geco_data_generator / tests /main_test.py
bstds's picture
Upload 53 files
16dcd38
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
from pathlib import Path
from geco_data_generator import (
attrgenfunct,
contdepfunct,
basefunctions,
generator,
corruptor,
)
do_large_tests = False # Set to True to run tests to generate large
# datasets - warning is time consuming
import os
import time
import unittest
import random
random.seed(42)
# =============================================================================
# Define test cases, each being a list containing the main parameters required
# for generating a data set:
# 1) rec_id_attr_name
# 2) num_org_rec
# 3) num_dup_rec
# 4) max_duplicate_per_record
# 5) num_duplicates_distribution ('uniform', 'poisson', 'zipf')
# 6) max_modification_per_attr
# 7) num_modification_per_record
#
test_cases = [
['rec_id', 100, 100, 1, 'uniform', 1, 1],
['rec_id', 100, 100, 1, 'poisson', 1, 1],
['rec_id', 100, 100, 1, 'zipf', 1, 1],
['rec_id', 10000, 10000, 1, 'uniform', 1, 1],
['rec_id', 10000, 10000, 1, 'poisson', 1, 1],
['rec_id', 10000, 10000, 1, 'zipf', 1, 1],
]
if do_large_tests == True:
test_cases += [
['rec_id', 100000, 100000, 1, 'uniform', 1, 1],
['rec_id', 100000, 100000, 1, 'poisson', 1, 1],
['rec_id', 100000, 100000, 1, 'zipf', 1, 1],
]
#
test_cases += [
['rec_id', 100, 20, 1, 'uniform', 1, 1],
['rec_id', 100, 20, 1, 'poisson', 1, 1],
['rec_id', 100, 20, 1, 'zipf', 1, 1],
['rec_id', 10000, 2000, 1, 'uniform', 1, 1],
['rec_id', 10000, 2000, 1, 'poisson', 1, 1],
['rec_id', 10000, 2000, 1, 'zipf', 1, 1],
]
if do_large_tests == True:
test_cases += [
['rec_id', 100000, 20000, 1, 'uniform', 1, 1],
['rec_id', 100000, 20000, 1, 'poisson', 1, 1],
['rec_id', 100000, 20000, 1, 'zipf', 1, 1],
]
#
test_cases += [
['rec_num', 123, 321, 5, 'uniform', 1, 3],
['rec_num', 123, 321, 5, 'poisson', 1, 3],
['rec_num', 123, 321, 5, 'zipf', 1, 3],
['rec_num', 12345, 14321, 5, 'uniform', 1, 3],
['rec_num', 12345, 14321, 5, 'poisson', 1, 3],
['rec_num', 12345, 14321, 5, 'zipf', 1, 3],
]
if do_large_tests == True:
test_cases += [
['rec_num', 123456, 154321, 5, 'uniform', 1, 3],
['rec_num', 123456, 154321, 5, 'poisson', 1, 3],
['rec_num', 123456, 154321, 5, 'zipf', 1, 3],
]
#
test_cases += [
['rec_num', 123, 321, 3, 'uniform', 3, 9],
['rec_num', 123, 321, 3, 'poisson', 3, 9],
['rec_num', 123, 321, 3, 'zipf', 3, 9],
['rec_num', 12345, 14321, 3, 'uniform', 3, 9],
['rec_num', 12345, 14321, 3, 'poisson', 3, 9],
['rec_num', 12345, 14321, 3, 'zipf', 3, 9],
]
if do_large_tests == True:
test_cases += [
['rec_num', 123456, 154321, 3, 'uniform', 3, 9],
['rec_num', 123456, 154321, 3, 'poisson', 3, 9],
['rec_num', 123456, 154321, 3, 'zipf', 3, 9],
]
#
test_cases += [
['rec_num', 321, 123, 11, 'uniform', 2, 7],
['rec_num', 321, 123, 11, 'poisson', 2, 7],
['rec_num', 321, 123, 11, 'zipf', 2, 7],
['rec_num', 43210, 14321, 11, 'uniform', 2, 7],
['rec_num', 43210, 14321, 11, 'poisson', 2, 7],
['rec_num', 43210, 14321, 11, 'zipf', 2, 7],
]
if do_large_tests == True:
test_cases += [
['rec_num', 654321, 123456, 11, 'uniform', 2, 7],
['rec_num', 654321, 123456, 11, 'poisson', 2, 7],
['rec_num', 654321, 123456, 11, 'zipf', 2, 7],
]
# Set the Unicode encoding for all test data generation
#
unicode_encoding_used = 'ascii'
# Check the unicode encoding selected is valid
#
basefunctions.check_unicode_encoding_exists(unicode_encoding_used)
# =============================================================================
class TestCase(unittest.TestCase):
# Initialise test case - - - - - - - - - - - - - - - - - - - - - - - - - - -
#
def setUp(self):
pass # Nothing to initialize
# Clean up test case - - - - - - - - - - - - - - - - - - - - - - - - - - - -
#
def tearDown(self):
pass # Nothing to clean up
# ---------------------------------------------------------------------------
# Start test cases
def testDataGeneration(self, test_case):
"""Test the overall generation of a data set according to the parameters
given by checking if the generated data sets follows the parameter
specification given.
