File size: 10,037 Bytes
124701c 1352c88 124701c 1352c88 124701c 1352c88 124701c 1352c88 124701c 1352c88 124701c 1352c88 124701c 1352c88 124701c 1352c88 124701c 1352c88 124701c 1352c88 124701c 1352c88 124701c 1352c88 124701c 1352c88 124701c 1352c88 124701c 1352c88 124701c 1352c88 124701c 1352c88 124701c 1352c88 124701c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 |
"""
Cannabis Licenses | Get Washington Licenses
Copyright (c) 2022 Cannlytics
Authors:
Keegan Skeate <https://github.com/keeganskeate>
Candace O'Sullivan-Sutherland <https://github.com/candy-o>
Created: 9/29/2022
Updated: 10/7/2022
License: <https://github.com/cannlytics/cannlytics/blob/main/LICENSE>
Description:
Collect Washington cannabis license data.
Data Source:
- Washington State Liquor and Cannabis Board | Frequently Requested Lists
URL: <https://lcb.wa.gov/records/frequently-requested-lists>
"""
# Standard imports.
from datetime import datetime
import os
from typing import Optional
# External imports.
from bs4 import BeautifulSoup
from cannlytics.data.gis import geocode_addresses
from dotenv import dotenv_values
import pandas as pd
import requests
# Specify where your data lives.
DATA_DIR = '../data/wa'
ENV_FILE = '../.env'
# Specify state-specific constants.
STATE = 'WA'
WASHINGTON = {
'licensing_authority_id': 'WSLCB',
'licensing_authority': 'Washington State Liquor and Cannabis Board',
'licenses_urls': 'https://lcb.wa.gov/records/frequently-requested-lists',
'labs': {
'key': 'Lab-List',
'columns': {
'Lab Name': 'business_legal_name',
'Lab #': 'license_number',
'Address 1': 'premise_street_address',
'Address 2': 'premise_street_address_2',
'City': 'premise_city',
'Zip': 'premise_zip_code',
'Phone': 'business_phone',
'Status': 'license_status',
'Certification Date': 'issue_date',
},
'drop_columns': [
'Pesticides',
'Heavy Metals',
'Mycotoxins',
'Water Activity',
'Terpenes',
],
},
'medical': {
'key': 'MedicalCannabisEndorsements',
'columns': {
'License': 'license_number',
'UBI': 'id',
'Tradename': 'business_dba_name',
'Privilege': 'license_type',
'Status': 'license_status',
'Med Privilege Code': 'license_designation',
'Termination Code': 'license_term',
'Street Adress': 'premise_street_address',
'Suite Rm': 'premise_street_address_2',
'City': 'premise_city',
'State': 'premise_state',
'County': 'premise_county',
'Zip Code': 'premise_zip_code',
'Date Created': 'issue_date',
'Day Phone': 'business_phone',
'Email': 'business_email',
},
},
'retailers': {
'key': 'CannabisApplicants',
'columns': {
'Tradename': 'business_dba_name',
'License ': 'license_number',
'UBI': 'id',
'Street Address': 'premise_street_address',
'Suite Rm': 'premise_street_address_2',
'City': 'premise_city',
'State': 'premise_state',
'county': 'premise_county',
'Zip Code': 'premise_zip_code',
'Priv Desc': 'license_type',
'Privilege Status': 'license_status',
'Day Phone': 'business_phone',
},
},
}
def download_file(url, dest='./', headers=None):
"""Download a file from a given URL to a local destination.
Args:
url (str): The URL of the data file.
dest (str): The destination for the data file, `./` by default (optional).
headers (dict): HTTP headers, `None` by default (optional).
Returns:
(str): The location for the data file.
"""
filename = url.split('/')[-1]
data_file = os.path.join(dest, filename)
response = requests.get(url, headers=headers)
with open(data_file, 'wb') as doc:
doc.write(response.content)
return data_file
def get_licenses_wa(
data_dir: Optional[str] = None,
env_file: Optional[str] = '.env',
):
"""Get Washington cannabis license data."""
# Create the necessary directories.
file_dir = f'{data_dir}/.datasets'
if not os.path.exists(data_dir): os.makedirs(data_dir)
if not os.path.exists(file_dir): os.makedirs(file_dir)
# Get the URLs for the license workbooks.
labs_url, medical_url, retailers_url = None, None, None
labs_key = WASHINGTON['labs']['key']
medical_key = WASHINGTON['medical']['key']
retailers_key = WASHINGTON['retailers']['key']
url = WASHINGTON['licenses_urls']
response = requests.get(url)
soup = BeautifulSoup(response.content, 'html.parser')
links = soup.find_all('a')
for link in links:
href = link['href']
if labs_key in href:
labs_url = href
elif retailers_key in href:
retailers_url = href
elif medical_key in href:
medical_url = href
break
# Download the workbooks.
lab_source_file = download_file(labs_url, dest=file_dir)
medical_source_file = download_file(medical_url, dest=file_dir)
retailers_source_file = download_file(retailers_url, dest=file_dir)
