|
# File: huggingface-inference-toolkit-main/src/huggingface_inference_toolkit/async_utils.py |
|
import functools |
|
from typing import Any, Callable, Dict, TypeVar |
|
import anyio |
|
from anyio import Semaphore |
|
from typing_extensions import ParamSpec |
|
MAX_CONCURRENT_THREADS = 1 |
|
MAX_THREADS_GUARD = Semaphore(MAX_CONCURRENT_THREADS) |
|
T = TypeVar('T') |
|
P = ParamSpec('P') |
|
|
|
async def async_handler_call(handler: Callable[P, T], body: Dict[str, Any]) -> T: |
|
async with MAX_THREADS_GUARD: |
|
return await anyio.to_thread.run_sync(functools.partial(handler, body)) |
|
|
|
# File: huggingface-inference-toolkit-main/src/huggingface_inference_toolkit/const.py |
|
import os |
|
from pathlib import Path |
|
from huggingface_inference_toolkit.env_utils import strtobool |
|
HF_MODEL_DIR = os.environ.get('HF_MODEL_DIR', '/opt/huggingface/model') |
|
HF_MODEL_ID = os.environ.get('HF_MODEL_ID', None) |
|
HF_TASK = os.environ.get('HF_TASK', None) |
|
HF_FRAMEWORK = os.environ.get('HF_FRAMEWORK', None) |
|
HF_REVISION = os.environ.get('HF_REVISION', None) |
|
HF_HUB_TOKEN = os.environ.get('HF_HUB_TOKEN', None) |
|
HF_TRUST_REMOTE_CODE = strtobool(os.environ.get('HF_TRUST_REMOTE_CODE', '0')) |
|
HF_DEFAULT_PIPELINE_NAME = os.environ.get('HF_DEFAULT_PIPELINE_NAME', 'handler.py') |
|
HF_MODULE_NAME = os.environ.get('HF_MODULE_NAME', f'{Path(HF_DEFAULT_PIPELINE_NAME).stem}.EndpointHandler') |
|
|
|
# File: huggingface-inference-toolkit-main/src/huggingface_inference_toolkit/diffusers_utils.py |
|
import importlib.util |
|
from typing import Union |
|
from transformers.utils.import_utils import is_torch_bf16_gpu_available |
|
from huggingface_inference_toolkit.logging import logger |
|
_diffusers = importlib.util.find_spec('diffusers') is not None |
|
|
|
def is_diffusers_available(): |
|
return _diffusers |
|
if is_diffusers_available(): |
|
import torch |
|
from diffusers import AutoPipelineForText2Image, DPMSolverMultistepScheduler, StableDiffusionPipeline |
|
|
|
class IEAutoPipelineForText2Image: |
|
|
|
def __init__(self, model_dir: str, device: Union[str, None]=None, **kwargs): |
|
dtype = torch.float32 |
|
if device == 'cuda': |
|
dtype = torch.bfloat16 if is_torch_bf16_gpu_available() else torch.float16 |
|
device_map = 'balanced' if device == 'cuda' else None |
|
self.pipeline = AutoPipelineForText2Image.from_pretrained(model_dir, torch_dtype=dtype, device_map=device_map, **kwargs) |
|
if isinstance(self.pipeline, StableDiffusionPipeline): |
|
try: |
|
self.pipeline.scheduler = DPMSolverMultistepScheduler.from_config(self.pipeline.scheduler.config) |
|
except Exception: |
|
pass |
|
|
|
def __call__(self, prompt, **kwargs): |
|
if 'num_images_per_prompt' in kwargs: |
|
kwargs.pop('num_images_per_prompt') |
|
logger.warning('Sending num_images_per_prompt > 1 to pipeline is not supported. Using default value 1.') |
|
out = self.pipeline(prompt, num_images_per_prompt=1, **kwargs) |
|
return out.images[0] |
|
DIFFUSERS_TASKS = {'text-to-image': IEAutoPipelineForText2Image} |
|
|
|
def get_diffusers_pipeline(task=None, model_dir=None, device=-1, **kwargs): |
|
device = 'cuda' if device == 0 else 'cpu' |
|
pipeline = DIFFUSERS_TASKS[task](model_dir=model_dir, device=device, **kwargs) |
|
return pipeline |
|
|
|
# File: huggingface-inference-toolkit-main/src/huggingface_inference_toolkit/env_utils.py |
|
def strtobool(val: str) -> bool: |
