|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Being Right for Whose Right Reasons?""" |
|
|
|
import json |
|
import os |
|
import textwrap |
|
|
|
import datasets |
|
|
|
|
|
MAIN_CITATION = """\ |
|
@inproceedings{thorn-jakobsen-etal-2023-right, |
|
title = {Being Right for Whose Right Reasons?}, |
|
author = {Thorn Jakobsen, Terne Sasha and |
|
Cabello, Laura and |
|
S{\o}gaard, Anders}, |
|
booktitle = {Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)}, |
|
year = {2023}, |
|
publisher = {Association for Computational Linguistics}, |
|
url = {https://aclanthology.org/2023.acl-long.59}, |
|
doi = {10.18653/v1/2023.acl-long.59}, |
|
pages = {1033--1054} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
Explainability methods are used to benchmark |
|
the extent to which model predictions align |
|
with human rationales i.e., are 'right for the |
|
right reasons'. Previous work has failed to acknowledge, however, |
|
that what counts as a rationale is sometimes subjective. This paper |
|
presents what we think is a first of its kind, a |
|
collection of human rationale annotations augmented with the annotators demographic information. |
|
""" |
|
|
|
SST2_LABELS = ["negative", "positive", "no sentiment"] |
|
|
|
DYNASENT_LABELS = ["negative", "positive", "no sentiment"] |
|
|
|
MAIN_PATH = "https://huggingface.co/datasets/coastalcph/fair-rationales/resolve/main" |
|
|
|
|
|
class FairRationalesConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for FairRationales.""" |
|
|
|
def __init__( |
|
self, |
|
name, |
|
url, |
|
data_url, |
|
attributes, |
|
citation, |
|
description, |
|
label_classes=None, |
|
label_classes_original=None, |
|
**kwargs, |
|
): |
|
"""BuilderConfig for FairRationales. |
|
Args: |
|
label_column: `string`, name of the column in the jsonl file corresponding |
|
to the label |
|
url: `string`, url for the original project |
|
data_url: `string`, url to download the zip file from |
|
data_file: `string`, filename for data set |
|
citation: `string`, citation for the data set |
|
url: `string`, url for information about the data set |
|
label_classes: `list[string]`, the list of classes if the label is |
|
categorical. If not provided, then the label will be of type |
|
`datasets.Value('float32')`. |
|
attributes: `List<string>`, names of the protected attributes |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(FairRationalesConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs) |
|
self.name = name |
|
self.label_classes = label_classes |
|
self.label_classes_original = label_classes_original |
|
self.attributes = attributes |
|
self.url = url |
|
self.data_url = data_url |
|
self.description = description |
|
self.citation = citation |
|
|
|
|
|
class FairRationales(datasets.GeneratorBasedBuilder): |
|
"""FairRationales: A multilingual benchmark for evaluating fairness in legal text processing. Version 1.0""" |
|
|
|
BUILDER_CONFIGS = [ |
|
FairRationalesConfig( |
|
name="sst2", |
|
description=textwrap.dedent( |
|
"""\ |
|
The Stanford Sentiment Treebank is a corpus with fully labeled parse trees that allows for a complete analysis of the compositional effects of sentiment in language. |
|
Binary classification experiments on full sentences (negative or somewhat negative vs somewhat positive or positive with neutral sentences discarded) refer to the dataset as SST-2 or SST binary. |
|
This is a subset of the original data where annotators were allowed to re-annotate an instance as neutral or "no sentiment" and provide rationales for it. |
|
