File size: 63,892 Bytes
b1d4de0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
# File: speech-to-speech-main/LLM/chat.py
class Chat:

    def __init__(self, size):
        self.size = size
        self.init_chat_message = None
        self.buffer = []

    def append(self, item):
        self.buffer.append(item)
        if len(self.buffer) == 2 * (self.size + 1):
            self.buffer.pop(0)
            self.buffer.pop(0)

    def init_chat(self, init_chat_message):
        self.init_chat_message = init_chat_message

    def to_list(self):
        if self.init_chat_message:
            return [self.init_chat_message] + self.buffer
        else:
            return self.buffer

# File: speech-to-speech-main/LLM/language_model.py
from threading import Thread
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline, TextIteratorStreamer
import torch
from LLM.chat import Chat
from baseHandler import BaseHandler
from rich.console import Console
import logging
from nltk import sent_tokenize
logger = logging.getLogger(__name__)
console = Console()
WHISPER_LANGUAGE_TO_LLM_LANGUAGE = {'en': 'english', 'fr': 'french', 'es': 'spanish', 'zh': 'chinese', 'ja': 'japanese', 'ko': 'korean'}

class LanguageModelHandler(BaseHandler):

    def setup(self, model_name='microsoft/Phi-3-mini-4k-instruct', device='cuda', torch_dtype='float16', gen_kwargs={}, user_role='user', chat_size=1, init_chat_role=None, init_chat_prompt='You are a helpful AI assistant.'):
        self.device = device
        self.torch_dtype = getattr(torch, torch_dtype)
        self.tokenizer = AutoTokenizer.from_pretrained(model_name)
        self.model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch_dtype, trust_remote_code=True).to(device)
        self.pipe = pipeline('text-generation', model=self.model, tokenizer=self.tokenizer, device=device)
        self.streamer = TextIteratorStreamer(self.tokenizer, skip_prompt=True, skip_special_tokens=True)
        self.gen_kwargs = {'streamer': self.streamer, 'return_full_text': False, **gen_kwargs}
        self.chat = Chat(chat_size)
        if init_chat_role:
            if not init_chat_prompt:
                raise ValueError('An initial promt needs to be specified when setting init_chat_role.')
            self.chat.init_chat({'role': init_chat_role, 'content': init_chat_prompt})
        self.user_role = user_role
        self.warmup()

    def warmup(self):
        logger.info(f'Warming up {self.__class__.__name__}')
        dummy_input_text = "Repeat the word 'home'."
        dummy_chat = [{'role': self.user_role, 'content': dummy_input_text}]
        warmup_gen_kwargs = {'min_new_tokens': self.gen_kwargs['min_new_tokens'], 'max_new_tokens': self.gen_kwargs['max_new_tokens'], **self.gen_kwargs}
        n_steps = 2
        if self.device == 'cuda':
            start_event = torch.cuda.Event(enable_timing=True)
            end_event = torch.cuda.Event(enable_timing=True)
            torch.cuda.synchronize()
            start_event.record()
        for _ in range(n_steps):
            thread = Thread(target=self.pipe, args=(dummy_chat,), kwargs=warmup_gen_kwargs)
            thread.start()
            for _ in self.streamer:
                pass
        if self.device == 'cuda':
            end_event.record()
            torch.cuda.synchronize()
            logger.info(f'{self.__class__.__name__}:  warmed up! time: {start_event.elapsed_time(end_event) * 0.001:.3f} s')

    def process(self, prompt):
        logger.debug('infering language model...')
        language_code = None
        if isinstance(prompt, tuple):
            (prompt, language_code) = prompt
            prompt = f'Please reply to my message in {WHISPER_LANGUAGE_TO_LLM_LANGUAGE[language_code]}. ' + prompt
        self.chat.append({'role': self.user_role, 'content': prompt})
        thread = Thread(target=self.pipe, args=(self.chat.to_list(),), kwargs=self.gen_kwargs)
        thread.start()
        if self.device == 'mps':
            generated_text = ''
            for new_text in self.streamer:
                generated_text += new_text
            printable_text = generated_text
            torch.mps.empty_cache()
        else:
            (generated_text, printable_text) = ('', '')
            for new_text in self.streamer:
                generated_text += new_text
                printable_text += new_text
                sentences = sent_tokenize(printable_text)
                if len(sentences) > 1:
                    yield (sentences[0], language_code)
                    printable_text = new_text
        self.chat.append({'role': 'assistant', 'content': generated_text})
        yield (printable_text, language_code)

# File: speech-to-speech-main/LLM/mlx_language_model.py
import logging
from LLM.chat import Chat
from baseHandler import BaseHandler
from mlx_lm import load, stream_generate, generate
from rich.console import Console
import torch
logger = logging.getLogger(__name__)
console = Console()
WHISPER_LANGUAGE_TO_LLM_LANGUAGE = {'en': 'english', 'fr': 'french', 'es': 'spanish', 'zh': 'chinese', 'ja': 'japanese', 'ko': 'korean'}

class MLXLanguageModelHandler(BaseHandler):

    def setup(self, model_name='microsoft/Phi-3-mini-4k-instruct', device='mps', torch_dtype='float16', gen_kwargs={}, user_role='user', chat_size=1, init_chat_role=None, init_chat_prompt='You are a helpful AI assistant.'):
        self.model_name = model_name
        (self.model, self.tokenizer) = load(self.model_name)
        self.gen_kwargs = gen_kwargs
        self.chat = Chat(chat_size)
        if init_chat_role:
            if not init_chat_prompt:
                raise ValueError('An initial promt needs to be specified when setting init_chat_role.')
            self.chat.init_chat({'role': init_chat_role, 'content': init_chat_prompt})
        self.user_role = user_role
        self.warmup()

    def warmup(self):
        logger.info(f'Warming up {self.__class__.__name__}')
        dummy_input_text = 'Write me a poem about Machine Learning.'
        dummy_chat = [{'role': self.user_role, 'content': dummy_input_text}]
        n_steps = 2
        for _ in range(n_steps):
            prompt = self.tokenizer.apply_chat_template(dummy_chat, tokenize=False)
            generate(self.model, self.tokenizer, prompt=prompt, max_tokens=self.gen_kwargs['max_new_tokens'], verbose=False)

    def process(self, prompt):
        logger.debug('infering language model...')
        language_code = None
        if isinstance(prompt, tuple):
            (prompt, language_code) = prompt
            prompt = f'Please reply to my message in {WHISPER_LANGUAGE_TO_LLM_LANGUAGE[language_code]}. ' + prompt
        self.chat.append({'role': self.user_role, 'content': prompt})
        if 'gemma' in self.model_name.lower():
            chat_messages = [msg for msg in self.chat.to_list() if msg['role'] != 'system']
        else:
            chat_messages = self.chat.to_list()
        prompt = self.tokenizer.apply_chat_template(chat_messages, tokenize=False, add_generation_prompt=True)
        output = ''
        curr_output = ''
        for t in stream_generate(self.model, self.tokenizer, prompt, max_tokens=self.gen_kwargs['max_new_tokens']):
            output += t
            curr_output += t
            if curr_output.endswith(('.', '?', '!', '<|end|>')):
                yield (curr_output.replace('<|end|>', ''), language_code)
                curr_output = ''
        generated_text = output.replace('<|end|>', '')
        torch.mps.empty_cache()
        self.chat.append({'role': 'assistant', 'content': generated_text})

