keeganskeate commited on
Commit
17a6faf
·
1 Parent(s): ab43142

rawgarden-initial (#1)

Browse files

- Added csv files (1dd369e6a84556561509d99ab48ed96eeb98ebd4)
- Added 👨‍🌾 Raw Garden lab result data + algorithm (43ca93b66e9d8192432dcbce69aa5d3963b89d4b)

.gitattributes CHANGED
@@ -49,3 +49,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
49
  *.jpg filter=lfs diff=lfs merge=lfs -text
50
  *.jpeg filter=lfs diff=lfs merge=lfs -text
51
  *.webp filter=lfs diff=lfs merge=lfs -text
 
 
49
  *.jpg filter=lfs diff=lfs merge=lfs -text
50
  *.jpeg filter=lfs diff=lfs merge=lfs -text
51
  *.webp filter=lfs diff=lfs merge=lfs -text
52
+ *.csv filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -56,21 +56,29 @@ The dataset is partitioned into the various sources of lab results.
56
 
57
  | Source | Observations |
58
  |--------|--------------|
59
- | Raw Gardens | 2,810 |
60
  | MCR Labs | Coming soon! |
61
  | PSI Labs | Coming soon! |
62
  | SC Labs | Coming soon! |
63
 
64
  ### Data Instances
65
 
66
- You can load the lab test data from the various sources:
67
 
68
  ```py
69
  from datasets import load_dataset
70
 
71
- # Load Raw Garden lab test data.
72
  dataset = 'cannlytics/cannabis_tests'
73
- rawgarden_data = load_dataset(dataset, 'rawgarden')
 
 
 
 
 
 
 
 
74
  ```
75
 
76
  ### Data Fields
@@ -199,6 +207,7 @@ The data represents only a subset of the population of cannabis lab results. Non
199
  | `'N/A'` | `None` |
200
  | `'na'` | `None` |
201
  | `'NT'` | `None` |
 
202
  ## Additional Information
203
 
204
  ### Dataset Curators
 
56
 
57
  | Source | Observations |
58
  |--------|--------------|
59
+ | Raw Gardens | 2,667 |
60
  | MCR Labs | Coming soon! |
61
  | PSI Labs | Coming soon! |
62
  | SC Labs | Coming soon! |
63
 
64
  ### Data Instances
65
 
66
+ You can load `details`, `results`, and `values` for each of the dataset files. For example:
67
 
68
  ```py
69
  from datasets import load_dataset
70
 
71
+ # Specify the Cannabis Tests dataset.
72
  dataset = 'cannlytics/cannabis_tests'
73
+
74
+ # Load Raw Garden lab test details.
75
+ rawgarden_details = load_dataset(dataset, 'rawgarden_details')
76
+
77
+ # Load Raw Garden lab test results.
78
+ rawgarden_results = load_dataset(dataset, 'rawgarden_results')
79
+
80
+ # Load Raw Garden lab test values.
81
+ rawgarden_values = load_dataset(dataset, 'rawgarden_values')
82
  ```
83
 
84
  ### Data Fields
 
207
  | `'N/A'` | `None` |
208
  | `'na'` | `None` |
209
  | `'NT'` | `None` |
210
+
211
  ## Additional Information
212
 
