cannabis_licenses / analysis /license_map.py
Keegan Skeate
Curating cannabis licenses📜 | Completed CA + OR ✅
14c4eaf
raw
history blame
6.78 kB
"""
Interstate Cannabis Commerce
Copyright (c) 2022 Cannlytics
Authors:
Keegan Skeate <https://github.com/keeganskeate>
Created: 9/22/2022
Updated: 9/28/2022
License: <https://github.com/cannlytics/cannabis-data-science/blob/main/LICENSE>
Description:
Map the adult-use cannabis retailers permitted in the United States.
Data Sources (16):
- Alaska
URL: <>
- Arizona Department of Health Services | Division of Licensing
URL: <https://azcarecheck.azdhs.gov/s/?licenseType=null>
- Colorado
URL: <>
- Connecticut
URL: <>
- Illinois
URL: <>
- Maine
URL: <>
- Massachusetts
URL: <>
- Michigan
URL: <>
- Montana Department of Revenue | Cannabis Control Division
URL: <https://mtrevenue.gov/cannabis/#CannabisLicenses>
- New Mexico
URL: <https://nmrldlpi.force.com/bcd/s/public-search-license?division=CCD&language=en_US>
- Nevada Cannabis Compliance Board | Nevada Cannabis Licensees
URL: <https://ccb.nv.gov/list-of-licensees/>
- New Jersey
URL: <>
- Oregon Liquor and Cannabis Commission
URL: <https://www.oregon.gov/olcc/marijuana/pages/recreational-marijuana-licensing.aspx>
- Rhode Island
URL: <>
- Vermont
URL: <>
- Washington
URL: <https://lcb.wa.gov/records/frequently-requested-lists>
Coming Soon (3):
- New York
- Virginia
- D.C.
Medical (17):
- Utah
- Oklahoma
- North Dakota
- South Dakota
- Minnesota
- Missouri
- Arkansas
- Louisiana
- Mississippi
- Alabama
- Florida
- Ohio
- West Virginia
- Pennsylvania
- Maryland
- Delaware
- New Hampshire
"""
# Standard imports.
# External imports.
import folium
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
# Specify where your data lives.
DATA_DIR = '../data'
#-----------------------------------------------------------------------
# Get the data.
#-----------------------------------------------------------------------
# California retailers.
filename = f'{DATA_DIR}/ca/licenses-ca-2022-09-21T19-02-29.xlsx'
ca_licenses = pd.read_excel(filename, index_col=0)
# Alaska retailers.
# Arizona retailers.
# Colorado retailers.
# Connecticut retailers.
# Illinois retailers.
# Maine retailers.
# Massachusetts retailers.
# Michigan retailers.
# Montana retailers.
# New Mexico retailers.
# Nevada retailers.
# New Jersey retailers.
# Oregon retailers.
filename = f'{DATA_DIR}/or/licenses-or-2022-09-28T10-11-12.xlsx'
or_licenses = pd.read_excel(filename, index_col=0)
# Rhode Island retailers.
# Vermont retailers.
# Washington retailers.
#-----------------------------------------------------------------------
# Look at the data!
#-----------------------------------------------------------------------
# Aggregate all of the retailer data.
retailers = pd.concat([
ca_licenses,
or_licenses,
])
retailers = retailers.loc[
(~retailers['premise_longitude'].isnull()) &
(~retailers['premise_latitude'].isnull())
]
# Create a scatterplot of latitude and longitude with hue as license type.
sns.scatterplot(
data=retailers,
x='premise_longitude',
y='premise_latitude',
hue='license_type',
)
plt.show()
# Optional: Create a nice static map.
# Create an interactive map.
locations = retailers[['premise_latitude', 'premise_longitude']].to_numpy()
m = folium.Map(
location=[45.5236, -122.6750],
zoom_start=4,
control_scale=True,
)
for index, row in retailers.iterrows():
folium.Circle(
radius=10,
location=[row['premise_latitude'], row['premise_longitude']],
color='crimson',
).add_to(m)
m.save('figures/cannabis-licenses-map.html')
#-----------------------------------------------------------------------
# Get supplementary data.
#-----------------------------------------------------------------------
from bs4 import BeautifulSoup
from cannlytics.data.gis import get_state_population
from cannlytics.utils.constants import state_names
from dotenv import dotenv_values
from fredapi import Fred
import requests
# Read your FRED API key.
config = dotenv_values('../.env')
fred_api_key = config['FRED_API_KEY']
# Get the population for each state (in 2021).
state_data = {}
for state, abbv in state_names.items():
population = get_state_population(
abbv,
fred_api_key=fred_api_key,
obs_start='2021-01-01',
)
state_data[state] = {'population': population['population']}
# Get the square miles of land for each state.
url = 'https://en.wikipedia.org/wiki/List_of_U.S._states_and_territories_by_area'
response = requests.get(url).text
soup = BeautifulSoup(response, 'lxml')
table = soup.find('table', class_='wikitable')
for items in table.find_all('tr'):
data = items.find_all(['th', 'td'])
if data:
try:
rank = int(data[1].text)
except:
continue
state = data[0].text.replace('\n', '')
land_area = float(data[5].text.replace('\n', '').replace(',', ''))
state_data[state]['land_area_sq_mi']
# Get the change in GDP for each state in 2022 Q1.
code = 'NQGSP'
fred = Fred(api_key=fred_api_key)
for state, abbv in state_names.items():
try:
series = fred.get_series(abbv + code, '2021-10-01')
except ValueError:
continue
current, past = series[-1], series[-2]
change_gdp = ((current - past) / past) * 100
state_data[state]['change_gdp_2022_q1'] = change_gdp
#-----------------------------------------------------------------------
# Analyze the data.
#-----------------------------------------------------------------------
import statsmodels.api as sm
# FIXME: Compile all of the state statistics.
stats = pd.DataFrame()
# TODO: Count the number of retailers by state.
# TODO: Calculate retailers per capita (100,000) by state.
# TODO: Calculate retailers per 100 square miles by state.
# TODO: Create `adult_use` dummy variable. Assign 0 `retailers_per_capita`.
# Regress GDP on adult-use status and retailers per capita.
Y = stats['change_gdp_2022_q1']
X = stats[['adult_use', 'retailers_per_capita']]
X = sm.add_constant(X)
regression = sm.OLS(Y, X).fit()
print(regression.summary())
# Interpret the relationships.
beta = regression.params.adult_use
statement = """If a state permitted adult-use at the start of 2022,
then everything else held constant one would expect
GDP in 2022 Q1 to change by {}.
""".format(beta)
print(statement)
# Interpret the relationships.
beta = regression.params.retailers_per_capita
statement = """If retailers per 100,000 adults increases by 1,
then everything else held constant one would expect
GDP in 2022 Q1 to change by {}.
""".format(beta)
print(statement)