] = fields[0]
|
461 |
+
ann["text"] = fields[2]
|
462 |
+
|
463 |
+
info = fields[1].split()
|
464 |
+
|
465 |
+
ann["type"] = info[0]
|
466 |
+
ann["ref_id"] = info[1]
|
467 |
+
ann["resource_name"] = info[2].split(":")[0]
|
468 |
+
ann["cuid"] = info[2].split(":")[1]
|
469 |
+
example["normalizations"].append(ann)
|
470 |
+
|
471 |
+
elif parse_notes and line.startswith("#"):
|
472 |
+
ann = {}
|
473 |
+
fields = line.split("\t")
|
474 |
+
|
475 |
+
ann["id"] = fields[0]
|
476 |
+
ann["text"] = fields[2] if len(fields) == 3 else BigBioValues.NULL
|
477 |
+
|
478 |
+
info = fields[1].split()
|
479 |
+
|
480 |
+
ann["type"] = info[0]
|
481 |
+
ann["ref_id"] = info[1]
|
482 |
+
example["notes"].append(ann)
|
483 |
+
|
484 |
+
return example
|
485 |
+
|
486 |
+
|
487 |
+
def brat_parse_to_bigbio_kb(brat_parse: Dict) -> Dict:
|
488 |
+
"""
|
489 |
+
Transform a brat parse (conforming to the standard brat schema) obtained with
|
490 |
+
`parse_brat_file` into a dictionary conforming to the `bigbio-kb` schema (as defined in ../schemas/kb.py)
|
491 |
+
:param brat_parse:
|
492 |
+
"""
|
493 |
+
|
494 |
+
unified_example = {}
|
495 |
+
|
496 |
+
# Prefix all ids with document id to ensure global uniqueness,
|
497 |
+
# because brat ids are only unique within their document
|
498 |
+
id_prefix = brat_parse["document_id"] + "_"
|
499 |
+
|
500 |
+
# identical
|
501 |
+
unified_example["document_id"] = brat_parse["document_id"]
|
502 |
+
unified_example["passages"] = [
|
503 |
+
{
|
504 |
+
"id": id_prefix + "_text",
|
505 |
+
"type": "abstract",
|
506 |
+
"text": [brat_parse["text"]],
|
507 |
+
"offsets": [[0, len(brat_parse["text"])]],
|
508 |
+
}
|
509 |
+
]
|
510 |
+
|
511 |
+
# get normalizations
|
512 |
+
ref_id_to_normalizations = defaultdict(list)
|
513 |
+
for normalization in brat_parse["normalizations"]:
|
514 |
+
ref_id_to_normalizations[normalization["ref_id"]].append(
|
515 |
+
{
|
516 |
+
"db_name": normalization["resource_name"],
|
517 |
+
"db_id": normalization["cuid"],
|
518 |
+
}
|
519 |
+
)
|
520 |
+
|
521 |
+
# separate entities and event triggers
|
522 |
+
unified_example["events"] = []
|
523 |
+
non_event_ann = brat_parse["text_bound_annotations"].copy()
|
524 |
+
for event in brat_parse["events"]:
|
525 |
+
event = event.copy()
|
526 |
+
event["id"] = id_prefix + event["id"]
|
527 |
+
trigger = next(
|
528 |
+
tr for tr in brat_parse["text_bound_annotations"] if tr["id"] == event["trigger"]
|
529 |
+
)
|
530 |
+
if trigger in non_event_ann:
|
531 |
+
non_event_ann.remove(trigger)
|
532 |
+
event["trigger"] = {
|
533 |
+
"text": trigger["text"].copy(),
|
534 |
+
"offsets": trigger["offsets"].copy(),
|
535 |
+
}
|
536 |
+
for argument in event["arguments"]:
|
537 |
+
argument["ref_id"] = id_prefix + argument["ref_id"]
|
538 |
+
|
539 |
+
unified_example["events"].append(event)
|
540 |
+
|
541 |
+
unified_example["entities"] = []
|
542 |
+
anno_ids = [ref_id["id"] for ref_id in non_event_ann]
|
543 |
+
for ann in non_event_ann:
|
544 |
+
entity_ann = ann.copy()
|
545 |
+
entity_ann["id"] = id_prefix + entity_ann["id"]
|
546 |
+
entity_ann["normalized"] = ref_id_to_normalizations[ann["id"]]
|
547 |
+
unified_example["entities"].append(entity_ann)
|
548 |
+
|
549 |
+
# massage relations
|
550 |
+
unified_example["relations"] = []
|
551 |
+
skipped_relations = set()
|
552 |
+
for ann in brat_parse["relations"]:
|
553 |
+
if ann["head"]["ref_id"] not in anno_ids or ann["tail"]["ref_id"] not in anno_ids:
|
554 |
+
skipped_relations.add(ann["id"])
|
555 |
+
continue
|
556 |
+
unified_example["relations"].append(
|
557 |
+
{
|
558 |
+
"arg1_id": id_prefix + ann["head"]["ref_id"],
|
559 |
+
"arg2_id": id_prefix + ann["tail"]["ref_id"],
|
560 |
+
"id": id_prefix + ann["id"],
|
561 |
+
"type": ann["type"],
|
562 |
+
"normalized": [],
|
563 |
+
}
|
564 |
+
)
|
565 |
+
if len(skipped_relations) > 0:
|
566 |
+
example_id = brat_parse["document_id"]
|
567 |
+
logger.info(
|
568 |
+
f"Example:{example_id}: The `bigbio_kb` schema allows `relations` only between entities."