213
  ### Dataset Curators
algorithms/get_all_rawgarden_data.py ADDED
@@ -0,0 +1,440 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Get Raw Garden Test Result Data
3
+ Copyright (c) 2022 Cannlytics
4
+
5
+ Authors:
6
+ Keegan Skeate <https://github.com/keeganskeate>
7
+ Candace O'Sullivan-Sutherland <https://github.com/candy-o>
8
+ Created: 8/23/2022
9
+ Updated: 9/13/2022
10
+ License: <https://github.com/cannlytics/cannlytics/blob/main/LICENSE>
11
+
12
+ Description:
13
+
14
+ Curate Raw Garden's publicly published lab results by:
15
+
16
+ 1. Finding products and their COA URLS on Raw Garden's website.
17
+ 2. Downloading COA PDFs from their URLs.
18
+ 3. Using CoADoc to parse the COA PDFs (with OCR).
19
+ 4. Archiving the COA data in Firestore.
20
+
21
+ Data Source:
22
+
23
+ - Raw Garden Lab Results
24
+ URL: <https://rawgarden.farm/lab-results/>
25
+
26
+ Command line usage:
27
+
28
+ python ai/curation/get_rawgarden_data/get_rawgarden_data.py \
29
+ --days_ago=1 --get_all=False
30
+
31
+ """
32
+ # Standard imports.
33
+ from datetime import datetime, timedelta
34
+ import gc
35
+ import os
36
+ from time import sleep
37
+ from typing import Any, List, Optional, Tuple
38
+
39
+ # External imports.
40
+ from bs4 import BeautifulSoup
41
+ import pandas as pd
42
+ import requests
43
+
44
+ # Internal imports.
45
+ from cannlytics.data.coas import CoADoc
46
+ from cannlytics.data.data import create_hash
47
+ from cannlytics.firebase import (
48
+ get_document,
49
+ initialize_firebase,
50
+ update_documents,
51
+ upload_file,
52
+ )
53
+ from cannlytics.utils import kebab_case, rmerge
54
+ from cannlytics.utils.constants import DEFAULT_HEADERS
55
+
56
+ # Specify where your data lives.
57
+ BUCKET_NAME = 'cannlytics-company.appspot.com'
58
+ COLLECTION = 'public/data/lab_results'
59
+ STORAGE_REF = 'data/lab_results/raw_garden'
60
+
61
+ # Create directories if they don't already exist.
62
+ # TODO: Edit `ENV_FILE` and `DATA_DIR` as needed for your desired setup.
63
+ ENV_FILE = '../.env'
64
+ DATA_DIR = '.././'
65
+ COA_DATA_DIR = f'{DATA_DIR}/raw_garden'
66
+ COA_PDF_DIR = f'{COA_DATA_DIR}/pdfs'
67
+ TEMP_PATH = f'{COA_DATA_DIR}/tmp'
68
+ if not os.path.exists(DATA_DIR): os.makedirs(DATA_DIR)
69
+ if not os.path.exists(COA_DATA_DIR): os.makedirs(COA_DATA_DIR)
70
+ if not os.path.exists(COA_PDF_DIR): os.makedirs(COA_PDF_DIR)
71
+ if not os.path.exists(TEMP_PATH): os.makedirs(TEMP_PATH)
72
+
73
+ # Define constants.
74
+ BASE = 'https://rawgarden.farm/lab-results/'
75
+
76
+
77
+ def get_rawgarden_products(
78
+ start: Optional[Any] = None,
79
+ end: Optional[Any] = None,
80
+ ) -> pd.DataFrame:
81
+ """Get Raw Garden's lab results page. Then get all of the product
82
+ categories. Finally, get all product data, including: `coa_pdf`,
83
+ `lab_results_url`, `product_name`, `product_subtype`, `date_retail`.
84
+ Args:
85
+ start (str or datetime): A point in time to begin restricting
86
+ the product list by `date_retail` (optional).
87
+ end (str or datetime): A point in time to end restricting
88
+ the product list by `date_retail` (optional).
89
+ Returns:
90
+ (DataFrame): Returns a DataFrame of product data.
91
+ """
92
+
93
+ # Get the website.
94
+ response = requests.get(BASE, headers=DEFAULT_HEADERS)
95
+ soup = BeautifulSoup(response.content, 'html.parser')
96
+
97
+ # Get all product data listed on the website.
98
+ observations = []
99
+ categories = soup.find_all('div', attrs={'class': 'category-content'})
100
+ for category in categories:
101
+ subtype = category.find('h3').text
102
+ dates = category.findAll('h5', attrs={'class': 'result-date'})
103
+ names = category.findAll('h5')
104
+ names = [div for div in names if div.get('class') is None]
105
+ links = category.findAll('a')
106
+ for i, link in enumerate(links):
107
+ try:
108
+ href = link.get('href')
109
+ date = pd.to_datetime(dates[i].text)
110
+ name = names[i].text
111
+ if href.endswith('.pdf'):
112
+ observations.append({
113
+ 'coa_pdf': href.split('/')[-1],
114
+ 'lab_results_url': href,
115
+ 'product_name': name,
116
+ 'product_subtype': subtype,
117
+ 'date_retail': date,
118
+ })
119
+ except AttributeError:
120
+ continue
121
+
122
+ # Restrict the observations to the desired time frame.
123
+ results = pd.DataFrame(observations)
124
+ dates = results['date_retail']
125
+ if start:
126
+ if isinstance(start, str):
127
+ latest = pd.to_datetime(start)
128
+ else:
129
+ latest = start
130
+ results = results.loc[dates >= latest]
131
+ if end:
132
+ if isinstance(end, str):
133
+ earliest = pd.to_datetime(end)
134
+ else:
135
+ earliest = end
136
+ results = results.loc[dates <= earliest]
137
+ results['date_retail'] = dates.apply(lambda x: x.isoformat()[:19])
138
+ return results
139
+
140
+
141
+ def download_rawgarden_coas(
142
+ items: pd.DataFrame,
143
+ pause: Optional[float] = 0.24,
144
+ verbose: Optional[bool] = True,
145
+ ) -> None:
146
+ """Download Raw Garden product COAs to `product_subtype` folders.
147
+ Args:
148
+ items: (DataFrame): A DataFrame of products with `product_subtype`
149
+ and `lab_results_url` to download.
150
+ pause (float): A pause to respect the server serving the PDFs,
151
+ `0.24` seconds by default (optional).
152
+ verbose (bool): Whether or not to print status, `True` by
153
+ default (optional).
154
+ """
155
+ if verbose:
156
+ total = len(items)
157
+ print('Downloading %i PDFs, ETA > %.2fs' % (total, total * pause))
158
+
159
+ # Create a folder of each of the subtypes.
160
+ subtypes = list(items['product_subtype'].unique())
161
+ for subtype in subtypes:
162
+ folder = kebab_case(subtype)
163
+ subtype_folder = f'{COA_PDF_DIR}/{folder}'
164
+ if not os.path.exists(subtype_folder):
165
+ os.makedirs(subtype_folder)
166
+
167
+ # Download each COA PDF from its URL to a `product_subtype` folder.
168
+ for i, row in enumerate(items.iterrows()):
169
+ item = row[1]
170
+ url = item['lab_results_url']
171
+ subtype = item['product_subtype']
172
+ filename = url.split('/')[-1]
173
+ folder = kebab_case(subtype)
174
+ outfile = os.path.join(COA_PDF_DIR, folder, filename)
175
+ response = requests.get(url, headers=DEFAULT_HEADERS)
176
+ with open(outfile, 'wb') as pdf:
177
+ pdf.write(response.content)
178
+ if verbose:
179
+ message = 'Downloaded {}/{} | {}/{}'
180
+ message = message.format(str(i + 1), str(total), folder, filename)
181
+ print(message)
182
+ sleep(pause)
183
+
184
+
185
+ def parse_rawgarden_coas(
186
+ directory: str,
187
+ filenames: Optional[list] = None,
188
+ temp_path: Optional[str] = '/tmp',
189
+ verbose: Optional[bool] = True,
190
+ **kwargs,
191
+ ) -> Tuple[list]:
192
+ """Parse Raw Garden lab results with CoADoc.
193
+ Args:
194
+ directory (str): The directory of files to parse.
195
+ filenames (list): A list of files to parse (optional).
196
+ temp_path (str): A temporary directory to use for any OCR (optional).
197
+ verbose (bool): Whether or not to print status, `True` by
198
+ default (optional).
199
+ Returns:
200
+ (tuple): Returns both a list of parsed and unidentified COA data.
201
+ """
202
+ parsed, unidentified = [], []
203
+ started = False
204
+ for path, _, files in os.walk(directory):
205
+ if verbose and not started:
206
+ started = True
207
+ if filenames:
208
+ total = len(filenames)
209
+ else:
210
+ total = len(files)
211
+ print('Parsing %i COAs, ETA > %.2fm' % (total, total * 25 / 60))
212
+ for filename in files:
213
+ if not filename.endswith('.pdf'):
214
+ continue
215
+ if filenames is not None:
216
+ if filename not in filenames:
217
+ continue
218
+ file_path = os.path.join(path, filename)
219
+
220
+ # Parse the COA, by any means necessary!
221
+ parser = CoADoc()
222
