Datasets:

Modalities:
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
kiddothe2b commited on
Commit
bd4bac5
1 Parent(s): 4f049ff

Fix bug with labels of eurlex config of lex_glue dataset (#5048)

Browse files

* Update lex_glue.py

Fix for a critical bug in the EURLEX dataset label list to make LexGLUE EURLEX results replicable. In LexGLUE (Chalkidis et al., 2022), the following is mentioned w.r.t. EUR-LEX: "It supports four different label granularities, comprising 21, 127, 567, 7390 EuroVoc concepts, respectively. We use the 100 most frequent concepts from level 2 [...]”. The current label list has all 127 labels, which leads to different (lower) results, as communicated by users.

* Update lex_glue.py

Update code formatting

* Update dataset card

* Update metadata JSON

Co-authored-by: Albert Villanova del Moral <[email protected]>

Commit from https://github.com/huggingface/datasets/commit/9a9df850e0fa53ed5aa4fd779a45f6788e71c550

Files changed (3) hide show
  1. README.md +1 -1
  2. dataset_infos.json +1 -1
  3. lex_glue.py +0 -27
README.md CHANGED
@@ -199,7 +199,7 @@ An example of 'train' looks as follows.
199
  ```json
200
  {
201
  "text": "COMMISSION REGULATION (EC) No 1629/96 of 13 August 1996 on an invitation to tender for the refund on export of wholly milled round grain rice to certain third countries ...",
202
- "labels": [2, 42, 72, 76, 86]
203
  }
204
  ```
205
 
 
199
  ```json
200
  {
201
  "text": "COMMISSION REGULATION (EC) No 1629/96 of 13 August 1996 on an invitation to tender for the refund on export of wholly milled round grain rice to certain third countries ...",
202
+ "labels": [4, 20, 21, 35, 68]
203
  }
204
  ```
205
 
