Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Sub-tasks:
multi-class-classification
Languages:
English
Size:
100K - 1M
Tags:
emotion-classification
License:
Delete legacy dataset_infos.json
Browse files- dataset_infos.json +0 -214
dataset_infos.json
DELETED
@@ -1,214 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"default": {
|
3 |
-
"description": "Emotion is a dataset of English Twitter messages with six basic emotions: anger, fear, joy, love, sadness, and surprise. For more detailed information please refer to the paper.\n",
|
4 |
-
"citation": "@inproceedings{saravia-etal-2018-carer,\n title = \"{CARER}: Contextualized Affect Representations for Emotion Recognition\",\n author = \"Saravia, Elvis and\n Liu, Hsien-Chi Toby and\n Huang, Yen-Hao and\n Wu, Junlin and\n Chen, Yi-Shin\",\n booktitle = \"Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing\",\n month = oct # \"-\" # nov,\n year = \"2018\",\n address = \"Brussels, Belgium\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/D18-1404\",\n doi = \"10.18653/v1/D18-1404\",\n pages = \"3687--3697\",\n abstract = \"Emotions are expressed in nuanced ways, which varies by collective or individual experiences, knowledge, and beliefs. Therefore, to understand emotion, as conveyed through text, a robust mechanism capable of capturing and modeling different linguistic nuances and phenomena is needed. We propose a semi-supervised, graph-based algorithm to produce rich structural descriptors which serve as the building blocks for constructing contextualized affect representations from text. The pattern-based representations are further enriched with word embeddings and evaluated through several emotion recognition tasks. Our experimental results demonstrate that the proposed method outperforms state-of-the-art techniques on emotion recognition tasks.\",\n}\n",
|
5 |
-
"homepage": "https://github.com/dair-ai/emotion_dataset",
|
6 |
-
"license": "",
|
7 |
-
"features": {
|
8 |
-
"text": {
|
9 |
-
"dtype": "string",
|
10 |
-
"id": null,
|
11 |
-
"_type": "Value"
|
12 |
-
},
|
13 |
-
"label": {
|
14 |
-
"num_classes": 6,
|
15 |
-
"names": [
|
16 |
-
"sadness",
|
17 |
-
"joy",
|
18 |
-
"love",
|
19 |
-
"anger",
|
20 |
-
"fear",
|
21 |
-
"surprise"
|
22 |
-
],
|
23 |
-
"names_file": null,
|
24 |
-
"id": null,
|
25 |
-
"_type": "ClassLabel"
|
26 |
-
}
|
27 |
-
},
|
28 |
-
"post_processed": null,
|
29 |
-
"supervised_keys": {
|
30 |
-
"input": "text",
|
31 |
-
"output": "label"
|
32 |
-
},
|
33 |
-
"task_templates": [
|
34 |
-
{
|
35 |
-
"task": "text-classification",
|
36 |
-
"text_column": "text",
|
37 |
-
"label_column": "label",
|
38 |
-
"labels": [
|
39 |
-
"anger",
|
40 |
-
"fear",
|
41 |
-
"joy",
|
42 |
-
"love",
|
43 |
-
"sadness",
|
44 |
-
"surprise"
|
45 |
-
]
|
46 |
-
}
|
47 |
-
],
|
48 |
-
"builder_name": "emotion",
|
49 |
-
"config_name": "default",
|
50 |
-
"version": {
|
51 |
-
"version_str": "0.0.0",
|
52 |
-
"description": null,
|
53 |
-
"major": 0,
|
54 |
-
"minor": 0,
|
55 |
-
"patch": 0
|
56 |
-
},
|
57 |
-
"splits": {
|
58 |
-
"train": {
|
59 |
-
"name": "train",
|
60 |
-
"num_bytes": 1741541,
|
61 |
-
"num_examples": 16000,
|
62 |
-
"dataset_name": "emotion"
|
63 |
-
},
|
64 |
-
"validation": {
|
65 |
-
"name": "validation",
|
66 |
-
"num_bytes": 214699,
|
67 |
-
"num_examples": 2000,
|
68 |
-
"dataset_name": "emotion"
|
69 |
-
},
|
70 |
-
"test": {
|
71 |
-
"name": "test",
|
72 |
-
"num_bytes": 217177,
|
73 |
-
