Datasets:

Modalities:
Text
Formats:
parquet
Libraries:
Datasets
pandas
License:
parquet-converter commited on
Commit
f22d10b
·
verified ·
1 Parent(s): 501fbb8

Update parquet files

Browse files
README.md DELETED
@@ -1,365 +0,0 @@
1
- ---
2
- language:
3
- - en
4
- paperswithcode_id: winogrande
5
- pretty_name: WinoGrande
6
- dataset_info:
7
- - config_name: winogrande_xs
8
- features:
9
- - name: sentence
10
- dtype: string
11
- - name: option1
12
- dtype: string
13
- - name: option2
14
- dtype: string
15
- - name: answer
16
- dtype: string
17
- splits:
18
- - name: train
19
- num_bytes: 20704
20
- num_examples: 160
21
- - name: test
22
- num_bytes: 227649
23
- num_examples: 1767
24
- - name: validation
25
- num_bytes: 164199
26
- num_examples: 1267
27
- download_size: 3395492
28
- dataset_size: 412552
29
- - config_name: winogrande_s
30
- features:
31
- - name: sentence
32
- dtype: string
33
- - name: option1
34
- dtype: string
35
- - name: option2
36
- dtype: string
37
- - name: answer
38
- dtype: string
39
- splits:
40
- - name: train
41
- num_bytes: 82308
42
- num_examples: 640
43
- - name: test
44
- num_bytes: 227649
45
- num_examples: 1767
46
- - name: validation
47
- num_bytes: 164199
48
- num_examples: 1267
49
- download_size: 3395492
50
- dataset_size: 474156
51
- - config_name: winogrande_m
52
- features:
53
- - name: sentence
54
- dtype: string
55
- - name: option1
56
- dtype: string
57
- - name: option2
58
- dtype: string
59
- - name: answer
60
- dtype: string
61
- splits:
62
- - name: train
63
- num_bytes: 329001
64
- num_examples: 2558
65
- - name: test
66
- num_bytes: 227649
67
- num_examples: 1767
68
- - name: validation
69
- num_bytes: 164199
70
- num_examples: 1267
71
- download_size: 3395492
72
- dataset_size: 720849
73
- - config_name: winogrande_l
74
- features:
75
- - name: sentence
76
- dtype: string
77
- - name: option1
78
- dtype: string
79
- - name: option2
80
- dtype: string
81
- - name: answer
82
- dtype: string
83
- splits:
84
- - name: train
85
- num_bytes: 1319576
86
- num_examples: 10234
87
- - name: test
88
- num_bytes: 227649
89
- num_examples: 1767
90
- - name: validation
91
- num_bytes: 164199
92
- num_examples: 1267
93
- download_size: 3395492
94
- dataset_size: 1711424
95
- - config_name: winogrande_xl
96
- features:
97
- - name: sentence
98
- dtype: string
99
- - name: option1
100
- dtype: string
101
- - name: option2
102
- dtype: string
103
- - name: answer
104
- dtype: string
105
- splits:
106
- - name: train
107
- num_bytes: 5185832
108
- num_examples: 40398
109
- - name: test
110
- num_bytes: 227649
111
- num_examples: 1767
112
- - name: validation
113
- num_bytes: 164199
114
- num_examples: 1267
115
- download_size: 3395492
116
- dataset_size: 5577680
117
- - config_name: winogrande_debiased
118
- features:
119
- - name: sentence
120
- dtype: string
121
- - name: option1
122
- dtype: string
123
- - name: option2
124
- dtype: string
125
- - name: answer
126
- dtype: string
127
- splits:
128
- - name: train
129
- num_bytes: 1203420
130
- num_examples: 9248
131
- - name: test
132
- num_bytes: 227649
133
- num_examples: 1767
134
- - name: validation
135
- num_bytes: 164199
136
- num_examples: 1267
137
- download_size: 3395492
138
- dataset_size: 1595268
139
- ---
140
-
141
- # Dataset Card for "winogrande"
142
-
143
- ## Table of Contents
144
- - [Dataset Description](#dataset-description)
145
- - [Dataset Summary](#dataset-summary)
146
- - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
147
- - [Languages](#languages)
148
- - [Dataset Structure](#dataset-structure)
149
- - [Data Instances](#data-instances)
150
- - [Data Fields](#data-fields)
151
- - [Data Splits](#data-splits)
152
