docs / huggingface_alignment-handbook.txt
danidarko's picture
Upload 59 files
b1d4de0 verified
# File: alignment-handbook-main/src/alignment/__init__.py
__version__ = '0.3.0.dev0'
from .configs import DataArguments, DPOConfig, H4ArgumentParser, ModelArguments, SFTConfig
from .data import apply_chat_template, get_datasets
from .decontaminate import decontaminate_humaneval
from .model_utils import get_checkpoint, get_kbit_device_map, get_peft_config, get_quantization_config, get_tokenizer, is_adapter_model
__all__ = ['DataArguments', 'DPOConfig', 'H4ArgumentParser', 'ModelArguments', 'SFTConfig', 'apply_chat_template', 'get_datasets', 'decontaminate_humaneval', 'get_checkpoint', 'get_kbit_device_map', 'get_peft_config', 'get_quantization_config', 'get_tokenizer', 'is_adapter_model']
# File: alignment-handbook-main/src/alignment/configs.py
import dataclasses
import os
import sys
from dataclasses import dataclass, field
from typing import Any, Dict, List, NewType, Optional, Tuple
from transformers import MODEL_FOR_CAUSAL_LM_MAPPING, HfArgumentParser
import trl
MODEL_CONFIG_CLASSES = list(MODEL_FOR_CAUSAL_LM_MAPPING.keys())
MODEL_TYPES = tuple((conf.model_type for conf in MODEL_CONFIG_CLASSES))
DataClassType = NewType('DataClassType', Any)
class H4ArgumentParser(HfArgumentParser):
def parse_yaml_and_args(self, yaml_arg: str, other_args: Optional[List[str]]=None) -> List[dataclass]:
arg_list = self.parse_yaml_file(os.path.abspath(yaml_arg))
outputs = []
other_args = {arg.split('=')[0].strip('-'): arg.split('=')[1] for arg in other_args}
used_args = {}
for (data_yaml, data_class) in zip(arg_list, self.dataclass_types):
keys = {f.name for f in dataclasses.fields(data_yaml) if f.init}
inputs = {k: v for (k, v) in vars(data_yaml).items() if k in keys}
for (arg, val) in other_args.items():
if arg in keys:
base_type = data_yaml.__dataclass_fields__[arg].type
inputs[arg] = val
if base_type in [int, float]:
inputs[arg] = base_type(val)
if base_type == List[str]:
inputs[arg] = [str(v) for v in val.split(',')]
if base_type is bool:
if val in ['true', 'True']:
inputs[arg] = True
else:
inputs[arg] = False
if arg not in used_args:
used_args[arg] = val
else:
raise ValueError(f'Duplicate argument provided: {arg}, may cause unexpected behavior')
obj = data_class(**inputs)
outputs.append(obj)
return outputs
def parse(self) -> DataClassType | Tuple[DataClassType]:
if len(sys.argv) == 2 and sys.argv[1].endswith('.yaml'):
output = self.parse_yaml_file(os.path.abspath(sys.argv[1]))
elif len(sys.argv) > 2 and sys.argv[1].endswith('.yaml'):
output = self.parse_yaml_and_args(os.path.abspath(sys.argv[1]), sys.argv[2:])
else:
output = self.parse_args_into_dataclasses()
if len(output) == 1:
output = output[0]
return output
@dataclass
class ModelArguments:
base_model_revision: Optional[str] = field(default=None, metadata={'help': 'The base model checkpoint for weights initialization with PEFT adapters.'})
model_name_or_path: Optional[str] = field(default=None, metadata={'help': "The model checkpoint for weights initialization. Don't set if you want to train a model from scratch."})
model_revision: str = field(default='main', metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'})
model_code_revision: str = field(default=None, metadata={'help': 'The branch of the IFT model'})
torch_dtype: Optional[str] = field(default=None, metadata={'help': "Override the default `torch.dtype` and load the model under this dtype. If `auto` is passed, the dtype will be automatically derived from the model's weights.", 'choices': ['auto', 'bfloat16', 'float16', 'float32']})
tokenizer_name_or_path: Optional[str] = field(default=None, metadata={'help': 'The path to the tokenizer. Useful if you want to use a different tokenizer to the one stored in `model_name_or_path`.'})
trust_remote_code: bool = field(default=False, metadata={'help': 'Trust remote code when loading a model.'})
attn_implementation: Optional[str] = field(default=None, metadata={'help': 'Which attention implementation to use; you can use --attn_implementation=flash_attention_2, in which case you must install this manually by running `pip install flash-attn --no-build-isolation`'})
use_peft: bool = field(default=False, metadata={'help': 'Whether to use PEFT or not for training.'})