"""
rec_id_attr_name = test_case[0]
num_org_rec = test_case[1]
num_dup_rec = test_case[2]
max_duplicate_per_record = test_case[3]
num_duplicates_distribution = test_case[4]
max_modification_per_attr = test_case[5]
num_modification_per_record = test_case[6]
test_res_list = ['', 'Test case parameters:']
test_res_list.append(' rec_id_attr_name = %s' % (rec_id_attr_name))
test_res_list.append(' num_org_rec = %s' % (num_org_rec))
test_res_list.append(' num_dup_rec = %s' % (num_dup_rec))
test_res_list.append(
' max_duplicate_per_record = %s' % (max_duplicate_per_record)
)
test_res_list.append(
' num_duplicates_distribution = %s' % (num_duplicates_distribution)
)
test_res_list.append(
' max_modification_per_attr = %s' % (max_modification_per_attr)
)
test_res_list.append(
' num_modification_per_record = %s' % (num_modification_per_record)
)
test_res_list.append('')
# Define the attributes to be generated (based on methods from - - - - -
# the generator.py module)
# Individual attributes
#
given_name_attr = generator.GenerateFreqAttribute(
attribute_name='given-name',
freq_file_name='../lookup-files/givenname_freq.csv',
has_header_line=False,
unicode_encoding=unicode_encoding_used,
)
surnname_attr = generator.GenerateFreqAttribute(
attribute_name='surname',
freq_file_name='../lookup-files/surname-freq.csv',
has_header_line=False,
unicode_encoding=unicode_encoding_used,
)
postcode_attr = generator.GenerateFreqAttribute(
attribute_name='postcode',
freq_file_name='../lookup-files/postcode_act_freq.csv',
has_header_line=False,
unicode_encoding=unicode_encoding_used,
)
oz_phone_num_attr = generator.GenerateFuncAttribute(
attribute_name='oz-phone-number',
function=attrgenfunct.generate_phone_number_australia,
)
credit_card_attr = generator.GenerateFuncAttribute(
attribute_name='credit-card-number',
function=attrgenfunct.generate_credit_card_number,
)
age_uniform_attr = generator.GenerateFuncAttribute(
attribute_name='age-uniform',
function=attrgenfunct.generate_uniform_age,
parameters=[0, 120],
)
age_death_normal_attr = generator.GenerateFuncAttribute(
attribute_name='age-death-normal',
function=attrgenfunct.generate_normal_age,
parameters=[80, 20, 0, 120],
)
income_normal_attr = generator.GenerateFuncAttribute(
attribute_name='income-normal',
function=attrgenfunct.generate_normal_value,
parameters=[75000, 20000, 0, 1000000, 'float2'],
)
rating_normal_attr = generator.GenerateFuncAttribute(
attribute_name='rating-normal',
function=attrgenfunct.generate_normal_value,
parameters=[2.5, 1.0, 0.0, 5.0, 'int'],
)
# Compund (dependent) attributes
#
gender_city_comp_attr = generator.GenerateCateCateCompoundAttribute(
categorical1_attribute_name='gender',
categorical2_attribute_name='city',
lookup_file_name='../lookup-files/gender-city.csv',
has_header_line=True,
unicode_encoding=unicode_encoding_used,
)
gender_income_comp_attr = generator.GenerateCateContCompoundAttribute(
categorical_attribute_name='alt-gender',
continuous_attribute_name='income',
continuous_value_type='float1',
lookup_file_name='gender-income.csv',
has_header_line=False,
unicode_encoding=unicode_encoding_used,
)
gender_city_salary_comp_attr = generator.GenerateCateCateContCompoundAttribute(
categorical1_attribute_name='alt-gender-2',
categorical2_attribute_name='town',
continuous_attribute_name='salary',
continuous_value_type='float4',
lookup_file_name='gender-city-income.csv',
has_header_line=False,
unicode_encoding=unicode_encoding_used,
)
age_blood_pressure_comp_attr = generator.GenerateContContCompoundAttribute(
continuous1_attribute_name='medical-age',
continuous2_attribute_name='blood-pressure',
continuous1_funct_name='uniform',
continuous1_funct_param=[10, 110],