|
val = val.lower() |
|
if val in ('y', 'yes', 't', 'true', 'on', '1'): |
|
return True |
|
if val in ('n', 'no', 'f', 'false', 'off', '0'): |
|
return False |
|
raise ValueError(f'Invalid truth value, it should be a string but {val} was provided instead.') |
|
|
|
# File: huggingface-inference-toolkit-main/src/huggingface_inference_toolkit/handler.py |
|
import os |
|
from pathlib import Path |
|
from typing import Optional, Union |
|
from huggingface_inference_toolkit.const import HF_TRUST_REMOTE_CODE |
|
from huggingface_inference_toolkit.utils import check_and_register_custom_pipeline_from_directory, get_pipeline |
|
|
|
class HuggingFaceHandler: |
|
|
|
def __init__(self, model_dir: Union[str, Path], task=None, framework='pt'): |
|
self.pipeline = get_pipeline(model_dir=model_dir, task=task, framework=framework, trust_remote_code=HF_TRUST_REMOTE_CODE) |
|
|
|
def __call__(self, data): |
|
inputs = data.pop('inputs', data) |
|
parameters = data.pop('parameters', None) |
|
if parameters is not None: |
|
prediction = self.pipeline(inputs, **parameters) |
|
else: |
|
prediction = self.pipeline(inputs) |
|
return prediction |
|
|
|
class VertexAIHandler(HuggingFaceHandler): |
|
|
|
def __init__(self, model_dir: Union[str, Path], task=None, framework='pt'): |
|
super().__init__(model_dir, task, framework) |
|
|
|
def __call__(self, data): |
|
if 'instances' not in data: |
|
raise ValueError("The request body must contain a key 'instances' with a list of instances.") |
|
parameters = data.pop('parameters', None) |
|
predictions = [] |
|
for inputs in data['instances']: |
|
payload = {'inputs': inputs, 'parameters': parameters} |
|
predictions.append(super().__call__(payload)) |
|
return {'predictions': predictions} |
|
|
|
def get_inference_handler_either_custom_or_default_handler(model_dir: Path, task: Optional[str]=None): |
|
custom_pipeline = check_and_register_custom_pipeline_from_directory(model_dir) |
|
if custom_pipeline: |
|
return custom_pipeline |
|
elif os.environ.get('AIP_MODE', None) == 'PREDICTION': |
|
return VertexAIHandler(model_dir=model_dir, task=task) |
|
else: |
|
return HuggingFaceHandler(model_dir=model_dir, task=task) |
|
|
|
# File: huggingface-inference-toolkit-main/src/huggingface_inference_toolkit/logging.py |
|
import logging |
|
import sys |
|
|
|
def setup_logging(): |
|
for handler in logging.root.handlers[:]: |
|
logging.root.removeHandler(handler) |
|
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', datefmt='%Y-%m-%d %H:%M:%S', stream=sys.stdout) |
|
logging.getLogger('uvicorn').handlers.clear() |
|
logging.getLogger('uvicorn.access').handlers.clear() |
|
logging.getLogger('uvicorn.error').handlers.clear() |
|
logger = logging.getLogger('huggingface_inference_toolkit') |
|
return logger |
|
logger = setup_logging() |
|
|
|
# File: huggingface-inference-toolkit-main/src/huggingface_inference_toolkit/optimum_utils.py |
|
import importlib.util |
|
import os |
|
from huggingface_inference_toolkit.logging import logger |
|
_optimum_neuron = False |
|
if importlib.util.find_spec('optimum') is not None: |
|
if importlib.util.find_spec('optimum.neuron') is not None: |
|
_optimum_neuron = True |
|
|
|
def is_optimum_neuron_available(): |
|
return _optimum_neuron |
|
|
|
def get_input_shapes(model_dir): |
|
from transformers import AutoConfig |
|
input_shapes = {} |
|
input_shapes_available = False |
|
try: |
|
