Commit
·
17a6faf
1
Parent(s):
ab43142
rawgarden-initial (#1)
Browse files- Added csv files (1dd369e6a84556561509d99ab48ed96eeb98ebd4)
- Added 👨🌾 Raw Garden lab result data + algorithm (43ca93b66e9d8192432dcbce69aa5d3963b89d4b)
- .gitattributes +1 -0
- README.md +13 -4
- algorithms/get_all_rawgarden_data.py +440 -0
- cannabis_tests.py +198 -48
- dataset_infos.json +1 -0
- rawgarden/details.csv +3 -0
- rawgarden/results.csv +3 -0
- rawgarden/values.csv +3 -0
- train.csv +3 -0
.gitattributes
CHANGED
@@ -49,3 +49,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
49 |
*.jpg filter=lfs diff=lfs merge=lfs -text
|
50 |
*.jpeg filter=lfs diff=lfs merge=lfs -text
|
51 |
*.webp filter=lfs diff=lfs merge=lfs -text
|
|
|
|
49 |
*.jpg filter=lfs diff=lfs merge=lfs -text
|
50 |
*.jpeg filter=lfs diff=lfs merge=lfs -text
|
51 |
*.webp filter=lfs diff=lfs merge=lfs -text
|
52 |
+
*.csv filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -56,21 +56,29 @@ The dataset is partitioned into the various sources of lab results.
|
|
56 |
|
57 |
| Source | Observations |
|
58 |
|--------|--------------|
|
59 |
-
| Raw Gardens | 2,
|
60 |
| MCR Labs | Coming soon! |
|
61 |
| PSI Labs | Coming soon! |
|
62 |
| SC Labs | Coming soon! |
|
63 |
|
64 |
### Data Instances
|
65 |
|
66 |
-
You can load
|
67 |
|
68 |
```py
|
69 |
from datasets import load_dataset
|
70 |
|
71 |
-
#
|
72 |
dataset = 'cannlytics/cannabis_tests'
|
73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
```
|
75 |
|
76 |
### Data Fields
|
@@ -199,6 +207,7 @@ The data represents only a subset of the population of cannabis lab results. Non
|
|
199 |
| `'N/A'` | `None` |
|
200 |
| `'na'` | `None` |
|
201 |
| `'NT'` | `None` |
|
|
|
202 |
## Additional Information
|
203 |
|
204 |
### Dataset Curators
|
|
|
56 |
|
57 |
| Source | Observations |
|
58 |
|--------|--------------|
|
59 |
+
| Raw Gardens | 2,667 |
|
60 |
| MCR Labs | Coming soon! |
|
61 |
| PSI Labs | Coming soon! |
|
62 |
| SC Labs | Coming soon! |
|
63 |
|
64 |
### Data Instances
|
65 |
|
66 |
+
You can load `details`, `results`, and `values` for each of the dataset files. For example:
|
67 |
|
68 |
```py
|
69 |
from datasets import load_dataset
|
70 |
|
71 |
+
# Specify the Cannabis Tests dataset.
|
72 |
dataset = 'cannlytics/cannabis_tests'
|
73 |
+
|
74 |
+
# Load Raw Garden lab test details.
|
75 |
+
rawgarden_details = load_dataset(dataset, 'rawgarden_details')
|
76 |
+
|
77 |
+
# Load Raw Garden lab test results.
|
78 |
+
rawgarden_results = load_dataset(dataset, 'rawgarden_results')
|
79 |
+
|
80 |
+
# Load Raw Garden lab test values.
|
81 |
+
rawgarden_values = load_dataset(dataset, 'rawgarden_values')
|
82 |
```
|
83 |
|
84 |
### Data Fields
|
|
|
207 |
| `'N/A'` | `None` |
|
208 |
| `'na'` | `None` |
|
209 |
| `'NT'` | `None` |
|
210 |
+
|
211 |
## Additional Information
|
212 |
|
213 |
### Dataset Curators
|
algorithms/get_all_rawgarden_data.py
ADDED
@@ -0,0 +1,440 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Get Raw Garden Test Result Data
|
3 |
+
Copyright (c) 2022 Cannlytics
|
4 |
+
|
5 |
+
Authors:
|
6 |
+
Keegan Skeate <https://github.com/keeganskeate>
|
7 |
+
Candace O'Sullivan-Sutherland <https://github.com/candy-o>
|
8 |
+
Created: 8/23/2022
|
9 |
+
Updated: 9/13/2022
|
10 |
+
License: <https://github.com/cannlytics/cannlytics/blob/main/LICENSE>
|
11 |
+
|
12 |
+
Description:
|
13 |
+
|
14 |
+
Curate Raw Garden's publicly published lab results by:
|
15 |
+
|
16 |
+
1. Finding products and their COA URLS on Raw Garden's website.
|
17 |
+
2. Downloading COA PDFs from their URLs.
|
18 |
+
3. Using CoADoc to parse the COA PDFs (with OCR).
|
19 |
+
4. Archiving the COA data in Firestore.
|
20 |
+
|
21 |
+
Data Source:
|
22 |
+
|
23 |
+
- Raw Garden Lab Results
|
24 |
+
URL: <https://rawgarden.farm/lab-results/>
|
25 |
+
|
26 |
+
Command line usage:
|
27 |
+
|
28 |
+
python ai/curation/get_rawgarden_data/get_rawgarden_data.py \
|
29 |
+
--days_ago=1 --get_all=False
|
30 |
+
|
31 |
+
"""
|
32 |
+
# Standard imports.
|
33 |
+
from datetime import datetime, timedelta
|
34 |
+
import gc
|
35 |
+
import os
|
36 |
+
from time import sleep
|
37 |
+
from typing import Any, List, Optional, Tuple
|
38 |
+
|
39 |
+
# External imports.
|
40 |
+
from bs4 import BeautifulSoup
|
41 |
+
import pandas as pd
|
42 |
+
import requests
|
43 |
+
|
44 |
+
# Internal imports.
|
45 |
+
from cannlytics.data.coas import CoADoc
|
46 |
+
from cannlytics.data.data import create_hash
|
47 |
+
from cannlytics.firebase import (
|
48 |
+
get_document,
|
49 |
+
initialize_firebase,
|
50 |
+
update_documents,
|
51 |
+
upload_file,
|
52 |
+
)
|
53 |
+
from cannlytics.utils import kebab_case, rmerge
|
54 |
+
from cannlytics.utils.constants import DEFAULT_HEADERS
|
55 |
+
|
56 |
+
# Specify where your data lives.
|
57 |
+
BUCKET_NAME = 'cannlytics-company.appspot.com'
|
58 |
+
COLLECTION = 'public/data/lab_results'
|
59 |
+
STORAGE_REF = 'data/lab_results/raw_garden'
