|
# File: optimum-nvidia-main/src/optimum/commands/env.py |
|
import platform |
|
import subprocess |
|
import huggingface_hub |
|
from tensorrt import __version__ as trt_version |
|
from tensorrt_llm import __version__ as trtllm_version |
|
from transformers import __version__ as transformers_version |
|
from transformers.utils import is_torch_available |
|
from optimum.commands import BaseOptimumCLICommand, CommandInfo |
|
from optimum.version import __version__ as optimum_version |
|
|
|
class EnvironmentCommand(BaseOptimumCLICommand): |
|
COMMAND = CommandInfo(name='env', help='Get information about the environment used.') |
|
|
|
@staticmethod |
|
def print_apt_pkgs(): |
|
apt = subprocess.Popen(['apt', 'list', '--installed'], stdout=subprocess.PIPE) |
|
grep = subprocess.Popen(['grep', 'cuda'], stdin=apt.stdout, stdout=subprocess.PIPE) |
|
pkgs_list = list(grep.stdout) |
|
for pkg in pkgs_list: |
|
print(pkg.decode('utf-8').split('\n')[0]) |
|
|
|
def run(self): |
|
pt_version = 'not installed' |
|
if is_torch_available(): |
|
import torch |
|
pt_version = torch.__version__ |
|
platform_info = {'Platform': platform.platform(), 'Python version': platform.python_version()} |
|
info = {'`tensorrt` version': trt_version, '`tensorrt-llm` version': trtllm_version, '`optimum` version': optimum_version, '`transformers` version': transformers_version, '`huggingface_hub` version': huggingface_hub.__version__, '`torch` version': f'{pt_version}'} |
|
print('\nCopy-and-paste the text below in your GitHub issue:\n') |
|
print('\nPlatform:\n') |
|
print(self.format_dict(platform_info)) |
|
print('\nPython packages:\n') |
|
print(self.format_dict(info)) |
|
print('\nCUDA system packages:\n') |
|
self.print_apt_pkgs() |
|
|
|
# File: optimum-nvidia-main/src/optimum/nvidia/compression/modelopt.py |
|
from abc import ABC, abstractmethod |
|
from typing import TYPE_CHECKING, Iterable, Optional, Protocol, Union, runtime_checkable |
|
import modelopt.torch.quantization as mtq |
|
import modelopt.torch.sparsity as mts |
|
import torch |
|
from modelopt.torch.export import export_tensorrt_llm_checkpoint |
|
from transformers.quantizers import HfQuantizer |
|
from transformers.utils.quantization_config import QuantizationConfigMixin |
|
from optimum.nvidia.compression import CompressionRecipe |
|
if TYPE_CHECKING: |
|
from modelopt.torch.quantization import QuantizeConfig |
|
from transformers import PreTrainedModel as TransformersPreTrainedModel |
|
from optimum.nvidia.export import Workspace |
|
|
|
@runtime_checkable |
|
class IntoModelOptQuantizeConfig(Protocol): |
|
|
|
def into_modelopt_qconfig(self) -> 'QuantizeConfig': |
|
... |
|
|
|
class ModelOptConfig(QuantizationConfigMixin): |
|
|
|
def __init__(self, qconfig: Union['QuantizeConfig', 'IntoModelOptQuantizeConfig'], sparsity: Optional[Union[mts.mode.SparseGPTConfig, mts.mode.SparseMagnitudeConfig]]=None): |
|
self._qconfig = qconfig.into_modelopt_qconfig() if isinstance(qconfig, IntoModelOptQuantizeConfig) else qconfig |
|
self._sparsity = sparsity |
|
|
|
@property |
|
def quant_method(self): |
|
return self._qconfig.algorithm |
|
|
|
@property |
|
def qconfig(self) -> 'QuantizeConfig': |
|
return self._qconfig |
|
|
|
@property |
|
def sparsity(self) -> Optional[str]: |
|
return self._sparsity |
|
|
|
class ModelOptRecipe(CompressionRecipe[ModelOptConfig], ABC): |
|
|
|
@property |
|
@abstractmethod |
|
def config(self) -> ModelOptConfig: |
|
raise NotImplementedError() |
|
|
|
@property |
|
@abstractmethod |
|
def dataset(self) -> Iterable: |
|
raise NotImplementedError() |
|
|
|
class ModelOptQuantizer(HfQuantizer): |
|
|
|
def __init__(self, recipe: ModelOptRecipe): |
|
super().__init__(recipe.config) |
|
self._recipe = recipe |
|
|
|
def _looper(self, model: 'TransformersPreTrainedModel'): |
|
for sample in self._recipe.dataset: |
|
_ = model(**sample) |
|
|
|
def _process_model_before_weight_loading(self, model, **kwargs): |
|
return model |
|
|
|
def _process_model_after_weight_loading(self, model, **kwargs): |
|
if 'workspace' not in kwargs: |
|
raise KeyError('workspace not provided but required to generate quantized model representation') |
|
workspace: 'Workspace' = kwargs.pop('workspace') |
|
with torch.inference_mode(): |
|
if (sconfig := self._recipe.config.sparsity): |
|
device = model.device |
|
model = mts.sparsify(model.cpu(), sconfig, {'data_loader': self._recipe.dataset, 'collect_func': lambda x: x}) |
|
model = mts.export(model) |
|
model.to(device) |
|
qmodel = mtq.quantize(model, vars(self._recipe.config.qconfig), forward_loop=self._looper) |
|
export_tensorrt_llm_checkpoint(qmodel, decoder_type=model.config.model_type, dtype=model.dtype, export_dir=workspace.checkpoints_path, inference_tensor_parallel=1, inference_pipeline_parallel=1, use_nfs_workspace=False, naive_fp8_quantization=False) |
|
return qmodel |
|
|
|
@property |
|
def is_serializable(self): |
|
return True |
|
|
|
@property |
|
def is_trainable(self): |
|
return True |
|
|
|
# File: optimum-nvidia-main/src/optimum/nvidia/errors.py |
|
from typing import Optional |
|
from optimum.nvidia.utils.nvml import SM_FP8_SUPPORTED |
|
|
|
class OptimumNvidiaException(Exception): |
|
|
|
def __init__(self, msg: str, operation: Optional[str]=None): |
|
if operation: |
|
super().__init__(f'[{operation}] {msg}.') |
|
else: |
|
super().__init__(f'{msg}') |
|
|
|
class UnsupportedModelException(OptimumNvidiaException): |
|
|
|
def __init__(self, model_type: str): |
|
super().__init__(f'Model of type {model_type} is not supported. Please open-up an issue at https://github.com/huggingface/optimum-nvidia/issues') |
|
|
|
class UnsupportedHardwareFeature(OptimumNvidiaException): |
|
|
|
def __init__(self, msg, feature: str): |
|
super(msg) |
|
|
|
@classmethod |
|
def float8(cls) -> 'UnsupportedHardwareFeature': |
|
return Float8NotSupported() |
|
|
|
class Float8NotSupported(UnsupportedHardwareFeature): |
|
|
|
def __init__(self): |
|
super().__init__(f'float8 is not supported on your device. Please use a device with compute capabilities {SM_FP8_SUPPORTED}', 'float8') |
|
|
|
# File: optimum-nvidia-main/src/optimum/nvidia/export/cli.py |
|
from typing import TYPE_CHECKING |
|
if TYPE_CHECKING: |
|
from argparse import ArgumentParser |
|
|
|
def common_trtllm_export_args(parser: 'ArgumentParser'): |
|
parser.add_argument('model', type=str, help='Model to export.') |
|
required_group = parser.add_argument_group('Required arguments') |
|
required_group.add_argument('--max-input-length', type=int, default=-1, help='Maximum sequence length, in number of tokens, the prompt can be. The maximum number of potential tokens generated will be <max-output-length> - <max-input-length>.') |
|
required_group.add_argument('--max-output-length', type=int, default=-1, help='Maximum sequence length, in number of tokens, the model supports.') |
|
optional_group = parser.add_argument_group('Optional arguments') |
|
optional_group.add_argument('-d', '--dtype', type=str, default='auto', help="Computational data type used for the model. Default to 'auto' matching model's data type.") |
|
optional_group.add_argument('--max-batch-size', type=int, default=1, help='Maximum number of concurrent requests the model can process. Default to 1.') |
|
optional_group.add_argument('--max-beams-width', type=int, default=1, help='Maximum number of sampling paths ("beam") to evaluate when decoding new a token. Default to 1.') |
|
optional_group.add_argument('-q', '--quantization', type=str, help='Path to a quantization recipe file.') |
|
optional_group.add_argument('--destination', type=str, default=None, help='Folder where the resulting exported engines will be stored. Default to Hugging Face Hub cache.') |
|
optional_group.add_argument('--push-to-hub', type=str, help='Repository to push generated engines to.') |