lora_r: Optional[int] = field(default=16, metadata={'help': 'LoRA R value.'})
lora_alpha: Optional[int] = field(default=32, metadata={'help': 'LoRA alpha.'})
lora_dropout: Optional[float] = field(default=0.05, metadata={'help': 'LoRA dropout.'})
lora_target_modules: Optional[List[str]] = field(default=None, metadata={'help': 'LoRA target modules.'})
lora_modules_to_save: Optional[List[str]] = field(default=None, metadata={'help': 'Model layers to unfreeze & train'})
load_in_8bit: bool = field(default=False, metadata={'help': 'use 8 bit precision'})
load_in_4bit: bool = field(default=False, metadata={'help': 'use 4 bit precision'})
bnb_4bit_quant_type: Optional[str] = field(default='nf4', metadata={'help': 'precise the quantization type (fp4 or nf4)'})
use_bnb_nested_quant: bool = field(default=False, metadata={'help': 'use nested quantization'})
bnb_4bit_quant_storage: Optional[str] = field(default='uint8', metadata={'help': 'storage type to pack the quanitzed 4-bit prarams.'})
def __post_init__(self):
if self.load_in_8bit and self.load_in_4bit:
raise ValueError("You can't use 8 bit and 4 bit precision at the same time")
@dataclass
class DataArguments:
chat_template: Optional[str] = field(default=None, metadata={'help': 'The chat template to use.'})
dataset_mixer: Optional[Dict[str, float]] = field(default=None, metadata={'help': 'Datasets and their proportions to be used for training ift/rl.'})
text_column: Optional[str] = field(default='text', metadata={'help': 'The column name to use for the text in the dataset (only used for continued pretraining).'})
dataset_splits: Optional[List[str]] = field(default_factory=lambda : ['train', 'test'], metadata={'help': 'List of train test splits to use in the dataset'})
dataset_configs: Optional[List[str]] = field(default=None, metadata={'help': "List of dataset config names. If given must be the same length as 'dataset_mixer' keys."})
preprocessing_num_workers: Optional[int] = field(default=None, metadata={'help': 'The number of processes to use for the preprocessing.'})
truncation_side: Optional[str] = field(default=None, metadata={'help': 'Truncation side to use for the tokenizer.'})
auto_insert_empty_system_msg: bool = field(default=True, metadata={'help': 'Whether to automatically insert an empty system message as the first message if `system` is mentioned in the chat template.'})
@dataclass
class SFTConfig(trl.SFTConfig):
hub_model_revision: Optional[str] = field(default='main', metadata={'help': 'The Hub model branch to push the model to.'})
logging_first_step: bool = field(default=True, metadata={'help': 'Whether to log and evaluate the first global_step or not.'})
@dataclass
class DPOConfig(trl.DPOConfig):
hub_model_revision: Optional[str] = field(default='main', metadata={'help': 'The Hub model branch to push the model to.'})
logging_first_step: bool = field(default=True, metadata={'help': 'Whether to log and evaluate the first global_step or not.'})
optim: Optional[str] = field(default='rmsprop')
remove_unused_columns: bool = field(default=False)
# File: alignment-handbook-main/src/alignment/data.py
import os
from typing import Any, List, Literal, Optional
from datasets import DatasetDict, concatenate_datasets, load_dataset, load_from_disk
from datasets.builder import DatasetGenerationError
from .configs import DataArguments
DEFAULT_CHAT_TEMPLATE = "{% for message in messages %}\n{% if message['role'] == 'user' %}\n{{ '<|user|>\n' + message['content'] + eos_token }}\n{% elif message['role'] == 'system' %}\n{{ '<|system|>\n' + message['content'] + eos_token }}\n{% elif message['role'] == 'assistant' %}\n{{ '<|assistant|>\n' + message['content'] + eos_token }}\n{% endif %}\n{% if loop.last and add_generation_prompt %}\n{{ '<|assistant|>' }}\n{% endif %}\n{% endfor %}"
def maybe_insert_system_message(messages, tokenizer):
if messages[0]['role'] == 'system':
return
chat_template = tokenizer.chat_template
if chat_template is None:
chat_template = tokenizer.get_chat_template()
if 'system' in chat_template or '<|im_start|>' in chat_template:
messages.insert(0, {'role': 'system', 'content': ''})
def apply_chat_template(example, tokenizer, task: Literal['sft', 'generation', 'rm', 'dpo'], auto_insert_empty_system_msg: bool=True):