config = AutoConfig.from_pretrained(model_dir) |
|
if hasattr(config, 'neuron'): |
|
if config.neuron.get('static_batch_size', None) and config.neuron.get('static_sequence_length', None): |
|
input_shapes['batch_size'] = config.neuron['static_batch_size'] |
|
input_shapes['sequence_length'] = config.neuron['static_sequence_length'] |
|
input_shapes_available = True |
|
logger.info(f"Input shapes found in config file. Using input shapes from config with batch size {input_shapes['batch_size']} and sequence length {input_shapes['sequence_length']}") |
|
else: |
|
if os.environ.get('HF_OPTIMUM_BATCH_SIZE', None) is not None: |
|
logger.warning('HF_OPTIMUM_BATCH_SIZE environment variable is set. Environment variable will be ignored and input shapes from config file will be used.') |
|
if os.environ.get('HF_OPTIMUM_SEQUENCE_LENGTH', None) is not None: |
|
logger.warning('HF_OPTIMUM_SEQUENCE_LENGTH environment variable is set. Environment variable will be ignored and input shapes from config file will be used.') |
|
except Exception: |
|
input_shapes_available = False |
|
if input_shapes_available: |
|
return input_shapes |
|
sequence_length = os.environ.get('HF_OPTIMUM_SEQUENCE_LENGTH', None) |
|
if sequence_length is None: |
|
raise ValueError('HF_OPTIMUM_SEQUENCE_LENGTH environment variable is not set. Please set HF_OPTIMUM_SEQUENCE_LENGTH to a positive integer.') |
|
if not int(sequence_length) > 0: |
|
raise ValueError(f'HF_OPTIMUM_SEQUENCE_LENGTH must be set to a positive integer. Current value is {sequence_length}') |
|
batch_size = os.environ.get('HF_OPTIMUM_BATCH_SIZE', 1) |
|
logger.info(f'Using input shapes from environment variables with batch size {batch_size} and sequence length {sequence_length}') |
|
return {'batch_size': int(batch_size), 'sequence_length': int(sequence_length)} |
|
|
|
def get_optimum_neuron_pipeline(task, model_dir): |
|
logger.info('Getting optimum neuron pipeline.') |
|
from optimum.neuron.pipelines.transformers.base import NEURONX_SUPPORTED_TASKS, pipeline |
|
from optimum.neuron.utils import NEURON_FILE_NAME |
|
if not isinstance(model_dir, str): |
|
model_dir = str(model_dir) |
|
if task == 'sentence-embeddings': |
|
task = 'feature-extraction' |
|
if task not in NEURONX_SUPPORTED_TASKS: |
|
raise ValueError(f'Task {task} is not supported by optimum neuron and inf2. Supported tasks are: {list(NEURONX_SUPPORTED_TASKS.keys())}') |
|
export = True |
|
if NEURON_FILE_NAME in os.listdir(model_dir): |
|
export = False |
|
if export: |
|
logger.info('Model is not converted. Checking if required environment variables are set and converting model.') |
|
input_shapes = get_input_shapes(model_dir) |
|
neuron_pipe = pipeline(task, model=model_dir, export=export, input_shapes=input_shapes) |
|
return neuron_pipe |
|
|
|
# File: huggingface-inference-toolkit-main/src/huggingface_inference_toolkit/sentence_transformers_utils.py |
|
import importlib.util |
|
_sentence_transformers = importlib.util.find_spec('sentence_transformers') is not None |
|
|
|
def is_sentence_transformers_available(): |
|
return _sentence_transformers |
|
if is_sentence_transformers_available(): |
|
from sentence_transformers import CrossEncoder, SentenceTransformer, util |
|
|
|
class SentenceSimilarityPipeline: |
|
|
|
def __init__(self, model_dir: str, device: str=None, **kwargs): |
|
self.model = SentenceTransformer(model_dir, device=device, **kwargs) |
|
