File size: 17,277 Bytes
6e5cc8b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 |
import atexit
import functools
import sys
import traceback
import gym
import numpy as np
class DrawerOpen:
def __init__(self, config, size=(128, 128)):
import metaworld
import mujoco_py
self._env = metaworld.envs.mujoco.sawyer_xyz.v2.sawyer_drawer_open_v2.SawyerDrawerOpenEnvV2()
self._env._last_rand_vec = np.array([-0.1, 0.9, 0.0])
self._env._set_task_called = True
self.size = size
# Setup camera in environment
self.viewer = mujoco_py.MjRenderContextOffscreen(self._env.sim, -1)
self.viewer.cam.elevation = -22.5
self.viewer.cam.azimuth = 15
self.viewer.cam.distance = 0.75
self.viewer.cam.lookat[0] = -0.15
self.viewer.cam.lookat[1] = 0.7
self.viewer.cam.lookat[2] = 0.10
def __getattr__(self, attr):
if attr == '_wrapped_env':
raise AttributeError()
return getattr(self._env, attr)
def step(self, action):
state, reward, done, info = self._env.step(action)
img = self.render(mode='rgb_array', width=self.size[0], height=self.size[1])
obs = {'state': state, 'image': img}
reward = 1.0 * info['success']
return obs, reward, done, info
def reset(self):
state = self._env.reset()
state = self._env.reset()
img = self.render(mode='rgb_array', width=self.size[0], height=self.size[1])
if self.use_transform:
img = img[self.pad:-self.pad, self.pad:-self.pad, :]
obs = {'state': state, 'image': img}
return obs
def render(self, mode, width=128, height=128):
self.viewer.render(width=width, height=width)
img = self.viewer.read_pixels(self.size[0], self.size[1], depth=False)
img = img[::-1]
return img
class Hammer:
def __init__(self, config, size=(128, 128)):
import metaworld
import mujoco_py
self._env = metaworld.envs.mujoco.sawyer_xyz.v2.sawyer_hammer_v2.SawyerHammerEnvV2()
self._env._last_rand_vec = np.array([-0.06, 0.4, 0.02])
self._env._set_task_called = True
self.size = size
# Setup camera in environment
self.viewer = mujoco_py.MjRenderContextOffscreen(self._env.sim, -1)
self.viewer.cam.elevation = -15
self.viewer.cam.azimuth = 137.5
self.viewer.cam.distance = 0.9
self.viewer.cam.lookat[0] = -0.
self.viewer.cam.lookat[1] = 0.6
self.viewer.cam.lookat[2] = 0.175
def __getattr__(self, attr):
if attr == '_wrapped_env':
raise AttributeError()
return getattr(self._env, attr)
def step(self, action):
state, reward, done, info = self._env.step(action)
img = self.render(mode='rgb_array', width=self.size[0], height=self.size[1])
obs = {'state': state, 'image': img}
return obs, reward, done, info
def reset(self):
state = self._env.reset()
img = self.render(mode='rgb_array', width=self.size[0], height=self.size[1])
obs = {'state': state, 'image': img}
return obs
def render(self, mode, width=128, height=128):
self.viewer.render(width=width, height=width)
img = self.viewer.read_pixels(self.size[0], self.size[1], depth=False)
img = img[::-1]
return img
class DoorOpen:
def __init__(self, config, size=(128, 128)):
import metaworld
import mujoco_py
self._env = metaworld.envs.mujoco.sawyer_xyz.v2.sawyer_door_v2.SawyerDoorEnvV2()
self._env._last_rand_vec = np.array([0.0, 1.0, .1525])
self._env._set_task_called = True
self.size = size
# Setup camera in environment
self.viewer = mujoco_py.MjRenderContextOffscreen(self._env.sim, -1)
self.viewer.cam.elevation = -12.5
self.viewer.cam.azimuth = 115
self.viewer.cam.distance = 1.05
self.viewer.cam.lookat[0] = 0.075
self.viewer.cam.lookat[1] = 0.75
self.viewer.cam.lookat[2] = 0.15
def __getattr__(self, attr):
if attr == '_wrapped_env':
raise AttributeError()
return getattr(self._env, attr)
def step(self, action):
state, reward, done, info = self._env.step(action)
img = self.render(mode='rgb_array', width=self.size[0], height=self.size[1])
obs = {'state': state, 'image': img}
reward = 1.0 * info['success']
return obs, reward, done, info
def reset(self):
state = self._env.reset()
img = self.render(mode='rgb_array', width=self.size[0], height=self.size[1])
obs = {'state': state, 'image': img}
return obs
def render(self, mode, width=128, height=128):
self.viewer.render(width=width, height=width)
img = self.viewer.read_pixels(self.size[0], self.size[1], depth=False)
img = img[::-1]
return img
class Gym:
def __init__(self, name, config, size=(64, 64)):
self._env = gym.make(name)
self.size = size
self.use_transform = config.use_transform
self.pad = int(config.pad / 2)
def __getattr__(self, attr):
if attr == '_wrapped_env':
raise AttributeError()
return getattr(self._env, attr)
def step(self, action):
state, reward, done, info = self.env.step(action)
img = self._env.render(mode='rgb_array', width=self.size[0], height=self.size[1])
if self.use_transform:
img = img[self.pad:-self.pad, self.pad:-self.pad, :]
obs = {'state': state, 'image': img}
return obs, reward, done, info
def reset(self):
state = self._env.reset()
img = self._env.render(mode='rgb_array', width=self.size[0], height=self.size[1])
if self.use_transform:
img = img[self.pad:-self.pad, self.pad:-self.pad, :]
obs = {'state': state, 'image': img}
return obs
def render(self, *args, **kwargs):
if kwargs.get('mode', 'rgb_array') != 'rgb_array':
raise ValueError("Only render mode 'rgb_array' is supported.")