# File: speech-to-speech-main/STT/lightning_whisper_mlx_handler.py
import logging
from time import perf_counter
from baseHandler import BaseHandler
from lightning_whisper_mlx import LightningWhisperMLX
import numpy as np
from rich.console import Console
from copy import copy
import torch
logger = logging.getLogger(__name__)
console = Console()
SUPPORTED_LANGUAGES = ['en', 'fr', 'es', 'zh', 'ja', 'ko']

class LightningWhisperSTTHandler(BaseHandler):

    def setup(self, model_name='distil-large-v3', device='mps', torch_dtype='float16', compile_mode=None, language=None, gen_kwargs={}):
        if len(model_name.split('/')) > 1:
            model_name = model_name.split('/')[-1]
        self.device = device
        self.model = LightningWhisperMLX(model=model_name, batch_size=6, quant=None)
        self.start_language = language
        self.last_language = language
        self.warmup()

    def warmup(self):
        logger.info(f'Warming up {self.__class__.__name__}')
        n_steps = 1
        dummy_input = np.array([0] * 512)
        for _ in range(n_steps):
            _ = self.model.transcribe(dummy_input)['text'].strip()

    def process(self, spoken_prompt):
        logger.debug('infering whisper...')
        global pipeline_start
        pipeline_start = perf_counter()
        if self.start_language != 'auto':
            transcription_dict = self.model.transcribe(spoken_prompt, language=self.start_language)
        else:
            transcription_dict = self.model.transcribe(spoken_prompt)
            language_code = transcription_dict['language']
            if language_code not in SUPPORTED_LANGUAGES:
                logger.warning(f'Whisper detected unsupported language: {language_code}')
                if self.last_language in SUPPORTED_LANGUAGES:
                    transcription_dict = self.model.transcribe(spoken_prompt, language=self.last_language)
                else:
                    transcription_dict = {'text': '', 'language': 'en'}
            else:
                self.last_language = language_code
        pred_text = transcription_dict['text'].strip()
        language_code = transcription_dict['language']
        torch.mps.empty_cache()
        logger.debug('finished whisper inference')
        console.print(f'[yellow]USER: {pred_text}')
        logger.debug(f'Language Code Whisper: {language_code}')
        yield (pred_text, language_code)

# File: speech-to-speech-main/STT/paraformer_handler.py
import logging
from time import perf_counter
from baseHandler import BaseHandler
from funasr import AutoModel
import numpy as np
from rich.console import Console
import torch
logging.basicConfig(format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
console = Console()

class ParaformerSTTHandler(BaseHandler):

    def setup(self, model_name='paraformer-zh', device='cuda', gen_kwargs={}):
        print(model_name)
        if len(model_name.split('/')) > 1:
            model_name = model_name.split('/')[-1]
        self.device = device
        self.model = AutoModel(model=model_name, device=device)
        self.warmup()

    def warmup(self):
        logger.info(f'Warming up {self.__class__.__name__}')
        n_steps = 1
        dummy_input = np.array([0] * 512, dtype=np.float32)
        for _ in range(n_steps):
            _ = self.model.generate(dummy_input)[0]['text'].strip().replace(' ', '')

    def process(self, spoken_prompt):
        logger.debug('infering paraformer...')
        global pipeline_start
        pipeline_start = perf_counter()
        pred_text = self.model.generate(spoken_prompt)[0]['text'].strip().replace(' ', '')
        torch.mps.empty_cache()
        logger.debug('finished paraformer inference')
        console.print(f'[yellow]USER: {pred_text}')
        yield pred_text

# File: speech-to-speech-main/STT/whisper_stt_handler.py
from time import perf_counter
from transformers import AutoProcessor, AutoModelForSpeechSeq2Seq
import torch
from copy import copy
from baseHandler import BaseHandler
from rich.console import Console
import logging
logger = logging.getLogger(__name__)
console = Console()
SUPPORTED_LANGUAGES = ['en', 'fr', 'es', 'zh', 'ja', 'ko']

class WhisperSTTHandler(BaseHandler):

    def setup(self, model_name='distil-whisper/distil-large-v3', device='cuda', torch_dtype='float16', compile_mode=None, language=None, gen_kwargs={}):
        self.device = device
        self.torch_dtype = getattr(torch, torch_dtype)
        self.compile_mode = compile_mode
        self.gen_kwargs = gen_kwargs
        if language == 'auto':
            language = None
        self.last_language = language
        if self.last_language is not None:
            self.gen_kwargs['language'] = self.last_language
        self.processor = AutoProcessor.from_pretrained(model_name)
        self.model = AutoModelForSpeechSeq2Seq.from_pretrained(model_name, torch_dtype=self.torch_dtype).to(device)
        if self.compile_mode:
            self.model.generation_config.cache_implementation = 'static'
            self.model.forward = torch.compile(self.model.forward, mode=self.compile_mode, fullgraph=True)
        self.warmup()

    def prepare_model_inputs(self, spoken_prompt):
        input_features = self.processor(spoken_prompt, sampling_rate=16000, return_tensors='pt').input_features
        input_features = input_features.to(self.device, dtype=self.torch_dtype)
        return input_features

    def warmup(self):
        logger.info(f'Warming up {self.__class__.__name__}')
        n_steps = 1 if self.compile_mode == 'default' else 2
        dummy_input = torch.randn((1, self.model.config.num_mel_bins, 3000), dtype=self.torch_dtype, device=self.device)
        if self.compile_mode not in (None, 'default'):
            warmup_gen_kwargs = {'min_new_tokens': self.gen_kwargs['max_new_tokens'], 'max_new_tokens': self.gen_kwargs['max_new_tokens'], **self.gen_kwargs}
        else:
            warmup_gen_kwargs = self.gen_kwargs
        if self.device == 'cuda':
            start_event = torch.cuda.Event(enable_timing=True)
            end_event = torch.cuda.Event(enable_timing=True)
            torch.cuda.synchronize()
            start_event.record()
        for _ in range(n_steps):
            _ = self.model.generate(dummy_input, **warmup_gen_kwargs)
        if self.device == 'cuda':
            end_event.record()
            torch.cuda.synchronize()
            logger.info(f'{self.__class__.__name__}:  warmed up! time: {start_event.elapsed_time(end_event) * 0.001:.3f} s')

    def process(self, spoken_prompt):
        logger.debug('infering whisper...')
        global pipeline_start
        pipeline_start = perf_counter()
        input_features = self.prepare_model_inputs(spoken_prompt)
        pred_ids = self.model.generate(input_features, **self.gen_kwargs)
        language_code = self.processor.tokenizer.decode(pred_ids[0, 1])[2:-2]
        if language_code not in SUPPORTED_LANGUAGES:
            logger.warning('Whisper detected unsupported language:', language_code)
            gen_kwargs = copy(self.gen_kwargs)
            gen_kwargs['language'] = self.last_language
            language_code = self.last_language
            pred_ids = self.model.generate(input_features, **gen_kwargs)
        else:
            self.last_language = language_code
        pred_text = self.processor.batch_decode(pred_ids, skip_special_tokens=True, decode_with_timestamps=False)[0]
        language_code = self.processor.tokenizer.decode(pred_ids[0, 1])[2:-2]
        logger.debug('finished whisper inference')
        console.print(f'[yellow]USER: {pred_text}')
        logger.debug(f'Language Code Whisper: {language_code}')
        yield (pred_text, language_code)