|
569 |
+
f" Skip (for now): "
|
570 |
+
f"{list(skipped_relations)}"
|
571 |
+
)
|
572 |
+
|
573 |
+
# get coreferences
|
574 |
+
unified_example["coreferences"] = []
|
575 |
+
for i, ann in enumerate(brat_parse["equivalences"], start=1):
|
576 |
+
is_entity_cluster = True
|
577 |
+
for ref_id in ann["ref_ids"]:
|
578 |
+
if not ref_id.startswith("T"): # not textbound -> no entity
|
579 |
+
is_entity_cluster = False
|
580 |
+
elif ref_id not in anno_ids: # event trigger -> no entity
|
581 |
+
is_entity_cluster = False
|
582 |
+
if is_entity_cluster:
|
583 |
+
entity_ids = [id_prefix + i for i in ann["ref_ids"]]
|
584 |
+
unified_example["coreferences"].append(
|
585 |
+
{"id": id_prefix + str(i), "entity_ids": entity_ids}
|
586 |
+
)
|
587 |
+
return unified_example
|
e3c.py
CHANGED
@@ -1,13 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
-
|
|
|
3 |
|
4 |
import datasets
|
5 |
-
from bs4 import BeautifulSoup, ResultSet
|
6 |
-
from datasets import DownloadManager
|
7 |
-
from syntok.tokenizer import Tokenizer
|
8 |
|
9 |
-
|
10 |
|
|
|
11 |
|
12 |
_CITATION = """\
|
13 |
@report{Magnini2021,
|
@@ -19,9 +41,10 @@ European Clinical Case Corpus El proyecto E3C: European Clinical Case Corpus},
|
|
19 |
url = {https://uts.nlm.nih.gov/uts/umls/home},
|
20 |
year = {2021},
|
21 |
}
|
22 |
-
|
23 |
"""
|
24 |
|
|
|
|
|
25 |
_DESCRIPTION = """\
|
26 |
The European Clinical Case Corpus (E3C) project aims at collecting and \
|
27 |
annotating a large corpus of clinical documents in five European languages (Spanish, \
|
@@ -30,402 +53,251 @@ include temporal information, to allow temporal reasoning on chronologies, and \
|
|
30 |
information about clinical entities based on medical taxonomies, to be used for semantic reasoning.
|
31 |
"""
|
32 |
|
33 |
-
|
34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
-
class E3CConfig(datasets.BuilderConfig):
|
37 |
-
"""BuilderConfig for E3C."""
|
38 |
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
super(E3CConfig, self).__init__(**kwargs)
|
45 |
|
|
|
|
|
46 |
|
47 |
-
class E3C(datasets.GeneratorBasedBuilder):
|
48 |
-
VERSION = datasets.Version("1.1.0")
|
49 |
BUILDER_CONFIGS = [
|
50 |
-
|
51 |
-
name="
|
52 |
-
version=
|
53 |
-
description="
|
|
|
|
|
54 |
),
|
55 |
]
|
56 |
|
57 |
-
|
58 |
-
|
|
|
|
|
|
|
|
|
59 |
features = datasets.Features(
|
60 |
{
|
|
|
|
|
61 |
"text": datasets.Value("string"),
|
62 |
-
"
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
|
|
|
|
|
|
|
|
93 |
}
|
94 |
)
|
95 |
return datasets.DatasetInfo(
|
96 |
description=_DESCRIPTION,
|
97 |
features=features,
|
|
|
|
|
98 |
citation=_CITATION,
|
99 |
-
supervised_keys=None,
|
100 |
)
|
101 |
|
102 |
-
def _split_generators(self, dl_manager
|
103 |
-
"""Returns SplitGenerators
|
104 |
-
|
105 |
-
|
106 |
-
factuality, for benchmarking and linguistic analysis.
