antypasd commited on
Commit
d28db7f
1 Parent(s): 9a0d4fd

changed naming of disambiguation

Browse files
data/{tweet_disambiguation → tweet_nerd}/validation.jsonl RENAMED
File without changes
super_tweet_eval.py CHANGED
@@ -122,8 +122,8 @@ _TWEET_HATE_CITATION = """\
122
  abstract = "We introduce the Measuring Hate Speech corpus, a dataset created to measure hate speech while adjusting for annotators{'} perspectives. It consists of 50,070 social media comments spanning YouTube, Reddit, and Twitter, labeled by 11,143 annotators recruited from Amazon Mechanical Turk. Each observation includes 10 ordinal labels: sentiment, disrespect, insult, attacking/defending, humiliation, inferior/superior status, dehumanization, violence, genocide, and a 3-valued hate speech benchmark label. The labels are aggregated using faceted Rasch measurement theory (RMT) into a continuous score that measures each comment{'}s location on a hate speech spectrum. The annotation experimental design assigned comments to multiple annotators in order to yield a linked network, allowing annotator disagreement (perspective) to be statistically summarized. Annotators{'} labeling strictness was estimated during the RMT scaling, projecting their perspective onto a linear measure that was adjusted for the hate speech score. Models that incorporate this annotator perspective parameter as an auxiliary input can generate label- and score-level predictions conditional on annotator perspective. The corpus includes the identity group targets of each comment (8 groups, 42 subgroups) and annotator demographics (6 groups, 40 subgroups), facilitating analyses of interactions between annotator- and comment-level identities, i.e. identity-related annotator perspective.",
123
  }
124
  """
125
- _TWEET_DISAMBIGUATION_DESCRIPTION = """TBA"""
126
- _TWEET_DISAMBIGUATION_CITATION = """\
127
  @article{mishra2022tweetnerd,
128
  title={TweetNERD--End to End Entity Linking Benchmark for Tweets},
129
  author={Mishra, Shubhanshu and Saini, Aman and Makki, Raheleh and Mehta, Sneha and Haghighi, Aria and Mollahosseini, Ali},
@@ -233,11 +233,11 @@ class SuperTweetEval(datasets.GeneratorBasedBuilder):
233
  data_url="https://huggingface.co/datasets/cardiffnlp/super_tweet_eval/resolve/main/data/tweet_hate",
234
  ),
235
  SuperTweetEvalConfig(
236
- name="tweet_disambiguation",
237
- description=_TWEET_DISAMBIGUATION_DESCRIPTION,
238
- citation=_TWEET_DISAMBIGUATION_CITATION,
239
  features=['gold_label_binary', 'target', 'context', 'definition', 'char_idx_start', 'car_idx_end'],
240
- data_url="https://huggingface.co/datasets/cardiffnlp/super_tweet_eval/resolve/main/data/tweet_disambiguation",
241
  ),
242
  SuperTweetEvalConfig(
243
  name="tweet_emoji",
@@ -285,7 +285,7 @@ class SuperTweetEval(datasets.GeneratorBasedBuilder):
285
  'not_hate']
286
  features["gold_label"] = datasets.Value("int32")
287
  features["text"] = datasets.Value("string")
288
- if self.config.name == "tweet_disambiguation":
289
  features['target'] = datasets.Value("string")
290
  features['context'] = datasets.Value("string")
291
  features['definition'] = datasets.Value("string")
@@ -309,7 +309,7 @@ class SuperTweetEval(datasets.GeneratorBasedBuilder):
309
 
310
  def _split_generators(self, dl_manager):
311
  # TODO: temporary check until we have all splits online
312
- if self.config.name == 'tweet_disambiguation':
313
  splits = ['validation']
314
  else:
315
  splits = ['train', 'test', 'validation']
 
122
  abstract = "We introduce the Measuring Hate Speech corpus, a dataset created to measure hate speech while adjusting for annotators{'} perspectives. It consists of 50,070 social media comments spanning YouTube, Reddit, and Twitter, labeled by 11,143 annotators recruited from Amazon Mechanical Turk. Each observation includes 10 ordinal labels: sentiment, disrespect, insult, attacking/defending, humiliation, inferior/superior status, dehumanization, violence, genocide, and a 3-valued hate speech benchmark label. The labels are aggregated using faceted Rasch measurement theory (RMT) into a continuous score that measures each comment{'}s location on a hate speech spectrum. The annotation experimental design assigned comments to multiple annotators in order to yield a linked network, allowing annotator disagreement (perspective) to be statistically summarized. Annotators{'} labeling strictness was estimated during the RMT scaling, projecting their perspective onto a linear measure that was adjusted for the hate speech score. Models that incorporate this annotator perspective parameter as an auxiliary input can generate label- and score-level predictions conditional on annotator perspective. The corpus includes the identity group targets of each comment (8 groups, 42 subgroups) and annotator demographics (6 groups, 40 subgroups), facilitating analyses of interactions between annotator- and comment-level identities, i.e. identity-related annotator perspective.",
123
  }
124
  """
125
+ _TWEET_NERD_DESCRIPTION = """TBA"""
126
+ _TWEET_NERD_CITATION = """\
127
  @article{mishra2022tweetnerd,
128
  title={TweetNERD--End to End Entity Linking Benchmark for Tweets},
129
  author={Mishra, Shubhanshu and Saini, Aman and Makki, Raheleh and Mehta, Sneha and Haghighi, Aria and Mollahosseini, Ali},
 
233
  data_url="https://huggingface.co/datasets/cardiffnlp/super_tweet_eval/resolve/main/data/tweet_hate",
234
  ),
235
  SuperTweetEvalConfig(
236
+ name="tweet_nerd",
237
+ description=_TWEET_NERD_DESCRIPTION,
238
+ citation=_TWEET_NERD_CITATION,
239
  features=['gold_label_binary', 'target', 'context', 'definition', 'char_idx_start', 'car_idx_end'],
240
+ data_url="https://huggingface.co/datasets/cardiffnlp/super_tweet_eval/resolve/main/data/tweet_nerd",
241
  ),
242
  SuperTweetEvalConfig(
243
  name="tweet_emoji",
 
285
  'not_hate']
286
  features["gold_label"] = datasets.Value("int32")
287
  features["text"] = datasets.Value("string")
288
+ if self.config.name == "tweet_nerd":
289
  features['target'] = datasets.Value("string")
290
  features['context'] = datasets.Value("string")
291
  features['definition'] = datasets.Value("string")
 
309
 
310
  def _split_generators(self, dl_manager):
311
  # TODO: temporary check until we have all splits online
312
+ if self.config.name == 'tweet_nerd':
313
  splits = ['validation']
314
  else:
315
  splits = ['train', 'test', 'validation']