File size: 63,892 Bytes
b1d4de0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 |
# File: speech-to-speech-main/LLM/chat.py class Chat: def __init__(self, size): self.size = size self.init_chat_message = None self.buffer = [] def append(self, item): self.buffer.append(item) if len(self.buffer) == 2 * (self.size + 1): self.buffer.pop(0) self.buffer.pop(0) def init_chat(self, init_chat_message): self.init_chat_message = init_chat_message def to_list(self): if self.init_chat_message: return [self.init_chat_message] + self.buffer else: return self.buffer # File: speech-to-speech-main/LLM/language_model.py from threading import Thread from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline, TextIteratorStreamer import torch from LLM.chat import Chat from baseHandler import BaseHandler from rich.console import Console import logging from nltk import sent_tokenize logger = logging.getLogger(__name__) console = Console() WHISPER_LANGUAGE_TO_LLM_LANGUAGE = {'en': 'english', 'fr': 'french', 'es': 'spanish', 'zh': 'chinese', 'ja': 'japanese', 'ko': 'korean'} class LanguageModelHandler(BaseHandler): def setup(self, model_name='microsoft/Phi-3-mini-4k-instruct', device='cuda', torch_dtype='float16', gen_kwargs={}, user_role='user', chat_size=1, init_chat_role=None, init_chat_prompt='You are a helpful AI assistant.'): self.device = device self.torch_dtype = getattr(torch, torch_dtype) self.tokenizer = AutoTokenizer.from_pretrained(model_name) self.model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch_dtype, trust_remote_code=True).to(device) self.pipe = pipeline('text-generation', model=self.model, tokenizer=self.tokenizer, device=device) self.streamer = TextIteratorStreamer(self.tokenizer, skip_prompt=True, skip_special_tokens=True) self.gen_kwargs = {'streamer': self.streamer, 'return_full_text': False, **gen_kwargs} self.chat = Chat(chat_size) if init_chat_role: if not init_chat_prompt: raise ValueError('An initial promt needs to be specified when setting init_chat_role.') self.chat.init_chat({'role': init_chat_role, 'content': init_chat_prompt}) self.user_role = user_role self.warmup() def warmup(self): logger.info(f'Warming up {self.__class__.__name__}') dummy_input_text = "Repeat the word 'home'." dummy_chat = [{'role': self.user_role, 'content': dummy_input_text}] warmup_gen_kwargs = {'min_new_tokens': self.gen_kwargs['min_new_tokens'], 'max_new_tokens': self.gen_kwargs['max_new_tokens'], **self.gen_kwargs} n_steps = 2 if self.device == 'cuda': start_event = torch.cuda.Event(enable_timing=True) end_event = torch.cuda.Event(enable_timing=True) torch.cuda.synchronize() start_event.record() for _ in range(n_steps): thread = Thread(target=self.pipe, args=(dummy_chat,), kwargs=warmup_gen_kwargs) thread.start() for _ in self.streamer: pass if self.device == 'cuda': end_event.record() torch.cuda.synchronize() logger.info(f'{self.__class__.__name__}: warmed up! time: {start_event.elapsed_time(end_event) * 0.001:.3f} s') def process(self, prompt): logger.debug('infering language model...') language_code = None if isinstance(prompt, tuple): (prompt, language_code) = prompt prompt = f'Please reply to my message in {WHISPER_LANGUAGE_TO_LLM_LANGUAGE[language_code]}. ' + prompt self.chat.append({'role': self.user_role, 'content': prompt}) thread = Thread(target=self.pipe, args=(self.chat.to_list(),), kwargs=self.gen_kwargs) thread.start() if self.device == 'mps': generated_text = '' for new_text in self.streamer: generated_text += new_text printable_text = generated_text torch.mps.empty_cache() else: (generated_text, printable_text) = ('', '') for new_text in self.streamer: generated_text += new_text printable_text += new_text sentences = sent_tokenize(printable_text) if len(sentences) > 1: yield (sentences[0], language_code) printable_text = new_text self.chat.append({'role': 'assistant', 'content': generated_text}) yield (printable_text, language_code) # File: speech-to-speech-main/LLM/mlx_language_model.py import logging from LLM.chat import Chat from baseHandler import BaseHandler from mlx_lm import load, stream_generate, generate from rich.console import Console import torch logger = logging.getLogger(__name__) console = Console() WHISPER_LANGUAGE_TO_LLM_LANGUAGE = {'en': 'english', 'fr': 'french', 'es': 'spanish', 'zh': 'chinese', 'ja': 'japanese', 'ko': 'korean'} class MLXLanguageModelHandler(BaseHandler): def setup(self, model_name='microsoft/Phi-3-mini-4k-instruct', device='mps', torch_dtype='float16', gen_kwargs={}, user_role='user', chat_size=1, init_chat_role=None, init_chat_prompt='You are a helpful AI assistant.'): self.model_name = model_name (self.model, self.tokenizer) = load(self.model_name) self.gen_kwargs = gen_kwargs self.chat = Chat(chat_size) if init_chat_role: if not init_chat_prompt: raise ValueError('An initial promt needs to be specified when setting init_chat_role.') self.chat.init_chat({'role': init_chat_role, 'content': init_chat_prompt}) self.user_role = user_role self.warmup() def warmup(self): logger.info(f'Warming up {self.__class__.__name__}') dummy_input_text = 'Write me a poem about Machine Learning.' dummy_chat = [{'role': self.user_role, 'content': dummy_input_text}] n_steps = 2 for _ in range(n_steps): prompt = self.tokenizer.apply_chat_template(dummy_chat, tokenize=False) generate(self.model, self.tokenizer, prompt=prompt, max_tokens=self.gen_kwargs['max_new_tokens'], verbose=False) def process(self, prompt): logger.debug('infering language model...') language_code = None if isinstance(prompt, tuple): (prompt, language_code) = prompt prompt = f'Please reply to my message in {WHISPER_LANGUAGE_TO_LLM_LANGUAGE[language_code]}. ' + prompt self.chat.append({'role': self.user_role, 'content': prompt}) if 'gemma' in self.model_name.lower(): chat_messages = [msg for msg in self.chat.to_list() if msg['role'] != 'system'] else: chat_messages = self.chat.to_list() prompt = self.tokenizer.apply_chat_template(chat_messages, tokenize=False, add_generation_prompt=True) output = '' curr_output = '' for t in stream_generate(self.model, self.tokenizer, prompt, max_tokens=self.gen_kwargs['max_new_tokens']): output += t curr_output += t if curr_output.endswith(('.', '?', '!', '<|end|>')): yield (curr_output.replace('<|end|>', ''), language_code) curr_output = '' generated_text = output.replace('<|end|>', '') torch.mps.empty_cache() self.chat.append({'role': 'assistant', 'content': generated_text}) # File: speech-to-speech-main/STT/lightning_whisper_mlx_handler.py import logging from time import perf_counter from baseHandler import BaseHandler from lightning_whisper_mlx import LightningWhisperMLX import numpy as np from rich.console import Console from copy import copy import torch logger = logging.getLogger(__name__) console = Console() SUPPORTED_LANGUAGES = ['en', 'fr', 'es', 'zh', 'ja', 'ko'] class LightningWhisperSTTHandler(BaseHandler): def setup(self, model_name='distil-large-v3', device='mps', torch_dtype='float16', compile_mode=None, language=None, gen_kwargs={}): if len(model_name.split('/')) > 1: model_name = model_name.split('/')[-1] self.device = device self.model = LightningWhisperMLX(model=model_name, batch_size=6, quant=None) self.start_language = language self.last_language = language self.warmup() def warmup(self): logger.info(f'Warming up {self.