""" Cannabis Licenses | Get Illinois Licenses Copyright (c) 2022 Cannlytics Authors: Keegan Skeate Candace O'Sullivan-Sutherland Created: 9/29/2022 Updated: 10/3/2022 License: Description: Collect Illinois cannabis license data. Data Source: - Illinois Department of Financial and Professional Regulation Licensed Adult Use Cannabis Dispensaries URL: """ # Standard imports. from datetime import datetime import os from typing import Optional # External imports. from dotenv import dotenv_values from cannlytics.data.gis import geocode_addresses import pandas as pd import pdfplumber import requests # Specify where your data lives. DATA_DIR = '../data/il' ENV_FILE = '../.env' # Specify state-specific constants. STATE = 'IL' ILLINOIS = { 'licensing_authority_id': 'IDFPR', 'licensing_authority': 'Illinois Department of Financial and Professional Regulation', 'retailers': { 'url': 'https://www.idfpr.com/LicenseLookup/AdultUseDispensaries.pdf', 'columns': [ 'business_legal_name', 'business_dba_name', 'address', 'medical', 'issue_date', 'license_number', ], }, } def get_licenses_il( data_dir: Optional[str] = None, env_file: Optional[str] = '.env', **kwargs, ): """Get Illinois cannabis license data.""" # Create necessary directories. pdf_dir = f'{data_dir}/pdfs' if not os.path.exists(data_dir): os.makedirs(data_dir) if not os.path.exists(pdf_dir): os.makedirs(pdf_dir) # Download the retailers PDF. retailers_url = ILLINOIS['retailers']['url'] filename = f'{pdf_dir}/illinois_retailers.pdf' response = requests.get(retailers_url) with open(filename, 'wb') as f: f.write(response.content) # Read the retailers PDF. pdf = pdfplumber.open(filename) # Get the table data, excluding the headers and removing empty cells. table_data = [] for i, page in enumerate(pdf.pages): table = page.extract_table() if i == 0: table = table[4:] table = [c for row in table if (c := [elem for elem in row if elem is not None])] table_data += table # Standardize the data. licensee_columns = ILLINOIS['retailers']['columns'] retailers = pd.DataFrame(table_data, columns=licensee_columns) retailers = retailers.assign( licensing_authority_id=ILLINOIS['licensing_authority_id'], licensing_authority=ILLINOIS['licensing_authority'], license_designation='Adult-Use', premise_state=STATE, license_status='Active', license_status_date=None, license_type='Commercial - Retailer', license_term=None, expiration_date=None, business_legal_name=retailers['business_dba_name'], business_owner_name=None, business_structure=None, business_email=None, activity=None, parcel_number=None, id=retailers['license_number'], business_image_url=None, business_website=None, ) # Apply `medical` to `license_designation` retailers.loc[retailers['medical'] == 'Yes', 'license_designation'] = 'Adult-Use and Medicinal' retailers.drop(columns=['medical'], inplace=True) # Clean the organization names. retailers['business_legal_name'] = retailers['business_legal_name'].str.replace('\n', '', regex=False) retailers['business_dba_name'] = retailers['business_dba_name'].str.replace('*', '', regex=False) # Separate address into 'street', 'city', 'state', 'zip_code', 'phone_number'. streets, cities, states, zip_codes, phone_numbers = [], [], [], [], [] for index, row in retailers.iterrows(): parts = row.address.split(' \n') streets.append(parts[0]) phone_numbers.append(parts[-1]) locales = parts[1] city_locales = locales.split(', ') state_locales = city_locales[-1].split(' ') cities.append(city_locales[0]) states.append(state_locales[0]) zip_codes.append(state_locales[-1]) retailers['premise_street_address'] = pd.Series(streets) retailers['premise_city'] = pd.Series(cities) retailers['premise_state'] = pd.Series(states) retailers['premise_zip_code'] = pd.Series(zip_codes) retailers['business_phone'] = pd.Series(phone_numbers) # Convert the issue date to ISO format. retailers['issue_date'] = retailers['issue_date'].apply( lambda x: pd.to_datetime(x).isoformat() ) # Get the refreshed date. date = pdf.metadata['ModDate'].replace('D:', '') date = date[:4] + '-' + date[4:6] + '-' + date[6:8] + 'T' + date[8:10] + \ ':' + date[10:12] + ':' + date[12:].replace("'", ':').rstrip(':') retailers['data_refreshed_date'] = date # Geocode licenses to get `premise_latitude` and `premise_longitude`. config = dotenv_values(env_file) google_maps_api_key = config['GOOGLE_MAPS_API_KEY'] retailers['address'] = retailers['address'].str.replace('*', '', regex=False) retailers = geocode_addresses( retailers, api_key=google_maps_api_key, address_field='address', ) drop_cols = ['state', 'state_name', 'address', 'formatted_address'] retailers.drop(columns=drop_cols, inplace=True) gis_cols = { 'county': 'premise_county', 'latitude': 'premise_latitude', 'longitude': 'premise_longitude' } retailers.rename(columns=gis_cols, inplace=True) # Save and return the data. if data_dir is not None: timestamp = datetime.now().isoformat()[:19].replace(':', '-') retailers.to_csv(f'{data_dir}/retailers-{STATE.lower()}-{timestamp}.csv', index=False) return retailers # === Test === if __name__ == '__main__': # Support command line usage. import argparse try: arg_parser = argparse.ArgumentParser() arg_parser.add_argument('--d', dest='data_dir', type=str) arg_parser.add_argument('--data_dir', dest='data_dir', type=str) arg_parser.add_argument('--env', dest='env_file', type=str) args = arg_parser.parse_args() except SystemExit: args = {'d': DATA_DIR, 'env_file': ENV_FILE} # Get licenses, saving them to the specified directory. data_dir = args.get('d', args.get('data_dir')) env_file = args.get('env_file') data = get_licenses_il(data_dir, env_file=env_file)