Nadav commited on
Commit
e213ad4
·
1 Parent(s): 99f5b47

Created README

Browse files
Files changed (1) hide show
  1. README.md +118 -0
README.md ADDED
@@ -0,0 +1,118 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ annotations_creators:
3
+ - crowdsourced
4
+ language:
5
+ - en
6
+ - ar
7
+ - bn
8
+ - fi
9
+ - id
10
+ - ja
11
+ - sw
12
+ - ko
13
+ - ru
14
+ - te
15
+ - th
16
+ language_creators:
17
+ - crowdsourced
18
+ license:
19
+ - apache-2.0
20
+ multilinguality:
21
+ - multilingual
22
+ pretty_name: Answerable TyDi QA
23
+ size_categories:
24
+ - ['100K<n<1M']
25
+ source_datasets:
26
+ - extended|wikipedia
27
+ task_categories:
28
+ - question-answering
29
+ task_ids:
30
+ - extractive-qa
31
+ ---
32
+
33
+ # Dataset Card for "answerable-tydiqa"
34
+
35
+
36
+ ## Dataset Description
37
+
38
+ - **Homepage:** [https://github.com/google-research-datasets/tydiqa](https://github.com/google-research-datasets/tydiqa)
39
+ - **Paper:** [Paper](https://aclanthology.org/2020.tacl-1.30/)
40
+ - **Size of downloaded dataset files:** 75.43 MB
41
+ - **Size of the generated dataset:** 131.78 MB
42
+ - **Total amount of disk used:** 207.21 MB
43
+
44
+ ### Dataset Summary
45
+
46
+ [TyDi QA](https://huggingface.co/datasets/tydiqa) is a question answering dataset covering 11 typologically diverse languages.
47
+ Answerable TyDi QA is an extension of the GoldP subtask of the original TyDi QA dataset to also include unanswertable questions.
48
+
49
+ ## Dataset Structure
50
+
51
+ The dataset contains a train and a validation set, with 116067 and 13325 examples, respectively. Access them with
52
+
53
+ ```py
54
+ from datasets import load_dataset
55
+ dataset = load_dataset("copenlu/answerable_tydiqa")
56
+ train_set = dataset["train"]
57
+ validation_set = dataset["validation"]
58
+ ```
59
+
60
+ ### Data Instances
61
+
62
+ Here is an example of an instance of the dataset:
63
+
64
+ ```
65
+ {'question_text': 'dimanakah Dr. Ernest François Eugène Douwes Dekker meninggal?',
66
+ 'document_title': 'Ernest Douwes Dekker',
67
+ 'language': 'indonesian',
68
+ 'annotations':
69
+ {'answer_start': [45],
70
+ 'answer_text': ['28 Agustus 1950']
71
+ },
72
+ 'document_plaintext': 'Ernest Douwes Dekker wafat dini hari tanggal 28 Agustus 1950 (tertulis di batu nisannya; 29 Agustus 1950 versi van der Veur, 2006) dan dimakamkan di TMP Cikutra, Bandung.',
73
+ 'document_url': 'https://id.wikipedia.org/wiki/Ernest%20Douwes%20Dekker'}
74
+ ```
75
+
76
+ Description of the dataset columns:
77
+
78
+ | Column name | type | Description |
79
+ | ----------- | ----------- | ----------- |
80
+ | document_title | str | The title of the Wikipedia article from which the data instance was generated |
81
+ | document_url | str | The URL of said article |
82
+ | language | str | The language of the data instance |
83
+ | question_text | str | The question to answer |
84
+ | document_plaintext | str | The context, a Wikipedia paragraph that might or might not contain the answer to the question |
85
+ | annotations["answer_start"] | list[int] | The char index in 'document_plaintext' where the answer starts. If the question is unanswerable - an empty list |
86
+ | annotations["answer_text"] | list[str] | The answer, a span of text from 'document_plaintext'. If the question is unanswerable - an empty list |
87
+
88
+
89
+ **Notice:** If the question is *answerable*, annotations["answer_start"] and annotations["answer_text"] contain a list of length 1
90
+ (In some variations of the dataset the lists might be longer, e.g. if more than one person annotated the instance, but not in our case).
91
+ If the question is *unanswerable*, annotations["answer_start"] and annotations["answer_text"] contain an empty list of length 0.
92
+
93
+
94
+ ## Useful stuff
95
+
96
+ Check out the [datasets ducumentations](https://huggingface.co/docs/datasets/quickstart) to learn how to manipulate and use the dataset. Specifically, you might find the following functions useful:
97
+
98
+ `dataset.filter`, for filtering out data (useful for keeping instances of specific languages, for example).
99
+
100
+ `dataset.map`, for manipulating the dataset.
101
+
102
+ `dataset.to_pandas`, to convert the dataset into a pandas.DataFrame format.
103
+
104
+
105
+ ```
106
+ @article{tydiqa,
107
+ title = {TyDi QA: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages},
108
+ author = {Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}
109
+ year = {2020},
110
+ journal = {Transactions of the Association for Computational Linguistics}
111
+ }
112
+
113
+ ```
114
+
115
+
116
+ ### Contributions
117
+
118
+ Thanks to [@thomwolf](https://github.com/thomwolf), [@albertvillanova](https://github.com/albertvillanova), [@lewtun](https://github.com/lewtun), [@patrickvonplaten](https://github.com/patrickvonplaten) for adding this dataset.