__class__.__name__}') n_steps = 1 dummy_input = np.array([0] * 512) for _ in range(n_steps): _ = self.model.transcribe(dummy_input)['text'].strip() def process(self, spoken_prompt): logger.debug('infering whisper...') global pipeline_start pipeline_start = perf_counter() if self.start_language != 'auto': transcription_dict = self.model.transcribe(spoken_prompt, language=self.start_language) else: transcription_dict = self.model.transcribe(spoken_prompt) language_code = transcription_dict['language'] if language_code not in SUPPORTED_LANGUAGES: logger.warning(f'Whisper detected unsupported language: {language_code}') if self.last_language in SUPPORTED_LANGUAGES: transcription_dict = self.model.transcribe(spoken_prompt, language=self.last_language) else: transcription_dict = {'text': '', 'language': 'en'} else: self.last_language = language_code pred_text = transcription_dict['text'].strip() language_code = transcription_dict['language'] torch.mps.empty_cache() logger.debug('finished whisper inference') console.print(f'[yellow]USER: {pred_text}') logger.debug(f'Language Code Whisper: {language_code}') yield (pred_text, language_code) # File: speech-to-speech-main/STT/paraformer_handler.py import logging from time import perf_counter from baseHandler import BaseHandler from funasr import AutoModel import numpy as np from rich.console import Console import torch logging.basicConfig(format='%(asctime)s - %(name)s - %(levelname)s - %(message)s') logger = logging.getLogger(__name__) console = Console() class ParaformerSTTHandler(BaseHandler): def setup(self, model_name='paraformer-zh', device='cuda', gen_kwargs={}): print(model_name) if len(model_name.split('/')) > 1: model_name = model_name.split('/')[-1] self.device = device self.model = AutoModel(model=model_name, device=device) self.warmup() def warmup(self): logger.info(f'Warming up {self.__class__.__name__}') n_steps = 1 dummy_input = np.array([0] * 512, dtype=np.float32) for _ in range(n_steps): _ = self.model.generate(dummy_input)[0]['text'].strip().replace(' ', '') def process(self, spoken_prompt): logger.debug('infering paraformer...') global pipeline_start pipeline_start = perf_counter() pred_text = self.model.generate(spoken_prompt)[0]['text'].strip().replace(' ', '') torch.mps.empty_cache() logger.debug('finished paraformer inference') console.print(f'[yellow]USER: {pred_text}') yield pred_text # File: speech-to-speech-main/STT/whisper_stt_handler.py from time import perf_counter from transformers import AutoProcessor, AutoModelForSpeechSeq2Seq import torch from copy import copy from baseHandler import BaseHandler from rich.console import Console import logging logger = logging.getLogger(__name__) console = Console() SUPPORTED_LANGUAGES = ['en', 'fr', 'es', 'zh', 'ja', 'ko'] class WhisperSTTHandler(BaseHandler): def setup(self, model_name='distil-whisper/distil-large-v3', device='cuda', torch_dtype='float16', compile_mode=None, language=None, gen_kwargs={}): self.device = device self.torch_dtype = getattr(torch, torch_dtype) self.compile_mode = compile_mode self.gen_kwargs = gen_kwargs if language == 'auto': language = None self.last_language = language if self.last_language is not None: self.gen_kwargs['language'] = self.last_language self.processor = AutoProcessor.from_pretrained(model_name) self.model = AutoModelForSpeechSeq2Seq.from_pretrained(model_name, torch_dtype=self.torch_dtype).to(device) if self.compile_mode: self.model.generation_config.cache_implementation = 'static' self.model.forward = torch.compile(self.model.forward, mode=self.compile_mode, fullgraph=True) self.warmup() def prepare_model_inputs(self, spoken_prompt): input_features = self.processor(spoken_prompt, sampling_rate=16000, return_tensors='pt').input_features input_features = input_features.to(self.device, dtype=self.torch_dtype) return input_features def warmup(self): logger.info(f'Warming up {self.__class__.__name__}') n_steps = 1 if self.compile_mode == 'default' else 2 dummy_input = torch.randn((1, self.model.config.num_mel_bins, 3000), dtype=self.torch_dtype, device=self.device) if self.compile_mode not in (None, 'default'): warmup_gen_kwargs = {'min_new_tokens': self.gen_kwargs['max_new_tokens'], 'max_new_tokens': self.gen_kwargs['max_new_tokens'], **self.gen_kwargs} else: warmup_gen_kwargs = self.gen_kwargs if self.device == 'cuda': start_event = torch.cuda.Event(enable_timing=True) end_event = torch.cuda.Event(enable_timing=True) torch.cuda.synchronize() start_event.record() for _ in range(n_steps): _ = self.model.generate(dummy_input, **warmup_gen_kwargs) if self.device == 'cuda': end_event.record() torch.cuda.synchronize() logger.info(f'{self.__class__.__name__}: warmed up! time: {start_event.elapsed_time(end_event) * 0.001:.3f} s') def process(self, spoken_prompt): logger.debug('infering whisper...') global pipeline_start pipeline_start = perf_counter() input_features = self.prepare_model_inputs(spoken_prompt) pred_ids = self.model.generate(input_features, **self.gen_kwargs) language_code = self.processor.tokenizer.decode(pred_ids[0, 1])[2:-2] if language_code not in SUPPORTED_LANGUAGES: logger.warning('Whisper detected unsupported language:', language_code) gen_kwargs = copy(self.gen_kwargs) gen_kwargs['language'] = self.last_language language_code = self.last_language pred_ids = self.model.generate(input_features, **gen_kwargs) else: self.last_language = language_code pred_text = self.processor.batch_decode(pred_ids, skip_special_tokens=True, decode_with_timestamps=False)[0] language_code = self.processor.tokenizer.decode(pred_ids[0, 1])[2:-2] logger.debug('finished whisper inference') console.print(f'[yellow]USER: {pred_text}') logger.debug(f'Language Code Whisper: {language_code}') yield (pred_text, language_code) # File: speech-to-speech-main/TTS/chatTTS_handler.py import ChatTTS import logging from baseHandler import BaseHandler import librosa import numpy as np from rich.console import Console import torch logging.basicConfig(format='%(asctime)s - %(name)s - %(levelname)s - %(message)s') logger = logging.getLogger(__name__) console = Console() class ChatTTSHandler(BaseHandler): def setup(self, should_listen, device='cuda', gen_kwargs={}, stream=True, chunk_size=512): self.should_listen = should_listen self.device = device self.model = ChatTTS.Chat() self.model.load(compile=False) self.chunk_size = chunk_size self.stream = stream rnd_spk_emb = self.model.sample_random_speaker() self.params_infer_code = ChatTTS.Chat.InferCodeParams(spk_emb=rnd_spk_emb) self.warmup() def warmup(self): logger.info(f'Warming up {self.__class__.