- - [Dataset Creation](#dataset-creation)
153
- - [Curation Rationale](#curation-rationale)
154
- - [Source Data](#source-data)
155
- - [Annotations](#annotations)
156
- - [Personal and Sensitive Information](#personal-and-sensitive-information)
157
- - [Considerations for Using the Data](#considerations-for-using-the-data)
158
- - [Social Impact of Dataset](#social-impact-of-dataset)
159
- - [Discussion of Biases](#discussion-of-biases)
160
- - [Other Known Limitations](#other-known-limitations)
161
- - [Additional Information](#additional-information)
162
- - [Dataset Curators](#dataset-curators)
163
- - [Licensing Information](#licensing-information)
164
- - [Citation Information](#citation-information)
165
- - [Contributions](#contributions)
166
-
167
- ## Dataset Description
168
-
169
- - **Homepage:** [https://leaderboard.allenai.org/winogrande/submissions/get-started](https://leaderboard.allenai.org/winogrande/submissions/get-started)
170
- - **Repository:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
171
- - **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
172
- - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
173
- - **Size of downloaded dataset files:** 20.37 MB
174
- - **Size of the generated dataset:** 10.50 MB
175
- - **Total amount of disk used:** 30.87 MB
176
-
177
- ### Dataset Summary
178
-
179
- WinoGrande is a new collection of 44k problems, inspired by Winograd Schema Challenge (Levesque, Davis, and Morgenstern
180
- 2011), but adjusted to improve the scale and robustness against the dataset-specific bias. Formulated as a
181
- fill-in-a-blank task with binary options, the goal is to choose the right option for a given sentence which requires
182
- commonsense reasoning.
183
-
184
- ### Supported Tasks and Leaderboards
185
-
186
- [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
187
-
188
- ### Languages
189
-
190
- [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
191
-
192
- ## Dataset Structure
193
-
194
- ### Data Instances
195
-
196
- #### winogrande_debiased
197
-
198
- - **Size of downloaded dataset files:** 3.40 MB
199
- - **Size of the generated dataset:** 1.59 MB
200
- - **Total amount of disk used:** 4.99 MB
201
-
202
- An example of 'train' looks as follows.
203
- ```
204
-
205
- ```
206
-
207
- #### winogrande_l
208
-
209
- - **Size of downloaded dataset files:** 3.40 MB
210
- - **Size of the generated dataset:** 1.71 MB
211
- - **Total amount of disk used:** 5.11 MB
212
-
213
- An example of 'validation' looks as follows.
214
- ```
215
-
216
- ```
217
-
218
- #### winogrande_m
219
-
220
- - **Size of downloaded dataset files:** 3.40 MB
221
- - **Size of the generated dataset:** 0.72 MB
222
- - **Total amount of disk used:** 4.12 MB
223
-
224
- An example of 'validation' looks as follows.
225
- ```
226
-
227
- ```
228
-
229
- #### winogrande_s
230
-
231
- - **Size of downloaded dataset files:** 3.40 MB
232
- - **Size of the generated dataset:** 0.47 MB
233
- - **Total amount of disk used:** 3.87 MB
234
-
235
- An example of 'validation' looks as follows.
236
- ```
237
-
238
- ```
239
-
240
- #### winogrande_xl
241
-
242
- - **Size of downloaded dataset files:** 3.40 MB
243
- - **Size of the generated dataset:** 5.58 MB
244
- - **Total amount of disk used:** 8.98 MB
245
-
246
- An example of 'train' looks as follows.
247
- ```
248
-
249
- ```
250
-
251
- ### Data Fields
252
-
253
- The data fields are the same among all splits.
254
-
255
- #### winogrande_debiased
256
- - `sentence`: a `string` feature.
257
- - `option1`: a `string` feature.
258
- - `option2`: a `string` feature.
259
- - `answer`: a `string` feature.
260
-
261
- #### winogrande_l
262
- - `sentence`: a `string` feature.