+ try:
223
+ new_data = parser.parse_pdf(
224
+ file_path,
225
+ temp_path=temp_path,
226
+ **kwargs
227
+ )
228
+ except:
229
+ try:
230
+ # FIXME: This should work without directly calling OCR.
231
+ temp_file = f'{temp_path}/ocr_coa.pdf'
232
+ parser.pdf_ocr(
233
+ file_path,
234
+ temp_file,
235
+ temp_path,
236
+ resolution=180,
237
+ )
238
+ new_data = parser.parse_pdf(
239
+ temp_file,
240
+ temp_path=temp_path,
241
+ **kwargs
242
+ )
243
+ except Exception as e:
244
+ # Hot-fix: Remove temporary `magick-*` files.
245
+ for i in os.listdir(temp_path):
246
+ magick_path = os.path.join(temp_path, i)
247
+ if os.path.isfile(magick_path) and i.startswith('magick-'):
248
+ os.remove(magick_path)
249
+ unidentified.append({'coa_pdf': filename})
250
+ if verbose:
251
+ print('Error:', filename)
252
+ print(e)
253
+ continue
254
+
255
+ # Add the subtype key and record the data.
256
+ subtype = path.split('\\')[-1]
257
+ if isinstance(new_data, dict):
258
+ new_data = [new_data]
259
+ new_data[0]['product_subtype'] = subtype
260
+ parsed.extend(new_data)
261
+ parser.quit()
262
+ gc.collect()
263
+ if verbose:
264
+ print('Parsed:', filename)
265
+
266
+ return parsed, unidentified
267
+
268
+
269
+ def upload_lab_results(
270
+ observations: List[dict],
271
+ collection: Optional[str] = None,
272
+ database: Optional[Any] = None,
273
+ update: Optional[bool] = True,
274
+ verbose: Optional[bool] = True,
275
+ ) -> None:
276
+ """Upload lab results to Firestore.
277
+ Args:
278
+ observations (list): A list of lab results to upload.
279
+ collection (str): The Firestore collection where lab results live,
280
+ `'public/data/lab_results'` by default (optional).
281
+ database (Client): A Firestore database instance (optional).
282
+ update (bool): Whether or not to update existing entries, `True`
283
+ by default (optional).
284
+ verbose (bool): Whether or not to print status, `True` by
285
+ default (optional).
286
+ """
287
+ if collection is None:
288
+ collection = COLLECTION
289
+ if database is None:
290
+ database = initialize_firebase()
291
+ refs, updates = [], []
292
+ for obs in observations:
293
+ sample_id = obs['sample_id']
294
+ ref = f'{collection}/{sample_id}'
295
+ if not update:
296
+ doc = get_document(ref)
297
+ if doc is not None:
298
+ continue
299
+ refs.append(ref)
300
+ updates.append(obs)
301
+ if updates:
302
+ if verbose:
303
+ print('Uploading %i lab results.' % len(refs))
304
+ update_documents(refs, updates, database=database)
305
+ if verbose:
306
+ print('Uploaded %i lab results.' % len(refs))
307
+
308
+
309
+ #-----------------------------------------------------------------------
310
+ # EXAMPLE: Collect Raw Garden lab results data by:
311
+ #
312
+ # 1. Finding products and their COA URLS.
313
+ # 2. Downloading COA PDFs from their URLs.
314
+ # 3. Using CoADoc to parse the COA PDFs (with OCR).
315
+ # 4. Saving the data to datafiles, Firebase Storage, and Firestore.
316
+ #
317
+ #-----------------------------------------------------------------------
318
+ if __name__ == '__main__':
319
+
320
+ # === Setup ===
321
+
322
+ # Support command line usage.
323
+ # Future work: Allow data dirs to be specified from the command line.
324
+ import argparse
325
+ try:
326
+ parser = argparse.ArgumentParser()
327
+ parser.add_argument('--days_ago', dest='days_ago', type=int)
328
+ parser.add_argument('--get_all', dest='get_all', type=bool)
329
+ args = parser.parse_args()
330
+ except SystemExit:
331
+ args = {}
332
+
333
+ # Specify collection period.
334
+ DAYS_AGO = args.get('days_ago', 1)
335
+ GET_ALL = args.get('get_all', True)
336
+
337
+ # === Data Collection ===
338
+
339
+ # Get the most recent Raw Garden products.
340
+ start = datetime.now() - timedelta(days=DAYS_AGO)
341
+ if GET_ALL:
342
+ start = datetime(year=2018, month=1, day=1)
343
+ products = get_rawgarden_products(start=start)
344
+ filenames = products['coa_pdf'].to_list()
345
+
346
+ # Download Raw Garden product COAs to `product_subtype` folders.
347
+ download_rawgarden_coas(products, pause=0.24, verbose=True)
348
+
349
+ # === Data Curation ===
350
+
351
+ # Parse COA PDFs with CoADoc.
352
+ coa_data, unidentified_coas = parse_rawgarden_coas(
353
+ COA_PDF_DIR,
354
+ filenames=filenames,
355
+ temp_path=TEMP_PATH,
356
+ verbose=True,
357
+ )
358
+
359
+ # Merge the `products`'s `product_subtype` with the COA data.
360
+ coa_df = rmerge(
361
+ pd.DataFrame(coa_data),
362
+ products,
363
+ on='coa_pdf',
364
+ how='left',
365
+ replace='right',
366
+ )
367
+
368
+ # Create hashes.
369
+ coa_df = coa_df.where(pd.notnull(coa_df), None)
370
+ coa_df['results_hash'] = coa_df['results'].apply(
371
+ lambda x: create_hash(x),
372
+ )
373
+ coa_df['sample_hash'] = coa_df.loc[:, coa_df.columns != 'sample_hash'].apply(
374
+ lambda x: create_hash(x.to_dict()),
375
+ axis=1,
376
+ )
377
+ datafile_hash = create_hash(coa_df)
378
+
379
+ # === Data Archiving ===
380
+
381
+ # Create custom column order.
382
+ column_order = ['sample_hash', 'results_hash']
383
+ column_order += list(parser.column_order)
384
+ index = column_order.index('product_type') + 1
385
+ column_order.insert(index, 'product_subtype')
386
+
387
+ # Optional: Save the COA data to a workbook.
388
+ parser = CoADoc()
389
+ datafile = f'{COA_DATA_DIR}/{datafile_hash}.xlsx'
390
+ parser.save(coa_df, datafile, column_order=column_order)
391
+
392
+ # Optional: Save the unidentified COA data.
393
+ errors = [x['coa_pdf'] for x in unidentified_coas]
394
+ timestamp = datetime.now().isoformat()[:19].replace(':', '-')
395
+ error_file = f'{COA_DATA_DIR}/rawgarden-unidentified-coas-{timestamp}.xlsx'
396
+ products.loc[products['coa_pdf'].isin(errors)].to_excel(error_file)
397
+
398
+ # === Firebase Database and Storage ===
399
+
400
+ # Optional: Initialize Firebase.
401
+ initialize_firebase(ENV_FILE)
402
+
403
+ # Optional: Upload the lab results to Firestore.
404
+ upload_lab_results(
405
+ coa_df.to_dict(orient='records'),
406
+ update=True,
407
+ verbose=True
408
+ )
409
+
410
+ # Optional: Upload datafiles to Firebase Storage.
411
+ storage_datafile = '/'.join([STORAGE_REF, datafile.split('/')[-1]])
412
+ storage_error_file = '/'.join([STORAGE_REF, error_file.split('/')[-1]])
413
+ upload_file(storage_datafile, datafile, bucket_name=BUCKET_NAME)
414
+ upload_file(storage_error_file, error_file, bucket_name=BUCKET_NAME)
415
+
416
+ # == Data Aggregation ===
417
+
418
+ # # Initialize the COA parser.
419
+ # parser = CoADoc()
420
+
421
+ # # Stack COA datafiles, re-hash, and re-save!
422
+ # datafiles = [
423
+ # f'{COA_DATA_DIR}/d7815fd2a097d06b719aadcc00233026f86076a680db63c532a11b67d7c8bc70.xlsx',
424
+ # f'{COA_DATA_DIR}/01880e30f092cf5739f9f2b58de705fc4c245d6859c00b50505a3a802ff7c2b2.xlsx',
425
+ # f'{COA_DATA_DIR}/154de9b1992a1bfd9a07d2e52c702e8437596923f34bee43f62f3e24f042b81c.xlsx',
426
+ # ]
427
+
428
+ # # Create custom column order.
429
+ # column_order = ['sample_hash', 'results_hash']
430
+ # column_order += list(parser.column_order)
431
+ # index = column_order.index('product_type') + 1
432
+ # column_order.insert(index, 'product_subtype')
433
+
434
+ # # Aggregate the datafiles.
435
+ # master_data = parser.aggregate(
436
+ # datafiles,
437
+ # output=COA_DATA_DIR,
438
+ # sheet_name='Details',
439
+ # column_order=column_order,
440
+ # )
cannabis_tests.py CHANGED
@@ -6,11 +6,11 @@ Authors:
6
  Keegan Skeate <https://github.com/keeganskeate>
7
  Candace O'Sullivan-Sutherland <https://github.com/candy-o>
8
  Created: 9/10/2022
9
- Updated: 9/10/2022
10
  License: <https://github.com/cannlytics/cannlytics/blob/main/LICENSE>
11
  """
12
- import json
13
  import datasets # pip install datasets
 
