system HF staff commited on
Commit
11e381d
·
0 Parent(s):

Update files from the datasets library (from 1.0.0)

Browse files

Release notes: https://github.com/huggingface/datasets/releases/tag/1.0.0

Files changed (4) hide show
  1. .gitattributes +27 -0
  2. dataset_infos.json +1 -0
  3. dummy/0.0.0/dummy_data.zip +3 -0
  4. emotion.py +67 -0
.gitattributes ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bin.* filter=lfs diff=lfs merge=lfs -text
5
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.model filter=lfs diff=lfs merge=lfs -text
12
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
13
+ *.onnx filter=lfs diff=lfs merge=lfs -text
14
+ *.ot filter=lfs diff=lfs merge=lfs -text
15
+ *.parquet filter=lfs diff=lfs merge=lfs -text
16
+ *.pb filter=lfs diff=lfs merge=lfs -text
17
+ *.pt filter=lfs diff=lfs merge=lfs -text
18
+ *.pth filter=lfs diff=lfs merge=lfs -text
19
+ *.rar filter=lfs diff=lfs merge=lfs -text
20
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
21
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
22
+ *.tflite filter=lfs diff=lfs merge=lfs -text
23
+ *.tgz filter=lfs diff=lfs merge=lfs -text
24
+ *.xz filter=lfs diff=lfs merge=lfs -text
25
+ *.zip filter=lfs diff=lfs merge=lfs -text
26
+ *.zstandard filter=lfs diff=lfs merge=lfs -text
27
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
dataset_infos.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"emotion": {"description": "Emotion is a dataset of English Twitter messages with eight basic emotions: anger, anticipation,\ndisgust, fear, joy, sadness, surprise, and trust. For more detailed information please refer to the\npaper.\n", "citation": "@inproceedings{saravia-etal-2018-carer,\n title = \"{CARER}: Contextualized Affect Representations for Emotion Recognition\",\n author = \"Saravia, Elvis and\n Liu, Hsien-Chi Toby and\n Huang, Yen-Hao and\n Wu, Junlin and\n Chen, Yi-Shin\",\n booktitle = \"Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing\",\n month = oct # \"-\" # nov,\n year = \"2018\",\n address = \"Brussels, Belgium\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/D18-1404\",\n doi = \"10.18653/v1/D18-1404\",\n pages = \"3687--3697\",\n abstract = \"Emotions are expressed in nuanced ways, which varies by collective or individual experiences, knowledge, and beliefs. Therefore, to understand emotion, as conveyed through text, a robust mechanism capable of capturing and modeling different linguistic nuances and phenomena is needed. We propose a semi-supervised, graph-based algorithm to produce rich structural descriptors which serve as the building blocks for constructing contextualized affect representations from text. The pattern-based representations are further enriched with word embeddings and evaluated through several emotion recognition tasks. Our experimental results demonstrate that the proposed method outperforms state-of-the-art techniques on emotion recognition tasks.\",\n}\n", "homepage": "https://github.com/dair-ai/emotion_dataset", "license": "", "features": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"dtype": "string", "id": null, "_type": "Value"}}, "supervised_keys": null, "builder_name": "emotion", "config_name": "emotion", "version": {"version_str": "0.1.0", "description": "First Emotion release", "datasets_version_to_prepare": null, "major": 0, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 1754632, "num_examples": 16000, "dataset_name": "emotion"}, "validation": {"name": "validation", "num_bytes": 216248, "num_examples": 2000, "dataset_name": "emotion"}, "test": {"name": "test", "num_bytes": 218768, "num_examples": 2000, "dataset_name": "emotion"}}, "download_checksums": {"https://www.dropbox.com/s/1pzkadrvffbqw6o/train.txt?dl=1": {"num_bytes": 1658616, "checksum": "3ab03d945a6cb783d818ccd06dafd52d2ed8b4f62f0f85a09d7d11870865b190"}, "https://www.dropbox.com/s/2mzialpsgf9k5l3/val.txt?dl=1": {"num_bytes": 204240, "checksum": "34faaa31962fe63cdf5dbf6c132ef8ab166c640254ab991af78f3aea375e79ef"}, "https://www.dropbox.com/s/ikkqxfdbdec3fuj/test.txt?dl=1": {"num_bytes": 206760, "checksum": "60f531690d20127339e7f054edc299a82c627b5ec0dd5d552d53d544e0cfcc17"}}, "download_size": 2069616, "dataset_size": 2189648, "size_in_bytes": 4259264}, "default": {"description": "Emotion is a dataset of English Twitter messages with eight basic emotions: anger, anticipation,\ndisgust, fear, joy, sadness, surprise, and trust. For more detailed information please refer to the\npaper.\n", "citation": "@inproceedings{saravia-etal-2018-carer,\n title = \"{CARER}: Contextualized Affect Representations for Emotion Recognition\",\n author = \"Saravia, Elvis and\n Liu, Hsien-Chi Toby and\n Huang, Yen-Hao and\n Wu, Junlin and\n Chen, Yi-Shin\",\n booktitle = \"Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing\",\n month = oct # \"-\" # nov,\n year = \"2018\",\n address = \"Brussels, Belgium\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/D18-1404\",\n doi = \"10.18653/v1/D18-1404\",\n pages = \"3687--3697\",\n abstract = \"Emotions are expressed in nuanced ways, which varies by collective or individual experiences, knowledge, and beliefs. Therefore, to understand emotion, as conveyed through text, a robust mechanism capable of capturing and modeling different linguistic nuances and phenomena is needed. We propose a semi-supervised, graph-based algorithm to produce rich structural descriptors which serve as the building blocks for constructing contextualized affect representations from text. The pattern-based representations are further enriched with word embeddings and evaluated through several emotion recognition tasks. Our experimental results demonstrate that the proposed method outperforms state-of-the-art techniques on emotion recognition tasks.