File size: 9,243 Bytes
b1d4de0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
# File: diffusion-fast-main/prepare_results.py import argparse import glob import os import sys import matplotlib.pyplot as plt import pandas as pd import seaborn as sns from huggingface_hub import upload_file sys.path.append('.') from utils.benchmarking_utils import collate_csv REPO_ID = 'sayakpaul/sample-datasets' def prepare_plot(df, args): columns_to_drop = ['batch_size', 'num_inference_steps', 'pipeline_cls', 'ckpt_id', 'upcast_vae', 'memory (gbs)', 'actual_gpu_memory (gbs)', 'tag'] df_filtered = df.drop(columns=columns_to_drop) df_filtered[['quant']] = df_filtered[['do_quant']].fillna('None') df_filtered.drop(columns=['do_quant'], inplace=True) df_filtered['settings'] = df_filtered.apply(lambda row: ', '.join([f'{col}-{row[col]}' for col in df_filtered.columns if col != 'time (secs)']), axis=1) df_filtered['formatted_settings'] = df_filtered['settings'].str.replace(', ', '\n', regex=False) df_filtered.loc[0, 'formatted_settings'] = 'default' plt.figure(figsize=(12, 10)) sns.set_style('whitegrid') n_settings = len(df_filtered['formatted_settings'].unique()) bar_positions = range(n_settings) palette = sns.color_palette('husl', n_settings) bar_width = 0.25 for (i, setting) in enumerate(df_filtered['formatted_settings'].unique()): mean_time = df_filtered[df_filtered['formatted_settings'] == setting]['time (secs)'].mean() plt.bar(i, mean_time, width=bar_width, align='center', color=palette[i]) plt.text(i, mean_time + 0.01, f'{mean_time:.2f}', ha='center', va='bottom', fontsize=14, fontweight='bold') plt.xticks(bar_positions, df_filtered['formatted_settings'].unique(), rotation=45, ha='right', fontsize=10) plt.ylabel('Time in Seconds', fontsize=14, labelpad=15) plt.xlabel('Settings', fontsize=14, labelpad=15) plt.title(args.plot_title, fontsize=18, fontweight='bold', pad=20) plt.grid(axis='y', linestyle='--', linewidth=0.7, alpha=0.7) plt.tight_layout() plt.subplots_adjust(top=0.9, bottom=0.2) plot_path = args.plot_title.replace(' ', '_') + '.png' plt.savefig(plot_path, bbox_inches='tight', dpi=300) if args.push_to_hub: upload_file(repo_id=REPO_ID, path_in_repo=plot_path, path_or_fileobj=plot_path, repo_type='dataset') print(f'Plot successfully uploaded. Find it here: https://huggingface.co/datasets/{REPO_ID}/blob/main/{args.plot_file_path}') plt.show() def main(args): all_csvs = sorted(glob.glob(f'{args.base_path}/*.csv')) all_csvs = [os.path.join(args.base_path, x) for x in all_csvs] is_pixart = 'PixArt-alpha' in all_csvs[0] collate_csv(all_csvs, args.final_csv_filename, is_pixart=is_pixart) if args.push_to_hub: upload_file(repo_id=REPO_ID, path_in_repo=args.final_csv_filename, path_or_fileobj=args.final_csv_filename, repo_type='dataset') print(f'CSV successfully uploaded. Find it here: https://huggingface.co/datasets/{REPO_ID}/blob/main/{args.final_csv_filename}') if args.plot_title is not None: df = pd.read_csv(args.final_csv_filename) prepare_plot(df, args) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--base_path', type=str, default='.') parser.add_argument('--final_csv_filename', type=str, default='collated_results.csv') parser.add_argument('--plot_title', type=str, default=None) parser.add_argument('--push_to_hub', action='store_true') args = parser.parse_args() main(args) # File: diffusion-fast-main/run_benchmark.py import torch torch.set_float32_matmul_precision('high') import sys sys.path.append('.') from utils.benchmarking_utils import benchmark_fn, create_parser, generate_csv_dict, write_to_csv from utils.pipeline_utils import load_pipeline def run_inference(pipe, args): _ = pipe(prompt=args.prompt, num_inference_steps=args.num_inference_steps, num_images_per_prompt=args.batch_size) def main(args) -> dict: pipeline = load_pipeline(ckpt=args.ckpt, compile_unet=args.compile_unet, compile_vae=args.compile_vae, no_sdpa=args.no_sdpa, no_bf16=args.no_bf16, upcast_vae=args.upcast_vae, enable_fused_projections=args.enable_fused_projections, do_quant=args.do_quant, compile_mode=args.compile_mode, change_comp_config=args.change_comp_config, device=args.device) run_inference(pipeline, args) run_inference(pipeline, args) run_inference(pipeline, args) time = benchmark_fn(run_inference, pipeline, args) data_dict = generate_csv_dict(pipeline_cls=str(pipeline.__class__.