14
 
15
  # Citation for using the dataset.
16
  CANNABIS_TESTS_CITATION = """\
@@ -31,7 +31,10 @@ dataset of curated cannabis lab test results.
31
  CANNABIS_TESTS_URL = 'https://huggingface.co/datasets/cannlytics/cannabis_tests'
32
 
33
  # Raw Garden constants.
34
- RAWGARDEN_DATA_URL = 'https://cannlytics.page.link/rawgarden'
 
 
 
35
  RAWGARDEN_URL = 'https://github.com/cannlytics/cannlytics/tree/main/ai/curation/get_rawgarden_data'
36
  RAWGARDEN_DESCRIPTION = """\
37
  Raw Garden lab test results (https://cannlytics.com/data/tests) is a
@@ -39,6 +42,131 @@ dataset of curated cannabis lab test results from Raw Garden, a large
39
  cannabis processor in California.
40
  """
41
  RAWGARDEN_FEATURES = []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42
 
43
  # MCR Labs constants.
44
  MCRLABS_DATA_URL = 'https://cannlytics.page.link/mcrlabs'
@@ -110,72 +238,94 @@ class CannabisTests(datasets.GeneratorBasedBuilder):
110
 
111
  BUILDER_CONFIGS = [
112
  CannabisTestsConfig(
113
- name='rawgarden',
114
  description=RAWGARDEN_DESCRIPTION,
115
- features=RAWGARDEN_FEATURES,
116
- data_url=RAWGARDEN_DATA_URL,
117
  citation=CANNABIS_TESTS_CITATION,
118
  url=RAWGARDEN_URL,
119
  ),
120
- CannabisTestsConfig(
121
- name='mcrlabs',
122
- description=MCRLABS_DESCRIPTION,
123
- features=MCRLABS_FEATURES,
124
- data_url=MCRLABS_DATA_URL,
125
- citation=CANNABIS_TESTS_CITATION,
126
- url=MCRLABS_URL,
127
- ),
128
- CannabisTestsConfig(
129
- name='psilabs',
130
- description=PSILABS_DESCRIPTION,
131
- features=PSILABS_FEATURES,
132
- data_url=PSILABS_DATA_URL,
133
- citation=CANNABIS_TESTS_CITATION,
134
- url=PSILABS_URL,
135
- ),
136
- CannabisTestsConfig(
137
- name='sclabs',
138
- description=SCLABS_DESCRIPTION,
139
- features=SCLABS_FEATURES,
140
- data_url=SCLABS_DATA_URL,
141
- citation=CANNABIS_TESTS_CITATION,
142
- url=SCLABS_URL,
143
- ),
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
144
  ]
145
 
146
- DEFAULT_CONFIG_NAME = 'rawgarden'
147
 
148
  def _info(self):
149
- features = {feature: datasets.Value('string') for feature in self.config.features}
150
 
151
  # TODO: Define all numeric features.
152
- # features['span1_index'] = datasets.Value('int32')
153
 
