|
# File: pixparse-main/src/pixparse/app/eval.py |
|
import logging |
|
import os |
|
import json |
|
from dataclasses import dataclass, replace, field |
|
from typing import List |
|
import simple_parsing |
|
from simple_parsing import ArgumentParser |
|
import torch |
|
from pixparse.data import DataCfg, create_loader |
|
from pixparse.framework import TaskEval, TaskEvalCfg, DeviceEnv, Monitor, evaluate, setup_logging, random_seed |
|
from pixparse.utils.s3_utils import load_checkpoint_from_s3 |
|
from pixparse.task.task_factory import TaskFactory |
|
from chug.webdataset import create_doc_anno_pipe, create_image_text_pipe |
|
from collections import OrderedDict |
|
_logger = logging.getLogger('eval') |
|
|
|
@dataclass |
|
class EvalCfg: |
|
experiment: str = '' |
|
output_dir: str = './output' |
|
log_filename: str = 'out.log' |
|
dataset_name: str = '' |
|
s3_bucket: str = '' |
|
checkpoint_path: str = '' |
|
metrics_file_path: str = '' |
|
task_name: str = '' |
|
datasets: List[str] = field(default_factory=lambda : ['eval']) |
|
seed: int = 42 |
|
|
|
def eval(cfg: EvalCfg, task: TaskEval, eval_loaders: dict): |
|
device_env = task.device_env |
|
metrics = evaluate(task, eval_loaders) |
|
with open(cfg.metrics_file_path, 'w') as f: |
|
json.dump(metrics, f) |
|
parser = ArgumentParser(add_option_string_dash_variants=simple_parsing.DashVariant.DASH, argument_generation_mode=simple_parsing.ArgumentGenerationMode.BOTH, add_config_path_arg=True) |
|
parser.add_arguments(EvalCfg, dest='eval') |
|
parser.add_arguments(TaskEvalCfg, dest='task') |
|
parser.add_arguments(DataCfg, dest='data') |
|
|
|
def main(): |
|
args = parser.parse_args() |
|
eval_cfg: EvalCfg = args.eval |
|
data_cfg: DataCfg = args.data |
|
device_env = DeviceEnv() |
|
(task, task_cfg) = TaskFactory.create_task(task_name=eval_cfg.task_name, task_args=args.task, device_env=device_env, monitor=None) |
|
random_seed(eval_cfg.seed, rank=device_env.global_rank) |
|
_logger.info(f'Device env is {device_env}') |
|
assert eval_cfg.output_dir is not None, f'output_dir is not provided. Stopping eval run.' |
|
if device_env.is_primary(): |
|
log_path = os.path.join(eval_cfg.output_dir, eval_cfg.log_filename) |
|
setup_logging(log_path) |
|
monitor = Monitor(eval_cfg.experiment, output_dir=eval_cfg.output_dir, output_enabled=device_env.is_primary()) |
|
if eval_cfg.task_name not in ['donut_eval_ocr']: |
|
checkpoint_path = eval_cfg.checkpoint_path |
|
eval_cfg = replace(eval_cfg, checkpoint_path=checkpoint_path) |
|
if eval_cfg.s3_bucket != '': |
|
_logger.info('s3 bucket specified. Loading checkpoint from s3.') |
|
checkpoint = load_checkpoint_from_s3(eval_cfg.s3_bucket, eval_cfg.checkpoint_path) |
|
else: |
|
assert os.path.isfile(checkpoint_path), f'Cannot find checkpoint {checkpoint_path}: File not found' |
|
checkpoint = torch.load(eval_cfg.checkpoint_path) |
|
if isinstance(checkpoint, OrderedDict): |
|
state_dict = checkpoint |
|
else: |
|
state_dict = checkpoint['model'] |
|
checkpoint_name = eval_cfg.checkpoint_path.replace('/', '_').replace('.pt', '') |
|
metrics_file_name = f'{checkpoint_name}-{eval_cfg.dataset_name}-metrics.json' |
|
eval_state_dict = {k.replace('module.', ''): v for (k, v) in state_dict.items()} |
|
task.resume_state_dict = eval_state_dict |
|
else: |
|
metrics_file_name = f'{eval_cfg.task_name}-{eval_cfg.dataset_name}-metrics.json' |
|
eval_cfg.metrics_file_path = os.path.join(eval_cfg.output_dir, metrics_file_name) |
|
if device_env.is_primary(): |
|
_logger.info(task_cfg) |
|
_logger.info(eval_cfg) |
|
loaders = {} |
|
assert data_cfg.eval is not None, f'data_cfg.eval is not set.' |
|
loaders['eval'] = create_loader(data_cfg.eval, is_train=False, collate_fn=task.collate_fn, image_preprocess=task.image_preprocess_eval, anno_preprocess=task.anno_preprocess_eval, image_fmt=task_cfg.model.image_encoder.image_fmt, world_size=device_env.world_size, local_rank=device_env.local_rank, create_decoder_pipe=create_image_text_pipe) |
|
task.setup() |
|
if device_env.is_primary(): |
|
_logger.info(task) |
|
eval(eval_cfg, task, loaders) |
|
task.end() |
|
if __name__ == '__main__': |
|
main() |
|
|
|
# File: pixparse-main/src/pixparse/app/train.py |
|
import logging |
|
import os |
|
from dataclasses import dataclass, replace |
|
from datetime import datetime |
|
from typing import Dict, Optional |
|
import simple_parsing |
|
from simple_parsing import ArgumentParser |
|
import torch |
|
from pixparse.data import DataCfg, create_loader |
|
from pixparse.framework import DeviceEnv, Monitor, train_one_interval, evaluate, setup_logging, random_seed, TaskTrain, TaskTrainCfg |
|
from pixparse.utils.name_utils import clean_name |
|
from pixparse.utils.s3_utils import load_checkpoint_from_s3 |
|
from pixparse.task import TaskFactory |
|
from chug.common import LoaderBundle |
|
from chug.webdataset import create_doc_anno_pipe |
|
from collections import OrderedDict |
|
_logger = logging.getLogger('train') |
|
|
|
@dataclass |
|
class TrainCfg: |
|
experiment: Optional[str] = None |
|
output_dir: str = './output' |
|
log_filename: str = 'out.log' |
|
s3_bucket: str = '' |
|
resume: bool = False |
|
checkpoint_path: str = '' |
|
output_checkpoint_dir: Optional[str] = None |
|
seed: int = 42 |
|
task_name: str = 'cruller_pretrain' |
|
wandb: bool = False |
|
wandb_project: str = 'unknown' |
|
tensorboard: bool = False |
|
log_eval_data: bool = False |
|
|
|
def train(cfg: TrainCfg, task: TaskTrain, loaders: Dict[str, LoaderBundle]): |
|
device_env = task.device_env |
|
train_loader = loaders['train'] |
|
for i in range(task.start_interval, task.num_intervals): |
|
train_loader.set_interval(i) |
|
train_one_interval(task, train_loader) |
|
if device_env.is_primary(): |
|
checkpoint_dir = os.path.join(cfg.output_checkpoint_dir, cfg.experiment) |
|
os.makedirs(checkpoint_dir, exist_ok=True) |
|
torch.save(task.model.state_dict(), os.path.join(checkpoint_dir, f'checkpoint-{i}.pt')) |
|
parser = ArgumentParser(add_option_string_dash_variants=simple_parsing.DashVariant.DASH, argument_generation_mode=simple_parsing.ArgumentGenerationMode.BOTH, add_config_path_arg=True) |
|
parser.add_arguments(TrainCfg, dest='train') |
|
parser.add_arguments(TaskTrainCfg, dest='task') |
|
parser.add_arguments(DataCfg, dest='data') |
|
|
|
def main(): |
|
args = parser.parse_args() |
|
train_cfg: TrainCfg = args.train |
|
data_cfg: DataCfg = args.data |
|
device_env = DeviceEnv() |
|
(task, task_cfg) = TaskFactory.create_task(task_name=train_cfg.task_name, task_args=args.task, device_env=device_env, monitor=None) |
|
random_seed(train_cfg.seed, rank=device_env.global_rank) |
|
_logger.info(f'Device env is {device_env}') |
|
if train_cfg.experiment is None: |
|
model_name_safe = clean_name(task_cfg.model_name) |
|
date_str = datetime.now().strftime('%Y%m%d-%H%M%S') |
|
if device_env.world_size > 1: |
|
date_str = device_env.broadcast_object(date_str) |
|
experiment = '-'.join([date_str, f'task_{train_cfg.task_name}', f'model_{model_name_safe}', f"lr_{'{:.1e}'.format(task_cfg.opt.learning_rate)}", f'b_{data_cfg.train.batch_size}']) |
|
train_cfg = replace(train_cfg, experiment=experiment) |
|
resume_latest = False |
|
experiment_path = os.path.join(train_cfg.output_dir, train_cfg.experiment) |
|
log_path = None |
|
if device_env.is_primary(): |
|
os.makedirs(experiment_path, exist_ok=True) |
|
log_path = os.path.join(experiment_path, train_cfg.log_filename) |
|
if os.path.exists(log_path) and (not resume_latest): |
|
_logger.error('Error. Experiment already exists. Use --experiment {} to specify a new experiment.') |
|
return -1 |
|
setup_logging(log_path) |
|
task.monitor = Monitor(train_cfg.experiment, output_dir=experiment_path, wandb=train_cfg.wandb, wandb_project=train_cfg.wandb_project, tensorboard=train_cfg.tensorboard, output_enabled=device_env.is_primary()) |
|
if train_cfg.resume: |
|
checkpoint_path = train_cfg.checkpoint_path |
|
train_cfg = replace(train_cfg, checkpoint_path=checkpoint_path) |
|
if train_cfg.s3_bucket != '': |
|
_logger.info('s3 bucket specified. Loading checkpoint from s3.') |
|
checkpoint = load_checkpoint_from_s3(train_cfg.s3_bucket, train_cfg.checkpoint_path) |
|
else: |
|
assert os.path.isfile(checkpoint_path), f'Cannot find checkpoint {checkpoint_path}: File not found' |