dataset_infos.json CHANGED
@@ -1 +1 @@
1
- {"ecthr_a": {"description": "The European Court of Human Rights (ECtHR) hears allegations that a state has\nbreached human rights provisions of the European Convention of Human Rights (ECHR).\nFor each case, the dataset provides a list of factual paragraphs (facts) from the case description.\nEach case is mapped to articles of the ECHR that were violated (if any).", "citation": "@inproceedings{chalkidis-etal-2021-paragraph,\n title = \"Paragraph-level Rationale Extraction through Regularization: A case study on {E}uropean Court of Human Rights Cases\",\n author = \"Chalkidis, Ilias and\n Fergadiotis, Manos and\n Tsarapatsanis, Dimitrios and\n Aletras, Nikolaos and\n Androutsopoulos, Ion and\n Malakasiotis, Prodromos\",\n booktitle = \"Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies\",\n month = jun,\n year = \"2021\",\n address = \"Online\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://aclanthology.org/2021.naacl-main.22\",\n doi = \"10.18653/v1/2021.naacl-main.22\",\n pages = \"226--241\",\n}\n}\n@article{chalkidis-etal-2021-lexglue,\n title={{LexGLUE}: A Benchmark Dataset for Legal Language Understanding in English},\n author={Chalkidis, Ilias and\n Jana, Abhik and\n Hartung, Dirk and\n Bommarito, Michael and\n Androutsopoulos, Ion and\n Katz, Daniel Martin and\n Aletras, Nikolaos},\n year={2021},\n eprint={2110.00976},\n archivePrefix={arXiv},\n primaryClass={cs.CL},\n note = {arXiv: 2110.00976},\n}", "homepage": "https://archive.org/details/ECtHR-NAACL2021", "license": "", "features": {"text": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "labels": {"feature": {"num_classes": 10, "names": ["2", "3", "5", "6", "8", "9", "10", "11", "14", "P1-1"], "names_file": null, "id": null, "_type": "ClassLabel"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "lex_glue", "config_name": "ecthr_a", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 89637461, "num_examples": 9000, "dataset_name": "lex_glue"}, "test": {"name": "test", "num_bytes": 11884180, "num_examples": 1000, "dataset_name": "lex_glue"}, "validation": {"name": "validation", "num_bytes": 10985180, "num_examples": 1000, "dataset_name": "lex_glue"}}, "download_checksums": {"https://zenodo.org/record/5532997/files/ecthr.tar.gz": {"num_bytes": 32852475, "checksum": "461c1f6016af3a7ac0bd115c1f9ff65031258bfec39e570fec74a16d8946398e"}}, "download_size": 32852475, "post_processing_size": null, "dataset_size": 112506821, "size_in_bytes": 145359296}, "ecthr_b": {"description": "The European Court of Human Rights (ECtHR) hears allegations that a state has\nbreached human rights provisions of the European Convention of Human Rights (ECHR).\nFor each case, the dataset provides a list of factual paragraphs (facts) from the case description.\nEach case is mapped to articles of ECHR that were allegedly violated (considered by the court).", "citation": "@inproceedings{chalkidis-etal-2021-paragraph,\n title = \"Paragraph-level Rationale Extraction through Regularization: A case study on {E}uropean Court of Human Rights Cases\",\n author = \"Chalkidis, Ilias\n and Fergadiotis, Manos\n and Tsarapatsanis, Dimitrios\n and Aletras, Nikolaos\n and Androutsopoulos, Ion\n and Malakasiotis, Prodromos\",\n booktitle = \"Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies\",\n year = \"2021\",\n address = \"Online\",\n url = \"https://aclanthology.org/2021.naacl-main.22\",\n}\n}\n@article{chalkidis-etal-2021-lexglue,\n title={{LexGLUE}: A Benchmark Dataset for Legal Language Understanding in English},\n author={Chalkidis, Ilias and\n Jana, Abhik and\n Hartung, Dirk and\n Bommarito, Michael and\n Androutsopoulos, Ion and\n Katz, Daniel Martin and\n Aletras, Nikolaos},\n year={2021},\n eprint={2110.00976},\n archivePrefix={arXiv},\n primaryClass={cs.CL},\n note = {arXiv: 2110.00976},\n}", "homepage": "https://archive.org/details/ECtHR-NAACL2021", "license": "", "features": {"text": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "labels": {"feature": {"num_classes": 10, "names": ["2", "3", "5", "6", "8", "9", "10", "11", "14", "P1-1"], "names_file": null, "id": null, "_type": "ClassLabel"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "lex_glue", "config_name": "ecthr_b", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 89657661, "num_examples": 9000, "dataset_name": "lex_glue"}, "test": {"name": "test", "num_bytes": 11886940, "num_examples": 1000, "dataset_name": "lex_glue"}, "validation": {"name": "validation", "num_bytes": 10987828, "num_examples": 1000, "dataset_name": "lex_glue"}}, "download_checksums": {"https://zenodo.org/record/5532997/files/ecthr.tar.gz": {"num_bytes": 32852475, "checksum": "461c1f6016af3a7ac0bd115c1f9ff65031258bfec39e570fec74a16d8946398e"}}, "download_size": 32852475, "post_processing_size": null, "dataset_size": 112532429, "size_in_bytes": 145384904}, "eurlex": {"description": "European Union (EU) legislation is published in EUR-Lex portal.\nAll EU laws are annotated by EU's Publications Office with multiple concepts from the EuroVoc thesaurus,\na multilingual thesaurus maintained by the Publications Office.\nThe current version of EuroVoc contains more than 7k concepts referring to various activities\nof the EU and its Member States (e.g., economics, health-care, trade).\nGiven a document, the task is to predict its EuroVoc labels (concepts).", "citation": "@inproceedings{chalkidis-etal-2021-multieurlex,\n author = {Chalkidis, Ilias and\n Fergadiotis, Manos and\n Androutsopoulos, Ion},\n title = {MultiEURLEX -- A multi-lingual and multi-label legal document\n classification dataset for zero-shot cross-lingual transfer},\n booktitle = {Proceedings of the 2021 Conference on Empirical Methods\n in Natural Language Processing},\n year = {2021},\n location = {Punta Cana, Dominican Republic},\n}\n}\n@article{chalkidis-etal-2021-lexglue,\n title={{LexGLUE}: A Benchmark Dataset for Legal Language Understanding in English},\n author={Chalkidis, Ilias and\n Jana, Abhik and\n Hartung, Dirk and\n Bommarito, Michael and\n Androutsopoulos, Ion and\n Katz, Daniel Martin and\n Aletras, Nikolaos},\n year={2021},\n eprint={2110.00976},\n archivePrefix={arXiv},\n primaryClass={cs.CL},\n note = {arXiv: 