File size: 4,824 Bytes
c4aaaa2 9948645 40491dd c4aaaa2 40491dd c4aaaa2 40491dd c4aaaa2 9f185dc 9948645 c4aaaa2 40491dd 9948645 c4aaaa2 9948645 c4aaaa2 40491dd c4aaaa2 9948645 c4aaaa2 9948645 c4aaaa2 40491dd 9948645 40491dd c4aaaa2 2d6056b 40491dd 9948645 40491dd 9948645 40491dd 9948645 2d6056b 40491dd 9948645 2d6056b 9948645 40491dd c4aaaa2 2d6056b c4aaaa2 2d6056b 40491dd c4aaaa2 9948645 9f185dc 9948645 2d6056b 9948645 2d6056b 9948645 2d6056b 9948645 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 |
import json
from functools import lru_cache
import datasets
import pandas as pd
SUPPORTED_LANGUAGES = [
"sl",
"ur",
"sw",
"uz",
"vi",
"sq",
"ms",
"km",
"hy",
"da",
"ky",
"mg",
"mn",
"ja",
"el",
"it",
"is",
"ru",
"tl",
"so",
"pt",
"uk",
"sr",
"sn",
"ht",
"bs",
"my",
"ar",
"hr",
"nl",
"bn",
"ne",
"hi",
"ka",
"az",
"ko",
"id",
"fr",
"es",
"en",
"fa",
"lo",
"iw",
"th",
"tr",
"zht",
"zhs",
"ti",
"tg",
"control",
]
SYSTEMS = ["openai", "m3"]
MODES = ["qlang", "qlang_en", "en", "rel_langs"]
# # get combination of systems and supported modes
# SUPPORTED_SOURCES = [f"{system}.{mode}" for system in SYSTEMS for mode in MODES]
ROOT_DIR = "data"
class BordIRlinesConfig(datasets.BuilderConfig):
def __init__(self, language, n_hits=10, **kwargs):
super(BordIRlinesConfig, self).__init__(**kwargs)
self.language = language
self.n_hits = n_hits
self.data_root_dir = ROOT_DIR
def load_json(path):
with open(path, "r", encoding="utf-8") as f:
return json.load(f)
@lru_cache
def replace_lang_str(path, lang):
parent = path.rsplit("/", 2)[0]
return f"{parent}/{lang}/{lang}_docs.json"
class BordIRLinesDataset(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("1.0.0")
BUILDER_CONFIGS = [
BordIRlinesConfig(
name=lang,
language=lang,
description=f"{lang.upper()} dataset",
)
for lang in SUPPORTED_LANGUAGES
]
def _info(self):
return datasets.DatasetInfo(
description="IR Dataset for BordIRLines paper.",
features=datasets.Features(
{
"query_id": datasets.Value("string"),
"query": datasets.Value("string"),
"territory": datasets.Value("string"),
"rank": datasets.Value("int32"),
"score": datasets.Value("float32"),
"doc_id": datasets.Value("string"),
"doc_text": datasets.Value("string"),
"doc_lang": datasets.Value("string"),
}
),
)
def _split_generators(self, dl_manager):
base_url = self.config.data_root_dir
queries_path = f"{base_url}/queries.tsv"
docs_path = dl_manager.download_and_extract(f"{base_url}/all_docs.json")
lang = self.config.language
splits = []
downloaded_data = {}
for system in SYSTEMS:
for mode in MODES:
source = f"{system}.{mode}"
downloaded_data[source] = dl_manager.download_and_extract(
{
"hits": f"{base_url}/{lang}/{system}/{mode}/{lang}_query_hits.tsv",
"docs": docs_path,
"queries": queries_path,
}
)
split = datasets.SplitGenerator(
name=f"{system}.{mode}",
gen_kwargs={
"hits_path": downloaded_data[source]["hits"],
"docs_path": downloaded_data[source]["docs"],
"queries_path": downloaded_data[source]["queries"],
},
)
splits.append(split)
return splits
def _generate_examples(self, hits_path, docs_path, queries_path):
n_hits = self.config.n_hits
queries_df = pd.read_csv(queries_path, sep="\t")
query_map = dict(zip(queries_df["query_id"], queries_df["query_text"]))
counter = 0
docs = load_json(docs_path)
hits = pd.read_csv(hits_path, sep="\t")
if n_hits:
hits = hits.groupby("query_id").head(n_hits)
# sort hits by query_id and rank
hits["query_id_int"] = hits["query_id"].str[1:].astype(int)
hits = hits.sort_values(by=["query_id_int", "rank"])
hits = hits.drop(columns=["query_id_int"])
for _, row in hits.iterrows():
doc_id = row["doc_id"]
doc_lang = row["doc_lang"]
query_id = row["query_id"]
query_text = query_map[query_id]
yield (
counter,
{
"query_id": query_id,
"query": query_text,
"territory": row["territory"],
"rank": row["rank"],
"score": row["score"],
"doc_id": doc_id,
"doc_text": docs[doc_lang][doc_id],
"doc_lang": doc_lang,
},
)
counter += 1
|