154
  # TODO: Define all image features.
155
 
156
  # TODO: Define all sequence features.
157
  # features["answers"] = datasets.features.Sequence(
158
- # {"text": datasets.Value("string"), "answer_start": datasets.Value("int32"),}
159
  # )
160
 
161
  return datasets.DatasetInfo(
162
  citation=CANNABIS_TESTS_CITATION,
163
  description=CANNABIS_TESTS_DESCRIPTION,
164
- features=features,
165
  homepage=CANNABIS_TESTS_URL,
166
  supervised_keys=None,
167
  )
168
 
169
- def _generate_examples(self, filepath):
170
- """This function returns the examples in raw (text) form."""
171
- with open(filepath, encoding='utf-8') as f:
172
- for line in f:
173
- row = json.loads(line)
174
- product_name = row.get('product_name', '').strip()
175
- for i, result in enumerate(row['results']):
176
- _id = str(i)
177
- yield _id, {
178
- 'product_name': product_name,
179
- 'analyte': result.get('key', ''),
180
- 'value': result.get('value', 0),
181
- }
 
 
 
 
 
 
 
6
  Keegan Skeate <https://github.com/keeganskeate>
7
  Candace O'Sullivan-Sutherland <https://github.com/candy-o>
8
  Created: 9/10/2022
9
+ Updated: 9/13/2022
10
  License: <https://github.com/cannlytics/cannlytics/blob/main/LICENSE>
11
  """
 
12
  import datasets # pip install datasets
13
+ # from datasets import Sequence, datasets.Value
14
 
15
  # Citation for using the dataset.
16
  CANNABIS_TESTS_CITATION = """\
 
31
  CANNABIS_TESTS_URL = 'https://huggingface.co/datasets/cannlytics/cannabis_tests'
32
 
33
  # Raw Garden constants.
34
+ # RAWGARDEN_DATA_URL = 'https://cannlytics.page.link/rawgarden'
35
+ RAWGARDEN_DETAILS_URL = 'https://cannlytics.page.link/rawgarden-details'
36
+ RAWGARDEN_RESULTS_URL = 'https://cannlytics.page.link/rawgarden-results'
37
+ RAWGARDEN_VALUES_URL = 'https://cannlytics.page.link/rawgarden-values'
38
  RAWGARDEN_URL = 'https://github.com/cannlytics/cannlytics/tree/main/ai/curation/get_rawgarden_data'
39
  RAWGARDEN_DESCRIPTION = """\
40
  Raw Garden lab test results (https://cannlytics.com/data/tests) is a
 