__name__}') _ = self.model.infer('text') def process(self, llm_sentence): console.print(f'[green]ASSISTANT: {llm_sentence}') if self.device == 'mps': import time start = time.time() torch.mps.synchronize() torch.mps.empty_cache() _ = time.time() - start wavs_gen = self.model.infer(llm_sentence, params_infer_code=self.params_infer_code, stream=self.stream) if self.stream: wavs = [np.array([])] for gen in wavs_gen: if gen[0] is None or len(gen[0]) == 0: self.should_listen.set() return audio_chunk = librosa.resample(gen[0], orig_sr=24000, target_sr=16000) audio_chunk = (audio_chunk * 32768).astype(np.int16)[0] while len(audio_chunk) > self.chunk_size: yield audio_chunk[:self.chunk_size] audio_chunk = audio_chunk[self.chunk_size:] yield np.pad(audio_chunk, (0, self.chunk_size - len(audio_chunk))) else: wavs = wavs_gen if len(wavs[0]) == 0: self.should_listen.set() return audio_chunk = librosa.resample(wavs[0], orig_sr=24000, target_sr=16000) audio_chunk = (audio_chunk * 32768).astype(np.int16) for i in range(0, len(audio_chunk), self.chunk_size): yield np.pad(audio_chunk[i:i + self.chunk_size], (0, self.chunk_size - len(audio_chunk[i:i + self.chunk_size]))) self.should_listen.set() # File: speech-to-speech-main/TTS/melo_handler.py from melo.api import TTS import logging from baseHandler import BaseHandler import librosa import numpy as np from rich.console import Console import torch logger = logging.getLogger(__name__) console = Console() WHISPER_LANGUAGE_TO_MELO_LANGUAGE = {'en': 'EN_NEWEST', 'fr': 'FR', 'es': 'ES', 'zh': 'ZH', 'ja': 'JP', 'ko': 'KR'} WHISPER_LANGUAGE_TO_MELO_SPEAKER = {'en': 'EN-Newest', 'fr': 'FR', 'es': 'ES', 'zh': 'ZH', 'ja': 'JP', 'ko': 'KR'} class MeloTTSHandler(BaseHandler): def setup(self, should_listen, device='mps', language='en', speaker_to_id='en', gen_kwargs={}, blocksize=512): self.should_listen = should_listen self.device = device self.language = language self.model = TTS(language=WHISPER_LANGUAGE_TO_MELO_LANGUAGE[self.language], device=device) self.speaker_id = self.model.hps.data.spk2id[WHISPER_LANGUAGE_TO_MELO_SPEAKER[speaker_to_id]] self.blocksize = blocksize self.warmup() def warmup(self): logger.info(f'Warming up {self.__class__.__name__}') _ = self.model.tts_to_file('text', self.speaker_id, quiet=True) def process(self, llm_sentence): language_code = None if isinstance(llm_sentence, tuple): (llm_sentence, language_code) = llm_sentence console.print(f'[green]ASSISTANT: {llm_sentence}') if language_code is not None and self.language != language_code: try: self.model = TTS(language=WHISPER_LANGUAGE_TO_MELO_LANGUAGE[language_code], device=self.device) self.speaker_id = self.model.hps.data.spk2id[WHISPER_LANGUAGE_TO_MELO_SPEAKER[language_code]] self.language = language_code except KeyError: console.print(f'[red]Language {language_code} not supported by Melo. Using {self.language} instead.') if self.device == 'mps': import time start = time.time() torch.mps.synchronize() torch.mps.empty_cache() _ = time.time() - start try: audio_chunk = self.model.tts_to_file(llm_sentence, self.speaker_id, quiet=True) except (AssertionError, RuntimeError) as e: logger.error(f'Error in MeloTTSHandler: {e}') audio_chunk = np.array([]) if len(audio_chunk) == 0: self.should_listen.set() return audio_chunk = librosa.resample(audio_chunk, orig_sr=44100, target_sr=16000) audio_chunk = (audio_chunk * 32768).astype(np.int16) for i in range(0, len(audio_chunk), self.blocksize): yield np.pad(audio_chunk[i:i + self.blocksize], (0, self.blocksize - len(audio_chunk[i:i + self.blocksize]))) self.should_listen.set() # File: speech-to-speech-main/TTS/parler_handler.py from threading import Thread from time import perf_counter from baseHandler import BaseHandler import numpy as np import torch from transformers import AutoTokenizer from parler_tts import ParlerTTSForConditionalGeneration, ParlerTTSStreamer import librosa import logging from rich.console import Console from utils.utils import next_power_of_2 from transformers.utils.import_utils import is_flash_attn_2_available torch._inductor.config.fx_graph_cache = True torch._dynamo.config.cache_size_limit = 15 logger = logging.getLogger(__name__) console = Console() if not is_flash_attn_2_available() and torch.cuda.is_available(): logger.warn('Parler TTS works best with flash attention 2, but is not installed\n Given that CUDA is available in this system, you can install flash attention 2 with `uv pip install flash-attn --no-build-isolation`') class ParlerTTSHandler(BaseHandler): def setup(self, should_listen, model_name='ylacombe/parler-tts-mini-jenny-30H', device='cuda', torch_dtype='float16', compile_mode=None, gen_kwargs={}, max_prompt_pad_length=8, description='A female speaker with a slightly low-pitched voice delivers her words quite expressively, in a very confined sounding environment with clear audio quality. She speaks very fast.', play_steps_s=1, blocksize=512): self.should_listen = should_listen self.device = device self.torch_dtype = getattr(torch, torch_dtype) self.gen_kwargs = gen_kwargs self.compile_mode = compile_mode self.max_prompt_pad_length = max_prompt_pad_length self.description = description self.description_tokenizer = AutoTokenizer.from_pretrained(model_name) self.prompt_tokenizer = AutoTokenizer.from_pretrained(model_name) self.model = ParlerTTSForConditionalGeneration.from_pretrained(model_name, torch_dtype=self.torch_dtype).to(device) framerate = self.model.audio_encoder.config.frame_rate self.play_steps = int(framerate * play_steps_s) self.blocksize = blocksize if self.compile_mode not in (None, 'default'): logger.warning("Torch compilation modes that captures CUDA graphs are not yet compatible with the STT part. Reverting to 'default'") self.compile_mode = 'default' if self.compile_mode: self.model.generation_config.cache_implementation = 'static' self.model.forward = torch.compile(self.model.forward, mode=self.compile_mode, fullgraph=True) self.warmup() def prepare_model_inputs(self, prompt, max_length_prompt=50, pad=False): pad_args_prompt = {'padding': 'max_length', 'max_length': max_length_prompt} if pad else {} tokenized_description = self.description_tokenizer(self.description, return_tensors='pt') input_ids = tokenized_description.input_ids.to(self.device) attention_mask = tokenized_description.attention_mask.to(self.device) tokenized_prompt = self.prompt_tokenizer(prompt, return_tensors='pt', **pad_args_prompt) prompt_input_ids = tokenized_prompt.input_ids.to(self.device) prompt_attention_mask = tokenized_prompt.attention_mask.to(self.device) gen_kwargs = {'input_ids': input_ids, 'attention_mask': attention_mask, 'prompt_input_ids': prompt_input_ids, 'prompt_attention_mask': prompt_attention_mask, **self.gen_kwargs} return gen_kwargs def warmup(self): logger.info(f'Warming up {self.__class__.