if task in ['sft', 'generation']:
messages = example['messages']
if auto_insert_empty_system_msg:
maybe_insert_system_message(messages, tokenizer)
example['text'] = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True if task == 'generation' else False)
elif task == 'rm':
if all((k in example.keys() for k in ('chosen', 'rejected'))):
chosen_messages = example['chosen']
rejected_messages = example['rejected']
if auto_insert_empty_system_msg:
maybe_insert_system_message(chosen_messages, tokenizer)
maybe_insert_system_message(rejected_messages, tokenizer)
example['text_chosen'] = tokenizer.apply_chat_template(chosen_messages, tokenize=False)
example['text_rejected'] = tokenizer.apply_chat_template(rejected_messages, tokenize=False)
else:
raise ValueError(f'Could not format example as dialogue for `rm` task! Require `[chosen, rejected]` keys but found {list(example.keys())}')
elif task in ['dpo', 'orpo']:
if all((k in example.keys() for k in ('chosen', 'rejected'))):
if not is_openai_format(example['chosen']) or not is_openai_format(example['rejected']):
raise ValueError(f'Could not format example as dialogue for `{task}` task! Require OpenAI format for all messages')
if 'prompt' in example and is_openai_format(example['prompt']):
prompt_messages = example['prompt']
chosen_messages = example['chosen']
rejected_messages = example['rejected']
else:
prompt_messages = example['chosen'][:-1]
chosen_messages = example['chosen'][-1:]
rejected_messages = example['rejected'][-1:]
if auto_insert_empty_system_msg:
maybe_insert_system_message(prompt_messages, tokenizer)
example['text_prompt'] = tokenizer.apply_chat_template(prompt_messages, tokenize=False)
example['text_chosen'] = tokenizer.apply_chat_template(chosen_messages, tokenize=False)
example['text_rejected'] = tokenizer.apply_chat_template(rejected_messages, tokenize=False)
else:
raise ValueError(f'Could not format example as dialogue for `{task}` task! Require either the `[chosen, rejected]` or `[prompt, chosen, rejected]` keys but found {list(example.keys())}')
else:
raise ValueError(f"Task {task} not supported, please ensure that the provided task is one of ['sft', 'generation', 'rm', 'dpo', 'orpo']")
return example
def is_openai_format(messages: Any) -> bool:
if isinstance(messages, list) and all((isinstance(message, dict) for message in messages)):
return all(('role' in message and 'content' in message for message in messages))
return False
def get_datasets(data_config: DataArguments | dict, splits: Optional[List[str]]=None, configs: Optional[List[str]]=None, columns_to_keep: Optional[List[str]]=None, shuffle: bool=True) -> DatasetDict:
if type(data_config) is DataArguments:
dataset_mixer = data_config.dataset_mixer
elif isinstance(data_config, dict):
dataset_mixer = data_config
else:
raise ValueError(f'Data config {data_config} not recognized.')
raw_datasets = mix_datasets(dataset_mixer, splits=splits, configs=configs, columns_to_keep=columns_to_keep, shuffle=shuffle)
return raw_datasets
def mix_datasets(dataset_mixer: dict, splits: Optional[List[str]]=None, configs: Optional[List[str]]=None, columns_to_keep: Optional[List[str]]=None, shuffle=True) -> DatasetDict:
splits = ['train', 'test'] if splits is None else splits
configs = [None] * len(dataset_mixer) if not configs else configs
columns_to_keep = [] if columns_to_keep is None else columns_to_keep
if configs is not None and len(configs) != len(dataset_mixer):
raise ValueError('The number of given dataset config names must be the same as the given number of datasets.')
raw_datasets = DatasetDict()
raw_train_datasets = []
raw_val_datasets = []
fracs = []
for ((ds, frac), ds_config) in zip(dataset_mixer.items(), configs):
fracs.append(frac)
for split in splits:
try:
dataset = load_dataset(ds, ds_config, split=split)
except DatasetGenerationError:
dataset = load_from_disk(os.path.join(ds, split))
dataset = dataset.remove_columns([col for col in dataset.column_names if col not in columns_to_keep])
if 'train' in split:
raw_train_datasets.append(dataset)
elif 'test' in split:
raw_val_datasets.append(dataset)
else:
raise ValueError(f'Split type {split} not recognized as one of test or train.')
if any((frac < 0 for frac in fracs)):
raise ValueError('Dataset fractions cannot be negative.')