|
60 |
+
|
61 |
+
# Create directories if they don't already exist.
|
62 |
+
# TODO: Edit `ENV_FILE` and `DATA_DIR` as needed for your desired setup.
|
63 |
+
ENV_FILE = '../.env'
|
64 |
+
DATA_DIR = '.././'
|
65 |
+
COA_DATA_DIR = f'{DATA_DIR}/raw_garden'
|
66 |
+
COA_PDF_DIR = f'{COA_DATA_DIR}/pdfs'
|
67 |
+
TEMP_PATH = f'{COA_DATA_DIR}/tmp'
|
68 |
+
if not os.path.exists(DATA_DIR): os.makedirs(DATA_DIR)
|
69 |
+
if not os.path.exists(COA_DATA_DIR): os.makedirs(COA_DATA_DIR)
|
70 |
+
if not os.path.exists(COA_PDF_DIR): os.makedirs(COA_PDF_DIR)
|
71 |
+
if not os.path.exists(TEMP_PATH): os.makedirs(TEMP_PATH)
|
72 |
+
|
73 |
+
# Define constants.
|
74 |
+
BASE = 'https://rawgarden.farm/lab-results/'
|
75 |
+
|
76 |
+
|
77 |
+
def get_rawgarden_products(
|
78 |
+
start: Optional[Any] = None,
|
79 |
+
end: Optional[Any] = None,
|
80 |
+
) -> pd.DataFrame:
|
81 |
+
"""Get Raw Garden's lab results page. Then get all of the product
|
82 |
+
categories. Finally, get all product data, including: `coa_pdf`,
|
83 |
+
`lab_results_url`, `product_name`, `product_subtype`, `date_retail`.
|
84 |
+
Args:
|
85 |
+
start (str or datetime): A point in time to begin restricting
|
86 |
+
the product list by `date_retail` (optional).
|
87 |
+
end (str or datetime): A point in time to end restricting
|
88 |
+
the product list by `date_retail` (optional).
|
89 |
+
Returns:
|
90 |
+
(DataFrame): Returns a DataFrame of product data.
|
91 |
+
"""
|
92 |
+
|
93 |
+
# Get the website.
|
94 |
+
response = requests.get(BASE, headers=DEFAULT_HEADERS)
|
95 |
+
soup = BeautifulSoup(response.content, 'html.parser')
|
96 |
+
|
97 |
+
# Get all product data listed on the website.
|
98 |
+
observations = []
|
99 |
+
categories = soup.find_all('div', attrs={'class': 'category-content'})
|
100 |
+
for category in categories:
|
101 |
+
subtype = category.find('h3').text
|
102 |
+
dates = category.findAll('h5', attrs={'class': 'result-date'})
|
103 |
+
names = category.findAll('h5')
|
104 |
+
names = [div for div in names if div.get('class') is None]
|
105 |
+
links = category.findAll('a')
|
106 |
+
for i, link in enumerate(links):
|
107 |
+
try:
|
108 |
+
href = link.get('href')
|
109 |
+
date = pd.to_datetime(dates[i].text)
|
110 |
+
name = names[i].text
|
111 |
+
if href.endswith('.pdf'):
|
112 |
+
observations.append({
|
113 |
+
'coa_pdf': href.split('/')[-1],
|
114 |
+
'lab_results_url': href,
|
115 |
+
'product_name': name,
|
116 |
+
'product_subtype': subtype,
|
117 |
+
'date_retail': date,
|
118 |
+
})
|
119 |
+
except AttributeError:
|
120 |
+
continue
|
121 |
+
|
122 |
+
# Restrict the observations to the desired time frame.
|
123 |
+
results = pd.DataFrame(observations)
|
124 |
+
dates = results['date_retail']
|
125 |
+
if start:
|
126 |
+
if isinstance(start, str):
|
127 |
+
latest = pd.to_datetime(start)
|
128 |
+
else:
|
129 |
+
latest = start
|
130 |
+
results = results.loc[dates >= latest]
|
131 |
+
if end:
|
132 |
+
if isinstance(end, str):
|
133 |
+
earliest = pd.to_datetime(end)
|
134 |
+
else:
|
135 |
+
earliest = end
|
136 |
+
results = results.loc[dates <= earliest]
|
137 |
+
results['date_retail'] = dates.apply(lambda x: x.isoformat()[:19])
|
138 |
+
return results
|
139 |
+
|
140 |
+
|
141 |
+
def download_rawgarden_coas(
|
142 |
+
items: pd.DataFrame,
|
143 |
+
pause: Optional[float] = 0.24,
|
144 |
+
verbose: Optional[bool] = True,
|
145 |
+
) -> None:
|
146 |
+
"""Download Raw Garden product COAs to `product_subtype` folders.
|
147 |
+
Args:
|
148 |
+
items: (DataFrame): A DataFrame of products with `product_subtype`
|
149 |
+
and `lab_results_url` to download.
|
150 |
+
pause (float): A pause to respect the server serving the PDFs,
|
151 |
+
`0.24` seconds by default (optional).
|
152 |
+
verbose (bool): Whether or not to print status, `True` by
|
153 |
+
default (optional).
|
154 |
+
"""
|
155 |
+
if verbose:
|
156 |
+
total = len(items)
|
157 |
+
print('Downloading %i PDFs, ETA > %.2fs' % (total, total * pause))
|
158 |
+
|
159 |
+
# Create a folder of each of the subtypes.
|
160 |
+
subtypes = list(items['product_subtype'].unique())
|
161 |
+
for subtype in subtypes:
|
162 |
+
folder = kebab_case(subtype)
|
163 |
+
subtype_folder = f'{COA_PDF_DIR}/{folder}'
|
164 |
+
if not os.path.exists(subtype_folder):
|
165 |
+
os.makedirs(subtype_folder)
|
166 |
+
|
167 |
+
# Download each COA PDF from its URL to a `product_subtype` folder.
|
168 |
+
for i, row in enumerate(items.iterrows()):
|
169 |
+
item = row[1]
|
170 |
+
url = item['lab_results_url']
|
171 |
+
subtype = item['product_subtype']
|
172 |
+
filename = url.split('/')[-1]
|
173 |
+
folder = kebab_case(subtype)
|
174 |
+
outfile = os.path.join(COA_PDF_DIR, folder, filename)
|
175 |
+
response = requests.get(url, headers=DEFAULT_HEADERS)
|
176 |
+
with open(outfile, 'wb') as pdf:
|
177 |
+
pdf.write(response.content)
|
178 |
+
if verbose:
|
179 |
+
message = 'Downloaded {}/{} | {}/{}'
|
180 |
+
message = message.format(str(i + 1), str(total), folder, filename)
|
181 |
+
print(message)
|
182 |
+
sleep(pause)
|
183 |
+
|
184 |
+
|
185 |
+
def parse_rawgarden_coas(
|
186 |
+
directory: str,
|
187 |
+
filenames: Optional[list] = None,
|
188 |
+
temp_path: Optional[str] = '/tmp',
|
189 |
+
verbose: Optional[bool] = True,
|
190 |
+
**kwargs,
|
191 |
+
) -> Tuple[list]:
|
192 |
+
"""Parse Raw Garden lab results with CoADoc.