# File: speech-to-speech-main/TTS/chatTTS_handler.py
import ChatTTS
import logging
from baseHandler import BaseHandler
import librosa
import numpy as np
from rich.console import Console
import torch
logging.basicConfig(format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
console = Console()

class ChatTTSHandler(BaseHandler):

    def setup(self, should_listen, device='cuda', gen_kwargs={}, stream=True, chunk_size=512):
        self.should_listen = should_listen
        self.device = device
        self.model = ChatTTS.Chat()
        self.model.load(compile=False)
        self.chunk_size = chunk_size
        self.stream = stream
        rnd_spk_emb = self.model.sample_random_speaker()
        self.params_infer_code = ChatTTS.Chat.InferCodeParams(spk_emb=rnd_spk_emb)
        self.warmup()

    def warmup(self):
        logger.info(f'Warming up {self.__class__.__name__}')
        _ = self.model.infer('text')

    def process(self, llm_sentence):
        console.print(f'[green]ASSISTANT: {llm_sentence}')
        if self.device == 'mps':
            import time
            start = time.time()
            torch.mps.synchronize()
            torch.mps.empty_cache()
            _ = time.time() - start
        wavs_gen = self.model.infer(llm_sentence, params_infer_code=self.params_infer_code, stream=self.stream)
        if self.stream:
            wavs = [np.array([])]
            for gen in wavs_gen:
                if gen[0] is None or len(gen[0]) == 0:
                    self.should_listen.set()
                    return
                audio_chunk = librosa.resample(gen[0], orig_sr=24000, target_sr=16000)
                audio_chunk = (audio_chunk * 32768).astype(np.int16)[0]
                while len(audio_chunk) > self.chunk_size:
                    yield audio_chunk[:self.chunk_size]
                    audio_chunk = audio_chunk[self.chunk_size:]
                yield np.pad(audio_chunk, (0, self.chunk_size - len(audio_chunk)))
        else:
            wavs = wavs_gen
            if len(wavs[0]) == 0:
                self.should_listen.set()
                return
            audio_chunk = librosa.resample(wavs[0], orig_sr=24000, target_sr=16000)
            audio_chunk = (audio_chunk * 32768).astype(np.int16)
            for i in range(0, len(audio_chunk), self.chunk_size):
                yield np.pad(audio_chunk[i:i + self.chunk_size], (0, self.chunk_size - len(audio_chunk[i:i + self.chunk_size])))
        self.should_listen.set()

# File: speech-to-speech-main/TTS/melo_handler.py
from melo.api import TTS
import logging
from baseHandler import BaseHandler
import librosa
import numpy as np
from rich.console import Console
import torch
logger = logging.getLogger(__name__)
console = Console()
WHISPER_LANGUAGE_TO_MELO_LANGUAGE = {'en': 'EN_NEWEST', 'fr': 'FR', 'es': 'ES', 'zh': 'ZH', 'ja': 'JP', 'ko': 'KR'}
WHISPER_LANGUAGE_TO_MELO_SPEAKER = {'en': 'EN-Newest', 'fr': 'FR', 'es': 'ES', 'zh': 'ZH', 'ja': 'JP', 'ko': 'KR'}

class MeloTTSHandler(BaseHandler):

    def setup(self, should_listen, device='mps', language='en', speaker_to_id='en', gen_kwargs={}, blocksize=512):
        self.should_listen = should_listen
        self.device = device
        self.language = language
        self.model = TTS(language=WHISPER_LANGUAGE_TO_MELO_LANGUAGE[self.language], device=device)
        self.speaker_id = self.model.hps.data.spk2id[WHISPER_LANGUAGE_TO_MELO_SPEAKER[speaker_to_id]]
        self.blocksize = blocksize
        self.warmup()

    def warmup(self):
        logger.info(f'Warming up {self.__class__.__name__}')
        _ = self.model.tts_to_file('text', self.speaker_id, quiet=True)

    def process(self, llm_sentence):
        language_code = None
        if isinstance(llm_sentence, tuple):
            (llm_sentence, language_code) = llm_sentence
        console.print(f'[green]ASSISTANT: {llm_sentence}')
        if language_code is not None and self.language != language_code:
            try:
                self.model = TTS(language=WHISPER_LANGUAGE_TO_MELO_LANGUAGE[language_code], device=self.device)
                self.speaker_id = self.model.hps.data.spk2id[WHISPER_LANGUAGE_TO_MELO_SPEAKER[language_code]]
                self.language = language_code
            except KeyError:
                console.print(f'[red]Language {language_code} not supported by Melo. Using {self.language} instead.')
        if self.device == 'mps':
            import time
            start = time.time()
            torch.mps.synchronize()
            torch.mps.empty_cache()
            _ = time.time() - start
        try:
            audio_chunk = self.model.tts_to_file(llm_sentence, self.speaker_id, quiet=True)
        except (AssertionError, RuntimeError) as e:
            logger.error(f'Error in MeloTTSHandler: {e}')
            audio_chunk = np.array([])
        if len(audio_chunk) == 0:
            self.should_listen.set()
            return
        audio_chunk = librosa.resample(audio_chunk, orig_sr=44100, target_sr=16000)
        audio_chunk = (audio_chunk * 32768).astype(np.int16)
        for i in range(0, len(audio_chunk), self.blocksize):
            yield np.pad(audio_chunk[i:i + self.blocksize], (0, self.blocksize - len(audio_chunk[i:i + self.blocksize])))
        self.should_listen.set()

# File: speech-to-speech-main/TTS/parler_handler.py
from threading import Thread
from time import perf_counter
from baseHandler import BaseHandler
import numpy as np
import torch
from transformers import AutoTokenizer
from parler_tts import ParlerTTSForConditionalGeneration, ParlerTTSStreamer
import librosa
import logging
from rich.console import Console
from utils.utils import next_power_of_2
from transformers.utils.import_utils import is_flash_attn_2_available
torch._inductor.config.fx_graph_cache = True
torch._dynamo.config.cache_size_limit = 15
logger = logging.getLogger(__name__)
console = Console()
if not is_flash_attn_2_available() and torch.cuda.is_available():
    logger.warn('Parler TTS works best with flash attention 2, but is not installed\n        Given that CUDA is available in this system, you can install flash attention 2 with `uv pip install flash-attn --no-build-isolation`')

class ParlerTTSHandler(BaseHandler):

    def setup(self, should_listen, model_name='ylacombe/parler-tts-mini-jenny-30H', device='cuda', torch_dtype='float16', compile_mode=None, gen_kwargs={}, max_prompt_pad_length=8, description='A female speaker with a slightly low-pitched voice delivers her words quite expressively, in a very confined sounding environment with clear audio quality. She speaks very fast.', play_steps_s=1, blocksize=512):
        self.should_listen = should_listen
        self.device = device
        self.torch_dtype = getattr(torch, torch_dtype)
        self.gen_kwargs = gen_kwargs
        self.compile_mode = compile_mode
        self.max_prompt_pad_length = max_prompt_pad_length
        self.description = description
        self.description_tokenizer = AutoTokenizer.from_pretrained(model_name)
        self.prompt_tokenizer = AutoTokenizer.from_pretrained(model_name)
        self.model = ParlerTTSForConditionalGeneration.from_pretrained(model_name, torch_dtype=self.torch_dtype).to(device)
        framerate = self.model.audio_encoder.config.frame_rate
        self.play_steps = int(framerate * play_steps_s)
        self.blocksize = blocksize
        if self.compile_mode not in (None, 'default'):
            logger.warning("Torch compilation modes that captures CUDA graphs are not yet compatible with the STT part. Reverting to 'default'")
            self.compile_mode = 'default'
        if self.compile_mode:
            self.model.generation_config.cache_implementation = 'static'
            self.model.forward = torch.compile(self.model.forward, mode=self.compile_mode, fullgraph=True)
        self.warmup()

    def prepare_model_inputs(self, prompt, max_length_prompt=50, pad=False):
        pad_args_prompt = {'padding': 'max_length', 'max_length': max_length_prompt} if pad else {}
        tokenized_description = self.description_tokenizer(self.description, return_tensors='pt')
        input_ids = tokenized_description.input_ids.to(self.device)
        attention_mask = tokenized_description.attention_mask.to(self.device)
        tokenized_prompt = self.prompt_tokenizer(prompt, return_tensors='pt', **pad_args_prompt)
        prompt_input_ids = tokenized_prompt.input_ids.to(self.device)
        prompt_attention_mask = tokenized_prompt.attention_mask.to(self.device)
        gen_kwargs = {'input_ids': input_ids, 'attention_mask': attention_mask, 'prompt_input_ids': prompt_input_ids, 'prompt_attention_mask': prompt_attention_mask, **self.gen_kwargs}
        return gen_kwargs

