Update parquet files
Browse files- README.md +0 -205
- dataset_infos.json +0 -1
- default/test/0000.parquet +3 -0
- default/train/0000.parquet +3 -0
- default/validation/0000.parquet +3 -0
- mwsc.py +0 -121
README.md
DELETED
@@ -1,205 +0,0 @@
|
|
1 |
-
---
|
2 |
-
annotations_creators:
|
3 |
-
- expert-generated
|
4 |
-
language:
|
5 |
-
- en
|
6 |
-
language_creators:
|
7 |
-
- expert-generated
|
8 |
-
license:
|
9 |
-
- cc-by-4.0
|
10 |
-
multilinguality:
|
11 |
-
- monolingual
|
12 |
-
pretty_name: Modified Winograd Schema Challenge (MWSC)
|
13 |
-
size_categories:
|
14 |
-
- n<1K
|
15 |
-
source_datasets:
|
16 |
-
- extended|winograd_wsc
|
17 |
-
task_categories:
|
18 |
-
- multiple-choice
|
19 |
-
task_ids:
|
20 |
-
- multiple-choice-coreference-resolution
|
21 |
-
paperswithcode_id: null
|
22 |
-
dataset_info:
|
23 |
-
features:
|
24 |
-
- name: sentence
|
25 |
-
dtype: string
|
26 |
-
- name: question
|
27 |
-
dtype: string
|
28 |
-
- name: options
|
29 |
-
sequence: string
|
30 |
-
- name: answer
|
31 |
-
dtype: string
|
32 |
-
splits:
|
33 |
-
- name: train
|
34 |
-
num_bytes: 11022
|
35 |
-
num_examples: 80
|
36 |
-
- name: test
|
37 |
-
num_bytes: 15220
|
38 |
-
num_examples: 100
|
39 |
-
- name: validation
|
40 |
-
num_bytes: 13109
|
41 |
-
num_examples: 82
|
42 |
-
download_size: 19197
|
43 |
-
dataset_size: 39351
|
44 |
-
---
|
45 |
-
|
46 |
-
# Dataset Card for The modified Winograd Schema Challenge (MWSC)
|
47 |
-
|
48 |
-
## Table of Contents
|
49 |
-
- [Dataset Description](#dataset-description)
|
50 |
-
- [Dataset Summary](#dataset-summary)
|
51 |
-
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
|
52 |
-
- [Languages](#languages)
|
53 |
-
- [Dataset Structure](#dataset-structure)
|
54 |
-
- [Data Instances](#data-instances)
|
55 |
-
- [Data Fields](#data-fields)
|
56 |
-
- [Data Splits](#data-splits)
|
57 |
-
- [Dataset Creation](#dataset-creation)
|
58 |
-
- [Curation Rationale](#curation-rationale)
|
59 |
-
- [Source Data](#source-data)
|
60 |
-
- [Annotations](#annotations)
|
61 |
-
- [Personal and Sensitive Information](#personal-and-sensitive-information)
|
62 |
-
- [Considerations for Using the Data](#considerations-for-using-the-data)
|
63 |
-
- [Social Impact of Dataset](#social-impact-of-dataset)
|
64 |
-
- [Discussion of Biases](#discussion-of-biases)
|
65 |
-
- [Other Known Limitations](#other-known-limitations)
|
66 |
-
- [Additional Information](#additional-information)
|
67 |
-
- [Dataset Curators](#dataset-curators)
|
68 |
-
- [Licensing Information](#licensing-information)
|
69 |
-
- [Citation Information](#citation-information)
|
70 |
-
- [Contributions](#contributions)
|
71 |
-
|
72 |
-
## Dataset Description
|
73 |
-
|
74 |
-
- **Homepage:** [http://decanlp.com](http://decanlp.com)
|
75 |
-
- **Repository:** https://github.com/salesforce/decaNLP
|
76 |
-
- **Paper:** [The Natural Language Decathlon: Multitask Learning as Question Answering](https://arxiv.org/abs/1806.08730)
|
77 |
-
- **Point of Contact:** [Bryan McCann](mailto:[email protected]), [Nitish Shirish Keskar](mailto:[email protected])
|
78 |
-
- **Size of downloaded dataset files:** 19.20 kB
|
79 |
-
- **Size of the generated dataset:** 39.35 kB
|
80 |
-
- **Total amount of disk used:** 58.55 kB
|
81 |
-
|
82 |
-
### Dataset Summary
|
83 |
-
|
84 |
-
Examples taken from the Winograd Schema Challenge modified to ensure that answers are a single word from the context.