|
193 |
+
Args:
|
194 |
+
directory (str): The directory of files to parse.
|
195 |
+
filenames (list): A list of files to parse (optional).
|
196 |
+
temp_path (str): A temporary directory to use for any OCR (optional).
|
197 |
+
verbose (bool): Whether or not to print status, `True` by
|
198 |
+
default (optional).
|
199 |
+
Returns:
|
200 |
+
(tuple): Returns both a list of parsed and unidentified COA data.
|
201 |
+
"""
|
202 |
+
parsed, unidentified = [], []
|
203 |
+
started = False
|
204 |
+
for path, _, files in os.walk(directory):
|
205 |
+
if verbose and not started:
|
206 |
+
started = True
|
207 |
+
if filenames:
|
208 |
+
total = len(filenames)
|
209 |
+
else:
|
210 |
+
total = len(files)
|
211 |
+
print('Parsing %i COAs, ETA > %.2fm' % (total, total * 25 / 60))
|
212 |
+
for filename in files:
|
213 |
+
if not filename.endswith('.pdf'):
|
214 |
+
continue
|
215 |
+
if filenames is not None:
|
216 |
+
if filename not in filenames:
|
217 |
+
continue
|
218 |
+
file_path = os.path.join(path, filename)
|
219 |
+
|
220 |
+
# Parse the COA, by any means necessary!
|
221 |
+
parser = CoADoc()
|
222 |
+
try:
|
223 |
+
new_data = parser.parse_pdf(
|
224 |
+
file_path,
|
225 |
+
temp_path=temp_path,
|
226 |
+
**kwargs
|
227 |
+
)
|
228 |
+
except:
|
229 |
+
try:
|
230 |
+
# FIXME: This should work without directly calling OCR.
|
231 |
+
temp_file = f'{temp_path}/ocr_coa.pdf'
|
232 |
+
parser.pdf_ocr(
|
233 |
+
file_path,
|
234 |
+
temp_file,
|
235 |
+
temp_path,
|
236 |
+
resolution=180,
|
237 |
+
)
|
238 |
+
new_data = parser.parse_pdf(
|
239 |
+
temp_file,
|
240 |
+
temp_path=temp_path,
|
241 |
+
**kwargs
|
242 |
+
)
|
243 |
+
except Exception as e:
|
244 |
+
# Hot-fix: Remove temporary `magick-*` files.
|
245 |
+
for i in os.listdir(temp_path):
|
246 |
+
magick_path = os.path.join(temp_path, i)
|
247 |
+
if os.path.isfile(magick_path) and i.startswith('magick-'):
|
248 |
+
os.remove(magick_path)
|
249 |
+
unidentified.append({'coa_pdf': filename})
|
250 |
+
if verbose:
|
251 |
+
print('Error:', filename)
|
252 |
+
print(e)
|
253 |
+
continue
|
254 |
+
|
255 |
+
# Add the subtype key and record the data.
|
256 |
+
subtype = path.split('\\')[-1]
|
257 |
+
if isinstance(new_data, dict):
|
258 |
+
new_data = [new_data]
|
259 |
+
new_data[0]['product_subtype'] = subtype
|
260 |
+
parsed.extend(new_data)
|
261 |
+
parser.quit()
|
262 |
+
gc.collect()
|
263 |
+
if verbose:
|
264 |
+
print('Parsed:', filename)
|
265 |
+
|
266 |
+
return parsed, unidentified
|
267 |
+
|
268 |
+
|
269 |
+
def upload_lab_results(
|
270 |
+
observations: List[dict],
|
271 |
+
collection: Optional[str] = None,
|
272 |
+
database: Optional[Any] = None,
|
273 |
+
update: Optional[bool] = True,
|
274 |
+
verbose: Optional[bool] = True,
|
275 |
+
) -> None:
|
276 |
+
"""Upload lab results to Firestore.
|
277 |
+
Args:
|
278 |
+
observations (list): A list of lab results to upload.
|
279 |
+
collection (str): The Firestore collection where lab results live,
|
280 |
+
`'public/data/lab_results'` by default (optional).
|
281 |
+
database (Client): A Firestore database instance (optional).
|
282 |
+
update (bool): Whether or not to update existing entries, `True`
|
283 |
+
by default (optional).
|
284 |
+
verbose (bool): Whether or not to print status, `True` by
|
285 |
+
default (optional).
|
286 |
+
"""
|
287 |
+
if collection is None:
|
288 |
+
collection = COLLECTION
|
289 |
+
if database is None:
|
290 |
+
database = initialize_firebase()
|
291 |
+
refs, updates = [], []
|
292 |
+
for obs in observations:
|
293 |
+
sample_id = obs['sample_id']
|
294 |
+
ref = f'{collection}/{sample_id}'
|
295 |
+
if not update:
|
296 |
+
doc = get_document(ref)
|
297 |
+
if doc is not None:
|
298 |
+
continue
|
299 |
+
refs.append(ref)
|
300 |
+
updates.append(obs)
|
301 |
+
if updates:
|
302 |
+
if verbose:
|
303 |
+
print('Uploading %i lab results.' % len(refs))
|
304 |
+
update_documents(refs, updates, database=database)
|
305 |
+
if verbose:
|
306 |
+
print('Uploaded %i lab results.' % len(refs))
|
307 |
+
|
308 |
+
|
309 |
+
#-----------------------------------------------------------------------
|
310 |
+
# EXAMPLE: Collect Raw Garden lab results data by:
|
311 |
+
#
|
312 |
+
# 1. Finding products and their COA URLS.
|
313 |
+
# 2. Downloading COA PDFs from their URLs.
|
314 |
+
# 3. Using CoADoc to parse the COA PDFs (with OCR).
|
315 |
+
# 4. Saving the data to datafiles, Firebase Storage, and Firestore.
|
316 |
+
#
|
317 |
+
#-----------------------------------------------------------------------
|
318 |
+
if __name__ == '__main__':
|
319 |
+
|
320 |
+
# === Setup ===
|
321 |
+
|
322 |
+
# Support command line usage.
|
323 |
+
# Future work: Allow data dirs to be specified from the command line.
|
324 |
+
import argparse
|
325 |
+
try:
|
326 |
+
parser = argparse.ArgumentParser()
|
327 |
+
parser.add_argument('--days_ago', dest='days_ago', type=int)
|
328 |
+
parser.add_argument('--get_all', dest='get_all', type=bool)
|
329 |
+
args = parser.parse_args()
|
330 |
+
except SystemExit:
|
331 |
+
args = {}
|
332 |
+
|
333 |
+
# Specify collection period.
|
334 |
+
DAYS_AGO = args.get('days_ago', 1)
|
335 |
+
GET_ALL = args.get('get_all', True)