    def warmup(self):
        logger.info(f'Warming up {self.__class__.__name__}')
        if self.device == 'cuda':
            start_event = torch.cuda.Event(enable_timing=True)
            end_event = torch.cuda.Event(enable_timing=True)
        n_steps = 1 if self.compile_mode == 'default' else 2
        if self.device == 'cuda':
            torch.cuda.synchronize()
            start_event.record()
        if self.compile_mode:
            pad_lengths = [2 ** i for i in range(2, self.max_prompt_pad_length)]
            for pad_length in pad_lengths[::-1]:
                model_kwargs = self.prepare_model_inputs('dummy prompt', max_length_prompt=pad_length, pad=True)
                for _ in range(n_steps):
                    _ = self.model.generate(**model_kwargs)
                logger.info(f'Warmed up length {pad_length} tokens!')
        else:
            model_kwargs = self.prepare_model_inputs('dummy prompt')
            for _ in range(n_steps):
                _ = self.model.generate(**model_kwargs)
        if self.device == 'cuda':
            end_event.record()
            torch.cuda.synchronize()
            logger.info(f'{self.__class__.__name__}:  warmed up! time: {start_event.elapsed_time(end_event) * 0.001:.3f} s')

    def process(self, llm_sentence):
        if isinstance(llm_sentence, tuple):
            (llm_sentence, _) = llm_sentence
        console.print(f'[green]ASSISTANT: {llm_sentence}')
        nb_tokens = len(self.prompt_tokenizer(llm_sentence).input_ids)
        pad_args = {}
        if self.compile_mode:
            pad_length = next_power_of_2(nb_tokens)
            logger.debug(f'padding to {pad_length}')
            pad_args['pad'] = True
            pad_args['max_length_prompt'] = pad_length
        tts_gen_kwargs = self.prepare_model_inputs(llm_sentence, **pad_args)
        streamer = ParlerTTSStreamer(self.model, device=self.device, play_steps=self.play_steps)
        tts_gen_kwargs = {'streamer': streamer, **tts_gen_kwargs}
        torch.manual_seed(0)
        thread = Thread(target=self.model.generate, kwargs=tts_gen_kwargs)
        thread.start()
        for (i, audio_chunk) in enumerate(streamer):
            global pipeline_start
            if i == 0 and 'pipeline_start' in globals():
                logger.info(f'Time to first audio: {perf_counter() - pipeline_start:.3f}')
            audio_chunk = librosa.resample(audio_chunk, orig_sr=44100, target_sr=16000)
            audio_chunk = (audio_chunk * 32768).astype(np.int16)
            for i in range(0, len(audio_chunk), self.blocksize):
                yield np.pad(audio_chunk[i:i + self.blocksize], (0, self.blocksize - len(audio_chunk[i:i + self.blocksize])))
        self.should_listen.set()

# File: speech-to-speech-main/VAD/vad_handler.py
import torchaudio
from VAD.vad_iterator import VADIterator
from baseHandler import BaseHandler
import numpy as np
import torch
from rich.console import Console
from utils.utils import int2float
from df.enhance import enhance, init_df
import logging
logger = logging.getLogger(__name__)
console = Console()

class VADHandler(BaseHandler):

    def setup(self, should_listen, thresh=0.3, sample_rate=16000, min_silence_ms=1000, min_speech_ms=500, max_speech_ms=float('inf'), speech_pad_ms=30, audio_enhancement=False):
        self.should_listen = should_listen
        self.sample_rate = sample_rate
        self.min_silence_ms = min_silence_ms
        self.min_speech_ms = min_speech_ms
        self.max_speech_ms = max_speech_ms
        (self.model, _) = torch.hub.load('snakers4/silero-vad', 'silero_vad')
        self.iterator = VADIterator(self.model, threshold=thresh, sampling_rate=sample_rate, min_silence_duration_ms=min_silence_ms, speech_pad_ms=speech_pad_ms)
        self.audio_enhancement = audio_enhancement
        if audio_enhancement:
            (self.enhanced_model, self.df_state, _) = init_df()

    def process(self, audio_chunk):
        audio_int16 = np.frombuffer(audio_chunk, dtype=np.int16)
        audio_float32 = int2float(audio_int16)
        vad_output = self.iterator(torch.from_numpy(audio_float32))
        if vad_output is not None and len(vad_output) != 0:
            logger.debug('VAD: end of speech detected')
            array = torch.cat(vad_output).cpu().numpy()
            duration_ms = len(array) / self.sample_rate * 1000
            if duration_ms < self.min_speech_ms or duration_ms > self.max_speech_ms:
                logger.debug(f'audio input of duration: {len(array) / self.sample_rate}s, skipping')
            else:
                self.should_listen.clear()
                logger.debug('Stop listening')
                if self.audio_enhancement:
                    if self.sample_rate != self.df_state.sr():
                        audio_float32 = torchaudio.functional.resample(torch.from_numpy(array), orig_freq=self.sample_rate, new_freq=self.df_state.sr())
                        enhanced = enhance(self.enhanced_model, self.df_state, audio_float32.unsqueeze(0))
                        enhanced = torchaudio.functional.resample(enhanced, orig_freq=self.df_state.sr(), new_freq=self.sample_rate)
                    else:
                        enhanced = enhance(self.enhanced_model, self.df_state, audio_float32)
                    array = enhanced.numpy().squeeze()
                yield array

    @property
    def min_time_to_debug(self):
        return 1e-05

# File: speech-to-speech-main/VAD/vad_iterator.py
import torch

class VADIterator:

    def __init__(self, model, threshold: float=0.5, sampling_rate: int=16000, min_silence_duration_ms: int=100, speech_pad_ms: int=30):
        self.model = model
        self.threshold = threshold
        self.sampling_rate = sampling_rate
        self.is_speaking = False
        self.buffer = []
        if sampling_rate not in [8000, 16000]:
            raise ValueError('VADIterator does not support sampling rates other than [8000, 16000]')
        self.min_silence_samples = sampling_rate * min_silence_duration_ms / 1000
        self.speech_pad_samples = sampling_rate * speech_pad_ms / 1000
        self.reset_states()

    def reset_states(self):
        self.model.reset_states()
        self.triggered = False
        self.temp_end = 0
        self.current_sample = 0

    @torch.no_grad()
    def __call__(self, x):
        if not torch.is_tensor(x):
            try:
                x = torch.Tensor(x)
            except Exception:
                raise TypeError('Audio cannot be casted to tensor. Cast it manually')
        window_size_samples = len(x[0]) if x.dim() == 2 else len(x)
        self.current_sample += window_size_samples
        speech_prob = self.model(x, self.sampling_rate).item()
        if speech_prob >= self.threshold and self.temp_end:
            self.temp_end = 0
        if speech_prob >= self.threshold and (not self.triggered):
            self.triggered = True
            return None
        if speech_prob < self.threshold - 0.15 and self.triggered:
            if not self.temp_end:
                self.temp_end = self.current_sample
            if self.current_sample - self.temp_end < self.min_silence_samples:
                return None
            else:
                self.temp_end = 0
                self.triggered = False
                spoken_utterance = self.buffer
                self.buffer = []
                return spoken_utterance
        if self.triggered:
            self.buffer.append(x)
        return None