|
checkpoint = torch.load(train_cfg.checkpoint_path) |
|
if isinstance(checkpoint, OrderedDict): |
|
state_dict = checkpoint |
|
else: |
|
state_dict = checkpoint['model'] |
|
task.state_dict = state_dict |
|
task.resume = True |
|
output_checkpoint_dir = train_cfg.output_checkpoint_dir or os.path.join(experiment_path, 'checkpoints') |
|
os.makedirs(output_checkpoint_dir, exist_ok=True) |
|
train_cfg = replace(train_cfg, output_checkpoint_dir=output_checkpoint_dir) |
|
if device_env.is_primary(): |
|
_logger.info(task_cfg) |
|
_logger.info(train_cfg) |
|
loaders = {} |
|
assert data_cfg.train is not None or data_cfg.eval is not None, f'Neither data_cfg.train nor data_cfg.eval are set.' |
|
if data_cfg.train is not None: |
|
loaders['train'] = create_loader(data_cfg.train, is_train=True, collate_fn=task.collate_fn, image_preprocess=task.image_preprocess_train, anno_preprocess=task.anno_preprocess_train, image_fmt=task_cfg.model.image_encoder.image_fmt, world_size=device_env.world_size, global_rank=device_env.global_rank, create_decoder_pipe=create_doc_anno_pipe) |
|
task.train_setup(num_batches_per_interval=loaders['train'].num_batches) |
|
if device_env.is_primary(): |
|
_logger.info(task) |
|
train(train_cfg, task, loaders) |
|
if __name__ == '__main__': |
|
main() |
|
|
|
# File: pixparse-main/src/pixparse/data/config.py |
|
from dataclasses import dataclass, field |
|
from typing import List, Optional |
|
|
|
@dataclass |
|
class PreprocessCfg: |
|
pass |
|
|
|
@dataclass |
|
class DatasetCfg: |
|
source: str |
|
num_samples: int |
|
batch_size: int |
|
split: str |
|
format: str = 'webdataset' |
|
num_workers: int = 4 |
|
|
|
@dataclass |
|
class DataCfg: |
|
train: Optional[DatasetCfg] = None |
|
eval: Optional[DatasetCfg] = None |
|
|
|
# File: pixparse-main/src/pixparse/data/datasets_utils.py |
|
import json |
|
import os |
|
from ast import literal_eval |
|
import torch |
|
from datasets import load_dataset |
|
from PIL import Image |
|
from torch.utils.data import DataLoader, Dataset |
|
from torchvision import transforms |
|
from pixparse.utils.json_utils import json2token |
|
'' |
|
|
|
class CustomVQADataset(Dataset): |
|
|
|
def __init__(self, root_dir, split, transform=None): |
|
self.extra_tokens = ['<s_answer>', '</s_answer>', '</s_question>', '<s_question>'] |
|
self.root_dir = root_dir |
|
self.split = split |
|
assert split in ['train', 'test', 'val'], 'split is not train, test or val.' |
|
if split == 'test' or split == 'val': |
|
json_path = os.path.join(root_dir, split, f'{split}_v1.0.json') |
|
else: |
|
json_path = os.path.join(root_dir, split, f'processed_{split}_v1.0.json') |
|
assert os.path.isdir(self.root_dir), f"Can't find {root_dir}. Make sure you have DocVQA files locally." |
|
assert os.path.isfile(json_path), f'{json_path} not found. Make sure you have the processed dataset.' |
|
self.img_dir = os.path.join(root_dir, split) |
|
with open(json_path, 'r') as f: |
|
self.data_dict = json.load(f) |
|
self.all_images = list(self.data_dict.keys()) |
|
self.transform = transform |
|
|
|
def __len__(self): |
|
if self.split == 'test' or self.split == 'val': |
|
return len(self.data_dict['data']) |
|
return len(self.all_images) |
|
|
|
def __getitem__(self, index): |
|
if self.split == 'test': |
|
entry = self.data_dict['data'][index] |
|
labels = '<s_question>' + entry['question'] + '</s_question>' |
|
img_path = os.path.join(self.img_dir, entry['image']) |
|
question_id = entry['questionId'] |
|
image_id = entry['image'] |
|
if self.split == 'val': |
|
entry = self.data_dict['data'][index] |
|
labels = {'question': entry['question'], 'answers': entry['answers']} |
|
img_path = os.path.join(self.img_dir, entry['image']) |
|
question_id = entry['questionId'] |
|
image_id = entry['image'] |
|
else: |
|
image_id = self.all_images[index] |
|
questions_and_answers = self.data_dict[image_id] |
|
labels = questions_and_answers |
|
img_path = os.path.join(self.img_dir, image_id) |
|
question_id = -1 |
|
image = Image.open(img_path).convert('L') |
|
if self.transform: |
|
image = self.transform(image) |
|
return {'image': image, 'labels': labels, 'image_id': image_id, 'question_id': question_id} |
|
|
|
class SafeDataset: |
|
|
|
def __init__(self, original_dataset): |
|
self.original_dataset = original_dataset |
|
|
|
def __len__(self): |
|
return len(self.original_dataset) |
|
|
|
def __getitem__(self, idx): |
|
try: |
|
item = self.original_dataset[idx] |
|
return item |
|
except Exception as e: |
|
return None |
|
|
|
def get_additional_tokens_from_dataset(all_special_tokens: list, dataset=None, dataset_id: str='naver-clova-ix/cord-v2') -> list: |
|
if dataset_id == 'naver-clova-ix/cord-v2': |
|
|
|
def collate_fn(batch): |
|
text_inputs = [literal_eval(item['ground_truth'])['gt_parse'] for item in batch] |
|
return {'label': text_inputs} |
|
cord = load_dataset(dataset_id) |
|
loader = DataLoader(cord['train'], batch_size=32, collate_fn=collate_fn) |
|
new_special_tokens = [] |
|
for (i, batch) in enumerate(loader): |
|
for text in batch['label']: |
|
(_, batch_special_tokens) = json2token(text, all_special_tokens) |
|
new_special_tokens += batch_special_tokens |
|
new_special_tokens = list(set(new_special_tokens)) |
|
return new_special_tokens |
|
|
|
# File: pixparse-main/src/pixparse/data/loader.py |
|
from typing import Callable |
|
from chug import create_wds_loader, create_doc_anno_pipe |
|
from chug.common import LoaderBundle |
|
from datasets import VerificationMode |
|
from datasets import load_dataset |
|
from torch.utils.data import DataLoader, DistributedSampler |
|
from pixparse.data.datasets_utils import SafeDataset, CustomVQADataset |
|
from .config import DatasetCfg |
|
|
|
class GenericLoader(DataLoader): |
|
|
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
self.num_batches = len(self.dataset) // self.batch_size |
|
if len(self.dataset) % self.batch_size != 0: |
|
self.num_batches += 1 |
|
|
|
def create_loader(cfg: DatasetCfg, is_train: bool, image_preprocess, anno_preprocess, collate_fn: Callable=None, image_key='pdf;tif;tiff;png;jpg;jpeg', image_fmt='L', start_interval: int=0, seed: int=0, world_size: int=1, global_rank: int=0, create_decoder_pipe: Callable=create_doc_anno_pipe): |
|
decoder = create_decoder_pipe(image_preprocess=image_preprocess, anno_preprocess=anno_preprocess, image_key=image_key, image_fmt=image_fmt) |
|
if cfg.format == 'webdataset': |
|
loader = create_wds_loader(cfg.source, decoder, is_train=is_train, num_samples=cfg.num_samples, workers=cfg.num_workers, batch_size=cfg.batch_size, seed=seed, world_size=world_size) |
|
elif cfg.format == 'hf_dataset': |
|
if cfg.source == 'SinglePageDocVQA': |
|
dataset = CustomVQADataset(root_dir=f'/fsx/pablo/.cache/{cfg.source}', split=cfg.split) |
|
else: |
|
dataset = load_dataset(cfg.source, verification_mode=VerificationMode.ALL_CHECKS)[cfg.split] |
|
dataset = SafeDataset(dataset) |
|
sampler = None |
|
if world_size > 1: |
|
sampler = DistributedSampler(dataset, rank=global_rank, shuffle=True, seed=seed, num_replicas=world_size, drop_last=True) |
|
base_loader = DataLoader(dataset=dataset, collate_fn=collate_fn, sampler=sampler, batch_size=cfg.batch_size, num_workers=cfg.num_workers) |
|
loader = LoaderBundle(loader=base_loader, num_batches=len(base_loader), num_samples=len(dataset), sampler=sampler) |
|
return loader |
|
|
|
# File: pixparse-main/src/pixparse/data/preprocess.py |
|
import logging |
|
from typing import Callable |
|
import torch |
|
_logger = logging.getLogger(__name__) |
|
|
|
def preprocess_text_anno(anno, tokenizer: Callable, max_position_embeddings: int, task_start_token: str, prompt_end_token: str, ignore_id: int=-100, generator=None): |
|
text = task_start_token + anno + tokenizer.eos_token |
|
tokenizer_fn = lambda x: tokenizer(x, add_special_tokens=False, return_tensors='pt', max_length=max_position_embeddings, padding='max_length', truncation=True).input_ids[0] |
|
text = tokenizer_fn(text) |
|
target = text.clone() |
|
target[target == tokenizer.pad_token_id] = ignore_id |
|
prompt_end_token_id = tokenizer.convert_tokens_to_ids(prompt_end_token) |
|
target[:torch.nonzero(target == prompt_end_token_id).sum() + 1] = ignore_id |
|
return dict(text=[text], target=[target]) |
|
|
|