__name__), args=args, time=time) img = pipeline(prompt=args.prompt, num_inference_steps=args.num_inference_steps, num_images_per_prompt=args.batch_size).images[0] return (data_dict, img) if __name__ == '__main__': parser = create_parser() args = parser.parse_args() print(args) (data_dict, img) = main(args) name = args.ckpt.replace('/', '_') + f'bf16@{not args.no_bf16}-sdpa@{not args.no_sdpa}-bs@{args.batch_size}-fuse@{args.enable_fused_projections}-upcast_vae@{args.upcast_vae}-steps@{args.num_inference_steps}-unet@{args.compile_unet}-vae@{args.compile_vae}-mode@{args.compile_mode}-change_comp_config@{args.change_comp_config}-do_quant@{args.do_quant}-tag@{args.tag}-device@{args.device}.csv' img.save(f"{name.replace('.csv', '')}.jpeg") write_to_csv(name, data_dict) # File: diffusion-fast-main/run_benchmark_pixart.py import torch torch.set_float32_matmul_precision('high') import sys sys.path.append('.') from utils.benchmarking_utils import benchmark_fn, create_parser, generate_csv_dict, write_to_csv from utils.pipeline_utils_pixart import load_pipeline def run_inference(pipe, args): _ = pipe(prompt=args.prompt, num_inference_steps=args.num_inference_steps, num_images_per_prompt=args.batch_size) def main(args) -> dict: pipeline = load_pipeline(ckpt=args.ckpt, compile_transformer=args.compile_transformer, compile_vae=args.compile_vae, no_sdpa=args.no_sdpa, no_bf16=args.no_bf16, enable_fused_projections=args.enable_fused_projections, do_quant=args.do_quant, compile_mode=args.compile_mode, change_comp_config=args.change_comp_config, device=args.device) run_inference(pipeline, args) run_inference(pipeline, args) run_inference(pipeline, args) time = benchmark_fn(run_inference, pipeline, args) data_dict = generate_csv_dict(pipeline_cls=str(pipeline.__class__.__name__), args=args, time=time) img = pipeline(prompt=args.prompt, num_inference_steps=args.num_inference_steps, num_images_per_prompt=args.batch_size).images[0] return (data_dict, img) if __name__ == '__main__': parser = create_parser(is_pixart=True) args = parser.parse_args() print(args) (data_dict, img) = main(args) name = args.ckpt.replace('/', '_') + f'bf16@{not args.no_bf16}-sdpa@{not args.no_sdpa}-bs@{args.batch_size}-fuse@{args.enable_fused_projections}-upcast_vae@NA-steps@{args.num_inference_steps}-transformer@{args.compile_transformer}-vae@{args.compile_vae}-mode@{args.compile_mode}-change_comp_config@{args.change_comp_config}-do_quant@{args.do_quant}-tag@{args.tag}-device@{args.device}.csv' img.save(f'{name}.jpeg') write_to_csv(name, data_dict, is_pixart=True) # File: diffusion-fast-main/run_profile.py import torch torch.set_float32_matmul_precision('high') from torch._inductor import config as inductorconfig inductorconfig.triton.unique_kernel_names = True import functools import sys sys.path.append('.') from utils.benchmarking_utils import create_parser from utils.pipeline_utils import load_pipeline def profiler_runner(path, fn, *args, **kwargs): with torch.profiler.profile(activities=[torch.profiler.ProfilerActivity.CPU, torch.profiler.ProfilerActivity.CUDA], record_shapes=True) as prof: result = fn(*args, **kwargs) prof.export_chrome_trace(path) return result def run_inference(pipe, args): _ = pipe(prompt=args.prompt, num_inference_steps=args.num_inference_steps, num_images_per_prompt=args.batch_size) def main(args) -> dict: pipeline = load_pipeline(ckpt=args.ckpt, compile_unet=args.compile_unet, compile_vae=args.compile_vae, no_sdpa=args.no_sdpa, no_bf16=args.no_bf16, upcast_vae=args.upcast_vae, enable_fused_projections=args.enable_fused_projections, do_quant=args.do_quant, compile_mode=args.compile_mode, change_comp_config=args.change_comp_config, device=args.device) run_inference(pipeline, args) run_inference(pipeline, args) trace_path = args.ckpt.replace('/', '_') + f'bf16@{not args.no_bf16}-sdpa@{not args.no_sdpa}-bs@{args.batch_size}-fuse@{args.enable_fused_projections}-upcast_vae@{args.upcast_vae}-steps@{args.num_inference_steps}-unet@{args.compile_unet}-vae@{args.compile_vae}-mode@{args.compile_mode}-change_comp_config@{args.change_comp_config}-do_quant@{args.do_quant}-device@{args.device}.json' runner = functools.partial(profiler_runner, trace_path) with torch.autograd.profiler.record_function('sdxl-brrr'): runner(run_inference, pipeline, args) return trace_path if __name__ == '__main__': parser = create_parser() args = parser.parse_args() if not args.compile_unet: args.compile_mode = 'NA' trace_path = main(args) print(f'Trace generated at: {trace_path}') |