|
import datasets |
|
import pandas as pd |
|
import numpy as np |
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
_DATA_PATH = "https://huggingface.co/datasets/conversy/clustering_segments/resolve/main/dataset.pkl" |
|
|
|
class ClusteringSegmentsConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for Conversy Benchmark.""" |
|
|
|
def __init__(self, name, version, **kwargs): |
|
"""BuilderConfig for Conversy Benchmark. |
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
self.name = name |
|
self.version = version |
|
self.features = kwargs.pop("features", None) |
|
self.description = kwargs.pop("description", None) |
|
self.data_url = kwargs.pop("data_url", None) |
|
self.nb_data_shards = kwargs.pop("nb_data_shards", None) |
|
|
|
super(ClusteringSegmentsConfig, self).__init__( |
|
name=name, |
|
version=version, |
|
**kwargs |
|
) |
|
|
|
|
|
class ClusteringSegments(datasets.GeneratorBasedBuilder): |
|
"""Conversy benchmark""" |
|
VERSION = datasets.Version("1.0.0") |
|
BUILDER_CONFIGS = [ |
|
ClusteringSegmentsConfig( |
|
name="VPClusteringBenchmark", |
|
version=VERSION, |
|
description="Conversy Benchmark for ML models evaluation", |
|
features=["segment_id", "filename", "speaker", "duration", "vp", |
|
"start", "end", "readable_start", "readable_end", |
|
"segment_clean"], |
|
data_url=_DATA_PATH, |
|
nb_data_shards=1) |
|
] |
|
|
|
def _info(self): |
|
description = ( |
|
"Voice Print Clustering Benchmark" |
|
) |
|
features = datasets.Features( |
|
{ |
|
"segment_id": datasets.Value("int32"), |
|
"filename": datasets.Value("string"), |
|
"speaker": datasets.Value("string"), |
|
"duration": datasets.Value("float32"), |
|
"segment_clean": datasets.Value("bool"), |
|
"start": datasets.Value("float32"), |
|
"end": datasets.Value("float32"), |
|
"readable_start": datasets.Value("string"), |
|
"readable_end": datasets.Value("string"), |
|
"vp": datasets.Sequence(datasets.Value("float32")) |
|
}) |
|
return datasets.DatasetInfo( |
|
description=description, |
|
features=features, |
|
supervised_keys=None, |
|
version=self.config.version |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
data_url = self.config.data_url |
|
downloaded_file = dl_manager.download_and_extract(data_url) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"file_path": downloaded_file}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, file_path): |
|
"""Yields examples.""" |
|
df = pd.read_pickle(file_path) |
|
|
|
for idx, row in df.iterrows(): |
|
yield idx, { |
|
"segment_id": row["segment_id"], |
|
"filename": row["filename"], |
|
"speaker": row["speaker"], |
|
"duration": row["duration"], |
|
"segment_clean": row["segment_clean"], |
|
"start": row['start'], |
|
"end": row['end'], |
|
"readable_start": row['readable_start'], |
|
"readable_end": row['readable_end'], |
|
"vp": np.asarray(row["vp"], dtype=np.float32) |
|
} |
|
|