|
|
|
# File: optimum-nvidia-main/src/optimum/nvidia/export/config.py |
|
from dataclasses import dataclass |
|
from logging import getLogger |
|
from os import PathLike |
|
from typing import TYPE_CHECKING, Optional, Union |
|
from warnings import warn |
|
from tensorrt_llm import BuildConfig |
|
from tensorrt_llm import Mapping as ShardingInfo |
|
from tensorrt_llm.bindings import QuantMode |
|
from tensorrt_llm.plugin import PluginConfig |
|
from tensorrt_llm.plugin.plugin import ContextFMHAType |
|
from transformers import AutoConfig |
|
from optimum.nvidia.lang import DataType |
|
from optimum.utils import NormalizedConfig |
|
if TYPE_CHECKING: |
|
from transformers import PretrainedConfig |
|
INFER_NUM_LOCAL_GPUS = -1 |
|
LOGGER = getLogger() |
|
|
|
@dataclass |
|
class ExportConfig: |
|
dtype: str |
|
max_input_len: int |
|
max_output_len: int |
|
max_batch_size: int |
|
max_beam_width: int = 1 |
|
max_num_tokens: int = -1 |
|
enabled_chunked_context: int = False |
|
sharding: Optional[ShardingInfo] = None |
|
optimization_level: int = 3 |
|
|
|
def __post_init__(self): |
|
if self.max_batch_size < 1: |
|
raise ValueError(f'max_batch_size should >= 1, got {self.max_batch_size}') |
|
|
|
@staticmethod |
|
def from_pretrained(model_id_or_path: Union[str, PathLike], max_batch_size: int=1) -> 'ExportConfig': |
|
return ExportConfig.from_config(AutoConfig.from_pretrained(model_id_or_path), max_batch_size) |
|
|
|
@staticmethod |
|
def from_config(config: Union[NormalizedConfig, 'PretrainedConfig'], max_batch_size: int=1) -> 'ExportConfig': |
|
if not isinstance(config, NormalizedConfig): |
|
config = NormalizedConfig(config) |
|
dtype = DataType.from_torch(config.torch_dtype).value |
|
max_input_len = config.max_position_embeddings |
|
max_output_len = config.max_position_embeddings |
|
econfig = ExportConfig(dtype=dtype, max_input_len=max_input_len, max_output_len=max_output_len, max_batch_size=max_batch_size) |
|
econfig.with_sharding() |
|
econfig.validate() |
|
return econfig |
|
|
|
def validate(self) -> 'ExportConfig': |
|
if self.optimization_level < 0: |
|
raise ValueError(f'optimization_level should be >= 0, got {self.optimization_level}') |
|
if self.max_num_tokens == -1: |
|
if self.enabled_chunked_context: |
|
self.max_num_tokens = 128 |
|
warn(f'max_num_tokens set to {self.max_num_tokens} with chunked context enabled might not be optimal.') |
|
else: |
|
self.max_num_tokens = 2 * self.max_input_len |
|
LOGGER.debug(f'Inferred max_num_tokens={self.max_num_tokens}') |
|
return self |
|
|
|
@property |
|
def plugin_config(self) -> 'PluginConfig': |
|
config = PluginConfig() |
|
config.gemm_plugin = 'auto' |
|
config.gpt_attention_plugin = 'auto' |
|
config.set_context_fmha(ContextFMHAType.enabled) |
|
if self.sharding.world_size > 1: |
|
config.lookup_plugin = 'auto' |
|
config.set_nccl_plugin() |
|
if DataType(self.dtype) == DataType.FLOAT8: |
|
config.gemm_swiglu_plugin = True |
|
return config |
|
|
|
def to_builder_config(self, qmode: Optional['QuantMode']=None, plugin_config: Optional[PluginConfig]=None) -> 'BuildConfig': |
|
self.validate() |
|
plugin_config = plugin_config or self.plugin_config |
|
if qmode: |
|
plugin_config.use_fp8_context_fmha = qmode.has_fp8_qdq() or qmode.has_fp8_kv_cache() |
|
if qmode.is_weight_only(): |
|
plugin_config.weight_only_groupwise_quant_matmul_plugin = 'auto' |
|
weight_sparsity = False |
|
else: |
|
weight_sparsity = False |
|
return BuildConfig(max_input_len=self.max_input_len, max_seq_len=self.max_output_len, max_batch_size=self.max_batch_size, max_beam_width=self.max_beam_width, max_num_tokens=self.max_num_tokens, builder_opt=self.optimization_level, plugin_config=plugin_config, use_fused_mlp=True, weight_sparsity=weight_sparsity) |
|
|
|
def with_sharding(self, tp: int=1, pp: int=1, gpus_per_node: int=8, sharding: Optional[ShardingInfo]=None) -> 'ExportConfig': |
|
self.sharding = sharding or ShardingInfo(tp_size=tp, pp_size=pp, world_size=tp * pp, gpus_per_node=gpus_per_node) |
|
return self |
|
|
|
def auto_parallel(config: 'ExportConfig', world_size: int=INFER_NUM_LOCAL_GPUS) -> 'ExportConfig': |
|
if world_size < 1: |
|
from optimum.nvidia.utils.nvml import get_device_count |
|
world_size = get_device_count() |
|
LOGGER.info(f'Found {world_size} GPUs on the system') |
|
if world_size == 0: |
|
raise ValueError('No GPU found') |
|
elif world_size == 1: |
|
return config.with_sharding(tp=1, pp=1, gpus_per_node=world_size) |
|
else: |
|
LOGGER.info(f'Creating auto-parallelization strategy on {world_size}-GPUs') |
|
LOGGER.warning('Auto-parallelization strategy is currently in beta and might not be optimal') |
|
if world_size == 2: |
|
return config.with_sharding(tp=2, pp=1, gpus_per_node=world_size) |
|
elif world_size == 4: |
|
return config.with_sharding(tp=2, pp=2, gpus_per_node=world_size) |
|
elif world_size == 8: |
|
return config.with_sharding(tp=4, pp=2, gpus_per_node=world_size) |
|
else: |
|
raise ValueError(f'Unsupported number of GPUs: {world_size}. Please open-up and issue on the optimum-nvidia repository: https://github.com/huggingface/optimum-nvidia') |
|
|
|
def sharded(config: 'ExportConfig', tp: int=1, pp: int=1) -> 'ExportConfig': |
|
if tp < 1: |
|
raise ValueError(f'Tensor Parallelism (tp) should be >= 1 (got: tp={tp})') |
|
if pp < 1: |
|
raise ValueError(f'Pipeline Parallelism (pp) should be >= 1 (got: pp={pp})') |
|
return config.with_sharding(sharding=ShardingInfo(tp_size=tp, pp_size=pp, world_size=tp * pp)) |
|
|
|
# File: optimum-nvidia-main/src/optimum/nvidia/export/converter.py |
|
import shutil |
|
from abc import ABC |
|
from enum import Enum |
|
from logging import getLogger |
|
from os import PathLike |
|
from pathlib import Path |
|
from typing import TYPE_CHECKING, Optional, Sequence, Type, Union |
|
from tensorrt_llm.builder import build |
|
from optimum.nvidia.compression.modelopt import ModelOptQuantizer |
|
from optimum.nvidia.export import Workspace |
|
from optimum.nvidia.utils.nvml import get_device_name, is_post_ampere |
|
if TYPE_CHECKING: |
|
from tensorrt_llm import BuildConfig, Mapping |
|
from tensorrt_llm.models import PretrainedModel |
|
from transformers import PreTrainedModel as TransformersPreTrainedModel |
|
from optimum.nvidia.compression.modelopt import ModelOptRecipe |
|
LOGGER = getLogger() |
|
|
|
def infer_plugin_from_build_config(config: 'BuildConfig') -> 'BuildConfig': |
|
if is_post_ampere(): |
|
LOGGER.debug('Enabling Paged Context FMHA plugin') |
|
config.plugin_config.update_from_dict({'use_paged_context_fmha': True}) |
|
config.plugin_config.update_from_dict({'enable_xqa': False}) |
|
return config |
|
|
|
class TensorRTArtifactKind(Enum): |
|
CHECKPOINTS = 'checkpoints' |
|
ENGINES = 'engines' |
|
|
|
class TensorRTArtifact: |
|
|
|
@staticmethod |
|
def checkpoints(root: Union[str, PathLike]) -> 'TensorRTArtifact': |
|
return TensorRTArtifact(TensorRTArtifactKind.CHECKPOINTS, root) |
|
|
|
@staticmethod |
|
def engines(root: Union[str, PathLike]) -> 'TensorRTArtifact': |
|
return TensorRTArtifact(TensorRTArtifactKind.ENGINES, root) |
|
|
|
def __init__(self, kind: TensorRTArtifactKind, root: Union[str, PathLike]): |
|
self._kind = kind |
|
self._root = root |
|
|
|
@property |
|
def kind(self) -> TensorRTArtifactKind: |
|
return self._kind |
|
|
|
@property |
|
def root(self) -> Path: |
|
return Path(self._root) |
|
|
|
def push_to_hub(self): |
|
raise NotImplementedError() |
|
|
|
class TensorRTModelConverter(ABC): |
|
CONFIG_CLASS: Type |
|
MODEL_CLASS: Type |
|
|
|
def __init__(self, model_id: str, subpart: str='', workspace: Optional[Union['Workspace', str, bytes, Path]]=None, license_path: Optional[Union[str, bytes, Path]]=None): |
|
LOGGER.info(f'Creating a model converter for {subpart}') |
|
if not workspace: |
|
