ianporada commited on
Commit
71b794c
·
1 Parent(s): d86a666

Delete superglue_wsc.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. superglue_wsc.py +0 -354
superglue_wsc.py DELETED
@@ -1,354 +0,0 @@
1
- # coding=utf-8
2
- # Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
-
16
- # Lint as: python3
17
- """The WSC from the SuperGLUE benchmark."""
18
-
19
-
20
- import json
21
- import os
22
-
23
- import datasets
24
-
25
-
26
- _SUPER_GLUE_CITATION = """\
27
- @article{wang2019superglue,
28
- title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems},
29
- author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R},
30
- journal={arXiv preprint arXiv:1905.00537},
31
- year={2019}
32
- }
33
-
34
- Note that each SuperGLUE dataset has its own citation. Please see the source to
35
- get the correct citation for each contained dataset.
36
- """
37
-
38
- _GLUE_DESCRIPTION = """\
39
- SuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after
40
- GLUE with a new set of more difficult language understanding tasks, improved
41
- resources, and a new public leaderboard.
42
-
43
- """
44
-
45
- _WSC_DESCRIPTION = """\
46
- The Winograd Schema Challenge (WSC, Levesque et al., 2012) is a reading comprehension
47
- task in which a system must read a sentence with a pronoun and select the referent of that pronoun
48
- from a list of choices. Given the difficulty of this task and the headroom still left, we have included
49
- WSC in SuperGLUE and recast the dataset into its coreference form. The task is cast as a binary
50
- classification problem, as opposed to N-multiple choice, in order to isolate the model's ability to
51
- understand the coreference links within a sentence as opposed to various other strategies that may
52
- come into play in multiple choice conditions. With that in mind, we create a split with 65% negative
53
- majority class in the validation set, reflecting the distribution of the hidden test set, and 52% negative
54
- class in the training set. The training and validation examples are drawn from the original Winograd
55
- Schema dataset (Levesque et al., 2012), as well as those distributed by the affiliated organization
56
- Commonsense Reasoning. The test examples are derived from fiction books and have been shared
57
- with us by the authors of the original dataset. Previously, a version of WSC recast as NLI as included
58
- in GLUE, known as WNLI. No substantial progress was made on WNLI, with many submissions
59
- opting to submit only majority class predictions. WNLI was made especially difficult due to an
60
- adversarial train/dev split: Premise sentences that appeared in the training set sometimes appeared
61
- in the development set with a different hypothesis and a flipped label. If a system memorized the
62
- training set without meaningfully generalizing, which was easy due to the small size of the training
63
- set, it could perform far below chance on the development set. We remove this adversarial design
64
- in the SuperGLUE version of WSC by ensuring that no sentences are shared between the training,
65
- validation, and test sets.
66
-
67
- However, the validation and test sets come from different domains, with the validation set consisting
68
- of ambiguous examples such that changing one non-noun phrase word will change the coreference
69
- dependencies in the sentence. The test set consists only of more straightforward examples, with a
70
- high number of noun phrases (and thus more choices for the model), but low to no ambiguity."""
71
-
72
-
73
- _WSC_CITATION = """\
74
- @inproceedings{levesque2012winograd,
75
- title={The winograd schema challenge},
76
- author={Levesque, Hector and Davis, Ernest and Morgenstern, Leora},
77
- booktitle={Thirteenth International Conference on the Principles of Knowledge Representation and Reasoning},
78
- year={2012}
79
- }"""
80
-
81
-
82
- class SuperGlueConfig(datasets.BuilderConfig):
83
- """BuilderConfig for SuperGLUE."""
84
-
85
- def __init__(self, features, data_url, citation, url, label_classes=("False", "True"), **kwargs):
86
- """BuilderConfig for SuperGLUE.
87
-
88
- Args:
89
- features: `list[string]`, list of the features that will appear in the
90
- feature dict. Should not include "label".
91
- data_url: `string`, url to download the zip file from.
92
- citation: `string`, citation for the data set.
93
- url: `string`, url for information about the data set.
94
- label_classes: `list[string]`, the list of classes for the label if the
95
- label is present as a string. Non-string labels will be cast to either
96
- 'False' or 'True'.
97
- **kwargs: keyword arguments forwarded to super.
98
- """
99
- # Version history:
100
- # 1.0.3: Fix not including entity position in ReCoRD.
101
- # 1.0.2: Fixed non-nondeterminism in ReCoRD.
102
- # 1.0.1: Change from the pre-release trial version of SuperGLUE (v1.9) to
103
- # the full release (v2.0).
104
- # 1.0.0: S3 (new shuffling, sharding and slicing mechanism).
105
- # 0.0.2: Initial version.