continuous2_function=contdepfunct.blood_pressure_depending_on_age,
continuous1_value_type='int',
continuous2_value_type='float3',
)
age_salary_comp_attr = generator.GenerateContContCompoundAttribute(
continuous1_attribute_name='medical-age-2',
continuous2_attribute_name='medical-salary',
continuous1_funct_name='normal',
continuous1_funct_param=[45, 20, 25, 130],
continuous2_function=contdepfunct.salary_depending_on_age,
continuous1_value_type='int',
continuous2_value_type='float1',
)
# Define how attribute values are to be modified (corrupted) - - - - - -
# (based on methods from the corruptor.py module)
#
average_edit_corruptor = corruptor.CorruptValueEdit(
position_function=corruptor.position_mod_normal,
char_set_funct=basefunctions.char_set_ascii,
insert_prob=0.25,
delete_prob=0.25,
substitute_prob=0.25,
transpose_prob=0.25,
)
sub_tra_edit_corruptor = corruptor.CorruptValueEdit(
position_function=corruptor.position_mod_uniform,
char_set_funct=basefunctions.char_set_ascii,
insert_prob=0.0,
delete_prob=0.0,
substitute_prob=0.5,
transpose_prob=0.5,
)
ins_del_edit_corruptor = corruptor.CorruptValueEdit(
position_function=corruptor.position_mod_normal,
char_set_funct=basefunctions.char_set_ascii,
insert_prob=0.5,
delete_prob=0.5,
substitute_prob=0.0,
transpose_prob=0.0,
)
surname_misspell_corruptor = corruptor.CorruptCategoricalValue(
lookup_file_name='surname-misspell.csv',
has_header_line=False,
unicode_encoding=unicode_encoding_used,
)
ocr_corruptor = corruptor.CorruptValueOCR(
position_function=corruptor.position_mod_uniform,
lookup_file_name='ocr-variations.csv',
has_header_line=False,
unicode_encoding=unicode_encoding_used,
)
keyboard_corruptor = corruptor.CorruptValueKeyboard(
position_function=corruptor.position_mod_normal, row_prob=0.5, col_prob=0.5
)
phonetic_corruptor = corruptor.CorruptValuePhonetic(
position_function=corruptor.position_mod_uniform,
lookup_file_name='phonetic-variations.csv',
has_header_line=False,
unicode_encoding=unicode_encoding_used,
)
missing_val_empty_corruptor = corruptor.CorruptMissingValue()
missing_val_miss_corruptor = corruptor.CorruptMissingValue(missing_value='miss')
missing_val_unkown_corruptor = corruptor.CorruptMissingValue(
missing_value='unknown'
)
# Define the attributes to be generated for this data set, and the data
# set itself
#
attr_name_list = [
'given-name',
'surname',
'city',
'postcode',
'oz-phone-number',
'credit-card-number',
'age-uniform',
'age-death-normal',
'income-normal',
'rating-normal',
'gender',
'alt-gender',
'alt-gender-2',
'town',
'income',
'salary',
'medical-age',
'blood-pressure',
'medical-age-2',
'medical-salary',
]
attr_data_list = [
given_name_attr,
surnname_attr,
postcode_attr,
oz_phone_num_attr,
credit_card_attr,
age_uniform_attr,
age_death_normal_attr,
income_normal_attr,
rating_normal_attr,
gender_city_comp_attr,
gender_income_comp_attr,
gender_city_salary_comp_attr,
age_blood_pressure_comp_attr,
age_salary_comp_attr,
]
# Initialise the main data generator
#
test_data_generator = generator.GenerateDataSet(
output_file_name='no-file-name',
write_header_line=True,
rec_id_attr_name=rec_id_attr_name,
number_of_records=num_org_rec,
attribute_name_list=attr_name_list,
attribute_data_list=attr_data_list,
unicode_encoding=unicode_encoding_used,
)
# Define distribution of how likely an attribute will be selected for
# modification (sum of probabilities must be 1.0)
#
attr_mod_prob_dictionary = {
'given-name': 0.1,
'surname': 0.1,
'city': 0.1,
'postcode': 0.1,
'oz-phone-number': 0.1,
'age-death-normal': 0.1,
'income-normal': 0.1,
'gender': 0.1,
'town': 0.1,
'income': 0.1,
}
