kpwr-ner / kpwr-ner.py
Albert Sawczyn
add dataset
b194823
raw
history blame
7.79 kB
# coding=utf-8
# Copyright 2021 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""KPWR-NER tagging dataset."""
import csv
from typing import List, Tuple, Dict, Generator
import datasets
_DESCRIPTION = """KPWR-NER tagging dataset."""
_URLS = {
"train": "https://huggingface.co/datasets/clarin-pl/kpwr-ner/resolve/main/data/kpwr-ner-n82-train-tune.iob",
"test": "https://huggingface.co/datasets/clarin-pl/kpwr-ner/resolve/main/data/kpwr-ner-n82-test.iob",
}
_HOMEPAGE = "https://clarin-pl.eu/dspace/handle/11321/294"
_NER_TAGS = [
"B-nam_adj",
"B-nam_adj_city",
"B-nam_adj_country",
"B-nam_adj_person",
"B-nam_eve",
"B-nam_eve_human",
"B-nam_eve_human_cultural",
"B-nam_eve_human_holiday",
"B-nam_eve_human_sport",
"B-nam_fac_bridge",
"B-nam_fac_goe",
"B-nam_fac_goe_stop",
"B-nam_fac_park",
"B-nam_fac_road",
"B-nam_fac_square",
"B-nam_fac_system",
"B-nam_liv_animal",
"B-nam_liv_character",
"B-nam_liv_god",
"B-nam_liv_habitant",
"B-nam_liv_person",
"B-nam_loc",
"B-nam_loc_astronomical",
"B-nam_loc_country_region",
"B-nam_loc_gpe_admin1",
"B-nam_loc_gpe_admin2",
"B-nam_loc_gpe_admin3",
"B-nam_loc_gpe_city",
"B-nam_loc_gpe_conurbation",
"B-nam_loc_gpe_country",
"B-nam_loc_gpe_district",
"B-nam_loc_gpe_subdivision",
"B-nam_loc_historical_region",
"B-nam_loc_hydronym",
"B-nam_loc_hydronym_lake",
"B-nam_loc_hydronym_ocean",
"B-nam_loc_hydronym_river",
"B-nam_loc_hydronym_sea",
"B-nam_loc_land",
"B-nam_loc_land_continent",
"B-nam_loc_land_island",
"B-nam_loc_land_mountain",
"B-nam_loc_land_peak",
"B-nam_loc_land_region",
"B-nam_num_house",
"B-nam_num_phone",
"B-nam_org_company",
"B-nam_org_group",
"B-nam_org_group_band",
"B-nam_org_group_team",
"B-nam_org_institution",
"B-nam_org_nation",
"B-nam_org_organization",
"B-nam_org_organization_sub",
"B-nam_org_political_party",
"B-nam_oth",
"B-nam_oth_currency",
"B-nam_oth_data_format",
"B-nam_oth_license",
"B-nam_oth_position",
"B-nam_oth_tech",
"B-nam_oth_www",
"B-nam_pro",
"B-nam_pro_award",
"B-nam_pro_brand",
"B-nam_pro_media",
"B-nam_pro_media_periodic",
"B-nam_pro_media_radio",
"B-nam_pro_media_tv",
"B-nam_pro_media_web",
"B-nam_pro_model_car",
"B-nam_pro_software",
"B-nam_pro_software_game",
"B-nam_pro_title",
"B-nam_pro_title_album",
"B-nam_pro_title_article",
"B-nam_pro_title_book",
"B-nam_pro_title_document",
"B-nam_pro_title_song",
"B-nam_pro_title_treaty",
"B-nam_pro_title_tv",
"B-nam_pro_vehicle",
"I-nam_adj_country",
"I-nam_eve",
"I-nam_eve_human",
"I-nam_eve_human_cultural",
"I-nam_eve_human_holiday",
"I-nam_eve_human_sport",
"I-nam_fac_bridge",
"I-nam_fac_goe",
"I-nam_fac_goe_stop",
"I-nam_fac_park",
"I-nam_fac_road",
"I-nam_fac_square",
"I-nam_fac_system",
"I-nam_liv_animal",
"I-nam_liv_character",
"I-nam_liv_god",
"I-nam_liv_person",