263
- - `option1`: a `string` feature.
264
- - `option2`: a `string` feature.
265
- - `answer`: a `string` feature.
266
-
267
- #### winogrande_m
268
- - `sentence`: a `string` feature.
269
- - `option1`: a `string` feature.
270
- - `option2`: a `string` feature.
271
- - `answer`: a `string` feature.
272
-
273
- #### winogrande_s
274
- - `sentence`: a `string` feature.
275
- - `option1`: a `string` feature.
276
- - `option2`: a `string` feature.
277
- - `answer`: a `string` feature.
278
-
279
- #### winogrande_xl
280
- - `sentence`: a `string` feature.
281
- - `option1`: a `string` feature.
282
- - `option2`: a `string` feature.
283
- - `answer`: a `string` feature.
284
-
285
- ### Data Splits
286
-
287
- | name |train|validation|test|
288
- |-------------------|----:|---------:|---:|
289
- |winogrande_debiased| 9248| 1267|1767|
290
- |winogrande_l |10234| 1267|1767|
291
- |winogrande_m | 2558| 1267|1767|
292
- |winogrande_s | 640| 1267|1767|
293
- |winogrande_xl |40398| 1267|1767|
294
- |winogrande_xs | 160| 1267|1767|
295
-
296
- ## Dataset Creation
297
-
298
- ### Curation Rationale
299
-
300
- [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
301
-
302
- ### Source Data
303
-
304
- #### Initial Data Collection and Normalization
305
-
306
- [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
307
-
308
- #### Who are the source language producers?
309
-
310
- [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
311
-
312
- ### Annotations
313
-
314
- #### Annotation process
315
-
316
- [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
317
-
318
- #### Who are the annotators?
319
-
320
- [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
321
-
322
- ### Personal and Sensitive Information
323
-
324
- [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
325
-
326
- ## Considerations for Using the Data
327
-
328
- ### Social Impact of Dataset
329
-
330
- [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
331
-
332
- ### Discussion of Biases
333
-
334
- [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
335
-
336
- ### Other Known Limitations
337
-
338
- [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
339
-
340
- ## Additional Information
341
-
342
- ### Dataset Curators
343
-
344
- [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
345
-
346
- ### Licensing Information
347
-
348
- [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
349
-
350
- ### Citation Information
351
-
352
- ```
353
- @InProceedings{ai2:winogrande,
354
- title = {WinoGrande: An Adversarial Winograd Schema Challenge at Scale},
355
- authors={Keisuke, Sakaguchi and Ronan, Le Bras and Chandra, Bhagavatula and Yejin, Choi
356
- },
357
- year={2019}
358
- }
359
-
360
- ```
361
-
362
-
363
- ### Contributions
364
-
365
- Thanks to [@thomwolf](https://github.com/thomwolf), [@TevenLeScao](https://github.com/TevenLeScao), [@patrickvonplaten](https://github.com/patrickvonplaten), [@lewtun](https://github.com/lewtun) for adding this dataset.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dataset_infos.json DELETED
@@ -1 +0,0 @@
1
- {"winogrande_xs": {"description": "WinoGrande is a new collection of 44k problems, inspired by Winograd Schema Challenge (Levesque, Davis, and Morgenstern\n 2011), but adjusted to improve the scale and robustness against the dataset-specific bias. Formulated as a\nfill-in-a-blank task with binary options, the goal is to choose the right option for a given sentence which requires\ncommonsense reasoning.