|
|
def __call__(self, inputs=None): |
|
embeddings1 = self.model.encode(inputs['source_sentence'], convert_to_tensor=True) |
|
embeddings2 = self.model.encode(inputs['sentences'], convert_to_tensor=True) |
|
similarities = util.pytorch_cos_sim(embeddings1, embeddings2).tolist()[0] |
|
return {'similarities': similarities} |
|
|
|
class SentenceEmbeddingPipeline: |
|
|
|
def __init__(self, model_dir: str, device: str=None, **kwargs): |
|
self.model = SentenceTransformer(model_dir, device=device, **kwargs) |
|
|
|
def __call__(self, inputs): |
|
embeddings = self.model.encode(inputs).tolist() |
|
return {'embeddings': embeddings} |
|
|
|
class RankingPipeline: |
|
|
|
def __init__(self, model_dir: str, device: str=None, **kwargs): |
|
self.model = CrossEncoder(model_dir, device=device, **kwargs) |
|
|
|
def __call__(self, inputs): |
|
scores = self.model.predict(inputs).tolist() |
|
return {'scores': scores} |
|
SENTENCE_TRANSFORMERS_TASKS = {'sentence-similarity': SentenceSimilarityPipeline, 'sentence-embeddings': SentenceEmbeddingPipeline, 'sentence-ranking': RankingPipeline} |
|
|
|
def get_sentence_transformers_pipeline(task=None, model_dir=None, device=-1, **kwargs): |
|
device = 'cuda' if device == 0 else 'cpu' |
|
kwargs.pop('tokenizer', None) |
|
kwargs.pop('framework', None) |
|
if task not in SENTENCE_TRANSFORMERS_TASKS: |
|
raise ValueError(f"Unknown task {task}. Available tasks are: {', '.join(SENTENCE_TRANSFORMERS_TASKS.keys())}") |
|
return SENTENCE_TRANSFORMERS_TASKS[task](model_dir=model_dir, device=device, **kwargs) |
|
|
|
# File: huggingface-inference-toolkit-main/src/huggingface_inference_toolkit/serialization/base.py |
|
from huggingface_inference_toolkit.serialization.audio_utils import Audioer |
|
from huggingface_inference_toolkit.serialization.image_utils import Imager |
|
from huggingface_inference_toolkit.serialization.json_utils import Jsoner |
|
content_type_mapping = {'application/json': Jsoner, 'application/json; charset=UTF-8': Jsoner, 'text/csv': None, 'text/plain': None, 'image/png': Imager, 'image/jpeg': Imager, 'image/jpg': Imager, 'image/tiff': Imager, 'image/bmp': Imager, 'image/gif': Imager, 'image/webp': Imager, 'image/x-image': Imager, 'audio/x-flac': Audioer, 'audio/flac': Audioer, 'audio/mpeg': Audioer, 'audio/x-mpeg-3': Audioer, 'audio/wave': Audioer, 'audio/wav': Audioer, 'audio/x-wav': Audioer, 'audio/ogg': Audioer, 'audio/x-audio': Audioer, 'audio/webm': Audioer, 'audio/webm;codecs=opus': Audioer, 'audio/AMR': Audioer, 'audio/amr': Audioer, 'audio/AMR-WB': Audioer, 'audio/AMR-WB+': Audioer, 'audio/m4a': Audioer, 'audio/x-m4a': Audioer} |
|
|
|
class ContentType: |
|
|
|
@staticmethod |
|
def get_deserializer(content_type): |
|
if content_type in content_type_mapping: |
|
return content_type_mapping[content_type] |
|
else: |
|
message = f'''\n Content type "{content_type}" not supported.\n Supported content types are:\n {', '.join(list(content_type_mapping.keys()))}\n ''' |
|
raise Exception(message) |
|
|
|
@staticmethod |
|
def get_serializer(accept): |
|
if accept in content_type_mapping: |
|
return content_type_mapping[accept] |
|
else: |
|
message = f'''\n Accept type "{accept}" not supported.\n Supported accept types are:\n {', '.join(list(content_type_mapping.keys()))}\n ''' |
|
raise Exception(message) |
|
|
|
# File: huggingface-inference-toolkit-main/src/huggingface_inference_toolkit/serialization/image_utils.py |
|