106
- super(SuperGlueConfig, self).__init__(version=datasets.Version("1.0.3"), **kwargs)
107
- self.features = features
108
- self.label_classes = label_classes
109
- self.data_url = data_url
110
- self.citation = citation
111
- self.url = url
112
-
113
-
114
- class SuperGlue(datasets.GeneratorBasedBuilder):
115
- """The SuperGLUE benchmark."""
116
-
117
- BUILDER_CONFIGS = [
118
- SuperGlueConfig(
119
- name="wsc",
120
- description=_WSC_DESCRIPTION,
121
- # Note that span1_index and span2_index will be integers stored as
122
- # datasets.Value('int32').
123
- features=["text", "span1_index", "span2_index", "span1_text", "span2_text"],
124
- data_url="https://dl.fbaipublicfiles.com/glue/superglue/data/v2/WSC.zip",
125
- citation=_WSC_CITATION,
126
- url="https://cs.nyu.edu/faculty/davise/papers/WinogradSchemas/WS.html",
127
- ),
128
- SuperGlueConfig(
129
- name="wsc.fixed",
130
- description=(
131
- _WSC_DESCRIPTION + "\n\nThis version fixes issues where the spans are not actually "
132
- "substrings of the text."
133
- ),
134
- # Note that span1_index and span2_index will be integers stored as
135
- # datasets.Value('int32').
136
- features=["text", "span1_index", "span2_index", "span1_text", "span2_text"],
137
- data_url="https://dl.fbaipublicfiles.com/glue/superglue/data/v2/WSC.zip",
138
- citation=_WSC_CITATION,
139
- url="https://cs.nyu.edu/faculty/davise/papers/WinogradSchemas/WS.html",
140
- ),
141
- ]
142
-
143
- def _info(self):
144
- features = {feature: datasets.Value("string") for feature in self.config.features}
145
- if self.config.name.startswith("wsc"):
146
- features["span1_index"] = datasets.Value("int32")
147
- features["span2_index"] = datasets.Value("int32")
148
- if self.config.name == "wic":
149
- features["start1"] = datasets.Value("int32")
150
- features["start2"] = datasets.Value("int32")
151
- features["end1"] = datasets.Value("int32")
152
- features["end2"] = datasets.Value("int32")
153
- if self.config.name == "multirc":
154
- features["idx"] = dict(
155
- {
156
- "paragraph": datasets.Value("int32"),
157
- "question": datasets.Value("int32"),
158
- "answer": datasets.Value("int32"),
159
- }
160
- )
161
- elif self.config.name == "record":
162
- features["idx"] = dict(
163
- {
164
- "passage": datasets.Value("int32"),
165
- "query": datasets.Value("int32"),
166
- }
167
- )
168
- else:
169
- features["idx"] = datasets.Value("int32")
170
-
171
- if self.config.name == "record":
172
- # Entities are the set of possible choices for the placeholder.
173
- features["entities"] = datasets.features.Sequence(datasets.Value("string"))
174
- # The start and end indices of paragraph text for each entity.
175
- features["entity_spans"] = datasets.features.Sequence(
176
- {
177
- "text": datasets.Value("string"),
178
- "start": datasets.Value("int32"),
179
- "end": datasets.Value("int32"),
180
- }
181
- )
182
- # Answers are the subset of entities that are correct.
183
- features["answers"] = datasets.features.Sequence(datasets.Value("string"))
184
- else:
185
- features["label"] = datasets.features.ClassLabel(names=self.config.label_classes)
186
-
187
- return datasets.DatasetInfo(
188
- description=_GLUE_DESCRIPTION + self.config.description,
189
- features=datasets.Features(features),
190
- homepage=self.config.url,
191
- citation=self.config.citation + "\n" + _SUPER_GLUE_CITATION,
192
- )
193
-
194
- def _split_generators(self, dl_manager):
195
- dl_dir = dl_manager.download_and_extract(self.config.data_url) or ""
196
- task_name = _get_task_name_from_data_url(self.config.data_url)
197
- dl_dir = os.path.join(dl_dir, task_name)
198
- if self.config.name in ["axb", "axg"]:
199
- return [
200
- datasets.SplitGenerator(
201
- name=datasets.Split.TEST,
202
- gen_kwargs={
203
- "data_file": os.path.join(dl_dir, f"{task_name}.jsonl"),
204
- "split": datasets.Split.TEST,
205
- },
206
- ),
207
- ]
208
- return [
209
- datasets.SplitGenerator(
210
- name=datasets.Split.TRAIN,
211
- gen_kwargs={
212
- "data_file": os.path.join(dl_dir, "train.jsonl"),
213
- "split": datasets.Split.TRAIN,
214
- },
215
- ),
216
- datasets.SplitGenerator(
217
- name=datasets.Split.VALIDATION,
218
- gen_kwargs={
219
- "data_file": os.path.join(dl_dir, "val.jsonl"),
220
- "split": datasets.Split.VALIDATION,
221
- },
222
- ),
223
- datasets.SplitGenerator(
224
- name=datasets.Split.TEST,
225