# For each attribute, a distribution of which corruptors to apply needs
# to be given, with the sum ofprobabilities to be 1.0 for each attribute
#
attr_mod_data_dictionary = {
'given-name': [
(0.25, average_edit_corruptor),
(0.25, ocr_corruptor),
(0.25, phonetic_corruptor),
(0.25, missing_val_miss_corruptor),
],
'surname': [(0.5, surname_misspell_corruptor), (0.5, average_edit_corruptor)],
'city': [(0.5, keyboard_corruptor), (0.5, missing_val_empty_corruptor)],
'postcode': [
(0.3, missing_val_unkown_corruptor),
(0.7, sub_tra_edit_corruptor),
],
'oz-phone-number': [
(0.2, missing_val_empty_corruptor),
(0.4, sub_tra_edit_corruptor),
(0.4, keyboard_corruptor),
],
'age-death-normal': [(1.0, missing_val_unkown_corruptor)],
'income-normal': [
(0.3, keyboard_corruptor),
(0.3, ocr_corruptor),
(0.4, missing_val_empty_corruptor),
],
'gender': [(0.5, sub_tra_edit_corruptor), (0.5, ocr_corruptor)],
'town': [
(0.2, average_edit_corruptor),
(0.3, ocr_corruptor),
(0.2, keyboard_corruptor),
(0.3, phonetic_corruptor),
],
'income': [(1.0, missing_val_miss_corruptor)],
}
# Initialise the main data corruptor
#
test_data_corruptor = corruptor.CorruptDataSet(
number_of_org_records=num_org_rec,
number_of_mod_records=num_dup_rec,
attribute_name_list=attr_name_list,
max_num_dup_per_rec=max_duplicate_per_record,
num_dup_dist=num_duplicates_distribution,
max_num_mod_per_attr=max_modification_per_attr,
num_mod_per_rec=num_modification_per_record,
attr_mod_prob_dict=attr_mod_prob_dictionary,
attr_mod_data_dict=attr_mod_data_dictionary,
)
passed = True # Assume the test will pass :-)
# Start the generation process
#
try:
rec_dict = test_data_generator.generate()
except Exception as exce_value: # Something bad happened
test_res_list.append(
' generator.generate() raised Exception: "%s"' % (str(exce_value))
)
return test_res_list # Abandon test
num_org_rec_gen = len(rec_dict)
if num_org_rec_gen != num_org_rec:
passed = False
test_res_list.append(
' Wrong number of original records generated:'
+ ' %d, expected %d' % (num_org_rec_gen, num_org_rec)
)
# Corrupt (modify) the original records into duplicate records
#
try:
rec_dict = test_data_corruptor.corrupt_records(rec_dict)
except Exception as exce_value: # Something bad happened
test_res_list.append(
' corruptor.corrupt_records() raised '
+ 'Exception: "%s"' % (str(exce_value))
)
return test_res_list # Abandon test
num_dup_rec_gen = len(rec_dict) - num_org_rec_gen
if num_dup_rec_gen != num_dup_rec:
passed = False
test_res_list.append(
' Wrong number of duplicate records generated:'
+ ' %d, expected %d' % (num_dup_rec_gen, num_dup_rec)
)
num_dup_counts = {} # Count how many records have a certain number of
# duplicates
# Do tests on all generated records
#
for (rec_id, rec_list) in rec_dict.iteritems():
if len(rec_list) != len(attr_name_list):
passed = False
test_res_list.append(
' Record with identifier "%s" contains wrong' % (rec_id)
+ ' number of attributes: '
+ ' %d, expected %d' % (len(rec_list), len(attr_name_list))
)
if 'org' in rec_id: # An original record
# Check the number of duplicates for this record is what is expected
#
num_dups = 0
rec_num = rec_id.split('-')[1]
for d in range(max_duplicate_per_record * 2):
tmp_rec_id = 'rec-%s-dup-%d' % (rec_num, d)
if tmp_rec_id in rec_dict:
num_dups += 1
if num_dups > max_duplicate_per_record:
passed = False
test_res_list.append(
' Too many duplicate records for original'
+ ' record "%s": %d' % (rec_id),
num_dups,
)
d_count = num_dup_counts.get(num_dups, 0) + 1
num_dup_counts[num_dups] = d_count
# Check no duplicate number is outside expected range
#
for d in range(max_duplicate_per_record, max_duplicate_per_record * 2):
tmp_rec_id = 'rec-%s-dup-%d' % (rec_num, d)
if tmp_rec_id in rec_dict:
passed = False
test_res_list.append(