from io import BytesIO |
|
from PIL import Image |
|
|
|
class Imager: |
|
|
|
@staticmethod |
|
def deserialize(body): |
|
image = Image.open(BytesIO(body)).convert('RGB') |
|
return {'inputs': image} |
|
|
|
@staticmethod |
|
def serialize(image, accept=None): |
|
if isinstance(image, Image.Image): |
|
img_byte_arr = BytesIO() |
|
image.save(img_byte_arr, format=accept.split('/')[-1].upper()) |
|
img_byte_arr = img_byte_arr.getvalue() |
|
return img_byte_arr |
|
else: |
|
raise ValueError(f'Can only serialize PIL.Image.Image, got {type(image)}') |
|
|
|
# File: huggingface-inference-toolkit-main/src/huggingface_inference_toolkit/serialization/json_utils.py |
|
import base64 |
|
from io import BytesIO |
|
import orjson |
|
from PIL import Image |
|
|
|
def default(obj): |
|
if isinstance(obj, Image.Image): |
|
with BytesIO() as out: |
|
obj.save(out, format='PNG') |
|
png_string = out.getvalue() |
|
return base64.b64encode(png_string).decode('utf-8') |
|
raise TypeError |
|
|
|
class Jsoner: |
|
|
|
@staticmethod |
|
def deserialize(body): |
|
return orjson.loads(body) |
|
|
|
@staticmethod |
|
def serialize(body, accept=None): |
|
return orjson.dumps(body, option=orjson.OPT_SERIALIZE_NUMPY, default=default) |
|
|
|
# File: huggingface-inference-toolkit-main/src/huggingface_inference_toolkit/utils.py |
|
import importlib.util |
|
import sys |
|
from pathlib import Path |
|
from typing import Optional, Union |
|
from huggingface_hub import HfApi, login, snapshot_download |
|
from transformers import WhisperForConditionalGeneration, pipeline |
|
from transformers.file_utils import is_tf_available, is_torch_available |
|
from transformers.pipelines import Pipeline |
|
from huggingface_inference_toolkit.const import HF_DEFAULT_PIPELINE_NAME, HF_MODULE_NAME |
|
from huggingface_inference_toolkit.diffusers_utils import get_diffusers_pipeline, is_diffusers_available |
|
from huggingface_inference_toolkit.logging import logger |
|
from huggingface_inference_toolkit.optimum_utils import get_optimum_neuron_pipeline, is_optimum_neuron_available |
|
from huggingface_inference_toolkit.sentence_transformers_utils import get_sentence_transformers_pipeline, is_sentence_transformers_available |
|
if is_tf_available(): |
|
import tensorflow as tf |
|
if is_torch_available(): |
|
import torch |
|
_optimum_available = importlib.util.find_spec('optimum') is not None |
|
|
|
def is_optimum_available(): |
|
return False |
|
framework2weight = {'pytorch': 'pytorch*', 'tensorflow': 'tf*', 'tf': 'tf*', 'pt': 'pytorch*', 'flax': 'flax*', 'rust': 'rust*', 'onnx': '*onnx*', 'safetensors': '*safetensors', 'coreml': '*mlmodel', 'tflite': '*tflite', 'savedmodel': '*tar.gz', 'openvino': '*openvino*', 'ckpt': '*ckpt'} |
|
|
|
def create_artifact_filter(framework): |
|
ignore_regex_list = list(set(framework2weight.values())) |
|
pattern = framework2weight.get(framework, None) |
|
if pattern in ignore_regex_list: |
|
ignore_regex_list.remove(pattern) |
|
return ignore_regex_list |
|
else: |
|
return [] |
|
|
|
def _is_gpu_available(): |
|
if is_tf_available(): |
|
return True if len(tf.config.list_physical_devices('GPU')) > 0 else False |
|
elif is_torch_available(): |
|
return torch.cuda.is_available() |
|
else: |
|
raise RuntimeError('At least one of TensorFlow 2.0 or PyTorch should be installed. To install TensorFlow 2.0, read the instructions at https://www.tensorflow.org/install/ To install PyTorch, read the instructions at https://pytorch.org/.') |