- gen_kwargs={
226
- "data_file": os.path.join(dl_dir, "test.jsonl"),
227
- "split": datasets.Split.TEST,
228
- },
229
- ),
230
- ]
231
-
232
- def _generate_examples(self, data_file, split):
233
- with open(data_file, encoding="utf-8") as f:
234
- for line in f:
235
- row = json.loads(line)
236
-
237
- if self.config.name == "multirc":
238
- paragraph = row["passage"]
239
- for question in paragraph["questions"]:
240
- for answer in question["answers"]:
241
- label = answer.get("label")
242
- key = "%s_%s_%s" % (row["idx"], question["idx"], answer["idx"])
243
- yield key, {
244
- "paragraph": paragraph["text"],
245
- "question": question["question"],
246
- "answer": answer["text"],
247
- "label": -1 if label is None else _cast_label(bool(label)),
248
- "idx": {"paragraph": row["idx"], "question": question["idx"], "answer": answer["idx"]},
249
- }
250
- elif self.config.name == "record":
251
- passage = row["passage"]
252
- entity_texts, entity_spans = _get_record_entities(passage)
253
- for qa in row["qas"]:
254
- yield qa["idx"], {
255
- "passage": passage["text"],
256
- "query": qa["query"],
257
- "entities": entity_texts,
258
- "entity_spans": entity_spans,
259
- "answers": _get_record_answers(qa),
260
- "idx": {"passage": row["idx"], "query": qa["idx"]},
261
- }
262
- else:
263
- if self.config.name.startswith("wsc"):
264
- row.update(row["target"])
265
- example = {feature: row[feature] for feature in self.config.features}
266
- if self.config.name == "wsc.fixed":
267
- example = _fix_wst(example)
268
- example["idx"] = row["idx"]
269
-
270
- if "label" in row:
271
- if self.config.name == "copa":
272
- example["label"] = "choice2" if row["label"] else "choice1"
273
- else:
274
- example["label"] = _cast_label(row["label"])
275
- else:
276
- assert split == datasets.Split.TEST, row
277
- example["label"] = -1
278
- yield example["idx"], example
279
-
280
-
281
- def _fix_wst(ex):
282
- """Fixes most cases where spans are not actually substrings of text."""
283
-
284
- def _fix_span_text(k):
285
- """Fixes a single span."""
286
- text = ex[k + "_text"]
287
- index = ex[k + "_index"]
288
-
289
- if text in ex["text"]:
290
- return
291
-
292
- if text in ("Kamenev and Zinoviev", "Kamenev, Zinoviev, and Stalin"):
293
- # There is no way to correct these examples since the subjects have
294
- # intervening text.
295
- return
296
-
297
- if "theyscold" in text:
298
- ex["text"].replace("theyscold", "they scold")
299
- ex["span2_index"] = 10
300
- # Make sure case of the first words match.
301
- first_word = ex["text"].split()[index]
302
- if first_word[0].islower():
303
- text = text[0].lower() + text[1:]
304
- else:
305
- text = text[0].upper() + text[1:]
306
- # Remove punctuation in span.
307
- text = text.rstrip(".")
308
- # Replace incorrect whitespace character in span.
309
- text = text.replace("\n", " ")
310
- ex[k + "_text"] = text
311
- assert ex[k + "_text"] in ex["text"], ex
312
-
313
- _fix_span_text("span1")
314
- _fix_span_text("span2")
315
- return ex
316
-
317
-
318
- def _cast_label(label):
319
- """Converts the label into the appropriate string version."""
320
- if isinstance(label, str):
321
- return label
322
- elif isinstance(label, bool):
323
- return "True" if label else "False"
324
- elif isinstance(label, int):
325
- assert label in (0, 1)
326
- return str(label)
327
- else:
328
- raise ValueError("Invalid label format.")
329
-
330
-
331
- def _get_record_entities(passage):
332
- """Returns the unique set of entities."""
333
- text = passage["text"]
334
- entity_spans = list()
335
- for entity in passage["entities"]:
336
- entity_text = text[entity["start"] : entity["end"] + 1]
337
- entity_spans.append({"text": entity_text, "start": entity["start"], "end": entity["end"] + 1})
338
- entity_spans = sorted(entity_spans, key=lambda e: e["start"]) # sort by start index
339
- entity_texts = set(e["text"] for e in entity_spans) # for backward compatability
340
- return entity_texts, entity_spans
341
-
342
-
343
- def _get_record_answers(qa):
344
- """Returns the unique set of answers."""
345
- if "answers" not in qa:
346
- return []
347
- answers = set()
348
- for answer in qa["answers"]:
349
- answers.add(answer["text"])
350
- return sorted(answers)
351
-
352
-
353
- def _get_task_name_from_data_url(data_url):
354
- return data_url.split("/")[-1].split(".")[0]