geonames / geonames_generate.py
bstds's picture
Rename geonames.py to geonames_generate.py
39cfcd2
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import os
from functools import partial
from pathlib import Path
import datasets
import pandas as pd
from datasets import DatasetDict, load_dataset
VERSION = datasets.Version("0.0.1")
AVAILABLE_DATASETS = {
'geonames': 'https://download.geonames.org/export/dump/allCountries.zip',
'alternateNames': 'https://download.geonames.org/export/dump/alternateNames.zip',
}
FIELDS = [
"geonameid", # integer id of record in geonames database
"name", # name of geographical point (utf8) varchar(200)
"asciiname", # name of geographical point in plain ascii characters, varchar(200)
"alternatenames",
# alternatenames, comma separated, ascii names automatically transliterated, convenience attribute from alternatename table, varchar(10000)
"latitude", # latitude in decimal degrees (wgs84)
"longitude", # longitude in decimal degrees (wgs84)
"feature_class", # see http://www.geonames.org/export/codes.html, char(1)
"feature_code", # see http://www.geonames.org/export/codes.html, varchar(10)
"country_code", # ISO-3166 2-letter country code, 2 characters
"cc2",
# alternate country codes, comma separated, ISO-3166 2-letter country code, 200 characters
"admin1_code",
# fipscode (subject to change to iso code), see exceptions below, see file admin1Codes.txt for display names of this code; varchar(20)
"admin2_code",
# code for the second administrative division, a county in the US, see file admin2Codes.txt; varchar(80)
"admin3_code", # code for third level administrative division, varchar(20)
"admin4_code", # code for fourth level administrative division, varchar(20)
"population", # bigint (8 byte int)
"elevation", # in meters, integer
"dem",
# digital elevation model, srtm3 or gtopo30, average elevation of 3''x3'' (ca 90mx90m) or 30''x30'' (ca 900mx900m) area in meters, integer. srtm processed by cgiar/ciat.
"timezone", # the iana timezone id (see file timeZone.txt) varchar(40)
"modification_date", # date of last modification in yyyy-MM-dd format"
]
class GeonamesDataset(datasets.GeneratorBasedBuilder):
"""GeonamesDataset dataset."""
@staticmethod
def load(data_name_config: str = "geonames") -> DatasetDict:
ds = load_dataset(__file__, data_name_config)
return ds
def _info(self):
return datasets.DatasetInfo(
description="",
features=datasets.Features(
{
"geonameid": datasets.Value("string"),
"name": datasets.Value("string"),
"asciiname": datasets.Value("string"),
"alternatenames": datasets.Value("string"),
"latitude": datasets.Value("string"),
"longitude": datasets.Value("string"),
"feature_class": datasets.Value("string"),
"feature_code": datasets.Value("string"),
"country_code": datasets.Value("string"),
"cc2": datasets.Value("string"),
"admin1_code": datasets.Value("string"),
"admin2_code": datasets.Value("string"),
"admin3_code": datasets.Value("string"),
"admin4_code": datasets.Value("string"),
"population": datasets.Value("string"),
"elevation": datasets.Value("string"),
"dem": datasets.Value("string"),
"timezone": datasets.Value("string"),
"modification_date": datasets.Value("string"),
}
),
supervised_keys=None,
homepage="https://download.geonames.org/export/zip/",
citation="",
)
def _split_generators(self, dl_manager):
root_paths = {
"geonames": Path(dl_manager.download_and_extract(AVAILABLE_DATASETS["geonames"]))/'allCountries.txt',
"alternateNames": Path(dl_manager.download_and_extract(AVAILABLE_DATASETS["alternateNames"]))/'alternateNames.txt',
}
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"root_path": root_paths, "split": "train"
},
),
]
def _generate_examples(self, root_path, split):
data_file = str(root_path["geonames"])
data = pd.read_csv(
data_file, sep="\t", header=None,
encoding='utf-8', usecols=list(range(len(FIELDS))), names=FIELDS
)
# data_file = str(root_path["alternateNames"])
# alt_data = pd.read_csv(
# data_file, sep="\t", header=None,
# encoding='utf-8', names=["id", "geonameid", "altname"], nrows=100
# )
# data = data.merge(alt_data, on="geonameid", how="left")
for idx, sample in data.iterrows():
yield idx, dict(sample)