2110.00976},\n}", "homepage": "https://zenodo.org/record/5363165#.YVJOAi8RqaA", "license": "", "features": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "labels": {"feature": {"num_classes": 127, "names": ["100163", "100164", "100165", "100166", "100167", "100168", "100169", "100170", "100171", "100172", "100173", "100174", "100175", "100176", "100177", "100178", "100179", "100180", "100181", "100182", "100183", "100184", "100185", "100186", "100187", "100188", "100189", "100190", "100191", "100192", "100193", "100194", "100195", "100196", "100197", "100198", "100199", "100200", "100201", "100202", "100203", "100204", "100205", "100206", "100207", "100208", "100209", "100210", "100211", "100212", "100213", "100214", "100215", "100216", "100217", "100218", "100219", "100220", "100221", "100222", "100223", "100224", "100225", "100226", "100227", "100228", "100229", "100230", "100231", "100232", "100233", "100234", "100235", "100236", "100237", "100238", "100239", "100240", "100241", "100242", "100243", "100244", "100245", "100246", "100247", "100248", "100249", "100250", "100251", "100252", "100253", "100254", "100255", "100256", "100257", "100258", "100259", "100260", "100261", "100262", "100263", "100264", "100265", "100266", "100267", "100268", "100269", "100270", "100271", "100272", "100273", "100274", "100275", "100276", "100277", "100278", "100279", "100280", "100281", "100282", "100283", "100284", "100285", "100286", "100287", "100288", "100289"], "names_file": null, "id": null, "_type": "ClassLabel"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "lex_glue", "config_name": "eurlex", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 390789505, "num_examples": 55000, "dataset_name": "lex_glue"}, "test": {"name": "test", "num_bytes": 59742502, "num_examples": 5000, "dataset_name": "lex_glue"}, "validation": {"name": "validation", "num_bytes": 41546764, "num_examples": 5000, "dataset_name": "lex_glue"}}, "download_checksums": {"https://zenodo.org/record/5532997/files/eurlex.tar.gz": {"num_bytes": 125413277, "checksum": "82376ff55c3812632d8a21ad0d7e515e2e7ec6431ca7673a454cdd41a3a7bf46"}}, "download_size": 125413277, "post_processing_size": null, "dataset_size": 492078771, "size_in_bytes": 617492048}, "scotus": {"description": "The US Supreme Court (SCOTUS) is the highest federal court in the United States of America\nand generally hears only the most controversial or otherwise complex cases which have not\nbeen sufficiently well solved by lower courts. This is a single-label multi-class classification\ntask, where given a document (court opinion), the task is to predict the relevant issue areas.\nThe 14 issue areas cluster 278 issues whose focus is on the subject matter of the controversy (dispute).", "citation": "@misc{spaeth2020,\n author = {Harold J. Spaeth and Lee Epstein and Andrew D. Martin, Jeffrey A. Segal\n and Theodore J. Ruger and Sara C. Benesh},\n year = {2020},\n title ={{Supreme Court Database, Version 2020 Release 01}},\n url= {http://Supremecourtdatabase.org},\n howpublished={Washington University Law}\n}\n@article{chalkidis-etal-2021-lexglue,\n title={{LexGLUE}: A Benchmark Dataset for Legal Language Understanding in English},\n author={Chalkidis, Ilias and\n Jana, Abhik and\n Hartung, Dirk and\n Bommarito, Michael and\n Androutsopoulos, Ion and\n Katz, Daniel Martin and\n Aletras, Nikolaos},\n year={2021},\n eprint={2110.00976},\n archivePrefix={arXiv},\n primaryClass={cs.CL},\n note = {arXiv: 2110.00976},\n}", "homepage": "http://scdb.wustl.edu/data.php", "license": "", "features": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 13, "names": ["1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "lex_glue", "config_name": "scotus", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 178959320, "num_examples": 5000, "dataset_name": "lex_glue"}, "test": {"name": "test", "num_bytes": 76213283, "num_examples": 1400, "dataset_name": "lex_glue"}, "validation": {"name": "validation", "num_bytes": 75600247, "num_examples": 1400, "dataset_name": "lex_glue"}}, "download_checksums": {"https://zenodo.org/record/5532997/files/scotus.tar.gz": {"num_bytes": 104763335, "checksum": "d53cc99aaf60b24ca7e4cf634f08a2572b5b3532f83aecdfc2c4257050dc9d0a"}}, "download_size": 104763335, "post_processing_size": null, "dataset_size": 330772850, "size_in_bytes": 435536185}, "ledgar": {"description": "LEDGAR dataset aims contract provision (paragraph) classification.\nThe contract provisions come from contracts obtained from the US Securities and Exchange Commission (SEC)\nfilings, which are publicly available from EDGAR. Each label represents the single main topic\n(theme) of the corresponding contract provision.", "citation": "@inproceedings{tuggener-etal-2020-ledgar,\n title = \"{LEDGAR}: A Large-Scale Multi-label Corpus for Text Classification of Legal Provisions in Contracts\",\n author = {Tuggener, Don and\n von D{\"a}niken, Pius and\n Peetz, Thomas and\n Cieliebak, Mark},\n booktitle = \"Proceedings of the 12th Language Resources and Evaluation Conference\",\n year = \"2020\",\n address = \"Marseille, France\",\n url = \"https://aclanthology.org/2020.lrec-1.155\",\n}\n}\n@article{chalkidis-etal-2021-lexglue,\n title={{LexGLUE}: A Benchmark Dataset for Legal Language Understanding in English},\n author={Chalkidis, Ilias and\n Jana, Abhik and\n Hartung, Dirk and\n Bommarito, Michael and\n Androutsopoulos, Ion and\n Katz, Daniel Martin and\n Aletras, Nikolaos},\n year={2021},\n eprint={2110.00976},\n archivePrefix={arXiv},\n primaryClass={cs.CL},\n note = {arXiv: 2110.00976},\n}", "homepage": "https://metatext.io/datasets/ledgar", "license": "", "features": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 100, "names": ["Adjustments", "Agreements", "Amendments", "Anti-Corruption Laws", "Applicable Laws", "Approvals", "Arbitration", "Assignments", "Assigns", "Authority", "Authorizations", "Base Salary", "Benefits", "Binding Effects", "Books", "Brokers", "Capitalization", "Change In Control", "Closings", "Compliance With Laws", "Confidentiality", "Consent To Jurisdiction", "Consents", "Construction", "Cooperation", "Costs", "Counterparts", "Death", "Defined Terms", "Definitions", "Disability", "Disclosures", "Duties", "Effective Dates", "Effectiveness", "Employment", "Enforceability", "Enforcements", "Entire Agreements", "Erisa", "Existence", "Expenses", "Fees", "Financial