import json from functools import lru_cache import datasets import pandas as pd SUPPORTED_LANGUAGES = [ "sl", "ur", "sw", "uz", "vi", "sq", "ms", "km", "hy", "da", "ky", "mg", "mn", "ja", "el", "it", "is", "ru", "tl", "so", "pt", "uk", "sr", "sn", "ht", "bs", "my", "ar", "hr", "nl", "bn", "ne", "hi", "ka", "az", "ko", "id", "fr", "es", "en", "fa", "lo", "iw", "th", "tr", "zht", "zhs", "ti", "tg", "control", ] SYSTEMS = ["openai", "m3"] MODES = ["qlang", "qlang_en", "en", "rel_langs"] # # get combination of systems and supported modes # SUPPORTED_SOURCES = [f"{system}.{mode}" for system in SYSTEMS for mode in MODES] ROOT_DIR = "data" class BordIRlinesConfig(datasets.BuilderConfig): def __init__(self, language, n_hits=10, **kwargs): super(BordIRlinesConfig, self).__init__(**kwargs) self.language = language self.n_hits = n_hits self.data_root_dir = ROOT_DIR def load_json(path): with open(path, "r", encoding="utf-8") as f: return json.load(f) @lru_cache def replace_lang_str(path, lang): parent = path.rsplit("/", 2)[0] return f"{parent}/{lang}/{lang}_docs.json" class BordIRLinesDataset(datasets.GeneratorBasedBuilder): VERSION = datasets.Version("1.0.0") BUILDER_CONFIGS = [ BordIRlinesConfig( name=lang, language=lang, description=f"{lang.upper()} dataset", ) for lang in SUPPORTED_LANGUAGES ] def _info(self): return datasets.DatasetInfo( description="IR Dataset for BordIRLines paper.", features=datasets.Features( { "query_id": datasets.Value("string"), "query": datasets.Value("string"), "territory": datasets.Value("string"), "rank": datasets.Value("int32"), "score": datasets.Value("float32"), "doc_id": datasets.Value("string"), "doc_text": datasets.Value("string"), "doc_lang": datasets.Value("string"), } ), ) def _split_generators(self, dl_manager): base_url = self.config.data_root_dir queries_path = f"{base_url}/queries.tsv" docs_path = dl_manager.download_and_extract(f"{base_url}/all_docs.json") lang = self.config.language splits = [] downloaded_data = {} for system in SYSTEMS: for mode in MODES: source = f"{system}.{mode}" downloaded_data[source] = dl_manager.download_and_extract( { "hits": f"{base_url}/{lang}/{system}/{mode}/{lang}_query_hits.tsv", "docs": docs_path, "queries": queries_path, } ) split = datasets.SplitGenerator( name=f"{system}.{mode}", gen_kwargs={ "hits_path": downloaded_data[source]["hits"], "docs_path": downloaded_data[source]["docs"], "queries_path": downloaded_data[source]["queries"], }, ) splits.append(split) return splits def _generate_examples(self, hits_path, docs_path, queries_path): n_hits = self.config.n_hits queries_df = pd.read_csv(queries_path, sep="\t") query_map = dict(zip(queries_df["query_id"], queries_df["query_text"])) counter = 0 docs = load_json(docs_path) hits = pd.read_csv(hits_path, sep="\t") if n_hits: hits = hits.groupby("query_id").head(n_hits) # sort hits by query_id and rank hits["query_id_int"] = hits["query_id"].str[1:].astype(int) hits = hits.sort_values(by=["query_id_int", "rank"]) hits = hits.drop(columns=["query_id_int"]) for _, row in hits.iterrows(): doc_id = row["doc_id"] doc_lang = row["doc_lang"] query_id = row["query_id"] query_text = query_map[query_id] yield ( counter, { "query_id": query_id, "query": query_text, "territory": row["territory"], "rank": row["rank"], "score": row["score"], "doc_id": doc_id, "doc_text": docs[doc_lang][doc_id], "doc_lang": doc_lang, }, ) counter += 1