Therefore, this is a ternary text classification task (hihgly unbalanced for the 'no sentiment' class). |
|
Given a sentence, the goal is to predict the sentiment it conveys (positive, neutral, no sentiment).""" |
|
), |
|
|
|
label_classes=SST2_LABELS, |
|
label_classes_original=["negative", "positive"], |
|
attributes=[ |
|
("recruitment_ethnicity", ["Latino/Hispanic", "White/Causasian", "Black/African American"]), |
|
("recruitment_age", [">=38", "<=35"]), |
|
("group_id", ["BO", "BY", "WO", "WY", "LO", "LY"]), |
|
("gender", ["Male", "Female"]), |
|
("english_proficiency", ["Not well", "Well", "Very well"]), |
|
("attentioncheck", ["PASSED", "FAILED"]), |
|
("sst2_id", datasets.Value("int32")), |
|
("sst2_split", datasets.Value("string")), |
|
], |
|
data_url=os.path.join(MAIN_PATH, "sst2.zip"), |
|
url="https://huggingface.co/datasets/sst2", |
|
citation=textwrap.dedent( |
|
"""\ |
|
@inproceedings{socher-etal-2013-recursive, |
|
title = "Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank", |
|
author = "Socher, Richard and |
|
Perelygin, Alex and |
|
Wu, Jean and |
|
Chuang, Jason and |
|
Manning, Christopher D. and |
|
Ng, Andrew and |
|
Potts, Christopher", |
|
booktitle = "Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing", |
|
month = oct, |
|
year = "2013", |
|
address = "Seattle, Washington, USA", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://www.aclweb.org/anthology/D13-1170", |
|
pages = "1631--1642", |
|
} |
|
}""" |
|
), |
|
), |
|
FairRationalesConfig( |
|
name="dynasent", |
|
description=textwrap.dedent( |
|
"""\ |
|
DynaSent is an English-language benchmark task for ternary (positive/negative/neutral) sentiment analysis. |
|
This is a subset of the original data where annotators were allowed to re-annotate an instance as neutral or "no sentiment" and provide rationales for it. |
|
Therefore, this is a ternary text classification task (hihgly unbalanced for the 'no sentiment' class). |
|
Given a sentence, the goal is to predict the sentiment it conveys (positive, neutral, no sentiment). |
|
""" |
|
), |
|
label_classes=DYNASENT_LABELS, |
|
label_classes_original=["negative", "positive"], |
|
attributes=[ |
|
("recruitment_ethnicity", ["Latino/Hispanic", "White/Causasian", "Black/African American"]), |
|
("recruitment_age", [">=38", "<=35"]), |
|
("group_id", ["BO", "BY", "WO", "WY", "LO", "LY"]), |
|
("gender", ["Male", "Female", "Why do you conflate sex and gender?"]), |
|
("english_proficiency", ["Not well", "Well", "Very well"]), |
|
("attentioncheck", ["PASSED", "FAILED"]), |
|
], |
|
data_url=os.path.join(MAIN_PATH, "dynasent.zip"), |
|
url="https://huggingface.co/datasets/dynabench/dynasent", |
|
citation=textwrap.dedent( |
|
"""\ |
|
@article{potts-etal-2020-dynasent, |
|
title={{DynaSent}: A Dynamic Benchmark for Sentiment Analysis}, |
|
author={Potts, Christopher and Wu, Zhengxuan and Geiger, Atticus and Kiela, Douwe}, |
|
journal={arXiv preprint arXiv:2012.15349}, |
|
url={https://arxiv.org/abs/2012.15349}, |
|
year={2020} |
|
}""" |
|
), |
|
), |
|
FairRationalesConfig( |
|
name="cose", |
|
description=textwrap.dedent( |
|
"""\ |
|
Common Sense Explanations (CoS-E) allows for training language models to automatically |
|
generate explanations that can be used during training and inference in a novel |
|
Commonsense Auto-Generated Explanation (CAGE) framework. |
|
This is a subset of the original data where annotators were allowed to re-annotate the questions and provide rationales for it. |
|
This is a question-answering task with 1 correct answer out of 5 options. |
|
Given a question, the goal is to predict the right answer. |