Statements", "Forfeitures", "Further Assurances", "General", "Governing Laws", "Headings", "Indemnifications", "Indemnity", "Insurances", "Integration", "Intellectual Property", "Interests", "Interpretations", "Jurisdictions", "Liens", "Litigations", "Miscellaneous", "Modifications", "No Conflicts", "No Defaults", "No Waivers", "Non-Disparagement", "Notices", "Organizations", "Participations", "Payments", "Positions", "Powers", "Publicity", "Qualifications", "Records", "Releases", "Remedies", "Representations", "Sales", "Sanctions", "Severability", "Solvency", "Specific Performance", "Submission To Jurisdiction", "Subsidiaries", "Successors", "Survival", "Tax Withholdings", "Taxes", "Terminations", "Terms", "Titles", "Transactions With Affiliates", "Use Of Proceeds", "Vacations", "Venues", "Vesting", "Waiver Of Jury Trials", "Waivers", "Warranties", "Withholdings"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "lex_glue", "config_name": "ledgar", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 43358315, "num_examples": 60000, "dataset_name": "lex_glue"}, "test": {"name": "test", "num_bytes": 6845585, "num_examples": 10000, "dataset_name": "lex_glue"}, "validation": {"name": "validation", "num_bytes": 7143592, "num_examples": 10000, "dataset_name": "lex_glue"}}, "download_checksums": {"https://zenodo.org/record/5532997/files/ledgar.tar.gz": {"num_bytes": 16255623, "checksum": "f7507bcce46ce03e3e91b8aaa1b84ddf6e8f1d628c0d7fa351f97ce45366d5d8"}}, "download_size": 16255623, "post_processing_size": null, "dataset_size": 57347492, "size_in_bytes": 73603115}, "unfair_tos": {"description": "The UNFAIR-ToS dataset contains 50 Terms of Service (ToS) from on-line platforms (e.g., YouTube,\nEbay, Facebook, etc.). The dataset has been annotated on the sentence-level with 8 types of\nunfair contractual terms (sentences), meaning terms that potentially violate user rights\naccording to the European consumer law.", "citation": "@article{lippi-etal-2019-claudette,\n title = \"{CLAUDETTE}: an automated detector of potentially unfair clauses in online terms of service\",\n author = {Lippi, Marco\n and Pa\u0142ka, Przemys\u0142aw\n and Contissa, Giuseppe\n and Lagioia, Francesca\n and Micklitz, Hans-Wolfgang\n and Sartor, Giovanni\n and Torroni, Paolo},\n journal = \"Artificial Intelligence and Law\",\n year = \"2019\",\n publisher = \"Springer\",\n url = \"https://doi.org/10.1007/s10506-019-09243-2\",\n pages = \"117--139\",\n}\n@article{chalkidis-etal-2021-lexglue,\n title={{LexGLUE}: A Benchmark Dataset for Legal Language Understanding in English},\n author={Chalkidis, Ilias and\n Jana, Abhik and\n Hartung, Dirk and\n Bommarito, Michael and\n Androutsopoulos, Ion and\n Katz, Daniel Martin and\n Aletras, Nikolaos},\n year={2021},\n eprint={2110.00976},\n archivePrefix={arXiv},\n primaryClass={cs.CL},\n note = {arXiv: 2110.00976},\n}", "homepage": "http://claudette.eui.eu", "license": "", "features": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "labels": {"feature": {"num_classes": 8, "names": ["Limitation of liability", "Unilateral termination", "Unilateral change", "Content removal", "Contract by using", "Choice of law", "Jurisdiction", "Arbitration"], "names_file": null, "id": null, "_type": "ClassLabel"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "lex_glue", "config_name": "unfair_tos", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 1041790, "num_examples": 5532, "dataset_name": "lex_glue"}, "test": {"name": "test", "num_bytes": 303107, "num_examples": 1607, "dataset_name": "lex_glue"}, "validation": {"name": "validation", "num_bytes": 452119, "num_examples": 2275, "dataset_name": "lex_glue"}}, "download_checksums": {"https://zenodo.org/record/5532997/files/unfair_tos.tar.gz": {"num_bytes": 511342, "checksum": "934470d74b62139dfbfad4a13b75a32e4a4d26a680ab12eedfb7659cdf669d53"}}, "download_size": 511342, "post_processing_size": null, "dataset_size": 1797016, "size_in_bytes": 2308358}, "case_hold": {"description": "The CaseHOLD (Case Holdings on Legal Decisions) dataset contains approx. 53k multiple choice\nquestions about holdings of US court cases from the Harvard Law Library case law corpus.\nHoldings are short summaries of legal rulings accompany referenced decisions relevant for the present case.\nThe input consists of an excerpt (or prompt) from a court decision, containing a reference\nto a particular case, while the holding statement is masked out. The model must identify\nthe correct (masked) holding statement from a selection of five choices.", "citation": "@inproceedings{Zheng2021,\n author = {Lucia Zheng and\n Neel Guha and\n Brandon R. Anderson and\n Peter Henderson and\n Daniel E. Ho},\n title = {When Does Pretraining Help? Assessing Self-Supervised Learning for\n Law and the CaseHOLD Dataset},\n year = {2021},\n booktitle = {International Conference on Artificial Intelligence and Law},\n}\n@article{chalkidis-etal-2021-lexglue,\n title={{LexGLUE}: A Benchmark Dataset for Legal Language Understanding in English},\n author={Chalkidis, Ilias and\n Jana, Abhik and\n Hartung, Dirk and\n Bommarito, Michael and\n Androutsopoulos, Ion and\n Katz, Daniel Martin and\n Aletras, Nikolaos},\n year={2021},\n eprint={2110.00976},\n archivePrefix={arXiv},\n primaryClass={cs.CL},\n note = {arXiv: 2110.00976},\n}", "homepage": "https://github.com/reglab/casehold", "license": "", "features": {"context": {"dtype": "string", "id": null, "_type": "Value"}, "endings": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "label": {"num_classes": 5, "names": ["0", "1", "2", "3", "4"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "lex_glue", "config_name": "case_hold", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 74781766, "num_examples": 45000, "dataset_name": "lex_glue"}, "test": {"name": "test", "num_bytes": 5989964, "num_examples": 3600, "dataset_name": "lex_glue"}, "validation": {"name": "validation", "num_bytes": 6474615, "num_examples": 3900, "dataset_name": "lex_glue"}}, "download_checksums": {"https://zenodo.org/record/5532997/files/casehold.tar.gz": {"num_bytes": 30422703, "checksum": "728827dae0019880fe6be609e23f8c47fa2b49a2f0814a36687ace8db1c32d5e"}}, "download_size": 30422703, "post_processing_size": null, "dataset_size": 87246345, "size_in_bytes": 117669048}}
 