|
336 |
+
|
337 |
+
# === Data Collection ===
|
338 |
+
|
339 |
+
# Get the most recent Raw Garden products.
|
340 |
+
start = datetime.now() - timedelta(days=DAYS_AGO)
|
341 |
+
if GET_ALL:
|
342 |
+
start = datetime(year=2018, month=1, day=1)
|
343 |
+
products = get_rawgarden_products(start=start)
|
344 |
+
filenames = products['coa_pdf'].to_list()
|
345 |
+
|
346 |
+
# Download Raw Garden product COAs to `product_subtype` folders.
|
347 |
+
download_rawgarden_coas(products, pause=0.24, verbose=True)
|
348 |
+
|
349 |
+
# === Data Curation ===
|
350 |
+
|
351 |
+
# Parse COA PDFs with CoADoc.
|
352 |
+
coa_data, unidentified_coas = parse_rawgarden_coas(
|
353 |
+
COA_PDF_DIR,
|
354 |
+
filenames=filenames,
|
355 |
+
temp_path=TEMP_PATH,
|
356 |
+
verbose=True,
|
357 |
+
)
|
358 |
+
|
359 |
+
# Merge the `products`'s `product_subtype` with the COA data.
|
360 |
+
coa_df = rmerge(
|
361 |
+
pd.DataFrame(coa_data),
|
362 |
+
products,
|
363 |
+
on='coa_pdf',
|
364 |
+
how='left',
|
365 |
+
replace='right',
|
366 |
+
)
|
367 |
+
|
368 |
+
# Create hashes.
|
369 |
+
coa_df = coa_df.where(pd.notnull(coa_df), None)
|
370 |
+
coa_df['results_hash'] = coa_df['results'].apply(
|
371 |
+
lambda x: create_hash(x),
|
372 |
+
)
|
373 |
+
coa_df['sample_hash'] = coa_df.loc[:, coa_df.columns != 'sample_hash'].apply(
|
374 |
+
lambda x: create_hash(x.to_dict()),
|
375 |
+
axis=1,
|
376 |
+
)
|
377 |
+
datafile_hash = create_hash(coa_df)
|
378 |
+
|
379 |
+
# === Data Archiving ===
|
380 |
+
|
381 |
+
# Create custom column order.
|
382 |
+
column_order = ['sample_hash', 'results_hash']
|
383 |
+
column_order += list(parser.column_order)
|
384 |
+
index = column_order.index('product_type') + 1
|
385 |
+
column_order.insert(index, 'product_subtype')
|
386 |
+
|
387 |
+
# Optional: Save the COA data to a workbook.
|
388 |
+
parser = CoADoc()
|
389 |
+
datafile = f'{COA_DATA_DIR}/{datafile_hash}.xlsx'
|
390 |
+
parser.save(coa_df, datafile, column_order=column_order)
|
391 |
+
|
392 |
+
# Optional: Save the unidentified COA data.
|
393 |
+
errors = [x['coa_pdf'] for x in unidentified_coas]
|
394 |
+
timestamp = datetime.now().isoformat()[:19].replace(':', '-')
|
395 |
+
error_file = f'{COA_DATA_DIR}/rawgarden-unidentified-coas-{timestamp}.xlsx'
|
396 |
+
products.loc[products['coa_pdf'].isin(errors)].to_excel(error_file)
|
397 |
+
|
398 |
+
# === Firebase Database and Storage ===
|
399 |
+
|
400 |
+
# Optional: Initialize Firebase.
|
401 |
+
initialize_firebase(ENV_FILE)
|
402 |
+
|
403 |
+
# Optional: Upload the lab results to Firestore.
|
404 |
+
upload_lab_results(
|
405 |
+
coa_df.to_dict(orient='records'),
|
406 |
+
update=True,
|
407 |
+
verbose=True
|
408 |
+
)
|
409 |
+
|
410 |
+
# Optional: Upload datafiles to Firebase Storage.
|
411 |
+
storage_datafile = '/'.join([STORAGE_REF, datafile.split('/')[-1]])
|
412 |
+
storage_error_file = '/'.join([STORAGE_REF, error_file.split('/')[-1]])
|
413 |
+
upload_file(storage_datafile, datafile, bucket_name=BUCKET_NAME)
|
414 |
+
upload_file(storage_error_file, error_file, bucket_name=BUCKET_NAME)
|
415 |
+
|
416 |
+
# == Data Aggregation ===
|
417 |
+
|
418 |
+
# # Initialize the COA parser.
|
419 |
+
# parser = CoADoc()
|
420 |
+
|
421 |
+
# # Stack COA datafiles, re-hash, and re-save!
|
422 |
+
# datafiles = [
|
423 |
+
# f'{COA_DATA_DIR}/d7815fd2a097d06b719aadcc00233026f86076a680db63c532a11b67d7c8bc70.xlsx',
|
424 |
+
# f'{COA_DATA_DIR}/01880e30f092cf5739f9f2b58de705fc4c245d6859c00b50505a3a802ff7c2b2.xlsx',
|
425 |
+
# f'{COA_DATA_DIR}/154de9b1992a1bfd9a07d2e52c702e8437596923f34bee43f62f3e24f042b81c.xlsx',
|
426 |
+
# ]
|
427 |
+
|
428 |
+
# # Create custom column order.
|
429 |
+
# column_order = ['sample_hash', 'results_hash']
|
430 |
+
# column_order += list(parser.column_order)
|
431 |
+
# index = column_order.index('product_type') + 1
|
432 |
+
# column_order.insert(index, 'product_subtype')
|
433 |
+
|
434 |
+
# # Aggregate the datafiles.
|
435 |
+
# master_data = parser.aggregate(
|
436 |
+
# datafiles,
|
437 |
+
# output=COA_DATA_DIR,
|
438 |
+
# sheet_name='Details',
|
439 |
+
# column_order=column_order,
|
440 |
+
# )
|
cannabis_tests.py
CHANGED
@@ -6,11 +6,11 @@ Authors:
|
|
6 |
Keegan Skeate <https://github.com/keeganskeate>
|
7 |
Candace O'Sullivan-Sutherland <https://github.com/candy-o>
|
8 |
Created: 9/10/2022
|
9 |
-
Updated: 9/
|
10 |
License: <https://github.com/cannlytics/cannlytics/blob/main/LICENSE>
|
11 |
"""
|
12 |
-
import json
|
13 |
import datasets # pip install datasets
|
|
|
14 |
|
15 |
# Citation for using the dataset.
|
16 |
CANNABIS_TESTS_CITATION = """\
|
@@ -31,7 +31,10 @@ dataset of curated cannabis lab test results.
|
|
31 |
CANNABIS_TESTS_URL = 'https://huggingface.co/datasets/cannlytics/cannabis_tests'
|
32 |
|
33 |
# Raw Garden constants.
|
34 |
-
RAWGARDEN_DATA_URL = 'https://cannlytics.page.link/rawgarden'
|
|
|
|
|
|
|
35 |
RAWGARDEN_URL = 'https://github.com/cannlytics/cannlytics/tree/main/ai/curation/get_rawgarden_data'
|
36 |
RAWGARDEN_DESCRIPTION = """\
|
37 |
Raw Garden lab test results (https://cannlytics.com/data/tests) is a
|
@@ -39,6 +42,131 @@ dataset of curated cannabis lab test results from Raw Garden, a large
|
|
39 |
cannabis processor in California.
