--- dataset_info: features: - name: runtime dtype: float64 - name: languages sequence: string - name: metacritic dtype: float64 - name: type dtype: string - name: imdb struct: - name: id dtype: int64 - name: rating dtype: float64 - name: votes dtype: int64 - name: genres sequence: string - name: awards struct: - name: nominations dtype: int64 - name: text dtype: string - name: wins dtype: int64 - name: rated dtype: string - name: cast sequence: string - name: directors sequence: string - name: fullplot dtype: string - name: title dtype: string - name: num_mflix_comments dtype: int64 - name: countries sequence: string - name: plot dtype: string - name: poster dtype: string - name: writers sequence: string - name: plot_embedding sequence: float64 splits: - name: train num_bytes: 13657438 num_examples: 1452 download_size: 10625884 dataset_size: 13657438 configs: - config_name: default data_files: - split: train path: data/train-* --- This dataset originates from MongoDB's [embedded_movies dataset](https://huggingface.co/datasets/MongoDB/embedded_movies) and contains details on movies from different genres. Each row represents a single movie with detailed information. As opposed to the original dataset, this one includes embeddings of the fullplot column using the open source [General Text Embeddings model](https://huggingface.co/thenlper/gte-large) instead of OpenAI's text-embedding-ada-002 embedding model used in MongoDB Atlas. Those open source embeddings are also used in [Hermes](https://github.com/chrisonntag/hermes).