target_device = get_device_name(0)[-1] |
|
workspace = Workspace.from_hub_cache(model_id, target_device, subpart=subpart) |
|
if isinstance(workspace, (str, bytes, Path)): |
|
workspace = Workspace(Path(workspace)) |
|
LOGGER.debug(f'Initializing model converter workspace at {workspace.root}') |
|
self._workspace = workspace |
|
self._license_path = license_path |
|
|
|
@property |
|
def workspace(self) -> Workspace: |
|
return self._workspace |
|
|
|
def save_license(self, licence_filename: str='LICENSE'): |
|
if not (dst_licence_file_path := (self.workspace.root / licence_filename)).exists() and self._license_path: |
|
shutil.copyfile(self._license_path, dst_licence_file_path) |
|
|
|
def quantize(self, model: 'TransformersPreTrainedModel', qconfig: 'ModelOptRecipe') -> TensorRTArtifact: |
|
quantizer = ModelOptQuantizer(qconfig) |
|
quantizer.preprocess_model(model, workspace=self.workspace) |
|
quantizer.postprocess_model(model, workspace=self.workspace) |
|
self.save_license() |
|
return TensorRTArtifact.checkpoints(self._workspace.checkpoints_path) |
|
|
|
def convert(self, models: Union['PretrainedModel', Sequence['PretrainedModel']], mapping: Optional['Mapping']=None) -> TensorRTArtifact: |
|
if isinstance(models, PretrainedModel): |
|
models = [models] |
|
for (rank, model) in enumerate(models): |
|
LOGGER.info(f'Converting {models[0].config.architecture} model for rank {rank} to TRTLLM') |
|
model.save_checkpoint(str(self._workspace.checkpoints_path)) |
|
self.save_license() |
|
return TensorRTArtifact.checkpoints(str(self._workspace.checkpoints_path)) |
|
|
|
def build(self, models: Union['PretrainedModel', Sequence['PretrainedModel']], config: 'BuildConfig') -> TensorRTArtifact: |
|
if not isinstance(models, Sequence): |
|
models = [models] |
|
config = infer_plugin_from_build_config(config) |
|
for model in models: |
|
LOGGER.info(f'Building TRTLLM engine for rank {model.config.mapping.rank} ->> {config.to_dict()}') |
|
engine = build(model, config) |
|
engine.save(str(self._workspace.engines_path)) |
|
self.save_license() |
|
return TensorRTArtifact.engines(str(self._workspace.engines_path)) |
|
|
|
# File: optimum-nvidia-main/src/optimum/nvidia/export/workspace.py |
|
from dataclasses import dataclass |
|
from pathlib import Path |
|
from typing import Iterable, Optional |
|
from huggingface_hub import cached_assets_path |
|
from tensorrt_llm import __version__ as TRTLLM_VERSION |
|
from optimum.nvidia import LIBRARY_NAME |
|
from optimum.nvidia.export import PATH_FILE_CHECKPOINTS, PATH_FILE_ENGINES, PATH_FOLDER_CHECKPOINTS, PATH_FOLDER_ENGINES |
|
|
|
@dataclass |
|
class Workspace: |
|
root: Path |
|
|
|
@staticmethod |
|
def from_hub_cache(model_id: str, device: str, namespace: str=LIBRARY_NAME, version: str=TRTLLM_VERSION, subpart: Optional[str]=None) -> 'Workspace': |
|
assets_path = cached_assets_path(namespace, namespace=version, subfolder=model_id) |
|
assets_path = assets_path.joinpath(device) |
|
if subpart: |
|
assets_path = assets_path.joinpath(subpart) |
|
assets_path.mkdir(exist_ok=True, parents=True) |
|
return Workspace(assets_path) |
|
|
|
def __post_init__(self): |
|
if not self.checkpoints_path.exists(): |
|
self.checkpoints_path.mkdir(parents=True) |
|
if not self.engines_path.exists(): |
|
self.engines_path.mkdir(parents=True) |
|
|
|
@property |
|
def checkpoints_path(self) -> Path: |
|
return self.root / PATH_FOLDER_CHECKPOINTS |
|
|
|
@property |
|
def engines_path(self) -> Path: |
|
return self.root / PATH_FOLDER_ENGINES |
|
|
|
@property |
|
def checkpoints(self) -> Iterable[Path]: |
|
return self.checkpoints_path.glob(PATH_FILE_CHECKPOINTS) |
|
|
|
def engines(self) -> Iterable[Path]: |
|
return self.engines_path.glob(PATH_FILE_ENGINES) |
|
|
|
# File: optimum-nvidia-main/src/optimum/nvidia/generation/logits_process.py |
|
import torch |
|
from transformers import ForceTokensLogitsProcessor, SuppressTokensAtBeginLogitsProcessor, SuppressTokensLogitsProcessor |
|
from transformers.generation.logits_process import WhisperNoSpeechDetection |
|
|
|
class TrtSuppressTokensLogitsProcessor(SuppressTokensLogitsProcessor): |
|
|
|
def __call__(self, step: int, input_ids: torch.Tensor, scores: torch.Tensor): |
|
scores = super().__call__(input_ids, scores) |
|
return scores |
|
|
|
class TrtSuppressTokensAtBeginLogitsProcessor(SuppressTokensAtBeginLogitsProcessor): |
|
|
|
def __call__(self, step: int, input_ids: torch.Tensor, scores: torch.Tensor): |
|
scores = super().__call__(input_ids, scores) |
|
return scores |
|
|
|
class TrtForceTokensLogitsProcessor(ForceTokensLogitsProcessor): |
|
|
|
def __call__(self, step: int, input_ids: torch.Tensor, scores: torch.Tensor): |
|
scores = super().__call__(input_ids, scores) |
|
return scores |
|
|
|
class TrtWhisperNoSpeechDetection(WhisperNoSpeechDetection): |
|
|
|
def __call__(self, step: int, input_ids: torch.Tensor, scores: torch.Tensor): |
|
scores = super().__call__(input_ids, scores) |
|
return scores |
|
LOGITS_PROCESSOR_MAP = {SuppressTokensLogitsProcessor: TrtSuppressTokensLogitsProcessor, SuppressTokensAtBeginLogitsProcessor: TrtSuppressTokensAtBeginLogitsProcessor, ForceTokensLogitsProcessor: TrtForceTokensLogitsProcessor, WhisperNoSpeechDetection: TrtWhisperNoSpeechDetection} |
|
|
|
# File: optimum-nvidia-main/src/optimum/nvidia/hub.py |
|
import re |
|
from abc import ABCMeta, abstractmethod |
|
from logging import getLogger |
|
from os import PathLike, scandir, symlink |
|
from pathlib import Path |
|
from shutil import copyfile, copytree |
|
from typing import Dict, Generator, Iterable, List, Mapping, Optional, Type, Union |
|
import torch.cuda |
|
from huggingface_hub import ModelHubMixin, snapshot_download |
|
from huggingface_hub.hub_mixin import T |
|
from tensorrt_llm import __version__ as trtllm_version |
|
from tensorrt_llm.models import PretrainedConfig |
|
from tensorrt_llm.models import PretrainedModel as TrtLlmPreTrainedModel |
|
from transformers import AutoConfig, GenerationConfig |
|
from transformers import PretrainedConfig as TransformersPretraineConfig |
|
from transformers.utils import CONFIG_NAME, GENERATION_CONFIG_NAME, SAFE_WEIGHTS_INDEX_NAME |
|
from optimum.nvidia import LIBRARY_NAME |
|
from optimum.nvidia.compression.modelopt import ModelOptRecipe |
|
from optimum.nvidia.export import PATH_FOLDER_ENGINES, ExportConfig, TensorRTModelConverter, Workspace, auto_parallel |
|
from optimum.nvidia.lang import DataType |
|
from optimum.nvidia.models import SupportsFromHuggingFace, SupportsTransformersConversion |
|
from optimum.nvidia.models.base import SupportFromTrtLlmCheckpoint |
|
from optimum.nvidia.utils import get_user_agent |
|
from optimum.nvidia.utils.nvml import get_device_count, get_device_name |
|
from optimum.utils import NormalizedConfig |
|
ATTR_TRTLLM_ENGINE_FOLDER = '__trtllm_engine_folder__' |
|
FILE_TRTLLM_ENGINE_PATTERN = 'rank[0-9]*.engine' |
|
FILE_TRTLLM_CHECKPOINT_PATTERN = 'rank[0-9]*.engine' |
|
FILE_LICENSE_NAME = 'LICENSE' |
|
HUB_SNAPSHOT_ALLOW_PATTERNS = [CONFIG_NAME, GENERATION_CONFIG_NAME, SAFE_WEIGHTS_INDEX_NAME, '*.safetensors', FILE_LICENSE_NAME] |
|
LOGGER = getLogger() |
|
|
|
def folder_list_engines(folder: Path) -> Iterable[Path]: |
|
if folder.exists(): |
|
return list(folder.glob('*.engine')) |
|
return [] |
|
|
|
def folder_list_checkpoints(folder: Path) -> Iterable[Path]: |
|
checkpoint_candidates = [] |
|
if folder.exists(): |
|
re_checkpoint_filename = re.compile('rank[0-9]+\\.safetensors') |
|
checkpoint_candidates = list(map(Path, filter(lambda item: re_checkpoint_filename.match(item.name), scandir(folder)))) |
|
return checkpoint_candidates |
|
|
|
def get_rank_from_filename(filename: str) -> int: |
|
name = filename.split('.')[0] |
|
if name.startswith('rank'): |
|
return int(name[3:]) |
|
else: |
|