# File: speech-to-speech-main/arguments_classes/chat_tts_arguments.py
from dataclasses import dataclass, field

@dataclass
class ChatTTSHandlerArguments:
    chat_tts_stream: bool = field(default=True, metadata={'help': "The tts mode is stream Default is 'stream'."})
    chat_tts_device: str = field(default='cuda', metadata={'help': "The device to be used for speech synthesis. Default is 'cuda'."})
    chat_tts_chunk_size: int = field(default=512, metadata={'help': 'Sets the size of the audio data chunk processed per cycle, balancing playback latency and CPU load.. Default is 512。.'})

# File: speech-to-speech-main/arguments_classes/language_model_arguments.py
from dataclasses import dataclass, field

@dataclass
class LanguageModelHandlerArguments:
    lm_model_name: str = field(default='HuggingFaceTB/SmolLM-360M-Instruct', metadata={'help': "The pretrained language model to use. Default is 'microsoft/Phi-3-mini-4k-instruct'."})
    lm_device: str = field(default='cuda', metadata={'help': "The device type on which the model will run. Default is 'cuda' for GPU acceleration."})
    lm_torch_dtype: str = field(default='float16', metadata={'help': 'The PyTorch data type for the model and input tensors. One of `float32` (full-precision), `float16` or `bfloat16` (both half-precision).'})
    user_role: str = field(default='user', metadata={'help': "Role assigned to the user in the chat context. Default is 'user'."})
    init_chat_role: str = field(default='system', metadata={'help': "Initial role for setting up the chat context. Default is 'system'."})
    init_chat_prompt: str = field(default='You are a helpful and friendly AI assistant. You are polite, respectful, and aim to provide concise responses of less than 20 words.', metadata={'help': "The initial chat prompt to establish context for the language model. Default is 'You are a helpful AI assistant.'"})
    lm_gen_max_new_tokens: int = field(default=128, metadata={'help': 'Maximum number of new tokens to generate in a single completion. Default is 128.'})
    lm_gen_min_new_tokens: int = field(default=0, metadata={'help': 'Minimum number of new tokens to generate in a single completion. Default is 0.'})
    lm_gen_temperature: float = field(default=0.0, metadata={'help': 'Controls the randomness of the output. Set to 0.0 for deterministic (repeatable) outputs. Default is 0.0.'})
    lm_gen_do_sample: bool = field(default=False, metadata={'help': 'Whether to use sampling; set this to False for deterministic outputs. Default is False.'})
    chat_size: int = field(default=2, metadata={'help': 'Number of interactions assitant-user to keep for the chat. None for no limitations.'})

# File: speech-to-speech-main/arguments_classes/melo_tts_arguments.py
from dataclasses import dataclass, field

@dataclass
class MeloTTSHandlerArguments:
    melo_language: str = field(default='en', metadata={'help': "The language of the text to be synthesized. Default is 'EN_NEWEST'."})
    melo_device: str = field(default='auto', metadata={'help': "The device to be used for speech synthesis. Default is 'auto'."})
    melo_speaker_to_id: str = field(default='en', metadata={'help': "Mapping of speaker names to speaker IDs. Default is ['EN-Newest']."})

# File: speech-to-speech-main/arguments_classes/mlx_language_model_arguments.py
from dataclasses import dataclass, field

@dataclass
class MLXLanguageModelHandlerArguments:
    mlx_lm_model_name: str = field(default='mlx-community/SmolLM-360M-Instruct', metadata={'help': "The pretrained language model to use. Default is 'microsoft/Phi-3-mini-4k-instruct'."})
    mlx_lm_device: str = field(default='mps', metadata={'help': "The device type on which the model will run. Default is 'cuda' for GPU acceleration."})
    mlx_lm_torch_dtype: str = field(default='float16', metadata={'help': 'The PyTorch data type for the model and input tensors. One of `float32` (full-precision), `float16` or `bfloat16` (both half-precision).'})
    mlx_lm_user_role: str = field(default='user', metadata={'help': "Role assigned to the user in the chat context. Default is 'user'."})
    mlx_lm_init_chat_role: str = field(default='system', metadata={'help': "Initial role for setting up the chat context. Default is 'system'."})
    mlx_lm_init_chat_prompt: str = field(default='You are a helpful and friendly AI assistant. You are polite, respectful, and aim to provide concise responses of less than 20 words.', metadata={'help': "The initial chat prompt to establish context for the language model. Default is 'You are a helpful AI assistant.'"})
    mlx_lm_gen_max_new_tokens: int = field(default=128, metadata={'help': 'Maximum number of new tokens to generate in a single completion. Default is 128.'})
    mlx_lm_gen_temperature: float = field(default=0.0, metadata={'help': 'Controls the randomness of the output. Set to 0.0 for deterministic (repeatable) outputs. Default is 0.0.'})
    mlx_lm_gen_do_sample: bool = field(default=False, metadata={'help': 'Whether to use sampling; set this to False for deterministic outputs. Default is False.'})
    mlx_lm_chat_size: int = field(default=2, metadata={'help': 'Number of interactions assitant-user to keep for the chat. None for no limitations.'})

# File: speech-to-speech-main/arguments_classes/module_arguments.py
from dataclasses import dataclass, field
from typing import Optional

@dataclass
class ModuleArguments:
    device: Optional[str] = field(default=None, metadata={'help': 'If specified, overrides the device for all handlers.'})
    mode: Optional[str] = field(default='socket', metadata={'help': "The mode to run the pipeline in. Either 'local' or 'socket'. Default is 'socket'."})
    local_mac_optimal_settings: bool = field(default=False, metadata={'help': 'If specified, sets the optimal settings for Mac OS. Hence whisper-mlx, MLX LM and MeloTTS will be used.'})
    stt: Optional[str] = field(default='whisper', metadata={'help': "The STT to use. Either 'whisper', 'whisper-mlx', and 'paraformer'. Default is 'whisper'."})
    llm: Optional[str] = field(default='transformers', metadata={'help': "The LLM to use. Either 'transformers' or 'mlx-lm'. Default is 'transformers'"})
    tts: Optional[str] = field(default='parler', metadata={'help': "The TTS to use. Either 'parler', 'melo', or 'chatTTS'. Default is 'parler'"})
    log_level: str = field(default='info', metadata={'help': 'Provide logging level. Example --log_level debug, default=warning.'})

# File: speech-to-speech-main/arguments_classes/paraformer_stt_arguments.py
from dataclasses import dataclass, field

@dataclass
class ParaformerSTTHandlerArguments:
    paraformer_stt_model_name: str = field(default='paraformer-zh', metadata={'help': "The pretrained model to use. Default is 'paraformer-zh'. Can be choose from https://github.com/modelscope/FunASR"})
    paraformer_stt_device: str = field(default='cuda', metadata={'help': "The device type on which the model will run. Default is 'cuda' for GPU acceleration."})

# File: speech-to-speech-main/arguments_classes/parler_tts_arguments.py
from dataclasses import dataclass, field

@dataclass
class ParlerTTSHandlerArguments:
    tts_model_name: str = field(default='ylacombe/parler-tts-mini-jenny-30H', metadata={'help': "The pretrained TTS model to use. Default is 'ylacombe/parler-tts-mini-jenny-30H'."})
    tts_device: str = field(default='cuda', metadata={'help': "The device type on which the model will run. Default is 'cuda' for GPU acceleration."})
    tts_torch_dtype: str = field(default='float16', metadata={'help': 'The PyTorch data type for the model and input tensors. One of `float32` (full-precision), `float16` or `bfloat16` (both half-precision).'})
    tts_compile_mode: str = field(default=None, metadata={'help': "Compile mode for torch compile. Either 'default', 'reduce-overhead' and 'max-autotune'. Default is None (no compilation)"})
    tts_gen_min_new_tokens: int = field(default=64, metadata={'help': 'Maximum number of new tokens to generate in a single completion. Default is 10, which corresponds to ~0.1 secs'})
    tts_gen_max_new_tokens: int = field(default=512, metadata={'help': 'Maximum number of new tokens to generate in a single completion. Default is 256, which corresponds to ~6 secs'})
    description: str = field(default='A female speaker with a slightly low-pitched voice delivers her words quite expressively, in a very confined sounding environment with clear audio quality. She speaks very fast.', metadata={'help': "Description of the speaker's voice and speaking style to guide the TTS model."})
    play_steps_s: float = field(default=1.0, metadata={'help': 'The time interval in seconds for playing back the generated speech in steps. Default is 0.5 seconds.'})
    max_prompt_pad_length: int = field(default=8, metadata={'help': 'When using compilation, the prompt as to be padded to closest power of 2. This parameters sets the maximun power of 2 possible.'})

