File size: 16,019 Bytes
f1addcd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
{
  "results": {
    "corrupti-voluptatibus-5635_lsat-rc_cot": {
      "acc,none": 0.48698884758364314,
      "acc_stderr,none": 0.030532018299903936,
      "alias": "corrupti-voluptatibus-5635_lsat-rc_cot"
    },
    "corrupti-voluptatibus-5635_lsat-lr_cot": {
      "acc,none": 0.396078431372549,
      "acc_stderr,none": 0.02167813795451243,
      "alias": "corrupti-voluptatibus-5635_lsat-lr_cot"
    },
    "corrupti-voluptatibus-5635_lsat-ar_cot": {
      "acc,none": 0.2956521739130435,
      "acc_stderr,none": 0.03015548976891618,
      "alias": "corrupti-voluptatibus-5635_lsat-ar_cot"
    },
    "corrupti-voluptatibus-5635_logiqa_cot": {
      "acc,none": 0.3706070287539936,
      "acc_stderr,none": 0.019318693909977674,
      "alias": "corrupti-voluptatibus-5635_logiqa_cot"
    },
    "corrupti-voluptatibus-5635_logiqa2_cot": {
      "acc,none": 0.4637404580152672,
      "acc_stderr,none": 0.01258163022954535,
      "alias": "corrupti-voluptatibus-5635_logiqa2_cot"
    }
  },
  "group_subtasks": {
    "corrupti-voluptatibus-5635_logiqa2_cot": [],
    "corrupti-voluptatibus-5635_logiqa_cot": [],
    "corrupti-voluptatibus-5635_lsat-ar_cot": [],
    "corrupti-voluptatibus-5635_lsat-lr_cot": [],
    "corrupti-voluptatibus-5635_lsat-rc_cot": []
  },
  "configs": {
    "corrupti-voluptatibus-5635_logiqa2_cot": {
      "task": "corrupti-voluptatibus-5635_logiqa2_cot",
      "group": "logikon-bench",
      "dataset_path": "cot-leaderboard/cot-eval-traces",
      "dataset_kwargs": {
        "data_files": {
          "test": "data/01-ai/Yi-34B-Chat/corrupti-voluptatibus-5635-logiqa2.parquet"
        }
      },
      "test_split": "test",
      "doc_to_text": "def doc_to_text_cot(doc) -> str:\n    \"\"\"\n    Answer the following question about the given passage. [Base your answer on the reasoning below.]\n    \n    Passage: <passage>\n    \n    Question: <question>\n    A. <choice1>\n    B. <choice2>\n    C. <choice3>\n    D. <choice4>\n    [E. <choice5>]\n    \n    [Reasoning: <reasoning>]\n    \n    Answer:\n    \"\"\"\n    k = len(doc[\"options\"])\n    choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n    prompt = \"Answer the following question about the given passage. Base your answer on the reasoning below.\\n\\n\"\n    prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n    prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n    for choice, option in zip(choices, doc[\"options\"]):\n        prompt += f\"{choice.upper()}. {option}\\n\"\n    prompt += \"\\n\"\n    prompt += \"Reasoning: \" + doc[\"reasoning_trace\"] + \"\\n\\n\"    \n    prompt += \"Answer:\"\n    return prompt\n",
      "doc_to_target": "{{answer}}",
      "doc_to_choice": "{{options}}",
      "description": "",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 0.0
      }
    },
    "corrupti-voluptatibus-5635_logiqa_cot": {
      "task": "corrupti-voluptatibus-5635_logiqa_cot",
      "group": "logikon-bench",
      "dataset_path": "cot-leaderboard/cot-eval-traces",
      "dataset_kwargs": {
        "data_files": {
          "test": "data/01-ai/Yi-34B-Chat/corrupti-voluptatibus-5635-logiqa.parquet"
        }
      },
      "test_split": "test",
      "doc_to_text": "def doc_to_text_cot(doc) -> str:\n    \"\"\"\n    Answer the following question about the given passage. [Base your answer on the reasoning below.]\n    \n    Passage: <passage>\n    \n    Question: <question>\n    A. <choice1>\n    B. <choice2>\n    C. <choice3>\n    D. <choice4>\n    [E. <choice5>]\n    \n    [Reasoning: <reasoning>]\n    \n    Answer:\n    \"\"\"\n    k = len(doc[\"options\"])\n    choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n    prompt = \"Answer the following question about the given passage. Base your answer on the reasoning below.\\n\\n\"\n    prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n    prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n    for choice, option in zip(choices, doc[\"options\"]):\n        prompt += f\"{choice.upper()}. {option}\\n\"\n    prompt += \"\\n\"\n    prompt += \"Reasoning: \" + doc[\"reasoning_trace\"] + \"\\n\\n\"    \n    prompt += \"Answer:\"\n    return prompt\n",
      "doc_to_target": "{{answer}}",
      "doc_to_choice": "{{options}}",
      "description": "",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 0.0
      }
    },
    "corrupti-voluptatibus-5635_lsat-ar_cot": {
