Datasets:
Tasks:
Image Segmentation
Languages:
English
Size:
n<1K
ArXiv:
Tags:
remote-sensing
earth-observation
geospatial
satellite-imagery
scene-segmentation
semantic-segmentation
License:
Fix typo
Browse files
README.md
CHANGED
@@ -35,25 +35,24 @@ Project page: https://project.inria.fr/aerialimagelabeling/
|
|
35 |
```tree
|
36 |
.
|
37 |
├── README.md
|
38 |
-
|
39 |
-
|
40 |
-
│
|
41 |
-
│
|
42 |
-
│
|
43 |
-
│
|
44 |
-
│
|
45 |
-
|
46 |
-
|
47 |
-
│
|
48 |
-
│
|
49 |
-
│
|
50 |
-
│
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
└── README.md
|
57 |
```
|
58 |
|
59 |
### Statistics
|
@@ -101,11 +100,16 @@ You can explore sample images from this dataset:
|
|
101 |
If you use the Inria Aerial Image Labeling Dataset dataset in your research, please consider citing the following publication or the dataset's official website:
|
102 |
|
103 |
```bibtex
|
104 |
-
@
|
105 |
-
title={
|
106 |
-
author={
|
107 |
-
|
108 |
-
|
109 |
-
|
|
|
|
|
|
|
110 |
}
|
111 |
-
```
|
|
|
|
|
|
35 |
```tree
|
36 |
.
|
37 |
├── README.md
|
38 |
+
└── data
|
39 |
+
├── test
|
40 |
+
│ └── images
|
41 |
+
│ ├── bellingham1.tif
|
42 |
+
│ ├── bellingham2.tif
|
43 |
+
│ ├── ...
|
44 |
+
│ └── tyrol-e36.tif
|
45 |
+
└── train
|
46 |
+
├── gt
|
47 |
+
│ ├── austin1.tif
|
48 |
+
│ ├── austin2.tif
|
49 |
+
│ ├── ...
|
50 |
+
│ └── vienna36.tif
|
51 |
+
└── images
|
52 |
+
├── austin1.tif
|
53 |
+
├── austin2.tif
|
54 |
+
├── ...
|
55 |
+
└── vienna36.tif
|
|
|
56 |
```
|
57 |
|
58 |
### Statistics
|
|
|
100 |
If you use the Inria Aerial Image Labeling Dataset dataset in your research, please consider citing the following publication or the dataset's official website:
|
101 |
|
102 |
```bibtex
|
103 |
+
@article{xia2017aid,
|
104 |
+
title = {AID: A benchmark data set for performance evaluation of aerial scene classification},
|
105 |
+
author = {Xia, Gui-Song and Hu, Jingwen and Hu, Fan and Shi, Baoguang and Bai, Xiang and Zhong, Yanfei and Zhang, Liangpei and Lu, Xiaoqiang},
|
106 |
+
journal = {IEEE Transactions on Geoscience and Remote Sensing},
|
107 |
+
volume = {55},
|
108 |
+
number = {7},
|
109 |
+
pages = {3965-3981},
|
110 |
+
year = {2017},
|
111 |
+
publisher = {IEEE}
|
112 |
}
|
113 |
+
```
|
114 |
+
|
115 |
+
[AID: A Benchmark Dataset for Performance Evaluation of Aerial Scene Classification](https://arxiv.org/pdf/1608.05167v1.pdf)
|