if len(raw_train_datasets) > 0:
train_subsets = []
for (dataset, frac) in zip(raw_train_datasets, fracs):
train_subset = dataset.select(range(int(frac * len(dataset))))
train_subsets.append(train_subset)
if shuffle:
raw_datasets['train'] = concatenate_datasets(train_subsets).shuffle(seed=42)
else:
raw_datasets['train'] = concatenate_datasets(train_subsets)
if len(raw_val_datasets) > 0:
if shuffle:
raw_datasets['test'] = concatenate_datasets(raw_val_datasets).shuffle(seed=42)
else:
raw_datasets['test'] = concatenate_datasets(raw_val_datasets)
if len(raw_datasets) == 0:
raise ValueError(f'Dataset {dataset_mixer} not recognized with splits {splits}. Check the dataset has been correctly formatted.')
return raw_datasets
# File: alignment-handbook-main/src/alignment/decontaminate.py
from typing import Any, Dict, List
from datasets import load_dataset
HUMAN_EVAL_STRINGS_OK = ['return x + y', 'return len(string)', 'return n**2', 'return .join(strings)']
def extract_docstring(prompt: str) -> str:
if '"""' in prompt:
if prompt.count('"""') == 2:
return prompt.split('"""')[1].strip()
elif prompt.count('"""') == 4:
return prompt.split('"""')[3].strip()
else:
raise ValueError()
elif "'''" in prompt:
assert prompt.count("'''") == 2
return prompt.split("'''")[1].strip()
else:
raise ValueError()
def human_eval_docstrings() -> List[str]:
ds = load_dataset('openai_humaneval', split='test')
docstrings = [extract_docstring(v['prompt']) for v in ds]
return docstrings
def load_dataset_column(dataset: str, column: str, split: str, name=None) -> List[str]:
ds = load_dataset(dataset, split=split, name=name)
res = [sample[column].strip() for sample in ds]
return [sample for sample in res if len(sample) > 0]
FILTER_OUT = {'human_eval_docstrings': human_eval_docstrings(), 'human_eval_solutions': [s for s in load_dataset_column('openai_humaneval', 'canonical_solution', 'test') if s not in HUMAN_EVAL_STRINGS_OK]}
def normalize_whitespace(text: str) -> str:
return ' '.join(text.split())
def decontaminate_humaneval(samples: List[Dict[str, Any]], text_column: str='text', filter_out: Dict[str, List[str]]=FILTER_OUT) -> List[Dict[str, Any]]:
output = []
for content in samples[text_column]:
content = normalize_whitespace(content.lower())
matched = False
for (_, substrings) in filter_out.items():
for substring in substrings:
if normalize_whitespace(substring.lower()) in content:
matched = True
break
if matched:
break
output.append(not matched)
return output
# File: alignment-handbook-main/src/alignment/model_utils.py
import os
from pathlib import Path
from typing import Dict
import torch
from transformers import AutoTokenizer, BitsAndBytesConfig, PreTrainedTokenizer
from transformers.trainer_utils import get_last_checkpoint
from accelerate import Accelerator
from huggingface_hub import list_repo_files
from huggingface_hub.utils._errors import RepositoryNotFoundError
from huggingface_hub.utils._validators import HFValidationError
from peft import LoraConfig, PeftConfig
from .configs import DataArguments, DPOConfig, ModelArguments, SFTConfig
from .data import DEFAULT_CHAT_TEMPLATE
def get_current_device() -> int:
return Accelerator().local_process_index if torch.cuda.is_available() else 'cpu'
def get_kbit_device_map() -> Dict[str, int] | None:
return {'': get_current_device()} if torch.cuda.is_available() else None
def get_quantization_config(model_args: ModelArguments) -> BitsAndBytesConfig | None:
if model_args.load_in_4bit:
compute_dtype = torch.float16
if model_args.torch_dtype not in {'auto', None}:
compute_dtype = getattr(torch, model_args.torch_dtype)
quantization_config = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_compute_dtype=compute_dtype, bnb_4bit_quant_type=model_args.bnb_4bit_quant_type, bnb_4bit_use_double_quant=model_args.use_bnb_nested_quant, bnb_4bit_quant_storage=model_args.bnb_4bit_quant_storage).to_dict()
elif model_args.load_in_8bit:
quantization_config = BitsAndBytesConfig(load_in_8bit=True).to_dict()
else:
quantization_config = None
return quantization_config
def get_tokenizer(model_args: ModelArguments, data_args: DataArguments, auto_set_chat_template: bool=True) -> PreTrainedTokenizer:
tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path if model_args.tokenizer_name_or_path is None else model_args.tokenizer_name_or_path, revision=model_args.model_revision, trust_remote_code=model_args.trust_remote_code)