__name__}') if self.device == 'cuda': start_event = torch.cuda.Event(enable_timing=True) end_event = torch.cuda.Event(enable_timing=True) n_steps = 1 if self.compile_mode == 'default' else 2 if self.device == 'cuda': torch.cuda.synchronize() start_event.record() if self.compile_mode: pad_lengths = [2 ** i for i in range(2, self.max_prompt_pad_length)] for pad_length in pad_lengths[::-1]: model_kwargs = self.prepare_model_inputs('dummy prompt', max_length_prompt=pad_length, pad=True) for _ in range(n_steps): _ = self.model.generate(**model_kwargs) logger.info(f'Warmed up length {pad_length} tokens!') else: model_kwargs = self.prepare_model_inputs('dummy prompt') for _ in range(n_steps): _ = self.model.generate(**model_kwargs) if self.device == 'cuda': end_event.record() torch.cuda.synchronize() logger.info(f'{self.__class__.__name__}: warmed up! time: {start_event.elapsed_time(end_event) * 0.001:.3f} s') def process(self, llm_sentence): if isinstance(llm_sentence, tuple): (llm_sentence, _) = llm_sentence console.print(f'[green]ASSISTANT: {llm_sentence}') nb_tokens = len(self.prompt_tokenizer(llm_sentence).input_ids) pad_args = {} if self.compile_mode: pad_length = next_power_of_2(nb_tokens) logger.debug(f'padding to {pad_length}') pad_args['pad'] = True pad_args['max_length_prompt'] = pad_length tts_gen_kwargs = self.prepare_model_inputs(llm_sentence, **pad_args) streamer = ParlerTTSStreamer(self.model, device=self.device, play_steps=self.play_steps) tts_gen_kwargs = {'streamer': streamer, **tts_gen_kwargs} torch.manual_seed(0) thread = Thread(target=self.model.generate, kwargs=tts_gen_kwargs) thread.start() for (i, audio_chunk) in enumerate(streamer): global pipeline_start if i == 0 and 'pipeline_start' in globals(): logger.info(f'Time to first audio: {perf_counter() - pipeline_start:.3f}') audio_chunk = librosa.resample(audio_chunk, orig_sr=44100, target_sr=16000) audio_chunk = (audio_chunk * 32768).astype(np.int16) for i in range(0, len(audio_chunk), self.blocksize): yield np.pad(audio_chunk[i:i + self.blocksize], (0, self.blocksize - len(audio_chunk[i:i + self.blocksize]))) self.should_listen.set() # File: speech-to-speech-main/VAD/vad_handler.py import torchaudio from VAD.vad_iterator import VADIterator from baseHandler import BaseHandler import numpy as np import torch from rich.console import Console from utils.utils import int2float from df.enhance import enhance, init_df import logging logger = logging.getLogger(__name__) console = Console() class VADHandler(BaseHandler): def setup(self, should_listen, thresh=0.3, sample_rate=16000, min_silence_ms=1000, min_speech_ms=500, max_speech_ms=float('inf'), speech_pad_ms=30, audio_enhancement=False): self.should_listen = should_listen self.sample_rate = sample_rate self.min_silence_ms = min_silence_ms self.min_speech_ms = min_speech_ms self.max_speech_ms = max_speech_ms (self.model, _) = torch.hub.load('snakers4/silero-vad', 'silero_vad') self.iterator = VADIterator(self.model, threshold=thresh, sampling_rate=sample_rate, min_silence_duration_ms=min_silence_ms, speech_pad_ms=speech_pad_ms) self.audio_enhancement = audio_enhancement if audio_enhancement: (self.enhanced_model, self.df_state, _) = init_df() def process(self, audio_chunk): audio_int16 = np.frombuffer(audio_chunk, dtype=np.int16) audio_float32 = int2float(audio_int16) vad_output = self.iterator(torch.from_numpy(audio_float32)) if vad_output is not None and len(vad_output) != 0: logger.debug('VAD: end of speech detected') array = torch.cat(vad_output).cpu().numpy() duration_ms = len(array) / self.sample_rate * 1000 if duration_ms < self.min_speech_ms or duration_ms > self.max_speech_ms: logger.debug(f'audio input of duration: {len(array) / self.sample_rate}s, skipping') else: self.should_listen.clear() logger.debug('Stop listening') if self.audio_enhancement: if self.sample_rate != self.df_state.sr(): audio_float32 = torchaudio.functional.resample(torch.from_numpy(array), orig_freq=self.sample_rate, new_freq=self.df_state.sr()) enhanced = enhance(self.enhanced_model, self.df_state, audio_float32.unsqueeze(0)) enhanced = torchaudio.functional.resample(enhanced, orig_freq=self.df_state.sr(), new_freq=self.sample_rate) else: enhanced = enhance(self.enhanced_model, self.df_state, audio_float32) array = enhanced.numpy().squeeze() yield array @property def min_time_to_debug(self): return 1e-05 # File: speech-to-speech-main/VAD/vad_iterator.py import torch class VADIterator: def __init__(self, model, threshold: float=0.5, sampling_rate: int=16000, min_silence_duration_ms: int=100, speech_pad_ms: int=30): self.model = model self.threshold = threshold self.sampling_rate = sampling_rate self.is_speaking = False self.buffer = [] if sampling_rate not in [8000, 16000]: raise ValueError('VADIterator does not support sampling rates other than [8000, 16000]') self.min_silence_samples = sampling_rate * min_silence_duration_ms / 1000 self.speech_pad_samples = sampling_rate * speech_pad_ms / 1000 self.reset_states() def reset_states(self): self.model.reset_states() self.triggered = False self.temp_end = 0 self.current_sample = 0 @torch.no_grad() def __call__(self, x): if not torch.is_tensor(x): try: x = torch.Tensor(x) except Exception: raise TypeError('Audio cannot be casted to tensor. Cast it manually') window_size_samples = len(x[0]) if x.dim() == 2 else len(x) self.current_sample += window_size_samples speech_prob = self.model(x, self.sampling_rate).item() if speech_prob >= self.threshold and self.temp_end: self.temp_end = 0 if speech_prob >= self.threshold and (not self.triggered): self.triggered = True return None if speech_prob < self.threshold - 0.15 and self.triggered: if not self.temp_end: self.temp_end = self.current_sample if self.current_sample - self.temp_end < self.min_silence_samples: return None else: self.temp_end = 0 self.triggered = False spoken_utterance = self.buffer self.buffer = [] return spoken_utterance if self.triggered: self.buffer.append(x) return None # File: speech-to-speech-main/arguments_classes/chat_tts_arguments.py from dataclasses import dataclass, field @dataclass class ChatTTSHandlerArguments: chat_tts_stream: bool = field(default=True, metadata={'help': "The tts mode is stream Default is 'stream'."}) chat_tts_device: str = field(default='cuda', metadata={'help': "The device to be used for speech synthesis. Default is 'cuda'."}) chat_tts_chunk_size: int = field(default=512, metadata={'help': 'Sets the size of the audio data chunk processed per cycle, balancing playback latency and CPU load.. Default is 512。.'}) # File: speech-to-speech-main/arguments_classes/language_model_arguments.py from dataclasses import dataclass, field @dataclass class LanguageModelHandlerArguments: lm_model_name: str = field(default='HuggingFaceTB/SmolLM-360M-Instruct', metadata={'help': "The pretrained language model to use. Default is 'microsoft/Phi-3-mini-4k-instruct'."}) lm_device: str = field(default='cuda', metadata={'help': "The device type on which the model will run. Default is 'cuda' for GPU acceleration."}) lm_torch_dtype: str = field(default='float16', metadata={'help': 'The PyTorch data type for the model and input tensors. One of `float32` (full-precision), `float16` or `bfloat16` (both half-precision).'}) user_role: str = field(default='user', metadata={'help': "Role assigned to the user in the chat context. Default is 'user'."