\n", "citation": "@InProceedings{ai2:winogrande,\ntitle = {WinoGrande: An Adversarial Winograd Schema Challenge at Scale},\nauthors={Keisuke, Sakaguchi and Ronan, Le Bras and Chandra, Bhagavatula and Yejin, Choi\n},\nyear={2019}\n}\n", "homepage": "https://leaderboard.allenai.org/winogrande/submissions/get-started", "license": "", "features": {"sentence": {"dtype": "string", "id": null, "_type": "Value"}, "option1": {"dtype": "string", "id": null, "_type": "Value"}, "option2": {"dtype": "string", "id": null, "_type": "Value"}, "answer": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "winogrande", "config_name": "winogrande_xs", "version": {"version_str": "1.1.0", "description": "", "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 20704, "num_examples": 160, "dataset_name": "winogrande"}, "test": {"name": "test", "num_bytes": 227649, "num_examples": 1767, "dataset_name": "winogrande"}, "validation": {"name": "validation", "num_bytes": 164199, "num_examples": 1267, "dataset_name": "winogrande"}}, "download_checksums": {"https://storage.googleapis.com/ai2-mosaic/public/winogrande/winogrande_1.1.zip": {"num_bytes": 3395492, "checksum": "3619ab104d8be2977b25c90ff420cb42d491707dcc75362a1e5d22bc082b7318"}}, "download_size": 3395492, "post_processing_size": null, "dataset_size": 412552, "size_in_bytes": 3808044}, "winogrande_s": {"description": "WinoGrande is a new collection of 44k problems, inspired by Winograd Schema Challenge (Levesque, Davis, and Morgenstern\n 2011), but adjusted to improve the scale and robustness against the dataset-specific bias. Formulated as a\nfill-in-a-blank task with binary options, the goal is to choose the right option for a given sentence which requires\ncommonsense reasoning.\n", "citation": "@InProceedings{ai2:winogrande,\ntitle = {WinoGrande: An Adversarial Winograd Schema Challenge at Scale},\nauthors={Keisuke, Sakaguchi and Ronan, Le Bras and Chandra, Bhagavatula and Yejin, Choi\n},\nyear={2019}\n}\n", "homepage": "https://leaderboard.allenai.org/winogrande/submissions/get-started", "license": "", "features": {"sentence": {"dtype": "string", "id": null, "_type": "Value"}, "option1": {"dtype": "string", "id": null, "_type": "Value"}, "option2": {"dtype": "string", "id": null, "_type": "Value"}, "answer": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "winogrande", "config_name": "winogrande_s", "version": {"version_str": "1.1.0", "description": "", "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 82308, "num_examples": 640, "dataset_name": "winogrande"}, "test": {"name": "test", "num_bytes": 227649, "num_examples": 1767, "dataset_name": "winogrande"}, "validation": {"name": "validation", "num_bytes": 164199, "num_examples": 1267, "dataset_name": "winogrande"}}, "download_checksums": {"https://storage.googleapis.com/ai2-mosaic/public/winogrande/winogrande_1.1.zip": {"num_bytes": 3395492, "checksum": "3619ab104d8be2977b25c90ff420cb42d491707dcc75362a1e5d22bc082b7318"}}, "download_size": 3395492, "post_processing_size": null, "dataset_size": 474156, "size_in_bytes": 3869648}, "winogrande_m": {"description": "WinoGrande is a new collection of 44k problems, inspired by Winograd Schema Challenge (Levesque, Davis, and Morgenstern\n 2011), but adjusted to improve the scale and robustness against the dataset-specific bias. Formulated as a\nfill-in-a-blank task with binary options, the goal is to choose the right option for a given sentence which requires\ncommonsense reasoning.\n", "citation": "@InProceedings{ai2:winogrande,\ntitle = {WinoGrande: An Adversarial Winograd Schema Challenge at Scale},\nauthors={Keisuke, Sakaguchi and Ronan, Le Bras and Chandra, Bhagavatula and Yejin, Choi\n},\nyear={2019}\n}\n", "homepage": "https://leaderboard.allenai.org/winogrande/submissions/get-started", "license": "", "features": {"sentence": {"dtype": "string", "id": null, "_type": "Value"}, "option1": {"dtype": "string", "id": null, "_type": "Value"}, "option2": {"dtype": "string", "id": null, "_type": "Value"}, "answer": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "winogrande", "config_name": "winogrande_m", "version": {"version_str": "1.1.0", "description": "", "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 329001, "num_examples": 2558, "dataset_name": "winogrande"}, "test": {"name": "test", "num_bytes": 227649, "num_examples": 