File size: 4,962 Bytes
a966ae1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b568ae
a966ae1
 
 
 
 
 
 
 
4b568ae
a966ae1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80e9572
 
a966ae1
 
 
 
4b568ae
a966ae1
 
 
 
 
 
 
 
 
 
4b568ae
a966ae1
 
 
 
 
 
 
 
 
 
 
 
4b568ae
a966ae1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a245e72
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
""" Script used to tag the data with POS tags. """

import os
import re
from transformers import AutoTokenizer

import nltk, sys

UNSUPERVISED_POS_TAG_MAP = {
   "and" : 'CONJ',
   "|" : 'NOUN',
   "states" : 'NOUN',
   "school" : 'NOUN',
   ".\"" : '.',
   "-" : '.',
   "five" : 'NUM',
   "1" : 'NUM',
   "they" : 'PRON',
   "of" : 'ADP',
   "are" : 'VERB',
   "(" : '.',
   "american" : 'ADJ',
   "'s" : 'VERB',
   "\"" : 'NOUN',
   "the" : 'DET',
   "a" : 'DET',
   "after" : 'ADP',
   "th" : 'NOUN',
   "good" : 'ADJ',
   "her" : 'PRON',
   "night" : 'NOUN',
   "to" : 'PRT',
   "used" : 'VERB',
   "," : '.',
   "sir" : 'NOUN',
   "tell" : 'VERB',
   "lot" : 'NOUN',
   "amp" : 'NOUN',
   "doing" : 'VERB'
}

def tag_with_nltk(text, en_ptb_map):
    """ Given a list of text, tag each word with its POS tag using NLTK """
    new_lines = []
    for line in text:
        tokens = line.split()
        tagged = nltk.pos_tag(tokens)
        # Map the NLTK PTB tags to the universal tags
        tagged = [(token, en_ptb_map[tag]) for (token, tag) in tagged]
        new_lines.append(tagged)
    return new_lines

def write_to_file(tagged, output_file):
    """ Given a list of tagged lines, write them to the given output file """
    with open(output_file, 'w') as f:
        for line in tagged:
            for token, tag in line:
                f.write(f'{token}__<label>__{tag} ')
            f.write('\n')

def tokenize_lines(text, tokenizer):
    new_lines = []
    for line in text:
        tokens = tokenizer.backend_tokenizer.pre_tokenizer.pre_tokenize_str(line)
        tokens = [t[0].replace("Ġ", "").replace('Ċ','\n') for t in tokens]
        new_lines.append(' '.join(tokens))
    return new_lines

def get_tags_from_file(file):
    with open(file, 'r') as f:
        lines = f.readlines()

    gold_tagged_lines = []
    pred_tagged_lines = []
    gold_tagged = []
    pred_tagged = []
    total = 0
    correct = 0
    for line in lines:
        line = line.strip()
        if line == '':
            gold_tagged_lines.append(gold_tagged)
            pred_tagged_lines.append(pred_tagged)
            gold_tagged = []
            pred_tagged = []
        else:
            token, gold_tag, _, pred_tag = line.strip().split(' ')
            gold_tagged.append((token, gold_tag))
            # Use the manual map to map the predicted tags to the universal tags
            pred_tagged.append((token, UNSUPERVISED_POS_TAG_MAP[pred_tag]))
            total += 1
            if gold_tag == UNSUPERVISED_POS_TAG_MAP[pred_tag]:
                correct += 1
    print(f'    Unsupervised Tagging Accuracy: {correct/total}')

    return gold_tagged_lines, pred_tagged_lines

def write_tagged_lines(filename, text, tagged_lines):
    with open(filename, 'w') as f:
        # Write the filename as the first line
        f.write(filename.split('/')[-1] + '\n')
        for line, tagged in zip(text, tagged_lines):
            f.write(line)
            f.write(' '.join([f'{token}__<label>__{tag}' for token, tag in tagged]) + '\n')

tokenizer = AutoTokenizer.from_pretrained("CamBabyTrainers/CamBabyTokenizer-8192")

FOLDERS = ['10M', '100M', 'dev', 'test']

if __name__ == "__main__":

    # Read all text files from directory "BabyLM"
    all_files = []
    for folder in FOLDERS:
        for root, dirs, files in os.walk(f"clean/{folder}"):
            for file in files:
                if file.endswith(".txt"):
                    all_files.append(os.path.join(root, file))

    # Get map from PTB tags to universal tags
    en_ptb_map = {}
    with open('../pos_tagging/en-ptb.map', 'r') as f:
        for line in f.readlines():
            (key, val) = line.split()
            en_ptb_map[key] = val

    for file in all_files:
        print(file)
        with open(file, 'r') as f:
            lines = f.readlines()[1:]

        # 1. Tokenize the lines in the text, tag with universal tags and write to tmp file
        tokenized = tokenize_lines(lines, tokenizer)
        tagged = tag_with_nltk(tokenized, en_ptb_map)
        write_to_file(tagged, 'tmp.txt')

        # 2. Run the unsupervised tagger on the tmp file
        os.system(f'./../anchor/hmm --output ../pos_tagging/10M_train_30_extended --data tmp.txt --pred tmp_tagged.txt')

        # 3. Get the gold tags and predicted tags
        gold_tagged_lines, pred_tagged_lines = get_tags_from_file('tmp_tagged.txt')
        
        assert len(gold_tagged_lines) == len(pred_tagged_lines) == len(lines)

        # 4. Write the tagged lines to the original file
        new_file = file.replace('clean', 'tagged')
        os.makedirs(os.path.dirname(new_file), exist_ok=True)
        write_tagged_lines(new_file, lines, pred_tagged_lines)

        new_file = file.replace('clean', 'tagged_gold')
        os.makedirs(os.path.dirname(new_file), exist_ok=True)
        write_tagged_lines(new_file, lines, gold_tagged_lines)

        os.remove('tmp.txt')
        os.remove('tmp_tagged.txt')