|
""" |
|
), |
|
label_classes_original=["A", "B", "C", "D", "E"], |
|
attributes=[ |
|
("recruitment_ethnicity", ["Latino/Hispanic", "White/Causasian", "Black/African American"]), |
|
("recruitment_age", [">=38", "<=35"]), |
|
("group_id", ["BO", "BY", "WO", "WY", "LO", "LY"]), |
|
("gender", ["Male", "Female", "Curious ", "Non-binary/third gender"]), |
|
("english_proficiency", ["Not well", "Well", "Very well"]), |
|
("attentioncheck", ["PASSED", "FAILED"]), |
|
], |
|
data_url=os.path.join(MAIN_PATH, "cose.zip"), |
|
url="https://huggingface.co/datasets/cos_e", |
|
citation=textwrap.dedent( |
|
"""\ |
|
@inproceedings{rajani2019explain, |
|
title = "Explain Yourself! Leveraging Language models for Commonsense Reasoning", |
|
author = "Rajani, Nazneen Fatema and |
|
McCann, Bryan and |
|
Xiong, Caiming and |
|
Socher, Richard", |
|
year="2019", |
|
booktitle = "Proceedings of the 2019 Conference of the Association for Computational Linguistics (ACL2019)", |
|
url ="https://arxiv.org/abs/1906.02361" |
|
} |
|
}""" |
|
), |
|
), |
|
] |
|
|
|
def _info(self): |
|
features = {"QID": datasets.Value("string"), |
|
"text_id": datasets.Value("int64"), |
|
"sentence": datasets.Value("string"), |
|
"label_index": datasets.Value("int64"), |
|
"original_label": datasets.ClassLabel(names=self.config.label_classes_original), |
|
"rationale": datasets.Value("string"), |
|
"rationale_index": datasets.Value("string"), |
|
"rationale_binary": datasets.Value("string"), |
|
"age": datasets.Value("int32"), |
|
"ethnicity": datasets.Value("string"), |
|
"originaldata_id": datasets.Value("string"), |
|
"annotator_ID": datasets.Value("int64") |
|
} |
|
if self.config.name == "cose": |
|
features["label"] = datasets.Value("string") |
|
else: |
|
features["label"] = datasets.ClassLabel(names=self.config.label_classes) |
|
for attribute_name, attribute_groups in self.config.attributes: |
|
if "sst2" not in attribute_name: |
|
features[attribute_name] = datasets.ClassLabel(names=attribute_groups) |
|
else: |
|
features[attribute_name] = attribute_groups |
|
return datasets.DatasetInfo( |
|
description=self.config.description, |
|
features=datasets.Features(features), |
|
homepage=self.config.url, |
|
citation=self.config.citation + "\n" + MAIN_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
data_dir = dl_manager.download_and_extract(self.config.data_url) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
|
|
gen_kwargs={ |
|
"filepath": os.path.join(data_dir, self.config.name, "train.jsonl"), |
|
"split": "train" |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath, split): |
|
"""This function returns the examples in the raw (text) form.""" |
|
with open(filepath, encoding="utf-8") as f: |
|
for id_, row in enumerate(f): |
|
data = json.loads(row) |
|
example = { |
|
"sentence": data["sentence"], |
|
"label": data["label"], |
|
"text_id": data["text_id"], |
|
"QID": data["QID"], |
|
"label_index": data["label_index"], |
|
"original_label": data["original_label"], |
|
"rationale": data["rationale"], |
|
"rationale_index": data["rationale_index"], |
|
"rationale_binary": data["rationale_binary"], |
|
"age": data["age"], |
|
"ethnicity": data["ethnicity"], |
|
"gender": data["gender"], |
|
"originaldata_id": data["originaldata_id"], |
|
"annotator_ID": data["annotator_ID"] |
|
} |
|
for attribute_name, _ in self.config.attributes: |
|
example[attribute_name] = data[attribute_name] |
|
if self.config.name == "sst2": |
|
example["sst2_id"] = data["sst2_id"] |
|
example["sst2_split"] = data["sst2_split"] |
|
yield id_, example |