1767, "dataset_name": "winogrande"}, "validation": {"name": "validation", "num_bytes": 164199, "num_examples": 1267, "dataset_name": "winogrande"}}, "download_checksums": {"https://storage.googleapis.com/ai2-mosaic/public/winogrande/winogrande_1.1.zip": {"num_bytes": 3395492, "checksum": "3619ab104d8be2977b25c90ff420cb42d491707dcc75362a1e5d22bc082b7318"}}, "download_size": 3395492, "post_processing_size": null, "dataset_size": 720849, "size_in_bytes": 4116341}, "winogrande_l": {"description": "WinoGrande is a new collection of 44k problems, inspired by Winograd Schema Challenge (Levesque, Davis, and Morgenstern\n 2011), but adjusted to improve the scale and robustness against the dataset-specific bias. Formulated as a\nfill-in-a-blank task with binary options, the goal is to choose the right option for a given sentence which requires\ncommonsense reasoning.\n", "citation": "@InProceedings{ai2:winogrande,\ntitle = {WinoGrande: An Adversarial Winograd Schema Challenge at Scale},\nauthors={Keisuke, Sakaguchi and Ronan, Le Bras and Chandra, Bhagavatula and Yejin, Choi\n},\nyear={2019}\n}\n", "homepage": "https://leaderboard.allenai.org/winogrande/submissions/get-started", "license": "", "features": {"sentence": {"dtype": "string", "id": null, "_type": "Value"}, "option1": {"dtype": "string", "id": null, "_type": "Value"}, "option2": {"dtype": "string", "id": null, "_type": "Value"}, "answer": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "winogrande", "config_name": "winogrande_l", "version": {"version_str": "1.1.0", "description": "", "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 1319576, "num_examples": 10234, "dataset_name": "winogrande"}, "test": {"name": "test", "num_bytes": 227649, "num_examples": 1767, "dataset_name": "winogrande"}, "validation": {"name": "validation", "num_bytes": 164199, "num_examples": 1267, "dataset_name": "winogrande"}}, "download_checksums": {"https://storage.googleapis.com/ai2-mosaic/public/winogrande/winogrande_1.1.zip": {"num_bytes": 3395492, "checksum": "3619ab104d8be2977b25c90ff420cb42d491707dcc75362a1e5d22bc082b7318"}}, "download_size": 3395492, "post_processing_size": null, "dataset_size": 1711424, "size_in_bytes": 5106916}, "winogrande_xl": {"description": "WinoGrande is a new collection of 44k problems, inspired by Winograd Schema Challenge (Levesque, Davis, and Morgenstern\n 2011), but adjusted to improve the scale and robustness against the dataset-specific bias. Formulated as a\nfill-in-a-blank task with binary options, the goal is to choose the right option for a given sentence which requires\ncommonsense reasoning.\n", "citation": "@InProceedings{ai2:winogrande,\ntitle = {WinoGrande: An Adversarial Winograd Schema Challenge at Scale},\nauthors={Keisuke, Sakaguchi and Ronan, Le Bras and Chandra, Bhagavatula and Yejin, Choi\n},\nyear={2019}\n}\n", "homepage": "https://leaderboard.allenai.org/winogrande/submissions/get-started", "license": "", "features": {"sentence": {"dtype": "string", "id": null, "_type": "Value"}, "option1": {"dtype": "string", "id": null, "_type": "Value"}, "option2": {"dtype": "string", "id": null, "_type": "Value"}, "answer": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "winogrande", "config_name": "winogrande_xl", "version": {"version_str": "1.1.0", "description": "", "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 5185832, "num_examples": 40398, "dataset_name": "winogrande"}, "test": {"name": "test", "num_bytes": 227649, "num_examples": 1767, "dataset_name": "winogrande"}, "validation": {"name": "validation", "num_bytes": 164199, "num_examples": 1267, "dataset_name": "winogrande"}}, "download_checksums": {"https://storage.googleapis.com/ai2-mosaic/public/winogrande/winogrande_1.1.zip": {"num_bytes": 3395492, "checksum": "3619ab104d8be2977b25c90ff420cb42d491707dcc75362a1e5d22bc082b7318"}}, "download_size": 3395492, "post_processing_size": null, "dataset_size": 5577680, "size_in_bytes": 8973172}, "winogrande_debiased": {"description": "WinoGrande is a new collection of 44k problems, inspired by Winograd Schema Challenge (Levesque, Davis, and Morgenstern\n 2011), but adjusted to improve the scale and robustness against the dataset-specific bias. Formulated as a\nfill-in-a-blank task with binary options, the goal is to choose the right option for a given sentence which requires\ncommonsense reasoning.\n", "citation": "@InProceedings{ai2:winogrande,\ntitle = {WinoGrande: An Adversarial Winograd Schema Challenge at Scale},\nauthors={Keisuke, Sakaguchi and Ronan, Le Bras and Chandra, Bhagavatula and Yejin, Choi\n},\nyear={2019}\n}\n", "homepage": "https://leaderboard.allenai.org/winogrande/submissions/get-started", "license": "", "features": {"sentence": {"dtype": "string", "id": null, "_type": "Value"}, "option1": {"dtype": "string", "id": null, "_type": "Value"}, "option2": {"dtype": "string", "id": null, "_type": "Value"}, "answer": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "winogrande", "config_name": "winogrande_debiased", "version": {"version_str": "1.1.0", "description": "", "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 1203420, "num_examples": 9248, "dataset_name": "winogrande"}, "test": {"name": "test", "num_bytes": 227649, "num_examples": 1767, "dataset_name": "winogrande"}, "validation": {"name": "validation", "num_bytes": 164199, "num_examples": 1267, "dataset_name": "winogrande"}}, "download_checksums": {"https://storage.googleapis.com/ai2-mosaic/public/winogrande/winogrande_1.1.zip": {"num_bytes": 3395492, "checksum": "3619ab104d8be2977b25c90ff420cb42d491707dcc75362a1e5d22bc082b7318"}}, "download_size": 3395492, "post_processing_size": null, "dataset_size": 1595268, "size_in_bytes": 4990760}}
 
 
winogrande.py DELETED
@@ -1,145 +0,0 @@
1
- """TODO(winogrande): Add a description here."""
2
-
3
-
4
- import json
5
- import os
6
-
7
- import datasets
8
-
9
-
10
- # TODO(winogrande): BibTeX citation
11
- _CITATION = """\
12
- @InProceedings{ai2:winogrande,
13
- title = {WinoGrande: An Adversarial Winograd Schema Challenge at Scale},
14
- authors={Keisuke, Sakaguchi and Ronan, Le Bras and Chandra, Bhagavatula and Yejin, Choi
15
- },
16
- year={2019}
17
- }
18
- """
19
-
20
- # TODO(winogrande):
21
- _DESCRIPTION = """\
22
- WinoGrande is a new collection of 44k problems, inspired by Winograd Schema Challenge (Levesque, Davis, and Morgenstern
23
- 2011), but adjusted to improve the scale and robustness against the dataset-specific bias. Formulated as a
24
- fill-in-a-blank task with binary options, the goal is to choose the right option for a given sentence which requires
25
- commonsense reasoning.
26
- """
27
-
28
- _URL = "https://storage.googleapis.com/ai2-mosaic/public/winogrande/winogrande_1.1.zip"
29
- _FORMATS = ["xs", "s", "m", "l", "xl", "debiased"]
30
-
31
-
32
- class WinograndeConfig(datasets.BuilderConfig):
33
-
34
- """BuilderConfig for Discofuse"""
35
-
36
- def __init__(self, data_size, **kwargs):
37
- """
38
-
39
- Args:
40
- data_size: the format of the training set we want to use (xs, s, m, l, xl, debiased)
41
- **kwargs: keyword arguments forwarded to super.
42
- """
43
- super(WinograndeConfig, self).__init__(version=datasets.Version("1.1.0", ""), **kwargs)
44
- self.data_size = data_size
45
-
46
-
47
- class Winogrande(datasets.GeneratorBasedBuilder):
48
- """TODO(winogrande): Short description of my dataset."""
49
-
50
- # TODO(winogrande): Set up version.
51
- VERSION = datasets.Version("1.1.0")
52
- BUILDER_CONFIGS = [
53
- WinograndeConfig(name="winogrande_" + data_size, description="AI2 dataset", data_size=data_size)
54
- for data_size in _FORMATS
55
- ]
56
-
57
- def _info(self):
58
- # TODO(winogrande): Specifies the datasets.DatasetInfo object
59
- return datasets.DatasetInfo(
60
- # This is the description that will appear on the datasets page.
