albertvillanova HF staff commited on
Commit
23abdc0
·
verified ·
1 Parent(s): 0f2013a

Delete legacy dataset_infos.json

Browse files
Files changed (1) hide show
  1. dataset_infos.json +0 -214
dataset_infos.json DELETED
@@ -1,214 +0,0 @@
1
- {
2
- "default": {
3
- "description": "Emotion is a dataset of English Twitter messages with six basic emotions: anger, fear, joy, love, sadness, and surprise. For more detailed information please refer to the paper.\n",
4
- "citation": "@inproceedings{saravia-etal-2018-carer,\n title = \"{CARER}: Contextualized Affect Representations for Emotion Recognition\",\n author = \"Saravia, Elvis and\n Liu, Hsien-Chi Toby and\n Huang, Yen-Hao and\n Wu, Junlin and\n Chen, Yi-Shin\",\n booktitle = \"Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing\",\n month = oct # \"-\" # nov,\n year = \"2018\",\n address = \"Brussels, Belgium\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/D18-1404\",\n doi = \"10.18653/v1/D18-1404\",\n pages = \"3687--3697\",\n abstract = \"Emotions are expressed in nuanced ways, which varies by collective or individual experiences, knowledge, and beliefs. Therefore, to understand emotion, as conveyed through text, a robust mechanism capable of capturing and modeling different linguistic nuances and phenomena is needed. We propose a semi-supervised, graph-based algorithm to produce rich structural descriptors which serve as the building blocks for constructing contextualized affect representations from text. The pattern-based representations are further enriched with word embeddings and evaluated through several emotion recognition tasks. Our experimental results demonstrate that the proposed method outperforms state-of-the-art techniques on emotion recognition tasks.\",\n}\n",
5
- "homepage": "https://github.com/dair-ai/emotion_dataset",
6
- "license": "",
7
- "features": {
8
- "text": {
9
- "dtype": "string",
10
- "id": null,
11
- "_type": "Value"
12
- },
13
- "label": {
14
- "num_classes": 6,
15
- "names": [
16
- "sadness",
17
- "joy",
18
- "love",
19
- "anger",
20
- "fear",
21
- "surprise"
22
- ],
23
- "names_file": null,
24
- "id": null,
25
- "_type": "ClassLabel"
26
- }
27
- },
28
- "post_processed": null,
29
- "supervised_keys": {
30
- "input": "text",
31
- "output": "label"
32
- },
33
- "task_templates": [
34
- {
35
- "task": "text-classification",
36
- "text_column": "text",
37
- "label_column": "label",
38
- "labels": [
39
- "anger",
40
- "fear",
41
- "joy",
42
- "love",
43
- "sadness",
44
- "surprise"
45
- ]
46
- }
47
- ],
48
- "builder_name": "emotion",
49
- "config_name": "default",
50
- "version": {
51
- "version_str": "0.0.0",
52
- "description": null,
53
- "major": 0,
54
- "minor": 0,
55
- "patch": 0
56
- },
57
- "splits": {
58
- "train": {
59
- "name": "train",
60
- "num_bytes": 1741541,
61
- "num_examples": 16000,
62
- "dataset_name": "emotion"
63
- },
64
- "validation": {
65
- "name": "validation",
66
- "num_bytes": 214699,
67
- "num_examples": 2000,
68
- "dataset_name": "emotion"
69
- },
70
- "test": {
71
- "name": "test",
72
- "num_bytes": 217177,
73
- "num_examples": 2000,
74
- "dataset_name": "emotion"
75
- }
76
- },
77
- "download_checksums": {
78
- "https://www.dropbox.com/s/1pzkadrvffbqw6o/train.txt?dl=1": {
79
- "num_bytes": 1658616,
80
- "checksum": "3ab03d945a6cb783d818ccd06dafd52d2ed8b4f62f0f85a09d7d11870865b190"
81
- },
82
- "https://www.dropbox.com/s/2mzialpsgf9k5l3/val.txt?dl=1": {
83
- "num_bytes": 204240,
84
- "checksum": "34faaa31962fe63cdf5dbf6c132ef8ab166c640254ab991af78f3aea375e79ef"
85
- },
86
- "https://www.dropbox.com/s/ikkqxfdbdec3fuj/test.txt?dl=1": {
87
- "num_bytes": 206760,
88
- "checksum": "60f531690d20127339e7f054edc299a82c627b5ec0dd5d552d53d544e0cfcc17"
89
- }
90
- },
91
- "download_size": 2069616,
92
- "post_processing_size": null,
93
- "dataset_size": 2173417,
94
- "size_in_bytes": 4243033
95
- },
96
- "split": {
97
- "description": "Emotion is a dataset of English Twitter messages with six basic emotions: anger, fear, joy, love, sadness, and surprise. For more detailed information please refer to the paper.\n",
98