|
107 |
-
- layer 2: semi-automatic annotation of clinical entities
|
108 |
-
- layer 3: non-annotated documents
|
109 |
-
Args:
|
110 |
-
dl_manager: A `datasets.utils.DownloadManager` that can be used to download and
|
111 |
-
extract URLs.
|
112 |
-
Returns:
|
113 |
-
A list of `datasets.SplitGenerator`. Contains all subsets of the dataset depending on
|
114 |
-
the language and the layer.
|
115 |
-
"""
|
116 |
-
url = _URL
|
117 |
-
data_dir = dl_manager.download_and_extract(url)
|
118 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
return [
|
120 |
datasets.SplitGenerator(
|
121 |
-
name=
|
|
|
122 |
gen_kwargs={
|
123 |
-
"filepath": os.path.join(
|
124 |
-
|
125 |
-
"E3C-Corpus-2.0.0/data_annotation",
|
126 |
-
"English",
|
127 |
-
"layer1",
|
128 |
-
),
|
129 |
},
|
130 |
-
)
|
131 |
-
|
132 |
-
name="en.layer2",
|
133 |
-
gen_kwargs={
|
134 |
-
"filepath": os.path.join(
|
135 |
-
data_dir,
|
136 |
-
"E3C-Corpus-2.0.0/data_annotation",
|
137 |
-
"English",
|
138 |
-
"layer2",
|
139 |
-
),
|
140 |
-
},
|
141 |
-
),
|
142 |
-
datasets.SplitGenerator(
|
143 |
-
name="en.layer2.validation",
|
144 |
-
gen_kwargs={
|
145 |
-
"filepath": os.path.join(
|
146 |
-
data_dir,
|
147 |
-
"E3C-Corpus-2.0.0/data_validation",
|
148 |
-
"English",
|
149 |
-
"layer2",
|
150 |
-
),
|
151 |
-
},
|
152 |
-
),
|
153 |
-
datasets.SplitGenerator(
|
154 |
-
name="es.layer1",
|
155 |
-
gen_kwargs={
|
156 |
-
"filepath": os.path.join(
|
157 |
-
data_dir,
|
158 |
-
"E3C-Corpus-2.0.0/data_annotation",
|
159 |
-
"Spanish",
|
160 |
-
"layer1",
|
161 |
-
),
|
162 |
-
},
|
163 |
-
),
|
164 |
-
datasets.SplitGenerator(
|
165 |
-
name="es.layer2",
|
166 |
-
gen_kwargs={
|
167 |
-
"filepath": os.path.join(
|
168 |
-
data_dir,
|
169 |
-
"E3C-Corpus-2.0.0/data_annotation",
|
170 |
-
"Spanish",
|
171 |
-
"layer2",
|
172 |
-
),
|
173 |
-
},
|
174 |
-
),
|
175 |
-
datasets.SplitGenerator(
|
176 |
-
name="es.layer2.validation",
|
177 |
-
gen_kwargs={
|
178 |
-
"filepath": os.path.join(
|
179 |
-
data_dir,
|
180 |
-
"E3C-Corpus-2.0.0/data_validation",
|
181 |
-
"Spanish",
|
182 |
-
"layer2",
|
183 |
-
),
|
184 |
-
},
|
185 |
-
),
|
186 |
-
datasets.SplitGenerator(
|
187 |
-
name="eu.layer1",
|
188 |
-
gen_kwargs={
|
189 |
-
"filepath": os.path.join(
|
190 |
-
data_dir,
|
191 |
-
"E3C-Corpus-2.0.0/data_annotation",
|
192 |
-
"Basque",
|
193 |
-
"layer1",
|
194 |
-
),
|
195 |
-
},
|
196 |
-
),
|
197 |
-
datasets.SplitGenerator(
|
198 |
-
name="eu.layer2",
|
199 |
-
gen_kwargs={
|
200 |
-
"filepath": os.path.join(
|
201 |
-
data_dir,
|
202 |
-
"E3C-Corpus-2.0.0/data_annotation",
|
203 |
-
"Basque",
|
204 |
-
"layer2",
|
205 |
-
),
|
206 |
-
},
|
207 |
-
),
|
208 |
-
datasets.SplitGenerator(
|
209 |
-
name="eu.layer2.validation",
|
210 |
-
gen_kwargs={
|
211 |
-
"filepath": os.path.join(
|
212 |
-
data_dir,
|
213 |
-
"E3C-Corpus-2.0.0/data_validation",
|
214 |
-
"Basque",
|
215 |
-
"layer2",
|
216 |
-
),
|
217 |
-
},
|
218 |
-