def preprocess_ocr_anno(anno, tokenizer: Callable, max_position_embeddings: int, task_start_token: str, prompt_end_token: str, ignore_id: int=-100, generator=None): |
|
if isinstance(anno, list): |
|
_logger.warning('Old [id, {}] annotation form found, correcting...') |
|
anno = anno[1] |
|
num_pages = len(anno['pages']) |
|
if not num_pages: |
|
raise RuntimeError('Empty annotation. Skipping...') |
|
tokenizer_fn = lambda x: tokenizer(x, add_special_tokens=False, return_tensors='pt', max_length=max_position_embeddings, padding='max_length', truncation=True).input_ids[0] |
|
pad_token_id = tokenizer.pad_token_id |
|
prompt_end_token_id = tokenizer.convert_tokens_to_ids(prompt_end_token) |
|
current_index = generator.randint(0, num_pages - 1) |
|
if not anno['pages'][current_index]['text']: |
|
current_index = get_next_valid_page_index(current_index, num_pages, anno) |
|
page_indices = [] |
|
text_pages = [] |
|
target_pages = [] |
|
n_wanted_pages = min(1, num_pages) |
|
while len(text_pages) < n_wanted_pages: |
|
anno_page = anno['pages'][current_index] |
|
if not anno_page['text']: |
|
raise RuntimeError('No text on page, skipping...') |
|
text = '\n'.join(anno_page['text']) |
|
orig_text = text |
|
text = task_start_token + text + tokenizer.eos_token |
|
text = tokenizer_fn(text) |
|
target = text.clone() |
|
target[target == pad_token_id] = ignore_id |
|
target[:torch.nonzero(target == prompt_end_token_id).sum() + 1] = ignore_id |
|
text_pages.append(text) |
|
target_pages.append(target) |
|
page_indices.append(current_index) |
|
current_index = get_next_valid_page_index(current_index, num_pages, anno) |
|
return (dict(text=text_pages, target=target_pages), dict(page_indices=page_indices, num_pages=num_pages, orig_text=orig_text)) |
|
|
|
def get_next_valid_page_index(current_index: int, num_pages: int, anno: dict, retries: int=10): |
|
for _ in range(retries): |
|
current_index = (current_index + 1) % num_pages |
|
anno_page = anno['pages'][current_index] |
|
if anno_page['text']: |
|
return current_index |
|
raise RuntimeError(f'No non-empty page found after {retries} attempts') |
|
|
|
# File: pixparse-main/src/pixparse/data/transforms.py |
|
import random |
|
from typing import Tuple, Union |
|
import timm.data.transforms |
|
import torch |
|
import torchvision.transforms.functional as F |
|
from torchvision import transforms |
|
from PIL import Image, ImageOps, ImageFilter |
|
from timm.data.transforms import CenterCropOrPad |
|
from timm.data.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD |
|
import numpy as np |
|
try: |
|
import albumentations as alb |
|
from albumentations.pytorch import ToTensorV2 |
|
has_albumentations = True |
|
except ImportError: |
|
has_albumentations = False |
|
try: |
|
import cv2 |
|
has_cv2 = True |
|
except ImportError: |
|
has_cv2 = False |
|
|
|
def create_transforms(name, image_size, training=True, image_mean=IMAGENET_DEFAULT_MEAN, image_std=IMAGENET_DEFAULT_STD, interpolation: str='bicubic', crop_margin: bool=False, align_long_axis: bool=False, fill=255): |
|
basic_args = dict(training=training, image_mean=image_mean, image_std=image_std) |
|
adv_args = dict(interpolation=interpolation, crop_margin=crop_margin, align_long_axis=align_long_axis, fill=fill) |
|
if name == 'better': |
|
return better_transforms(image_size, **basic_args, **adv_args) |
|
elif name == 'nougat': |
|
return nougat_transforms(image_size, **basic_args, **adv_args) |
|
else: |
|
return legacy_transforms(image_size, **basic_args) |
|
|
|
def legacy_transforms(image_size, image_mean, image_std, training=False): |
|
pp = transforms.Compose([transforms.Resize(image_size, interpolation=transforms.InterpolationMode.BICUBIC, antialias=True), transforms.ToTensor(), transforms.Normalize(mean=image_mean, std=image_std)]) |
|
return pp |
|
|
|
def better_transforms(image_size, training=True, image_mean=IMAGENET_DEFAULT_MEAN, image_std=IMAGENET_DEFAULT_STD, interpolation='bicubic', crop_margin=False, align_long_axis=False, fill=255): |
|
interpolation_mode = timm.data.transforms.str_to_interp_mode(interpolation) |
|
pp = [] |
|
if crop_margin: |
|
assert has_cv2, 'CV2 needed to use crop margin.' |
|
pp += [CropMargin()] |
|
if align_long_axis: |
|
pp += [AlignLongAxis(image_size, interpolation=interpolation_mode)] |
|
if training: |
|
pp += [ResizeKeepRatio(image_size, longest=1, interpolation=interpolation, random_scale_prob=0.05, random_scale_range=(0.85, 1.04), random_aspect_prob=0.05, random_aspect_range=(0.9, 1.11)), transforms.RandomApply([Bitmap()], p=0.05), transforms.RandomApply([transforms.RandomChoice([Erosion(3), Dilation(3)])], p=0.02), transforms.RandomApply([transforms.RandomAffine(degrees=0, shear=(0, 3.0, -3, 0), interpolation=interpolation_mode, fill=fill)], p=0.05), transforms.RandomApply([transforms.RandomAffine(degrees=3, translate=(0, 0.04), interpolation=interpolation_mode, fill=fill)], p=0.05), transforms.RandomApply([transforms.ElasticTransform(alpha=50.0, sigma=120 * 0.1, interpolation=interpolation_mode, fill=fill)], p=0.05), transforms.RandomApply([transforms.ColorJitter(0.1, 0.1)], p=0.05), transforms.RandomApply([transforms.GaussianBlur(3, sigma=(0.1, 0.5))], p=0.05), RandomPad(image_size, fill=fill), transforms.CenterCrop(image_size)] |
|
else: |
|
pp += [ResizeKeepRatio(image_size, longest=1, interpolation=interpolation), CenterCropOrPad(image_size, fill=fill)] |
|
pp += [transforms.ToTensor(), transforms.Normalize(image_mean, image_std)] |
|
return transforms.Compose(pp) |
|
|
|
def nougat_transforms(image_size, training=True, image_mean=IMAGENET_DEFAULT_MEAN, image_std=IMAGENET_DEFAULT_STD, align_long_axis=False, interpolation='bicubic', fill=255, crop_margin=False): |
|
assert has_albumentations, 'Albumentations and CV2 needed to use nougat transforms.' |
|
if interpolation == 'bilinear': |
|
interpolation_mode = 1 |
|
else: |
|
interpolation_mode = 2 |
|
tv_pp = [] |
|
alb_pp = [] |
|
if crop_margin: |
|
tv_pp += [CropMargin()] |
|
if align_long_axis: |
|
tv_pp += [AlignLongAxis(image_size)] |
|
if training: |
|
tv_pp += [ResizeKeepRatio(image_size, longest=1, interpolation=interpolation), RandomPad(image_size, fill=fill)] |
|
alb_pp += [BitmapAlb(p=0.05), alb.OneOf([ErosionAlb((2, 3)), DilationAlb((2, 3))], p=0.02), alb.Affine(shear={'x': (0, 3), 'y': (-3, 0)}, cval=(255, 255, 255), p=0.03), alb.ShiftScaleRotate(shift_limit_x=(0, 0.04), shift_limit_y=(0, 0.03), scale_limit=(-0.15, 0.03), rotate_limit=2, border_mode=0, interpolation=interpolation_mode, value=fill, p=0.03), alb.GridDistortion(distort_limit=0.05, border_mode=0, interpolation=interpolation_mode, value=fill, p=0.04), alb.Compose([alb.Affine(translate_px=(0, 5), always_apply=True, cval=(255, 255, 255)), alb.ElasticTransform(p=1, alpha=50, sigma=120 * 0.1, alpha_affine=120 * 0.01, border_mode=0, value=fill)], p=0.04), alb.RandomBrightnessContrast(0.1, 0.1, True, p=0.03), alb.ImageCompression(95, p=0.07), alb.GaussNoise(20, p=0.08), alb.GaussianBlur((3, 3), p=0.03)] |
|
else: |
|
tv_pp += [ResizeKeepRatio(image_size, longest=1, interpolation=interpolation), CenterCropOrPad(image_size, fill=fill)] |
|
alb_pp += [alb.Normalize(image_mean, image_std), alb.pytorch.ToTensorV2()] |
|
tv_pp += [alb_wrapper(alb.Compose(alb_pp))] |
|
return transforms.Compose(tv_pp) |
|
|
|
def alb_wrapper(transform): |
|
|
|
def f(im): |
|
return transform(image=np.asarray(im))['image'] |
|
return f |
|
|
|
class CropMargin: |
|
|
|
def __init__(self): |
|
pass |
|
|
|
def __call__(self, img): |
|
if isinstance(img, torch.Tensor): |
|
assert False |
|
else: |
|
data = np.array(img.convert('L')) |
|
data = data.astype(np.uint8) |
|
max_val = data.max() |
|
min_val = data.min() |
|
if max_val == min_val: |
|
return img |
|
data = (data - min_val) / (max_val - min_val) * 255 |
|
gray = 255 * (data < 200).astype(np.uint8) |
|
coords = cv2.findNonZero(gray) |
|
(a, b, w, h) = cv2.boundingRect(coords) |
|
return img.crop((a, b, w + a, h + b)) |
|
|
|
class AlignLongAxis: |
|
|
|
def __init__(self, input_size, interpolation=transforms.InterpolationMode.BICUBIC): |
|
self.input_size = input_size |
|
self.interpolation = interpolation |
|
|
|
def __call__(self, img): |
|
is_tensor = isinstance(img, torch.Tensor) |
|
(img_height, img_width) = img.shape[-2:] if is_tensor else (img.height, img.width) |
