File size: 4,259 Bytes
02045e6 b0f7e53 02045e6 b0f7e53 1402247 354db1c 1402247 354db1c cb94a7c 666c933 ec414ca 666c933 354db1c 666c933 ec414ca 666c933 ec414ca cb94a7c 354db1c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 |
---
dataset_info:
features:
- name: asset_id
dtype: string
- name: ad_title
dtype: string
- name: flg_revised
dtype: bool
splits:
- name: test
num_bytes: 45217
num_examples: 872
download_size: 59836
dataset_size: 90434
configs:
- config_name: default
data_files:
- split: test
path: data/test-*
license: cc-by-sa-4.0
task_categories:
- text-generation
language:
- ja
tags:
- faithfulness
- advertisement
size_categories:
- 1K<n<10K
pretty_name: faithcamera
---
## Overview
In ad text generation (ATG), desirable ad text is both faithful and informative. That is, it should be faithful to the input document, while at the same time containing important information that appeals to potential customers.
The existing evaluation data, [CAMERA (Mita et al.,2024)](https://aclanthology.org/2024.acl-long.54/), is suitable for evaluating informativeness, as it consists of reference ad texts created by ad creators. However, these references often include information unfaithful to the input, which is a notable obstacle in promoting ATG research.
Therefore, we collaborate with in-house ad creators to refine the CAMERA references and develop an alternative Japanese ATG evaluation dataset called FaithCAMERA, in which the faithfulness of references is guaranteed.
<img src="https://cdn-uploads.huggingface.co/production/uploads/63807bc1669b8ef54d037a62/zznXksBUM6vmEMiSC0X2y.png" alt="Cover Image" width="800">
## Usage
Please use this dataset together with the CAMERA dataset. Specifically, as shown in the sample code below, it is recommended that you use the asset_id to link the examples in the CAMERA dataset and this dataset.
```python
import datasets
camera_dataset = datasets.load_dataset("cyberagent/camera", name="without-lp-images")
faithcamera_dataset = datasets.load_dataset("cyberagent/FaithCAMERA")
test_split_of_camera = camera_dataset['test']
test_split_of_faithcamera = faithcamera_dataset['test']
test_d = {r['asset_id']: r for r in test_split_of_camera}
faithful_test_instances = {}
for record in test_split_of_faithcamera:
asset_id = record['asset_id']
info = test_d[asset_id]
faithful_test_instance = {
'asset_id': asset_id,
'keywords': info['kw'].split(" "),
'lp_meta_description': info['lp_meta_description'],
'ad_title': record['ad_title'],
'lp_ocr_sentences': info['parsed_full_text_annotation']['text']
}
faithful_test_instances.append(faithful_test_instance)
```
### Dataset Structure
| Name | Description |
| ---- | ---- |
| asset_id | This field can be used to match each instance in this dataset with an instance in the CAMERA dataset. |
| ad_title | ad text (gold reference) |
| flg_revised | If this field is “True”, it means that the ad text has been rewritten to be faithful to the input. On the other hand, if it is “False”, it means that the ad text in the CAMERA dataset is already faithful to the input, so no rewriting is done. |
### Note
- Because this dataset is targeted at Japanese ad texts, an instance of asset_id: 100637, where all the text on the landing page (LP) is in English, have been excluded (in the tsv file, the reference ad text for this instance is set as an empty string).
## Citation
Please cite [this paper](https://arxiv.org/abs/2410.03839) if you use our data.
```bibtex
@misc{kato2024faithcameraconstructionfaithfuldataset,
title={FaithCAMERA: Construction of a Faithful Dataset for Ad Text Generation},
author={Akihiko Kato and Masato Mita and Soichiro Murakami and Ukyo Honda and Sho Hoshino and Peinan Zhang},
year={2024},
eprint={2410.03839},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2410.03839},
}
```
## References
```bibtex
@inproceedings{mita2024striking,
title={Striking Gold in Advertising: Standardization and Exploration of Ad Text Generation},
author={Mita, Masato and Murakami, Soichiro and Kato, Akihiko and Zhang, Peinan},
booktitle={Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)},
pages={955--972},
year={2024}
}
```
## License
This project is licensed under the [CC BY-NC-SA 4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/) License. |