File size: 4,803 Bytes
bc7a465
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1939eed
 
bc7a465
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6f2070
bc7a465
 
 
 
 
 
1939eed
bc7a465
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1939eed
bc7a465
 
 
 
 
 
 
 
1939eed
bc7a465
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1939eed
bc7a465
1939eed
bc7a465
 
 
1939eed
bc7a465
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1939eed
bc7a465
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import pandas as pd
from datasets import load_dataset
from sklearn.model_selection import train_test_split
import urllib

# Set binary labels
HATE = 1
NOT_HATE = 0

# class mapping for the multiclass
class_mapping = {
    'target_gender_aggregated': 0,
    'target_race_aggregated': 1,
    'target_sexuality_aggregated': 2,
    'target_religion_aggregated': 3,
    'target_origin_aggregated': 4,
    'target_disability_aggregated': 5,
    'target_age_aggregated': 6,
    'not_hate': 7
}


# map continuous score to classes
def map_label(x):
    if x >= -1 and x <= 0.5:
        label = 999  # neutral/ambiguous
    elif x > 0.5:
        label = HATE  # hate
    elif x < -1:
        label = NOT_HATE  # not hate
    return label

# format text
def clean_text(text):
    text = text.replace('\n', ' ').replace('\r', ' ').replace('\t', ' ')
    
    new_text = []
    for t in text.split():
        # MAKE SURE to check lowercase
        t = '@user' if t.startswith('@') and len(t) > 1 and t.replace('@','').lower() not in verified_users else t
        t = '\{URL\}' if t.startswith('http') else t
        new_text.append(t)
    
    return ' '.join(new_text)


# load data
dataset = load_dataset('ucberkeley-dlab/measuring-hate-speech')
df = dataset['train'].to_pandas()

# get label
df['annon_label'] = df['hate_speech_score'].apply(map_label)

# keep only entries from Twitter
df = df[df['platform'] == 2]

# ignore ambiguous
df = df[df['annon_label'].isin([HATE, NOT_HATE])]

# count binary label
df_count_label = pd.DataFrame(df.groupby('comment_id')['annon_label'].value_counts())
df_count_label = df_count_label.rename(columns={'annon_label': 'count'})
df_count_label = df_count_label.reset_index(level=1)
df_count_label = df_count_label[df_count_label['count'] >= 2]

# map binary label 
df = df.set_index('comment_id')
df['label'] = None
df['label'] = df_count_label['annon_label']

# drop entries with no agreement
df = df[df['label'].notnull()]
df = df.reset_index()

# find aggrement on targets
targets = ['target_race', 'target_religion', 'target_origin', 'target_gender',
           'target_sexuality', 'target_age', 'target_disability']

# for each target count aggrement
for t in targets:
    # count and consider only targets with at least 2 coders
    df_count_targets = pd.DataFrame(df.groupby('comment_id')[t].value_counts())
    df_count_targets = df_count_targets.rename(columns={t: 'count'})
    df_count_targets = df_count_targets.reset_index(level=1)
    df_count_targets = df_count_targets[df_count_targets['count'] >= 2]
   
    # do not consider entries with more than one target (because of more than 3 coders)
    df_count_targets = df_count_targets.loc[df_count_targets.index.drop_duplicates(keep=False)]

    # map aggregated target
    df = df.set_index('comment_id')
    df[f'{t}_aggregated'] = False
    df[f'{t}_aggregated'] = df_count_targets[t]
    df[f'{t}_aggregated'] = df[f'{t}_aggregated'].fillna(False)
    df = df.reset_index()

# aggregate targets
targets_aggregated = [f'{t}_aggregated' for t in targets]
# get columns/target which are True
df['target'] = df[targets_aggregated].apply(lambda row: row[row].index, axis=1)

# set target only if it is unique
df['target'] = df['target'].apply(lambda x: x[0] if len(x) == 1 else None)

# no need of all annotators now -> keep each tweet only once
df = df.groupby('comment_id').nth(0)
df = df.reset_index()


# clean multiclass
# give target only to tweets with 1 (is hate speech) target 
idx_multiclass = df[df['label'] == 1].index
idx_not_hate = df[df['label'] == 0].index

# initialize column
df['gold_label'] = None
df.loc[idx_not_hate, 'gold_label'] = 'not_hate'
df.loc[idx_multiclass, 'gold_label'] = df.loc[idx_multiclass]['target']

# drop entries without target
df = df.dropna(subset='gold_label')

# get list of known verified users
verified_users = urllib.request.urlopen('https://raw.githubusercontent.com/cardiffnlp/timelms/main/data/verified_users.v091122.txt').readlines()
verified_users = [x.decode().strip('\n').lower() for x in verified_users]

# clean text
df['text'] = df['text'].apply(clean_text)

# map classes
df['gold_label'] = df['gold_label'].map(class_mapping)


# create splits
test_size = int(0.2 * len(df))
val_size = int(0.1 * len(df))

train, test = train_test_split(df, test_size=test_size, stratify=df['gold_label'].values, random_state=4)
train, val = train_test_split(train, test_size=val_size, stratify=train['gold_label'].values, random_state=4)

# save splits
cols_to_keep = ['gold_label', 'text']
train[cols_to_keep].to_json('../data/tweet_hate/train.jsonl', lines=True, orient='records')
val[cols_to_keep].to_json('../data/tweet_hate/validation.jsonl', lines=True, orient='records')
test[cols_to_keep].to_json('../data/tweet_hate/test.jsonl', lines=True, orient='records')