|
40 |
"""
|
41 |
RAWGARDEN_FEATURES = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
# MCR Labs constants.
|
44 |
MCRLABS_DATA_URL = 'https://cannlytics.page.link/mcrlabs'
|
@@ -110,72 +238,94 @@ class CannabisTests(datasets.GeneratorBasedBuilder):
|
|
110 |
|
111 |
BUILDER_CONFIGS = [
|
112 |
CannabisTestsConfig(
|
113 |
-
name='
|
114 |
description=RAWGARDEN_DESCRIPTION,
|
115 |
-
features=
|
116 |
-
data_url=
|
117 |
citation=CANNABIS_TESTS_CITATION,
|
118 |
url=RAWGARDEN_URL,
|
119 |
),
|
120 |
-
CannabisTestsConfig(
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
),
|
128 |
-
CannabisTestsConfig(
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
),
|
136 |
-
CannabisTestsConfig(
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
]
|
145 |
|
146 |
-
DEFAULT_CONFIG_NAME = '
|
147 |
|
148 |
def _info(self):
|
149 |
-
features = {feature: datasets.Value('string') for feature in self.config.features}
|
150 |
|
151 |
# TODO: Define all numeric features.
|
152 |
-
# features['span1_index'] = datasets.Value('int32')
|
153 |
|
154 |
# TODO: Define all image features.
|
155 |
|
156 |
# TODO: Define all sequence features.
|
157 |
# features["answers"] = datasets.features.Sequence(
|
158 |
-
# {"text": datasets.Value("string"), "answer_start": datasets.Value("int32"),}
|
159 |
# )
|
160 |
|
161 |
return datasets.DatasetInfo(
|
162 |
citation=CANNABIS_TESTS_CITATION,
|
163 |
description=CANNABIS_TESTS_DESCRIPTION,
|
164 |
-
features=
|
165 |
homepage=CANNABIS_TESTS_URL,
|
166 |
supervised_keys=None,
|
167 |
)
|
168 |
|
169 |
-
def _generate_examples(self, filepath):
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
Keegan Skeate <https://github.com/keeganskeate>
|
7 |
Candace O'Sullivan-Sutherland <https://github.com/candy-o>
|
8 |
Created: 9/10/2022
|
9 |
+
Updated: 9/13/2022
|
10 |
License: <https://github.com/cannlytics/cannlytics/blob/main/LICENSE>
|
11 |
"""
|
|
|
12 |
import datasets # pip install datasets
|
13 |
+
# from datasets import Sequence, datasets.Value
|
14 |
|
15 |
# Citation for using the dataset.
|
16 |
CANNABIS_TESTS_CITATION = """\
|
|
|
31 |
CANNABIS_TESTS_URL = 'https://huggingface.co/datasets/cannlytics/cannabis_tests'
|
32 |
|
33 |
# Raw Garden constants.
|
34 |
+
# RAWGARDEN_DATA_URL = 'https://cannlytics.page.link/rawgarden'
|
35 |
+
RAWGARDEN_DETAILS_URL = 'https://cannlytics.page.link/rawgarden-details'
|
36 |
+
RAWGARDEN_RESULTS_URL = 'https://cannlytics.page.link/rawgarden-results'
|
37 |
+
RAWGARDEN_VALUES_URL = 'https://cannlytics.page.link/rawgarden-values'
|
38 |
RAWGARDEN_URL = 'https://github.com/cannlytics/cannlytics/tree/main/ai/curation/get_rawgarden_data'
|
39 |
RAWGARDEN_DESCRIPTION = """\
|
40 |
Raw Garden lab test results (https://cannlytics.com/data/tests) is a
|
|
|
42 |
cannabis processor in California.
|
43 |
"""
|
44 |
RAWGARDEN_FEATURES = []
|
45 |
+
RAWGARDEN_RESULTS = {
|
46 |
+
'sample_hash': datasets.Value(dtype='string', id=None),
|
47 |
+
'results_hash': datasets.Value(dtype='string', id=None),
|
48 |
+
'sample_id': datasets.Value(dtype='string', id=None),
|
49 |
+
'product_name': datasets.Value(dtype='string', id=None),
|
50 |
+
'producer': datasets.Value(dtype='string', id=None),
|
51 |
+
'product_type': datasets.Value(dtype='string', id=None),
|
52 |
+
'product_subtype': datasets.Value(dtype='string', id=None),
|
53 |
+
'date_tested': datasets.Value(dtype='string', id=None),
|
54 |
+
'analysis': datasets.Value(dtype='string', id=None),
|
55 |
+
'key': datasets.Value(dtype='string', id=None),
|
56 |
+
'limit': datasets.Value(dtype='double', id=None),
|
57 |
+
'lod': datasets.Value(dtype='double', id=None),
|
58 |
+
'lodloq': datasets.Value(dtype='double', id=None),
|
59 |
+
'loq': datasets.Value(dtype='double', id=None),
|
60 |
+
'margin_of_error': datasets.Value(dtype='double', id=None),
|
61 |
+
'mg_g': datasets.Value(dtype='double', id=None),
|
62 |
+
'name': datasets.Value(dtype='string', id=None),
|
63 |
+
'status': datasets.Value(dtype='string', id=None),
|
64 |
+
'units': datasets.Value(dtype='string', id=None),
|
65 |
+
'value': datasets.Value(dtype='double', id=None),
|
66 |
+
}
|
67 |
+
RAWGARDEN_DETAILS = {
|
68 |
+
'sample_hash': datasets.Value(dtype='string', id=None),
|
69 |
+
'results_hash': datasets.Value(dtype='string', id=None),
|
70 |
+
'sample_id': datasets.Value(dtype='string', id=None),
|
71 |
+
'product_name': datasets.Value(dtype='string', id=None),
|
72 |
+
'producer': datasets.Value(dtype='string', id=None),
|
73 |
+
'product_type': datasets.Value(dtype='string', id=None),
|
74 |
+
'product_subtype': datasets.Value(dtype='string', id=None),
|
75 |
+
'date_tested': datasets.Value(dtype='string', id=None),
|
76 |
+
'analyses': datasets.Value(dtype='string', id=None),
|
77 |
+
'batch_number': datasets.Value(dtype='string', id=None),
|
78 |
+
'batch_size': datasets.Value(dtype='string', id=None),
|
79 |
+
'batch_units': datasets.Value(dtype='string', id=None),
|
80 |
+
'cannabinoids_method': datasets.Value(dtype='string', id=None),
|
81 |
+
'cannabinoids_status': datasets.Value(dtype='string', id=None),
|
82 |
+
'coa_algorithm': datasets.Value(dtype='string', id=None),
|
83 |
+
'coa_algorithm_entry_point': datasets.Value(dtype='string', id=None),
|
84 |
+
'coa_parsed_at': datasets.Value(dtype='string', id=None),
|
85 |
+
'coa_pdf': datasets.Value(dtype='string', id=None),
|
86 |
+
'coa_urls': datasets.Value(dtype='string', id=None),
