Datasets:
kiddothe2b
commited on
Commit
•
b4013a9
1
Parent(s):
63943fb
Update README.md
Browse files
README.md
CHANGED
@@ -254,13 +254,13 @@ An example of 'train' looks as follows.
|
|
254 |
<tr><td>Dataset</td><td>Source</td><td>Sub-domain</td><td>Language</td><td>Task Type</td><td>Classes</td><tr>
|
255 |
<tr><td>ECtHR</td><td> <a href="https://aclanthology.org/P19-1424/">Chalkidis et al. (2019)</a> </td><td>ECHR</td><td>en</td><td>Multi-label classification</td><td>10+1</td></tr>
|
256 |
<tr><td>SCOTUS</td><td> <a href="http://scdb.wustl.edu">Spaeth et al. (2020)</a></td><td>US Law</td><td>en</td><td>Multi-class classification</td><td>14</td></tr>
|
257 |
-
<tr><td>FSCS</td><td> <a href="https://
|
258 |
<tr><td>CAIL</td><td> <a href="https://arxiv.org/abs/2105.03887">Wang et al. (2021)</a></td><td>Chinese Law</td><td>zh</td><td>Multi-class classification</td><td>6</td></tr>
|
259 |
</table>
|
260 |
|
261 |
#### Initial Data Collection and Normalization
|
262 |
|
263 |
-
We standardize and put together four datasets: ECtHR (Chalkidis et al., 2021), SCOTUS (Spaeth et al., 2020), FSCS (Niklaus et al., 2021), and CAIL (Xiao et al., 2018; Wang et al., 2021) that are already
|
264 |
|
265 |
The benchmark is not a blind stapling of pre-existing resources, we augment previous datasets. In the case of ECtHR, previously unavailable demographic attributes have been released to make the original dataset amenable for fairness research. For SCOTUS, two resources (court opinions with SCDB) have been combined for the very same reason, while the authors provide a manual categorization (clustering) of respondents.
|
266 |
|
|
|
254 |
<tr><td>Dataset</td><td>Source</td><td>Sub-domain</td><td>Language</td><td>Task Type</td><td>Classes</td><tr>
|
255 |
<tr><td>ECtHR</td><td> <a href="https://aclanthology.org/P19-1424/">Chalkidis et al. (2019)</a> </td><td>ECHR</td><td>en</td><td>Multi-label classification</td><td>10+1</td></tr>
|
256 |
<tr><td>SCOTUS</td><td> <a href="http://scdb.wustl.edu">Spaeth et al. (2020)</a></td><td>US Law</td><td>en</td><td>Multi-class classification</td><td>14</td></tr>
|
257 |
+
<tr><td>FSCS</td><td> <a href="https://aclanthology.org/2021.nllp-1.3/">Niklaus et al. (2021)</a></td><td>Swiss Law</td><td>en, fr , it</td><td>Binary classification</td><td>2</td></tr>
|
258 |
<tr><td>CAIL</td><td> <a href="https://arxiv.org/abs/2105.03887">Wang et al. (2021)</a></td><td>Chinese Law</td><td>zh</td><td>Multi-class classification</td><td>6</td></tr>
|
259 |
</table>
|
260 |
|
261 |
#### Initial Data Collection and Normalization
|
262 |
|
263 |
+
We standardize and put together four datasets: ECtHR (Chalkidis et al., 2021), SCOTUS (Spaeth et al., 2020), FSCS (Niklaus et al., 2021), and CAIL (Xiao et al., 2018; Wang et al., 2021) that are already publicly available.
|
264 |
|
265 |
The benchmark is not a blind stapling of pre-existing resources, we augment previous datasets. In the case of ECtHR, previously unavailable demographic attributes have been released to make the original dataset amenable for fairness research. For SCOTUS, two resources (court opinions with SCDB) have been combined for the very same reason, while the authors provide a manual categorization (clustering) of respondents.
|
266 |
|