File size: 8,564 Bytes
a78bf79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import os
import random
import datasets
from datasets.tasks import ImageClassification

_NAMES_1 = {
    1: "Classic",
    2: "Non_classic",
}

_NAMES_2 = {
    3: "Symphony",
    4: "Opera",
    5: "Solo",
    6: "Chamber",
    7: "Pop",
    8: "Dance_and_house",
    9: "Indie",
    10: "Soul_or_RnB",
    11: "Rock",
}

_NAMES_3 = {
    3: "Symphony",
    4: "Opera",
    5: "Solo",
    6: "Chamber",
    12: "Pop_vocal_ballad",
    13: "Adult_contemporary",
    14: "Teen_pop",
    15: "Contemporary_dance_pop",
    16: "Dance_pop",
    17: "Classic_indie_pop",
    18: "Chamber_cabaret_and_art_pop",
    10: "Soul_or_RnB",
    19: "Adult_alternative_rock",
    20: "Uplifting_anthemic_rock",
    21: "Soft_rock",
    22: "Acoustic_pop",
}

_DBNAME = os.path.basename(__file__).split(".")[0]

_HOMEPAGE = f"https://www.modelscope.cn/datasets/ccmusic-database/{_DBNAME}"

_DOMAIN = f"https://www.modelscope.cn/api/v1/datasets/ccmusic-database/{_DBNAME}/repo?Revision=master&FilePath=data"

_CITATION = """\
@dataset{zhaorui_liu_2021_5676893,
  author       = {Monan Zhou, Shenyang Xu, Zhaorui Liu, Zhaowen Wang, Feng Yu, Wei Li and Baoqiang Han},
  title        = {CCMusic: an Open and Diverse Database for Chinese and General Music Information Retrieval Research},
  month        = {mar},
  year         = {2024},
  publisher    = {HuggingFace},
  version      = {1.2},
  url          = {https://huggingface.co/ccmusic-database}
}
"""

_DESCRIPTION = """\
The raw dataset comprises approximately 1,700 musical pieces in .mp3 format, sourced from the NetEase music. The lengths of these pieces range from 270 to 300 seconds. All are sampled at the rate of 48,000 Hz. As the website providing the audio music includes style labels for the downloaded music, there are no specific annotators involved. Validation is achieved concurrently with the downloading process. They are categorized into a total of 16 genres.

For the pre-processed version, audio is cut into an 11.4-second segment, resulting in 36,375 files, which are then transformed into Mel, CQT and Chroma. In the end, the data entry has six columns: the first three columns represent the Mel, CQT, and Chroma spectrogram slices in .jpg format, respectively, while the last three columns contain the labels for the three levels. The first level comprises two categories, the second level consists of nine categories, and the third level encompasses 16 categories. The entire dataset is shuffled and split into training, validation, and test sets in a ratio of 8:1:1. This dataset can be used for genre classification.
"""

_URLS = {
    "audio": f"{_DOMAIN}/audio.zip",
    "mel": f"{_DOMAIN}/mel.zip",
    "eval": f"{_DOMAIN}/eval.zip",
}


class music_genre(datasets.GeneratorBasedBuilder):
    # BUILDER_CONFIGS = [
    #     datasets.BuilderConfig(name="default"),
    #     datasets.BuilderConfig(name="eval"),
    # ]