raise ValueError(f'Unknown filename format {filename} to extract rank from') |
|
|
|
def get_trtllm_artifact(model_id: str, patterns: List[str], add_default_allow_patterns: bool=True) -> Path: |
|
if (local_path := Path(model_id)).exists(): |
|
return local_path |
|
return Path(snapshot_download(repo_id=model_id, repo_type='model', library_name=LIBRARY_NAME, library_version=trtllm_version, user_agent=get_user_agent(), allow_patterns=patterns + HUB_SNAPSHOT_ALLOW_PATTERNS if add_default_allow_patterns else patterns)) |
|
|
|
def get_trtllm_checkpoints(model_id: str, device: str, dtype: str): |
|
if (workspace := Workspace.from_hub_cache(model_id, device)).checkpoints_path.exists(): |
|
return workspace.checkpoints_path |
|
return get_trtllm_artifact(model_id, [f'{device}/{dtype}/**/*.safetensors']) |
|
|
|
def get_trtllm_engines(model_id: str, device: str, dtype: str): |
|
if (workspace := Workspace.from_hub_cache(model_id, device)).engines_path.exists(): |
|
return workspace.engines_path |
|
return get_trtllm_artifact(model_id, [f'{device}/{dtype}/**/{PATH_FOLDER_ENGINES}/*.engine']) |
|
|
|
def from_ranked_checkpoints(checkpoints_folder: Path, target_class: Type[SupportFromTrtLlmCheckpoint]) -> Generator['TrtLlmPreTrainedModel', None, None]: |
|
root = str(checkpoints_folder) |
|
trtllm_config = PretrainedConfig.from_checkpoint(root) |
|
for rank in range(trtllm_config.mapping.world_size): |
|
yield target_class.from_checkpoint(root, rank, trtllm_config) |
|
|
|
def from_ranked_hf_model(local_hf_model_path: Path, config: 'TransformersPretraineConfig', target_class: Type['TrtLlmPreTrainedModel'], export_config: 'ExportConfig'): |
|
root = str(local_hf_model_path) |
|
for rank in range(export_config.sharding.world_size): |
|
export_config.sharding.rank = rank |
|
ranked_model = target_class.from_hugging_face(root, dtype=DataType.from_torch(config.torch_dtype).value, mapping=export_config.sharding, load_by_shard=True, use_parallel_embedding=export_config.sharding.world_size > 1, share_embedding_table=config.tie_word_embeddings) |
|
ranked_model.config.mapping.rank = rank |
|
yield ranked_model |
|
|
|
class HuggingFaceHubModel(ModelHubMixin, library_name=LIBRARY_NAME, languages=['python', 'c++'], tags=['optimum-nvidia', 'trtllm'], repo_url='https://github.com/huggingface/optimum-nvidia', docs_url='https://huggingface.co/docs/optimum/nvidia_overview', metaclass=ABCMeta): |
|
|
|
def __init__(self, engines_path: Union[str, PathLike, Path]): |
|
self._engines_path = Path(engines_path) |
|
|
|
@classmethod |
|
def _from_pretrained(cls: Type[T], *, model_id: str, config: Dict, revision: Optional[str], cache_dir: Optional[Union[str, Path]], force_download: bool, proxies: Optional[Dict], resume_download: bool, local_files_only: bool, token: Optional[Union[str, bool]], use_cuda_graph: bool=False, device_map: Optional[str]=None, export_config: Optional[ExportConfig]=None, quantization_config: Optional[ModelOptRecipe]=None, force_export: bool=False, export_only: bool=False, save_intermediate_checkpoints: bool=False) -> T: |
|
if get_device_count() < 1: |
|
raise ValueError('No GPU detected on this platform') |
|
device_name = get_device_name(0)[-1] |
|
if 'torch_dtype' in config: |
|
dtype = config['torch_dtype'] |
|
elif 'pretrained_config' in config and 'dtype' in config['pretrained_config']: |
|
dtype = config['pretrained_config']['dtype'] |
|
else: |
|
raise RuntimeError("Failed to detect model's dtype") |
|
local_model_id = Path(model_id) |
|
engines_folder = checkpoints_folder = None |
|
engine_files = checkpoint_files = [] |
|
if local_model_id.exists() and local_model_id.is_dir(): |
|
if any((engine_files := list(folder_list_engines(local_model_id)))): |
|
engines_folder = engine_files[0].parent |
|
checkpoints_folder = None |
|
else: |
|
checkpoint_files = list(folder_list_checkpoints(local_model_id)) |
|
if checkpoint_files: |
|
checkpoints_folder = checkpoint_files[0].parent |
|
else: |
|
if not force_export: |
|
LOGGER.debug(f'Retrieving prebuild engine(s) for device {device_name}') |
|
engines_folder = get_trtllm_engines(model_id, device_name, dtype) |
|
engine_files = folder_list_engines(engines_folder) |
|
if not engine_files: |
|
LOGGER.debug(f'Retrieving checkpoint(s) for {device_name}') |
|
checkpoints_folder = get_trtllm_checkpoints(model_id, device_name, dtype) |
|
checkpoint_files = folder_list_checkpoints(checkpoints_folder) |
|
if not engine_files: |
|
LOGGER.info(f'No prebuild engines nor checkpoint were found for {model_id}') |
|
if local_model_id.is_dir(): |
|
LOGGER.debug(f'Retrieving model from local folder: {local_model_id}') |
|
original_checkpoints_path_for_conversion = local_model_id |
|
workspace = Workspace(local_model_id) |
|
else: |
|
LOGGER.debug(f'Retrieving model from snapshot {model_id} on the Hugging Face Hub') |
|
original_checkpoints_path_for_conversion = snapshot_download(model_id, repo_type='model', revision=revision, cache_dir=cache_dir, force_download=force_download, proxies=proxies, resume_download=resume_download, local_files_only=local_files_only, token=token, allow_patterns=HUB_SNAPSHOT_ALLOW_PATTERNS) |
|
workspace = None |
|
config = NormalizedConfig(AutoConfig.for_model(**config)) |
|
generation_config = GenerationConfig.from_pretrained(original_checkpoints_path_for_conversion) |
|
if FILE_LICENSE_NAME in original_checkpoints_path_for_conversion: |
|
licence_path = original_checkpoints_path_for_conversion.joinpath(FILE_LICENSE_NAME) |
|
else: |
|
licence_path = None |
|
export_config = export_config or ExportConfig.from_config(config) |
|
if device_map and device_map == 'auto': |
|
LOGGER.info('Auto-parallel we will be used') |
|
export_config = auto_parallel(export_config) |
|
if isinstance(cls, SupportsTransformersConversion): |
|
targets = cls.TRT_LLM_TARGET_MODEL_CLASSES |
|
if not isinstance(targets, Mapping): |
|
targets = {'': targets} |
|
for (idx, (subpart, clazz)) in enumerate(targets.items()): |
|
LOGGER.info(f'Building {model_id} {subpart} ({idx + 1} / {len(targets)})') |
|
converter = TensorRTModelConverter(model_id, subpart, workspace, licence_path) |
|
if quantization_config: |
|
hf_model = cls.HF_LIBRARY_TARGET_MODEL_CLASS.from_pretrained(original_checkpoints_path_for_conversion, torch_dtype='auto', device_map='auto') |
|
checkpoints_folder = converter.quantize(hf_model, quantization_config) |
|
checkpoints_folder = checkpoints_folder.root |
|
checkpoint_files = folder_list_checkpoints(checkpoints_folder) |
|
del hf_model |
|
torch.cuda.empty_cache() |
|
if force_export or not len(list(converter.workspace.engines_path.glob('*.engine'))): |
|
if checkpoint_files and isinstance(clazz, SupportFromTrtLlmCheckpoint): |
|
ranked_models = from_ranked_checkpoints(checkpoints_folder, clazz) |
|
elif isinstance(clazz, SupportsFromHuggingFace): |
|
ranked_models = from_ranked_hf_model(original_checkpoints_path_for_conversion, config, clazz, export_config) |
|
else: |
|
raise TypeError(f"{clazz} can't convert from HF checkpoint") |
|
generation_config = GenerationConfig.from_pretrained(original_checkpoints_path_for_conversion) |
|
for ranked_model in ranked_models: |
|
if save_intermediate_checkpoints: |
|
_ = converter.convert(ranked_model) |
|
LOGGER.info(f'Saved intermediate checkpoints at {converter.workspace.checkpoints_path}') |
|
build_config = export_config.to_builder_config(ranked_model.config.quantization.quant_mode) |
|
_ = converter.build(ranked_model, build_config) |
|
engines_folder = converter.workspace.engines_path |
|
generation_config.save_pretrained(engines_folder) |
|
LOGGER.info(f'Saved TensorRT-LLM engines at {converter.workspace.engines_path}') |
|
else: |
|
LOGGER.info(f'Found existing engines at {converter.workspace.engines_path}') |
|
else: |
|
raise ValueError("Model doesn't support Hugging Face transformers conversion, aborting.") |
|
