File size: 6,778 Bytes
14c4eaf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
"""
Interstate Cannabis Commerce
Copyright (c) 2022 Cannlytics

Authors:
    Keegan Skeate <https://github.com/keeganskeate>
Created: 9/22/2022
Updated: 9/28/2022
License: <https://github.com/cannlytics/cannabis-data-science/blob/main/LICENSE>

Description: 

    Map the adult-use cannabis retailers permitted in the United States.

Data Sources (16):

    - Alaska
    URL: <>

    - Arizona Department of Health Services | Division of Licensing
    URL: <https://azcarecheck.azdhs.gov/s/?licenseType=null>

    - Colorado
    URL: <>

    - Connecticut
    URL: <>

    - Illinois
    URL: <>

    - Maine
    URL: <>

    - Massachusetts
    URL: <>

    - Michigan
    URL: <>

    - Montana Department of Revenue | Cannabis Control Division
    URL: <https://mtrevenue.gov/cannabis/#CannabisLicenses>

    - New Mexico
    URL: <https://nmrldlpi.force.com/bcd/s/public-search-license?division=CCD&language=en_US>
    
    - Nevada Cannabis Compliance Board | Nevada Cannabis Licensees
    URL: <https://ccb.nv.gov/list-of-licensees/>

    - New Jersey
    URL: <>

    - Oregon Liquor and Cannabis Commission
    URL: <https://www.oregon.gov/olcc/marijuana/pages/recreational-marijuana-licensing.aspx>

    - Rhode Island
    URL: <>

    - Vermont
    URL: <>

    - Washington
    URL: <https://lcb.wa.gov/records/frequently-requested-lists>

Coming Soon (3):
    
    - New York
    - Virginia
    - D.C.

Medical (17):

    - Utah
    - Oklahoma
    - North Dakota
    - South Dakota
    - Minnesota
    - Missouri
    - Arkansas
    - Louisiana
    - Mississippi
    - Alabama
    - Florida
    - Ohio
    - West Virginia
    - Pennsylvania
    - Maryland
    - Delaware
    - New Hampshire

"""
# Standard imports.

# External imports.
import folium
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns


# Specify where your data lives.
DATA_DIR = '../data'

#-----------------------------------------------------------------------
# Get the data.
#-----------------------------------------------------------------------

# California retailers.
filename = f'{DATA_DIR}/ca/licenses-ca-2022-09-21T19-02-29.xlsx'
ca_licenses = pd.read_excel(filename, index_col=0)

# Alaska retailers.

# Arizona retailers.

# Colorado retailers.

# Connecticut retailers.

# Illinois retailers.

# Maine retailers.

# Massachusetts retailers.

# Michigan retailers.

# Montana retailers.

# New Mexico retailers.

# Nevada retailers.

# New Jersey retailers.

# Oregon retailers.
filename = f'{DATA_DIR}/or/licenses-or-2022-09-28T10-11-12.xlsx'
or_licenses = pd.read_excel(filename, index_col=0)

# Rhode Island retailers.

# Vermont retailers.

# Washington retailers.


#-----------------------------------------------------------------------
# Look at the data!
#-----------------------------------------------------------------------

# Aggregate all of the retailer data.
retailers = pd.concat([
    ca_licenses,
    or_licenses,
])
retailers = retailers.loc[
    (~retailers['premise_longitude'].isnull()) &
    (~retailers['premise_latitude'].isnull())
]

# Create a scatterplot of latitude and longitude with hue as license type.
sns.scatterplot(
    data=retailers,
    x='premise_longitude',
    y='premise_latitude',
    hue='license_type',
)
plt.show()

# Optional: Create a nice static map.

# Create an interactive map.
locations = retailers[['premise_latitude', 'premise_longitude']].to_numpy()
m = folium.Map(
    location=[45.5236, -122.6750],
    zoom_start=4,
    control_scale=True,
)
for index, row in retailers.iterrows():
    folium.Circle(
        radius=10,
        location=[row['premise_latitude'], row['premise_longitude']],
        color='crimson',
    ).add_to(m)
m.save('figures/cannabis-licenses-map.html')


#-----------------------------------------------------------------------
# Get supplementary data.
#-----------------------------------------------------------------------

from bs4 import BeautifulSoup
from cannlytics.data.gis import get_state_population
from cannlytics.utils.constants import state_names
from dotenv import dotenv_values
from fredapi import Fred
import requests

# Read your FRED API key.
config = dotenv_values('../.env')
fred_api_key = config['FRED_API_KEY']

# Get the population for each state (in 2021).
state_data = {}
for state, abbv in state_names.items():
    population = get_state_population(
        abbv,
        fred_api_key=fred_api_key,
        obs_start='2021-01-01',
    )
    state_data[state] = {'population': population['population']}

# Get the square miles of land for each state.
url = 'https://en.wikipedia.org/wiki/List_of_U.S._states_and_territories_by_area'
response = requests.get(url).text
soup = BeautifulSoup(response, 'lxml')
table = soup.find('table', class_='wikitable')
for items in table.find_all('tr'):
    data = items.find_all(['th', 'td'])
    if data:
        try:
            rank = int(data[1].text)
        except:
            continue
        state = data[0].text.replace('\n', '')
        land_area = float(data[5].text.replace('\n', '').replace(',', ''))
        state_data[state]['land_area_sq_mi']

# Get the change in GDP for each state in 2022 Q1.
code = 'NQGSP'
fred = Fred(api_key=fred_api_key)
for state, abbv in state_names.items():
    try:
        series = fred.get_series(abbv + code, '2021-10-01')
    except ValueError:
        continue
    current, past = series[-1], series[-2]
    change_gdp = ((current - past) / past) * 100
    state_data[state]['change_gdp_2022_q1'] = change_gdp


#-----------------------------------------------------------------------
# Analyze the data.
#-----------------------------------------------------------------------

import statsmodels.api as sm

# FIXME: Compile all of the state statistics.
stats = pd.DataFrame()

# TODO: Count the number of retailers by state.


# TODO: Calculate retailers per capita (100,000) by state.


# TODO: Calculate retailers per 100 square miles by state.


# TODO: Create `adult_use` dummy variable. Assign 0 `retailers_per_capita`.


# Regress GDP on adult-use status and retailers per capita.
Y = stats['change_gdp_2022_q1']
X = stats[['adult_use', 'retailers_per_capita']]
X = sm.add_constant(X)
regression = sm.OLS(Y, X).fit()
print(regression.summary())

# Interpret the relationships.
beta = regression.params.adult_use
statement = """If a state permitted adult-use at the start of 2022,
then everything else held constant one would expect
GDP in 2022 Q1 to change by {}.
""".format(beta)
print(statement)

# Interpret the relationships.
beta = regression.params.retailers_per_capita
statement = """If retailers per 100,000 adults increases by 1,
then everything else held constant one would expect
GDP in 2022 Q1 to change by {}.
""".format(beta)
print(statement)