--- dataset_info: features: - name: sentences list: - name: detokenized_text dtype: string - name: index dtype: int64 - name: token_positions sequence: sequence: int64 - name: tokens list: - name: index dtype: int64 - name: text dtype: string - name: xpos dtype: string - name: coref_chains sequence: sequence: sequence: int64 - name: id dtype: string splits: - name: train num_bytes: 41993013 num_examples: 1345 - name: validation num_bytes: 4236748 num_examples: 135 - name: test num_bytes: 4312728 num_examples: 207 download_size: 8195556 dataset_size: 50542489 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* - split: test path: data/test-* --- Detokenizes the ECMT dataset using the kiwipiepy library. The script used to convert the dataset is here: https://gist.github.com/ianporada/a246ebf59696c6e16e1bc1873bc182a4 The library version used is kiwipiepy==0.20.3 / kiwipiepy_model==0.20.0 The dataset schema is as follows: ```python { # the original document filename "doc_id": str, # a list of sentences in the document "sentences": [ "index": int, # the index of the sentence within the document "detokenized_text": str, # a single string representing the text of the sentence (detokenized using kiwipiepy) # a list of token positions which are tuples of the form (start, end) # the token at index i corresponds to characters detokenized_text[start:end] "token_positions": [(int, int), ...], # the original values of each token from the dataset "tokens": [{"index": int, "text": str, "xpos": str}, ...], ], # a list of coreference chains, each chain is a list of mentions # each mention is a list of form [sentence_index, start_token_index, end_token_index] where token indices are inclusive indices within the given sentence "coref_chains": [[[int, int, int], ...], ...] } ```