' Illegal duplicate number: %s' % (tmp_rec_id)
+ ' (larger than max. number '
+ 'of duplicates per record %sd' % (max_duplicate_per_record)
)
# Check values in certain attributes only contain letters
#
for i in [0, 1, 2, 10, 11, 12, 13]:
test_val = rec_list[i].replace(' ', '')
test_val = test_val.replace('-', '')
test_val = test_val.replace("'", '')
if test_val.isalpha() == False:
passed = False
test_res_list.append(
' Value in attribute "%s" is not only ' % (attr_name_list[i])
+ 'letters:'
)
test_res_list.append(' Org: %s' % (str(rec_list)))
# Check values in certain attributes only contain digits
#
for i in [3, 4, 5, 6, 7, 8, 9, 14, 15, 16, 17, 18, 19]:
test_val = rec_list[i].replace(' ', '')
test_val = test_val.replace('.', '')
if test_val.isdigit() == False:
passed = False
test_res_list.append(
' Value in attribute "%s" is not only ' % (attr_name_list[i])
+ 'digits:'
)
test_res_list.append(' Org: %s' % (str(rec_list)))
# Check age values are in range
#
for i in [6, 7, 16]:
test_val = int(rec_list[i].strip())
if (test_val < 0) or (test_val > 130):
passed = False
test_res_list.append(
' Age value in attribute "%s" is out of' % (attr_name_list[i])
+ ' range:'
)
test_res_list.append(' Org: %s' % (str(rec_list)))
# Check length of postcode, telephone and credit card numbers
#
if len(rec_list[3]) != 4:
passed = False
test_res_list.append(' Postcode has not 4 digits:')
test_res_list.append(' Org: %s' % (str(rec_list)))
if (len(rec_list[4]) != 12) or (rec_list[4][0] != '0'):
passed = False
test_res_list.append(' Australian phone number has wrong format:')
test_res_list.append(' Org: %s' % (str(rec_list)))
# Check 'rating' is between 0 and 5
#
test_val = int(rec_list[9].strip())
if (test_val < 0) or (test_val > 5):
passed = False
test_res_list.append(' "rating-normal" value is out of range:')
test_res_list.append(' Org: %s' % (str(rec_list)))
# Check gender values
#
test_val = rec_list[10]
if test_val not in ['male', 'female']:
passed = False
test_res_list.append(' "gender" value is out of range:')
test_res_list.append(' Org: %s' % (str(rec_list)))
test_val = rec_list[11]
if test_val not in ['m', 'f', 'na']:
passed = False
test_res_list.append(' "alt-gender" value is out of range:')
test_res_list.append(' Org: %s' % (str(rec_list)))
test_val = rec_list[12]
if test_val not in ['male', 'female']:
passed = False
test_res_list.append(' "alt-gender-2" value is out of range:')
test_res_list.append(' Org: %s' % (str(rec_list)))
if 'dup' in rec_id: # A duplicate record
# Get the corresponding original record
#
org_rec_id = 'rec-%s-org' % (rec_id.split('-')[1])
org_rec_list = rec_dict[org_rec_id]
# Check the duplicate number
#
dup_num = int(rec_id.split('-')[-1])
if (dup_num < 0) or (dup_num > max_duplicate_per_record - 1):
passed = False
test_res_list.append(
' Duplicate record with identifier "%s" ' % (rec_id)
+ ' has an illegal duplicate number:'
+ ' %d' % (dup_num)
)
test_res_list.append(' Org: %s' % (str(org_rec_list)))
test_res_list.append(' Dup: %s' % (str(rec_list)))
# Check that a duplicate record contains the expected - - - - - - - - -
# number of modifications
num_diff_val = 0 # Count how many values are different
for i in range(len(rec_list)): # Check all attribute values
if rec_list[i] != org_rec_list[i]:
num_diff_val += 1
if num_diff_val == 0: # No differences between org and dup record
passed = False
test_res_list.append(
' Duplicate record with identifier "%s" ' % (rec_id)
+ 'is the same as it original record'
)
test_res_list.append(' Org: %s' % (str(org_rec_list)))
test_res_list.append(' Dup: %s' % (str(rec_list)))
if num_diff_val < num_modification_per_record:
passed = False
test_res_list.append(