return self._env.render(mode='rgb_array', width=self.size[0], height=self.size[1])
class DeepMindControl:
def __init__(self, name, size=(64, 64), camera=None):
domain, task = name.split('_', 1)
if domain == 'cup': # Only domain with multiple words.
domain = 'ball_in_cup'
if isinstance(domain, str):
from dm_control import suite
self._env = suite.load(domain, task)
else:
assert task is None
self._env = domain()
self._size = size
if camera is None:
camera = dict(quadruped=2).get(domain, 0)
self._camera = camera
@property
def observation_space(self):
spaces = {}
for key, value in self._env.observation_spec().items():
spaces[key] = gym.spaces.Box(-np.inf, np.inf, value.shape, dtype=np.float32)
spaces['image'] = gym.spaces.Box(0, 255, self._size + (3,), dtype=np.uint8)
return gym.spaces.Dict(spaces)
@property
def action_space(self):
spec = self._env.action_spec()
return gym.spaces.Box(spec.minimum, spec.maximum, dtype=np.float32)
def step(self, action):
time_step = self._env.step(action)
obs = dict(time_step.observation)
obs['image'] = self.render()
reward = time_step.reward or 0
done = time_step.last()
info = {'discount': np.array(time_step.discount, np.float32)}
return obs, reward, done, info
def reset(self):
time_step = self._env.reset()
obs = dict(time_step.observation)
obs['image'] = self.render()
return obs
def render(self, *args, **kwargs):
if kwargs.get('mode', 'rgb_array') != 'rgb_array':
raise ValueError("Only render mode 'rgb_array' is supported.")
return self._env.physics.render(*self._size, camera_id=self._camera)
class Collect:
def __init__(self, env, callbacks=None, precision=32):
self._env = env
self._callbacks = callbacks or ()
self._precision = precision
self._episode = None
def __getattr__(self, name):
return getattr(self._env, name)
def step(self, action):
obs, reward, done, info = self._env.step(action)
obs = {k: self._convert(v) for k, v in obs.items()}
transition = obs.copy()
transition['action'] = action
transition['reward'] = reward
transition['discount'] = info.get('discount', np.array(1 - float(done)))
self._episode.append(transition)
if done:
episode = {k: [t[k] for t in self._episode] for k in self._episode[0]}
episode = {k: self._convert(v) for k, v in episode.items()}
info['episode'] = episode
for callback in self._callbacks:
callback(episode)
return obs, reward, done, info
def reset(self):
obs = self._env.reset()
transition = obs.copy()
transition['action'] = np.zeros(self._env.action_space.shape)
transition['reward'] = 0.0
transition['discount'] = 1.0
self._episode = [transition]
return obs
def _convert(self, value):
value = np.array(value)
if np.issubdtype(value.dtype, np.floating):
dtype = {16: np.float16, 32: np.float32, 64: np.float64}[self._precision]
elif np.issubdtype(value.dtype, np.signedinteger):
dtype = {16: np.int16, 32: np.int32, 64: np.int64}[self._precision]
elif np.issubdtype(value.dtype, np.uint8):
dtype = np.uint8
else:
raise NotImplementedError(value.dtype)
return value.astype(dtype)
class TimeLimit:
def __init__(self, env, duration):
self._env = env
self._duration = duration
self._step = None
def __getattr__(self, name):
return getattr(self._env, name)
def step(self, action):
assert self._step is not None, 'Must reset environment.'