# File: speech-to-speech-main/arguments_classes/socket_receiver_arguments.py
from dataclasses import dataclass, field

@dataclass
class SocketReceiverArguments:
    recv_host: str = field(default='localhost', metadata={'help': "The host IP ddress for the socket connection. Default is '0.0.0.0' which binds to all available interfaces on the host machine."})
    recv_port: int = field(default=12345, metadata={'help': 'The port number on which the socket server listens. Default is 12346.'})
    chunk_size: int = field(default=1024, metadata={'help': 'The size of each data chunk to be sent or received over the socket. Default is 1024 bytes.'})

# File: speech-to-speech-main/arguments_classes/socket_sender_arguments.py
from dataclasses import dataclass, field

@dataclass
class SocketSenderArguments:
    send_host: str = field(default='localhost', metadata={'help': "The host IP address for the socket connection. Default is '0.0.0.0' which binds to all available interfaces on the host machine."})
    send_port: int = field(default=12346, metadata={'help': 'The port number on which the socket server listens. Default is 12346.'})

# File: speech-to-speech-main/arguments_classes/vad_arguments.py
from dataclasses import dataclass, field

@dataclass
class VADHandlerArguments:
    thresh: float = field(default=0.3, metadata={'help': 'The threshold value for voice activity detection (VAD). Values typically range from 0 to 1, with higher values requiring higher confidence in speech detection.'})
    sample_rate: int = field(default=16000, metadata={'help': 'The sample rate of the audio in Hertz. Default is 16000 Hz, which is a common setting for voice audio.'})
    min_silence_ms: int = field(default=250, metadata={'help': 'Minimum length of silence intervals to be used for segmenting speech. Measured in milliseconds. Default is 250 ms.'})
    min_speech_ms: int = field(default=500, metadata={'help': 'Minimum length of speech segments to be considered valid speech. Measured in milliseconds. Default is 500 ms.'})
    max_speech_ms: float = field(default=float('inf'), metadata={'help': 'Maximum length of continuous speech before forcing a split. Default is infinite, allowing for uninterrupted speech segments.'})
    speech_pad_ms: int = field(default=500, metadata={'help': 'Amount of padding added to the beginning and end of detected speech segments. Measured in milliseconds. Default is 250 ms.'})
    audio_enhancement: bool = field(default=False, metadata={'help': 'improves sound quality by applying techniques like noise reduction, equalization, and echo cancellation. Default is False.'})

# File: speech-to-speech-main/arguments_classes/whisper_stt_arguments.py
from dataclasses import dataclass, field
from typing import Optional

@dataclass
class WhisperSTTHandlerArguments:
    stt_model_name: str = field(default='distil-whisper/distil-large-v3', metadata={'help': "The pretrained Whisper model to use. Default is 'distil-whisper/distil-large-v3'."})
    stt_device: str = field(default='cuda', metadata={'help': "The device type on which the model will run. Default is 'cuda' for GPU acceleration."})
    stt_torch_dtype: str = field(default='float16', metadata={'help': 'The PyTorch data type for the model and input tensors. One of `float32` (full-precision), `float16` or `bfloat16` (both half-precision).'})
    stt_compile_mode: str = field(default=None, metadata={'help': "Compile mode for torch compile. Either 'default', 'reduce-overhead' and 'max-autotune'. Default is None (no compilation)"})
    stt_gen_max_new_tokens: int = field(default=128, metadata={'help': 'The maximum number of new tokens to generate. Default is 128.'})
    stt_gen_num_beams: int = field(default=1, metadata={'help': 'The number of beams for beam search. Default is 1, implying greedy decoding.'})
    stt_gen_return_timestamps: bool = field(default=False, metadata={'help': 'Whether to return timestamps with transcriptions. Default is False.'})
    stt_gen_task: str = field(default='transcribe', metadata={'help': "The task to perform, typically 'transcribe' for transcription. Default is 'transcribe'."})
    language: Optional[str] = field(default='en', metadata={'help': "The language for the conversation. \n            Choose between 'en' (english), 'fr' (french), 'es' (spanish), \n            'zh' (chinese), 'ko' (korean), 'ja' (japanese), or 'None'.\n            If using 'auto', the language is automatically detected and can\n            change during the conversation. Default is 'en'."})

# File: speech-to-speech-main/baseHandler.py
from time import perf_counter
import logging
logger = logging.getLogger(__name__)

class BaseHandler:

    def __init__(self, stop_event, queue_in, queue_out, setup_args=(), setup_kwargs={}):
        self.stop_event = stop_event
        self.queue_in = queue_in
        self.queue_out = queue_out
        self.setup(*setup_args, **setup_kwargs)
        self._times = []

    def setup(self):
        pass

    def process(self):
        raise NotImplementedError

    def run(self):
        while not self.stop_event.is_set():
            input = self.queue_in.get()
            if isinstance(input, bytes) and input == b'END':
                logger.debug('Stopping thread')
                break
            start_time = perf_counter()
            for output in self.process(input):
                self._times.append(perf_counter() - start_time)
                if self.last_time > self.min_time_to_debug:
                    logger.debug(f'{self.__class__.__name__}: {self.last_time: .3f} s')
                self.queue_out.put(output)
                start_time = perf_counter()
        self.cleanup()
        self.queue_out.put(b'END')

    @property
    def last_time(self):
        return self._times[-1]

    @property
    def min_time_to_debug(self):
        return 0.001

    def cleanup(self):
        pass

# File: speech-to-speech-main/connections/local_audio_streamer.py
import threading
import sounddevice as sd
import numpy as np
import time
import logging
logger = logging.getLogger(__name__)

class LocalAudioStreamer:

    def __init__(self, input_queue, output_queue, list_play_chunk_size=512):
        self.list_play_chunk_size = list_play_chunk_size
        self.stop_event = threading.Event()
        self.input_queue = input_queue
        self.output_queue = output_queue

    def run(self):

        def callback(indata, outdata, frames, time, status):
            if self.output_queue.empty():
                self.input_queue.put(indata.copy())
                outdata[:] = 0 * outdata
            else:
                outdata[:] = self.output_queue.get()[:, np.newaxis]
        logger.debug('Available devices:')
        logger.debug(sd.query_devices())
        with sd.Stream(samplerate=16000, dtype='int16', channels=1, callback=callback, blocksize=self.list_play_chunk_size):
            logger.info('Starting local audio stream')
            while not self.stop_event.is_set():
                time.sleep(0.001)
            print('Stopping recording')

# File: speech-to-speech-main/connections/socket_receiver.py
import socket
from rich.console import Console
import logging
logger = logging.getLogger(__name__)
console = Console()

class SocketReceiver:

    def __init__(self, stop_event, queue_out, should_listen, host='0.0.0.0', port=12345, chunk_size=1024):
        self.stop_event = stop_event
        self.queue_out = queue_out
        self.should_listen = should_listen
        self.chunk_size = chunk_size
        self.host = host
        self.port = port

    def receive_full_chunk(self, conn, chunk_size):
        data = b''
        while len(data) < chunk_size:
            packet = conn.recv(chunk_size - len(data))
            if not packet:
                return None
            data += packet
        return data

    def run(self):
        self.socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
        self.socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
        self.socket.bind((self.host, self.port))
        self.socket.listen(1)
        logger.info('Receiver waiting to be connected...')
        (self.conn, _) = self.socket.accept()
        logger.info('receiver connected')
        self.should_listen.set()
        while not self.stop_event.is_set():
            audio_chunk = self.receive_full_chunk(self.conn, self.chunk_size)
            if audio_chunk is None:
                self.queue_out.put(b'END')
                break
            if self.should_listen.is_set():
                self.queue_out.put(audio_chunk)
        self.conn.close()
        logger.info('Receiver closed')