if tokenizer.pad_token_id is None:
tokenizer.pad_token_id = tokenizer.eos_token_id
if data_args.truncation_side is not None:
tokenizer.truncation_side = data_args.truncation_side
if tokenizer.model_max_length > 100000:
tokenizer.model_max_length = 2048
if data_args.chat_template is not None:
tokenizer.chat_template = data_args.chat_template
elif auto_set_chat_template and tokenizer.get_chat_template() is None:
tokenizer.chat_template = DEFAULT_CHAT_TEMPLATE
return tokenizer
def get_peft_config(model_args: ModelArguments) -> PeftConfig | None:
if model_args.use_peft is False:
return None
peft_config = LoraConfig(r=model_args.lora_r, lora_alpha=model_args.lora_alpha, lora_dropout=model_args.lora_dropout, bias='none', task_type='CAUSAL_LM', target_modules=model_args.lora_target_modules, modules_to_save=model_args.lora_modules_to_save)
return peft_config
def is_adapter_model(model_name_or_path: str, revision: str='main') -> bool:
try:
repo_files = list_repo_files(model_name_or_path, revision=revision)
except (HFValidationError, RepositoryNotFoundError):
repo_files = os.listdir(model_name_or_path)
return 'adapter_model.safetensors' in repo_files or 'adapter_model.bin' in repo_files
def get_checkpoint(training_args: SFTConfig | DPOConfig) -> Path | None:
last_checkpoint = None
if os.path.isdir(training_args.output_dir):
last_checkpoint = get_last_checkpoint(training_args.output_dir)
return last_checkpoint
# File: alignment-handbook-main/src/alignment/release.py
import argparse
import re
import packaging.version
REPLACE_PATTERNS = {'init': (re.compile('^__version__\\s+=\\s+"([^"]+)"\\s*$', re.MULTILINE), '__version__ = "VERSION"\n'), 'setup': (re.compile('^(\\s*)version\\s*=\\s*"[^"]+",', re.MULTILINE), '\\1version="VERSION",'), 'citation': (re.compile('^version:\\s+[^ ]+', re.MULTILINE), 'version: VERSION'), 'readme': (re.compile('version\\s+=\\s+\\{[^}]+\\}', re.MULTILINE), 'version = {VERSION}')}
README_FILE = 'README.md'
REPLACE_FILES = {'init': 'src/alignment/__init__.py', 'setup': 'setup.py', 'citation': 'CITATION.cff', 'readme': README_FILE}
def update_version_in_file(fname, version, pattern):
with open(fname, 'r', encoding='utf-8', newline='\n') as f:
code = f.read()
(re_pattern, replace) = REPLACE_PATTERNS[pattern]
replace = replace.replace('VERSION', version)
code = re_pattern.sub(replace, code)
with open(fname, 'w', encoding='utf-8', newline='\n') as f:
f.write(code)
def global_version_update(version, patch=False):
for (pattern, fname) in REPLACE_FILES.items():
update_version_in_file(fname, version, pattern)
def get_version():
with open(REPLACE_FILES['init'], 'r') as f:
code = f.read()
default_version = REPLACE_PATTERNS['init'][0].search(code).groups()[0]
return packaging.version.parse(default_version)
def pre_release_work(patch=False):
default_version = get_version()
if patch and default_version.is_devrelease:
raise ValueError("Can't create a patch version from the dev branch, checkout a released version!")
if default_version.is_devrelease:
default_version = default_version.base_version
elif patch:
default_version = f'{default_version.major}.{default_version.minor}.{default_version.micro + 1}'
else:
default_version = f'{default_version.major}.{default_version.minor + 1}.0'
version = input(f'Which version are you releasing? [{default_version}]')
if len(version) == 0:
version = default_version
print(f'Updating version to {version}.')
global_version_update(version, patch=patch)
def post_release_work():
current_version = get_version()
dev_version = f'{current_version.major}.{current_version.minor + 1}.0.dev0'
current_version = current_version.base_version
version = input(f'Which version are we developing now? [{dev_version}]')
if len(version) == 0:
version = dev_version
print(f'Updating version to {version}.')
global_version_update(version)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--post_release', action='store_true', help='Whether this is pre or post release.')
parser.add_argument('--patch', action='store_true', help='Whether or not this is a patch release.')
args = parser.parse_args()
if not args.post_release:
pre_release_work(patch=args.patch)
elif args.patch:
print('Nothing to do after a patch :-)')
else:
post_release_work()