cannabis_licenses / analysis /license_map.py
keeganskeate's picture
pr/kls-1 (#3)
1352c88
raw
history blame
2.59 kB
"""
Cannabis Licenses | License Mao
Copyright (c) 2022 Cannlytics
Authors:
Keegan Skeate <https://github.com/keeganskeate>
Candace O'Sullivan-Sutherland <https://github.com/candy-o>
Created: 9/22/2022
Updated: 10/8/2022
License: <https://github.com/cannlytics/cannabis-data-science/blob/main/LICENSE>
Description:
Map the adult-use cannabis retailers permitted in the United States:
βœ“ Alaska
βœ“ Arizona
βœ“ California
βœ“ Colorado
βœ“ Connecticut
βœ“ Illinois
βœ“ Maine
βœ“ Massachusetts
βœ“ Michigan
βœ“ Montana
βœ“ Nevada
βœ“ New Jersey
x New Mexico (FIXME)
βœ“ Oregon
βœ“ Rhode Island
βœ“ Vermont
βœ“ Washington
"""
# Standard imports.
from datetime import datetime
import json
import os
# External imports.
import folium
import pandas as pd
# Specify where your data lives.
DATA_DIR = '../'
# Read data subsets.
with open('../subsets.json', 'r') as f:
SUBSETS = json.loads(f.read())
def aggregate_retailers(
datafiles,
index_col=0,
lat='premise_latitude',
long='premise_longitude',
):
"""Aggregate retailer license data files,
keeping only those with latitude and longitude."""
data = []
for filename in datafiles:
data.append(pd.read_csv(filename, index_col=index_col))
data = pd.concat(data)
return data.loc[(~data[lat].isnull()) & (~data[long].isnull())]
def create_retailer_map(
df,
color='crimson',
filename=None,
lat='premise_latitude',
long='premise_longitude',
):
"""Create a map of licensed retailers."""
m = folium.Map(
location=[39.8283, -98.5795],
zoom_start=3,
control_scale=True,
)
for _, row in df.iterrows():
folium.Circle(
radius=5,
location=[row[lat], row[long]],
color=color,
).add_to(m)
if filename:
m.save(filename)
return m
# === Test ===
if __name__ == '__main__':
# Aggregate retailers.
subsets = list(SUBSETS.values())
datafiles = [DATA_DIR + x['data_url'] for x in subsets]
retailers = aggregate_retailers(datafiles)
# Create the retailers map.
map_file = '../analysis/figures/cannabis-licenses-map.html'
m = create_retailer_map(retailers, filename=map_file)
# Save all of the retailers.
timestamp = datetime.now().isoformat()[:19].replace(':', '-')
retailers.to_csv(f'{DATA_DIR}/data/all/licenses-{timestamp}.csv', index=False)