File size: 18,056 Bytes
b1d4de0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 |
# File: text-embeddings-inference-main/backends/python/server/text_embeddings_server/cli.py import sys import typer from pathlib import Path from loguru import logger from typing import Optional from enum import Enum app = typer.Typer() class Dtype(str, Enum): float32 = 'float32' float16 = 'float16' bloat16 = 'bfloat16' @app.command() def serve(model_path: Path, dtype: Dtype='float32', uds_path: Path='/tmp/text-embeddings-server', logger_level: str='INFO', json_output: bool=False, otlp_endpoint: Optional[str]=None, otlp_service_name: str='text-embeddings-inference.server'): logger.remove() logger.add(sys.stdout, format='{message}', filter='text_embeddings_server', level=logger_level, serialize=json_output, backtrace=True, diagnose=False) from text_embeddings_server import server from text_embeddings_server.utils.tracing import setup_tracing if otlp_endpoint is not None: setup_tracing(otlp_endpoint=otlp_endpoint, otlp_service_name=otlp_service_name) dtype = None if dtype is None else dtype.value server.serve(model_path, dtype, uds_path) if __name__ == '__main__': app() # File: text-embeddings-inference-main/backends/python/server/text_embeddings_server/models/__init__.py import torch from loguru import logger from pathlib import Path from typing import Optional from transformers import AutoConfig from transformers.models.bert import BertConfig from text_embeddings_server.models.model import Model from text_embeddings_server.models.default_model import DefaultModel __all__ = ['Model'] torch.set_grad_enabled(False) FLASH_ATTENTION = True try: from text_embeddings_server.models.flash_bert import FlashBert except ImportError as e: logger.warning(f'Could not import Flash Attention enabled models: {e}') FLASH_ATTENTION = False if FLASH_ATTENTION: __all__.append(FlashBert) def get_model(model_path: Path, dtype: Optional[str]): if dtype == 'float32': dtype = torch.float32 elif dtype == 'float16': dtype = torch.float16 elif dtype == 'bfloat16': dtype = torch.bfloat16 else: raise RuntimeError(f'Unknown dtype {dtype}') if torch.cuda.is_available(): device = torch.device('cuda') else: if dtype != torch.float32: raise ValueError('CPU device only supports float32 dtype') device = torch.device('cpu') config = AutoConfig.from_pretrained(model_path) if config.model_type == 'bert': config: BertConfig if device.type == 'cuda' and config.position_embedding_type == 'absolute' and (dtype in [torch.float16, torch.bfloat16]) and FLASH_ATTENTION: return FlashBert(model_path, device, dtype) else: return DefaultModel(model_path, device, dtype) raise NotImplementedError # File: text-embeddings-inference-main/backends/python/server/text_embeddings_server/models/default_model.py import inspect import torch from pathlib import Path from typing import Type, List from transformers import AutoModel from opentelemetry import trace from text_embeddings_server.models import Model from text_embeddings_server.models.types import PaddedBatch, Embedding tracer = trace.get_tracer(__name__) class DefaultModel(Model): def __init__(self, model_path: Path, device: torch.device, dtype: torch.dtype): model = AutoModel.from_pretrained(model_path).to(dtype).to(device) self.hidden_size = model.config.hidden_size self.has_position_ids = inspect.signature(model.forward).parameters.get('position_ids', None) is not None self.has_token_type_ids = inspect.signature(model.forward).parameters.get('token_type_ids', None) is not None super(DefaultModel, self).