|
if self.input_size[0] > self.input_size[1] and img_width > img_height or (self.input_size[0] < self.input_size[1] and img_width < img_height): |
|
img = F.rotate(img, angle=-90, expand=True, interpolation=self.interpolation) |
|
return img |
|
|
|
class RandomPad: |
|
|
|
def __init__(self, input_size, fill=0): |
|
self.input_size = input_size |
|
self.fill = fill |
|
|
|
@staticmethod |
|
def get_params(img, input_size): |
|
(width, height) = F.get_image_size(img) |
|
delta_width = max(input_size[1] - width, 0) |
|
delta_height = max(input_size[0] - height, 0) |
|
pad_left = random.randint(0, delta_width) |
|
pad_top = random.randint(0, delta_height) |
|
pad_right = delta_width - pad_left |
|
pad_bottom = delta_height - pad_top |
|
return (pad_left, pad_top, pad_right, pad_bottom) |
|
|
|
def __call__(self, img): |
|
padding = self.get_params(img, self.input_size) |
|
img = F.pad(img, padding, self.fill) |
|
return img |
|
|
|
class ResizeKeepRatio: |
|
|
|
def __init__(self, size, longest=0.0, interpolation='bilinear', random_scale_prob=0.0, random_scale_range=(0.85, 1.05), random_aspect_prob=0.0, random_aspect_range=(0.9, 1.11)): |
|
if isinstance(size, (list, tuple)): |
|
self.size = tuple(size) |
|
else: |
|
self.size = (size, size) |
|
self.interpolation = timm.data.transforms.str_to_interp_mode(interpolation) |
|
self.longest = float(longest) |
|
self.random_scale_prob = random_scale_prob |
|
self.random_scale_range = random_scale_range |
|
self.random_aspect_prob = random_aspect_prob |
|
self.random_aspect_range = random_aspect_range |
|
|
|
@staticmethod |
|
def get_params(img, target_size, longest, random_scale_prob=0.0, random_scale_range=(0.85, 1.05), random_aspect_prob=0.0, random_aspect_range=(0.9, 1.11)): |
|
source_size = img.size[::-1] |
|
(h, w) = source_size |
|
(target_h, target_w) = target_size |
|
ratio_h = h / target_h |
|
ratio_w = w / target_w |
|
ratio = max(ratio_h, ratio_w) * longest + min(ratio_h, ratio_w) * (1.0 - longest) |
|
if random_scale_prob > 0 and random.random() < random_scale_prob: |
|
ratio_factor = random.uniform(random_scale_range[0], random_scale_range[1]) |
|
ratio_factor = (ratio_factor, ratio_factor) |
|
else: |
|
ratio_factor = (1.0, 1.0) |
|
if random_aspect_prob > 0 and random.random() < random_aspect_prob: |
|
aspect_factor = random.uniform(random_aspect_range[0], random_aspect_range[1]) |
|
ratio_factor = (ratio_factor[0] / aspect_factor, ratio_factor[1] * aspect_factor) |
|
size = [round(x * f / ratio) for (x, f) in zip(source_size, ratio_factor)] |
|
return size |
|
|
|
def __call__(self, img): |
|
size = self.get_params(img, self.size, self.longest, self.random_scale_prob, self.random_scale_range, self.random_aspect_prob, self.random_aspect_range) |
|
img = F.resize(img, size, self.interpolation) |
|
return img |
|
|
|
def __repr__(self): |
|
interpolate_str = timm.data.transforms.interp_mode_to_str(self.interpolation) |
|
format_string = self.__class__.__name__ + '(size={0}'.format(self.size) |
|
format_string += f', interpolation={interpolate_str})' |
|
format_string += f', longest={self.longest:.3f})' |
|
return format_string |
|
|
|
class Bitmap: |
|
|
|
def __init__(self, threshold=200): |
|
self.lut = [0 if i < threshold else i for i in range(256)] |
|
|
|
def __call__(self, img): |
|
if img.mode == 'RGB' and len(self.lut) == 256: |
|
lut = self.lut + self.lut + self.lut |
|
else: |
|
lut = self.lut |
|
return img.point(lut) |
|
|
|
class Erosion: |
|
|
|
def __init__(self, scale=3): |
|
super().__init__() |
|
if type(scale) is tuple or type(scale) is list: |
|
assert len(scale) == 2 |
|
self.scale = scale |
|
else: |
|
self.scale = (scale, scale) |
|
|
|
@staticmethod |
|
def get_params(scale): |
|
if type(scale) is tuple or type(scale) is list: |
|
assert len(scale) == 2 |
|
scale = random.choice(scale) |
|
return scale |
|
|
|
def __call__(self, img): |
|
kernel_size = self.get_params(self.scale) |
|
if isinstance(img, torch.Tensor): |
|
padding = kernel_size // 2 |
|
img = -torch.nn.functional.max_pool2d(-img, kernel_size=kernel_size, padding=padding) |
|
elif isinstance(img, Image.Image): |
|
img = img.filter(ImageFilter.MinFilter(kernel_size)) |
|
return img |
|
|
|
class Dilation: |
|
|
|
def __init__(self, scale=3): |
|
super().__init__() |
|
self.scale = scale |
|
|
|
@staticmethod |
|
def get_params(scale): |
|
if type(scale) is tuple or type(scale) is list: |
|
assert len(scale) == 2 |
|
scale = random.choice(scale) |
|
return scale |
|
|
|
def __call__(self, img): |
|
kernel_size = self.get_params(self.scale) |
|
if isinstance(img, torch.Tensor): |
|
padding = kernel_size // 2 |
|
img = torch.nn.functional.max_pool2d(img, kernel_size=kernel_size, padding=padding) |
|
elif isinstance(img, Image.Image): |
|
img = img.filter(ImageFilter.MaxFilter(kernel_size)) |
|
return img |
|
if has_albumentations: |
|
|
|
class ErosionAlb(alb.ImageOnlyTransform): |
|
|
|
def __init__(self, scale, always_apply=False, p=0.5): |
|
super().__init__(always_apply=always_apply, p=p) |
|
if type(scale) is tuple or type(scale) is list: |
|
assert len(scale) == 2 |
|
self.scale = scale |
|
else: |
|
self.scale = (scale, scale) |
|
|
|
def apply(self, img, **params): |
|
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, tuple(np.random.randint(self.scale[0], self.scale[1], 2))) |
|
img = cv2.erode(img, kernel, iterations=1) |
|
return img |
|
|
|
class DilationAlb(alb.ImageOnlyTransform): |
|
|
|
def __init__(self, scale, always_apply=False, p=0.5): |
|
super().__init__(always_apply=always_apply, p=p) |
|
if type(scale) is tuple or type(scale) is list: |
|
assert len(scale) == 2 |
|
self.scale = scale |
|
else: |
|
self.scale = (scale, scale) |
|
|
|
def apply(self, img, **params): |
|
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, tuple(np.random.randint(self.scale[0], self.scale[1], 2))) |
|
img = cv2.dilate(img, kernel, iterations=1) |
|
return img |
|
|
|
class BitmapAlb(alb.ImageOnlyTransform): |
|
|
|
def __init__(self, value=0, lower=200, always_apply=False, p=0.5): |
|
super().__init__(always_apply=always_apply, p=p) |
|
self.lower = lower |
|
self.value = value |
|
|
|
def apply(self, img, **params): |
|
img = img.copy() |
|
img[img < self.lower] = self.value |
|
return img |
|
|
|
# File: pixparse-main/src/pixparse/framework/config.py |
|
from dataclasses import dataclass, field |
|
from typing import Optional, Tuple |
|
|
|
@dataclass |
|
class OptimizationCfg: |
|
optimizer: str = 'adamw' |
|
scheduler: str = 'cosine' |
|
learning_rate: float = 0.0005 |
|
warmup_learning_rate: float = 0.0 |
|
weight_decay: float = 0.02 |
|
eps: float = 1e-06 |
|
clip_grad_value: Optional[float] = None |
|
clip_grad_mode: Optional[str] = None |
|
grad_accum_steps: int = 1 |
|
momentum: Optional[float] = None |
|
betas: Optional[Tuple[float, float]] = None |
|
layer_decay: Optional[float] = None |
|
|
|
@dataclass |
|
class TaskTrainCfg: |
|
num_intervals: int = 100 |
|
num_warmup_intervals: int = 5 |
|
eval_frequency: int = 1000 |
|
opt: OptimizationCfg = field(default_factory=OptimizationCfg) |
|
dtype: Optional[str] = None |
|
amp: bool = True |
|
model_name: str = '' |
|
|
|
@dataclass |
|
class TaskEvalCfg: |
|
dtype: Optional[str] = None |
|
amp: bool = True |
|
model_name: str = '' |
|
model_state_dict: dict = field(default_factory=dict) |
|
|
|
# File: pixparse-main/src/pixparse/framework/device.py |
|
"""""" |
|
import os |
|
from dataclasses import dataclass, field, InitVar |
|
from enum import Enum |
|
from typing import Union, Optional, List, Tuple |
|
import torch |
|
import torch.distributed as dist |
|
|
|
def is_distributed_env(): |
|
if 'WORLD_SIZE' in os.environ: |
|
return int(os.environ['WORLD_SIZE']) > 1 |
|
if 'SLURM_NTASKS' in os.environ: |
|
return int(os.environ['SLURM_NTASKS']) > 1 |
|
return False |
|
|
|
def world_info_from_env(): |
|
local_rank = 0 |
|
for v in ('LOCAL_RANK', 'MPI_LOCALRANKID', 'SLURM_LOCALID', 'OMPI_COMM_WORLD_LOCAL_RANK'): |
|
if v in os.environ: |
|
local_rank = int(os.environ[v]) |
|
break |
|
global_rank = 0 |
|
for v in ('RANK', 'PMI_RANK', 'SLURM_PROCID', 'OMPI_COMM_WORLD_RANK'): |
|
if v in os.environ: |
|
global_rank = int(os.environ[v]) |
|
break |
|
world_size = 1 |
|
for v in ('WORLD_SIZE', 'PMI_SIZE', 'SLURM_NTASKS', 'OMPI_COMM_WORLD_SIZE'): |