# File: speech-to-speech-main/connections/socket_sender.py
import socket
from rich.console import Console
import logging
logger = logging.getLogger(__name__)
console = Console()

class SocketSender:

    def __init__(self, stop_event, queue_in, host='0.0.0.0', port=12346):
        self.stop_event = stop_event
        self.queue_in = queue_in
        self.host = host
        self.port = port

    def run(self):
        self.socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
        self.socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
        self.socket.bind((self.host, self.port))
        self.socket.listen(1)
        logger.info('Sender waiting to be connected...')
        (self.conn, _) = self.socket.accept()
        logger.info('sender connected')
        while not self.stop_event.is_set():
            audio_chunk = self.queue_in.get()
            self.conn.sendall(audio_chunk)
            if isinstance(audio_chunk, bytes) and audio_chunk == b'END':
                break
        self.conn.close()
        logger.info('Sender closed')

# File: speech-to-speech-main/listen_and_play.py
import socket
import threading
from queue import Queue
from dataclasses import dataclass, field
import sounddevice as sd
from transformers import HfArgumentParser

@dataclass
class ListenAndPlayArguments:
    send_rate: int = field(default=16000, metadata={'help': 'In Hz. Default is 16000.'})
    recv_rate: int = field(default=16000, metadata={'help': 'In Hz. Default is 16000.'})
    list_play_chunk_size: int = field(default=1024, metadata={'help': 'The size of data chunks (in bytes). Default is 1024.'})
    host: str = field(default='localhost', metadata={'help': "The hostname or IP address for listening and playing. Default is 'localhost'."})
    send_port: int = field(default=12345, metadata={'help': 'The network port for sending data. Default is 12345.'})
    recv_port: int = field(default=12346, metadata={'help': 'The network port for receiving data. Default is 12346.'})

def listen_and_play(send_rate=16000, recv_rate=44100, list_play_chunk_size=1024, host='localhost', send_port=12345, recv_port=12346):
    send_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
    send_socket.connect((host, send_port))
    recv_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
    recv_socket.connect((host, recv_port))
    print('Recording and streaming...')
    stop_event = threading.Event()
    recv_queue = Queue()
    send_queue = Queue()

    def callback_recv(outdata, frames, time, status):
        if not recv_queue.empty():
            data = recv_queue.get()
            outdata[:len(data)] = data
            outdata[len(data):] = b'\x00' * (len(outdata) - len(data))
        else:
            outdata[:] = b'\x00' * len(outdata)

    def callback_send(indata, frames, time, status):
        if recv_queue.empty():
            data = bytes(indata)
            send_queue.put(data)

    def send(stop_event, send_queue):
        while not stop_event.is_set():
            data = send_queue.get()
            send_socket.sendall(data)

    def recv(stop_event, recv_queue):

        def receive_full_chunk(conn, chunk_size):
            data = b''
            while len(data) < chunk_size:
                packet = conn.recv(chunk_size - len(data))
                if not packet:
                    return None
                data += packet
            return data
        while not stop_event.is_set():
            data = receive_full_chunk(recv_socket, list_play_chunk_size * 2)
            if data:
                recv_queue.put(data)
    try:
        send_stream = sd.RawInputStream(samplerate=send_rate, channels=1, dtype='int16', blocksize=list_play_chunk_size, callback=callback_send)
        recv_stream = sd.RawOutputStream(samplerate=recv_rate, channels=1, dtype='int16', blocksize=list_play_chunk_size, callback=callback_recv)
        threading.Thread(target=send_stream.start).start()
        threading.Thread(target=recv_stream.start).start()
        send_thread = threading.Thread(target=send, args=(stop_event, send_queue))
        send_thread.start()
        recv_thread = threading.Thread(target=recv, args=(stop_event, recv_queue))
        recv_thread.start()
        input('Press Enter to stop...')
    except KeyboardInterrupt:
        print('Finished streaming.')
    finally:
        stop_event.set()
        recv_thread.join()
        send_thread.join()
        send_socket.close()
        recv_socket.close()
        print('Connection closed.')
if __name__ == '__main__':
    parser = HfArgumentParser((ListenAndPlayArguments,))
    (listen_and_play_kwargs,) = parser.parse_args_into_dataclasses()
    listen_and_play(**vars(listen_and_play_kwargs))

# File: speech-to-speech-main/s2s_pipeline.py
import logging
import os
import sys
from copy import copy
from pathlib import Path
from queue import Queue
from threading import Event
from typing import Optional
from sys import platform
from VAD.vad_handler import VADHandler
from arguments_classes.chat_tts_arguments import ChatTTSHandlerArguments
from arguments_classes.language_model_arguments import LanguageModelHandlerArguments
from arguments_classes.mlx_language_model_arguments import MLXLanguageModelHandlerArguments
from arguments_classes.module_arguments import ModuleArguments
from arguments_classes.paraformer_stt_arguments import ParaformerSTTHandlerArguments
from arguments_classes.parler_tts_arguments import ParlerTTSHandlerArguments
from arguments_classes.socket_receiver_arguments import SocketReceiverArguments
from arguments_classes.socket_sender_arguments import SocketSenderArguments
from arguments_classes.vad_arguments import VADHandlerArguments
from arguments_classes.whisper_stt_arguments import WhisperSTTHandlerArguments
from arguments_classes.melo_tts_arguments import MeloTTSHandlerArguments
import torch
import nltk
from rich.console import Console
from transformers import HfArgumentParser
from utils.thread_manager import ThreadManager
try:
    nltk.data.find('tokenizers/punkt_tab')
except (LookupError, OSError):
    nltk.download('punkt_tab')
try:
    nltk.data.find('tokenizers/averaged_perceptron_tagger_eng')
except (LookupError, OSError):
    nltk.download('averaged_perceptron_tagger_eng')
CURRENT_DIR = Path(__file__).resolve().parent
os.environ['TORCHINDUCTOR_CACHE_DIR'] = os.path.join(CURRENT_DIR, 'tmp')
console = Console()
logging.getLogger('numba').setLevel(logging.WARNING)

def prepare_args(args, prefix):
    gen_kwargs = {}
    for key in copy(args.__dict__):
        if key.startswith(prefix):
            value = args.__dict__.pop(key)
            new_key = key[len(prefix) + 1:]
            if new_key.startswith('gen_'):
                gen_kwargs[new_key[4:]] = value
            else:
                args.__dict__[new_key] = value
    args.__dict__['gen_kwargs'] = gen_kwargs