- "citation": "@inproceedings{saravia-etal-2018-carer,\n title = \"{CARER}: Contextualized Affect Representations for Emotion Recognition\",\n author = \"Saravia, Elvis and\n Liu, Hsien-Chi Toby and\n Huang, Yen-Hao and\n Wu, Junlin and\n Chen, Yi-Shin\",\n booktitle = \"Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing\",\n month = oct # \"-\" # nov,\n year = \"2018\",\n address = \"Brussels, Belgium\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/D18-1404\",\n doi = \"10.18653/v1/D18-1404\",\n pages = \"3687--3697\",\n abstract = \"Emotions are expressed in nuanced ways, which varies by collective or individual experiences, knowledge, and beliefs. Therefore, to understand emotion, as conveyed through text, a robust mechanism capable of capturing and modeling different linguistic nuances and phenomena is needed. We propose a semi-supervised, graph-based algorithm to produce rich structural descriptors which serve as the building blocks for constructing contextualized affect representations from text. The pattern-based representations are further enriched with word embeddings and evaluated through several emotion recognition tasks. Our experimental results demonstrate that the proposed method outperforms state-of-the-art techniques on emotion recognition tasks.\",\n}\n",
99
- "homepage": "https://github.com/dair-ai/emotion_dataset",
100
- "license": "The dataset should be used for educational and research purposes only",
101
- "features": {
102
- "text": {
103
- "dtype": "string",
104
- "_type": "Value"
105
- },
106
- "label": {
107
- "names": [
108
- "sadness",
109
- "joy",
110
- "love",
111
- "anger",
112
- "fear",
113
- "surprise"
114
- ],
115
- "_type": "ClassLabel"
116
- }
117
- },
118
- "supervised_keys": {
119
- "input": "text",
120
- "output": "label"
121
- },
122
- "task_templates": [
123
- {
124
- "task": "text-classification",
125
- "label_column": "label"
126
- }
127
- ],
128
- "builder_name": "parquet",
129
- "dataset_name": "emotion",
130
- "config_name": "split",
131
- "version": {
132
- "version_str": "1.0.0",
133
- "major": 1,
134
- "minor": 0,
135
- "patch": 0
136
- },
137
- "splits": {
138
- "train": {
139
- "name": "train",
140
- "num_bytes": 1741533,
141
- "num_examples": 16000,
142
- "dataset_name": null
143
- },
144
- "validation": {
145
- "name": "validation",
146
- "num_bytes": 214695,
147
- "num_examples": 2000,
148
- "dataset_name": null
149
- },
150
- "test": {
151
- "name": "test",
152
- "num_bytes": 217173,
153
- "num_examples": 2000,
154
- "dataset_name": null
155
- }
156
- },
157
- "download_size": 1287193,
158
- "dataset_size": 2173401,
159
- "size_in_bytes": 3460594
160
- },
161
- "unsplit": {
162
- "description": "Emotion is a dataset of English Twitter messages with six basic emotions: anger, fear, joy, love, sadness, and surprise. For more detailed information please refer to the paper.\n",
163
- "citation": "@inproceedings{saravia-etal-2018-carer,\n title = \"{CARER}: Contextualized Affect Representations for Emotion Recognition\",\n author = \"Saravia, Elvis and\n Liu, Hsien-Chi Toby and\n Huang, Yen-Hao and\n Wu, Junlin and\n Chen, Yi-Shin\",\n booktitle = \"Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing\",\n month = oct # \"-\" # nov,\n year = \"2018\",\n address = \"Brussels, Belgium\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/D18-1404\",\n doi = \"10.18653/v1/D18-1404\",\n pages = \"3687--3697\",\n abstract = \"Emotions are expressed in nuanced ways, which varies by collective or individual experiences, knowledge, and beliefs. Therefore, to understand emotion, as conveyed through text, a robust mechanism capable of capturing and modeling different linguistic nuances and phenomena is needed. We propose a semi-supervised, graph-based algorithm to produce rich structural descriptors which serve as the building blocks for constructing contextualized affect representations from text. The pattern-based representations are further enriched with word embeddings and evaluated through several emotion recognition tasks. Our experimental results demonstrate that the proposed method outperforms state-of-the-art techniques on emotion recognition tasks.\",\n}\n",
164
- "homepage": "https://github.com/dair-ai/emotion_dataset",
165
- "license": "The dataset should be used for educational and research purposes only",
166
- "features": {
167
- "text": {
168
- "dtype": "string",
169
- "_type": "Value"
170
- },
171
- "label": {
172
- "names": [
173
- "sadness",
174
- "joy",
175
- "love",
176
- "anger",
177
- "fear",
178
- "surprise"
179
- ],
180
- "_type": "ClassLabel"
181
- }
182
- },
183
- "supervised_keys": {
184
- "input": "text",
185
- "output": "label"
186
- },
187
- "task_templates": [
188
- {
189
- "task": "text-classification",
190
- "label_column": "label"
191
- }
192
- ],
193
- "builder_name": "parquet",
194
- "dataset_name": "emotion",
195
- "config_name": "unsplit",
196
- "version": {
197
- "version_str": "1.0.0",
198
- "major": 1,
199
- "minor": 0,
200
- "patch": 0
201
- },
202
- "splits": {
203
- "train": {
204
- "name": "train",
205
- "num_bytes": 45444017,
206
- "num_examples": 416809,
207
- "dataset_name": null
208
- }
209
- },
210
- "download_size": 26888538,
211
- "dataset_size": 45444017,
212
- "size_in_bytes": 72332555
213
- }
214
- }