\",\n}\n", "homepage": "https://github.com/dair-ai/emotion_dataset", "license": "", "features": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"dtype": "string", "id": null, "_type": "Value"}}, "supervised_keys": null, "builder_name": "emotion", "config_name": "default", "version": {"version_str": "0.0.0", "description": null, "datasets_version_to_prepare": null, "major": 0, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 1754632, "num_examples": 16000, "dataset_name": "emotion"}, "validation": {"name": "validation", "num_bytes": 216248, "num_examples": 2000, "dataset_name": "emotion"}, "test": {"name": "test", "num_bytes": 218768, "num_examples": 2000, "dataset_name": "emotion"}}, "download_checksums": {"https://www.dropbox.com/s/1pzkadrvffbqw6o/train.txt?dl=1": {"num_bytes": 1658616, "checksum": "3ab03d945a6cb783d818ccd06dafd52d2ed8b4f62f0f85a09d7d11870865b190"}, "https://www.dropbox.com/s/2mzialpsgf9k5l3/val.txt?dl=1": {"num_bytes": 204240, "checksum": "34faaa31962fe63cdf5dbf6c132ef8ab166c640254ab991af78f3aea375e79ef"}, "https://www.dropbox.com/s/ikkqxfdbdec3fuj/test.txt?dl=1": {"num_bytes": 206760, "checksum": "60f531690d20127339e7f054edc299a82c627b5ec0dd5d552d53d544e0cfcc17"}}, "download_size": 2069616, "dataset_size": 2189648, "size_in_bytes": 4259264}}
dummy/0.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c60e08161d1303b9f97eec1f180176fb8d63ec750dc1ac2bbbe3595e967375d1
3
+ size 283
emotion.py ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import absolute_import, division, print_function
2
+
3
+ import csv
4
+
5
+ import datasets
6
+
7
+
8
+ _CITATION = """\
9
+ @inproceedings{saravia-etal-2018-carer,
10
+ title = "{CARER}: Contextualized Affect Representations for Emotion Recognition",
11
+ author = "Saravia, Elvis and
12
+ Liu, Hsien-Chi Toby and
13
+ Huang, Yen-Hao and
14
+ Wu, Junlin and
15
+ Chen, Yi-Shin",
16
+ booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
17
+ month = oct # "-" # nov,
18
+ year = "2018",
19
+ address = "Brussels, Belgium",
20
+ publisher = "Association for Computational Linguistics",
21
+ url = "https://www.aclweb.org/anthology/D18-1404",
22
+ doi = "10.18653/v1/D18-1404",
23
+ pages = "3687--3697",
24
+ abstract = "Emotions are expressed in nuanced ways, which varies by collective or individual experiences, knowledge, and beliefs. Therefore, to understand emotion, as conveyed through text, a robust mechanism capable of capturing and modeling different linguistic nuances and phenomena is needed. We propose a semi-supervised, graph-based algorithm to produce rich structural descriptors which serve as the building blocks for constructing contextualized affect representations from text. The pattern-based representations are further enriched with word embeddings and evaluated through several emotion recognition tasks. Our experimental results demonstrate that the proposed method outperforms state-of-the-art techniques on emotion recognition tasks.",
25
+ }
26
+ """
27
+
28
+ _DESCRIPTION = """\
29
+ Emotion is a dataset of English Twitter messages with eight basic emotions: anger, anticipation,
30
+ disgust, fear, joy, sadness, surprise, and trust. For more detailed information please refer to the
31
+ paper.
32
+ """
33
+ _URL = "https://github.com/dair-ai/emotion_dataset"
34
+ # use dl=1 to force browser to download data instead of displaying it
35
+ _TRAIN_DOWNLOAD_URL = "https://www.dropbox.com/s/1pzkadrvffbqw6o/train.txt?dl=1"
36
+ _VALIDATION_DOWNLOAD_URL = "https://www.dropbox.com/s/2mzialpsgf9k5l3/val.txt?dl=1"
37
+ _TEST_DOWNLOAD_URL = "https://www.dropbox.com/s/ikkqxfdbdec3fuj/test.txt?dl=1"
38
+
39
+
40
+ class Emotion(datasets.GeneratorBasedBuilder):
41
+ def _info(self):
42
+ return datasets.DatasetInfo(
43
+ description=_DESCRIPTION,
44
+ features=datasets.Features({"text": datasets.Value("string"), "label": datasets.Value("string")}),
45
+ supervised_keys=("text", "label"),
46
+ homepage=_URL,
47
+ citation=_CITATION,
48
+ )
49
+
50
+ def _split_generators(self, dl_manager):
51
+ """Returns SplitGenerators."""
52
+ train_path = dl_manager.download_and_extract(_TRAIN_DOWNLOAD_URL)
53
+ valid_path = dl_manager.download_and_extract(_VALIDATION_DOWNLOAD_URL)
54
+ test_path = dl_manager.download_and_extract(_TEST_DOWNLOAD_URL)
55
+ return [
56
+ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_path}),
57
+ datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": valid_path}),
58
+ datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": test_path}),
59
+ ]
60
+
61
+ def _generate_examples(self, filepath):
62
+ """Generate examples."""
63
+ with open(filepath, encoding="utf-8") as csv_file:
64
+ csv_reader = csv.reader(csv_file, delimiter=";")
65
+ for id_, row in enumerate(csv_reader):
66
+ text, label = row
67
+ yield id_, {"text": text, "label": label}