Datasets:
Size:
10K<n<100K
License:
File size: 6,630 Bytes
e988066 a78bf79 e988066 a78bf79 7dc547f a78bf79 c40539e a78bf79 c40539e a78bf79 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
---
license: cc-by-nc-nd-4.0
task_categories:
- audio-classification
- image-classification
language:
- zh
- en
tags:
- music
- art
pretty_name: Music Genre Dataset
size_categories:
- 10K<n<100K
viewer: false
---
# Dataset Card for Music Genre
The Default dataset comprises approximately 1,700 musical pieces in .mp3 format, sourced from the NetEase music. The lengths of these pieces range from 270 to 300 seconds. All are sampled at the rate of 22,050 Hz. As the website providing the audio music includes style labels for the downloaded music, there are no specific annotators involved. Validation is achieved concurrently with the downloading process. They are categorized into a total of 16 genres.
## Viewer
<https://www.modelscope.cn/datasets/ccmusic-database/music_genre/dataPeview>
## Dataset Structure
<style>
.genres td {
vertical-align: middle !important;
text-align: center;
}
.genres th {
text-align: center;
}
</style>
### Default Subset
<table class="genres">
<tr>
<th>audio</th>
<th>mel (spectrogram)</th>
<th>fst_level_label (2-class)</th>
<th>sec_level_label (9-class)</th>
<th>thr_level_label (16-class)</th>
</tr>
<tr>
<td>.wav, 22050Hz</td>
<td>.jpg, 22050Hz</td>
<td>1_Classic / 2_Non_classic</td>
<td>3_Symphony / 4_Opera / 5_Solo / 6_Chamber / 7_Pop / 8_Dance_and_house / 9_Indie / 10_Soul_or_r_and_b / 11_Rock</td>
<td>3_Symphony / 4_Opera / 5_Solo / 6_Chamber / 12_Pop_vocal_ballad / 13_Adult_contemporary / 14_Teen_pop / 15_Contemporary_dance_pop / 16_Dance_pop / 17_Classic_indie_pop / 18_Chamber_cabaret_and_art_pop / 10_Soul_or_r_and_b / 19_Adult_alternative_rock / 20_Uplifting_anthemic_rock / 21_Soft_rock / 22_Acoustic_pop</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</table>
### Eval Subset
<table class="genres">
<tr>
<th>mel</th>
<th>cqt</th>
<th>chroma</th>
<th>fst_level_label (2-class)</th>
<th>sec_level_label (9-class)</th>
<th>thr_level_label (16-class)</th>
</tr>
<tr>
<td>.jpg, 11.4s, 48000Hz</td>
<td>.jpg, 11.4s, 48000Hz</td>
<td>.jpg, 11.4s, 48000Hz</td>
<td>1_Classic / 2_Non_classic</td>
<td>3_Symphony / 4_Opera / 5_Solo / 6_Chamber / 7_Pop / 8_Dance_and_house / 9_Indie / 10_Soul_or_r_and_b / 11_Rock</td>
<td>3_Symphony / 4_Opera / 5_Solo / 6_Chamber / 12_Pop_vocal_ballad / 13_Adult_contemporary / 14_Teen_pop / 15_Contemporary_dance_pop / 16_Dance_pop / 17_Classic_indie_pop / 18_Chamber_cabaret_and_art_pop / 10_Soul_or_r_and_b / 19_Adult_alternative_rock / 20_Uplifting_anthemic_rock / 21_Soft_rock / 22_Acoustic_pop</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</table>
### Data Instances
.zip(.jpg)
### Data Fields
```
1_Classic
3_Symphony
4_Opera
5_Solo
6_Chamber
2_Non_classic
7_Pop
12_Pop_vocal_ballad
13_Adult_contemporary
14_Teen_pop
8_Dance_and_house
15_Contemporary_dance_pop
16_Dance_pop
9_Indie
17_Classic_indie_pop
18_Chamber_cabaret_and_art_pop
10_Soul_or_RnB
11_Rock
19_Adult_alternative_rock
20_Uplifting_anthemic_rock
21_Soft_rock
22_Acoustic_pop
```
<img src="https://www.modelscope.cn/api/v1/datasets/ccmusic-database/music_genre/repo?Revision=master&FilePath=.%2Fdata%2Fgenre.png&View=true">
### Data Splits
| Split | Default | Eval |
| :-------------: | :-----: | :---: |
| total | 1713 | 36375 |
| train(80%) | 1370 | 29100 |
| validation(10%) | 171 | 3637 |
| test(10%) | 172 | 3638 |
## Dataset Description
- **Homepage:** <https://ccmusic-database.github.io>
- **Repository:** <https://huggingface.co/datasets/ccmusic-database/music_genre>
- **Paper:** <https://doi.org/10.5281/zenodo.5676893>
- **Leaderboard:** <https://www.modelscope.cn/datasets/ccmusic-database/music_genre>
- **Point of Contact:** <https://huggingface.co/ccmusic-database/music_genre>
### Dataset Summary
This database contains about 1700 musical pieces (.mp3 format) with lengths of 270-300s that are divided into 17 genres in total.
### Supported Tasks and Leaderboards
Audio classification
### Languages
Multilingual
## Maintenance
```bash
git clone [email protected]:datasets/ccmusic-database/music_genre
cd music_genre
```
## Usage
### Default Subset
```python
from datasets import load_dataset
ds = load_dataset("ccmusic-database/music_genre", name="default")
for item in ds["train"]:
print(item)
for item in ds["validation"]:
print(item)
for item in ds["test"]:
print(item)
```
### Eval Subset
```python
from datasets import load_dataset
ds = load_dataset("ccmusic-database/music_genre", name="eval")
for item in ds["train"]:
print(item)
for item in ds["validation"]:
print(item)
for item in ds["test"]:
print(item)
```
## Dataset Creation
### Curation Rationale
Promoting the development of AI in the music industry
### Source Data
#### Initial Data Collection and Normalization
Zhaorui Liu, Monan Zhou
#### Who are the source language producers?
Composers of the songs in the dataset
### Annotations
#### Annotation process
Students collected about 1700 musical pieces (.mp3 format) with lengths of 270-300s divided into 17 genres in total.
#### Who are the annotators?
Students from CCMUSIC
### Personal and Sensitive Information
Due to copyright issues with the original music, only spectrograms are provided in the dataset.
## Considerations for Using the Data
### Social Impact of Dataset
Promoting the development of AI in the music industry
### Discussion of Biases
Most are English songs
### Other Known Limitations
Samples are not balanced enough
## Additional Information
### Dataset Curators
Zijin Li
### Evaluation
<https://huggingface.co/ccmusic-database/music_genre>
### Citation Information
```bibtex
@dataset{zhaorui_liu_2021_5676893,
author = {Monan Zhou, Shenyang Xu, Zhaorui Liu, Zhaowen Wang, Feng Yu, Wei Li and Baoqiang Han},
title = {CCMusic: an Open and Diverse Database for Chinese and General Music Information Retrieval Research},
month = {mar},
year = {2024},
publisher = {HuggingFace},
version = {1.2},
url = {https://huggingface.co/ccmusic-database}
}
```
### Contributions
Provide a dataset for music genre classification |