42
  cannabis processor in California.
43
  """
44
  RAWGARDEN_FEATURES = []
45
+ RAWGARDEN_RESULTS = {
46
+ 'sample_hash': datasets.Value(dtype='string', id=None),
47
+ 'results_hash': datasets.Value(dtype='string', id=None),
48
+ 'sample_id': datasets.Value(dtype='string', id=None),
49
+ 'product_name': datasets.Value(dtype='string', id=None),
50
+ 'producer': datasets.Value(dtype='string', id=None),
51
+ 'product_type': datasets.Value(dtype='string', id=None),
52
+ 'product_subtype': datasets.Value(dtype='string', id=None),
53
+ 'date_tested': datasets.Value(dtype='string', id=None),
54
+ 'analysis': datasets.Value(dtype='string', id=None),
55
+ 'key': datasets.Value(dtype='string', id=None),
56
+ 'limit': datasets.Value(dtype='double', id=None),
57
+ 'lod': datasets.Value(dtype='double', id=None),
58
+ 'lodloq': datasets.Value(dtype='double', id=None),
59
+ 'loq': datasets.Value(dtype='double', id=None),
60
+ 'margin_of_error': datasets.Value(dtype='double', id=None),
61
+ 'mg_g': datasets.Value(dtype='double', id=None),
62
+ 'name': datasets.Value(dtype='string', id=None),
63
+ 'status': datasets.Value(dtype='string', id=None),
64
+ 'units': datasets.Value(dtype='string', id=None),
65
+ 'value': datasets.Value(dtype='double', id=None),
66
+ }
67
+ RAWGARDEN_DETAILS = {
68
+ 'sample_hash': datasets.Value(dtype='string', id=None),
69
+ 'results_hash': datasets.Value(dtype='string', id=None),
70
+ 'sample_id': datasets.Value(dtype='string', id=None),
71
+ 'product_name': datasets.Value(dtype='string', id=None),
72
+ 'producer': datasets.Value(dtype='string', id=None),
73
+ 'product_type': datasets.Value(dtype='string', id=None),
74
+ 'product_subtype': datasets.Value(dtype='string', id=None),
75
+ 'date_tested': datasets.Value(dtype='string', id=None),
76
+ 'analyses': datasets.Value(dtype='string', id=None),
77
+ 'batch_number': datasets.Value(dtype='string', id=None),
78
+ 'batch_size': datasets.Value(dtype='string', id=None),
79
+ 'batch_units': datasets.Value(dtype='string', id=None),
80
+ 'cannabinoids_method': datasets.Value(dtype='string', id=None),
81
+ 'cannabinoids_status': datasets.Value(dtype='string', id=None),
82
+ 'coa_algorithm': datasets.Value(dtype='string', id=None),
83
+ 'coa_algorithm_entry_point': datasets.Value(dtype='string', id=None),
84
+ 'coa_parsed_at': datasets.Value(dtype='string', id=None),
85
+ 'coa_pdf': datasets.Value(dtype='string', id=None),
86
+ 'coa_urls': datasets.Value(dtype='string', id=None),
87
+ 'date_collected': datasets.Value(dtype='string', id=None),
88
+ 'date_produced': datasets.Value(dtype='string', id=None),
89
+ 'date_received': datasets.Value(dtype='string', id=None),
90
+ 'date_retail': datasets.Value(dtype='string', id=None),
91
+ 'delta_9_thc_per_unit': datasets.Value(dtype='string', id=None),
92
+ 'distributor': datasets.Value(dtype='string', id=None),
93
+ 'distributor_address': datasets.Value(dtype='string', id=None),
94
+ 'distributor_city': datasets.Value(dtype='string', id=None),
95
+ 'distributor_license_number': datasets.Value(dtype='string', id=None),
96
+ 'distributor_state': datasets.Value(dtype='string', id=None),
97
+ 'distributor_street': datasets.Value(dtype='string', id=None),
98
+ 'distributor_zipcode': datasets.Value(dtype='float64', id=None),
99
+ 'foreign_matter_method': datasets.Value(dtype='string', id=None),
100
+ 'foreign_matter_status': datasets.Value(dtype='string', id=None),
101
+ 'heavy_metals_method': datasets.Value(dtype='string', id=None),
102
+ 'heavy_metals_status': datasets.Value(dtype='string', id=None),
103
+ 'images': datasets.Value(dtype='string', id=None),
104
+ 'lab': datasets.Value(dtype='string', id=None),
105
+ 'lab_address': datasets.Value(dtype='string', id=None),
106
+ 'lab_city': datasets.Value(dtype='string', id=None),
107
+ 'lab_county': datasets.Value(dtype='string', id=None),
108
+ 'lab_email': datasets.Value(dtype='string', id=None),
109
+ 'lab_id': datasets.Value(dtype='string', id=None),
110
+ 'lab_image_url': datasets.Value(dtype='string', id=None),
111
+ 'lab_latitude': datasets.Value(dtype='float64', id=None),
112
+ 'lab_license_number': datasets.Value(dtype='string', id=None),
113
+ 'lab_longitude': datasets.Value(dtype='float64', id=None),
114
+ 'lab_phone': datasets.Value(dtype='string', id=None),
115
+ 'lab_results_url': datasets.Value(dtype='string', id=None),
116
+ 'lab_state': datasets.Value(dtype='string', id=None),
117
+ 'lab_street': datasets.Value(dtype='string', id=None),
118
+ 'lab_website': datasets.Value(dtype='string', id=None),
119
+ 'lab_zipcode': datasets.Value(dtype='int64', id=None),
120
+ 'lims': datasets.Value(dtype='string', id=None),
121
+ 'metrc_ids': datasets.Value(dtype='string', id=None),
122
+ 'metrc_lab_id': datasets.Value(dtype='string', id=None),
123
+ 'metrc_source_id': datasets.Value(dtype='string', id=None),
124
+ 'microbes_method': datasets.Value(dtype='string', id=None),
125
+ 'microbes_status': datasets.Value(dtype='string', id=None),
126
+ 'moisture_content': datasets.Value(dtype='string', id=None),
127
+ 'moisture_method': datasets.Value(dtype='string', id=None),
128
+ 'mycotoxins_method': datasets.Value(dtype='string', id=None),
129
+ 'mycotoxins_status': datasets.Value(dtype='string', id=None),
130
+ 'notes': datasets.Value(dtype='string', id=None),
131
+ 'pesticides_method': datasets.Value(dtype='string', id=None),
132
+ 'pesticides_status': datasets.Value(dtype='string', id=None),
133
+ 'producer_address': datasets.Value(dtype='string', id=None),
134
+ 'producer_city': datasets.Value(dtype='string', id=None),
135
+ 'producer_image_url': datasets.Value(dtype='string', id=None),
136
+ 'producer_license_number': datasets.Value(dtype='string', id=None),
137
+ 'producer_state': datasets.Value(dtype='string', id=None),
138
+ 'producer_street': datasets.Value(dtype='string', id=None),
139
+ 'producer_url': datasets.Value(dtype='string', id=None),
140
+ 'producer_zipcode': datasets.Value(dtype='float64', id=None),
141
+ 'product_size': datasets.Value(dtype='string', id=None),
142
+ 'public': datasets.Value(dtype='float64', id=None),
143
+ 'residual_solvents_method': datasets.Value(dtype='string', id=None),
144
+ 'residual_solvents_status': datasets.Value(dtype='string', id=None),
145
+ 'results': datasets.Value(dtype='string', id=None),
146
+ 'sample_number': datasets.Value(dtype='float64', id=None),
147
+ 'sample_size': datasets.Value(dtype='string', id=None),
148
+ 'sampling_method': datasets.Value(dtype='string', id=None),
149
+ 'serving_size': datasets.Value(dtype='string', id=None),
150
+ 'status': datasets.Value(dtype='string', id=None),
151
+ 'sum_of_cannabinoids': datasets.Value(dtype='float64', id=None),
152
+ 'terpenes_method': datasets.Value(dtype='string', id=None),
153
+ 'terpenes_status': datasets.Value(dtype='string', id=None),
154
+ 'total_cannabinoids': datasets.Value(dtype='float64', id=None),
155
+ 'total_cbc': datasets.Value(dtype='float64', id=None),
156
+ 'total_cbd': datasets.Value(dtype='float64', id=None),
157
+ 'total_cbdv': datasets.Value(dtype='float64', id=None),
158
+ 'total_cbg': datasets.Value(dtype='float64', id=None),
159
+ 'total_terpenes': datasets.Value(dtype='float64', id=None),
160
+ 'total_terpenes_mg_g': datasets.Value(dtype='float64', id=None),
161
+ 'total_thc': datasets.Value(dtype='float64', id=None),
162
+ 'total_thcv': datasets.Value(dtype='float64', id=None),
163
+ 'url': datasets.Value(dtype='string', id=None),
164
+ 'water_activity_method': datasets.Value(dtype='string', id=None),
165
+ 'water_activity_status': datasets.Value(dtype='string', id=None)
166
+ }
167
+ # RAWGARDEN_VALUES = {
168
+ # 'delta_9_thc': datasets.Value(dtype='float64', id=None),
169
+ # }
170
 
171
  # MCR Labs constants.
172
  MCRLABS_DATA_URL = 'https://cannlytics.page.link/mcrlabs'
 