else: |
|
generation_config = GenerationConfig.from_pretrained(engines_folder) |
|
return cls(engines_path=engines_folder, generation_config=generation_config, load_engines=not export_only) |
|
|
|
@abstractmethod |
|
def _save_additional_parcels(self, save_directory: Path): |
|
raise NotImplementedError() |
|
|
|
def _save_pretrained(self, save_directory: Path) -> None: |
|
device_name = get_device_name(0)[-1] |
|
save_directory = save_directory.joinpath(device_name) |
|
save_directory.mkdir(parents=True, exist_ok=True) |
|
src_license_file_path = self._engines_path.parent / FILE_LICENSE_NAME |
|
dst_files = [src_license_file_path] if src_license_file_path.exists() else [] |
|
dst_files += list(self._engines_path.glob('*')) |
|
for file in dst_files: |
|
try: |
|
symlink(file, save_directory.joinpath(file.relative_to(self._engines_path))) |
|
except OSError as ose: |
|
LOGGER.error(f'Failed to create symlink from current engine folder {self._engines_path.parent} to {save_directory}. Will default to copy based _save_pretrained', exc_info=ose) |
|
dst = save_directory.joinpath(file.relative_to(self._engines_path)) |
|
if file.is_dir(): |
|
copytree(file, dst, symlinks=True) |
|
elif file: |
|
copyfile(file, dst) |
|
self._save_additional_parcels(save_directory) |
|
|
|
# File: optimum-nvidia-main/src/optimum/nvidia/lang/__init__.py |
|
from enum import Enum |
|
from typing import List |
|
import torch |
|
|
|
class DataType(str, Enum): |
|
FLOAT32 = 'float32' |
|
FLOAT16 = 'float16' |
|
BFLOAT16 = 'bfloat16' |
|
FLOAT8 = 'float8' |
|
INT64 = 'int64' |
|
INT32 = 'int32' |
|
INT8 = 'int8' |
|
UINT8 = 'uint8' |
|
BOOL = 'bool' |
|
|
|
@staticmethod |
|
def from_torch(dtype: torch.dtype) -> 'DataType': |
|
if dtype == torch.float32: |
|
return DataType.FLOAT32 |
|
elif dtype == torch.float16: |
|
return DataType.FLOAT16 |
|
elif dtype == torch.bfloat16: |
|
return DataType.BFLOAT16 |
|
elif dtype == torch.float8_e4m3fn: |
|
return DataType.FLOAT8 |
|
elif dtype == torch.int64: |
|
return DataType.INT64 |
|
elif dtype == torch.int32: |
|
return DataType.INT32 |
|
elif dtype == torch.int8: |
|
return DataType.INT8 |
|
elif dtype == torch.uint8: |
|
return DataType.UINT8 |
|
elif dtype == torch.bool: |
|
return DataType.BOOL |
|
else: |
|
raise ValueError(f'Unknown torch.dtype {dtype}') |
|
|
|
def to_trt(self) -> 'DataType': |
|
import tensorrt as trt |
|
if self == DataType.FLOAT32: |
|
return trt.DataType.FLOAT |
|
elif self == DataType.FLOAT16: |
|
return trt.DataType.HALF |
|
elif self == DataType.BFLOAT16: |
|
return trt.DataType.BF16 |
|
elif self == DataType.FLOAT8: |
|
return trt.DataType.FP8 |
|
elif self == DataType.INT8: |
|
return trt.DataType.INT8 |
|
elif self == DataType.UINT8: |
|
return trt.DataType.UINT8 |
|
elif self == DataType.INT32: |
|
return trt.DataType.INT32 |
|
elif self == DataType.INT64: |
|
return trt.DataType.INT64 |
|
elif self == DataType.BOOL: |
|
return trt.DataType.BOOL |
|
else: |
|
raise ValueError(f'Unknown value {self}') |
|
|
|
def to_torch(self): |
|
import torch |
|
if self == DataType.FLOAT32: |
|
return torch.float32 |
|
elif self == DataType.FLOAT16: |
|
return torch.float16 |
|
elif self == DataType.BFLOAT16: |
|
return torch.bfloat16 |
|
elif self == DataType.FLOAT8: |
|
return torch.float8_e4m3fn |
|
elif self == DataType.INT8: |
|
return torch.int8 |
|
elif self == DataType.UINT8: |
|
return torch.uint8 |
|
elif self == DataType.INT32: |
|
return torch.int32 |
|
elif self == DataType.INT64: |
|
return torch.int64 |
|
elif self == DataType.BOOL: |
|
return torch.bool |
|
else: |
|
raise ValueError(f'Unknown value {self}') |
|
|
|
@staticmethod |
|
def values() -> List[str]: |
|
return [item.value for item in DataType] |
|
|
|
# File: optimum-nvidia-main/src/optimum/nvidia/models/auto.py |
|
from pathlib import Path |
|
from typing import TYPE_CHECKING, Any, Dict, Optional, Type, Union |
|
from huggingface_hub import ModelHubMixin |
|
from optimum.nvidia.errors import UnsupportedModelException |
|
from optimum.nvidia.models.gemma import GemmaForCausalLM |
|
from optimum.nvidia.models.llama import LlamaForCausalLM |
|
from optimum.nvidia.utils import model_type_from_known_config |
|
if TYPE_CHECKING: |
|
from optimum.nvidia.export import ExportConfig |
|
from optimum.nvidia.runtime import CausalLM |
|
|
|
class AutoModelForCausalLM(ModelHubMixin): |
|
"""""" |
|
_SUPPORTED_MODEL_CLASS = {'llama': LlamaForCausalLM, 'mistral': LlamaForCausalLM, 'mixtral': LlamaForCausalLM, 'gemma': GemmaForCausalLM} |
|
|
|
def __init__(self): |
|
super().__init__() |
|
|
|
@classmethod |
|
def _from_pretrained(cls: Type, *, model_id: str, revision: Optional[str], cache_dir: Optional[Union[str, Path]], force_download: bool, proxies: Optional[Dict], resume_download: bool, local_files_only: bool, token: Optional[Union[str, bool]], config: Optional[Dict[str, Any]]=None, export_config: Optional['ExportConfig']=None, force_export: bool=False, use_cuda_graph: bool=False, **model_kwargs) -> 'CausalLM': |
|
if config is None: |
|
raise ValueError('Unable to determine the model type with config = None') |
|
model_type = model_type_from_known_config(config) |
|
if not model_type or model_type not in AutoModelForCausalLM._SUPPORTED_MODEL_CLASS: |
|
raise UnsupportedModelException(model_type) |
|
model_clazz = AutoModelForCausalLM._SUPPORTED_MODEL_CLASS[model_type] |
|
model = model_clazz.from_pretrained(pretrained_model_name_or_path=model_id, config=config, revision=revision, cache_dir=cache_dir, force_download=force_download, proxies=proxies, resume_download=resume_download, local_files_only=local_files_only, token=token, export_config=export_config, force_export=force_export, use_cuda_graph=use_cuda_graph, **model_kwargs) |
|
return model |
|
|
|
# File: optimum-nvidia-main/src/optimum/nvidia/models/base.py |
|
from os import PathLike |
|
from typing import TYPE_CHECKING, Mapping, Optional, Protocol, Type, Union, runtime_checkable |
|
if TYPE_CHECKING: |
|
from tensorrt_llm.models import PretrainedConfig |
|
from tensorrt_llm.top_model_mixin import TopModelMixin |
|
from transformers import PreTrainedModel as TransformersPreTrainedModel |
|
|
|
@runtime_checkable |
|
class SupportsFromHuggingFace(Protocol): |
|
|
|
@classmethod |
|
def from_hugging_face(cls, hf_model_dir: Union[str, bytes, PathLike], dtype: str='float16', mapping: Optional[Mapping]=None, **kwargs): |
|
... |
|
|
|
@runtime_checkable |
|
class SupportFromTrtLlmCheckpoint(Protocol): |
|
|
|
@classmethod |
|
def from_checkpoint(cls, ckpt_dir: str, rank: Optional[int]=None, config: Optional['PretrainedConfig']=None): |
|
... |
|
|
|
@runtime_checkable |
|
class SupportsTransformersConversion(Protocol): |
|
HF_LIBRARY_TARGET_MODEL_CLASS: Type['TransformersPreTrainedModel'] |
|
TRT_LLM_TARGET_MODEL_CLASSES: Union[Type['TopModelMixin'], Mapping[str, Type['TopModelMixin']]] |
|
|
|
# File: optimum-nvidia-main/src/optimum/nvidia/models/gemma.py |
|
from logging import getLogger |
|
from tensorrt_llm.models.gemma.model import GemmaForCausalLM as TrtGemmaForCausalLM |
|
from transformers import GemmaForCausalLM as TransformersGemmaForCausalLM |
|
from optimum.nvidia.hub import HuggingFaceHubModel |
|
from optimum.nvidia.models import SupportsTransformersConversion |
|
from optimum.nvidia.runtime import CausalLM |
|
LOGGER = getLogger(__name__) |
|
|
|
class GemmaForCausalLM(CausalLM, HuggingFaceHubModel, SupportsTransformersConversion): |
|
HF_LIBRARY_TARGET_MODEL_CLASS = TransformersGemmaForCausalLM |
|
TRT_LLM_TARGET_MODEL_CLASSES = TrtGemmaForCausalLM |
|
TRT_LLM_MANDATORY_CONVERSION_PARAMS = {'share_embedding_table': True} |
|
|
|
# File: optimum-nvidia-main/src/optimum/nvidia/models/mistral.py |
|
from logging import getLogger |
|
from tensorrt_llm.models.llama.model import LLaMAForCausalLM |
|
