File size: 7,437 Bytes
6a105a7 124701c 6a105a7 1352c88 6a105a7 124701c 6a105a7 1352c88 6a105a7 1352c88 6a105a7 1352c88 6a105a7 124701c 6a105a7 1352c88 6a105a7 124701c 6a105a7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
"""
Cannabis Licenses | Get Oregon Licenses
Copyright (c) 2022 Cannlytics
Authors:
Keegan Skeate <https://github.com/keeganskeate>
Candace O'Sullivan-Sutherland <https://github.com/candy-o>
Created: 9/28/2022
Updated: 10/7/2022
License: <https://github.com/cannlytics/cannlytics/blob/main/LICENSE>
Description:
Collect Oregon cannabis license data.
Data Source:
- Oregon Liquor and Cannabis Commission
URL: <https://www.oregon.gov/olcc/marijuana/pages/recreational-marijuana-licensing.aspx>
"""
# Standard imports.
from datetime import datetime
import os
from typing import Optional
# External imports.
from dotenv import dotenv_values
import pandas as pd
import requests
from cannlytics.data.gis import geocode_addresses
# Specify where your data lives.
DATA_DIR = '../data/or'
ENV_FILE = '../.env'
# Specify state-specific constants.
OREGON = {
'licensing_authority_id': 'OLCC',
'licensing_authority': 'Oregon Liquor and Cannabis Commission',
'licenses': {
'url': 'https://www.oregon.gov/olcc/marijuana/Documents/MarijuanaLicenses_Approved.xlsx',
},
'retailers': {
'url': 'https://www.oregon.gov/olcc/marijuana/Documents/Approved_Retail_Licenses.xlsx',
'columns': {
'TRADE NAME': 'business_dba_name',
'POSTAL CITY': 'premise_city',
'COUNTY': 'premise_county',
'STREET ADDRESS': 'premise_street_address',
'ZIP': 'premise_zip_code',
'Med Grade': 'medicinal',
'Delivery': 'delivery',
},
'drop_columns': [
'medicinal',
'delivery',
],
},
}
def get_licenses_or(
data_dir: Optional[str] = None,
env_file: Optional[str] = '.env',
# Optional: Add print statements.
# verbose: Optional[bool] = False,
):
"""Get California cannabis license data."""
# Create the necessary directories.
file_dir = f'{data_dir}/.datasets'
if not os.path.exists(data_dir): os.makedirs(data_dir)
if not os.path.exists(file_dir): os.makedirs(file_dir)
# Download the data workbooks.
timestamp = datetime.now().isoformat()[:19].replace(':', '-')
outfile = f'{file_dir}/retailers-or-{timestamp}.xlsx'
response = requests.get(OREGON['retailers']['url'])
with open(outfile, 'wb') as doc:
doc.write(response.content)
# Extract data from the workbooks, removing the footnote.
data = pd.read_excel(outfile, skiprows=3)
data = data[:-1]
data.rename(columns=OREGON['retailers']['columns'], inplace=True)
# Optional: Remove licenses with an asterisk (*).
# Curate the data.
data['licensing_authority_id'] = OREGON['licensing_authority_id']
data['licensing_authority'] = OREGON['licensing_authority']
data['license_status'] = 'Active'
data['license_designation'] = 'Adult-Use'
data['premise_state'] = 'OR'
data.loc[data['medicinal'] == 'Yes', 'license_designation'] = 'Adult-Use and Medicinal'
data['business_image_url'] = None
data['license_status_date'] = None
data['license_term'] = None
data['issue_date'] = None
data['expiration_date'] = None
data['business_email'] = None
data['business_owner_name'] = None
data['business_structure'] = None
data['business_website'] = None
data['activity'] = None
data['business_phone'] = None
data['parcel_number'] = None
data['business_legal_name'] = data['business_dba_name']