),
|
219 |
-
datasets.SplitGenerator(
|
220 |
-
name="fr.layer1",
|
221 |
-
gen_kwargs={
|
222 |
-
"filepath": os.path.join(
|
223 |
-
data_dir,
|
224 |
-
"E3C-Corpus-2.0.0/data_annotation",
|
225 |
-
"French",
|
226 |
-
"layer1",
|
227 |
-
),
|
228 |
-
},
|
229 |
-
),
|
230 |
-
datasets.SplitGenerator(
|
231 |
-
name="fr.layer2",
|
232 |
-
gen_kwargs={
|
233 |
-
"filepath": os.path.join(
|
234 |
-
data_dir,
|
235 |
-
"E3C-Corpus-2.0.0/data_annotation",
|
236 |
-
"French",
|
237 |
-
"layer2",
|
238 |
-
),
|
239 |
-
},
|
240 |
-
),
|
241 |
-
datasets.SplitGenerator(
|
242 |
-
name="fr.layer2.validation",
|
243 |
-
gen_kwargs={
|
244 |
-
"filepath": os.path.join(
|
245 |
-
data_dir,
|
246 |
-
"E3C-Corpus-2.0.0/data_validation",
|
247 |
-
"French",
|
248 |
-
"layer2",
|
249 |
-
),
|
250 |
-
},
|
251 |
-
),
|
252 |
-
datasets.SplitGenerator(
|
253 |
-
name="it.layer1",
|
254 |
-
gen_kwargs={
|
255 |
-
"filepath": os.path.join(
|
256 |
-
data_dir,
|
257 |
-
"E3C-Corpus-2.0.0/data_annotation",
|
258 |
-
"Italian",
|
259 |
-
"layer1",
|
260 |
-
),
|
261 |
-
},
|
262 |
-
),
|
263 |
-
datasets.SplitGenerator(
|
264 |
-
name="it.layer2",
|
265 |
-
gen_kwargs={
|
266 |
-
"filepath": os.path.join(
|
267 |
-
data_dir,
|
268 |
-
"E3C-Corpus-2.0.0/data_annotation",
|
269 |
-
"Italian",
|
270 |
-
"layer2",
|
271 |
-
),
|
272 |
-
},
|
273 |
-
),
|
274 |
-
datasets.SplitGenerator(
|
275 |
-
name="it.layer2.validation",
|
276 |
-
gen_kwargs={
|
277 |
-
"filepath": os.path.join(
|
278 |
-
data_dir,
|
279 |
-
"E3C-Corpus-2.0.0/data_validation",
|
280 |
-
"Italian",
|
281 |
-
"layer2",
|
282 |
-
),
|
283 |
-
},
|
284 |
-
),
|
285 |
-
]
|
286 |
-
|
287 |
-
@staticmethod
|
288 |
-
def get_annotations(entities: ResultSet, text: str) -> list:
|
289 |
-
"""Extract the offset, the text and the type of the entity.
|
290 |
-
|
291 |
-
Args:
|
292 |
-
entities: The entities to extract.
|
293 |
-
text: The text of the document.
|
294 |
-
Returns:
|
295 |
-
A list of list containing the offset, the text and the type of the entity.
|
296 |
-
"""
|
297 |
-
return [
|
298 |
-
|
299 |
-
[
|
300 |
-
int(entity.get("begin")),
|
301 |
-
int(entity.get("end")),
|
302 |
-
text[int(entity.get("begin")) : int(entity.get("end"))],
|
303 |
-
]
|
304 |
-
for entity in entities
|
305 |
]
|
306 |
|
307 |
-
def
|
308 |
-
"""
|
309 |
-
|
310 |
-
Args:
|
311 |
-
entities: The entities to extract.
|
312 |
-
text: The text of the document.
|
313 |
-
Returns:
|
314 |
-
A list of list containing the offset, the text and the type of the entity.
|
315 |
-
"""
|
316 |
-
return [
|
317 |
-
[
|
318 |
-
int(entity.get("begin")),
|
319 |
-
int(entity.get("end")),
|
320 |
-
text[int(entity.get("begin")) : int(entity.get("end"))],
|
321 |
-
entity.get("entityID"),
|
322 |
-
]
|
323 |
-
for entity in entities
|
324 |
-
]
|
325 |
-
|
326 |
-
def get_parsed_data(self, filepath: str):
|
327 |
-
"""Parse the data from the E3C dataset and store it in a dictionary.