from transformers import MistralForCausalLM as TransformersMistralForCausalLM |
|
from optimum.nvidia.hub import HuggingFaceHubModel |
|
from optimum.nvidia.models import SupportsTransformersConversion |
|
from optimum.nvidia.runtime import CausalLM |
|
LOGGER = getLogger(__name__) |
|
|
|
class MistralForCausalLM(CausalLM, HuggingFaceHubModel, SupportsTransformersConversion): |
|
HF_LIBRARY_TARGET_MODEL_CLASS = TransformersMistralForCausalLM |
|
TRT_LLM_TARGET_MODEL_CLASSES = LLaMAForCausalLM |
|
|
|
# File: optimum-nvidia-main/src/optimum/nvidia/models/mixtral.py |
|
from logging import getLogger |
|
from tensorrt_llm.models.llama.model import LLaMAForCausalLM |
|
from transformers import MixtralForCausalLM as TransformersMixtralForCausalLM |
|
from optimum.nvidia.hub import HuggingFaceHubModel |
|
from optimum.nvidia.models import SupportsTransformersConversion |
|
from optimum.nvidia.runtime import CausalLM |
|
LOGGER = getLogger(__name__) |
|
|
|
class MixtralForCausalLM(CausalLM, HuggingFaceHubModel, SupportsTransformersConversion): |
|
HF_LIBRARY_TARGET_MODEL_CLASS = TransformersMixtralForCausalLM |
|
TRT_LLM_TARGET_MODEL_CLASSES = LLaMAForCausalLM |
|
|
|
# File: optimum-nvidia-main/src/optimum/nvidia/models/whisper.py |
|
from logging import getLogger |
|
from typing import TYPE_CHECKING |
|
from tensorrt_llm.models import DecoderModel as TrtDecoderModel |
|
from tensorrt_llm.models import WhisperEncoder as TrtWhisperEncoder |
|
from transformers.models.whisper.modeling_whisper import WhisperForConditionalGeneration as TransformersWhisperForConditionalGeneration |
|
from optimum.nvidia.models import SupportsTransformersConversion |
|
if TYPE_CHECKING: |
|
pass |
|
LOGGER = getLogger(__name__) |
|
|
|
class WhisperForConditionalGeneration(SupportsTransformersConversion): |
|
HF_LIBRARY_TARGET_MODEL_CLASS = TransformersWhisperForConditionalGeneration |
|
TRT_LLM_TARGET_MODEL_CLASSES = {'encoder': TrtWhisperEncoder, 'decoder': TrtDecoderModel} |
|
|
|
# File: optimum-nvidia-main/src/optimum/nvidia/pipelines/__init__.py |
|
from os import PathLike |
|
from typing import Dict, Optional, Tuple, Type, Union |
|
from huggingface_hub import model_info |
|
from tensorrt_llm import Module |
|
from transformers import AutoTokenizer, PreTrainedTokenizer, PreTrainedTokenizerFast |
|
from optimum.nvidia import AutoModelForCausalLM |
|
from optimum.nvidia.pipelines.text_generation import TextGenerationPipeline |
|
from .base import Pipeline |
|
SUPPORTED_MODEL_WITH_TASKS: Dict[str, Dict[str, Tuple[Type[Pipeline], Type]]] = {'gemma': {'text-generation': (TextGenerationPipeline, AutoModelForCausalLM)}, 'llama': {'text-generation': (TextGenerationPipeline, AutoModelForCausalLM)}, 'mistral': {'text-generation': (TextGenerationPipeline, AutoModelForCausalLM)}, 'mixtral': {'text-generation': (TextGenerationPipeline, AutoModelForCausalLM)}} |
|
|
|
def get_target_class_for_model_and_task(task: str, architecture: str) -> Optional[Type]: |
|
task_ = SUPPORTED_MODEL_WITH_TASKS.get(task, None) |
|
if not task: |
|
raise NotImplementedError(f'Task {task} is not supported yet.') |
|
target = task_.get(architecture, None) |
|
if not target: |
|
raise NotImplementedError(f'Architecture {architecture} is not supported for task {task}. Only the following architectures are: {list(task_.keys())}') |
|
return target |
|
|
|
def pipeline(task: str=None, model: Union[str, PathLike, Module]=None, tokenizer: Optional[Union[str, PreTrainedTokenizer, PreTrainedTokenizerFast]]=None, **kwargs): |
|
try: |
|
info = model_info(model) |
|
except Exception as e: |
|
raise RuntimeError(f'Failed to instantiate the pipeline inferring the task for model {model}: {e}') |
|
model_type = info.config.get('model_type', None) |
|
if not model_type: |
|
raise RuntimeError(f'Failed to infer model type for model {model}') |
|
elif model_type not in SUPPORTED_MODEL_WITH_TASKS: |
|
raise NotImplementedError(f'Model type {model_type} is not currently supported') |
|
if not task and getattr(info, 'library_name', 'transformers') == 'transformers': |
|
if not info.pipeline_tag: |
|
raise RuntimeError(f'Failed to infer the task for model {model}, please use `task` parameter') |
|
task = info.pipeline_tag |
|
if task not in SUPPORTED_MODEL_WITH_TASKS[model_type]: |
|
raise NotImplementedError(f'Task {task} is not supported yet for {model_type}.') |
|
if tokenizer is None: |
|
tokenizer = AutoTokenizer.from_pretrained(model, use_fast=True) |
|
(pipeline_factory, model_factory) = SUPPORTED_MODEL_WITH_TASKS[model_type][task] |
|
model = model_factory.from_pretrained(model, **kwargs) |
|
return pipeline_factory(model, tokenizer) |
|
|
|
# File: optimum-nvidia-main/src/optimum/nvidia/pipelines/text_generation.py |
|
import warnings |
|
from enum import Enum |
|
from typing import Dict, List, Union |
|
import torch |
|
from transformers import PreTrainedTokenizer, TensorType |
|
from optimum.nvidia import AutoModelForCausalLM |
|
from optimum.nvidia.runtime import CausalLM |
|
from .base import Pipeline |
|
|
|
class ReturnType(Enum): |
|
TENSORS = 0 |
|
NEW_TEXT = 1 |
|
FULL_TEXT = 2 |
|
|
|
class TextGenerationPipeline(Pipeline): |
|
TARGET_FACTORY = AutoModelForCausalLM |
|
__slots__ = ('tokenizer', '_runtime') |
|
|
|
def __init__(self, model: CausalLM, tokenizer: PreTrainedTokenizer): |
|
super().__init__() |
|
if tokenizer.eos_token and (not tokenizer.pad_token): |
|
tokenizer.pad_token = tokenizer.eos_token |
|
self.tokenizer = tokenizer |
|
self._runtime = model |
|
|
|
def __call__(self, inputs: Union[str, List[str]], add_special_tokens: bool=True, **kwargs): |
|
(preprocess_params, forward_params, postprocess_params) = self._sanitize_parameters(add_special_tokens=add_special_tokens, **kwargs) |
|
model_inputs = self.preprocess(inputs, **preprocess_params) |
|
model_outputs = self._forward(model_inputs, **forward_params) |
|
outputs = self.postprocess(model_outputs, **postprocess_params) |
|
return outputs |
|
|
|
def _sanitize_parameters(self, return_full_text=None, return_tensors=None, return_text=None, return_type=None, clean_up_tokenization_spaces=None, prefix=None, handle_long_generation=None, stop_sequence=None, add_special_tokens=False, **generate_kwargs): |
|
preprocess_params = {'add_special_tokens': add_special_tokens} |
|
if prefix is not None: |
|
preprocess_params['prefix'] = prefix |
|
if prefix: |
|
prefix_inputs = self.tokenizer(prefix, padding=False, add_special_tokens=add_special_tokens, return_tensors=TensorType.PYTORCH) |
|
generate_kwargs['prefix_length'] = prefix_inputs['input_ids'].shape[-1] |
|
if handle_long_generation is not None: |
|
if handle_long_generation not in {'hole'}: |
|
raise ValueError(f"{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected [None, 'hole']") |
|
preprocess_params['handle_long_generation'] = handle_long_generation |
|
preprocess_params.update(generate_kwargs) |
|
forward_params = generate_kwargs |
|
postprocess_params = {} |
|
if return_full_text is not None and return_type is None: |
|
if return_text is not None: |
|
raise ValueError('`return_text` is mutually exclusive with `return_full_text`') |
|
if return_tensors is not None: |
|
raise ValueError('`return_full_text` is mutually exclusive with `return_tensors`') |
|
return_type = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT |
|
if return_tensors is not None and return_type is None: |
|
if return_text is not None: |
|
raise ValueError('`return_text` is mutually exclusive with `return_tensors`') |
|
return_type = ReturnType.TENSORS |
|
if return_type is not None: |
|
postprocess_params['return_type'] = return_type |
|
if clean_up_tokenization_spaces is not None: |
|
postprocess_params['clean_up_tokenization_spaces'] = clean_up_tokenization_spaces |
|
if stop_sequence is not None: |
|