|
85 |
-
This Modified Winograd Schema Challenge (MWSC) ensures that scores are neither inflated nor deflated by oddities in phrasing.
|
86 |
-
|
87 |
-
### Supported Tasks and Leaderboards
|
88 |
-
|
89 |
-
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
90 |
-
|
91 |
-
### Languages
|
92 |
-
|
93 |
-
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
94 |
-
|
95 |
-
## Dataset Structure
|
96 |
-
|
97 |
-
### Data Instances
|
98 |
-
|
99 |
-
#### default
|
100 |
-
|
101 |
-
- **Size of downloaded dataset files:** 0.02 MB
|
102 |
-
- **Size of the generated dataset:** 0.04 MB
|
103 |
-
- **Total amount of disk used:** 0.06 MB
|
104 |
-
|
105 |
-
An example looks as follows:
|
106 |
-
```
|
107 |
-
{
|
108 |
-
"sentence": "The city councilmen refused the demonstrators a permit because they feared violence.",
|
109 |
-
"question": "Who feared violence?",
|
110 |
-
"options": [ "councilmen", "demonstrators" ],
|
111 |
-
"answer": "councilmen"
|
112 |
-
}
|
113 |
-
```
|
114 |
-
|
115 |
-
### Data Fields
|
116 |
-
|
117 |
-
The data fields are the same among all splits.
|
118 |
-
|
119 |
-
#### default
|
120 |
-
- `sentence`: a `string` feature.
|
121 |
-
- `question`: a `string` feature.
|
122 |
-
- `options`: a `list` of `string` features.
|
123 |
-
- `answer`: a `string` feature.
|
124 |
-
|
125 |
-
### Data Splits
|
126 |
-
|
127 |
-
| name |train|validation|test|
|
128 |
-
|-------|----:|---------:|---:|
|
129 |
-
|default| 80| 82| 100|
|
130 |
-
|
131 |
-
## Dataset Creation
|
132 |
-
|
133 |
-
### Curation Rationale
|
134 |
-
|
135 |
-
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
136 |
-
|
137 |
-
### Source Data
|
138 |
-
|
139 |
-
#### Initial Data Collection and Normalization
|
140 |
-
|
141 |
-
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
142 |
-
|
143 |
-
#### Who are the source language producers?
|
144 |
-
|
145 |
-
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
146 |
-
|
147 |
-
### Annotations
|
148 |
-
|
149 |
-
#### Annotation process
|
150 |
-
|
151 |
-
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
152 |
-
|
153 |
-
#### Who are the annotators?
|
154 |
-
|
155 |
-
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
156 |
-
|
157 |
-
### Personal and Sensitive Information
|
158 |
-
|
159 |
-
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
160 |
-
|
161 |
-
## Considerations for Using the Data
|
162 |
-
|
163 |
-
### Social Impact of Dataset
|
164 |
-
|
165 |
-
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
166 |
-
|
167 |
-
### Discussion of Biases
|
168 |
-
|
169 |
-
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
170 |
-
|
171 |
-
### Other Known Limitations
|
172 |
-
|
173 |
-
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
174 |
-
|
175 |
-
## Additional Information
|
176 |
-
|
177 |
-
### Dataset Curators
|
178 |
-
|
179 |
-
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
180 |
-
|
181 |
-
### Licensing Information
|
182 |
-
|
183 |
-
Our code for running decaNLP has been open sourced under BSD-3-Clause.
|
184 |
-
|
185 |
-
We chose to restrict decaNLP to datasets that were free and publicly accessible for research, but you should check their individual terms if you deviate from this use case.
|
186 |
-
|
187 |
-
From the [Winograd Schema Challenge](https://cs.nyu.edu/~davise/papers/WinogradSchemas/WS.html):
|
188 |
-
> Both versions of the collections are licenced under a [Creative Commons Attribution 4.0 International License](http://creativecommons.org/licenses/by/4.0/).