|
328 |
-
Iterate over the files in the dataset and parse for each file the following entities:
|
329 |
-
- CLINENTITY
|
330 |
-
- EVENT
|
331 |
-
- ACTOR
|
332 |
-
- BODYPART
|
333 |
-
- TIMEX3
|
334 |
-
- RML
|
335 |
-
for each entity, we extract the offset, the text and the type of the entity.
|
336 |
-
|
337 |
-
Args:
|
338 |
-
filepath: The path to the folder containing the files to parse.
|
339 |
-
"""
|
340 |
-
for root, _, files in os.walk(filepath):
|
341 |
-
for file in files:
|
342 |
-
with open(f"{root}/{file}") as soup_file:
|
343 |
-
soup = BeautifulSoup(soup_file, "xml")
|
344 |
-
text = soup.find("cas:Sofa").get("sofaString")
|
345 |
-
yield {
|
346 |
-
"CLINENTITY": self.get_clinical_annotations(
|
347 |
-
soup.find_all("custom:CLINENTITY"), text
|
348 |
-
),
|
349 |
-
"EVENT": self.get_annotations(soup.find_all("custom:EVENT"), text),
|
350 |
-
"ACTOR": self.get_annotations(soup.find_all("custom:ACTOR"), text),
|
351 |
-
"BODYPART": self.get_annotations(soup.find_all("custom:BODYPART"), text),
|
352 |
-
"TIMEX3": self.get_annotations(soup.find_all("custom:TIMEX3"), text),
|
353 |
-
"RML": self.get_annotations(soup.find_all("custom:RML"), text),
|
354 |
-
"SENTENCE": self.get_annotations(soup.find_all("type4:Sentence"), text),
|
355 |
-
"TOKENS": self.get_annotations(soup.find_all("type4:Token"), text),
|
356 |
-
}
|
357 |
-
|
358 |
-
def _generate_examples(self, filepath) -> Iterator:
|
359 |
-
"""Yields examples as (key, example) tuples.
|
360 |
-
Args:
|
361 |
-
filepath: The path to the folder containing the files to parse.
|
362 |
-
Yields:
|
363 |
-
an example containing four fields: the text, the annotations, the tokens offsets and
|
364 |
-
the sentences.
|
365 |
-
"""
|
366 |
guid = 0
|
367 |
-
for
|
368 |
-
for
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
|
391 |
-
"CLINENTITY",
|
392 |
-
"EVENT",
|
393 |
-
"ACTOR",
|
394 |
-
"BODYPART",
|
395 |
-
"TIMEX3",
|
396 |
-
"RML",
|
397 |
-
]:
|
398 |
-
if len(content[entity_type]) != 0:
|
399 |
-
for entities in list(
|
400 |
-
content[entity_type],
|
401 |
-
):
|
402 |
-
annotated_tokens = [
|
403 |
-
idx_token
|
404 |
-
for idx_token, token in enumerate(filtered_tokens)
|
405 |
-
if token[0] >= entities[0] and token[1] <= entities[1]
|
406 |
]
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
-
|
423 |
-
|
424 |
-
|
425 |
-
|
426 |
-
|
427 |
-
|
428 |
-
|
429 |
-
|
430 |
-
|
431 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
"""
|
17 |
+
The European Clinical Case Corpus (E3C) project aims at collecting and \
|
18 |
+
annotating a large corpus of clinical documents in five European languages (Spanish, \
|
19 |
+
Basque, English, French and Italian), which will be freely distributed. Annotations \
|
20 |
+
include temporal information, to allow temporal reasoning on chronologies, and \
|
21 |
+
information about clinical entities based on medical taxonomies, to be used for semantic reasoning.
|
22 |
+
"""
|
23 |
+
import json
|
24 |
import os
|
25 |
+
import xml.etree.ElementTree as et
|
26 |
+
from typing import Dict, Iterator, List, Tuple
|
27 |
|
28 |
import datasets
|
|
|
|
|
|
|
29 |
|
30 |
+
from .bigbiohub import BigBioConfig, Tasks
|
31 |
|
32 |
+
_LOCAL = True
|
33 |
|
34 |
_CITATION = """\
|
35 |
@report{Magnini2021,
|
|
|
41 |
url = {https://uts.nlm.nih.gov/uts/umls/home},
|
42 |
year = {2021},
|
43 |
}
|
|
|
44 |
"""
|
45 |
|
46 |
+
_DATASETNAME = "e3c"
|
47 |
+
|
48 |
_DESCRIPTION = """\
|
49 |
The European Clinical Case Corpus (E3C) project aims at collecting and \
|
50 |
annotating a large corpus of clinical documents in five European languages (Spanish, \
|
|
|
53 |
information about clinical entities based on medical taxonomies, to be used for semantic reasoning.