1
+ {"ecthr_a": {"description": "The European Court of Human Rights (ECtHR) hears allegations that a state has\nbreached human rights provisions of the European Convention of Human Rights (ECHR).\nFor each case, the dataset provides a list of factual paragraphs (facts) from the case description.\nEach case is mapped to articles of the ECHR that were violated (if any).", "citation": "@inproceedings{chalkidis-etal-2021-paragraph,\n title = \"Paragraph-level Rationale Extraction through Regularization: A case study on {E}uropean Court of Human Rights Cases\",\n author = \"Chalkidis, Ilias and\n Fergadiotis, Manos and\n Tsarapatsanis, Dimitrios and\n Aletras, Nikolaos and\n Androutsopoulos, Ion and\n Malakasiotis, Prodromos\",\n booktitle = \"Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies\",\n month = jun,\n year = \"2021\",\n address = \"Online\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://aclanthology.org/2021.naacl-main.22\",\n doi = \"10.18653/v1/2021.naacl-main.22\",\n pages = \"226--241\",\n}\n}\n@article{chalkidis-etal-2021-lexglue,\n title={{LexGLUE}: A Benchmark Dataset for Legal Language Understanding in English},\n author={Chalkidis, Ilias and\n Jana, Abhik and\n Hartung, Dirk and\n Bommarito, Michael and\n Androutsopoulos, Ion and\n Katz, Daniel Martin and\n Aletras, Nikolaos},\n year={2021},\n eprint={2110.00976},\n archivePrefix={arXiv},\n primaryClass={cs.CL},\n note = {arXiv: 2110.00976},\n}", "homepage": "https://archive.org/details/ECtHR-NAACL2021", "license": "", "features": {"text": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "labels": {"feature": {"num_classes": 10, "names": ["2", "3", "5", "6", "8", "9", "10", "11", "14", "P1-1"], "id": null, "_type": "ClassLabel"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "lex_glue", "config_name": "ecthr_a", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 89637461, "num_examples": 9000, "dataset_name": "lex_glue"}, "test": {"name": "test", "num_bytes": 11884180, "num_examples": 1000, "dataset_name": "lex_glue"}, "validation": {"name": "validation", "num_bytes": 10985180, "num_examples": 1000, "dataset_name": "lex_glue"}}, "download_checksums": {"https://zenodo.org/record/5532997/files/ecthr.tar.gz": {"num_bytes": 32852475, "checksum": "461c1f6016af3a7ac0bd115c1f9ff65031258bfec39e570fec74a16d8946398e"}}, "download_size": 32852475, "post_processing_size": null, "dataset_size": 112506821, "size_in_bytes": 145359296}, "ecthr_b": {"description": "The European Court of Human Rights (ECtHR) hears allegations that a state has\nbreached human rights provisions of the European Convention of Human Rights (ECHR).\nFor each case, the dataset provides a list of factual paragraphs (facts) from the case description.\nEach case is mapped to articles of ECHR that were allegedly violated (considered by the court).", "citation": "@inproceedings{chalkidis-etal-2021-paragraph,\n title = \"Paragraph-level Rationale Extraction through Regularization: A case study on {E}uropean Court of Human Rights Cases\",\n author = \"Chalkidis, Ilias\n and Fergadiotis, Manos\n and Tsarapatsanis, Dimitrios\n and Aletras, Nikolaos\n and Androutsopoulos, Ion\n and Malakasiotis, Prodromos\",\n booktitle = \"Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies\",\n year = \"2021\",\n address = \"Online\",\n url = \"https://aclanthology.org/2021.naacl-main.22\",\n}\n}\n@article{chalkidis-etal-2021-lexglue,\n title={{LexGLUE}: A Benchmark Dataset for Legal Language Understanding in English},\n author={Chalkidis, Ilias and\n Jana, Abhik and\n Hartung, Dirk and\n Bommarito, Michael and\n Androutsopoulos, Ion and\n Katz, Daniel Martin and\n Aletras, Nikolaos},\n year={2021},\n eprint={2110.00976},\n archivePrefix={arXiv},\n primaryClass={cs.CL},\n note = {arXiv: 2110.00976},\n}", "homepage": "https://archive.org/details/ECtHR-NAACL2021", "license": "", "features": {"text": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "labels": {"feature": {"num_classes": 10, "names": ["2", "3", "5", "6", "8", "9", "10", "11", "14", "P1-1"], "id": null, "_type": "ClassLabel"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "lex_glue", "config_name": "ecthr_b", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 89657661, "num_examples": 9000, "dataset_name": "lex_glue"}, "test": {"name": "test", "num_bytes": 11886940, "num_examples": 1000, "dataset_name": "lex_glue"}, "validation": {"name": "validation", "num_bytes": 10987828, "num_examples": 1000, "dataset_name": "lex_glue"}}, "download_checksums": {"https://zenodo.org/record/5532997/files/ecthr.tar.gz": {"num_bytes": 32852475, "checksum": "461c1f6016af3a7ac0bd115c1f9ff65031258bfec39e570fec74a16d8946398e"}}, "download_size": 32852475, "post_processing_size": null, "dataset_size": 112532429, "size_in_bytes": 145384904}, "eurlex": {"description": "European Union (EU) legislation is published in EUR-Lex portal.\nAll EU laws are annotated by EU's Publications Office with multiple concepts from the EuroVoc thesaurus,\na multilingual thesaurus maintained by the Publications Office.\nThe current version of EuroVoc contains more than 7k concepts referring to various activities\nof the EU and its Member States (e.g., economics, health-care, trade).\nGiven a document, the task is to predict its EuroVoc labels (concepts).", "citation": "@inproceedings{chalkidis-etal-2021-multieurlex,\n author = {Chalkidis, Ilias and\n Fergadiotis, Manos and\n Androutsopoulos, Ion},\n title = {MultiEURLEX -- A multi-lingual and multi-label legal document\n classification dataset for zero-shot cross-lingual transfer},\n booktitle = {Proceedings of the 2021 Conference on Empirical Methods\n in Natural Language Processing},\n year = {2021},\n location = {Punta Cana, Dominican Republic},\n}\n}\n@article{chalkidis-etal-2021-lexglue,\n title={{LexGLUE}: A Benchmark Dataset for Legal Language Understanding in English},\n author={Chalkidis, Ilias and\n Jana, Abhik and\n Hartung, Dirk and\n Bommarito, Michael and\n Androutsopoulos, Ion and\n Katz, Daniel Martin and\n Aletras, Nikolaos},\n year={2021},\n eprint={2110.00976},\n archivePrefix={arXiv},\n primaryClass={cs.CL},\n note = {arXiv: 2110.00976},\n}", "homepage": "https://zenodo.org/record/5363165#.YVJOAi8RqaA", "license": "", "features": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "labels": {"feature": {"num_classes": 100, "names": ["100163", "100168", "100169", "100170", "100171", "100172", "100173", "100174", "100175", "100176", "100177", "100179", "100180", "100183", "100184", "100185", "100186", "100187", "100189", "100190", "100191", "100192", "100193", "100194", "100195", "100196", "100197", "100198", "100199", "100200", "100201", "100202", "100204", "100205", "100206", "100207", "100212", "100214", "100215", "100220", "100221", "100222", "100223", "100224", "100226", "100227", "100229", "100230", "100231", "100232", "100233", "100234", "100235", "100237", "100238", "100239", "100240", "100241", "100242", "100243", "100244", "100245", "100246", "100247", "100248", "100249", "100250", "100252", "100253", "100254", "100255", "100256", "100257", "100258", "100259", "100260", "100261", "100262", "100263", "100264", "100265", "100266", "100268", "100269", "100270", "100271", "100272", "100273", "100274", "100275", "100276", "100277", "100278", "100279", "100280", "100281", "100282", "100283", "100284", "100285"], "id": null, "_type": "ClassLabel"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "lex_glue", "config_name": "eurlex", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 390770289, "num_examples": 55000, "dataset_name": "lex_glue"}, "test": {"name": "test", "num_bytes": 59739102, "num_examples": 5000, "dataset_name": "lex_glue"}, "validation": {"name": "validation", "num_bytes": 41544484, "num_examples": 5000, "dataset_name": "lex_glue"}}, "download_checksums": {"https://zenodo.org/record/5532997/files/eurlex.tar.gz": {"num_bytes": 125413277, "checksum": "82376ff55c3812632d8a21ad0d7e515e2e7ec6431ca7673a454cdd41a3a7bf46"}}, "download_size": 125413277, "post_processing_size": null, "dataset_size": 492053875, "size_in_bytes": 617467152}, "scotus": {"description": "The US Supreme Court (SCOTUS) is the highest federal court in the United States of America\nand generally hears only the most controversial or otherwise complex cases which have not\nbeen sufficiently well solved by lower courts. This is a single-label multi-class classification\ntask, where given a document (court opinion), the task is to predict the relevant issue areas.