smeoni commited on
Commit
ff1d52b
·
1 Parent(s): e957396

Upload 2 files

Browse files
Files changed (2) hide show
  1. README.md +60 -155
  2. e3c.py +16 -8
README.md CHANGED
@@ -1,160 +1,65 @@
1
  ---
2
  dataset_info:
3
- - config_name: en
4
- features:
5
- - name: tokens
6
- sequence: string
7
- - name: ner_tags
8
- sequence:
9
- class_label:
10
- names:
11
- "0": O
12
- "1": CLINENTITY
13
- "2": EVENT
14
- "3": ACTOR
15
- "4": BODYPART
16
- "5": TIMEX3
17
- "6": RML
18
- splits:
19
- - name: en
20
- num_bytes: 507939
21
- num_examples: 1520
22
- download_size: 230213492
23
- dataset_size: 507939
24
- - config_name: es
25
- features:
26
- - name: tokens
27
- sequence: string
28
- - name: ner_tags
29
- sequence:
30
- class_label:
31
- names:
32
- "0": O
33
- "1": CLINENTITY
34
- "2": EVENT
35
- "3": ACTOR
36
- "4": BODYPART
37
- "5": TIMEX3
38
- "6": RML
39
- splits:
40
- - name: es
41
- num_bytes: 501523
42
- num_examples: 1134
43
- download_size: 230213492
44
- dataset_size: 501523
45
- - config_name: eu
46
- features:
47
- - name: tokens
48
- sequence: string
49
- - name: ner_tags
50
- sequence:
51
- class_label:
52
- names:
53
- "0": O
54
- "1": CLINENTITY
55
- "2": EVENT
56
- "3": ACTOR
57
- "4": BODYPART
58
- "5": TIMEX3
59
- "6": RML
60
- splits:
61
- - name: eu
62
- num_bytes: 615175
63
- num_examples: 3126
64
- download_size: 230213492
65
- dataset_size: 615175
66
- - config_name: fr
67
- features:
68
- - name: tokens
69
- sequence: string
70
- - name: ner_tags
71
- sequence:
72
- class_label:
73
- names:
74
- "0": O
75
- "1": CLINENTITY
76
- "2": EVENT
77
- "3": ACTOR
78
- "4": BODYPART
79
- "5": TIMEX3
80
- "6": RML
81
- splits:
82
- - name: fr
83
- num_bytes: 506754
84
- num_examples: 1109
85
- download_size: 230213492
86
- dataset_size: 506754
87
- - config_name: it
88
- features:
89
- - name: tokens
90
- sequence: string
91
- - name: ner_tags
92
- sequence:
93
- class_label:
94
- names:
95
- "0": O
96
- "1": CLINENTITY
97
- "2": EVENT
98
- "3": ACTOR
99
- "4": BODYPART
100
- "5": TIMEX3
101
- "6": RML
102
- splits:
103
- - name: it
104
- num_bytes: 516047
105
- num_examples: 1146
106
- download_size: 230213492
107
- dataset_size: 516047
108
- - config_name: e3c
109
- features:
110
- - name: tokens
111
- sequence: string
112
- - name: ner_tags
113
- sequence:
114
- class_label:
115
- names:
116
- "0": O
117
- "1": CLINENTITY
118
- "2": EVENT
119
- "3": ACTOR
120
- "4": BODYPART
121
- "5": TIMEX3
122
- "6": RML
123
- splits:
124
- - name: en.layer1
125
- num_bytes: 507939
126
- num_examples: 1520
127
- - name: en.layer2
128
- num_bytes: 1017690
129
- num_examples: 2873
130
- - name: es.layer1
131
- num_bytes: 501523
132
- num_examples: 1134
133
- - name: es.layer2
134
- num_bytes: 1002221
135
- num_examples: 2347
136
- - name: eu.layer1
137
- num_bytes: 615175
138
- num_examples: 3126
139
- - name: eu.layer2
140
- num_bytes: 342204
141
- num_examples: 1594
142
- - name: fr.layer1
143
- num_bytes: 506754
144
- num_examples: 1109
145
- - name: fr.layer2
146
- num_bytes: 1027933
147
- num_examples: 2389
148
- - name: it.layer1
149
- num_bytes: 516047
150
- num_examples: 1146
151
- - name: it.layer2
152
- num_bytes: 1071873
153
- num_examples: 2436
154
- download_size: 230213492
155
- dataset_size: 7109359
156
  ---
157
-
158
  # Dataset Card for E3C
159
 