238
 
239
  BUILDER_CONFIGS = [
240
  CannabisTestsConfig(
241
+ name='rawgarden_details',
242
  description=RAWGARDEN_DESCRIPTION,
243
+ features=RAWGARDEN_DETAILS,
244
+ data_url=RAWGARDEN_DETAILS_URL,
245
  citation=CANNABIS_TESTS_CITATION,
246
  url=RAWGARDEN_URL,
247
  ),
248
+ # CannabisTestsConfig(
249
+ # name='rawgarden_results',
250
+ # description=RAWGARDEN_DESCRIPTION,
251
+ # features=RAWGARDEN_RESULTS,
252
+ # data_url=RAWGARDEN_RESULTS_URL,
253
+ # citation=CANNABIS_TESTS_CITATION,
254
+ # url=RAWGARDEN_URL,
255
+ # ),
256
+ # CannabisTestsConfig(
257
+ # name='rawgarden_values',
258
+ # description=RAWGARDEN_DESCRIPTION,
259
+ # features=RAWGARDEN_VALUES,
260
+ # data_url=RAWGARDEN_VALUES_URL,
261
+ # citation=CANNABIS_TESTS_CITATION,
262
+ # url=RAWGARDEN_URL,
263
+ # ),
264
+ # CannabisTestsConfig(
265
+ # name='mcrlabs',
266
+ # description=MCRLABS_DESCRIPTION,
267
+ # features=MCRLABS_FEATURES,
268
+ # data_url=MCRLABS_DATA_URL,
269
+ # citation=CANNABIS_TESTS_CITATION,
270
+ # url=MCRLABS_URL,
271
+ # ),
272
+ # CannabisTestsConfig(
273
+ # name='psilabs',
274
+ # description=PSILABS_DESCRIPTION,
275
+ # features=PSILABS_FEATURES,
276
+ # data_url=PSILABS_DATA_URL,
277
+ # citation=CANNABIS_TESTS_CITATION,
278
+ # url=PSILABS_URL,
279
+ # ),
280
+ # CannabisTestsConfig(
281
+ # name='sclabs',
282
+ # description=SCLABS_DESCRIPTION,
283
+ # features=SCLABS_FEATURES,
284
+ # data_url=SCLABS_DATA_URL,
285
+ # citation=CANNABIS_TESTS_CITATION,
286
+ # url=SCLABS_URL,
287
+ # ),
288
  ]
289
 
290
+ DEFAULT_CONFIG_NAME = 'rawgarden_details'
291
 
292
  def _info(self):
293
+ # features = {feature: datasets.datasets.Value('string') for feature in self.config.features}
294
 
295
  # TODO: Define all numeric features.
296
+ # features['span1_index'] = datasets.datasets.Value('int32')
297
 
298
  # TODO: Define all image features.
299
 
300
  # TODO: Define all sequence features.
301
  # features["answers"] = datasets.features.Sequence(
302
+ # {"text": datasets.datasets.Value("string"), "answer_start": datasets.datasets.Value("int32"),}
303
  # )
304
 
305
  return datasets.DatasetInfo(
306
  citation=CANNABIS_TESTS_CITATION,
307
  description=CANNABIS_TESTS_DESCRIPTION,
308
+ features=RAWGARDEN_DETAILS,
309
  homepage=CANNABIS_TESTS_URL,
310
  supervised_keys=None,
311
  )
312
 