}) init_chat_role: str = field(default='system', metadata={'help': "Initial role for setting up the chat context. Default is 'system'."}) init_chat_prompt: str = field(default='You are a helpful and friendly AI assistant. You are polite, respectful, and aim to provide concise responses of less than 20 words.', metadata={'help': "The initial chat prompt to establish context for the language model. Default is 'You are a helpful AI assistant.'"}) lm_gen_max_new_tokens: int = field(default=128, metadata={'help': 'Maximum number of new tokens to generate in a single completion. Default is 128.'}) lm_gen_min_new_tokens: int = field(default=0, metadata={'help': 'Minimum number of new tokens to generate in a single completion. Default is 0.'}) lm_gen_temperature: float = field(default=0.0, metadata={'help': 'Controls the randomness of the output. Set to 0.0 for deterministic (repeatable) outputs. Default is 0.0.'}) lm_gen_do_sample: bool = field(default=False, metadata={'help': 'Whether to use sampling; set this to False for deterministic outputs. Default is False.'}) chat_size: int = field(default=2, metadata={'help': 'Number of interactions assitant-user to keep for the chat. None for no limitations.'}) # File: speech-to-speech-main/arguments_classes/melo_tts_arguments.py from dataclasses import dataclass, field @dataclass class MeloTTSHandlerArguments: melo_language: str = field(default='en', metadata={'help': "The language of the text to be synthesized. Default is 'EN_NEWEST'."}) melo_device: str = field(default='auto', metadata={'help': "The device to be used for speech synthesis. Default is 'auto'."}) melo_speaker_to_id: str = field(default='en', metadata={'help': "Mapping of speaker names to speaker IDs. Default is ['EN-Newest']."}) # File: speech-to-speech-main/arguments_classes/mlx_language_model_arguments.py from dataclasses import dataclass, field @dataclass class MLXLanguageModelHandlerArguments: mlx_lm_model_name: str = field(default='mlx-community/SmolLM-360M-Instruct', metadata={'help': "The pretrained language model to use. Default is 'microsoft/Phi-3-mini-4k-instruct'."}) mlx_lm_device: str = field(default='mps', metadata={'help': "The device type on which the model will run. Default is 'cuda' for GPU acceleration."}) mlx_lm_torch_dtype: str = field(default='float16', metadata={'help': 'The PyTorch data type for the model and input tensors. One of `float32` (full-precision), `float16` or `bfloat16` (both half-precision).'}) mlx_lm_user_role: str = field(default='user', metadata={'help': "Role assigned to the user in the chat context. Default is 'user'."}) mlx_lm_init_chat_role: str = field(default='system', metadata={'help': "Initial role for setting up the chat context. Default is 'system'."}) mlx_lm_init_chat_prompt: str = field(default='You are a helpful and friendly AI assistant. You are polite, respectful, and aim to provide concise responses of less than 20 words.', metadata={'help': "The initial chat prompt to establish context for the language model. Default is 'You are a helpful AI assistant.'"}) mlx_lm_gen_max_new_tokens: int = field(default=128, metadata={'help': 'Maximum number of new tokens to generate in a single completion. Default is 128.'}) mlx_lm_gen_temperature: float = field(default=0.0, metadata={'help': 'Controls the randomness of the output. Set to 0.0 for deterministic (repeatable) outputs. Default is 0.0.'}) mlx_lm_gen_do_sample: bool = field(default=False, metadata={'help': 'Whether to use sampling; set this to False for deterministic outputs. Default is False.'}) mlx_lm_chat_size: int = field(default=2, metadata={'help': 'Number of interactions assitant-user to keep for the chat. None for no limitations.'}) # File: speech-to-speech-main/arguments_classes/module_arguments.py from dataclasses import dataclass, field from typing import Optional @dataclass class ModuleArguments: device: Optional[str] = field(default=None, metadata={'help': 'If specified, overrides the device for all handlers.'}) mode: Optional[str] = field(default='socket', metadata={'help': "The mode to run the pipeline in. Either 'local' or 'socket'. Default is 'socket'."}) local_mac_optimal_settings: bool = field(default=False, metadata={'help': 'If specified, sets the optimal settings for Mac OS. Hence whisper-mlx, MLX LM and MeloTTS will be used.'}) stt: Optional[str] = field(default='whisper', metadata={'help': "The STT to use. Either 'whisper', 'whisper-mlx', and 'paraformer'. Default is 'whisper'."}) llm: Optional[str] = field(default='transformers', metadata={'help': "The LLM to use. Either 'transformers' or 'mlx-lm'. Default is 'transformers'"}) tts: Optional[str] = field(default='parler', metadata={'help': "The TTS to use. Either 'parler', 'melo', or 'chatTTS'. Default is 'parler'"}) log_level: str = field(default='info', metadata={'help': 'Provide logging level. Example --log_level debug, default=warning.'}) # File: speech-to-speech-main/arguments_classes/paraformer_stt_arguments.py from dataclasses import dataclass, field @dataclass class ParaformerSTTHandlerArguments: paraformer_stt_model_name: str = field(default='paraformer-zh', metadata={'help': "The pretrained model to use. Default is 'paraformer-zh'. Can be choose from https://github.com/modelscope/FunASR"}) paraformer_stt_device: str = field(default='cuda', metadata={'help': "The device type on which the model will run. Default is 'cuda' for GPU acceleration."}) # File: speech-to-speech-main/arguments_classes/parler_tts_arguments.py from dataclasses import dataclass, field @dataclass class ParlerTTSHandlerArguments: tts_model_name: str = field(default='ylacombe/parler-tts-mini-jenny-30H', metadata={'help': "The pretrained TTS model to use. Default is 'ylacombe/parler-tts-mini-jenny-30H'."}) tts_device: str = field(default='cuda', metadata={'help': "The device type on which the model will run. Default is 'cuda' for GPU acceleration."}) tts_torch_dtype: str = field(default='float16', metadata={'help': 'The PyTorch data type for the model and input tensors. One of `float32` (full-precision), `float16` or `bfloat16` (both half-precision).'}) tts_compile_mode: str = field(default=None, metadata={'help': "Compile mode for torch compile. Either 'default', 'reduce-overhead' and 'max-autotune'. Default is None (no compilation)"}) tts_gen_min_new_tokens: int = field(default=64, metadata={'help': 'Maximum number of new tokens to generate in a single completion. Default is 10, which corresponds to ~0.1 secs'}) tts_gen_max_new_tokens: int = field(default=512, metadata={'help': 'Maximum number of new tokens to generate in a single completion. Default is 256, which corresponds to ~6 secs'}) description: str = field(default='A female speaker with a slightly low-pitched voice delivers her words quite expressively, in a very confined sounding environment with clear audio quality. She speaks very fast.', metadata={'help': "Description of the speaker's voice and speaking style to guide the TTS model."