|
if v in os.environ: |
|
world_size = int(os.environ[v]) |
|
break |
|
return (local_rank, global_rank, world_size) |
|
|
|
class DeviceEnvType(Enum): |
|
CPU = 'cpu' |
|
CUDA = 'cuda' |
|
XLA = 'xla' |
|
|
|
@dataclass |
|
class DeviceEnv: |
|
init_device_type: InitVar[Optional[str]] = None |
|
init_device_index: InitVar[Optional[int]] = None |
|
init_dist_backend: InitVar[str] = 'nccl' |
|
init_dist_url: InitVar[str] = 'env://' |
|
device: torch.device = field(init=False) |
|
world_size: Optional[int] = None |
|
local_rank: Optional[int] = None |
|
global_rank: Optional[int] = None |
|
|
|
def is_global_primary(self): |
|
return self.global_rank == 0 |
|
|
|
def is_local_primary(self): |
|
return self.local_rank == 0 |
|
|
|
def is_primary(self, local=False): |
|
return self.is_local_primary() if local else self.is_global_primary() |
|
|
|
def __post_init__(self, init_device_type: Optional[str], init_device_index: Optional[int], init_dist_backend: str, init_dist_url: str): |
|
assert torch.cuda.device_count() |
|
torch.backends.cudnn.benchmark = True |
|
torch.backends.cuda.matmul.allow_tf32 = True |
|
(init_local_rank, init_global_rank, init_world_size) = world_info_from_env() |
|
if init_world_size > 1: |
|
assert init_device_index is None |
|
self.local_rank = int(init_local_rank) |
|
is_slurm = 'SLURM_PROCID' in os.environ |
|
if 'SLURM_PROCID' in os.environ: |
|
torch.distributed.init_process_group(backend=init_dist_backend, init_method=init_dist_url, world_size=init_world_size, rank=init_global_rank) |
|
else: |
|
torch.distributed.init_process_group(backend=init_dist_backend, init_method=init_dist_url) |
|
self.world_size = torch.distributed.get_world_size() |
|
self.global_rank = torch.distributed.get_rank() |
|
if is_slurm: |
|
assert self.world_size == init_world_size |
|
assert self.global_rank == init_global_rank |
|
self.device = torch.device('cuda:%d' % self.local_rank) |
|
torch.cuda.set_device(self.local_rank) |
|
else: |
|
self.device = torch.device('cuda' if init_device_index is None else f'cuda:{init_device_index}') |
|
self.local_rank = 0 |
|
self.world_size = 1 |
|
self.global_rank = 0 |
|
|
|
def broadcast_object(self, obj, src=0): |
|
if self.global_rank == src: |
|
objects = [obj] |
|
else: |
|
objects = [None] |
|
dist.broadcast_object_list(objects, src=src) |
|
return objects[0] |
|
|
|
def all_gather_object(self, obj, dst=0): |
|
objects = [None for _ in range(self.world_size)] |
|
dist.all_gather_object(objects, obj) |
|
return objects |
|
|
|
# File: pixparse-main/src/pixparse/framework/eval.py |
|
from .task import TaskEval |
|
|
|
def evaluate(task: TaskEval, loaders): |
|
metrics = dict() |
|
authorized_loaders = task.prepare_for_evaluation(loaders) |
|
for (key, loader) in authorized_loaders.items(): |
|
metrics[key] = dict() |
|
for (index_batch, sample) in enumerate(loader.loader): |
|
metrics[key][index_batch] = task.step(sample) |
|
if hasattr(task, 'average_metrics'): |
|
averaged_metrics = task.average_metrics(metrics[key]) |
|
metrics[key] = {} |
|
metrics[key]['average'] = averaged_metrics |
|
return metrics |
|
|
|
# File: pixparse-main/src/pixparse/framework/logger.py |
|
import logging |
|
|
|
def setup_logging(log_file, debug=False, include_host=False, set_all_loggers=False): |
|
level = logging.DEBUG if debug else logging.INFO |
|
if include_host: |
|
import socket |
|
hostname = socket.gethostname() |
|
formatter = logging.Formatter(f'%(asctime)s | {hostname} | %(levelname)s | %(message)s', datefmt='%Y-%m-%d,%H:%M:%S') |
|
else: |
|
formatter = logging.Formatter('%(asctime)s | %(levelname)s | %(message)s', datefmt='%Y-%m-%d,%H:%M:%S') |
|
logging.root.setLevel(level) |
|
if set_all_loggers: |
|
loggers = [logging.getLogger(name) for name in logging.root.manager.loggerDict] |
|
for logger in loggers: |
|
logger.setLevel(level) |
|
stream_handler = logging.StreamHandler() |
|
stream_handler.setFormatter(formatter) |
|
logging.root.addHandler(stream_handler) |
|
if log_file: |
|
file_handler = logging.FileHandler(filename=log_file) |
|
file_handler.setFormatter(formatter) |
|
logging.root.addHandler(file_handler) |
|
|
|
# File: pixparse-main/src/pixparse/framework/monitor.py |
|
import csv |
|
import logging |
|
import os |
|
from collections import OrderedDict |
|
from typing import Optional, Tuple, Dict, Union |
|
import torch |
|
from torch.utils.tensorboard.summary import image |
|
_logger = logging.getLogger(__name__) |
|
try: |
|
from torch.utils.tensorboard import SummaryWriter |
|
HAS_TB = True |
|
except ImportError as e: |
|
HAS_TB = False |
|
try: |
|
import wandb |
|
HAS_WANDB = True |
|
except ImportError: |
|
HAS_WANDB = False |
|
|
|
def summary_row_dict(results, index=None, index_name='epoch'): |
|
assert isinstance(results, dict) |
|
row_dict = OrderedDict() |
|
if index is not None: |
|
row_dict[index_name] = index |
|
if not results: |
|
return row_dict |
|
if isinstance(next(iter(results.values())), dict): |
|
for (p, pr) in results.items(): |
|
assert isinstance(pr, dict) |
|
row_dict.update([('_'.join([p, k]), v) for (k, v) in pr.items()]) |
|
else: |
|
row_dict.update(results) |
|
return row_dict |
|
|
|
class SummaryCsv: |
|
|
|
def __init__(self, output_dir, filename='summary.csv'): |
|
self.output_dir = output_dir |
|
self.filename = os.path.join(output_dir, filename) |
|
self.needs_header = not os.path.exists(self.filename) |
|
|
|
def update(self, row_dict): |
|
with open(self.filename, mode='a') as cf: |
|
dw = csv.DictWriter(cf, fieldnames=row_dict.keys()) |
|
if self.needs_header: |
|
dw.writeheader() |
|
self.needs_header = False |
|
dw.writerow(row_dict) |
|
_sci_keys = {'lr'} |
|
|
|
def _add_kwargs(text_update, name_map=None, **kwargs): |
|
|
|
def _to_str(key, val): |
|
if isinstance(val, float): |
|
if key.lower() in _sci_keys: |
|
return f'{key}: {val:.3e} ' |
|
else: |
|
return f'{key}: {val:.4f}' |
|
else: |
|
return f'{key}: {val}' |
|
|
|
def _map_name(key, name_map, capitalize=False): |
|
if name_map is None: |
|
if capitalize: |
|
return key.capitalize() if not key.isupper() else key |
|
else: |
|
return key |
|
return name_map.get(key, None) |
|
for (k, v) in kwargs.items(): |
|
if isinstance(v, dict): |
|
for (kk, vv) in v.items(): |
|
name = _map_name(kk, name_map) |
|
if not name: |
|
continue |
|
text_update += [_to_str(kk, vv)] |
|
else: |
|
name = _map_name(k, name_map) |
|
if not name: |
|
continue |
|
text_update += [_to_str(name, v)] |
|
|
|
class Monitor: |
|
|
|
def __init__(self, experiment_name=None, output_dir=None, logger=None, hparams=None, wandb=False, wandb_project='unknown', wandb_dir='wandb', tensorboard=False, tensorboard_dir='tensorboard', output_enabled=True, log_eval_data=False): |
|
self.output_dir = output_dir |
|
self.logger = logger or logging.getLogger('log') |
|
hparams = hparams or {} |
|
if output_dir is not None: |
|
self.csv_writer = SummaryCsv(output_dir=output_dir) |
|
else: |
|
self.csv_writer = None |
|
self.tensorboard = None |
|
if tensorboard: |
|
assert HAS_TB |
|
self.tensorboard = SummaryWriter(log_dir=os.path.join(self.output_dir, tensorboard_dir)) |
|
self.wandb = None |
|
if wandb: |
|
if HAS_WANDB: |
|
dir_ = os.path.join(self.output_dir, wandb_dir) |
|
self.wandb = wandb.init(project=wandb_project, name=experiment_name, config=hparams, dir=dir_) |
|
_logger.info(f'Wandb found. Metrics are being logged to {dir_}') |
|
else: |
|
_logger.warning("You've requested to log metrics to wandb but package not found. Metrics not being logged to wandb, try `pip install wandb`") |
|
self.output_enabled = output_enabled |
|
self.log_eval_data = log_eval_data |
|
|
|
def log_step(self, phase: str, step_idx: int, step_end_idx: Optional[int]=None, interval: Optional[int]=None, loss: Optional[float]=None, rate: Optional[Union[float, Tuple[float, float]]]=None, learning_rate: Optional[float]=None, phase_suffix: str='', metrics: dict=None, eval_data: dict=None, **kwargs): |
|
if not self.output_enabled: |
|
return |
|
if 'num_steps' in kwargs: |
|
step_end_idx = max(0, kwargs.pop('num_steps') - 1) |
|
phase_title = f'{phase.capitalize()} ({phase_suffix})' if phase_suffix else f'{phase.capitalize()}:' |
|
progress = 100.0 * step_idx / step_end_idx if step_end_idx else 0.0 |
|
rate_str = '' |
|
if isinstance(rate, (tuple, list)): |
