Create abo_listings.py
Browse files- abo_listings.py +105 -0
abo_listings.py
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
import gzip
|
4 |
+
import json
|
5 |
+
from functools import partial
|
6 |
+
from pathlib import Path
|
7 |
+
|
8 |
+
import datasets
|
9 |
+
from datasets import DatasetDict, load_dataset
|
10 |
+
|
11 |
+
|
12 |
+
AVAILABLE_DATASETS = {
|
13 |
+
'main': 'https://amazon-berkeley-objects.s3.amazonaws.com/archives/abo-listings.tar'
|
14 |
+
}
|
15 |
+
|
16 |
+
VERSION = datasets.Version("0.0.1")
|
17 |
+
|
18 |
+
_FIELDS = [
|
19 |
+
"item_id",
|
20 |
+
"brand",
|
21 |
+
"bullet_point",
|
22 |
+
"color",
|
23 |
+
"item_name",
|
24 |
+
"model_name",
|
25 |
+
"model_number",
|
26 |
+
"model_year",
|
27 |
+
"product_type",
|
28 |
+
"style",
|
29 |
+
"main_image_id",
|
30 |
+
"other_image_id",
|
31 |
+
"item_keywords",
|
32 |
+
"country",
|
33 |
+
"marketplace",
|
34 |
+
"domain_name",
|
35 |
+
"node",
|
36 |
+
]
|
37 |
+
|
38 |
+
|
39 |
+
class AbolistingsDataset(datasets.GeneratorBasedBuilder):
|
40 |
+
"""AbolistingsDataset dataset."""
|
41 |
+
|
42 |
+
BUILDER_CONFIGS = [
|
43 |
+
datasets.BuilderConfig(
|
44 |
+
name=data_name, version=VERSION, description=f"{data_name} abolistings dataset"
|
45 |
+
)
|
46 |
+
for data_name in AVAILABLE_DATASETS
|
47 |
+
]
|
48 |
+
|
49 |
+
@staticmethod
|
50 |
+
def load(data_name_config: str = "main") -> DatasetDict:
|
51 |
+
ds = load_dataset(__file__, data_name_config)
|
52 |
+
return ds
|
53 |
+
|
54 |
+
def _info(self):
|
55 |
+
return datasets.DatasetInfo(
|
56 |
+
description="",
|
57 |
+
features=datasets.Features(
|
58 |
+
{
|
59 |
+
"item_id": datasets.Value("string"),
|
60 |
+
"brand": datasets.Sequence(datasets.Value("string")),
|
61 |
+
"bullet_point": datasets.Sequence(datasets.Value("string")),
|
62 |
+
"color": datasets.Sequence(datasets.Value("string")),
|
63 |
+
"item_name": datasets.Sequence(datasets.Value("string")),
|
64 |
+
"model_name": datasets.Sequence(datasets.Value("string")),
|
65 |
+
"model_number": datasets.Sequence(datasets.Value("string")),
|
66 |
+
"model_year": datasets.Sequence(datasets.Value("string")),
|
67 |
+
"product_type": datasets.Sequence(datasets.Value("string")),
|
68 |
+
"style": datasets.Sequence(datasets.Value("string")),
|
69 |
+
"main_image_id": datasets.Value("string"),
|
70 |
+
"other_image_id": datasets.Sequence(datasets.Value("string")),
|
71 |
+
"item_keywords": datasets.Sequence(datasets.Value("string")),
|
72 |
+
"country": datasets.Value("string"),
|
73 |
+
"marketplace": datasets.Value("string"),
|
74 |
+
"domain_name": datasets.Value("string"),
|
75 |
+
"node": datasets.Sequence(datasets.Value("string")),
|
76 |
+
}
|
77 |
+
),
|
78 |
+
supervised_keys=None,
|
79 |
+
homepage="https://amazon-berkeley-objects.s3.amazonaws.com/index.html#download",
|
80 |
+
citation="",
|
81 |
+
)
|
82 |
+
|
83 |
+
def _split_generators(self, dl_manager):
|
84 |
+
downloader = partial(
|
85 |
+
lambda: dl_manager.download_and_extract(AVAILABLE_DATASETS[self.config.name])
|
86 |
+
)
|
87 |
+
# There is no predefined train/val/test split for this dataset.
|
88 |
+
root_path = Path(downloader()) / 'listings' / 'metadata'
|
89 |
+
return [
|
90 |
+
datasets.SplitGenerator(
|
91 |
+
name=datasets.Split.TRAIN, gen_kwargs={"root_path": root_path}
|
92 |
+
),
|
93 |
+
]
|
94 |
+
|
95 |
+
def _generate_examples(self, root_path):
|
96 |
+
root_path = Path(root_path)
|
97 |
+
files = list(root_path.glob("*.json.gz"))
|
98 |
+
idx = 0
|
99 |
+
for file in files:
|
100 |
+
with gzip.GzipFile(file) as f_in:
|
101 |
+
for l in f_in:
|
102 |
+
l = l.decode("utf-8")
|
103 |
+
sample = json.loads(l)
|
104 |
+
yield idx, {k: sample.get(k) for k in _FIELDS}
|
105 |
+
idx += 1
|