|
|
|
def _get_framework(): |
|
if is_torch_available(): |
|
return 'pytorch' |
|
elif is_tf_available(): |
|
return 'tensorflow' |
|
else: |
|
raise RuntimeError('At least one of TensorFlow 2.0 or PyTorch should be installed. To install TensorFlow 2.0, read the instructions at https://www.tensorflow.org/install/ To install PyTorch, read the instructions at https://pytorch.org/.') |
|
|
|
def _load_repository_from_hf(repository_id: Optional[str]=None, target_dir: Optional[Union[str, Path]]=None, framework: Optional[str]=None, revision: Optional[str]=None, hf_hub_token: Optional[str]=None): |
|
if hf_hub_token is not None: |
|
login(token=hf_hub_token) |
|
if framework is None: |
|
framework = _get_framework() |
|
if isinstance(target_dir, str): |
|
target_dir = Path(target_dir) |
|
if not target_dir.exists(): |
|
target_dir.mkdir(parents=True) |
|
if framework == 'pytorch': |
|
files = HfApi().model_info(repository_id).siblings |
|
if any((f.rfilename.endswith('safetensors') for f in files)): |
|
framework = 'safetensors' |
|
ignore_regex = create_artifact_filter(framework) |
|
logger.info(f"Ignore regex pattern for files, which are not downloaded: {', '.join(ignore_regex)}") |
|
snapshot_download(repo_id=repository_id, revision=revision, local_dir=str(target_dir), local_dir_use_symlinks=False, ignore_patterns=ignore_regex) |
|
return target_dir |
|
|
|
def check_and_register_custom_pipeline_from_directory(model_dir): |
|
custom_module = Path(model_dir).joinpath(HF_DEFAULT_PIPELINE_NAME) |
|
legacy_module = Path(model_dir).joinpath('pipeline.py') |
|
if custom_module.is_file(): |
|
logger.info(f'Found custom pipeline at {custom_module}') |
|
spec = importlib.util.spec_from_file_location(HF_MODULE_NAME, custom_module) |
|
if spec: |
|
sys.path.insert(0, model_dir) |
|
handler = importlib.util.module_from_spec(spec) |
|
sys.modules[HF_MODULE_NAME] = handler |
|
spec.loader.exec_module(handler) |
|
custom_pipeline = handler.EndpointHandler(model_dir) |
|
elif legacy_module.is_file(): |
|
logger.warning('You are using a legacy custom pipeline.\n Please update to the new format.\n See documentation for more information.') |
|
spec = importlib.util.spec_from_file_location('pipeline.PreTrainedPipeline', legacy_module) |
|
if spec: |
|
sys.path.insert(0, model_dir) |
|
pipeline = importlib.util.module_from_spec(spec) |
|
sys.modules['pipeline.PreTrainedPipeline'] = pipeline |
|
spec.loader.exec_module(pipeline) |
|
custom_pipeline = pipeline.PreTrainedPipeline(model_dir) |
|
else: |
|
logger.info(f'No custom pipeline found at {custom_module}') |
|
custom_pipeline = None |
|
return custom_pipeline |
|
|
|
def get_device(): |
|
gpu = _is_gpu_available() |
|
if gpu: |
|
return 0 |
|
else: |
|
return -1 |
|
|
|
def get_pipeline(task: str, model_dir: Path, **kwargs) -> Pipeline: |
|
device = get_device() |
|
if is_optimum_neuron_available(): |
|
logger.info('Using device Neuron') |
|
else: |
|
logger.info(f"Using device {('GPU' if device == 0 else 'CPU')}") |
|
if task is None: |
|
raise EnvironmentError('The task for this model is not set: Please set one: https://huggingface.co/docs#how-is-a-models-type-of-inference-api-and-widget-determined') |
|
if task in {'automatic-speech-recognition', 'image-segmentation', 'image-classification', 'audio-classification', 'object-detection', 'zero-shot-image-classification'}: |