|
87 |
+
'date_collected': datasets.Value(dtype='string', id=None),
|
88 |
+
'date_produced': datasets.Value(dtype='string', id=None),
|
89 |
+
'date_received': datasets.Value(dtype='string', id=None),
|
90 |
+
'date_retail': datasets.Value(dtype='string', id=None),
|
91 |
+
'delta_9_thc_per_unit': datasets.Value(dtype='string', id=None),
|
92 |
+
'distributor': datasets.Value(dtype='string', id=None),
|
93 |
+
'distributor_address': datasets.Value(dtype='string', id=None),
|
94 |
+
'distributor_city': datasets.Value(dtype='string', id=None),
|
95 |
+
'distributor_license_number': datasets.Value(dtype='string', id=None),
|
96 |
+
'distributor_state': datasets.Value(dtype='string', id=None),
|
97 |
+
'distributor_street': datasets.Value(dtype='string', id=None),
|
98 |
+
'distributor_zipcode': datasets.Value(dtype='float64', id=None),
|
99 |
+
'foreign_matter_method': datasets.Value(dtype='string', id=None),
|
100 |
+
'foreign_matter_status': datasets.Value(dtype='string', id=None),
|
101 |
+
'heavy_metals_method': datasets.Value(dtype='string', id=None),
|
102 |
+
'heavy_metals_status': datasets.Value(dtype='string', id=None),
|
103 |
+
'images': datasets.Value(dtype='string', id=None),
|
104 |
+
'lab': datasets.Value(dtype='string', id=None),
|
105 |
+
'lab_address': datasets.Value(dtype='string', id=None),
|
106 |
+
'lab_city': datasets.Value(dtype='string', id=None),
|
107 |
+
'lab_county': datasets.Value(dtype='string', id=None),
|
108 |
+
'lab_email': datasets.Value(dtype='string', id=None),
|
109 |
+
'lab_id': datasets.Value(dtype='string', id=None),
|
110 |
+
'lab_image_url': datasets.Value(dtype='string', id=None),
|
111 |
+
'lab_latitude': datasets.Value(dtype='float64', id=None),
|
112 |
+
'lab_license_number': datasets.Value(dtype='string', id=None),
|
113 |
+
'lab_longitude': datasets.Value(dtype='float64', id=None),
|
114 |
+
'lab_phone': datasets.Value(dtype='string', id=None),
|
115 |
+
'lab_results_url': datasets.Value(dtype='string', id=None),
|
116 |
+
'lab_state': datasets.Value(dtype='string', id=None),
|
117 |
+
'lab_street': datasets.Value(dtype='string', id=None),
|
118 |
+
'lab_website': datasets.Value(dtype='string', id=None),
|
119 |
+
'lab_zipcode': datasets.Value(dtype='int64', id=None),
|
120 |
+
'lims': datasets.Value(dtype='string', id=None),
|
121 |
+
'metrc_ids': datasets.Value(dtype='string', id=None),
|
122 |
+
'metrc_lab_id': datasets.Value(dtype='string', id=None),
|
123 |
+
'metrc_source_id': datasets.Value(dtype='string', id=None),
|
124 |
+
'microbes_method': datasets.Value(dtype='string', id=None),
|
125 |
+
'microbes_status': datasets.Value(dtype='string', id=None),
|
126 |
+
'moisture_content': datasets.Value(dtype='string', id=None),
|
127 |
+
'moisture_method': datasets.Value(dtype='string', id=None),
|
128 |
+
'mycotoxins_method': datasets.Value(dtype='string', id=None),
|
129 |
+
'mycotoxins_status': datasets.Value(dtype='string', id=None),
|
130 |
+
'notes': datasets.Value(dtype='string', id=None),
|
131 |
+
'pesticides_method': datasets.Value(dtype='string', id=None),
|
132 |
+
'pesticides_status': datasets.Value(dtype='string', id=None),
|
133 |
+
'producer_address': datasets.Value(dtype='string', id=None),
|
134 |
+
'producer_city': datasets.Value(dtype='string', id=None),
|
135 |
+
'producer_image_url': datasets.Value(dtype='string', id=None),
|
136 |
+
'producer_license_number': datasets.Value(dtype='string', id=None),
|
137 |
+
'producer_state': datasets.Value(dtype='string', id=None),
|
138 |
+
'producer_street': datasets.Value(dtype='string', id=None),
|
139 |
+
'producer_url': datasets.Value(dtype='string', id=None),
|
140 |
+
'producer_zipcode': datasets.Value(dtype='float64', id=None),
|
141 |
+
'product_size': datasets.Value(dtype='string', id=None),
|
142 |
+
'public': datasets.Value(dtype='float64', id=None),
|
143 |
+
'residual_solvents_method': datasets.Value(dtype='string', id=None),
|
144 |
+
'residual_solvents_status': datasets.Value(dtype='string', id=None),
|
145 |
+
'results': datasets.Value(dtype='string', id=None),
|
146 |
+
'sample_number': datasets.Value(dtype='float64', id=None),
|
147 |
+
'sample_size': datasets.Value(dtype='string', id=None),
|
148 |
+
'sampling_method': datasets.Value(dtype='string', id=None),
|
149 |
+
'serving_size': datasets.Value(dtype='string', id=None),
|
150 |
+
'status': datasets.Value(dtype='string', id=None),
|
151 |
+
'sum_of_cannabinoids': datasets.Value(dtype='float64', id=None),
|
152 |
+
'terpenes_method': datasets.Value(dtype='string', id=None),
|
153 |
+
'terpenes_status': datasets.Value(dtype='string', id=None),
|
154 |
+
'total_cannabinoids': datasets.Value(dtype='float64', id=None),
|
155 |
+
'total_cbc': datasets.Value(dtype='float64', id=None),
|
156 |
+
'total_cbd': datasets.Value(dtype='float64', id=None),
|
157 |
+
'total_cbdv': datasets.Value(dtype='float64', id=None),
|
158 |
+
'total_cbg': datasets.Value(dtype='float64', id=None),
|
159 |
+
'total_terpenes': datasets.Value(dtype='float64', id=None),
|
160 |
+
'total_terpenes_mg_g': datasets.Value(dtype='float64', id=None),
|
161 |
+
'total_thc': datasets.Value(dtype='float64', id=None),
|
162 |
+
'total_thcv': datasets.Value(dtype='float64', id=None),
|
163 |
+
'url': datasets.Value(dtype='string', id=None),
|
164 |
+
'water_activity_method': datasets.Value(dtype='string', id=None),
|
165 |
+
'water_activity_status': datasets.Value(dtype='string', id=None)