|
54 |
"""
|
55 |
|
56 |
+
_HOMEPAGE = "https://github.com/hltfbk/E3C-Corpus"
|
57 |
|
58 |
+
_LICENSE = ""
|
59 |
+
|
60 |
+
_URLS = {
|
61 |
+
_DATASETNAME: "https://github.com/hltfbk/E3C-Corpus/archive/refs/tags/v2.0.0.zip",
|
62 |
+
}
|
63 |
+
|
64 |
+
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION, Tasks.RELATION_EXTRACTION]
|
65 |
+
|
66 |
+
_SOURCE_VERSION = "2.0.0"
|
67 |
+
|
68 |
+
_BIGBIO_VERSION = "1.0.0"
|
69 |
|
|
|
|
|
70 |
|
71 |
+
class E3cDataset(datasets.GeneratorBasedBuilder):
|
72 |
+
"""The European Clinical Case Corpus (E3C) is a multilingual corpus of clinical documents.
|
73 |
+
The corpus is annotated with clinical entities and temporal information.
|
74 |
+
The corpus is available in five languages: Spanish, Basque, English, French and Italian.
|
75 |
+
"""
|
|
|
76 |
|
77 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
78 |
+
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
|
79 |
|
|
|
|
|
80 |
BUILDER_CONFIGS = [
|
81 |
+
BigBioConfig(
|
82 |
+
name=f"{_DATASETNAME}_source",
|
83 |
+
version=SOURCE_VERSION,
|
84 |
+
description=f"{_DATASETNAME} source schema",
|
85 |
+
schema="source",
|
86 |
+
subset_id=_DATASETNAME,
|
87 |
),
|
88 |
]
|
89 |
|
90 |
+
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source"
|
91 |
+
|
92 |
+
def _info(self) -> datasets.DatasetInfo:
|
93 |
+
# You can arbitrarily nest lists and dictionaries.
|
94 |
+
# For iterables, use lists over tuples or `datasets.Sequence`
|
95 |
+
|
96 |
features = datasets.Features(
|
97 |
{
|
98 |
+
"id": datasets.Value("string"),
|
99 |
+
"document_id": datasets.Value("int32"),
|
100 |
"text": datasets.Value("string"),
|
101 |
+
"passages": [
|
102 |
+
{
|
103 |
+
"id": datasets.Value("string"),
|
104 |
+
"text": datasets.Value("string"),
|
105 |
+
"offsets": [datasets.Value("int32")],
|
106 |
+
}
|
107 |
+
],
|
108 |
+
"entities": [
|
109 |
+
{
|
110 |
+
"id": datasets.Value("string"),
|
111 |
+
"type": datasets.Value("string"),
|
112 |
+
"text": datasets.Value("string"),
|
113 |
+
"offsets": [datasets.Value("int32")],
|
114 |
+
"semantic_type_id": datasets.Value("string"),
|
115 |
+
"role": datasets.Value("string"),
|
116 |
+
}
|
117 |
+
],
|
118 |
+
"relations": [
|
119 |
+
{
|
120 |
+
"id": datasets.Value("string"),
|
121 |
+
"type": datasets.Value("string"),
|
122 |
+
"contextualAspect": datasets.Value("string"),
|
123 |
+
"contextualModality": datasets.Value("string"),
|
124 |
+
"degree": datasets.Value("string"),
|
125 |
+
"docTimeRel": datasets.Value("string"),
|
126 |
+
"eventType": datasets.Value("string"),
|
127 |
+
"permanence": datasets.Value("string"),
|
128 |
+
"polarity": datasets.Value("string"),
|
129 |
+
"functionInDocument": datasets.Value("string"),
|
130 |
+
"timex3Class": datasets.Value("string"),
|
131 |
+
"value": datasets.Value("string"),
|
132 |
+
"concept_1": datasets.Value("string"),
|
133 |
+
"concept_2": datasets.Value("string"),
|
134 |
+
}
|
135 |
+
],
|
136 |
}
|
137 |
)
|
138 |
return datasets.DatasetInfo(
|
139 |
description=_DESCRIPTION,
|
140 |
features=features,
|
141 |
+
homepage=_HOMEPAGE,
|
142 |
+
license=_LICENSE,
|
143 |
citation=_CITATION,
|
|
|
144 |
)
|
145 |
|
146 |
+
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]:
|
147 |
+
"""Returns SplitGenerators."""