\nThe 14 issue areas cluster 278 issues whose focus is on the subject matter of the controversy (dispute).", "citation": "@misc{spaeth2020,\n author = {Harold J. Spaeth and Lee Epstein and Andrew D. Martin, Jeffrey A. Segal\n and Theodore J. Ruger and Sara C. Benesh},\n year = {2020},\n title ={{Supreme Court Database, Version 2020 Release 01}},\n url= {http://Supremecourtdatabase.org},\n howpublished={Washington University Law}\n}\n@article{chalkidis-etal-2021-lexglue,\n title={{LexGLUE}: A Benchmark Dataset for Legal Language Understanding in English},\n author={Chalkidis, Ilias and\n Jana, Abhik and\n Hartung, Dirk and\n Bommarito, Michael and\n Androutsopoulos, Ion and\n Katz, Daniel Martin and\n Aletras, Nikolaos},\n year={2021},\n eprint={2110.00976},\n archivePrefix={arXiv},\n primaryClass={cs.CL},\n note = {arXiv: 2110.00976},\n}", "homepage": "http://scdb.wustl.edu/data.php", "license": "", "features": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 13, "names": ["1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13"], "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "lex_glue", "config_name": "scotus", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 178959320, "num_examples": 5000, "dataset_name": "lex_glue"}, "test": {"name": "test", "num_bytes": 76213283, "num_examples": 1400, "dataset_name": "lex_glue"}, "validation": {"name": "validation", "num_bytes": 75600247, "num_examples": 1400, "dataset_name": "lex_glue"}}, "download_checksums": {"https://zenodo.org/record/5532997/files/scotus.tar.gz": {"num_bytes": 104763335, "checksum": "d53cc99aaf60b24ca7e4cf634f08a2572b5b3532f83aecdfc2c4257050dc9d0a"}}, "download_size": 104763335, "post_processing_size": null, "dataset_size": 330772850, "size_in_bytes": 435536185}, "ledgar": {"description": "LEDGAR dataset aims contract provision (paragraph) classification.\nThe contract provisions come from contracts obtained from the US Securities and Exchange Commission (SEC)\nfilings, which are publicly available from EDGAR. Each label represents the single main topic\n(theme) of the corresponding contract provision.", "citation": "@inproceedings{tuggener-etal-2020-ledgar,\n title = \"{LEDGAR}: A Large-Scale Multi-label Corpus for Text Classification of Legal Provisions in Contracts\",\n author = {Tuggener, Don and\n von D{\"a}niken, Pius and\n Peetz, Thomas and\n Cieliebak, Mark},\n booktitle = \"Proceedings of the 12th Language Resources and Evaluation Conference\",\n year = \"2020\",\n address = \"Marseille, France\",\n url = \"https://aclanthology.org/2020.lrec-1.155\",\n}\n}\n@article{chalkidis-etal-2021-lexglue,\n title={{LexGLUE}: A Benchmark Dataset for Legal Language Understanding in English},\n author={Chalkidis, Ilias and\n Jana, Abhik and\n Hartung, Dirk and\n Bommarito, Michael and\n Androutsopoulos, Ion and\n Katz, Daniel Martin and\n Aletras, Nikolaos},\n year={2021},\n eprint={2110.00976},\n archivePrefix={arXiv},\n primaryClass={cs.CL},\n note = {arXiv: 2110.00976},\n}", "homepage": "https://metatext.io/datasets/ledgar", "license": "", "features": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 100, "names": ["Adjustments", "Agreements", "Amendments", "Anti-Corruption Laws", "Applicable Laws", "Approvals", "Arbitration", "Assignments", "Assigns", "Authority", "Authorizations", "Base Salary", "Benefits", "Binding Effects", "Books", "Brokers", "Capitalization", "Change In Control", "Closings", "Compliance With Laws", "Confidentiality", "Consent To Jurisdiction", "Consents", "Construction", "Cooperation", "Costs", "Counterparts", "Death", "Defined Terms", "Definitions", "Disability", "Disclosures", "Duties", "Effective Dates", "Effectiveness", "Employment", "Enforceability", "Enforcements", "Entire Agreements", "Erisa", "Existence", "Expenses", "Fees", "Financial Statements", "Forfeitures", "Further Assurances", "General", "Governing Laws", "Headings", "Indemnifications", "Indemnity", "Insurances", "Integration", "Intellectual Property", "Interests", "Interpretations", "Jurisdictions", "Liens", "Litigations", "Miscellaneous", "Modifications", "No Conflicts", "No Defaults", "No Waivers", "Non-Disparagement", "Notices", "Organizations", "Participations", "Payments", "Positions", "Powers", "Publicity", "Qualifications", "Records", "Releases", "Remedies", "Representations", "Sales", "Sanctions", "Severability", "Solvency", "Specific Performance", "Submission To Jurisdiction", "Subsidiaries", "Successors", "Survival", "Tax Withholdings", "Taxes", "Terminations", "Terms", "Titles", "Transactions With Affiliates", "Use Of Proceeds", "Vacations", "Venues", "Vesting", "Waiver Of Jury Trials", "Waivers", "Warranties", "Withholdings"], "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "lex_glue", "config_name": "ledgar", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 43358315, "num_examples": 60000, "dataset_name": "lex_glue"}, "test": {"name": "test", "num_bytes": 6845585, "num_examples": 10000, "dataset_name": "lex_glue"}, "validation": {"name": "validation", "num_bytes": 7143592, "num_examples": 10000, "dataset_name": "lex_glue"}}, "download_checksums": {"https://zenodo.org/record/5532997/files/ledgar.tar.gz": {"num_bytes": 16255623, "checksum": "f7507bcce46ce03e3e91b8aaa1b84ddf6e8f1d628c0d7fa351f97ce45366d5d8"}}, "download_size": 16255623, "post_processing_size": null, "dataset_size": 57347492, "size_in_bytes": 73603115}, "unfair_tos": {"description": "The UNFAIR-ToS dataset contains 50 Terms of Service (ToS) from on-line platforms (e.g., YouTube,\nEbay, Facebook, etc.). The dataset has been annotated on the sentence-level with 8 types of\nunfair contractual terms (sentences), meaning terms that potentially violate user rights\naccording to the European consumer law.", "citation": "@article{lippi-etal-2019-claudette,\n title = \"{CLAUDETTE}: an automated detector of potentially unfair clauses in online terms of service\",\n author = {Lippi, Marco\n and Pa\u0142ka, Przemys\u0142aw\n and Contissa, Giuseppe\n and Lagioia, Francesca\n and Micklitz, Hans-Wolfgang\n and Sartor, Giovanni\n and Torroni, Paolo},\n journal = \"Artificial Intelligence and Law\",\n year = \"2019\",\n publisher = \"Springer\",\n url = \"https://doi.org/10.1007/s10506-019-09243-2\",\n pages = \"117--139\",\n}\n@article{chalkidis-etal-2021-lexglue,\n title={{LexGLUE}: A Benchmark Dataset for Legal Language Understanding in English},\n author={Chalkidis, Ilias and\n Jana, Abhik and\n Hartung, Dirk and\n Bommarito, Michael and\n Androutsopoulos, Ion and\n Katz, Daniel Martin and\n Aletras, Nikolaos},\n year={2021},\n eprint={2110.00976},\n archivePrefix={arXiv},\n primaryClass={cs.CL},\n note = {arXiv: 2110.00976},\n}", "homepage": "http://claudette.eui.eu", "license": "", "features": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "labels": {"feature": {"num_classes": 8, "names": ["Limitation of liability", "Unilateral termination", "Unilateral change", "Content removal", "Contract by using", "Choice of law", "Jurisdiction", "Arbitration"], "id": null, "_type": "ClassLabel"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "lex_glue", "config_name": "unfair_tos", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 1041790, "num_examples": 5532, "dataset_name": "lex_glue"}, "test": {"name": "test", "num_bytes": 303107, "num_examples": 1607, "dataset_name": "lex_glue"}, "validation": {"name": "validation", "num_bytes": 452119, "num_examples": 2275, "dataset_name": "lex_glue"}}, "download_checksums": {"https://zenodo.org/record/5532997/files/unfair_tos.tar.gz": {"num_bytes": 511342, "checksum": "934470d74b62139dfbfad4a13b75a32e4a4d26a680ab12eedfb7659cdf669d53"}}, "download_size": 511342, "post_processing_size": null, "dataset_size": 1797016, "size_in_bytes": 2308358}, "case_hold": {"description": "The CaseHOLD (Case Holdings on Legal Decisions) dataset contains approx. 53k multiple choice\nquestions about holdings of US court cases from the Harvard Law Library case law corpus.\nHoldings are short summaries of legal rulings accompany referenced decisions relevant for the present case.\nThe input consists of an excerpt (or prompt) from a court decision, containing a reference\nto a particular case, while the holding statement is masked out. The model must identify\nthe correct (masked) holding statement from a selection of five choices.", "citation": "@inproceedings{Zheng2021,\n author = {Lucia Zheng and\n Neel Guha and\n Brandon R. Anderson and\n Peter Henderson and\n Daniel E. Ho},\n title = {When Does Pretraining Help? Assessing Self-Supervised Learning for\n Law and the CaseHOLD Dataset},\n year = {2021},\n booktitle = {International Conference on Artificial Intelligence and Law},\n}\n@article{chalkidis-etal-2021-lexglue,\n title={{LexGLUE}: A Benchmark Dataset for Legal Language Understanding in English},\n author={Chalkidis, Ilias and\n Jana, Abhik and\n Hartung, Dirk and\n Bommarito, Michael and\n Androutsopoulos, Ion and\n Katz, Daniel Martin and\n Aletras, Nikolaos},\n year={2021},\n eprint={2110.00976},\n archivePrefix={arXiv},\n primaryClass={cs.CL},\n note = {arXiv: 2110.00976},\n}", "homepage": "https://github.com/reglab/casehold", "license": "", "features": {"context": {"dtype": "string", "id": null, "_type": "Value"}, "endings": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "label": {"num_classes": 5, "names": ["0", "1", "2", "3", "4"], "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "lex_glue", "config_name": "case_hold", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 74781766, "num_examples": 45000, "dataset_name": "lex_glue"}, "test": {"name": "test", "num_bytes": 5989964, "num_examples": 3600, "dataset_name": "lex_glue"}, "validation": {"name": "validation", "num_bytes": 6474615, "num_examples": 3900, "dataset_name": "lex_glue"}}, "download_checksums": {"https://zenodo.org/record/5532997/files/casehold.tar.gz": {"num_bytes": 30422703, "checksum": "728827dae0019880fe6be609e23f8c47fa2b49a2f0814a36687ace8db1c32d5e"}}, "download_size": 30422703, "post_processing_size": null, "dataset_size": 87246345, "size_in_bytes": 117669048}}
lex_glue.py CHANGED
@@ -47,10 +47,6 @@ ECTHR_ARTICLES = ["2", "3", "5", "6", "8", "9", "10", "11", "14", "P1-1"]
47
 
