|
# File: api-inference-community-master-old/main.py |
|
import json |
|
import os |
|
import tempfile |
|
import time |
|
from io import BytesIO |
|
from mimetypes import guess_extension |
|
from typing import Any, Dict, List, Optional, Tuple |
|
import librosa |
|
import psutil |
|
import requests |
|
import soundfile |
|
import timm |
|
import torch |
|
import uvicorn |
|
from asteroid import separate |
|
from asteroid.models import BaseModel as AsteroidBaseModel |
|
from espnet2.bin.asr_inference import Speech2Text |
|
from espnet2.bin.tts_inference import Text2Speech |
|
from PIL import Image |
|
from starlette.applications import Starlette |
|
from starlette.background import BackgroundTask |
|
from starlette.middleware import Middleware |
|
from starlette.middleware.cors import CORSMiddleware |
|
from starlette.requests import Request |
|
from starlette.responses import FileResponse, JSONResponse |
|
from starlette.routing import Route |
|
from transformers import Speech2TextForConditionalGeneration, Speech2TextProcessor, Wav2Vec2ForCTC, Wav2Vec2Tokenizer |
|
HF_HEADER_COMPUTE_TIME = 'x-compute-time' |
|
AnyModel = Any |
|
AnyTokenizer = Any |
|
EXAMPLE_TTS_EN_MODEL_ID = 'julien-c/ljspeech_tts_train_tacotron2_raw_phn_tacotron_g2p_en_no_space_train' |
|
EXAMPLE_TTS_ZH_MODEL_ID = 'julien-c/kan-bayashi_csmsc_tacotron2' |
|
EXAMPLE_ASR_EN_MODEL_ID = 'julien-c/mini_an4_asr_train_raw_bpe_valid' |
|
EXAMPLE_SEP_ENH_MODEL_ID = 'mhu-coder/ConvTasNet_Libri1Mix_enhsingle' |
|
EXAMPLE_SEP_SEP_MODEL_ID = 'julien-c/DPRNNTasNet-ks16_WHAM_sepclean' |
|
WAV2VEV2_MODEL_IDS = ['facebook/wav2vec2-base-960h', 'facebook/wav2vec2-large-960h-lv60-self', 'facebook/wav2vec2-large-xlsr-53-dutch', 'facebook/wav2vec2-large-xlsr-53-french', 'facebook/wav2vec2-large-xlsr-53-german', 'facebook/wav2vec2-large-xlsr-53-italian', 'facebook/wav2vec2-large-xlsr-53-spanish', 'facebook/wav2vec2-large-xlsr-53-portuguese'] |
|
SPEECH_TO_TEXT_MODEL_IDS = ['facebook/s2t-small-librispeech-asr', 'facebook/s2t-medium-librispeech-asr', 'facebook/s2t-large-librispeech-asr', 'facebook/s2t-small-mustc-en-de-st', 'facebook/s2t-small-mustc-en-es-st', 'facebook/s2t-small-mustc-en-fr-st', 'facebook/s2t-small-mustc-en-it-st', 'facebook/s2t-small-mustc-en-nl-st', 'facebook/s2t-small-mustc-en-pt-st', 'facebook/s2t-small-mustc-en-ro-st', 'facebook/s2t-small-mustc-en-ru-st'] |
|
with open('data/imagenet-simple-labels.json') as f: |
|
IMAGENET_LABELS: List[str] = json.load(f) |
|
TTS_MODELS: Dict[str, AnyModel] = {} |
|
ASR_MODELS: Dict[str, AnyModel] = {} |
|
SEP_MODELS: Dict[str, AnyModel] = {} |
|
ASR_HF_MODELS: Dict[str, Tuple[AnyModel, AnyTokenizer]] = {} |
|
TIMM_MODELS: Dict[str, torch.nn.Module] = {} |
|
|
|
def home(request: Request): |
|
return JSONResponse({'ok': True}) |
|
|
|
def health(_): |
|
process = psutil.Process(os.getpid()) |
|
mem_info = process.memory_info() |
|
return JSONResponse({**process.as_dict(attrs=['memory_percent']), 'rss': mem_info.rss}) |
|
|
|
def list_models(_): |
|
all_models = {**TTS_MODELS, **ASR_MODELS, **SEP_MODELS, **{k: v[0] for (k, v) in ASR_HF_MODELS.items()}, **TIMM_MODELS} |
|
return JSONResponse({k: v.__class__.__name__ for (k, v) in all_models.items()}) |
|
|
|
async def post_inference_tts(request: Request, model: AnyModel): |
|
start = time.time() |
|
try: |
|
body = await request.json() |
|
except: |
|
return JSONResponse(status_code=400, content='Invalid JSON body') |
|
print(body) |
|
text = body['text'] |
|
outputs = model(text) |
|
speech = outputs[0] |
|