|
148 |
+
urls = _URLS[_DATASETNAME]
|
149 |
+
data_dir = dl_manager.download_and_extract(urls)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
|
151 |
+
paths = {
|
152 |
+
"en.layer1": "data_annotation/English/layer1",
|
153 |
+
"en.layer2": "data_annotation/English/layer2",
|
154 |
+
"en.layer2.validation": "data_validation/English/layer2",
|
155 |
+
"en.layer3": "data_collection/English/layer3",
|
156 |
+
"es.layer1": "data_annotation/Spanish/layer1",
|
157 |
+
"es.layer2": "data_annotation/Spanish/layer2",
|
158 |
+
"es.layer2.validation": "data_validation/Spanish/layer2",
|
159 |
+
"es.layer3": "data_collection/Spanish/layer3",
|
160 |
+
"eu.layer1": "data_annotation/Basque/layer1",
|
161 |
+
"eu.layer2": "data_annotation/Basque/layer2",
|
162 |
+
"eu.layer2.validation": "data_validation/Basque/layer2",
|
163 |
+
"eu.layer3": "data_collection/Basque/layer3",
|
164 |
+
"fr.layer1": "data_annotation/French/layer1",
|
165 |
+
"fr.layer2": "data_annotation/French/layer2",
|
166 |
+
"fr.layer2.validation": "data_validation/French/layer2",
|
167 |
+
"fr.layer3": "data_collection/French/layer3",
|
168 |
+
"it.layer1": "data_annotation/Italian/layer1",
|
169 |
+
"it.layer2": "data_annotation/Italian/layer2",
|
170 |
+
"it.layer2.validation": "data_validation/Italian/layer2",
|
171 |
+
"it.layer3": "data_collection/Italian/layer3",
|
172 |
+
}
|
173 |
return [
|
174 |
datasets.SplitGenerator(
|
175 |
+
name=split,
|
176 |
+
# Whatever you put in gen_kwargs will be passed to _generate_examples
|
177 |
gen_kwargs={
|
178 |
+
"filepath": os.path.join(data_dir, "E3C-Corpus-2.0.0", path),
|
179 |
+
"split": "train",
|
|
|
|
|
|
|
|
|
180 |
},
|
181 |
+
)
|
182 |
+
for split, path in paths.items()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
183 |
]
|
184 |
|
185 |
+
def _generate_examples(self, filepath, split: str) -> Iterator[Tuple[int, Dict]]:
|
186 |
+
"""Yields examples as (key, example) tuples."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
187 |
guid = 0
|
188 |
+
for folder, _, files in os.walk(filepath):
|
189 |
+
for file in files:
|
190 |
+
with open(f"{folder}/{file}") as document:
|
191 |
+
if "layer3" not in folder:
|
192 |
+
root = et.fromstring(document.read())
|
193 |
+
annotations: dict = {}
|
194 |
+
for child in root:
|
195 |
+
annotations.setdefault(child.tag, []).append(
|
196 |
+
child.attrib | {"type": child.tag.split("}")[1]}
|
197 |
+
)
|
198 |
|
199 |
+
text = annotations["{http:///uima/cas.ecore}Sofa"][0]["sofaString"]
|
200 |
+
links = {
|
201 |
+
link["{http://www.omg.org/XMI}id"]: link
|
202 |
+
for link in [
|
203 |
+
*annotations.get(
|
204 |
+
"{http:///webanno/custom.ecore}EVENTTLINKLink", []
|
205 |
+
),
|
206 |
+
*annotations.get(
|
207 |
+
"{http:///webanno/custom.ecore}RMLPERTAINSTOLink", []
|
208 |
+
),
|
209 |
+
*annotations.get(
|
210 |
+
"{http:///webanno/custom.ecore}TIMEX3TimexLinkLink", []
|
211 |
+
),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
212 |
]
|
213 |
+
}
|
214 |
+
joined_relations = []
|
215 |
+
for relation in [
|
216 |
+
*annotations.get("{http:///webanno/custom.ecore}EVENT", []),
|
217 |
+
*annotations.get("{http:///webanno/custom.ecore}TIMEX3", []),
|
218 |
+
*annotations.get("{http:///webanno/custom.ecore}RML", []),
|
219 |
+
]:
|
220 |
+
link_ids = []