48
  EUROVOC_CONCEPTS = [
49
  "100163",
50
- "100164",
51
- "100165",
52
- "100166",
53
- "100167",
54
  "100168",
55
  "100169",
56
  "100170",
@@ -61,17 +57,13 @@ EUROVOC_CONCEPTS = [
61
  "100175",
62
  "100176",
63
  "100177",
64
- "100178",
65
  "100179",
66
  "100180",
67
- "100181",
68
- "100182",
69
  "100183",
70
  "100184",
71
  "100185",
72
  "100186",
73
  "100187",
74
- "100188",
75
  "100189",
76
  "100190",
77
  "100191",
@@ -86,32 +78,20 @@ EUROVOC_CONCEPTS = [
86
  "100200",
87
  "100201",
88
  "100202",
89
- "100203",
90
  "100204",
91
  "100205",
92
  "100206",
93
  "100207",
94
- "100208",
95
- "100209",
96
- "100210",
97
- "100211",
98
  "100212",
99
- "100213",
100
  "100214",
101
  "100215",
102
- "100216",
103
- "100217",
104
- "100218",
105
- "100219",
106
  "100220",
107
  "100221",
108
  "100222",
109
  "100223",
110
  "100224",
111
- "100225",
112
  "100226",
113
  "100227",
114
- "100228",
115
  "100229",
116
  "100230",
117
  "100231",
@@ -119,7 +99,6 @@ EUROVOC_CONCEPTS = [
119
  "100233",
120
  "100234",
121
  "100235",
122
- "100236",
123
  "100237",
124
  "100238",
125
  "100239",
@@ -134,7 +113,6 @@ EUROVOC_CONCEPTS = [
134
  "100248",
135
  "100249",
136
  "100250",
137
- "100251",
138
  "100252",
139
  "100253",
140
  "100254",
@@ -150,7 +128,6 @@ EUROVOC_CONCEPTS = [
150
  "100264",
151
  "100265",
152
  "100266",
153
- "100267",
154
  "100268",
155
  "100269",
156
  "100270",
@@ -169,10 +146,6 @@ EUROVOC_CONCEPTS = [
169
  "100283",
170
  "100284",
171
  "100285",
172
- "100286",
173
- "100287",
174
- "100288",
175
- "100289",
176
  ]
177
 