|
rate_str = f'Rate: {rate[0]:.2f}/s ({rate[1]:.2f}/s)' |
|
elif rate is not None: |
|
rate_str = f'Rate: {rate:.2f}/s' |
|
text_update = [phase_title, f'{interval}' if interval is not None else None, f'[{step_idx}]' if step_end_idx is None else None, f'[{step_idx}/{step_end_idx} ({progress:>3.0f}%)]' if step_end_idx is not None else None, rate_str, f'loss: {loss:.5f}' if loss is not None else None, f'lr: {learning_rate:.5f}' if learning_rate is not None else None] |
|
_add_kwargs(text_update, **kwargs) |
|
log_str = ' '.join((item for item in text_update if item)) |
|
self.logger.info(log_str) |
|
if self.tensorboard is not None: |
|
if metrics is not None: |
|
for (metric_category, metric_items) in metrics.items(): |
|
for (metric_name, metric_value) in metric_items.items(): |
|
self.tensorboard.add_scalar('/'.join([metric_category, metric_name, phase_title]), metric_value, step_idx) |
|
if eval_data is not None and self.log_eval_data: |
|
for (eval_data_category, eval_data_triplet) in eval_data.items(): |
|
if eval_data_category == 'ocr_reconstruction_data': |
|
image_tag = '/'.join([eval_data_category, 'image', phase_title]) |
|
self.tensorboard._get_file_writer().add_summary(image(image_tag, eval_data_triplet['image'], dataformats='CHW'), step_idx) |
|
self.tensorboard.add_text('/'.join([eval_data_category, 'original_text', phase_title]), eval_data_triplet['original_text'], step_idx) |
|
self.tensorboard.add_text('/'.join([eval_data_category, 'reconstructed_text', phase_title]), eval_data_triplet['reconstructed_text'], step_idx) |
|
if loss is not None: |
|
self.tensorboard.add_scalar('/'.join(['Loss', phase_title]), loss, step_idx) |
|
if learning_rate is not None: |
|
self.tensorboard.add_scalar('/'.join(['Learning Rate', phase_title]), loss, step_idx) |
|
for (k, v) in kwargs.items(): |
|
self.tensorboard.add_scalar('/'.join([k, phase_title]), v, step_idx) |
|
if self.wandb is not None: |
|
wandb_log = dict(**kwargs) |
|
if loss: |
|
wandb_log['loss'] = loss |
|
if learning_rate: |
|
wandb_log['learning_rate'] = learning_rate |
|
|
|
def log_phase(self, phase: str='eval', interval: Optional[int]=None, name_map: Optional[dict]=None, **kwargs): |
|
if not self.output_enabled: |
|
return |
|
title = [f'{phase.capitalize()}', f'interval {interval}' if interval is not None else None, 'completed. '] |
|
title_str = ' '.join((i for i in title if i)) |
|
results = [] |
|
_add_kwargs(results, name_map=name_map, **kwargs) |
|
log_str = title_str + ', '.join((item for item in results if item)) |
|
self.logger.info(log_str) |
|
|
|
def write_summary(self, results: Dict, index: Optional[Union[int, str]]=None, index_name: str='interval'): |
|
if not self.output_enabled: |
|
return |
|
row_dict = summary_row_dict(index=index, index_name=index_name, results=results) |
|
if self.csv_writer: |
|
self.csv_writer.update(row_dict) |
|
if self.wandb is not None: |
|
wandb.log(row_dict) |
|
if self.tensorboard: |
|
pass |
|
|
|
# File: pixparse-main/src/pixparse/framework/task.py |
|
from dataclasses import dataclass |
|
from typing import Any, Dict, Optional |
|
from .config import TaskTrainCfg, TaskEvalCfg |
|
from .device import DeviceEnv |
|
from .monitor import Monitor |
|
|
|
class Task: |
|
|
|
def __init__(self, device_env: DeviceEnv, monitor: Monitor=None): |
|
self.device_env = device_env |
|
self.monitor = monitor |
|
|
|
class TaskEval(Task): |
|
|
|
def __init__(self, cfg: TaskEvalCfg, device_env: DeviceEnv, monitor: Monitor=None): |
|
super().__init__(device_env=device_env, monitor=monitor) |
|
|
|
def collate_fn(self, batch): |
|
pass |
|
|
|
def setup(self, *args, **kwargs): |
|
pass |
|
|
|
def prepare_for_evaluation(self): |
|
pass |
|
|
|
def step(self, sample: Dict[str, Any]) -> Dict[str, Any]: |
|
pass |
|
|
|
def end(self): |
|
pass |
|
|
|
class TaskTrain(Task): |
|
|
|
def __init__(self, cfg: TaskTrainCfg, device_env: DeviceEnv, monitor: Monitor=None): |
|
super().__init__(device_env=device_env, monitor=monitor) |
|
self.num_intervals = cfg.num_intervals |
|
self.num_warmup_intervals = cfg.num_warmup_intervals |
|
self.eval_frequency = cfg.eval_frequency |
|
self.num_steps_per_interval = None |
|
self.start_interval = 0 |
|
self.step = 0 |
|
self.batch_idx = 0 |
|
self.interval_idx = 0 |
|
self.interval_batch_idx = 0 |
|
self.optimizer = None |
|
self.scheduler = None |
|
self.scaler = None |
|
self.autocast = None |
|
|
|
def collate_fn(self, batch): |
|
pass |
|
|
|
def train_setup(self, *args, **kwargs): |
|
pass |
|
|
|
def train_interval_start(self): |
|
pass |
|
|
|
def train_interval_end(self): |
|
pass |
|
|
|
def train_step(self, sample: Dict[str, Any]) -> Dict[str, Any]: |
|
pass |
|
|
|
def eval_step(self, sample: Dict[str, Any]) -> Dict[str, Any]: |
|
pass |
|
|
|
def get_current_lr(self): |
|
lrl = [param_group['lr'] for param_group in self.optimizer.param_groups] |
|
lr = sum(lrl) / len(lrl) |
|
return lr |
|
|
|
# File: pixparse-main/src/pixparse/framework/train.py |
|
from .task import TaskTrain |
|
import torch |
|
import os |
|
|
|
def train_one_interval(task: TaskTrain, loader): |
|
task.train_interval_start() |
|
for (i, sample) in enumerate(loader.loader): |
|
task.train_step(sample) |
|
task.train_interval_end() |
|
|
|
# File: pixparse-main/src/pixparse/models/config.py |
|
import copy |
|
import re |
|
from pathlib import Path |
|
from dataclasses import dataclass, field |
|
from typing import Optional, Tuple |
|
from simple_parsing.helpers import Serializable |
|
from pixparse.utils.name_utils import _natural_key, clean_name |
|
_MODEL_CONFIG_PATHS = [Path(__file__).parent / f'configs/'] |
|
_MODEL_CONFIGS = {} |
|
|
|
@dataclass |
|
class ImageEncoderCfg(Serializable): |
|
name: str = 'vit_base_patch16_224' |
|
image_fmt: str = 'L' |
|
image_size: Optional[Tuple[int, int]] = (576, 448) |
|
pretrained: bool = True |
|
|
|
@dataclass |
|
class TextDecoderCfg(Serializable): |
|
name: str = 'facebook/bart-base' |
|
pretrained: bool = True |
|
num_decoder_layers: Optional[int] = 4 |
|
max_length: Optional[int] = 1024 |
|
pad_token_id: Optional[int] = None |
|
|
|
@dataclass |
|
class ModelCfg(Serializable): |
|
image_encoder: ImageEncoderCfg = field(default_factory=ImageEncoderCfg) |
|
text_decoder: TextDecoderCfg = field(default_factory=TextDecoderCfg) |
|
|
|
def _scan_model_configs(): |
|
global _MODEL_CONFIGS |
|
config_ext = ('.json',) |
|
config_files = [] |
|
for config_path in _MODEL_CONFIG_PATHS: |
|
if config_path.is_file() and config_path.suffix in config_ext: |
|
config_files.append(config_path) |
|
elif config_path.is_dir(): |
|
for ext in config_ext: |
|
config_files.extend(config_path.glob(f'*{ext}')) |
|
for cf in config_files: |
|
model_cfg = ModelCfg.load(cf) |
|
_MODEL_CONFIGS[cf.stem] = model_cfg |
|
_MODEL_CONFIGS = {k: v for (k, v) in sorted(_MODEL_CONFIGS.items(), key=lambda x: _natural_key(x[0]))} |
|
_scan_model_configs() |
|
|
|
def list_models(): |
|
return list(_MODEL_CONFIGS.keys()) |
|
|
|
def get_model_config(model_name): |
|
model_name = clean_name(model_name) |
|
cfg = _MODEL_CONFIGS.get(model_name, None) |
|
return copy.deepcopy(cfg) |
|
|
|
# File: pixparse-main/src/pixparse/models/cruller.py |
|
import torch.nn as nn |
|
from .config import ModelCfg |
|
from .image_encoder_timm import ImageEncoderTimm |
|
from .text_decoder_hf import TextDecoderHf |
|
|
|
class Cruller(nn.Module): |
|
|
|
def __init__(self, cfg: ModelCfg): |
|
super().__init__() |
|
self.image_encoder = ImageEncoderTimm(cfg.image_encoder) |
|
self.text_decoder = TextDecoderHf(cfg.text_decoder) |
|
|
|
def forward(self, image_input, text_input): |
|
encoder_output = self.image_encoder(image_input) |
|
decoder_output = self.text_decoder(text_input, encoder_hidden_states=encoder_output, return_dict=True) |
|
return decoder_output |
|
|
|
# File: pixparse-main/src/pixparse/models/image_encoder_timm.py |
|
import timm |
|
from torch import nn as nn |
|
from pixparse.models.config import ImageEncoderCfg |
|
|
|
def create_image_encoder(cfg: ImageEncoderCfg) -> nn.Module: |
|
assert cfg.name |
|
extra_kwargs = {} |
|
if cfg.image_size is not None: |
|
extra_kwargs['img_size'] = cfg.image_size |
|
assert cfg.image_fmt in ('L', 'RGB') |
|