|
kwargs['feature_extractor'] = model_dir |
|
elif task in {'image-to-text', 'text-to-image'}: |
|
pass |
|
elif task == 'conversational': |
|
task = 'text-generation' |
|
else: |
|
kwargs['tokenizer'] = model_dir |
|
if is_optimum_neuron_available(): |
|
hf_pipeline = get_optimum_neuron_pipeline(task=task, model_dir=model_dir) |
|
elif is_sentence_transformers_available() and task in ['sentence-similarity', 'sentence-embeddings', 'sentence-ranking']: |
|
hf_pipeline = get_sentence_transformers_pipeline(task=task, model_dir=model_dir, device=device, **kwargs) |
|
elif is_diffusers_available() and task == 'text-to-image': |
|
hf_pipeline = get_diffusers_pipeline(task=task, model_dir=model_dir, device=device, **kwargs) |
|
else: |
|
hf_pipeline = pipeline(task=task, model=model_dir, device=device, **kwargs) |
|
if task == 'automatic-speech-recognition' and isinstance(hf_pipeline.model, WhisperForConditionalGeneration): |
|
hf_pipeline._preprocess_params['chunk_length_s'] = 30 |
|
hf_pipeline.model.config.forced_decoder_ids = hf_pipeline.tokenizer.get_decoder_prompt_ids(language='english', task='transcribe') |
|
return hf_pipeline |
|
|
|
def convert_params_to_int_or_bool(params): |
|
for (k, v) in params.items(): |
|
if v.isnumeric(): |
|
params[k] = int(v) |
|
if v == 'false': |
|
params[k] = False |
|
if v == 'true': |
|
params[k] = True |
|
return params |
|
|
|
# File: huggingface-inference-toolkit-main/src/huggingface_inference_toolkit/vertex_ai_utils.py |
|
import re |
|
from pathlib import Path |
|
from typing import Union |
|
from huggingface_inference_toolkit.logging import logger |
|
GCS_URI_PREFIX = 'gs://' |
|
|
|
def _load_repository_from_gcs(artifact_uri: str, target_dir: Union[str, Path]='/tmp') -> str: |
|
from google.cloud import storage |
|
logger.info(f'Loading model artifacts from {artifact_uri} to {target_dir}') |
|
if isinstance(target_dir, str): |
|
target_dir = Path(target_dir) |
|
if artifact_uri.startswith(GCS_URI_PREFIX): |
|
matches = re.match(f'{GCS_URI_PREFIX}(.*?)/(.*)', artifact_uri) |
|
(bucket_name, prefix) = matches.groups() |
|
gcs_client = storage.Client() |
|
blobs = gcs_client.list_blobs(bucket_name, prefix=prefix) |
|
for blob in blobs: |
|
name_without_prefix = blob.name[len(prefix):] |
|
name_without_prefix = name_without_prefix[1:] if name_without_prefix.startswith('/') else name_without_prefix |
|
file_split = name_without_prefix.split('/') |
|
directory = target_dir / Path(*file_split[0:-1]) |
|
directory.mkdir(parents=True, exist_ok=True) |
|
if name_without_prefix and (not name_without_prefix.endswith('/')): |
|
blob.download_to_filename(target_dir / name_without_prefix) |
|
return str(target_dir.absolute()) |
|
|
|
# File: huggingface-inference-toolkit-main/src/huggingface_inference_toolkit/webservice_starlette.py |
|
import os |
|
from pathlib import Path |
|
from time import perf_counter |
|
import orjson |
|
from starlette.applications import Starlette |
|
from starlette.responses import PlainTextResponse, Response |
|
from starlette.routing import Route |
|
from huggingface_inference_toolkit.async_utils import async_handler_call |
|
from huggingface_inference_toolkit.const import HF_FRAMEWORK, HF_HUB_TOKEN, HF_MODEL_DIR, HF_MODEL_ID, HF_REVISION, HF_TASK |
|
from huggingface_inference_toolkit.handler import get_inference_handler_either_custom_or_default_handler |
