import csv from random import shuffle import pandas as pd NEGATIVE = 0 POSITIVE = 1 ROTTEN = 0 FRESH = 1 def parse_is_top_critic(is_top_critic): return is_top_critic == "True" def parse_score_sentiment(score): if score == "NEGATIVE": return NEGATIVE if score == "POSITIVE": return POSITIVE raise ValueError(f"Unknown score sentiment: {score}") def parse_review_state(review_state): if review_state == "rotten": return ROTTEN if review_state == "fresh": return FRESH raise ValueError(f"Unknown review state: {review_state}") def run(): with open("rotten_tomatoes_movie_reviews.csv") as f: reader = csv.DictReader(f) rows = list(reader) positive_rows = [] negative_rows = [] for row in rows: row["isTopCritic"] = parse_is_top_critic(row["isTopCritic"]) row["scoreSentiment"] = parse_score_sentiment(row["scoreSentiment"]) row["reviewState"] = parse_review_state(row["reviewState"]) if row["scoreSentiment"] == POSITIVE: positive_rows.append(row) else: negative_rows.append(row) # Save rows to csv file called original.csv pd.DataFrame(rows).to_csv("original.csv", index=False) shuffle(positive_rows) shuffle(negative_rows) # Generate the balanced datasets balanced_size = min(len(positive_rows), len(negative_rows)) balanced_rows = [] for i in range(0, balanced_size): balanced_rows.append(positive_rows[i]) balanced_rows.append(negative_rows[i]) # Save balanced rows to csv file called balanced.csv pd.DataFrame(balanced_rows).to_csv("balanced.csv", index=False) if __name__ == "__main__": run()