}) play_steps_s: float = field(default=1.0, metadata={'help': 'The time interval in seconds for playing back the generated speech in steps. Default is 0.5 seconds.'}) max_prompt_pad_length: int = field(default=8, metadata={'help': 'When using compilation, the prompt as to be padded to closest power of 2. This parameters sets the maximun power of 2 possible.'}) # File: speech-to-speech-main/arguments_classes/socket_receiver_arguments.py from dataclasses import dataclass, field @dataclass class SocketReceiverArguments: recv_host: str = field(default='localhost', metadata={'help': "The host IP ddress for the socket connection. Default is '0.0.0.0' which binds to all available interfaces on the host machine."}) recv_port: int = field(default=12345, metadata={'help': 'The port number on which the socket server listens. Default is 12346.'}) chunk_size: int = field(default=1024, metadata={'help': 'The size of each data chunk to be sent or received over the socket. Default is 1024 bytes.'}) # File: speech-to-speech-main/arguments_classes/socket_sender_arguments.py from dataclasses import dataclass, field @dataclass class SocketSenderArguments: send_host: str = field(default='localhost', metadata={'help': "The host IP address for the socket connection. Default is '0.0.0.0' which binds to all available interfaces on the host machine."}) send_port: int = field(default=12346, metadata={'help': 'The port number on which the socket server listens. Default is 12346.'}) # File: speech-to-speech-main/arguments_classes/vad_arguments.py from dataclasses import dataclass, field @dataclass class VADHandlerArguments: thresh: float = field(default=0.3, metadata={'help': 'The threshold value for voice activity detection (VAD). Values typically range from 0 to 1, with higher values requiring higher confidence in speech detection.'}) sample_rate: int = field(default=16000, metadata={'help': 'The sample rate of the audio in Hertz. Default is 16000 Hz, which is a common setting for voice audio.'}) min_silence_ms: int = field(default=250, metadata={'help': 'Minimum length of silence intervals to be used for segmenting speech. Measured in milliseconds. Default is 250 ms.'}) min_speech_ms: int = field(default=500, metadata={'help': 'Minimum length of speech segments to be considered valid speech. Measured in milliseconds. Default is 500 ms.'}) max_speech_ms: float = field(default=float('inf'), metadata={'help': 'Maximum length of continuous speech before forcing a split. Default is infinite, allowing for uninterrupted speech segments.'}) speech_pad_ms: int = field(default=500, metadata={'help': 'Amount of padding added to the beginning and end of detected speech segments. Measured in milliseconds. Default is 250 ms.'}) audio_enhancement: bool = field(default=False, metadata={'help': 'improves sound quality by applying techniques like noise reduction, equalization, and echo cancellation. Default is False.'}) # File: speech-to-speech-main/arguments_classes/whisper_stt_arguments.py from dataclasses import dataclass, field from typing import Optional @dataclass class WhisperSTTHandlerArguments: stt_model_name: str = field(default='distil-whisper/distil-large-v3', metadata={'help': "The pretrained Whisper model to use. Default is 'distil-whisper/distil-large-v3'."}) stt_device: str = field(default='cuda', metadata={'help': "The device type on which the model will run. Default is 'cuda' for GPU acceleration."}) stt_torch_dtype: str = field(default='float16', metadata={'help': 'The PyTorch data type for the model and input tensors. One of `float32` (full-precision), `float16` or `bfloat16` (both half-precision).'}) stt_compile_mode: str = field(default=None, metadata={'help': "Compile mode for torch compile. Either 'default', 'reduce-overhead' and 'max-autotune'. Default is None (no compilation)"}) stt_gen_max_new_tokens: int = field(default=128, metadata={'help': 'The maximum number of new tokens to generate. Default is 128.'}) stt_gen_num_beams: int = field(default=1, metadata={'help': 'The number of beams for beam search. Default is 1, implying greedy decoding.'}) stt_gen_return_timestamps: bool = field(default=False, metadata={'help': 'Whether to return timestamps with transcriptions. Default is False.'}) stt_gen_task: str = field(default='transcribe', metadata={'help': "The task to perform, typically 'transcribe' for transcription. Default is 'transcribe'."}) language: Optional[str] = field(default='en', metadata={'help': "The language for the conversation. \n Choose between 'en' (english), 'fr' (french), 'es' (spanish), \n 'zh' (chinese), 'ko' (korean), 'ja' (japanese), or 'None'.\n If using 'auto', the language is automatically detected and can\n change during the conversation. Default is 'en'."}) # File: speech-to-speech-main/baseHandler.py from time import perf_counter import logging logger = logging.getLogger(__name__) class BaseHandler: def __init__(self, stop_event, queue_in, queue_out, setup_args=(), setup_kwargs={}): self.stop_event = stop_event self.queue_in = queue_in self.queue_out = queue_out self.setup(*setup_args, **setup_kwargs) self._times = [] def setup(self): pass def process(self): raise NotImplementedError def run(self): while not self.stop_event.is_set(): input = self.queue_in.get() if isinstance(input, bytes) and input == b'END': logger.debug('Stopping thread') break start_time = perf_counter() for output in self.process(input): self._times.append(perf_counter() - start_time) if self.last_time > self.min_time_to_debug: logger.debug(f'{self.__class__.__name__}: {self.last_time: .3f} s') self.queue_out.put(output) start_time = perf_counter() self.cleanup() self.queue_out.put(b'END') @property def last_time(self): return self._times[-1] @property def min_time_to_debug(self): return 0.001 def cleanup(self): pass # File: speech-to-speech-main/connections/local_audio_streamer.py import threading import sounddevice as sd import numpy as np import time import logging logger = logging.getLogger(__name__) class LocalAudioStreamer: def __init__(self, input_queue, output_queue, list_play_chunk_size=512): self.list_play_chunk_size = list_play_chunk_size self.stop_event = threading.Event() self.input_queue = input_queue self.output_queue = output_queue def run(self): def callback(indata, outdata, frames, time, status): if self.output_queue.empty(): self.input_queue.put(indata.copy()) outdata[:] = 0 * outdata else: outdata[:] = self.output_queue.get()[:, np.newaxis] logger.debug('Available devices:') logger.debug(sd.query_devices()) with sd.Stream(samplerate=16000, dtype='int16', channels=1, callback=callback, blocksize=self.list_play_chunk_size): logger.info('Starting local audio stream') while not self.stop_event.is_set(): time.sleep(0.001) print('Stopping recording') # File: speech-to-speech-main/connections/socket_receiver.py import socket from rich.console import Console import logging logger = logging.getLogger(__name__) console = Console() class SocketReceiver: def __init__(self, stop_event, queue_out, should_listen, host='0.0.0.0', port=12345, chunk_size=1024): self.stop_event = stop_event self.queue_out = queue_out self.should_listen = should_listen self.chunk_size = chunk_size self.host = host self.port = port def receive_full_chunk(self, conn, chunk_size): data = b'' while len(data) < chunk_size: packet = conn.recv(chunk_size - len(data)) if not packet: return None data += packet return data def run(self): self.socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) self.socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) self.socket.bind((self.host, self.port)) self.socket.listen(1) logger.info('Receiver waiting to be connected...') (self.conn, _) = self.socket.accept() logger.info('receiver connected') self.should_listen.set() while not self.stop_event.is_set(): audio_chunk = self.receive_full_chunk(self.conn, self.chunk_size) if audio_chunk is None: self.queue_out.put(b'END') break if self.should_listen.is_set(): self.queue_out.put(audio_chunk) self.conn.close() logger.info('Receiver closed') # File: speech-to-speech-main/connections/socket_sender.py import socket from rich.console import Console import logging logger = logging.getLogger(__name__) console = Console() class SocketSender: def __init__(self, stop_event, queue_in, host='0.0.0.0', port=12346): self.stop_event = stop_event self.queue_in = queue_in self.host = host self.port = port def run(self): self.socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) self.socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) self.socket.bind((self.host, self.port)) self.socket.listen(1) logger.info('Sender waiting to be connected...') (self.conn, _) = self.socket.accept() logger.info('sender connected') while not self.stop_event.is_set(): audio_chunk = self.queue_in.get() self.conn.sendall(audio_chunk) if isinstance(audio_chunk, bytes) and audio_chunk == b'END': break self.conn.close() logger.info('Sender closed') # File: speech-to-speech-main/listen_and_play.py import socket import threading from queue import Queue from dataclasses import dataclass, field import sounddevice as sd from transformers import HfArgumentParser @dataclass class ListenAndPlayArguments: send_rate: int = field(default=16000, metadata={'help': 'In Hz. Default is 16000.'}) recv_rate: int = field(default=16000, metadata={'help': 'In Hz. Default is 16000.'}) list_play_chunk_size: int = field(default=1024, metadata={'help': 'The size of data chunks (in bytes). Default is 1024.'}) host: str = field(default='localhost', metadata={'help': "The hostname or IP address for listening and playing. Default is 'localhost'."}) send_port: int = field(default=12345, metadata={'help': 'The network port for sending data. Default is 12345.'}) recv_port: int = field(default=12346, metadata={'help': 'The network port for receiving data. Default is 12346.'}) def listen_and_play(send_rate=16000, recv_rate=44100, list_play_chunk_size=1024, host='localhost', send_port=12345, recv_port=12346): send_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) send_socket.connect((host, send_port)) recv_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) recv_socket.connect((host, recv_port)) print('Recording and streaming...') stop_event = threading.Event() recv_queue = Queue() send_queue = Queue() def callback_recv(outdata, frames, time, status): if not recv_queue.empty(): data = recv_queue.get() outdata[:len(data)] = data outdata[len(data):] = b'\x00' * (len(outdata) - len(data)) else: outdata[:] = b'\x00' * len(outdata) def callback_send(indata, frames, time, status): if recv_queue.empty(): data = bytes(indata) send_queue.put(data) def send(stop_event, send_queue): while not stop_event.is_set(): data = send_queue.get() send_socket.sendall(data) def recv(stop_event, recv_queue): def receive_full_chunk(conn, chunk_size): data = b'' while len(data) < chunk_size: packet = conn.recv(chunk_size - len(data)) if not packet: return None data += packet return data while not stop_event.is_set(): data = receive_full_chunk(recv_socket, list_play_chunk_size * 2) if data: recv_queue.put(data) try: send_stream = sd.RawInputStream(samplerate=send_rate, channels=1, dtype='int16', blocksize=list_play_chunk_size, callback=callback_send) recv_stream = sd.RawOutputStream(samplerate=recv_rate, channels=1, dtype='int16', blocksize=list_play_chunk_size, callback=callback_recv) threading.Thread(target=send_stream.start).start() threading.Thread(target=recv_stream.start).start() send_thread = threading.Thread(target=send, args=(stop_event, send_queue)) send_thread.start() recv_thread = threading.Thread(target=recv, args=(stop_event, recv_queue)) recv_thread.start() input('Press Enter to stop...') except KeyboardInterrupt: print('Finished streaming.') finally: stop_event.set() recv_thread.join() send_thread.join() send_socket.close() recv_socket.close() print('Connection closed.') if __name__ == '__main__': parser = HfArgumentParser((ListenAndPlayArguments,)) (listen_and_play_kwargs,) = parser.parse_args_into_dataclasses() listen_and_play(**vars(listen_and_play_kwargs)) # File: speech-to-speech-main/s2s_pipeline.py import logging import os import sys from copy import copy from pathlib import Path from queue import Queue from threading import Event from typing import Optional from sys import platform from VAD.vad_handler import VADHandler from arguments_classes.chat_tts_arguments import ChatTTSHandlerArguments from arguments_classes.language_model_arguments import LanguageModelHandlerArguments from arguments_classes.mlx_language_model_arguments import MLXLanguageModelHandlerArguments from arguments_classes.module_arguments import ModuleArguments from arguments_classes.paraformer_stt_arguments import ParaformerSTTHandlerArguments from arguments_classes.parler_tts_arguments import ParlerTTSHandlerArguments from arguments_classes.socket_receiver_arguments import SocketReceiverArguments from arguments_classes.socket_sender_arguments import SocketSenderArguments from arguments_classes.vad_arguments import VADHandlerArguments from arguments_classes.whisper_stt_arguments import WhisperSTTHandlerArguments from arguments_classes.melo_tts_arguments import MeloTTSHandlerArguments import torch import nltk from rich.console import Console from transformers import HfArgumentParser from utils.thread_manager import ThreadManager try: nltk.data.find('tokenizers/punkt_tab') except (LookupError, OSError): nltk.download('punkt_tab') try: nltk.data.find('tokenizers/averaged_perceptron_tagger_eng') except (LookupError, OSError): nltk.download('averaged_perceptron_tagger_eng') CURRENT_DIR = Path(__file__).resolve().parent os.environ['TORCHINDUCTOR_CACHE_DIR'] = os.path.join(CURRENT_DIR, 'tmp') console = Console() logging.getLogger('numba').setLevel(logging.WARNING) def prepare_args(args, prefix): gen_kwargs = {} for key in copy(args.__dict__): if key.startswith(prefix): value = args.__dict__.pop(key) new_key = key[len(prefix) + 1:] if new_key.startswith('gen_'): gen_kwargs[new_key[4:]] = value else: args.