313
+ # def _generate_examples(self, filepath):
314
+ # """This function returns the examples in raw (text) form."""
315
+ # with open(filepath, encoding='utf-8') as f:
316
+ # for line in f:
317
+ # row = json.loads(line)
318
+ # product_name = row.get('product_name', '').strip()
319
+ # for i, result in enumerate(row['results']):
320
+ # _id = str(i)
321
+ # yield _id, {
322
+ # 'product_name': product_name,
323
+ # 'analyte': result.get('key', ''),
324
+ # 'value': result.get('value', 0),
325
+ # }
326
+
327
+
328
+ # if __name__ == '__main__':
329
+
330
+ # from datasets import load_dataset
331
+ # dataset = load_dataset('cannabis_tests.py')
dataset_infos.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {".": {"description": "", "citation": "", "homepage": "", "license": "", "features": {"sample_hash": {"dtype": "string", "id": null, "_type": "Value"}, "results_hash": {"dtype": "string", "id": null, "_type": "Value"}, "sample_id": {"dtype": "string", "id": null, "_type": "Value"}, "product_name": {"dtype": "string", "id": null, "_type": "Value"}, "producer": {"dtype": "string", "id": null, "_type": "Value"}, "product_type": {"dtype": "string", "id": null, "_type": "Value"}, "product_subtype": {"dtype": "string", "id": null, "_type": "Value"}, "date_tested": {"dtype": "string", "id": null, "_type": "Value"}, "analyses": {"dtype": "string", "id": null, "_type": "Value"}, "batch_number": {"dtype": "string", "id": null, "_type": "Value"}, "batch_size": {"dtype": "string", "id": null, "_type": "Value"}, "batch_units": {"dtype": "string", "id": null, "_type": "Value"}, "cannabinoids_method": {"dtype": "string", "id": null, "_type": "Value"}, "cannabinoids_status": {"dtype": "string", "id": null, "_type": "Value"}, "coa_algorithm": {"dtype": "string", "id": null, "_type": "Value"}, "coa_algorithm_entry_point": {"dtype": "string", "id": null, "_type": "Value"}, "coa_parsed_at": {"dtype": "string", "id": null, "_type": "Value"}, "coa_pdf": {"dtype": "string", "id": null, "_type": "Value"}, "coa_urls": {"dtype": "string", "id": null, "_type": "Value"}, "date_collected": {"dtype": "string", "id": null, "_type": "Value"}, "date_produced": {"dtype": "string", "id": null, "_type": "Value"}, "date_received": {"dtype": "string", "id": null, "_type": "Value"}, "date_retail": {"dtype": "string", "id": null, "_type": "Value"}, "delta_9_thc_per_unit": {"dtype": "string", "id": null, "_type": "Value"}, "distributor": {"dtype": "string", "id": null, "_type": "Value"}, "distributor_address": {"dtype": "string", "id": null, "_type": "Value"}, "distributor_city": {"dtype": "string", "id": null, "_type": "Value"}, "distributor_license_number": {"dtype": "string", "id": null, "_type": "Value"}, "distributor_state": {"dtype": "string", "id": null, "_type": "Value"}, "distributor_street": {"dtype": "string", "id": null, "_type": "Value"}, "distributor_zipcode": {"dtype": "float64", "id": null, "_type": "Value"}, "foreign_matter_method": {"dtype": "string", "id": null, "_type": "Value"}, "foreign_matter_status": {"dtype": "string", "id": null, "_type": "Value"}, "heavy_metals_method": {"dtype": "string", "id": null, "_type": "Value"}, "heavy_metals_status": {"dtype": "string", "id": null, "_type": "Value"}, "images": {"dtype": "string", "id": null, "_type": "Value"}, "lab": {"dtype": "string", "id": null, "_type": "Value"}, "lab_address": {"dtype": "string", "id": null, "_type": "Value"}, "lab_city": {"dtype": "string", "id": null, "_type": "Value"}, "lab_county": {"dtype": "string", "id": null, "_type": "Value"}, "lab_email": {"dtype": "string", "id": null, "_type": "Value"}, "lab_id": {"dtype": "string", "id": null, "_type": "Value"}, "lab_image_url": {"dtype": "string", "id": null, "_type": "Value"}, "lab_latitude": {"dtype": "float64", "id": null, "_type": "Value"}, "lab_license_number": {"dtype": "string", "id": null, "_type": "Value"}, "lab_longitude": {"dtype": "float64", "id": null, "_type": "Value"}, "lab_phone": {"dtype": "string", "id": null, "_type": "Value"}, "lab_results_url": {"dtype": "string", "id": null, "_type": "Value"}, "lab_state": {"dtype": "string", "id": null, "_type": "Value"}, "lab_street": {"dtype": "string", "id": null, "_type": "Value"}, "lab_website": {"dtype": "string", "id": null, "_type": "Value"}, "lab_zipcode": {"dtype": "int64", "id": null, "_type": "Value"}, "lims": {"dtype": "string", "id": null, "_type": "Value"}, "metrc_ids": {"dtype": "string", "id": null, "_type": "Value"}, "metrc_lab_id": {"dtype": "string", "id": null, "_type": "Value"}, "metrc_source_id": {"dtype": "string", "id": null, "_type": "Value"}, "microbes_method": {"dtype": "string", "id": null, "_type": "Value"}, "microbes_status": {"dtype": "string", "id": null, "_type": "Value"}, "moisture_content": {"dtype": "string", "id": null, "_type": "Value"}, "moisture_method": {"dtype": "string", "id": null, "_type": "Value"}, "mycotoxins_method": {"dtype": "string", "id": null, "_type": "Value"}, "mycotoxins_status": {"dtype": "string", "id": null, "_type": "Value"}, "notes": {"dtype": "string", "id": null, "_type": "Value"}, "pesticides_method": {"dtype": "string", "id": null, "_type": "Value"}, "pesticides_status": {"dtype": "string", "id": null, "_type": "Value"}, "producer_address": {"dtype": "string", "id": null, "_type": "Value"}, "producer_city": {"dtype": "string", "id": null, "_type": "Value"}, "producer_image_url": {"dtype": "string", "id": null, "_type": "Value"}, "producer_license_number": {"dtype": "string", "id": null, "_type": "Value"}, "producer_state": {"dtype": "string", "id": null, "_type": "Value"}, "producer_street": {"dtype": "string", "id": null, "_type": "Value"}, "producer_url": {"dtype": "string", "id": null, "_type": "Value"}, "producer_zipcode": {"dtype": "float64", "id": null, "_type": "Value"}, "product_size": {"dtype": "string", "id": null, "_type": "Value"}, "public": {"dtype": "float64", "id": null, "_type": "Value"}, "residual_solvents_method": {"dtype": "string", "id": null, "_type": "Value"}, "residual_solvents_status": {"dtype": "string", "id": null, "_type": "Value"}, "results": {"dtype": "string", "id": null, "_type": "Value"}, "sample_number": {"dtype": "float64", "id": null, "_type": "Value"}, "sample_size": {"dtype": "string", "id": null, "_type": "Value"}, "sampling_method": {"dtype": "string", "id": null, "_type": "Value"}, "serving_size": {"dtype": "string", "id": null, "_type": "Value"}, "status": {"dtype": "string", "id": null, "_type": "Value"}, "sum_of_cannabinoids": {"dtype": "float64", "id": null, "_type": "Value"}, "terpenes_method": {"dtype": "string", "id": null, "_type": "Value"}, "terpenes_status": {"dtype": "string", "id": null, "_type": "Value"}, "total_cannabinoids": {"dtype": "float64", "id": null, "_type": "Value"}, "total_cbc": {"dtype": "float64", "id": null, "_type": "Value"}, "total_cbd": {"dtype": "float64", "id": null, "_type": "Value"}, "total_cbdv": {"dtype": "float64", "id": null, "_type": "Value"}, "total_cbg": {"dtype": "float64", "id": null, "_type": "Value"}, "total_terpenes": {"dtype": "float64", "id": null, "_type": "Value"}, "total_terpenes_mg_g": {"dtype": "float64", "id": null, "_type": "Value"}, "total_thc": {"dtype": "float64", "id": null, "_type": "Value"}, "total_thcv": {"dtype": "float64", "id": null, "_type": "Value"}, "url": {"dtype": "string", "id": null, "_type": "Value"}, "water_activity_method": {"dtype": "string", "id": null, "_type": "Value"}, "water_activity_status": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "csv", "config_name": ".", "version": {"version_str": "0.0.0", "description": null, "major": 0, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 67727955, "num_examples": 2667, "dataset_name": "csv"}}, "download_checksums": {"C:\\Users\\keega\\Documents\\cannlytics\\datasets\\cannabis_tests\\train.csv": {"num_bytes": 78073452, "checksum": "7999de7a5ab1bc71b122aeaa3e25f16bc81846cdedb282b0196dd69e77829b2c"}}, "download_size": 78073452, "post_processing_size": null, "dataset_size": 67727955, "size_in_bytes": 145801407}}
rawgarden/details.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7999de7a5ab1bc71b122aeaa3e25f16bc81846cdedb282b0196dd69e77829b2c
3
+ size 78073452
rawgarden/results.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e564721c028395d8237047dce30729fa64b57df1538702fd90d21c7cb5951735
3
+ size 131625191
rawgarden/values.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3cae8cd31c2f4629771ce1bd572e09e4b2bb899c833865da6a1108b500ba39b3
3
+ size 3101242
train.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7999de7a5ab1bc71b122aeaa3e25f16bc81846cdedb282b0196dd69e77829b2c
3
+ size 78073452