stop_sequence_ids = self.tokenizer.encode(stop_sequence, add_special_tokens=False) |
|
if len(stop_sequence_ids) > 1: |
|
warnings.warn('Stopping on a multiple token sequence is not yet supported on transformers. The first token of the stop sequence will be used as the stop sequence string in the interim.') |
|
generate_kwargs['eos_token_id'] = stop_sequence_ids[0] |
|
return (preprocess_params, forward_params, postprocess_params) |
|
|
|
def _forward(self, model_inputs, **generate_kwargs): |
|
input_ids = model_inputs['input_ids'] |
|
prompt_text = model_inputs.pop('prompt_text') |
|
attention_mask = model_inputs.get('attention_mask', None) |
|
max_new_tokens = generate_kwargs.pop('max_new_tokens', None) |
|
min_length = generate_kwargs.pop('min_length', -1) |
|
num_beams = generate_kwargs.pop('num_beams', 1) |
|
temperature = generate_kwargs.pop('temperature', 1.0) |
|
top_k = generate_kwargs.pop('top_k', 50) |
|
top_p = generate_kwargs.pop('top_p', 1.0) |
|
repetition_penalty = generate_kwargs.pop('repetition_penalty', 1.0) |
|
length_penalty = generate_kwargs.pop('length_penalty', 1.0) |
|
seed = generate_kwargs.pop('seed', 2017) |
|
(generated_sequence, lengths) = self._runtime.generate(input_ids=input_ids, attention_mask=attention_mask, max_new_tokens=max_new_tokens, min_length=min_length, num_beams=num_beams, temperature=temperature, top_k=top_k, top_p=top_p, repetition_penalty=repetition_penalty, length_penalty=length_penalty, seed=seed) |
|
return {'generated_sequence': generated_sequence, 'lengths': lengths, 'input_ids': input_ids, 'prompt_text': prompt_text} |
|
|
|
def preprocess(self, prompt_text, prefix='', handle_long_generation=None, add_special_tokens=False, **generate_kwargs) -> Dict[str, torch.Tensor]: |
|
if isinstance(prompt_text, List): |
|
text = [prefix + prompt for prompt in prompt_text] |
|
else: |
|
text = prefix + prompt_text |
|
inputs = self.tokenizer(text, padding=False, add_special_tokens=add_special_tokens, return_tensors=TensorType.PYTORCH) |
|
inputs['prompt_text'] = prompt_text |
|
return inputs |
|
|
|
def postprocess(self, model_outputs, return_type=ReturnType.FULL_TEXT, clean_up_tokenization_spaces=True): |
|
generated_sequence = model_outputs['generated_sequence'] |
|
generated_sequence = generated_sequence.cpu().numpy().tolist() |
|
records = [] |
|
if return_type == ReturnType.TENSORS: |
|
return [{'generated_token_ids': generated for generated in generated_sequence}] |
|
for sequence in generated_sequence: |
|
text = self.tokenizer.decode(sequence, skip_special_tokens=True, clean_up_tokenization_spaces=clean_up_tokenization_spaces) |
|
record = {'generated_text': text} |
|
records.append(record) |
|
return records |
|
|
|
# File: optimum-nvidia-main/src/optimum/nvidia/runtime.py |
|
import asyncio |
|
import json |
|
import math |
|
from logging import getLogger |
|
from os import PathLike |
|
from pathlib import Path |
|
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Sequence, Union |
|
import torch |
|
from tensorrt_llm.bindings.executor import ExecutorConfig, KvCacheConfig |
|
from tensorrt_llm.executor import GenerationExecutor, GenerationRequest, GenerationResult |
|
from tensorrt_llm.hlapi import SamplingParams |
|
from optimum.nvidia.hub import HuggingFaceHubModel |
|
from optimum.nvidia.utils.nvml import is_post_ampere |
|
if TYPE_CHECKING: |
|
from transformers import GenerationConfig |
|
LOGGER = getLogger(__name__) |
|
|
|
def read_engine_config_file(path: Path) -> Dict[str, Any]: |
|
with open(path / 'config.json', 'r', encoding='utf-8') as config_f: |
|
return json.load(config_f) |
|
|
|
def convert_generation_config(config: 'GenerationConfig') -> 'SamplingParams': |
|
return SamplingParams(end_id=config.eos_token_id, pad_id=config.pad_token_id, top_k=config.top_k if config.do_sample else 1, top_p=config.top_p, temperature=config.temperature, beam_width=config.num_beams if config.do_sample else 1, bad_token_ids=config.bad_words_ids, length_penalty=config.length_penalty, repetition_penalty=config.repetition_penalty, no_repeat_ngram_size=config.no_repeat_ngram_size if config.no_repeat_ngram_size > 0 else 1, min_length=config.min_length if config.min_length > 0 else 1, max_new_tokens=config.max_new_tokens, return_generation_logits=config.output_logits, return_log_probs=not config.renormalize_logits) |
|
|
|
def default_executor_config(config: Dict[str, Any]) -> 'ExecutorConfig': |
|
build_config = config['build_config'] |
|
plugin_config = config['build_config']['plugin_config'] |
|
max_blocks_per_sequence = math.floor(build_config['max_seq_len'] / plugin_config['tokens_per_block']) |
|
return ExecutorConfig(enable_chunked_context=is_post_ampere(), kv_cache_config=KvCacheConfig(enable_block_reuse=True, max_tokens=build_config['max_beam_width'] * plugin_config['tokens_per_block'] * max_blocks_per_sequence)) |
|
|
|
class InferenceRuntimeBase: |
|
__slots__ = ('_config', '_executor', '_generation_config', '_sampling_config') |
|
|
|
def __init__(self, engines_path: Union[str, PathLike], generation_config: 'GenerationConfig', executor_config: Optional['ExecutorConfig']=None, load_engines: bool=True): |
|
engines_path = Path(engines_path) |
|
if not engines_path.exists(): |
|
raise OSError(f"engine folder {engines_path} doesn't exist") |
|
self._config = read_engine_config_file(engines_path) |
|
self._generation_config = generation_config |
|
self._sampling_config = convert_generation_config(generation_config) |
|
if load_engines: |
|
self._executor = GenerationExecutor.create(engine=engines_path, executor_config=executor_config or default_executor_config(self._config)) |
|
|
|
def generate(self, inputs: Union[List[int], 'torch.IntTensor'], generation_config: Optional['GenerationConfig']=None): |
|
sampling = convert_generation_config(generation_config) if generation_config else self._sampling_config |
|
if isinstance(inputs, torch.Tensor): |
|
inputs = inputs.tolist() |
|
result = self._executor.generate(inputs, sampling_params=sampling) |
|
return result[0].outputs[0].token_ids |
|
|
|
async def agenerate(self, inputs: Union[List[int], 'torch.IntTensor'], generation_config: Optional['GenerationConfig']=None) -> List[int]: |
|
sampling = convert_generation_config(generation_config) if generation_config else self._sampling_config |
|
if isinstance(inputs, torch.Tensor): |
|
inputs = inputs.tolist() |
|
futures = self._executor.generate_async(inputs, streaming=False, sampling_params=sampling) |
|
if isinstance(futures, GenerationRequest): |
|
results = await futures.aresult() |
|
return results.token_ids |
|
else: |
|
results = await asyncio.gather(*[f.aresult() for f in futures]) |
|
return [r.token_ids for r in results] |
|
|
|
class CausalLMOutput: |
|
__slots__ = ('_results',) |
|
|
|
def __init__(self, results: Union['GenerationResult', Sequence['GenerationResult']]): |
|
self._results = results |
|
|
|
@property |
|
def logits(self): |
|
return self._results.token_ids |
|
|
|
@property |
|
def loss(self) -> None: |
|
return None |
|
|
|
class CausalLM(HuggingFaceHubModel, InferenceRuntimeBase): |
|
|
|
def __init__(self, engines_path: Union[str, PathLike, Path], generation_config: 'GenerationConfig', executor_config: Optional['ExecutorConfig']=None, load_engines: bool=True): |
|
InferenceRuntimeBase.__init__(self, engines_path, generation_config, executor_config, load_engines) |
|
HuggingFaceHubModel.__init__(self, engines_path) |
|
|
|
def _save_additional_parcels(self, save_directory: Path): |
|
self._generation_config.save_pretrained(save_directory, 'generation_config.json') |
|
|
|
# File: optimum-nvidia-main/src/optimum/nvidia/subpackage/commands/export.py |
|
import sys |
|
from typing import TYPE_CHECKING, Optional, Union |
|
from transformers import AutoConfig, AutoTokenizer |
|
from optimum.commands import optimum_cli_subcommand |
|