__init__(model=model, dtype=dtype, device=device) @property def batch_type(self) -> Type[PaddedBatch]: return PaddedBatch @tracer.start_as_current_span('embed') def embed(self, batch: PaddedBatch) -> List[Embedding]: kwargs = {'input_ids': batch.input_ids, 'attention_mask': batch.attention_mask} if self.has_token_type_ids: kwargs['token_type_ids'] = batch.token_type_ids if self.has_position_ids: kwargs['position_ids'] = batch.position_ids output = self.model(**kwargs) embedding = output[0][:, 0] cpu_results = embedding.view(-1).tolist() return [Embedding(values=cpu_results[i * self.hidden_size:(i + 1) * self.hidden_size]) for i in range(len(batch))] # File: text-embeddings-inference-main/backends/python/server/text_embeddings_server/models/flash_bert.py import torch from pathlib import Path from torch import nn from typing import Type, List from safetensors import safe_open from transformers.activations import ACT2FN from transformers.models.bert import BertConfig from opentelemetry import trace import dropout_layer_norm from text_embeddings_server.models import Model from text_embeddings_server.models.types import FlashBatch, Embedding from text_embeddings_server.utils.flash_attn import attention tracer = trace.get_tracer(__name__) class FastLayerNorm: def __init__(self, prefix, handle, device, dtype, config: BertConfig): self.weight = handle.get_tensor(f'{prefix}.weight').to(dtype).to(device) self.bias = handle.get_tensor(f'{prefix}.bias').to(dtype).to(device) self.variance_epsilon = config.layer_norm_eps def forward(self, hidden_states, residual=None): (normed_hidden_states, res, *rest) = dropout_layer_norm.dropout_add_ln_fwd(hidden_states, residual, self.weight, self.bias, None, None, None, None, 0.0, self.variance_epsilon, 1.0, 0, None, False, False) if res is None: res = hidden_states return (normed_hidden_states, res) class BertEmbeddings: def __init__(self, prefix, handle, device, dtype, config: BertConfig): self.word_embeddings_weight = handle.get_tensor(f'{prefix}.word_embeddings.weight').to(dtype).to(device) self.token_type_embeddings_weight = handle.get_tensor(f'{prefix}.token_type_embeddings.weight').to(dtype).to(device) if config.position_embedding_type == 'absolute': self.position_embeddings_weight = handle.get_tensor(f'{prefix}.position_embeddings.weight').to(dtype).to(device) else: raise NotImplementedError('FlashBert only supports absolute position embeddings') self.layer_norm = FastLayerNorm(f'{prefix}.LayerNorm', handle, device, dtype, config) def forward(self, input_ids, token_type_ids, position_ids): inputs_embeds = nn.functional.embedding(input_ids, self.word_embeddings_weight) token_type_embeds = nn.functional.embedding(token_type_ids, self.token_type_embeddings_weight) position_embeds = nn.functional.embedding(position_ids, self.position_embeddings_weight) inputs_embeds += position_embeds (embeddings, _) = self.layer_norm.forward(inputs_embeds, token_type_embeds) return embeddings class BertAttention: def __init__(self, prefix, handle, device, dtype, config: BertConfig): query_weight = handle.get_tensor(f'{prefix}.self.query.weight') query_bias = handle.get_tensor(f'{prefix}.self.query.bias') key_weight = handle.get_tensor(f'{prefix}.self.key.weight') key_bias = handle.get_tensor(f'{prefix}.self.key.bias') value_weight = handle.get_tensor(f'{prefix}.self.value.weight') value_bias = handle.get_tensor(f'{prefix}.self.value.bias') self.qkv_weight = torch.cat([query_weight, key_weight, value_weight]).T.to(dtype).to(device) self.qkv_bias = torch.cat([query_bias, key_bias, value_bias]).to(dtype).to(device) self.dense_weight = handle.get_tensor(f'{prefix}.output.dense.weight').T.to(dtype).to(device) self.dense_bias = handle.get_tensor(f'{prefix}.output.dense.bias').to(dtype).to(device) self.layer_norm = FastLayerNorm(f'{prefix}.output.LayerNorm', handle, device, dtype, config) self.head_size = config.hidden_size // config.num_attention_heads self.softmax_scale = self.head_size ** (-0.5) self.num_heads = config.num_attention_heads def forward(self, hidden_states, cu_seqlens, max_s): residual = hidden_states qkv = torch.addmm(self.qkv_bias, hidden_states, self.qkv_weight) (q, k, v) = qkv.view(-1, self.num_heads * 3, self.head_size).split(self.num_heads, dim=1) attn_output = torch.empty_like(q) attention(q, k, v, attn_output, cu_seqlens, max_s, self.softmax_scale) hidden_states = torch.addmm(self.dense_bias, attn_output.view(-1, self.num_heads * self.head_size), self.dense_weight) (hidden_states, _) = self.layer_norm.forward(hidden_states, residual) return hidden_states class BertLayer: def __init__(self, prefix, handle, device, dtype, config: BertConfig): self.attention = BertAttention(f'{prefix}.attention', handle, device, dtype, config) self.intermediate_weight = handle.get_tensor(f'{prefix}.intermediate.dense.weight').T.to(dtype).to(device) self.intermediate_bias = handle.get_tensor(f'{prefix}.intermediate.dense.bias').to(dtype).to(device) act = config.hidden_act self.intermediate_act_fn = ACT2FN[act] if 'gelu' not in act else lambda x: torch.nn.functional.gelu(x, approximate='tanh' if act in ['gelu_fast', 'gelu_pytorch_tanh'] else 'none') self.output_weight = handle.get_tensor(f'{prefix}.output.dense.weight').T.to(dtype).to(device) self.output_bias = handle.get_tensor(f'{prefix}.output.dense.bias').to(dtype).to(device) self.layer_norm = FastLayerNorm(f'{prefix}.output.LayerNorm', handle, device, dtype, config) def forward(self, hidden_states, cu_seqlens, max_s): hidden_states = self.attention.forward(hidden_states, cu_seqlens, max_s) residual = hidden_states hidden_states = torch.addmm(self.intermediate_bias, hidden_states, self.intermediate_weight) hidden_states = self.intermediate_act_fn(hidden_states) hidden_states = torch.addmm(self.output_bias, hidden_states, self.output_weight) (hidden_states, _) = self.layer_norm.forward(hidden_states, residual) return hidden_states class BertEncoder: def __init__(self, prefix, handle, device, dtype, config: BertConfig): self.layers = [BertLayer(f'{prefix}.layer.{i}', handle, device, dtype, config) for i in range(config.num_hidden_layers)] def forward(self, hidden_states, cu_seqlens, max_s): for layer in self.layers: hidden_states = layer.forward(hidden_states, cu_seqlens, max_s) return hidden_states class FlashBertModel: def __init__(self, handle, device, dtype, config: BertConfig): self.embeddings = BertEmbeddings('embeddings', handle, device, dtype, config) self.encoder = BertEncoder('encoder', handle, device, dtype, config) def forward(self, input_ids, token_type_ids, position_ids, cu_seqlens, max_s): embeddings = self.embeddings.forward(input_ids, token_type_ids, position_ids) encoder_outputs = self.encoder.forward(embeddings, cu_seqlens, max_s) return encoder_outputs[cu_seqlens[:-1]] class FlashBert(Model): def __init__(self, model_path: Path, device: torch.device, dtype: torch.dtype): config = BertConfig.from_pretrained(model_path) with safe_open(model_path / 'model.safetensors', framework='pt') as f: model = FlashBertModel(f, device, dtype, config) self.hidden_size = config.hidden_size super(FlashBert, self).__init__(model=model, dtype=dtype, device=device) @property def batch_type(self) -> Type[FlashBatch]: return FlashBatch @tracer.start_as_current_span('embed') def embed(self, batch: FlashBatch) -> List[Embedding]: embedding = self.model.forward(input_ids=batch.input_ids, token_type_ids=batch.token_type_ids, position_ids=batch.position_ids, cu_seqlens=batch.cu_seqlens, max_s=batch.max_s) cpu_results = embedding.view(-1).tolist() return [Embedding(values=cpu_results[i * self.hidden_size:(i + 1) * self.hidden_size]) for i in range(len(batch))] # File: text-embeddings-inference-main/backends/python/server/text_embeddings_server/models/model.py import torch from abc import ABC, abstractmethod from typing import List, TypeVar, Type from text_embeddings_server.models.types import Batch, Embedding B = TypeVar('B', bound=Batch) class Model(ABC): def __init__(self, model, dtype: torch.dtype, device: torch.device): self.model = model self.dtype = dtype self.device = device @property @abstractmethod def batch_type(self) -> Type[B]: raise NotImplementedError @abstractmethod def embed(self, batch: B) -> List[Embedding]: raise NotImplementedError # File: text-embeddings-inference-main/backends/python/server/text_embeddings_server/models/types.py import torch from abc import ABC, abstractmethod from dataclasses import dataclass from opentelemetry import trace from text_embeddings_server.pb import embed_pb2 from text_embeddings_server.pb.embed_pb2 import Embedding tracer = trace.get_tracer(__name__) class Batch(ABC): @classmethod @abstractmethod def from_pb(cls, pb: embed_pb2.EmbedRequest, device: torch.device) -> 'Batch': raise NotImplementedError @abstractmethod def __len__(self): raise NotImplementedError @dataclass class PaddedBatch(Batch): input_ids: torch.Tensor token_type_ids: torch.Tensor position_ids: torch.Tensor attention_mask: torch.Tensor @classmethod @tracer.start_as_current_span('from_pb') def from_pb(cls, pb: embed_pb2.EmbedRequest, device: torch.device) -> 'PaddedBatch': all_tensors = torch.zeros([4, len(pb.cu_seq_lengths) - 1, pb.max_length], dtype=torch.int32) for (i, start_index) in enumerate(pb.cu_seq_lengths[:-1]): end_index = pb.cu_seq_lengths[i + 1] input_length = end_index - start_index all_tensors[0, i, :input_length] = torch.tensor(pb.input_ids[start_index:end_index], dtype=torch.int32) all_tensors[1, i, :input_length] = torch.tensor(pb.token_type_ids[start_index:end_index], dtype=torch.int32) all_tensors[2, i, :input_length] = torch.tensor(pb.position_ids[start_index:end_index], dtype=torch.int32) all_tensors[3, i, :input_length] = 1 all_tensors = all_tensors.to(device) return PaddedBatch(input_ids=all_tensors[0], token_type_ids=all_tensors[1], position_ids=all_tensors[2], attention_mask=all_tensors[3]) def __len__(self): return len(self.input_ids) @dataclass class FlashBatch(Batch): input_ids: torch.Tensor token_type_ids: torch.Tensor position_ids: torch.Tensor cu_seqlens: torch.Tensor max_s: int size: int @classmethod @tracer.start_as_current_span('from_pb') def from_pb(cls, pb: embed_pb2.EmbedRequest, device: torch.device) -> 'FlashBatch': if device.type != 'cuda': raise RuntimeError(f'FlashBatch does not support device {device}') batch_input_ids = torch.tensor(pb.input_ids, dtype=torch.int32, device=device) batch_token_type_ids = torch.tensor(pb.token_type_ids, dtype=torch.int32, device=device) batch_position_ids = torch.tensor(pb.position_ids, dtype=torch.int32, device=device) cu_seqlens = torch.tensor(pb.cu_seq_lengths, dtype=torch.int32, device=device) return FlashBatch(input_ids=batch_input_ids, token_type_ids=batch_token_type_ids, position_ids=batch_position_ids, cu_seqlens=cu_seqlens, max_s=pb.max_length, size=len(cu_seqlens) - 1) def __len__(self): return self.size # File: text-embeddings-inference-main/backends/python/server/text_embeddings_server/server.py import asyncio import torch from grpc import aio from loguru import logger from grpc_reflection.v1alpha import reflection from pathlib import Path from typing import Optional from text_embeddings_server.models import Model, get_model from text_embeddings_server.pb import embed_pb2_grpc, embed_pb2 from text_embeddings_server.utils.tracing import UDSOpenTelemetryAioServerInterceptor from text_embeddings_server.utils.interceptor import ExceptionInterceptor class EmbeddingService(embed_pb2_grpc.EmbeddingServiceServicer): def __init__(self, model: Model): self.model = model self._inference_mode_raii_guard = torch._C._InferenceMode(True) async def Health(self, request, context): if self.model.device.type == 'cuda': torch.zeros((2, 2), device='cuda') return embed_pb2.HealthResponse() async def Embed(self, request, context): batch = self.model.batch_type.from_pb(request, self.model.device) embeddings = self.model.embed(batch) return embed_pb2.EmbedResponse(embeddings=embeddings) def serve(model_path: Path, dtype: Optional[str], uds_path: Path): async def serve_inner(model_path: Path, dtype: Optional[str]=None): unix_socket = f'unix://{uds_path}' try: model = get_model(model_path, dtype) except Exception: logger.exception('Error when initializing model') raise server = aio.server(interceptors=[ExceptionInterceptor(), UDSOpenTelemetryAioServerInterceptor()]) embed_pb2_grpc.add_EmbeddingServiceServicer_to_server(EmbeddingService(model), server) SERVICE_NAMES = (embed_pb2.DESCRIPTOR.services_by_name['EmbeddingService'].full_name, reflection.SERVICE_NAME) reflection.enable_server_reflection(SERVICE_NAMES, server) server.add_insecure_port(unix_socket) await server.start() logger.info(f'Server started at {unix_socket}') try: await server.wait_for_termination() except KeyboardInterrupt: logger.info('Signal received. Shutting down') await server.stop(0) asyncio.run(serve_inner(model_path, dtype)) |