|
"""TODO(qangaroo): Add a description here.""" |
|
|
|
|
|
import json |
|
import os |
|
|
|
import datasets |
|
|
|
|
|
|
|
|
|
_CITATION = """ |
|
""" |
|
|
|
|
|
_DESCRIPTION = """\ |
|
We have created two new Reading Comprehension datasets focussing on multi-hop (alias multi-step) inference. |
|
|
|
Several pieces of information often jointly imply another fact. In multi-hop inference, a new fact is derived by combining facts via a chain of multiple steps. |
|
|
|
Our aim is to build Reading Comprehension methods that perform multi-hop inference on text, where individual facts are spread out across different documents. |
|
|
|
The two QAngaroo datasets provide a training and evaluation resource for such methods. |
|
""" |
|
|
|
_MEDHOP_DESCRIPTION = """\ |
|
With the same format as WikiHop, this dataset is based on research paper abstracts from PubMed, and the queries are about interactions between pairs of drugs. |
|
The correct answer has to be inferred by combining information from a chain of reactions of drugs and proteins. |
|
""" |
|
_WIKIHOP_DESCRIPTION = """\ |
|
With the same format as WikiHop, this dataset is based on research paper abstracts from PubMed, and the queries are about interactions between pairs of drugs. |
|
The correct answer has to be inferred by combining information from a chain of reactions of drugs and proteins. |
|
""" |
|
|
|
_URL = "https://drive.google.com/uc?export=download&id=1ytVZ4AhubFDOEL7o7XrIRIyhU8g9wvKA" |
|
|
|
|
|
class QangarooConfig(datasets.BuilderConfig): |
|
def __init__(self, data_dir, **kwargs): |
|
"""BuilderConfig for qangaroo dataset |
|
|
|
Args: |
|
data_dir: directory for the given dataset name |
|
**kwargs: keyword arguments forwarded to super. |
|
|
|
""" |
|
|
|
super(QangarooConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs) |
|
|
|
self.data_dir = data_dir |
|
|
|
|
|
class Qangaroo(datasets.GeneratorBasedBuilder): |
|
"""TODO(qangaroo): Short description of my dataset.""" |
|
|
|
|
|
VERSION = datasets.Version("0.1.0") |
|
BUILDER_CONFIGS = [ |
|
QangarooConfig(name="medhop", description=_MEDHOP_DESCRIPTION, data_dir="medhop"), |
|
QangarooConfig(name="masked_medhop", description=_MEDHOP_DESCRIPTION, data_dir="medhop"), |
|
QangarooConfig(name="wikihop", description=_WIKIHOP_DESCRIPTION, data_dir="wikihop"), |
|
QangarooConfig(name="masked_wikihop", description=_WIKIHOP_DESCRIPTION, data_dir="wikihop"), |
|
] |
|
|
|
def _info(self): |
|
|
|
return datasets.DatasetInfo( |
|
|
|
description=_DESCRIPTION, |
|
|
|
features=datasets.Features( |
|
{ |
|
|
|
"query": datasets.Value("string"), |
|
"supports": datasets.features.Sequence(datasets.Value("string")), |
|
"candidates": datasets.features.Sequence(datasets.Value("string")), |
|
"answer": datasets.Value("string"), |
|
"id": datasets.Value("string") |
|
|
|
} |
|
), |
|
|
|
|
|
|
|
supervised_keys=None, |
|
|
|
homepage="http://qangaroo.cs.ucl.ac.uk/index.html", |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
|
|
|
|
|
|
dl_dir = dl_manager.download_and_extract(_URL) |
|
data_dir = os.path.join(dl_dir, "qangaroo_v1.1") |
|
train_file = "train.masked.json" if "masked" in self.config.name else "train.json" |
|
dev_file = "dev.masked.json" if "masked" in self.config.name else "dev.json" |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
|
|
gen_kwargs={"filepath": os.path.join(data_dir, self.config.data_dir, train_file)}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
|
|
gen_kwargs={"filepath": os.path.join(data_dir, self.config.data_dir, dev_file)}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
"""Yields examples.""" |
|
|
|
with open(filepath, encoding="utf-8") as f: |
|
data = json.load(f) |
|
for example in data: |
|
id_ = example["id"] |
|
yield id_, { |
|
"id": example["id"], |
|
"query": example["query"], |
|
"supports": example["supports"], |
|
"candidates": example["candidates"], |
|
"answer": example["answer"], |
|
} |
|
|