160
  ## Dataset Description
@@ -181,4 +86,4 @@ information about clinical entities based on medical taxonomies, to be used for
181
  url = {https://uts.nlm.nih.gov/uts/umls/home},
182
  year = {2021},
183
  }
184
- ```
 
1
  ---
2
  dataset_info:
3
+ features:
4
+ - name: text
5
+ dtype: string
6
+ - name: tokens
7
+ sequence: string
8
+ - name: tokens_offsets
9
+ sequence:
10
+ sequence: int32
11
+ - name: ner_tags
12
+ sequence:
13
+ class_label:
14
+ names:
15
+ '0': O
16
+ '1': B-CLINENTITY
17
+ '2': B-EVENT
18
+ '3': B-ACTOR
19
+ '4': B-BODYPART
20
+ '5': B-TIMEX3
21
+ '6': B-RML
22
+ '7': I-CLINENTITY
23
+ '8': I-EVENT
24
+ '9': I-ACTOR
25
+ '10': I-BODYPART
26
+ '11': I-TIMEX3
27
+ '12': I-RML
28
+ config_name: e3c
29
+ splits:
30
+ - name: en.layer1
31
+ num_bytes: 1039582
32
+ num_examples: 1520
33
+ - name: en.layer2
34
+ num_bytes: 2083098
35
+ num_examples: 2873
36
+ - name: es.layer1
37
+ num_bytes: 1026950
38
+ num_examples: 1134
39
+ - name: es.layer2
40
+ num_bytes: 2052073
41
+ num_examples: 2347
42
+ - name: eu.layer1
43
+ num_bytes: 1252750
44
+ num_examples: 3126
45
+ - name: eu.layer2
46
+ num_bytes: 697118
47
+ num_examples: 1594
48
+ - name: fr.layer1
49
+ num_bytes: 1036878
50
+ num_examples: 1109
51
+ - name: fr.layer2
52
+ num_bytes: 2104253
53
+ num_examples: 2389
54
+ - name: it.layer1
55
+ num_bytes: 1055588
56
+ num_examples: 1146
57
+ - name: it.layer2
58
+ num_bytes: 2191803
59
+ num_examples: 2436
60
+ download_size: 230213492
61
+ dataset_size: 14540093
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62
  ---
 
63
  # Dataset Card for E3C
64
 
65
  ## Dataset Description
 
86
  url = {https://uts.nlm.nih.gov/uts/umls/home},
87
  year = {2021},
88
  }
89
+ ```
e3c.py CHANGED
@@ -61,12 +61,18 @@ class E3C(datasets.GeneratorBasedBuilder):
61
  datasets.features.ClassLabel(
62
  names=[
63
  "O",
64
- "CLINENTITY",
65
- "EVENT",
66
- "ACTOR",
67
- "BODYPART",
68
- "TIMEX3",
69
- "RML",
 
 
 
 
 
 
70
  ],
71
  ),
72
  ),
@@ -303,9 +309,9 @@ class E3C(datasets.GeneratorBasedBuilder):
303
  ]
304
  for idx_token in annotated_tokens:
305
  if idx_token == annotated_tokens[0]:
306
- labels[idx_token] = f"{entity_type}"
307
  else:
308
- labels[idx_token] = f"{entity_type}"
309
  yield guid, {
310
  "text": sentence[-1],
311
  "tokens": list(map(lambda tokens: tokens[2], filtered_tokens)),
@@ -313,3 +319,5 @@ class E3C(datasets.GeneratorBasedBuilder):
313
  "tokens_offsets": tokens_offsets,
314
  }
315
  guid += 1
 
 
 
61
  datasets.features.ClassLabel(
62
  names=[
63
  "O",
64
+ "B-CLINENTITY",
65
+ "B-EVENT",
66
+ "B-ACTOR",
67
+ "B-BODYPART",
68
+ "B-TIMEX3",
69
+ "B-RML",
70
+ "I-CLINENTITY",
71
+ "I-EVENT",
72
+ "I-ACTOR",
73
+ "I-BODYPART",
74
+ "I-TIMEX3",
75
+ "I-RML",
76
  ],
77
  ),
78
  ),
 
309
  ]
310
  for idx_token in annotated_tokens:
311
  if idx_token == annotated_tokens[0]:
312
+ labels[idx_token] = f"B-{entity_type}"
313
  else:
314
+ labels[idx_token] = f"I-{entity_type}"
315
  yield guid, {
316
  "text": sentence[-1],
317
  "tokens": list(map(lambda tokens: tokens[2], filtered_tokens)),
 
319
  "tokens_offsets": tokens_offsets,
320
  }
321
  guid += 1
322
+
323
+ datasets.load_dataset("e3c/e3c.py")