from optimum.commands.base import BaseOptimumCLICommand, CommandInfo |
|
from optimum.commands.export.base import ExportCommand |
|
from optimum.nvidia import AutoModelForCausalLM, ExportConfig |
|
from optimum.nvidia.export.cli import common_trtllm_export_args |
|
if TYPE_CHECKING: |
|
from argparse import ArgumentParser, Namespace, _SubParsersAction |
|
from pathlib import Path |
|
OPTIMUM_NVIDIA_CLI_QUANTIZATION_TARGET_REF = 'TARGET_QUANTIZATION_RECIPE' |
|
|
|
def import_source_file(fname: Union[str, 'Path'], modname: str): |
|
import importlib.util |
|
spec = importlib.util.spec_from_file_location(modname, fname) |
|
module = importlib.util.module_from_spec(spec) |
|
sys.modules[modname] = module |
|
spec.loader.exec_module(module) |
|
|
|
@optimum_cli_subcommand(ExportCommand) |
|
class TrtLlmExportCommand(BaseOptimumCLICommand): |
|
COMMAND = CommandInfo(name='trtllm', help='Export PyTorch models to TensorRT-LLM compiled engines') |
|
|
|
def __init__(self, subparsers: '_SubParsersAction', args: Optional['Namespace']=None, command: Optional['CommandInfo']=None, from_defaults_factory: bool=False, parser: Optional['ArgumentParser']=None): |
|
super().__init__(subparsers, args=args, command=command, from_defaults_factory=from_defaults_factory, parser=parser) |
|
self.args_string = ' '.join(sys.argv[3:]) |
|
|
|
@staticmethod |
|
def parse_args(parser: 'ArgumentParser'): |
|
return common_trtllm_export_args(parser) |
|
|
|
def run(self): |
|
args = self.args |
|
if args.quantization: |
|
tokenizer = AutoTokenizer.from_pretrained(args.model) |
|
import_source_file(args.quantization, 'recipe') |
|
try: |
|
from recipe import TARGET_QUANTIZATION_RECIPE |
|
qconfig = TARGET_QUANTIZATION_RECIPE(tokenizer) |
|
except ImportError: |
|
raise ModuleNotFoundError(f"Global variable 'TARGET_QUANTIZATION_RECIPE' was not found in {args.quantization}. This is required to automatically detect and allocate the right recipe for quantization.") |
|
else: |
|
qconfig = None |
|
config = AutoConfig.from_pretrained(args.model) |
|
export = ExportConfig.from_config(config, args.max_batch_size) |
|
model = AutoModelForCausalLM.from_pretrained(args.model, export_config=export, quantization_config=qconfig, export_only=True, force_export=True) |
|
if args.destination: |
|
model.save_pretrained(args.destination) |
|
if args.push_to_hub: |
|
print(f'Exporting model to the Hugging Face Hub: {args.push_to_hub}') |
|
model.push_to_hub(args.push_to_hub, commit_message=f'Optimum-CLI TensorRT-LLM {args.model} export') |
|
|
|
# File: optimum-nvidia-main/templates/inference-endpoints/postprocessing/1/model.py |
|
import json |
|
import numpy as np |
|
import triton_python_backend_utils as pb_utils |
|
from transformers import AutoTokenizer, LlamaTokenizer, T5Tokenizer |
|
|
|
class TritonPythonModel: |
|
__slots__ = ('tokenizer', 'output_dtype') |
|
|
|
def initialize(self, args): |
|
model_config = json.loads(args['model_config']) |
|
tokenizer_dir = model_config['parameters']['tokenizer_dir']['string_value'] |
|
self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_dir, padding_side='left') |
|
self.tokenizer.pad_token = self.tokenizer.eos_token |
|
output_config = pb_utils.get_output_config_by_name(model_config, 'OUTPUT') |
|
self.output_dtype = pb_utils.triton_string_to_numpy(output_config['data_type']) |
|
|
|
def execute(self, requests): |
|
responses = [] |
|
for (idx, request) in enumerate(requests): |
|
tokens_batch = pb_utils.get_input_tensor_by_name(request, 'TOKENS_BATCH').as_numpy() |
|
outputs = self._postprocessing(tokens_batch) |
|
output_tensor = pb_utils.Tensor('OUTPUT', np.array(outputs).astype(self.output_dtype)) |
|
inference_response = pb_utils.InferenceResponse(output_tensors=[output_tensor]) |
|
responses.append(inference_response) |
|
return responses |
|
|
|
def finalize(self): |
|
print('Cleaning up...') |
|
|
|
def _postprocessing(self, tokens_batch): |
|
outputs = [] |
|
for beam_tokens in tokens_batch: |
|
for tokens in beam_tokens: |
|
output = self.tokenizer.decode(tokens) |
|
outputs.append(output.encode('utf8')) |
|
return outputs |
|
|
|
# File: optimum-nvidia-main/templates/inference-endpoints/preprocessing/1/model.py |
|
import csv |
|
import json |
|
from pathlib import Path |
|
from typing import List, Sequence |
|
import numpy as np |
|
import triton_python_backend_utils as pb_utils |
|
from tokenizers import Tokenizer |
|
INPUT_NAMES = {'INPUT_ID', 'REQUEST_INPUT_LEN', 'BAD_WORDS_IDS', 'STOP_WORDS_IDS'} |
|
|
|
class TritonPythonModel: |
|
__slots__ = ('tokenizer', 'pad_token', 'pad_token_id', 'input_id_dtype', 'request_input_len_dtype', 'bad_words_ids_dtype', 'stop_words_ids_dtype') |
|
|
|
def initialize(self, args): |
|
model_config = json.loads(args['model_config']) |
|
tokenizer_dir = Path(model_config['parameters']['tokenizer_dir']['string_value']) |
|
tokenizer_path = tokenizer_dir.joinpath('tokenizer.json') |
|
pad_to_multiple_of = int(model_config['parameters']['pad_to_multiple_of']['string_value']) |
|
special_tokens_map_path = tokenizer_dir.joinpath('special_tokens_map.json') |
|
with open(special_tokens_map_path, 'r', encoding='utf-8') as special_tokens_f: |
|
special_tokens_map = json.load(special_tokens_f) |
|
self.tokenizer = Tokenizer.from_file(str(tokenizer_path)) |
|
if 'eos_token' in special_tokens_map: |
|
eos_token = special_tokens_map['eos_token']['content'] |
|
eos_token_id = self.tokenizer.encode(eos_token, add_special_tokens=False).ids[0] |
|
self.pad_token = eos_token |
|
self.pad_token_id = eos_token_id |
|
for name in INPUT_NAMES: |
|
dtype = pb_utils.triton_string_to_numpy(pb_utils.get_output_config_by_name(model_config, name)['data_type']) |
|
setattr(self, name.lower() + '_dtype', dtype) |
|
|
|
def execute(self, requests: Sequence): |
|
responses = [] |
|
for request in requests: |
|
response = self.handle_request(request) |
|
responses.append(response) |
|
return responses |
|
|
|
def finalize(self): |
|
print('Cleaning up...') |
|
|
|
def handle_request(self, request: Sequence): |
|
query = pb_utils.get_input_tensor_by_name(request, 'QUERY').as_numpy().item().decode('utf-8') |
|
request_output_len = pb_utils.get_input_tensor_by_name(request, 'REQUEST_OUTPUT_LEN') |
|
encoding = self.tokenizer.encode(query) |
|
bad_words_ids = pb_utils.Tensor('BAD_WORDS_IDS', np.array([[], []], dtype=self.bad_words_ids_dtype)) |
|
stop_words_ids = pb_utils.Tensor('STOP_WORDS_IDS', np.array([[], []], dtype=self.stop_words_ids_dtype)) |
|
input_ids = pb_utils.Tensor('INPUT_ID', np.array([encoding.ids], dtype=self.input_id_dtype)) |
|
request_input_len = pb_utils.Tensor('REQUEST_INPUT_LEN', np.array([[len(encoding.ids)]], dtype=self.request_input_len_dtype)) |
|
return pb_utils.InferenceResponse(output_tensors=[input_ids, bad_words_ids, stop_words_ids, request_input_len, request_output_len]) |
|
|
|
def _to_word_list_format(self, word_dict: List[List[str]]): |
|
assert self.tokenizer != None, 'need to set tokenizer' |
|
flat_ids = [] |
|
offsets = [] |
|
for word_dict_item in word_dict: |
|
item_flat_ids = [] |
|
item_offsets = [] |
|
if isinstance(word_dict_item[0], bytes): |
|
word_dict_item = [word_dict_item[0].decode()] |
|
words = list(csv.reader(word_dict_item))[0] |
|
for word in words: |
|
ids = self.tokenizer.encode(word) |
|
if len(ids) == 0: |
|
continue |
|
item_flat_ids += ids |
|
item_offsets.append(len(ids)) |
|
flat_ids.append(np.array(item_flat_ids)) |
|
offsets.append(np.cumsum(np.array(item_offsets))) |
|
pad_to = max(1, max((len(ids) for ids in flat_ids))) |
|
for (i, (ids, offs)) in enumerate(zip(flat_ids, offsets)): |
|
flat_ids[i] = np.pad(ids, (0, pad_to - len(ids)), constant_values=0) |
|
offsets[i] = np.pad(offs, (0, pad_to - len(offs)), constant_values=-1) |
|
return np.array([flat_ids, offsets], dtype='int32').transpose((1, 0, 2)) |
|
|
|
|