__dict__[new_key] = value args.__dict__['gen_kwargs'] = gen_kwargs def main(): parser = HfArgumentParser((ModuleArguments, SocketReceiverArguments, SocketSenderArguments, VADHandlerArguments, WhisperSTTHandlerArguments, ParaformerSTTHandlerArguments, LanguageModelHandlerArguments, MLXLanguageModelHandlerArguments, ParlerTTSHandlerArguments, MeloTTSHandlerArguments, ChatTTSHandlerArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith('.json'): (module_kwargs, socket_receiver_kwargs, socket_sender_kwargs, vad_handler_kwargs, whisper_stt_handler_kwargs, paraformer_stt_handler_kwargs, language_model_handler_kwargs, mlx_language_model_handler_kwargs, parler_tts_handler_kwargs, melo_tts_handler_kwargs, chat_tts_handler_kwargs) = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) else: (module_kwargs, socket_receiver_kwargs, socket_sender_kwargs, vad_handler_kwargs, whisper_stt_handler_kwargs, paraformer_stt_handler_kwargs, language_model_handler_kwargs, mlx_language_model_handler_kwargs, parler_tts_handler_kwargs, melo_tts_handler_kwargs, chat_tts_handler_kwargs) = parser.parse_args_into_dataclasses() global logger logging.basicConfig(level=module_kwargs.log_level.upper(), format='%(asctime)s - %(name)s - %(levelname)s - %(message)s') logger = logging.getLogger(__name__) if module_kwargs.log_level == 'debug': torch._logging.set_logs(graph_breaks=True, recompiles=True, cudagraphs=True) def optimal_mac_settings(mac_optimal_settings: Optional[str], *handler_kwargs): if mac_optimal_settings: for kwargs in handler_kwargs: if hasattr(kwargs, 'device'): kwargs.device = 'mps' if hasattr(kwargs, 'mode'): kwargs.mode = 'local' if hasattr(kwargs, 'stt'): kwargs.stt = 'whisper-mlx' if hasattr(kwargs, 'llm'): kwargs.llm = 'mlx-lm' if hasattr(kwargs, 'tts'): kwargs.tts = 'melo' optimal_mac_settings(module_kwargs.local_mac_optimal_settings, module_kwargs) if platform == 'darwin': if module_kwargs.device == 'cuda': raise ValueError("Cannot use CUDA on macOS. Please set the device to 'cpu' or 'mps'.") if module_kwargs.llm != 'mlx-lm': logger.warning('For macOS users, it is recommended to use mlx-lm. You can activate it by passing --llm mlx-lm.') if module_kwargs.tts != 'melo': logger.warning('If you experiences issues generating the voice, considering setting the tts to melo.') def overwrite_device_argument(common_device: Optional[str], *handler_kwargs): if common_device: for kwargs in handler_kwargs: if hasattr(kwargs, 'lm_device'): kwargs.lm_device = common_device if hasattr(kwargs, 'tts_device'): kwargs.tts_device = common_device if hasattr(kwargs, 'stt_device'): kwargs.stt_device = common_device if hasattr(kwargs, 'paraformer_stt_device'): kwargs.paraformer_stt_device = common_device overwrite_device_argument(module_kwargs.device, language_model_handler_kwargs, mlx_language_model_handler_kwargs, parler_tts_handler_kwargs, whisper_stt_handler_kwargs, paraformer_stt_handler_kwargs) prepare_args(whisper_stt_handler_kwargs, 'stt') prepare_args(paraformer_stt_handler_kwargs, 'paraformer_stt') prepare_args(language_model_handler_kwargs, 'lm') prepare_args(mlx_language_model_handler_kwargs, 'mlx_lm') prepare_args(parler_tts_handler_kwargs, 'tts') prepare_args(melo_tts_handler_kwargs, 'melo') prepare_args(chat_tts_handler_kwargs, 'chat_tts') stop_event = Event() should_listen = Event() recv_audio_chunks_queue = Queue() send_audio_chunks_queue = Queue() spoken_prompt_queue = Queue() text_prompt_queue = Queue() lm_response_queue = Queue() if module_kwargs.mode == 'local': from connections.local_audio_streamer import LocalAudioStreamer local_audio_streamer = LocalAudioStreamer(input_queue=recv_audio_chunks_queue, output_queue=send_audio_chunks_queue) comms_handlers = [local_audio_streamer] should_listen.set() else: from connections.socket_receiver import SocketReceiver from connections.socket_sender import SocketSender comms_handlers = [SocketReceiver(stop_event, recv_audio_chunks_queue, should_listen, host=socket_receiver_kwargs.recv_host, port=socket_receiver_kwargs.recv_port, chunk_size=socket_receiver_kwargs.chunk_size), SocketSender(stop_event, send_audio_chunks_queue, host=socket_sender_kwargs.send_host, port=socket_sender_kwargs.send_port)] vad = VADHandler(stop_event, queue_in=recv_audio_chunks_queue, queue_out=spoken_prompt_queue, setup_args=(should_listen,), setup_kwargs=vars(vad_handler_kwargs)) if module_kwargs.stt == 'whisper': from STT.whisper_stt_handler import WhisperSTTHandler stt = WhisperSTTHandler(stop_event, queue_in=spoken_prompt_queue, queue_out=text_prompt_queue, setup_kwargs=vars(whisper_stt_handler_kwargs)) elif module_kwargs.stt == 'whisper-mlx': from STT.lightning_whisper_mlx_handler import LightningWhisperSTTHandler stt = LightningWhisperSTTHandler(stop_event, queue_in=spoken_prompt_queue, queue_out=text_prompt_queue, setup_kwargs=vars(whisper_stt_handler_kwargs)) elif module_kwargs.stt == 'paraformer': from STT.paraformer_handler import ParaformerSTTHandler stt = ParaformerSTTHandler(stop_event, queue_in=spoken_prompt_queue, queue_out=text_prompt_queue, setup_kwargs=vars(paraformer_stt_handler_kwargs)) else: raise ValueError('The STT should be either whisper, whisper-mlx, or paraformer.') if module_kwargs.llm == 'transformers': from LLM.language_model import LanguageModelHandler lm = LanguageModelHandler(stop_event, queue_in=text_prompt_queue, queue_out=lm_response_queue, setup_kwargs=vars(language_model_handler_kwargs)) elif module_kwargs.llm == 'mlx-lm': from LLM.mlx_language_model import MLXLanguageModelHandler lm = MLXLanguageModelHandler(stop_event, queue_in=text_prompt_queue, queue_out=lm_response_queue, setup_kwargs=vars(mlx_language_model_handler_kwargs)) else: raise ValueError('The LLM should be either transformers or mlx-lm') if module_kwargs.tts == 'parler': from TTS.parler_handler import ParlerTTSHandler tts = ParlerTTSHandler(stop_event, queue_in=lm_response_queue, queue_out=send_audio_chunks_queue, setup_args=(should_listen,), setup_kwargs=vars(parler_tts_handler_kwargs)) elif module_kwargs.tts == 'melo': try: from TTS.melo_handler import MeloTTSHandler except RuntimeError as e: logger.error('Error importing MeloTTSHandler. You might need to run: python -m unidic download') raise e tts = MeloTTSHandler(stop_event, queue_in=lm_response_queue, queue_out=send_audio_chunks_queue, setup_args=(should_listen,), setup_kwargs=vars(melo_tts_handler_kwargs)) elif module_kwargs.tts == 'chatTTS': try: from TTS.chatTTS_handler import ChatTTSHandler except RuntimeError as e: logger.error('Error importing ChatTTSHandler') raise e tts = ChatTTSHandler(stop_event, queue_in=lm_response_queue, queue_out=send_audio_chunks_queue, setup_args=(should_listen,), setup_kwargs=vars(chat_tts_handler_kwargs)) else: raise ValueError('The TTS should be either parler, melo or chatTTS') try: pipeline_manager = ThreadManager([*comms_handlers, vad, stt, lm, tts]) pipeline_manager.start() except KeyboardInterrupt: pipeline_manager.stop() if __name__ == '__main__': main() |