# Extract and standardize the data from the workbook.
retailers = pd.read_excel(retailers_source_file)
retailers.rename(columns=WASHINGTON['retailers']['columns'], inplace=True)
retailers['license_designation'] = 'Adult-Use'
retailers['license_type'] = 'Adult-Use Retailer'
labs = pd.read_excel(lab_source_file)
labs.rename(columns=WASHINGTON['labs']['columns'], inplace=True)
labs.drop(columns=WASHINGTON['labs']['drop_columns'], inplace=True)
labs['license_type'] = 'Lab'
medical = pd.read_excel(medical_source_file, skiprows=2)
medical.rename(columns=WASHINGTON['medical']['columns'], inplace=True)
medical['license_designation'] = 'Medicinal'
medical['license_type'] = 'Medical Retailer'
# Aggregate the licenses.
licenses = pd.concat([retailers, medical, labs])
# Standardize all of the licenses at once!
licenses = licenses.assign(
licensing_authority_id=WASHINGTON['licensing_authority_id'],
licensing_authority=WASHINGTON['licensing_authority'],
premise_state=STATE,
license_status_date=None,
expiration_date=None,
activity=None,
parcel_number=None,
business_owner_name=None,
business_structure=None,
business_image_url=None,
business_website=None,
)
# Fill legal and DBA names.
licenses['id'].fillna(licenses['license_number'], inplace=True)
licenses['business_legal_name'].fillna(licenses['business_dba_name'], inplace=True)
licenses['business_dba_name'].fillna(licenses['business_legal_name'], inplace=True)
cols = ['business_legal_name', 'business_dba_name']
for col in cols:
licenses[col] = licenses[col].apply(
lambda x: x.title().replace('Llc', 'LLC').replace("'S", "'s").strip()
)
# Keep only active licenses.
license_statuses = ['Active', 'ACTIVE (ISSUED)', 'ACTIVE TITLE CERTIFICATE',]
licenses = licenses.loc[licenses['license_status'].isin(license_statuses)]
# Convert certain columns from upper case title case.
cols = ['business_dba_name', 'premise_city', 'premise_county',
'premise_street_address', 'license_type', 'license_status']
for col in cols:
retailers[col] = retailers[col].apply(lambda x: x.title().strip())
# Get the refreshed date.
date = retailers_source_file.split('\\')[-1].split('.')[0]
date = date.replace('CannabisApplicants', '')
date = date[:2] + '-' + date[2:4] + '-' + date[4:8]
licenses['data_refreshed_date'] = pd.to_datetime(date).isoformat()
# Append `premise_street_address_2` to `premise_street_address`.
cols = ['premise_street_address', 'premise_street_address_2']
licenses['premise_street_address'] = licenses[cols].apply(
lambda x : '{} {}'.format(x[0].strip(), x[1]).replace('nan', '').strip().replace(' ', ' '),
axis=1,
)
licenses.drop(columns=['premise_street_address_2'], inplace=True)
# Geocode licenses to get `premise_latitude` and `premise_longitude`.
config = dotenv_values(env_file)
api_key = config['GOOGLE_MAPS_API_KEY']
cols = ['premise_street_address', 'premise_city', 'premise_state',
'premise_zip_code']
licenses['address'] = licenses[cols].apply(
lambda row: ', '.join(row.values.astype(str)),
axis=1,
)
licenses = geocode_addresses(licenses, address_field='address', api_key=api_key)
drop_cols = ['state', 'state_name', 'county', 'address', 'formatted_address']
gis_cols = {'latitude': 'premise_latitude', 'longitude': 'premise_longitude'}
licenses.drop(columns=drop_cols, inplace=True)
licenses.rename(columns=gis_cols, inplace=True)
# TODO: Search for business website and image.
# Save and return the data.
if data_dir is not None:
timestamp = datetime.now().isoformat()[:19].replace(':', '-')
licenses.to_csv(f'{data_dir}/licenses-{STATE.lower()}-{timestamp}.csv', index=False)
retailers = licenses.loc[licenses['license_type'] == 'Adult-Use Retailer']
retailers.to_csv(f'{data_dir}/retailers-{STATE.lower()}-{timestamp}.csv', index=False)
labs = licenses.loc[licenses['license_type'] == 'Lab']
labs.to_csv(f'{data_dir}/labs-{STATE.lower()}-{timestamp}.csv', index=False)
return retailers
if __name__ == '__main__':
# Support command line usage.
import argparse
try:
arg_parser = argparse.ArgumentParser()
arg_parser.add_argument('--d', dest='data_dir', type=str)
arg_parser.add_argument('--data_dir', dest='data_dir', type=str)
arg_parser.add_argument('--env', dest='env_file', type=str)
args = arg_parser.parse_args()
except SystemExit:
args = {'d': DATA_DIR, 'env_file': ENV_FILE}
# Get licenses, saving them to the specified directory.
data_dir = args.get('d', args.get('data_dir'))
env_file = args.get('env_file')
data = get_licenses_wa(data_dir, env_file=env_file)
|