"num_examples": 2000,
|
74 |
-
"dataset_name": "emotion"
|
75 |
-
}
|
76 |
-
},
|
77 |
-
"download_checksums": {
|
78 |
-
"https://www.dropbox.com/s/1pzkadrvffbqw6o/train.txt?dl=1": {
|
79 |
-
"num_bytes": 1658616,
|
80 |
-
"checksum": "3ab03d945a6cb783d818ccd06dafd52d2ed8b4f62f0f85a09d7d11870865b190"
|
81 |
-
},
|
82 |
-
"https://www.dropbox.com/s/2mzialpsgf9k5l3/val.txt?dl=1": {
|
83 |
-
"num_bytes": 204240,
|
84 |
-
"checksum": "34faaa31962fe63cdf5dbf6c132ef8ab166c640254ab991af78f3aea375e79ef"
|
85 |
-
},
|
86 |
-
"https://www.dropbox.com/s/ikkqxfdbdec3fuj/test.txt?dl=1": {
|
87 |
-
"num_bytes": 206760,
|
88 |
-
"checksum": "60f531690d20127339e7f054edc299a82c627b5ec0dd5d552d53d544e0cfcc17"
|
89 |
-
}
|
90 |
-
},
|
91 |
-
"download_size": 2069616,
|
92 |
-
"post_processing_size": null,
|
93 |
-
"dataset_size": 2173417,
|
94 |
-
"size_in_bytes": 4243033
|
95 |
-
},
|
96 |
-
"split": {
|
97 |
-
"description": "Emotion is a dataset of English Twitter messages with six basic emotions: anger, fear, joy, love, sadness, and surprise. For more detailed information please refer to the paper.\n",
|
98 |
-
"citation": "@inproceedings{saravia-etal-2018-carer,\n title = \"{CARER}: Contextualized Affect Representations for Emotion Recognition\",\n author = \"Saravia, Elvis and\n Liu, Hsien-Chi Toby and\n Huang, Yen-Hao and\n Wu, Junlin and\n Chen, Yi-Shin\",\n booktitle = \"Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing\",\n month = oct # \"-\" # nov,\n year = \"2018\",\n address = \"Brussels, Belgium\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/D18-1404\",\n doi = \"10.18653/v1/D18-1404\",\n pages = \"3687--3697\",\n abstract = \"Emotions are expressed in nuanced ways, which varies by collective or individual experiences, knowledge, and beliefs. Therefore, to understand emotion, as conveyed through text, a robust mechanism capable of capturing and modeling different linguistic nuances and phenomena is needed. We propose a semi-supervised, graph-based algorithm to produce rich structural descriptors which serve as the building blocks for constructing contextualized affect representations from text. The pattern-based representations are further enriched with word embeddings and evaluated through several emotion recognition tasks. Our experimental results demonstrate that the proposed method outperforms state-of-the-art techniques on emotion recognition tasks.\",\n}\n",
|
99 |
-
"homepage": "https://github.com/dair-ai/emotion_dataset",
|
100 |
-
"license": "The dataset should be used for educational and research purposes only",
|
101 |
-
"features": {
|
102 |
-
"text": {
|
103 |
-
"dtype": "string",
|
104 |
-
"_type": "Value"
|
105 |
-
},
|
106 |
-
"label": {
|
107 |
-
"names": [
|
108 |
-
"sadness",
|
109 |
-
"joy",
|
110 |
-
"love",
|
111 |
-
"anger",
|
112 |
-
"fear",
|
113 |
-
"surprise"
|
114 |
-
],
|
115 |
-
"_type": "ClassLabel"
|
116 |
-
}
|
117 |
-
},
|
118 |
-
"supervised_keys": {
|
119 |
-
"input": "text",
|
120 |
-
"output": "label"
|
121 |
-
},
|
122 |
-
"task_templates": [
|
123 |
-
{
|
124 |
-
"task": "text-classification",
|
125 |
-
"label_column": "label"
|
126 |
-
}
|
127 |
-
],
|
128 |
-
"builder_name": "parquet",
|
129 |
-
"dataset_name": "emotion",
|
130 |
-
"config_name": "split",
|
131 |
-
"version": {
|
132 |
-
"version_str": "1.0.0",
|
133 |
-
"major": 1,
|
134 |
-
"minor": 0,
|
135 |
-
"patch": 0
|
136 |
-
},
|
137 |
-
"splits": {
|
138 |
-
"train": {
|
139 |
-
"name": "train",