obs, reward, done, info = self._env.step(action)
self._step += 1
if self._step >= self._duration:
done = True
if 'discount' not in info:
info['discount'] = np.array(1.0).astype(np.float32)
self._step = None
return obs, reward, done, info
def reset(self):
self._step = 0
return self._env.reset()
class ActionRepeat:
def __init__(self, env, amount):
self._env = env
self._amount = amount
def __getattr__(self, name):
return getattr(self._env, name)
def step(self, action):
done = False
total_reward = 0
current_step = 0
while current_step < self._amount and not done:
obs, reward, done, info = self._env.step(action)
total_reward += reward
current_step += 1
return obs, total_reward, done, info
class NormalizeActions:
def __init__(self, env):
self._env = env
self._mask = np.logical_and(np.isfinite(env.action_space.low),
np.isfinite(env.action_space.high))
self._low = np.where(self._mask, env.action_space.low, -1)
self._high = np.where(self._mask, env.action_space.high, 1)
def __getattr__(self, name):
return getattr(self._env, name)
@property
def action_space(self):
low = np.where(self._mask, -np.ones_like(self._low), self._low)
high = np.where(self._mask, np.ones_like(self._low), self._high)
return gym.spaces.Box(low, high, dtype=np.float32)
def step(self, action):
original = (action + 1) / 2 * (self._high - self._low) + self._low
original = np.where(self._mask, original, action)
return self._env.step(original)
class ObsDict:
def __init__(self, env, key='obs'):
self._env = env
self._key = key
def __getattr__(self, name):
return getattr(self._env, name)
@property
def observation_space(self):
spaces = {self._key: self._env.observation_space}
return gym.spaces.Dict(spaces)
@property
def action_space(self):
return self._env.action_space
def step(self, action):
obs, reward, done, info = self._env.step(action)
obs = {self._key: np.array(obs)}
return obs, reward, done, info
def reset(self):
obs = self._env.reset()
obs = {self._key: np.array(obs)}
return obs
class RewardObs:
def __init__(self, env):
self._env = env
def __getattr__(self, name):
return getattr(self._env, name)
@property
def observation_space(self):
spaces = self._env.observation_space.spaces
assert 'reward' not in spaces
spaces['reward'] = gym.spaces.Box(-np.inf, np.inf, dtype=np.float32)
return gym.spaces.Dict(spaces)
def step(self, action):
obs, reward, done, info = self._env.step(action)
obs['reward'] = reward
return obs, reward, done, info
def reset(self):
obs = self._env.reset()
obs['reward'] = 0.0
return obs
class Async:
_ACCESS = 1
_CALL = 2
_RESULT = 3
_EXCEPTION = 4
_CLOSE = 5
def __init__(self, ctor, strategy='process'):
self._strategy = strategy
if strategy == 'none':
self._env = ctor()
elif strategy == 'thread':
import multiprocessing.dummy as mp
elif strategy == 'process':
import multiprocessing as mp
else:
raise NotImplementedError(strategy)
if strategy != 'none':
self._conn, conn = mp.Pipe()
self._process = mp.Process(target=self._worker, args=(ctor, conn))
atexit.register(self.close)
self._process.start()
self._obs_space = None
self._action_space = None
@property
def observation_space(self):
if not self._obs_space:
self._obs_space = self.__getattr__('observation_space')
return self._obs_space
@property
def action_space(self):
if not self._action_space:
self._action_space = self.__getattr__('action_space')
return self._action_space
def __getattr__(self, name):
if self._strategy == 'none':
return getattr(self._env, name)
self._conn.send((self._ACCESS, name))
return self._receive()
def call(self, name, *args, **kwargs):
blocking = kwargs.pop('blocking', True)
if self._strategy == 'none':
return functools.partial(getattr(self._env, name), *args, **kwargs)
payload = name, args, kwargs
self._conn.send((self._CALL, payload))
promise = self._receive
return promise() if blocking else promise
def close(self):
if self._strategy == 'none':
try:
self._env.close()
except AttributeError:
pass
return
try:
self._conn.send((self._CLOSE, None))
self._conn.close()
except IOError:
# The connection was already closed.
pass
self._process.join()
def step(self, action, blocking=True):
return self.call('step', action, blocking=blocking)
def reset(self, blocking=True):
return self.call('reset', blocking=blocking)
def _receive(self):
try:
message, payload = self._conn.recv()
except ConnectionResetError:
raise RuntimeError('Environment worker crashed.')
# Re-raise exceptions in the main process.
if message == self._EXCEPTION:
stacktrace = payload
raise Exception(stacktrace)
if message == self._RESULT:
return payload
raise KeyError(f'Received message of unexpected type {message}')
def _worker(self, ctor, conn):
try:
env = ctor()
while True:
try:
# Only block for short times to have keyboard exceptions be raised.
if not conn.poll(0.1):
continue
message, payload = conn.recv()
except (EOFError, KeyboardInterrupt):
break
if message == self._ACCESS:
name = payload
result = getattr(env, name)
conn.send((self._RESULT, result))
continue
if message == self._CALL:
name, args, kwargs = payload
result = getattr(env, name)(*args, **kwargs)
conn.send((self._RESULT, result))
continue
if message == self._CLOSE:
assert payload is None
break
raise KeyError(f'Received message of unknown type {message}')
except Exception:
stacktrace = ''.join(traceback.format_exception(*sys.exc_info()))
print(f'Error in environment process: {stacktrace}')
conn.send((self._EXCEPTION, stacktrace))
conn.close()
|