    def _info(self):
        return datasets.DatasetInfo(
            features=(
                datasets.Features(
                    {
                        "audio": datasets.Audio(sampling_rate=22050),
                        "mel": datasets.Image(),
                        "fst_level_label": datasets.features.ClassLabel(
                            names=list(_NAMES_1.values())
                        ),
                        "sec_level_label": datasets.features.ClassLabel(
                            names=list(_NAMES_2.values())
                        ),
                        "thr_level_label": datasets.features.ClassLabel(
                            names=list(_NAMES_3.values())
                        ),
                    }
                )
                if self.config.name == "raw"
                else datasets.Features(
                    {
                        "mel": datasets.Image(),
                        "cqt": datasets.Image(),
                        "chroma": datasets.Image(),
                        "fst_level_label": datasets.features.ClassLabel(
                            names=list(_NAMES_1.values())
                        ),
                        "sec_level_label": datasets.features.ClassLabel(
                            names=list(_NAMES_2.values())
                        ),
                        "thr_level_label": datasets.features.ClassLabel(
                            names=list(_NAMES_3.values())
                        ),
                    }
                )
            ),
            supervised_keys=("mel", "sec_level_label"),
            homepage=_HOMEPAGE,
            license="CC-BY-NC-ND",
            version="1.2.0",
            citation=_CITATION,
            description=_DESCRIPTION,
            task_templates=[
                ImageClassification(
                    task="image-classification",
                    image_column="mel",
                    label_column="sec_level_label",
                )
            ],
        )

    def _split_generators(self, dl_manager):
        dataset = []
        if self.config.name == "raw":
            files = {}
            audio_files = dl_manager.download_and_extract(_URLS["audio"])
            mel_files = dl_manager.download_and_extract(_URLS["mel"])
            for path in dl_manager.iter_files([audio_files]):
                fname: str = os.path.basename(path)
                if fname.endswith(".mp3"):
                    files[fname.split(".mp")[0]] = {"audio": path}

            for path in dl_manager.iter_files([mel_files]):
                fname = os.path.basename(path)
                if fname.endswith(".jpg"):
                    files[fname.split(".jp")[0]]["mel"] = path

            dataset = list(files.values())

        else:
            data_files = dl_manager.download_and_extract(_URLS["eval"])
            for path in dl_manager.iter_files([data_files]):
                if os.path.basename(path).endswith(".jpg") and "mel" in path:
                    dataset.append(
                        {
                            "mel": path,
                            "cqt": path.replace("\\mel\\", "\\cqt\\").replace(
                                "/mel/", "/cqt/"
                            ),
                            "chroma": path.replace("\\mel\\", "\\chroma\\").replace(
                                "/mel/", "/chroma/"
                            ),
                        }
                    )

        random.shuffle(dataset)
        data_count = len(dataset)
        p80 = int(data_count * 0.8)
        p90 = int(data_count * 0.9)

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={"files": dataset[:p80]},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={"files": dataset[p80:p90]},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={"files": dataset[p90:]},
            ),
        ]

    def _calc_label(self, path, depth, substr="/mel/"):
        spect = substr
        dirpath: str = os.path.dirname(path)
        substr_index = dirpath.find(spect)
        if substr_index < 0:
            spect = spect.replace("/", "\\")
            substr_index = dirpath.find(spect)

        labstr = dirpath[substr_index + len(spect) :]
        labs = labstr.split("/")
        if len(labs) < 2:
            labs = labstr.split("\\")

        if depth <= len(labs):
            return int(labs[depth - 1].split("_")[0])
        else:
            return int(labs[-1].split("_")[0])

    def _generate_examples(self, files):
        if self.config.name == "raw":
            for i, path in enumerate(files):
                yield i, {
                    "audio": path["audio"],
                    "mel": path["mel"],
                    "fst_level_label": _NAMES_1[self._calc_label(path["mel"], 1)],
                    "sec_level_label": _NAMES_2[self._calc_label(path["mel"], 2)],
                    "thr_level_label": _NAMES_3[self._calc_label(path["mel"], 3)],
                }

        else:
            for i, path in enumerate(files):
                yield i, {
                    "mel": path["mel"],
                    "cqt": path["cqt"],
                    "chroma": path["chroma"],
                    "fst_level_label": _NAMES_1[self._calc_label(path["mel"], 1)],
                    "sec_level_label": _NAMES_2[self._calc_label(path["mel"], 2)],
                    "thr_level_label": _NAMES_3[self._calc_label(path["mel"], 3)],
                }