|
from huggingface_inference_toolkit.logging import logger |
|
from huggingface_inference_toolkit.serialization.base import ContentType |
|
from huggingface_inference_toolkit.serialization.json_utils import Jsoner |
|
from huggingface_inference_toolkit.utils import _load_repository_from_hf, convert_params_to_int_or_bool |
|
from huggingface_inference_toolkit.vertex_ai_utils import _load_repository_from_gcs |
|
|
|
async def prepare_model_artifacts(): |
|
global inference_handler |
|
if len(list(Path(HF_MODEL_DIR).glob('**/*'))) <= 0: |
|
if HF_MODEL_ID is not None: |
|
_load_repository_from_hf(repository_id=HF_MODEL_ID, target_dir=HF_MODEL_DIR, framework=HF_FRAMEWORK, revision=HF_REVISION, hf_hub_token=HF_HUB_TOKEN) |
|
elif len(os.environ.get('AIP_STORAGE_URI', '')) > 0: |
|
_load_repository_from_gcs(os.environ['AIP_STORAGE_URI'], target_dir=HF_MODEL_DIR) |
|
else: |
|
raise ValueError(f"Can't initialize model.\n Please set env HF_MODEL_DIR or provider a HF_MODEL_ID.\n Provided values are:\n HF_MODEL_DIR: {HF_MODEL_DIR} and HF_MODEL_ID:{HF_MODEL_ID}") |
|
logger.info(f'Initializing model from directory:{HF_MODEL_DIR}') |
|
inference_handler = get_inference_handler_either_custom_or_default_handler(HF_MODEL_DIR, task=HF_TASK) |
|
logger.info('Model initialized successfully') |
|
|
|
async def health(request): |
|
return PlainTextResponse('Ok') |
|
|
|
async def predict(request): |
|
try: |
|
content_type = request.headers.get('content-Type', None) |
|
deserialized_body = ContentType.get_deserializer(content_type).deserialize(await request.body()) |
|
if 'inputs' not in deserialized_body and 'instances' not in deserialized_body: |
|
raise ValueError(f'Body needs to provide a inputs key, received: {orjson.dumps(deserialized_body)}') |
|
if request.query_params and 'parameters' not in deserialized_body: |
|
deserialized_body['parameters'] = convert_params_to_int_or_bool(dict(request.query_params)) |
|
start_time = perf_counter() |
|
pred = await async_handler_call(inference_handler, deserialized_body) |
|
logger.info(f'POST {request.url.path} | Duration: {(perf_counter() - start_time) * 1000:.2f} ms') |
|
accept = request.headers.get('accept', None) |
|
if accept is None or accept == '*/*': |
|
accept = 'application/json' |
|
serialized_response_body = ContentType.get_serializer(accept).serialize(pred, accept) |
|
return Response(serialized_response_body, media_type=accept) |
|
except Exception as e: |
|
logger.error(e) |
|
return Response(Jsoner.serialize({'error': str(e)}), status_code=400, media_type='application/json') |
|
if os.getenv('AIP_MODE', None) == 'PREDICTION': |
|
logger.info('Running in Vertex AI environment') |
|
_predict_route = os.getenv('AIP_PREDICT_ROUTE', None) |
|
_health_route = os.getenv('AIP_HEALTH_ROUTE', None) |
|
if _predict_route is None or _health_route is None: |
|
raise ValueError('AIP_PREDICT_ROUTE and AIP_HEALTH_ROUTE need to be set in Vertex AI environment') |
|
app = Starlette(debug=False, routes=[Route(_health_route, health, methods=['GET']), Route(_predict_route, predict, methods=['POST'])], on_startup=[prepare_model_artifacts]) |
|
else: |
|
app = Starlette(debug=False, routes=[Route('/', health, methods=['GET']), Route('/health', health, methods=['GET']), Route('/', predict, methods=['POST']), Route('/predict', predict, methods=['POST'])], on_startup=[prepare_model_artifacts]) |
|
|
|
|