|
import h5py |
|
import numpy as np |
|
|
|
|
|
class Buffer(): |
|
def __init__(self): |
|
self._obs = None |
|
self._actions = None |
|
self._rewards = None |
|
self._next_obs = None |
|
self._terminals = None |
|
|
|
|
|
class LatentReplayBuffer(object): |
|
def __init__(self, |
|
real_size: int, |
|
latent_size: int, |
|
obs_dim: int, |
|
action_dim: int, |
|
immutable: bool = False, |
|
load_from: str = None, |
|
silent: bool = False, |
|
seed: int = 0): |
|
|
|
self.immutable = immutable |
|
|
|
self.buffers = dict() |
|
self.sizes = {'real': real_size, 'latent': latent_size} |
|
for key in ['real', 'latent']: |
|
self.buffers[key] = Buffer() |
|
self.buffers[key]._obs = np.full((self.sizes[key], obs_dim), float('nan'), dtype=np.float32) |
|
self.buffers[key]._actions = np.full((self.sizes[key], action_dim), float('nan'), dtype=np.float32) |
|
self.buffers[key]._rewards = np.full((self.sizes[key], 1), float('nan'), dtype=np.float32) |
|
self.buffers[key]._next_obs = np.full((self.sizes[key], obs_dim), float('nan'), dtype=np.float32) |
|
self.buffers[key]._terminals = np.full((self.sizes[key], 1), float('nan'), dtype=np.float32) |
|
|
|
self._real_stored_steps = 0 |
|
self._real_write_location = 0 |
|
|
|
self._latent_stored_steps = 0 |
|
self._latent_write_location = 0 |
|
|
|
self._stored_steps = 0 |
|
self._random = np.random.RandomState(seed) |
|
|
|
@property |
|
def obs_dim(self): |
|
return self._obs.shape[-1] |
|
|
|
@property |
|
def action_dim(self): |
|
return self._actions.shape[-1] |
|
|
|
def __len__(self): |
|
return self._stored_steps |
|
|
|
def save(self, location: str): |
|
f = h5py.File(location, 'w') |
|
f.create_dataset('obs', data=self.buffers['real']._obs[:self._real_stored_steps], compression='lzf') |
|
f.create_dataset('actions', data=self.buffers['real']._actions[:self._real_stored_steps], compression='lzf') |
|
f.create_dataset('rewards', data=self.buffers['real']._rewards[:self._real_stored_steps], compression='lzf') |
|
f.create_dataset('next_obs', data=self.buffers['real']._next_obs[:self._real_stored_steps], compression='lzf') |
|
f.create_dataset('terminals', data=self.buffers['real']._terminals[:self._real_stored_steps], compression='lzf') |
|
f.close() |
|
|
|
def load(self, location: str): |
|
with h5py.File(location, "r") as f: |
|
obs = np.array(f['obs']) |
|
self._real_stored_steps = obs.shape[0] |
|
self._real_write_location = obs.shape[0] % self.sizes['real'] |
|
|
|
self.buffers['real']._obs[:self._real_stored_steps] = np.array(f['obs']) |
|
self.buffers['real']._actions[:self._real_stored_steps] = np.array(f['actions']) |
|
self.buffers['real']._rewards[:self._real_stored_steps] = np.array(f['rewards']) |
|
self.buffers['real']._next_obs[:self._real_stored_steps] = np.array(f['next_obs']) |
|
self.buffers['real']._terminals[:self._real_stored_steps] = np.array(f['terminals']) |
|
|
|
def add_samples(self, obs_feats, actions, next_obs_feats, rewards, terminals, sample_type='latent'): |
|
if sample_type == 'real': |
|
for obsi, actsi, nobsi, rewi, termi in zip(obs_feats, actions, next_obs_feats, rewards, terminals): |
|
self.buffers['real']._obs[self._real_write_location] = obsi |
|
self.buffers['real']._actions[self._real_write_location] = actsi |
|
self.buffers['real']._next_obs[self._real_write_location] = nobsi |
|
self.buffers['real']._rewards[self._real_write_location] = rewi |
|
self.buffers['real']._terminals[self._real_write_location] = termi |
|
|
|
self._real_write_location = (self._real_write_location + 1) % self.sizes['real'] |
|
self._real_stored_steps = min(self._real_stored_steps + 1, self.sizes['real']) |
|
|
|
else: |
|
for obsi, actsi, nobsi, rewi, termi in zip(obs_feats, actions, next_obs_feats, rewards, terminals): |
|
self.buffers['latent']._obs[self._latent_write_location] = obsi |
|
self.buffers['latent']._actions[self._latent_write_location] = actsi |
|
self.buffers['latent']._next_obs[self._latent_write_location] = nobsi |
|
self.buffers['latent']._rewards[self._latent_write_location] = rewi |
|
self.buffers['latent']._terminals[self._latent_write_location] = termi |
|
|
|
self._latent_write_location = (self._latent_write_location + 1) % self.sizes['latent'] |
|
self._latent_stored_steps = min(self._latent_stored_steps + 1, self.sizes['latent']) |
|
|
|
self._stored_steps = self._real_stored_steps + self._latent_stored_steps |
|
|
|
def sample(self, batch_size, return_dict: bool = False): |
|
real_idxs = self._random.choice(self._real_stored_steps, batch_size) |
|
latent_idxs = self._random.choice(self._latent_stored_steps, batch_size) |
|
|
|
obs = np.concatenate([self.buffers['real']._obs[real_idxs], |
|
self.buffers['latent']._obs[latent_idxs]], axis=0) |
|
actions = np.concatenate([self.buffers['real']._actions[real_idxs], |
|
self.buffers['latent']._actions[latent_idxs]], axis=0) |
|
next_obs = np.concatenate([self.buffers['real']._next_obs[real_idxs], |
|
self.buffers['latent']._next_obs[latent_idxs]], axis=0) |
|
rewards = np.concatenate([self.buffers['real']._rewards[real_idxs], |
|
self.buffers['latent']._rewards[latent_idxs]], axis=0) |
|
terminals = np.concatenate([self.buffers['real']._terminals[real_idxs], |
|
self.buffers['latent']._terminals[latent_idxs]], axis=0) |
|
|
|
data = { |
|
'obs': obs, |
|
'actions': actions, |
|
'next_obs': next_obs, |
|
'rewards': rewards, |
|
'terminals': terminals |
|
} |
|
|
|
return data |
|
|