61
- description=_DESCRIPTION,
62
- # datasets.features.FeatureConnectors
63
- features=datasets.Features(
64
- {
65
- "sentence": datasets.Value("string"),
66
- "option1": datasets.Value("string"),
67
- "option2": datasets.Value("string"),
68
- "answer": datasets.Value("string")
69
- # These are the features of your dataset like images, labels ...
70
- }
71
- ),
72
- # If there's a common (input, target) tuple from the features,
73
- # specify them here. They'll be used if as_supervised=True in
74
- # builder.as_dataset.
75
- supervised_keys=None,
76
- # Homepage of the dataset for documentation
77
- homepage="https://leaderboard.allenai.org/winogrande/submissions/get-started",
78
- citation=_CITATION,
79
- )
80
-
81
- def _split_generators(self, dl_manager):
82
- """Returns SplitGenerators."""
83
- # TODO(winogrande): Downloads the data and defines the splits
84
- # dl_manager is a datasets.download.DownloadManager that can be used to
85
- # download and extract URLs
86
- dl_dir = dl_manager.download_and_extract(_URL)
87
- data_dir = os.path.join(dl_dir, "winogrande_1.1")
88
- return [
89
- datasets.SplitGenerator(
90
- name=datasets.Split.TRAIN,
91
- # These kwargs will be passed to _generate_examples
92
- gen_kwargs={
93
- "filepath": os.path.join(data_dir, f"train_{self.config.data_size}.jsonl"),
94
- # 'labelpath': os.path.join(data_dir, 'train_{}-labels.lst'.format(self.config.data_size)),
95
- "split": "train",
96
- },
97
- ),
98
- datasets.SplitGenerator(
99
- name=datasets.Split.TEST,
100
- # These kwargs will be passed to _generate_examples
101
- gen_kwargs={"filepath": os.path.join(data_dir, "test.jsonl"), "split": "test"},
102
- ),
103
- datasets.SplitGenerator(
104
- name=datasets.Split.VALIDATION,
105
- # These kwargs will be passed to _generate_examples
106
- gen_kwargs={
107
- "filepath": os.path.join(data_dir, "dev.jsonl"),
108
- # 'labelpath': os.path.join(data_dir, 'dev-labels.lst'),
109
- "split": "dev",
110
- },
111
- ),
112
- ]
113
-
114
- def _generate_examples(self, filepath, split):
115
- """Yields examples."""
116
- # TODO(winogrande): Yields (key, example) tuples from the dataset
117
- with open(filepath, encoding="utf-8") as f:
118
- for id_, row in enumerate(f):
119
- data = json.loads(row)
120
- if split == "test":
121
- yield id_, {
122
- "sentence": data["sentence"],
123
- "option1": data["option1"],
124
- "option2": data["option2"],
125
- "answer": "",
126
- }
127
- else:
128
- yield id_, {
129
- "sentence": data["sentence"],
130
- "option1": data["option1"],
131
- "option2": data["option2"],
132
- "answer": data["answer"],
133
- }
134
-
135
-
136
- # def _generate_test_example(filepath, split, labelpath=None):
137
- # with open(filepath, encoding="utf-8") as f:
138
- # for id_, row in enumerate(f):
139
- # data = json.loads(row)
140
- # yield id_,{
141
- # 'sentence': data['sentence'],
142
- # 'option1': data['option1'],
143
- # 'option2': data['option2'],
144
- # 'answer': None
145
- # }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
winogrande_debiased/test/0000.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3a7c4b062ec4540d55751c581bf66d40299cb9637778143bb73dce07beb615d5
3
+ size 117656
winogrande_debiased/train/0000.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2cc2fb6f603654c95796cca252bf257d8e267a6017937b720580f0404f6581ad
3
+ size 616756
winogrande_debiased/validation/0000.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:76bf48df35738da9100407a9272f5aad11791a98642c6611f7593a0bb9a48601
3
+ size 85928