|
166 |
+
}
|
167 |
+
# RAWGARDEN_VALUES = {
|
168 |
+
# 'delta_9_thc': datasets.Value(dtype='float64', id=None),
|
169 |
+
# }
|
170 |
|
171 |
# MCR Labs constants.
|
172 |
MCRLABS_DATA_URL = 'https://cannlytics.page.link/mcrlabs'
|
|
|
238 |
|
239 |
BUILDER_CONFIGS = [
|
240 |
CannabisTestsConfig(
|
241 |
+
name='rawgarden_details',
|
242 |
description=RAWGARDEN_DESCRIPTION,
|
243 |
+
features=RAWGARDEN_DETAILS,
|
244 |
+
data_url=RAWGARDEN_DETAILS_URL,
|
245 |
citation=CANNABIS_TESTS_CITATION,
|
246 |
url=RAWGARDEN_URL,
|
247 |
),
|
248 |
+
# CannabisTestsConfig(
|
249 |
+
# name='rawgarden_results',
|
250 |
+
# description=RAWGARDEN_DESCRIPTION,
|
251 |
+
# features=RAWGARDEN_RESULTS,
|
252 |
+
# data_url=RAWGARDEN_RESULTS_URL,
|
253 |
+
# citation=CANNABIS_TESTS_CITATION,
|
254 |
+
# url=RAWGARDEN_URL,
|
255 |
+
# ),
|
256 |
+
# CannabisTestsConfig(
|
257 |
+
# name='rawgarden_values',
|
258 |
+
# description=RAWGARDEN_DESCRIPTION,
|
259 |
+
# features=RAWGARDEN_VALUES,
|
260 |
+
# data_url=RAWGARDEN_VALUES_URL,
|
261 |
+
# citation=CANNABIS_TESTS_CITATION,
|
262 |
+
# url=RAWGARDEN_URL,
|
263 |
+
# ),
|
264 |
+
# CannabisTestsConfig(
|
265 |
+
# name='mcrlabs',
|
266 |
+
# description=MCRLABS_DESCRIPTION,
|
267 |
+
# features=MCRLABS_FEATURES,
|
268 |
+
# data_url=MCRLABS_DATA_URL,
|
269 |
+
# citation=CANNABIS_TESTS_CITATION,
|
270 |
+
# url=MCRLABS_URL,
|
271 |
+
# ),
|
272 |
+
# CannabisTestsConfig(
|
273 |
+
# name='psilabs',
|
274 |
+
# description=PSILABS_DESCRIPTION,
|
275 |
+
# features=PSILABS_FEATURES,
|
276 |
+
# data_url=PSILABS_DATA_URL,
|
277 |
+
# citation=CANNABIS_TESTS_CITATION,
|
278 |
+
# url=PSILABS_URL,
|
279 |
+
# ),
|
280 |
+
# CannabisTestsConfig(
|
281 |
+
# name='sclabs',
|
282 |
+
# description=SCLABS_DESCRIPTION,
|
283 |
+
# features=SCLABS_FEATURES,
|
284 |
+
# data_url=SCLABS_DATA_URL,
|
285 |
+
# citation=CANNABIS_TESTS_CITATION,
|
286 |
+
# url=SCLABS_URL,
|
287 |
+
# ),
|
288 |
]
|
289 |
|
290 |
+
DEFAULT_CONFIG_NAME = 'rawgarden_details'
|
291 |
|
292 |
def _info(self):
|
293 |
+
# features = {feature: datasets.datasets.Value('string') for feature in self.config.features}
|
294 |
|
295 |
# TODO: Define all numeric features.
|
296 |
+
# features['span1_index'] = datasets.datasets.Value('int32')
|
297 |
|
298 |
# TODO: Define all image features.
|
299 |
|
300 |
# TODO: Define all sequence features.
|
301 |
# features["answers"] = datasets.features.Sequence(
|
302 |
+
# {"text": datasets.datasets.Value("string"), "answer_start": datasets.datasets.Value("int32"),}
|
303 |
# )
|
304 |
|
305 |
return datasets.DatasetInfo(
|
306 |
citation=CANNABIS_TESTS_CITATION,
|
307 |
description=CANNABIS_TESTS_DESCRIPTION,
|
308 |
+
features=RAWGARDEN_DETAILS,
|
309 |
homepage=CANNABIS_TESTS_URL,
|
310 |
supervised_keys=None,
|
311 |
)
|
312 |
|
313 |
+
# def _generate_examples(self, filepath):
|
314 |
+
# """This function returns the examples in raw (text) form."""
|
315 |
+
# with open(filepath, encoding='utf-8') as f:
|
316 |
+
# for line in f:
|
317 |
+
# row = json.loads(line)
|
318 |
+
# product_name = row.get('product_name', '').strip()
|
319 |
+
# for i, result in enumerate(row['results']):
|
320 |
+
# _id = str(i)
|
321 |
+
# yield _id, {
|
322 |
+
# 'product_name': product_name,
|
323 |
+
# 'analyte': result.get('key', ''),
|
324 |
+
# 'value': result.get('value', 0),
|
325 |
+
# }
|
326 |
+
|
327 |
+
|
328 |
+
# if __name__ == '__main__':
|
329 |
+
|
330 |
+
# from datasets import load_dataset
|
331 |
+
# dataset = load_dataset('cannabis_tests.py')
|
dataset_infos.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{".": {"description": "", "citation": "", "homepage": "", "license": "", "features": {"sample_hash": {"dtype": "string", "id": null, "_type": "Value"}, "results_hash": {"dtype": "string", "id": null, "_type": "Value"}, "sample_id": {"dtype": "string", "id": null, "_type": "Value"}, "product_name": {"dtype": "string", "id": null, "_type": "Value"}, "producer": {"dtype": "string", "id": null, "_type": "Value"}, "product_type": {"dtype": "string", "id": null, "_type": "Value"}, "product_subtype": {"dtype": "string", "id": null, "_type": "Value"}, "date_tested": {"dtype": "string", "id": null, "_type": "Value"}, "analyses": {"dtype": "string", "id": null, "_type": "Value"}, "batch_number": {"dtype": "string", "id": null, "_type": "Value"}, "batch_size": {"dtype": "string", "id": null, "_type": "Value"}, "batch_units": {"dtype": "string", "id": null, "_type": "Value"}, "cannabinoids_method": {"dtype": "string", "id": null, "_type": "Value"}, "cannabinoids_status": {"dtype": "string", "id": null, "_type": "Value"}, "coa_algorithm": {"dtype": "string", "id": null, "_type": "Value"}, "coa_algorithm_entry_point": {"dtype": "string", "id": null, "_type": "Value"}, "coa_parsed_at": {"dtype": "string", "id": null, "_type": "Value"}, "coa_pdf": {"dtype": "string", "id": null, "_type": "Value"}, "coa_urls": {"dtype": "string", "id": null, "_type": "Value"}, "date_collected": {"dtype": "string", "id": null, "_type": "Value"}, "date_produced": {"dtype": "string", "id": null, "_type": "Value"}, "date_received": {"dtype": "string", "id": null, "_type": "Value"}, "date_retail": {"dtype": "string", "id": null, "_type": "Value"}, "delta_9_thc_per_unit": {"dtype": "string", "id": null, "_type": "Value"}, "distributor": {"dtype": "string", "id": null, "_type": "Value"}, "distributor_address": {"dtype": "string", "id": null, "_type": "Value"}, "distributor_city": {"dtype": "string", "id": null, "_type": "Value"}, "distributor_license_number": {"dtype": "string", "id": null, "_type": "Value"}, "distributor_state": {"dtype": "string", "id": null, "_type": "Value"}, "distributor_street": {"dtype": "string", "id": null, "_type": "Value"}, "distributor_zipcode": {"dtype": "float64", "id": null, "_type": "Value"}, "foreign_matter_method": {"dtype": "string", "id": null, "_type": "Value"}, "foreign_matter_status": {"dtype": "string", "id": null, "_type": "Value"}, "heavy_metals_method": {"dtype": "string", "id": null, "_type": "Value"}, "heavy_metals_status": {"dtype": "string", "id": null, "_type": "Value"}, "images": {"dtype": "string", "id": null, "_type": "Value"}, "lab": {"dtype": "string", "id": null, "_type": "Value"}, "lab_address": {"dtype": "string", "id": null, "_type": "Value"}, "lab_city": {"dtype": "string", "id": null, "_type": "Value"}, "lab_county": {"dtype": "string", "id": null, "_type": "Value"}, "lab_email": {"dtype": "string", "id": null, "_type": "Value"}, "lab_id": {"dtype": "string", "id": null, "_type": "Value"}, "lab_image_url": {"dtype": "string", "id": null, "_type": "Value"}, "lab_latitude": {"dtype": "float64", "id": null, "_type": "Value"}, "lab_license_number": {"dtype": "string", "id": null, "_type": "Value"}, "lab_longitude": {"dtype": "float64", "id": null, "_type": "Value"}, "lab_phone": {"dtype": "string", "id": null, "_type": "Value"}, "lab_results_url": {"dtype": "string", "id": null, "_type": "Value"}, "lab_state": {"dtype": "string", "id": null, "_type": "Value"}, "lab_street": {"dtype": "string", "id": null, "_type": "Value"}, "lab_website": {"dtype": "string", "id": null, "_type": "Value"}, "lab_zipcode": {"dtype": "int64", "id": null, "_type": "Value"}, "lims": {"dtype": "string", "id": null, "_type": "Value"}, "metrc_ids": {"dtype": "string", "id": null, "_type": "Value"}, "metrc_lab_id": {"dtype": "string", "id": null, "_type": "Value"}, "metrc_source_id": {"dtype": "string", "id": null, "_type": "Value"}, "microbes_method": {"dtype": "string", "id": null, "_type": "Value"}, "microbes_status": {"dtype": "string", "id": null, "_type": "Value"}, "moisture_content": {"dtype": "string", "id": null, "_type": "Value"}, "moisture_method": {"dtype": "string", "id": null, "_type": "Value"}, "mycotoxins_method": {"dtype": "string", "id": null, "_type": "Value"}, "mycotoxins_status": {"dtype": "string", "id": null, "_type": "Value"}, "notes": {"dtype": "string", "id": null, "_type": "Value"}, "pesticides_method": {"dtype": "string", "id": null, "_type": "Value"}, "pesticides_status": {"dtype": "string", "id": null, "_type": "Value"}, "producer_address": {"dtype": "string", "id": null, "_type": "Value"}, "producer_city": {"dtype": "string", "id": null, "_type": "Value"}, "producer_image_url": {"dtype": "string", "id": null, "_type": "Value"}, "producer_license_number": {"dtype": "string", "id": null, "_type": "Value"}, "producer_state": {"dtype": "string", "id": null, "_type": "Value"}, "producer_street": {"dtype": "string", "id": null, "_type": "Value"}, "producer_url": {"dtype": "string", "id": null, "_type": "Value"}, "producer_zipcode": {"dtype": "float64", "id": null, "_type": "Value"}, "product_size": {"dtype": "string", "id": null, "_type": "Value"}, "public": {"dtype": "float64", "id": null, "_type": "Value"}, "residual_solvents_method": {"dtype": "string", "id": null, "_type": "Value"}, "residual_solvents_status": {"dtype": "string", "id": null, "_type": "Value"}, "results": {"dtype": "string", "id": null, "_type": "Value"}, "sample_number": {"dtype": "float64", "id": null, "_type": "Value"}, "sample_size": {"dtype": "string", "id": null, "_type": "Value"}, "sampling_method": {"dtype": "string", "id": null, "_type": "Value"}, "serving_size": {"dtype": "string", "id": null, "_type": "Value"}, "status": {"dtype": "string", "id": null, "_type": "Value"}, "sum_of_cannabinoids": {"dtype": "float64", "id": null, "_type": "Value"}, "terpenes_method": {"dtype": "string", "id": null, "_type": "Value"}, "terpenes_status": {"dtype": "string", "id": null, "_type": "Value"}, "total_cannabinoids": {"dtype": "float64", "id": null, "_type": "Value"}, "total_cbc": {"dtype": "float64", "id": null, "_type": "Value"}, "total_cbd": {"dtype": "float64", "id": null, "_type": "Value"}, "total_cbdv": {"dtype": "float64", "id": null, "_type": "Value"}, "total_cbg": {"dtype": "float64", "id": null, "_type": "Value"}, "total_terpenes": {"dtype": "float64", "id": null, "_type": "Value"}, "total_terpenes_mg_g": {"dtype": "float64", "id": null, "_type": "Value"}, "total_thc": {"dtype": "float64", "id": null, "_type": "Value"}, "total_thcv": {"dtype": "float64", "id": null, "_type": "Value"}, "url": {"dtype": "string", "id": null, "_type": "Value"}, "water_activity_method": {"dtype": "string", "id": null, "_type": "Value"}, "water_activity_status": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "csv", "config_name": ".", "version": {"version_str": "0.0.0", "description": null, "major": 0, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 67727955, "num_examples": 2667, "dataset_name": "csv"}}, "download_checksums": {"C:\\Users\\keega\\Documents\\cannlytics\\datasets\\cannabis_tests\\train.csv": {"num_bytes": 78073452, "checksum": "7999de7a5ab1bc71b122aeaa3e25f16bc81846cdedb282b0196dd69e77829b2c"}}, "download_size": 78073452, "post_processing_size": null, "dataset_size": 67727955, "size_in_bytes": 145801407}}
|
rawgarden/details.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7999de7a5ab1bc71b122aeaa3e25f16bc81846cdedb282b0196dd69e77829b2c
|
3 |
+
size 78073452
|
rawgarden/results.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e564721c028395d8237047dce30729fa64b57df1538702fd90d21c7cb5951735
|
3 |
+
size 131625191
|
rawgarden/values.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3cae8cd31c2f4629771ce1bd572e09e4b2bb899c833865da6a1108b500ba39b3
|
3 |
+
size 3101242
|
train.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7999de7a5ab1bc71b122aeaa3e25f16bc81846cdedb282b0196dd69e77829b2c
|
3 |
+
size 78073452
|