with tempfile.NamedTemporaryFile(suffix='.wav', delete=False) as tmp: |
|
soundfile.write(tmp.name, speech.numpy(), model.fs, 'PCM_16') |
|
return FileResponse(tmp.name, headers={HF_HEADER_COMPUTE_TIME: '{:.3f}'.format(time.time() - start)}, background=BackgroundTask(lambda f: os.unlink(f), tmp.name)) |
|
|
|
async def post_inference_asr(request: Request, model_id: str): |
|
start = time.time() |
|
content_type = request.headers['content-type'].split(';')[0] |
|
if content_type == 'application/json': |
|
body = await request.json() |
|
if 'url' not in body: |
|
return JSONResponse({'ok': False, 'message': f'Invalid json, no url key'}, status_code=400) |
|
url = body['url'] |
|
r = requests.get(url, stream=True) |
|
file_ext: Optional[str] = guess_extension(r.headers.get('content-type', ''), strict=False) |
|
blob = r.content |
|
else: |
|
file_ext: Optional[str] = guess_extension(content_type, strict=False) |
|
try: |
|
blob = await request.body() |
|
except Exception as exc: |
|
return JSONResponse({'ok': False, 'message': f'Invalid body: {exc}'}, status_code=400) |
|
with tempfile.NamedTemporaryFile(suffix=file_ext) as tmp: |
|
print(tmp, tmp.name) |
|
tmp.write(blob) |
|
tmp.flush() |
|
try: |
|
(speech, rate) = soundfile.read(tmp.name, dtype='float32') |
|
except: |
|
try: |
|
(speech, rate) = librosa.load(tmp.name, sr=16000) |
|
except Exception as exc: |
|
return JSONResponse({'ok': False, 'message': f'Invalid audio: {exc}'}, status_code=400) |
|
if len(speech.shape) > 1: |
|
speech = speech[:, 0] |
|
if rate != 16000: |
|
speech = librosa.resample(speech, rate, 16000) |
|
if model_id in ASR_HF_MODELS: |
|
if model_id in SPEECH_TO_TEXT_MODEL_IDS: |
|
(model, processor) = ASR_HF_MODELS.get(model_id) |
|
inputs = processor(speech, return_tensors='pt') |
|
generated_ids = model.generate(input_ids=inputs['features'], attention_mask=inputs['attention_mask']) |
|
text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] |
|
else: |
|
(model, tokenizer) = ASR_HF_MODELS.get(model_id) |
|
input_values = tokenizer(speech, return_tensors='pt').input_values |
|
logits = model(input_values).logits |
|
predicted_ids = torch.argmax(logits, dim=-1) |
|
text = tokenizer.decode(predicted_ids[0]) |
|
else: |
|
model = ASR_MODELS.get(model_id) |
|
outputs = model(speech) |
|
(text, *_) = outputs[0] |
|
print(text) |
|
return JSONResponse({'text': text}, headers={HF_HEADER_COMPUTE_TIME: '{:.3f}'.format(time.time() - start)}) |
|
|
|
async def post_inference_sep(request: Request, model: AnyModel): |
|
start = time.time() |
|
try: |
|
body = await request.body() |
|
with tempfile.NamedTemporaryFile() as tmp: |
|
tmp.write(body) |
|
tmp.flush() |
|
(wav, fs) = separate._load_audio(tmp.name) |
|
except Exception as exc: |
|
return JSONResponse({'ok': False, 'message': f'Invalid body: {exc}'}, status_code=400) |
|
wav = separate._resample(wav[:, 0], orig_sr=fs, target_sr=int(model.sample_rate)) |
|
(est_srcs,) = separate.numpy_separate(model, wav.reshape((1, 1, -1))) |
|
est = est_srcs[0] |
|
with tempfile.NamedTemporaryFile(suffix='.wav', delete=False) as tmp: |
|
soundfile.write(tmp.name, est, int(model.sample_rate), 'PCM_16') |
|
return FileResponse(tmp.name, headers={HF_HEADER_COMPUTE_TIME: '{:.3f}'.format(time.time() - start)}, background=BackgroundTask(lambda f: os.unlink(f), tmp.name)) |
|
|
|
async def post_inference_timm(request: Request, model: torch.nn.Module): |
|
start = time.time() |
|
content_type = request.headers['content-type'] |
|
if content_type == 'application/json': |
|
body = await request.json() |
|
if 'url' not in body: |