|
189 |
-
|
190 |
-
### Citation Information
|
191 |
-
|
192 |
-
If you use this in your work, please cite:
|
193 |
-
```
|
194 |
-
@article{McCann2018decaNLP,
|
195 |
-
title={The Natural Language Decathlon: Multitask Learning as Question Answering},
|
196 |
-
author={Bryan McCann and Nitish Shirish Keskar and Caiming Xiong and Richard Socher},
|
197 |
-
journal={arXiv preprint arXiv:1806.08730},
|
198 |
-
year={2018}
|
199 |
-
}
|
200 |
-
```
|
201 |
-
|
202 |
-
|
203 |
-
### Contributions
|
204 |
-
|
205 |
-
Thanks to [@thomwolf](https://github.com/thomwolf), [@lewtun](https://github.com/lewtun), [@ghomasHudson](https://github.com/ghomasHudson), [@lhoestq](https://github.com/lhoestq) for adding this dataset.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dataset_infos.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"default": {"description": "Examples taken from the Winograd Schema Challenge modified to ensure that answers are a single word from the context.\nThis modified Winograd Schema Challenge (MWSC) ensures that scores are neither inflated nor deflated by oddities in phrasing.\n", "citation": "@article{McCann2018decaNLP,\n title={The Natural Language Decathlon: Multitask Learning as Question Answering},\n author={Bryan McCann and Nitish Shirish Keskar and Caiming Xiong and Richard Socher},\n journal={arXiv preprint arXiv:1806.08730},\n year={2018}\n}\n", "homepage": "http://decanlp.com", "license": "", "features": {"sentence": {"dtype": "string", "id": null, "_type": "Value"}, "question": {"dtype": "string", "id": null, "_type": "Value"}, "options": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "answer": {"dtype": "string", "id": null, "_type": "Value"}}, "supervised_keys": null, "builder_name": "mwsc", "config_name": "default", "version": {"version_str": "0.1.0", "description": null, "datasets_version_to_prepare": null, "major": 0, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 11022, "num_examples": 80, "dataset_name": "mwsc"}, "test": {"name": "test", "num_bytes": 15220, "num_examples": 100, "dataset_name": "mwsc"}, "validation": {"name": "validation", "num_bytes": 13109, "num_examples": 82, "dataset_name": "mwsc"}}, "download_checksums": {"https://raw.githubusercontent.com/salesforce/decaNLP/1e9605f246b9e05199b28bde2a2093bc49feeeaa/local_data/schema.txt": {"num_bytes": 19197, "checksum": "31da9bee05796bbe0f6c957f54d1eb82eb5c644a8ee59f2ff1fa890eff3885dd"}}, "download_size": 19197, "dataset_size": 39351, "size_in_bytes": 58548}}
|
|
|
|
default/test/0000.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4bde7894c28d6854442831fd7b440cc4056e025163014f1d679903ff35884b6b
|
3 |
+
size 10962
|
default/train/0000.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1623e6894519a6f0f706ffd7cbe72f55a94b7f4f0494934f10a431a4aec716ba
|
3 |
+
size 8368
|
default/validation/0000.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4af3bfac03b678fc4fd4156e2e6dfd273a5554b0a0fd4503a591497ac9ceb066
|
3 |
+
size 9380
|
mwsc.py
DELETED
@@ -1,121 +0,0 @@
|
|
1 |
-
"""A modification of the Winograd Schema Challenge to ensure answers are a single context word"""
|
2 |
-
|
3 |
-
import os
|
4 |
-
import re
|
5 |
-
|
6 |
-
import datasets
|
7 |
-
|
8 |
-
|
9 |
-
_CITATION = """\
|
10 |
-
@article{McCann2018decaNLP,
|
11 |
-
title={The Natural Language Decathlon: Multitask Learning as Question Answering},
|
12 |
-
author={Bryan McCann and Nitish Shirish Keskar and Caiming Xiong and Richard Socher},
|
13 |
-
journal={arXiv preprint arXiv:1806.08730},
|
14 |
-
year={2018}
|
15 |
-
}
|
16 |
-
"""
|
17 |
-
|
18 |
-
_DESCRIPTION = """\
|
19 |
-
Examples taken from the Winograd Schema Challenge modified to ensure that answers are a single word from the context.
|
20 |
-
This modified Winograd Schema Challenge (MWSC) ensures that scores are neither inflated nor deflated by oddities in phrasing.
|
21 |
-
"""
|
22 |
-
|
23 |
-
_DATA_URL = "https://raw.githubusercontent.com/salesforce/decaNLP/1e9605f246b9e05199b28bde2a2093bc49feeeaa/local_data/schema.txt"
|
24 |
-
# Alternate: https://s3.amazonaws.com/research.metamind.io/decaNLP/data/schema.txt
|
25 |
-
|
26 |
-
|
27 |
-
class MWSC(datasets.GeneratorBasedBuilder):
|
28 |
-
"""MWSC: modified Winograd Schema Challenge"""
|
29 |
-
|
30 |
-
VERSION = datasets.Version("0.1.0")
|
31 |
-
|
32 |
-
def _info(self):