# Optional: Convert `medicinal` and `delivery` columns to boolean.
# data['medicinal'] = data['medicinal'].map(dict(Yes=1))
# data['delivery'] = data['delivery'].map(dict(Yes=1))
# data['medicinal'].fillna(0, inplace=True)
# data['delivery'].fillna(0, inplace=True)
data.drop(columns=['medicinal', 'delivery'], inplace=True)
# Convert certain columns from upper case title case.
cols = ['business_dba_name', 'premise_city', 'premise_county',
'premise_street_address']
for col in cols:
data[col] = data[col].apply(lambda x: x.title().strip())
# Convert zip code to a string.
data.loc[:, 'premise_zip_code'] = data['premise_zip_code'].apply(lambda x: str(int(x)))
# Get the `data_refreshed_date`.
df = pd.read_excel(outfile, index_col=None, usecols='C', header=1, nrows=0)
header = df.columns.values[0]
date = pd.to_datetime(header.split(' ')[-1])
data['data_refreshed_date'] = date.isoformat()
# Get the `license_number` and `license_type` from license list.
license_file = f'{file_dir}/licenses-or-{timestamp}.xlsx'
response = requests.get(OREGON['licenses']['url'])
with open(license_file, 'wb') as doc:
doc.write(response.content)
licenses = pd.read_excel(license_file, skiprows=2)
licenses['BUSINESS NAME'] = licenses['BUSINESS NAME'].apply(
lambda x: str(x).title().strip(),
)
licenses = licenses.loc[licenses['LICENSE TYPE'] == 'Recreational Retailer']
data = pd.merge(
data,
licenses[['BUSINESS NAME', 'COUNTY', 'LICENSE NUMBER', 'LICENSE TYPE']],
left_on=['business_dba_name', 'premise_county'],
right_on=['BUSINESS NAME', 'COUNTY'],
how='left',
)
# Clean the merged columns.
data.drop_duplicates(subset='premise_street_address', inplace=True)
columns = {
'LICENSE NUMBER': 'license_number',
'LICENSE TYPE': 'license_type',
}
data.rename(columns=columns, inplace=True)
data.drop(columns=['BUSINESS NAME', 'COUNTY'], inplace=True)
data['id'] = data['license_number']
# Geocode licenses to get `premise_latitude` and `premise_longitude`.
config = dotenv_values(env_file)
google_maps_api_key = config['GOOGLE_MAPS_API_KEY']
cols = ['premise_street_address', 'premise_city', 'premise_state',
'premise_zip_code']
data['address'] = data[cols].apply(
lambda row: ', '.join(row.values.astype(str)),
axis=1,
)
data = geocode_addresses(
data,
api_key=google_maps_api_key,
address_field='address',
)
drop_cols = ['state', 'state_name', 'county', 'address', 'formatted_address']
data.drop(columns=drop_cols, inplace=True)
gis_cols = {
'latitude': 'premise_latitude',
'longitude': 'premise_longitude'
}
data.rename(columns=gis_cols, inplace=True)
# Optional: Lookup details by searching for business' websites.
# - business_email
# - business_phone
# Optional: Create fields for standardization:
# - id
# Save the license data.
if data_dir is not None:
timestamp = datetime.now().isoformat()[:19].replace(':', '-')
data.to_csv(f'{data_dir}/licenses-or-{timestamp}.csv', index=False)
return data
if __name__ == '__main__':
# Support command line usage.
import argparse
try:
arg_parser = argparse.ArgumentParser()
arg_parser.add_argument('--d', dest='data_dir', type=str)
arg_parser.add_argument('--data_dir', dest='data_dir', type=str)
arg_parser.add_argument('--env', dest='env_file', type=str)
args = arg_parser.parse_args()
except SystemExit:
args = {'d': DATA_DIR, 'env_file': ENV_FILE}
# Get California licenses, saving them to the specified directory.
data_dir = args.get('d', args.get('data_dir'))
env_file = args.get('env_file')
get_licenses_or(data_dir, env_file=env_file)
|