def main():
    parser = HfArgumentParser((ModuleArguments, SocketReceiverArguments, SocketSenderArguments, VADHandlerArguments, WhisperSTTHandlerArguments, ParaformerSTTHandlerArguments, LanguageModelHandlerArguments, MLXLanguageModelHandlerArguments, ParlerTTSHandlerArguments, MeloTTSHandlerArguments, ChatTTSHandlerArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith('.json'):
        (module_kwargs, socket_receiver_kwargs, socket_sender_kwargs, vad_handler_kwargs, whisper_stt_handler_kwargs, paraformer_stt_handler_kwargs, language_model_handler_kwargs, mlx_language_model_handler_kwargs, parler_tts_handler_kwargs, melo_tts_handler_kwargs, chat_tts_handler_kwargs) = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        (module_kwargs, socket_receiver_kwargs, socket_sender_kwargs, vad_handler_kwargs, whisper_stt_handler_kwargs, paraformer_stt_handler_kwargs, language_model_handler_kwargs, mlx_language_model_handler_kwargs, parler_tts_handler_kwargs, melo_tts_handler_kwargs, chat_tts_handler_kwargs) = parser.parse_args_into_dataclasses()
    global logger
    logging.basicConfig(level=module_kwargs.log_level.upper(), format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
    logger = logging.getLogger(__name__)
    if module_kwargs.log_level == 'debug':
        torch._logging.set_logs(graph_breaks=True, recompiles=True, cudagraphs=True)

    def optimal_mac_settings(mac_optimal_settings: Optional[str], *handler_kwargs):
        if mac_optimal_settings:
            for kwargs in handler_kwargs:
                if hasattr(kwargs, 'device'):
                    kwargs.device = 'mps'
                if hasattr(kwargs, 'mode'):
                    kwargs.mode = 'local'
                if hasattr(kwargs, 'stt'):
                    kwargs.stt = 'whisper-mlx'
                if hasattr(kwargs, 'llm'):
                    kwargs.llm = 'mlx-lm'
                if hasattr(kwargs, 'tts'):
                    kwargs.tts = 'melo'
    optimal_mac_settings(module_kwargs.local_mac_optimal_settings, module_kwargs)
    if platform == 'darwin':
        if module_kwargs.device == 'cuda':
            raise ValueError("Cannot use CUDA on macOS. Please set the device to 'cpu' or 'mps'.")
        if module_kwargs.llm != 'mlx-lm':
            logger.warning('For macOS users, it is recommended to use mlx-lm. You can activate it by passing --llm mlx-lm.')
        if module_kwargs.tts != 'melo':
            logger.warning('If you experiences issues generating the voice, considering setting the tts to melo.')

    def overwrite_device_argument(common_device: Optional[str], *handler_kwargs):
        if common_device:
            for kwargs in handler_kwargs:
                if hasattr(kwargs, 'lm_device'):
                    kwargs.lm_device = common_device
                if hasattr(kwargs, 'tts_device'):
                    kwargs.tts_device = common_device
                if hasattr(kwargs, 'stt_device'):
                    kwargs.stt_device = common_device
                if hasattr(kwargs, 'paraformer_stt_device'):
                    kwargs.paraformer_stt_device = common_device
    overwrite_device_argument(module_kwargs.device, language_model_handler_kwargs, mlx_language_model_handler_kwargs, parler_tts_handler_kwargs, whisper_stt_handler_kwargs, paraformer_stt_handler_kwargs)
    prepare_args(whisper_stt_handler_kwargs, 'stt')
    prepare_args(paraformer_stt_handler_kwargs, 'paraformer_stt')
    prepare_args(language_model_handler_kwargs, 'lm')
    prepare_args(mlx_language_model_handler_kwargs, 'mlx_lm')
    prepare_args(parler_tts_handler_kwargs, 'tts')
    prepare_args(melo_tts_handler_kwargs, 'melo')
    prepare_args(chat_tts_handler_kwargs, 'chat_tts')
    stop_event = Event()
    should_listen = Event()
    recv_audio_chunks_queue = Queue()
    send_audio_chunks_queue = Queue()
    spoken_prompt_queue = Queue()
    text_prompt_queue = Queue()
    lm_response_queue = Queue()
    if module_kwargs.mode == 'local':
        from connections.local_audio_streamer import LocalAudioStreamer
        local_audio_streamer = LocalAudioStreamer(input_queue=recv_audio_chunks_queue, output_queue=send_audio_chunks_queue)
        comms_handlers = [local_audio_streamer]
        should_listen.set()
    else:
        from connections.socket_receiver import SocketReceiver
        from connections.socket_sender import SocketSender
        comms_handlers = [SocketReceiver(stop_event, recv_audio_chunks_queue, should_listen, host=socket_receiver_kwargs.recv_host, port=socket_receiver_kwargs.recv_port, chunk_size=socket_receiver_kwargs.chunk_size), SocketSender(stop_event, send_audio_chunks_queue, host=socket_sender_kwargs.send_host, port=socket_sender_kwargs.send_port)]
    vad = VADHandler(stop_event, queue_in=recv_audio_chunks_queue, queue_out=spoken_prompt_queue, setup_args=(should_listen,), setup_kwargs=vars(vad_handler_kwargs))
    if module_kwargs.stt == 'whisper':
        from STT.whisper_stt_handler import WhisperSTTHandler
        stt = WhisperSTTHandler(stop_event, queue_in=spoken_prompt_queue, queue_out=text_prompt_queue, setup_kwargs=vars(whisper_stt_handler_kwargs))
    elif module_kwargs.stt == 'whisper-mlx':
        from STT.lightning_whisper_mlx_handler import LightningWhisperSTTHandler
        stt = LightningWhisperSTTHandler(stop_event, queue_in=spoken_prompt_queue, queue_out=text_prompt_queue, setup_kwargs=vars(whisper_stt_handler_kwargs))
    elif module_kwargs.stt == 'paraformer':
        from STT.paraformer_handler import ParaformerSTTHandler
        stt = ParaformerSTTHandler(stop_event, queue_in=spoken_prompt_queue, queue_out=text_prompt_queue, setup_kwargs=vars(paraformer_stt_handler_kwargs))
    else:
        raise ValueError('The STT should be either whisper, whisper-mlx, or paraformer.')
    if module_kwargs.llm == 'transformers':
        from LLM.language_model import LanguageModelHandler
        lm = LanguageModelHandler(stop_event, queue_in=text_prompt_queue, queue_out=lm_response_queue, setup_kwargs=vars(language_model_handler_kwargs))
    elif module_kwargs.llm == 'mlx-lm':
        from LLM.mlx_language_model import MLXLanguageModelHandler
        lm = MLXLanguageModelHandler(stop_event, queue_in=text_prompt_queue, queue_out=lm_response_queue, setup_kwargs=vars(mlx_language_model_handler_kwargs))
    else:
        raise ValueError('The LLM should be either transformers or mlx-lm')
    if module_kwargs.tts == 'parler':
        from TTS.parler_handler import ParlerTTSHandler
        tts = ParlerTTSHandler(stop_event, queue_in=lm_response_queue, queue_out=send_audio_chunks_queue, setup_args=(should_listen,), setup_kwargs=vars(parler_tts_handler_kwargs))
    elif module_kwargs.tts == 'melo':
        try:
            from TTS.melo_handler import MeloTTSHandler
        except RuntimeError as e:
            logger.error('Error importing MeloTTSHandler. You might need to run: python -m unidic download')
            raise e
        tts = MeloTTSHandler(stop_event, queue_in=lm_response_queue, queue_out=send_audio_chunks_queue, setup_args=(should_listen,), setup_kwargs=vars(melo_tts_handler_kwargs))
    elif module_kwargs.tts == 'chatTTS':
        try:
            from TTS.chatTTS_handler import ChatTTSHandler
        except RuntimeError as e:
            logger.error('Error importing ChatTTSHandler')
            raise e
        tts = ChatTTSHandler(stop_event, queue_in=lm_response_queue, queue_out=send_audio_chunks_queue, setup_args=(should_listen,), setup_kwargs=vars(chat_tts_handler_kwargs))
    else:
        raise ValueError('The TTS should be either parler, melo or chatTTS')
    try:
        pipeline_manager = ThreadManager([*comms_handlers, vad, stt, lm, tts])
        pipeline_manager.start()
    except KeyboardInterrupt:
        pipeline_manager.stop()
if __name__ == '__main__':
    main()