      "task": "corrupti-voluptatibus-5635_lsat-ar_cot",
      "group": "logikon-bench",
      "dataset_path": "cot-leaderboard/cot-eval-traces",
      "dataset_kwargs": {
        "data_files": {
          "test": "data/01-ai/Yi-34B-Chat/corrupti-voluptatibus-5635-lsat-ar.parquet"
        }
      },
      "test_split": "test",
      "doc_to_text": "def doc_to_text_cot(doc) -> str:\n    \"\"\"\n    Answer the following question about the given passage. [Base your answer on the reasoning below.]\n    \n    Passage: <passage>\n    \n    Question: <question>\n    A. <choice1>\n    B. <choice2>\n    C. <choice3>\n    D. <choice4>\n    [E. <choice5>]\n    \n    [Reasoning: <reasoning>]\n    \n    Answer:\n    \"\"\"\n    k = len(doc[\"options\"])\n    choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n    prompt = \"Answer the following question about the given passage. Base your answer on the reasoning below.\\n\\n\"\n    prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n    prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n    for choice, option in zip(choices, doc[\"options\"]):\n        prompt += f\"{choice.upper()}. {option}\\n\"\n    prompt += \"\\n\"\n    prompt += \"Reasoning: \" + doc[\"reasoning_trace\"] + \"\\n\\n\"    \n    prompt += \"Answer:\"\n    return prompt\n",
      "doc_to_target": "{{answer}}",
      "doc_to_choice": "{{options}}",
      "description": "",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 0.0
      }
    },
    "corrupti-voluptatibus-5635_lsat-lr_cot": {
      "task": "corrupti-voluptatibus-5635_lsat-lr_cot",
      "group": "logikon-bench",
      "dataset_path": "cot-leaderboard/cot-eval-traces",
      "dataset_kwargs": {
        "data_files": {
          "test": "data/01-ai/Yi-34B-Chat/corrupti-voluptatibus-5635-lsat-lr.parquet"
        }
      },
      "test_split": "test",
      "doc_to_text": "def doc_to_text_cot(doc) -> str:\n    \"\"\"\n    Answer the following question about the given passage. [Base your answer on the reasoning below.]\n    \n    Passage: <passage>\n    \n    Question: <question>\n    A. <choice1>\n    B. <choice2>\n    C. <choice3>\n    D. <choice4>\n    [E. <choice5>]\n    \n    [Reasoning: <reasoning>]\n    \n    Answer:\n    \"\"\"\n    k = len(doc[\"options\"])\n    choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n    prompt = \"Answer the following question about the given passage. Base your answer on the reasoning below.\\n\\n\"\n    prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n    prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n    for choice, option in zip(choices, doc[\"options\"]):\n        prompt += f\"{choice.upper()}. {option}\\n\"\n    prompt += \"\\n\"\n    prompt += \"Reasoning: \" + doc[\"reasoning_trace\"] + \"\\n\\n\"    \n    prompt += \"Answer:\"\n    return prompt\n",
      "doc_to_target": "{{answer}}",
      "doc_to_choice": "{{options}}",
      "description": "",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 0.0
      }
    },
    "corrupti-voluptatibus-5635_lsat-rc_cot": {
      "task": "corrupti-voluptatibus-5635_lsat-rc_cot",
      "group": "logikon-bench",
      "dataset_path": "cot-leaderboard/cot-eval-traces",
      "dataset_kwargs": {
        "data_files": {
          "test": "data/01-ai/Yi-34B-Chat/corrupti-voluptatibus-5635-lsat-rc.parquet"
        }
      },
      "test_split": "test",
      "doc_to_text": "def doc_to_text_cot(doc) -> str:\n    \"\"\"\n    Answer the following question about the given passage. [Base your answer on the reasoning below.]\n    \n    Passage: <passage>\n    \n    Question: <question>\n    A. <choice1>\n    B. <choice2>\n    C. <choice3>\n    D. <choice4>\n    [E. <choice5>]\n    \n    [Reasoning: <reasoning>]\n    \n    Answer:\n    \"\"\"\n    k = len(doc[\"options\"])\n    choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n    prompt = \"Answer the following question about the given passage. Base your answer on the reasoning below.\\n\\n\"\n    prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n    prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n    for choice, option in zip(choices, doc[\"options\"]):\n        prompt += f\"{choice.upper()}. {option}\\n\"\n    prompt += \"\\n\"\n    prompt += \"Reasoning: \" + doc[\"reasoning_trace\"] + \"\\n\\n\"    \n    prompt += \"Answer:\"\n    return prompt\n",
      "doc_to_target": "{{answer}}",
      "doc_to_choice": "{{options}}",
      "description": "",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 0.0