|
return JSONResponse({'ok': False, 'message': f'Invalid json, no url key'}, status_code=400) |
|
url = body['url'] |
|
img = Image.open(requests.get(url, stream=True).raw) |
|
else: |
|
try: |
|
body = await request.body() |
|
img = Image.open(BytesIO(body)) |
|
except Exception as exc: |
|
print(exc) |
|
return JSONResponse({'ok': False, 'message': f'Unable to open image from request'}, status_code=400) |
|
img = img.convert('RGB') |
|
config = model.default_cfg |
|
if isinstance(config['input_size'], tuple): |
|
img_size = config['input_size'][-2:] |
|
else: |
|
img_size = config['input_size'] |
|
transform = timm.data.transforms_factory.transforms_imagenet_eval(img_size=img_size, interpolation=config['interpolation'], mean=config['mean'], std=config['std']) |
|
input_tensor = transform(img) |
|
input_tensor = input_tensor.unsqueeze(0) |
|
with torch.no_grad(): |
|
output = model(input_tensor) |
|
probs = output.squeeze(0).softmax(dim=0) |
|
(values, indices) = torch.topk(probs, k=5) |
|
labels = [IMAGENET_LABELS[i] for i in indices] |
|
return JSONResponse([{'label': label, 'score': float(values[i])} for (i, label) in enumerate(labels)], headers={HF_HEADER_COMPUTE_TIME: '{:.3f}'.format(time.time() - start)}) |
|
|
|
async def post_inference(request: Request) -> JSONResponse: |
|
model_id = request.path_params['model_id'] |
|
if model_id in TTS_MODELS: |
|
model = TTS_MODELS.get(model_id) |
|
return await post_inference_tts(request, model) |
|
if model_id in ASR_MODELS or model_id in ASR_HF_MODELS: |
|
return await post_inference_asr(request, model_id) |
|
if model_id in SEP_MODELS: |
|
model = SEP_MODELS.get(model_id) |
|
return await post_inference_sep(request, model) |
|
if model_id in TIMM_MODELS: |
|
model = TIMM_MODELS.get(model_id) |
|
return await post_inference_timm(request, model) |
|
return JSONResponse(status_code=404, content='Unknown or unsupported model') |
|
routes = [Route('/', home), Route('/health', health), Route('/models', list_models), Route('/models/{model_id:path}', post_inference, methods=['POST'])] |
|
middlewares = [Middleware(CORSMiddleware, allow_origins=['*'], allow_methods=['*'], allow_headers=['*'], expose_headers=['*'])] |
|
app = Starlette(debug=True, routes=routes, middleware=middlewares) |
|
if __name__ == '__main__': |
|
start_time = time.time() |
|
for model_id in (EXAMPLE_TTS_EN_MODEL_ID, EXAMPLE_TTS_ZH_MODEL_ID): |
|
model = Text2Speech.from_pretrained(model_id, device='cpu') |
|
TTS_MODELS[model_id] = model |
|
for model_id in (EXAMPLE_ASR_EN_MODEL_ID,): |
|
model = Speech2Text.from_pretrained(model_id, device='cpu') |
|
ASR_MODELS[model_id] = model |
|
for model_id in (EXAMPLE_SEP_ENH_MODEL_ID, EXAMPLE_SEP_SEP_MODEL_ID): |
|
model = AsteroidBaseModel.from_pretrained(model_id) |
|
SEP_MODELS[model_id] = model |
|
for model_id in WAV2VEV2_MODEL_IDS: |
|
model = Wav2Vec2ForCTC.from_pretrained(model_id) |
|
tokenizer = Wav2Vec2Tokenizer.from_pretrained(model_id) |
|
ASR_HF_MODELS[model_id] = (model, tokenizer) |
|
for model_id in SPEECH_TO_TEXT_MODEL_IDS: |
|
model = Speech2TextForConditionalGeneration.from_pretrained(model_id) |
|
processor = Speech2TextProcessor.from_pretrained(model_id) |
|
ASR_HF_MODELS[model_id] = (model, processor) |
|
TIMM_MODELS['julien-c/timm-dpn92'] = timm.create_model('dpn92', pretrained=True).eval() |
|
TIMM_MODELS['sgugger/resnet50d'] = timm.create_model('resnet50d', pretrained=True).eval() |
|
print('models.loaded', time.time() - start_time) |
|
uvicorn.run(app, host='0.0.0.0', port=8000, timeout_keep_alive=0) |
|
|
|
|