model = timm.create_model(cfg.name, pretrained=cfg.pretrained, in_chans=1 if cfg.image_fmt == 'L' else 3, num_classes=0, global_pool='', **extra_kwargs) |
|
return model |
|
|
|
class ImageEncoderTimm(nn.Module): |
|
|
|
def __init__(self, cfg: ImageEncoderCfg): |
|
super().__init__() |
|
self.trunk = create_image_encoder(cfg) |
|
self.pool = None |
|
self.head = None |
|
|
|
def forward(self, x): |
|
x = self.trunk(x) |
|
if self.pool is not None: |
|
x = self.pool(x) |
|
if self.head is not None: |
|
x = self.head(x) |
|
return x |
|
|
|
# File: pixparse-main/src/pixparse/models/text_decoder_hf.py |
|
from typing import Optional |
|
import torch |
|
import transformers |
|
from torch import nn as nn |
|
from pixparse.models.config import TextDecoderCfg |
|
|
|
def create_text_decoder(cfg: TextDecoderCfg) -> transformers.BartForCausalLM: |
|
assert cfg.name |
|
config = transformers.AutoConfig.from_pretrained(cfg.name) |
|
config.add_cross_attention = True |
|
if False: |
|
config.is_encoder_decoder = False |
|
config.scale_embedding = True |
|
config.add_final_layer_norm = True |
|
if cfg.num_decoder_layers is not None: |
|
config.decoder_layers = cfg.num_decoder_layers |
|
if cfg.max_length is not None: |
|
config.max_position_embeddings = cfg.max_length |
|
if cfg.pretrained: |
|
model = transformers.AutoModelForCausalLM.from_pretrained(cfg.name, config=config) |
|
else: |
|
model = transformers.AutoModelForCausalLM.from_config(config) |
|
return model |
|
|
|
class TextDecoderHf(nn.Module): |
|
|
|
def __init__(self, cfg: TextDecoderCfg): |
|
super().__init__() |
|
self.trunk = create_text_decoder(cfg) |
|
self.prepare_inputs_for_generation = self.prepare_inputs_for_inference |
|
|
|
def prepare_inputs_for_inference(self, input_ids: torch.Tensor, encoder_outputs: torch.Tensor, pad_token_id: int, past_key_values=None, past=None, use_cache: bool=None, attention_mask: torch.Tensor=None): |
|
if past is not None: |
|
past_key_values = past |
|
attention_mask = input_ids.ne(pad_token_id).long() |
|
if past_key_values is not None: |
|
input_ids = input_ids[:, -1:] |
|
output = {'input_ids': input_ids, 'attention_mask': attention_mask, 'past_key_values': past_key_values, 'use_cache': use_cache, 'encoder_hidden_states': encoder_outputs} |
|
return output |
|
|
|
def forward(self, input_ids, attention_mask: Optional[torch.Tensor]=None, encoder_hidden_states: Optional[torch.Tensor]=None, past_key_values: Optional[torch.Tensor]=None, use_cache: bool=None, output_attentions: Optional[torch.Tensor]=None, output_hidden_states: Optional[torch.Tensor]=None, return_dict: bool=None): |
|
output = self.trunk(input_ids=input_ids, attention_mask=attention_mask, encoder_hidden_states=encoder_hidden_states, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict) |
|
return output |
|
|
|
# File: pixparse-main/src/pixparse/task/__init__.py |
|
from .task_cruller_pretrain import TaskCrullerPretrain, TaskCrullerPretrainCfg |
|
from .task_cruller_finetune_RVLCDIP import TaskCrullerFinetuneRVLCDIP, TaskCrullerFinetuneRVLCDIPCfg |
|
from .task_cruller_finetune_CORD import TaskCrullerFinetuneCORD, TaskCrullerFinetuneCORDCfg |
|
from .task_cruller_finetune_xent import TaskCrullerFinetuneXent, TaskCrullerFinetuneXentCfg |
|
from .task_cruller_finetune_docvqa import TaskCrullerFinetuneDOCVQA, TaskCrullerFinetuneDOCVQACfg |
|
from .task_cruller_eval_ocr import TaskCrullerEvalOCR, TaskCrullerEvalOCRCfg |
|
from .task_donut_eval_ocr import TaskDonutEvalOCR, TaskDonutEvalOCRCfg |
|
from .task_cruller_eval_rvlcdip import TaskCrullerEvalRVLCDIP, TaskCrullerEvalRVLCDIPCfg |
|
from .task_cruller_eval_cord import TaskCrullerEvalCORD, TaskCrullerEvalCORDCfg |
|
from .task_cruller_eval_docvqa import TaskCrullerEvalDOCVQA, TaskCrullerEvalDOCVQACfg |
|
from .task_factory import TaskFactory |
|
|
|
# File: pixparse-main/src/pixparse/task/task_cruller_eval_cord.py |
|
import logging |
|
from collections import OrderedDict |
|
from dataclasses import dataclass, field |
|
from functools import partial |
|
from typing import Optional |
|
import PIL |
|
import torch |
|
from torch import nn |
|
import torch.nn.functional as F |
|
from torchvision import transforms |
|
from pixparse.data import preprocess_ocr_anno, preprocess_text_anno |
|
from pixparse.framework import DeviceEnv, Monitor, TaskEval, TaskEvalCfg |
|
from pixparse.models import Cruller, ModelCfg, get_model_config |
|
from pixparse.tokenizers import TokenizerCfg, TokenizerHF |
|
from pixparse.utils.json_utils import json2token, token2json |
|
from pixparse.utils.json_utils import JSONParseEvaluator |
|
import numpy as np |
|
from ast import literal_eval |
|
_logger = logging.getLogger(__name__) |
|
|
|
@dataclass |
|
class TaskCrullerEvalCORDCfg(TaskEvalCfg): |
|
model_name: Optional[str] = None |
|
model: ModelCfg = field(default_factory=ModelCfg) |
|
tokenizer: TokenizerCfg = field(default_factory=TokenizerCfg) |
|
|
|
def __post_init__(self): |
|
if self.model_name: |
|
model = get_model_config(self.model_name) |
|
if model is None: |
|
_logger.warning(f'Model config for {self.model_name} was not found, using defaults.') |
|
else: |
|
self.model = model |
|
else: |
|
self.model_name = 'custom' |
|
|
|
class TaskCrullerEvalCORD(TaskEval): |
|
|
|
def __init__(self, cfg: TaskCrullerEvalCORDCfg, device_env: DeviceEnv, monitor: Monitor=None): |
|
super().__init__(cfg=cfg, device_env=device_env, monitor=monitor) |
|
self.cfg = cfg |
|
self.amp_dtype = None |
|
if cfg.dtype is not None: |
|
self.amp_dtype = torch.bfloat16 if cfg.dtype in ('bfloat16', 'bf16') else torch.float16 |
|
self.task_start_token = '<s_cord>' |
|
self.prompt_end_token = self.task_start_token |
|
self.max_position_embeddings = cfg.model.text_decoder.max_length |
|
self.text_anno_fn = True |
|
self.tokenizer = TokenizerHF(cfg.tokenizer) |
|
self.state_dict = OrderedDict() |
|
self.resume = False |
|
cord_finetune_tokens = ['<sep/>', '<s_cord>', '</s_service_price>', '<s_subtotal_price>', '<s_discountprice>', '</s_sub>', '<s_sub>', '</s_total_etc>', '</s_discountprice>', '</s_vatyn>', '</s_subtotal_price>', '<s_changeprice>', '</s_total>', '</s_unitprice>', '<s_emoneyprice>', '</s_tax_price>', '</s_othersvc_price>', '</s_cnt>', '<s_vatyn>', '<s_unitprice>', '<s_total>', '<s_price>', '</s_price>', '<s_sub_total>', '</s_num>', '<s_total_etc>', '</s_creditcardprice>', '<s_tax_price>', '<s_menu>', '<s_nm>', '<s_menutype_cnt>', '</s_changeprice>', '<s_num>', '<s_itemsubtotal>', '</s_etc>', '<s_creditcardprice>', '</s_menuqty_cnt>', '</s_emoneyprice>', '<s_menuqty_cnt>', '<s_discount_price>', '</s_menu>', '</s_sub_total>', '<s_etc>', '</s_void_menu>', '<s_cashprice>', '</s_discount_price>', '</s_total_price>', '</s_nm>', '<s_service_price>', '<s_othersvc_price>', '</s_itemsubtotal>', '<s_void_menu>', '<s_total_price>', '</s_cashprice>', '</s_menutype_cnt>', '<s_cnt>'] |
|
special_tokens_from_pretrain = ['<sep/>', '<s_pretrain>'] |
|
preproc_fn = preprocess_text_anno if self.text_anno_fn else preprocess_ocr_anno |
|
self.anno_preprocess_eval = partial(preproc_fn, tokenizer=self.tokenizer.trunk, max_position_embeddings=self.max_position_embeddings, task_start_token=self.task_start_token, prompt_end_token=self.prompt_end_token) |
|
self.model = Cruller(cfg.model) |
|
newly_added_num_from_pretrain = self.tokenizer.trunk.add_special_tokens({'additional_special_tokens': sorted(set(special_tokens_from_pretrain))}) |
|
if newly_added_num_from_pretrain > 0: |
|
self.model.text_decoder.trunk.resize_token_embeddings(len(self.tokenizer.trunk)) |
|
newly_added_num = self.tokenizer.trunk.add_special_tokens({'additional_special_tokens': sorted(set(cord_finetune_tokens))}) |
|
self.vocab_size = len(self.tokenizer.trunk) |
|
if newly_added_num > 0: |
|
self.model.text_decoder.trunk.resize_token_embeddings(len(self.tokenizer.trunk)) |
|
self.loss = nn.CrossEntropyLoss(ignore_index=-100) |
|
self.has_no_sync = False |
|
self.num_image_chs = 1 if cfg.model.image_encoder.image_fmt == 'L' else 3 |
|
img_mean = self.model.image_encoder.trunk.pretrained_cfg['mean'] |
|
img_std = self.model.image_encoder.trunk.pretrained_cfg['std'] |
|
self.img_mean = sum(img_mean) / len(img_mean) if cfg.model.image_encoder.image_fmt == 'L' else img_mean |
|
self.img_std = sum(img_std) / len(img_std) if cfg.model.image_encoder.image_fmt == 'L' else img_std |
|