178
  LEDGAR_CATEGORIES = [
 
47
 
48
  EUROVOC_CONCEPTS = [
49
  "100163",
 
 
 
 
50
  "100168",
51
  "100169",
52
  "100170",
 
57
  "100175",
58
  "100176",
59
  "100177",
 
60
  "100179",
61
  "100180",
 
 
62
  "100183",
63
  "100184",
64
  "100185",
65
  "100186",
66
  "100187",
 
67
  "100189",
68
  "100190",
69
  "100191",
 
78
  "100200",
79
  "100201",
80
  "100202",
 
81
  "100204",
82
  "100205",
83
  "100206",
84
  "100207",
 
 
 
 
85
  "100212",
 
86
  "100214",
87
  "100215",
 
 
 
 
88
  "100220",
89
  "100221",
90
  "100222",
91
  "100223",
92
  "100224",
 
93
  "100226",
94
  "100227",
 
95
  "100229",
96
  "100230",
97
  "100231",
 
99
  "100233",
100
  "100234",
101
  "100235",
 
102
  "100237",
103
  "100238",
104
  "100239",
 
113
  "100248",
114
  "100249",
115
  "100250",
 
116
  "100252",
117
  "100253",
118
  "100254",
 
128
  "100264",
129
  "100265",
130
  "100266",
 
131
  "100268",
132
  "100269",
133
  "100270",
 
146
  "100283",
147
  "100284",
148
  "100285",
 
 
 
 
149
  ]
150
 
151
  LEDGAR_CATEGORIES = [