|
33 |
-
return datasets.DatasetInfo(
|
34 |
-
description=_DESCRIPTION,
|
35 |
-
features=datasets.Features(
|
36 |
-
{
|
37 |
-
"sentence": datasets.Value("string"),
|
38 |
-
"question": datasets.Value("string"),
|
39 |
-
"options": datasets.features.Sequence(datasets.Value("string")),
|
40 |
-
"answer": datasets.Value("string"),
|
41 |
-
}
|
42 |
-
),
|
43 |
-
# If there's a common (input, target) tuple from the features,
|
44 |
-
# specify them here. They'll be used if as_supervised=True in
|
45 |
-
# builder.as_dataset.
|
46 |
-
supervised_keys=None,
|
47 |
-
# Homepage of the dataset for documentation
|
48 |
-
homepage="http://decanlp.com",
|
49 |
-
citation=_CITATION,
|
50 |
-
)
|
51 |
-
|
52 |
-
def _split_generators(self, dl_manager):
|
53 |
-
"""Returns SplitGenerators."""
|
54 |
-
schemas_file = dl_manager.download_and_extract(_DATA_URL)
|
55 |
-
|
56 |
-
if os.path.isdir(schemas_file):
|
57 |
-
# During testing the download manager mock gives us a directory
|
58 |
-
schemas_file = os.path.join(schemas_file, "schema.txt")
|
59 |
-
|
60 |
-
return [
|
61 |
-
datasets.SplitGenerator(
|
62 |
-
name=datasets.Split.TRAIN,
|
63 |
-
gen_kwargs={"filepath": schemas_file, "split": "train"},
|
64 |
-
),
|
65 |
-
datasets.SplitGenerator(
|
66 |
-
name=datasets.Split.TEST,
|
67 |
-
gen_kwargs={"filepath": schemas_file, "split": "test"},
|
68 |
-
),
|
69 |
-
datasets.SplitGenerator(
|
70 |
-
name=datasets.Split.VALIDATION,
|
71 |
-
gen_kwargs={"filepath": schemas_file, "split": "dev"},
|
72 |
-
),
|
73 |
-
]
|
74 |
-
|
75 |
-
def _get_both_schema(self, context):
|
76 |
-
"""Split [option1/option2] into 2 sentences.
|
77 |
-
From https://github.com/salesforce/decaNLP/blob/1e9605f246b9e05199b28bde2a2093bc49feeeaa/text/torchtext/datasets/generic.py#L815-L827"""
|
78 |
-
pattern = r"\[.*\]"
|
79 |
-
variations = [x[1:-1].split("/") for x in re.findall(pattern, context)]
|
80 |
-
splits = re.split(pattern, context)
|
81 |
-
results = []
|
82 |
-
for which_schema in range(2):
|
83 |
-
vs = [v[which_schema] for v in variations]
|
84 |
-
context = ""
|
85 |
-
for idx in range(len(splits)):
|
86 |
-
context += splits[idx]
|
87 |
-
if idx < len(vs):
|
88 |
-
context += vs[idx]
|
89 |
-
results.append(context)
|
90 |
-
return results
|
91 |
-
|
92 |
-
def _generate_examples(self, filepath, split):
|
93 |
-
"""Yields examples."""
|
94 |
-
|
95 |
-
schemas = []
|
96 |
-
with open(filepath, encoding="utf-8") as schema_file:
|
97 |
-
schema = []
|
98 |
-
for line in schema_file:
|
99 |
-
if len(line.split()) == 0:
|
100 |
-
schemas.append(schema)
|
101 |
-
schema = []
|
102 |
-
continue
|
103 |
-
else:
|
104 |
-
schema.append(line.strip())
|
105 |
-
|
106 |
-
# Train/test/dev split from decaNLP code
|
107 |
-
splits = {}
|
108 |
-
traindev = schemas[:-50]
|
109 |
-
splits["test"] = schemas[-50:]
|
110 |
-
splits["train"] = traindev[:40]
|
111 |
-
splits["dev"] = traindev[40:]
|
112 |
-
|
113 |
-
idx = 0
|
114 |
-
for schema in splits[split]:
|
115 |
-
sentence, question, answers = schema
|
116 |
-
sentence = self._get_both_schema(sentence)
|
117 |
-
question = self._get_both_schema(question)
|
118 |
-
answers = answers.split("/")
|
119 |
-
for i in range(2):
|
120 |
-
yield idx, {"sentence": sentence[i], "question": question[i], "options": answers, "answer": answers[i]}
|
121 |
-
idx += 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|