"I-nam_loc",
"I-nam_loc_astronomical",
"I-nam_loc_country_region",
"I-nam_loc_gpe_admin1",
"I-nam_loc_gpe_admin2",
"I-nam_loc_gpe_admin3",
"I-nam_loc_gpe_city",
"I-nam_loc_gpe_conurbation",
"I-nam_loc_gpe_country",
"I-nam_loc_gpe_district",
"I-nam_loc_gpe_subdivision",
"I-nam_loc_historical_region",
"I-nam_loc_hydronym",
"I-nam_loc_hydronym_lake",
"I-nam_loc_hydronym_ocean",
"I-nam_loc_hydronym_river",
"I-nam_loc_hydronym_sea",
"I-nam_loc_land",
"I-nam_loc_land_continent",
"I-nam_loc_land_island",
"I-nam_loc_land_mountain",
"I-nam_loc_land_peak",
"I-nam_loc_land_region",
"I-nam_num_house",
"I-nam_num_phone",
"I-nam_org_company",
"I-nam_org_group",
"I-nam_org_group_band",
"I-nam_org_group_team",
"I-nam_org_institution",
"I-nam_org_nation",
"I-nam_org_organization",
"I-nam_org_organization_sub",
"I-nam_org_political_party",
"I-nam_oth",
"I-nam_oth_currency",
"I-nam_oth_data_format",
"I-nam_oth_license",
"I-nam_oth_position",
"I-nam_oth_tech",
"I-nam_oth_www",
"I-nam_pro",
"I-nam_pro_award",
"I-nam_pro_brand",
"I-nam_pro_media",
"I-nam_pro_media_periodic",
"I-nam_pro_media_radio",
"I-nam_pro_media_tv",
"I-nam_pro_media_web",
"I-nam_pro_model_car",
"I-nam_pro_software",
"I-nam_pro_software_game",
"I-nam_pro_title",
"I-nam_pro_title_album",
"I-nam_pro_title_article",
"I-nam_pro_title_book",
"I-nam_pro_title_document",
"I-nam_pro_title_song",
"I-nam_pro_title_treaty",
"I-nam_pro_title_tv",
"I-nam_pro_vehicle",
"O",
]
class KPWRNER(datasets.GeneratorBasedBuilder):
def _info(self) -> datasets.DatasetInfo:
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"tokens": datasets.Sequence(datasets.Value("string")),
"lemmas": datasets.Sequence(datasets.Value("string")),
"orth": datasets.Sequence(datasets.Value("string")),
"ner": datasets.Sequence(
datasets.features.ClassLabel(
names=_NER_TAGS, num_classes=len(_NER_TAGS)
)
),
}
),
homepage=_HOMEPAGE,
)
def _split_generators(
self, dl_manager: datasets.DownloadManager
) -> List[datasets.SplitGenerator]:
urls_to_download = _URLS
downloaded_files = dl_manager.download_and_extract(urls_to_download)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"filepath": downloaded_files["train"]},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={"filepath": downloaded_files["test"]},
),
]
def _generate_examples(
self, filepath: str
) -> Generator[Tuple[int, Dict[str, str]], None, None]:
with open(filepath, "r", encoding="utf-8") as f:
reader = csv.reader(f, delimiter="\t", quoting=csv.QUOTE_NONE)
tokens = []
lemma = []
orth = []
ner = []
gid = 0
for line in reader:
if not line:
yield gid, {
"tokens": tokens,
"lemmas": lemma,
"orth": orth,
"ner": ner,
}
gid += 1
tokens = []
lemma = []
orth = []
ner = []
elif len(line) == 1: # ignore DOCS
continue
else:
tokens.append(line[0])
lemma.append(line[1])
orth.append(line[2])
ner.append(line[3])