|
221 |
+
if "TLINK" in relation.keys():
|
222 |
+
link_ids = relation["TLINK"].split(" ")
|
223 |
+
elif "PERTAINSTO" in relation.keys():
|
224 |
+
link_ids = relation["PERTAINSTO"].split(" ")
|
225 |
+
elif "timexLink" in relation.keys():
|
226 |
+
link_ids = relation["timexLink"].split(" ")
|
227 |
+
elif not link_ids:
|
228 |
+
joined_relations.append(
|
229 |
+
relation | {"source": relation["{http://www.omg.org/XMI}id"]}
|
230 |
+
)
|
231 |
+
if link_ids != [""]:
|
232 |
+
for link_id in link_ids:
|
233 |
+
joined_relations.append(
|
234 |
+
relation
|
235 |
+
| links[link_id]
|
236 |
+
| {"source": relation["{http://www.omg.org/XMI}id"]}
|
237 |
+
)
|
238 |
+
yield guid, {
|
239 |
+
"id": "e3c",
|
240 |
+
"document_id": guid,
|
241 |
+
"text": text,
|
242 |
+
"passages": [
|
243 |
+
{
|
244 |
+
"text": text[int(sentence["begin"]) : int(sentence["end"])],
|
245 |
+
"id": sentence["{http://www.omg.org/XMI}id"],
|
246 |
+
"offsets": [int(sentence["begin"]), int(sentence["end"])],
|
247 |
+
}
|
248 |
+
for sentence in annotations[
|
249 |
+
"{http:///de/tudarmstadt/ukp/dkpro/core"
|
250 |
+
"/api/segmentation/type.ecore}Sentence"
|
251 |
+
]
|
252 |
+
],
|
253 |
+
"entities": [
|
254 |
+
{
|
255 |
+
"text": text[int(annotation["begin"]) : int(annotation["end"])],
|
256 |
+
"offsets": [int(annotation["begin"]), int(annotation["end"])],
|
257 |
+
"id": annotation["{http://www.omg.org/XMI}id"],
|
258 |
+
"semantic_type_id": annotation.get("entityID", ""),
|
259 |
+
"role": annotation.get("role", ""),
|
260 |
+
"type": annotation.get("type"),
|
261 |
+
}
|
262 |
+
for annotation in [
|
263 |
+
*annotations.get("{http:///webanno/custom.ecore}EVENT", []),
|
264 |
+
*annotations.get(
|
265 |
+
"{http:///webanno/custom.ecore}CLINENTITY", []
|
266 |
+
),
|
267 |
+
*annotations.get("{http:///webanno/custom.ecore}BODYPART", []),
|
268 |
+
*annotations.get("{http:///webanno/custom.ecore}ACTOR", []),
|
269 |
+
*annotations.get("{http:///webanno/custom.ecore}RML", []),
|
270 |
+
*annotations.get("{http:///webanno/custom.ecore}TIMEX3", []),
|
271 |
+
]
|
272 |
+
],
|
273 |
+
"relations": [
|
274 |
+
{
|
275 |
+
"id": relation["{http://www.omg.org/XMI}id"],
|
276 |
+
"type": relation.get("type"),
|
277 |
+
"contextualAspect": relation.get("contextualAspect", ""),
|
278 |
+
"contextualModality": relation.get("contextualModality", ""),
|
279 |
+
"degree": relation.get("degree", ""),
|
280 |
+
"docTimeRel": relation.get("docTimeRel", ""),
|
281 |
+
"eventType": relation.get("eventType", ""),
|
282 |
+
"permanence": relation.get("permanence", ""),
|
283 |
+
"polarity": relation.get("polarity", ""),
|
284 |
+
"functionInDocument": relation.get("functionInDocument", ""),
|
285 |
+
"timex3Class": relation.get("timex3Class", ""),
|
286 |
+
"value": relation.get("value", ""),
|
287 |
+
"concept_1": relation.get("source"),
|
288 |
+
"concept_2": relation.get("target", ""),
|
289 |
+
}
|
290 |
+
for relation in joined_relations
|
291 |
+
],
|
292 |
+
}
|
293 |
+
else:
|
294 |
+
unannotated_text = json.load(document)
|
295 |
+
yield guid, {
|
296 |
+
"id": "e3c",
|
297 |
+
"document_id": guid,
|
298 |
+
"text": unannotated_text["text"],
|
299 |
+
"passages": [],
|
300 |
+
"entities": [],
|
301 |
+
"relations": [],
|
302 |
+
}
|
303 |
+
guid += 1
|