' Duplicate record with identifier "%s" ' % (rec_id)
+ 'contains less modifications '
+ 'than expected (%d instead of %d)'
% (num_diff_val, num_modification_per_record)
)
test_res_list.append(' Org: %s' % (str(org_rec_list)))
test_res_list.append(' Dup: %s' % (str(rec_list)))
# Check that certain attributes have not been modified
#
for i in [5, 6, 9, 11, 12, 15, 16, 17, 18, 19]:
if rec_list[i] != org_rec_list[i]:
passed = False
test_res_list.append(
' Duplicate record with identifier "%s" ' % (rec_id)
+ 'contains modified attribute '
+ 'values that should not be modified'
)
test_res_list.append(' Org: %s' % (str(org_rec_list)))
test_res_list.append(' Dup: %s' % (str(rec_list)))
# Check the content of certain attribute values, and how they
# differ between original and duplicate records
#
# Due to the possibility thatmultiple modifications are applied on the
# same attribute these tests are limited
test_org_val = org_rec_list[2] # City
test_dup_val = rec_list[2]
if test_dup_val != '':
if len(test_org_val) != len(test_dup_val):
passed = False
test_res_list.append(' "city" values have different length:')
test_res_list.append(' Org: %s' % (str(org_rec_list)))
test_res_list.append(' Dup: %s' % (str(rec_list)))
test_org_val = org_rec_list[4] # Australian phone number
test_dup_val = rec_list[4]
if test_dup_val != '':
if len(test_org_val) != len(test_dup_val):
passed = False
test_res_list.append(
' "oz-phone-number" values have different' + ' length:'
)
test_res_list.append(' Org: %s' % (str(org_rec_list)))
test_res_list.append(' Dup: %s' % (str(rec_list)))
test_org_val = org_rec_list[7] # Age-death-normal
test_dup_val = rec_list[7]
if test_dup_val != 'unknown':
if test_org_val != test_dup_val:
passed = False
test_res_list.append(' Wrong value for "age-death-normal":')
test_res_list.append(' Org: %s' % (str(org_rec_list)))
test_res_list.append(' Dup: %s' % (str(rec_list)))
test_org_val = org_rec_list[14] # Income
test_dup_val = rec_list[14]
if test_dup_val != 'miss':
if test_org_val != test_dup_val:
passed = False
test_res_list.append(' Wrong value for "income":')
test_res_list.append(' Org: %s' % (str(org_rec_list)))
test_res_list.append(' Dup: %s' % (str(rec_list)))
test_res_list.append(
' Distribution of duplicates: ("%s" expected)' % num_duplicates_distribution
)
dup_keys = num_dup_counts.keys()
dup_keys.sort()
for d in dup_keys:
test_res_list.append(' %d: %d records' % (d, num_dup_counts[d]))
test_res_list.append('')
if passed == True:
test_res_list.append(' All tests passed')
test_res_list.append('')
return test_res_list
# =============================================================================
# Generate a time string to be used for the log file
#
curr_time_tuple = time.localtime()
curr_time_str = (
str(curr_time_tuple[0])
+ str(curr_time_tuple[1]).zfill(2)
+ str(curr_time_tuple[2]).zfill(2)
+ '-'
+ str(curr_time_tuple[3]).zfill(2)
+ str(curr_time_tuple[4]).zfill(2)
)
# Write test output header line into the log file
#
Path('./logs').mkdir(exist_ok=True)
out_file_name = './logs/mainTest-%s.txt' % (curr_time_str)
out_file = open(out_file_name, 'w')
out_file.write('Test results generated by mainTest.py' + os.linesep)
out_file.write('Test started: ' + curr_time_str + os.linesep)
out_file.write(os.linesep)
for test_case in test_cases:
# Create instances for the testcase class that calls all tests
#
test_case_ins = TestCase('testDataGeneration')
test_res_list = test_case_ins.testDataGeneration(test_case)
# Write test output results into the log file
#
for line in test_res_list:
out_file.write(line + os.linesep)
for line in test_res_list:
print(line)
out_file.close()
print('Test results are written to', out_file_name)