|
140 |
-
"num_bytes": 1741533,
|
141 |
-
"num_examples": 16000,
|
142 |
-
"dataset_name": null
|
143 |
-
},
|
144 |
-
"validation": {
|
145 |
-
"name": "validation",
|
146 |
-
"num_bytes": 214695,
|
147 |
-
"num_examples": 2000,
|
148 |
-
"dataset_name": null
|
149 |
-
},
|
150 |
-
"test": {
|
151 |
-
"name": "test",
|
152 |
-
"num_bytes": 217173,
|
153 |
-
"num_examples": 2000,
|
154 |
-
"dataset_name": null
|
155 |
-
}
|
156 |
-
},
|
157 |
-
"download_size": 1287193,
|
158 |
-
"dataset_size": 2173401,
|
159 |
-
"size_in_bytes": 3460594
|
160 |
-
},
|
161 |
-
"unsplit": {
|
162 |
-
"description": "Emotion is a dataset of English Twitter messages with six basic emotions: anger, fear, joy, love, sadness, and surprise. For more detailed information please refer to the paper.\n",
|
163 |
-
"citation": "@inproceedings{saravia-etal-2018-carer,\n title = \"{CARER}: Contextualized Affect Representations for Emotion Recognition\",\n author = \"Saravia, Elvis and\n Liu, Hsien-Chi Toby and\n Huang, Yen-Hao and\n Wu, Junlin and\n Chen, Yi-Shin\",\n booktitle = \"Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing\",\n month = oct # \"-\" # nov,\n year = \"2018\",\n address = \"Brussels, Belgium\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/D18-1404\",\n doi = \"10.18653/v1/D18-1404\",\n pages = \"3687--3697\",\n abstract = \"Emotions are expressed in nuanced ways, which varies by collective or individual experiences, knowledge, and beliefs. Therefore, to understand emotion, as conveyed through text, a robust mechanism capable of capturing and modeling different linguistic nuances and phenomena is needed. We propose a semi-supervised, graph-based algorithm to produce rich structural descriptors which serve as the building blocks for constructing contextualized affect representations from text. The pattern-based representations are further enriched with word embeddings and evaluated through several emotion recognition tasks. Our experimental results demonstrate that the proposed method outperforms state-of-the-art techniques on emotion recognition tasks.\",\n}\n",
|
164 |
-
"homepage": "https://github.com/dair-ai/emotion_dataset",
|
165 |
-
"license": "The dataset should be used for educational and research purposes only",
|
166 |
-
"features": {
|
167 |
-
"text": {
|
168 |
-
"dtype": "string",
|
169 |
-
"_type": "Value"
|
170 |
-
},
|
171 |
-
"label": {
|
172 |
-
"names": [
|
173 |
-
"sadness",
|
174 |
-
"joy",
|
175 |
-
"love",
|
176 |
-
"anger",
|
177 |
-
"fear",
|
178 |
-
"surprise"
|
179 |
-
],
|
180 |
-
"_type": "ClassLabel"
|
181 |
-
}
|
182 |
-
},
|
183 |
-
"supervised_keys": {
|
184 |
-
"input": "text",
|
185 |
-
"output": "label"
|
186 |
-
},
|
187 |
-
"task_templates": [
|
188 |
-
{
|
189 |
-
"task": "text-classification",
|
190 |
-
"label_column": "label"
|
191 |
-
}
|
192 |
-
],
|
193 |
-
"builder_name": "parquet",
|
194 |
-
"dataset_name": "emotion",
|
195 |
-
"config_name": "unsplit",
|
196 |
-
"version": {
|
197 |
-
"version_str": "1.0.0",
|
198 |
-
"major": 1,
|
199 |
-
"minor": 0,
|
200 |
-
"patch": 0
|
201 |
-
},
|
202 |
-
"splits": {
|
203 |
-
"train": {
|
204 |
-
"name": "train",
|
205 |
-
"num_bytes": 45444017,
|
206 |
-
"num_examples": 416809,
|
207 |
-
"dataset_name": null
|
208 |
-
}
|
209 |
-
},
|
210 |
-
"download_size": 26888538,
|
211 |
-
"dataset_size": 45444017,
|
212 |
-
"size_in_bytes": 72332555
|
213 |
-
}
|
214 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|