      }
    }
  },
  "versions": {
    "corrupti-voluptatibus-5635_logiqa2_cot": 0.0,
    "corrupti-voluptatibus-5635_logiqa_cot": 0.0,
    "corrupti-voluptatibus-5635_lsat-ar_cot": 0.0,
    "corrupti-voluptatibus-5635_lsat-lr_cot": 0.0,
    "corrupti-voluptatibus-5635_lsat-rc_cot": 0.0
  },
  "n-shot": {
    "corrupti-voluptatibus-5635_logiqa2_cot": 0,
    "corrupti-voluptatibus-5635_logiqa_cot": 0,
    "corrupti-voluptatibus-5635_lsat-ar_cot": 0,
    "corrupti-voluptatibus-5635_lsat-lr_cot": 0,
    "corrupti-voluptatibus-5635_lsat-rc_cot": 0
  },
  "config": {
    "model": "vllm",
    "model_args": "pretrained=01-ai/Yi-34B-Chat,revision=main,dtype=bfloat16,tensor_parallel_size=4,gpu_memory_utilization=0.8,trust_remote_code=true,max_length=2048",
    "batch_size": "auto",
    "batch_sizes": [],
    "device": null,
    "use_cache": null,
    "limit": null,
    "bootstrap_iters": 100000,
    "gen_kwargs": null
  },
  "git_hash": "f3c749c",
  "date": 1715184830.2465935,
  "pretty_env_info": "PyTorch version: 2.1.2+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.3 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: version 3.27.6\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-5.15.0-60-generic-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.2.140\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA RTX A6000\nGPU 1: NVIDIA RTX A6000\nGPU 2: NVIDIA RTX A6000\nGPU 3: NVIDIA RTX A6000\n\nNvidia driver version: 525.105.17\ncuDNN version: Probably one of the following:\n/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.5\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.5\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.5\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.5\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.5\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.5\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.5\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture:                    x86_64\nCPU op-mode(s):                  32-bit, 64-bit\nAddress sizes:                   43 bits physical, 48 bits virtual\nByte Order:                      Little Endian\nCPU(s):                          128\nOn-line CPU(s) list:             0-127\nVendor ID:                       AuthenticAMD\nModel name:                      AMD EPYC 7502 32-Core Processor\nCPU family:                      23\nModel:                           49\nThread(s) per core:              2\nCore(s) per socket:              32\nSocket(s):                       2\nStepping:                        0\nFrequency boost:                 enabled\nCPU max MHz:                     2500.0000\nCPU min MHz:                     1500.0000\nBogoMIPS:                        5000.15\nFlags:                           fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 hw_pstate ssbd mba ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr rdpru wbnoinvd amd_ppin arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif v_spec_ctrl umip rdpid overflow_recov succor smca sme sev sev_es\nVirtualization:                  AMD-V\nL1d cache:                       2 MiB (64 instances)\nL1i cache:                       2 MiB (64 instances)\nL2 cache:                        32 MiB (64 instances)\nL3 cache:                        256 MiB (16 instances)\nNUMA node(s):                    2\nNUMA node0 CPU(s):               0-31,64-95\nNUMA node1 CPU(s):               32-63,96-127\nVulnerability Itlb multihit:     Not affected\nVulnerability L1tf:              Not affected\nVulnerability Mds:               Not affected\nVulnerability Meltdown:          Not affected\nVulnerability Mmio stale data:   Not affected\nVulnerability Retbleed:          Mitigation; untrained return thunk; SMT enabled with STIBP protection\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp\nVulnerability Spectre v1:        Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2:        Mitigation; Retpolines, IBPB conditional, STIBP always-on, RSB filling, PBRSB-eIBRS Not affected\nVulnerability Srbds:             Not affected\nVulnerability Tsx async abort:   Not affected\n\nVersions of relevant libraries:\n[pip3] mypy-extensions==1.0.0\n[pip3] numpy==1.22.2\n[pip3] pytorch-quantization==2.1.2\n[pip3] torch==2.1.2\n[pip3] torch-tensorrt==0.0.0\n[pip3] torchdata==0.7.0a0\n[pip3] torchtext==0.16.0a0\n[pip3] torchvision==0.16.0a0\n[pip3] triton==2.1.0+e621604\n[conda] Could not collect",
  "transformers_version": "4.40.0",
  "upper_git_hash": null
}