self.image_preprocess_eval = transforms.Compose([transforms.ToTensor(), transforms.Grayscale(), transforms.Resize(cfg.model.image_encoder.image_size, interpolation=transforms.InterpolationMode.BICUBIC, antialias=True), transforms.Normalize(mean=self.img_mean, std=self.img_std)]) |
|
|
|
def setup(self): |
|
device = self.device_env.device |
|
self.model.load_state_dict(self.resume_state_dict) |
|
self.model.eval() |
|
self.model.to(device) |
|
self.all_ground_truths = [] |
|
self.all_predictions = [] |
|
self.acc_list = [] |
|
self.evaluator = JSONParseEvaluator() |
|
|
|
def prepare_inputs_for_inference(self, input_ids: torch.Tensor, encoder_outputs: torch.Tensor, past_key_values=None, past=None, use_cache: bool=None, attention_mask: torch.Tensor=None): |
|
if past is not None: |
|
past_key_values = past |
|
attention_mask = input_ids.ne(self.tokenizer.trunk.pad_token_id).long() |
|
if past_key_values is not None: |
|
input_ids = input_ids[:, -1:] |
|
output = {'input_ids': input_ids, 'attention_mask': attention_mask, 'past_key_values': past_key_values, 'use_cache': use_cache, 'encoder_hidden_states': encoder_outputs} |
|
return output |
|
|
|
def prepare_for_evaluation(self, loaders): |
|
loaders = {loader_key: loader for (loader_key, loader) in loaders.items() if loader_key in ['eval', 'eval_FUNSD']} |
|
return loaders |
|
|
|
def safe_image_transform(self, img): |
|
try: |
|
transformed_img = self.image_preprocess_eval(img) |
|
except PIL.UnidentifiedImageError as e: |
|
print(f'Encountered PIL issue {e}. Filtering...') |
|
transformed_img = None |
|
return transformed_img |
|
|
|
def text_input_to_target(self, text_input, ignore_id=-100): |
|
target = text_input.clone() |
|
target[target == self.tokenizer.trunk.pad_token_id] = ignore_id |
|
prompt_end_token_id = self.tokenizer.trunk.convert_tokens_to_ids(self.prompt_end_token) |
|
slice_id = torch.nonzero(target == prompt_end_token_id).sum() + 1 |
|
target[:slice_id] = ignore_id |
|
return target |
|
|
|
def collate_fn(self, batch): |
|
tokenizer_fn = lambda x: self.tokenizer.trunk(x, add_special_tokens=False, return_tensors='pt', max_length=512, padding='max_length', truncation=True).input_ids[0] |
|
images = [item['image'] for item in batch] |
|
raw_texts = [literal_eval(item['ground_truth'])['gt_parse'] for item in batch] |
|
inputs_to_stack = [] |
|
for text in raw_texts: |
|
(tokens_from_json, _) = json2token(text, self.tokenizer.trunk.all_special_tokens, sort_json_key=False) |
|
inputs_to_stack.append(tokenizer_fn(self.task_start_token + tokens_from_json + self.tokenizer.trunk.eos_token)) |
|
text_inputs = torch.stack(inputs_to_stack) |
|
targets = torch.stack([self.text_input_to_target(text) for text in text_inputs]) |
|
transform = self.image_preprocess_eval |
|
images = torch.stack([transform(img) for img in images]) |
|
text_inputs = text_inputs[:, :-1] |
|
targets = targets[:, 1:] |
|
return {'image': images, 'label': text_inputs, 'text_target': targets} |
|
|
|
def step(self, batch): |
|
metrics = {} |
|
for (image, label) in zip(batch['image'], batch['label']): |
|
decoded_gt = self.tokenizer.trunk.decode(label) |
|
ground_truth = token2json(decoded_gt) |
|
with torch.inference_mode(): |
|
tensor_image = image.unsqueeze(0).to(self.device_env.device) |
|
output = self.model.image_encoder(tensor_image) |
|
current_string = '<s_cord>' |
|
input_ids = torch.tensor(self.tokenizer.trunk.encode('<s_cord>', add_special_tokens=False)).unsqueeze(0).to(self.device_env.device) |
|
max_steps = 512 |
|
for step in range(max_steps): |
|
inputs = self.prepare_inputs_for_inference(input_ids=input_ids, encoder_outputs=output) |
|
decoder_outputs = self.model.text_decoder(**inputs) |
|
probabilities = F.softmax(decoder_outputs['logits'], dim=-1) |
|
next_token_id = torch.argmax(probabilities[0, -1]).item() |
|
next_token = self.tokenizer.trunk.decode([next_token_id]) |
|
current_string += next_token |
|
if next_token == '</s>': |
|
break |
|
input_ids = torch.tensor(self.tokenizer.trunk.encode(current_string, add_special_tokens=False)).unsqueeze(0).to(self.device_env.device) |
|
predicted_json = token2json(current_string) |
|
self.all_predictions.append(predicted_json) |
|
self.all_ground_truths.append(ground_truth) |
|
acc = self.evaluator.cal_acc(predicted_json, ground_truth) |
|
self.acc_list.append(acc) |
|
metrics['batch_accuracy'] = acc |
|
return metrics |
|
|
|
def average_metrics(self, metrics: dict): |
|
avg_accuracy = np.mean(self.acc_list) |
|
f1 = self.evaluator.cal_f1(self.all_predictions, self.all_ground_truths) |
|
self.all_ground_truths = [] |
|
self.all_predictions = [] |
|
self.acc_list = [] |
|
return {'average_accuracy': avg_accuracy, 'f1_score': f1} |
|
|
|
def end(self): |
|
pass |
|
|
|
def state_dict(self): |
|
state_dicts = {} |
|
state_dicts['model'] = self.model.state_dict() |
|
return state_dicts |
|
|
|
# File: pixparse-main/src/pixparse/task/task_cruller_eval_docvqa.py |
|
import logging |
|
from collections import OrderedDict |
|
from dataclasses import dataclass, field |
|
from functools import partial |
|
from typing import Optional |
|
import PIL |
|
import torch |
|
from torch import nn |
|
import torch.nn.functional as F |
|
from torchvision import transforms |
|
from pixparse.data import preprocess_ocr_anno, preprocess_text_anno |
|
from pixparse.framework import DeviceEnv, Monitor, TaskEval, TaskEvalCfg |
|
from pixparse.models import Cruller, ModelCfg, get_model_config |
|
from pixparse.tokenizers import TokenizerCfg, TokenizerHF |
|
from pixparse.utils.json_utils import json2token, token2json |
|
from pixparse.utils.json_utils import JSONParseEvaluator |
|
from pixparse.utils.metrics import average_normalized_levenshtein_similarity |
|
import numpy as np |
|
from ast import literal_eval |
|
_logger = logging.getLogger(__name__) |
|
|
|
@dataclass |
|
class TaskCrullerEvalDOCVQACfg(TaskEvalCfg): |
|
model_name: Optional[str] = None |
|
model: ModelCfg = field(default_factory=ModelCfg) |
|
tokenizer: TokenizerCfg = field(default_factory=TokenizerCfg) |
|
|
|
def __post_init__(self): |
|
if self.model_name: |
|
model = get_model_config(self.model_name) |
|
if model is None: |
|
_logger.warning(f'Model config for {self.model_name} was not found, using defaults.') |
|
else: |
|
self.model = model |
|
else: |
|
self.model_name = 'custom' |
|
|
|
class TaskCrullerEvalDOCVQA(TaskEval): |
|
|
|
def __init__(self, cfg: TaskCrullerEvalDOCVQACfg, device_env: DeviceEnv, monitor: Monitor=None): |
|
super().__init__(cfg=cfg, device_env=device_env, monitor=monitor) |
|
self.cfg = cfg |
|
self.amp_dtype = None |
|
if cfg.dtype is not None: |
|
self.amp_dtype = torch.bfloat16 if cfg.dtype in ('bfloat16', 'bf16') else torch.float16 |
|
self.task_start_token = '<s_docvqa>' |
|
self.prompt_end_token = '<s_answer>' |
|
self.max_position_embeddings = cfg.model.text_decoder.max_length |
|
self.text_anno_fn = True |
|
self.tokenizer = TokenizerHF(cfg.tokenizer) |
|
self.state_dict = OrderedDict() |
|
self.resume = False |
|
docvqa_finetune_tokens = ['<sep/>', self.task_start_token, self.prompt_end_token, '<s_question>', '</s_question>', '</s_answer>'] |
|
special_tokens_from_pretrain = ['<sep/>', '<s_pretrain>'] |
|
preproc_fn = preprocess_text_anno if self.text_anno_fn else preprocess_ocr_anno |
|
self.anno_preprocess_eval = partial(preproc_fn, tokenizer=self.tokenizer.trunk, max_position_embeddings=self.max_position_embeddings, task_start_token=self.task_start_token, prompt_end_token=self.prompt_end_token) |
|
self.model = Cruller(cfg.model) |
|
newly_added_num_from_pretrain = self.tokenizer.trunk.add_special_tokens({'additional_special_tokens': sorted(set(special_tokens_from_pretrain))}) |
|
if newly_added_num_from_pretrain > 0: |
|
self.model.text_decoder.trunk.resize_token_embeddings(len(self.tokenizer.trunk)) |
|
newly_added_num = self.tokenizer.trunk.add_special_tokens({'additional_special_tokens': sorted(set(docvqa_finetune_tokens))}) |
|
self.vocab_size = len(self.tokenizer.trunk) |
|
if newly_added_num > 0: |
|
self.model.text_decoder.trunk.resize_token_embeddings(len(self.tokenizer.trunk)) |
|
self.loss = nn.CrossEntropyLoss(ignore_index=-100) |
|
self.has_no_sync = False |
|
self.num_image_chs = 1 if cfg.model.image_encoder.image_fmt == 'L' else 3 |
|
img_mean = self.model.image_encoder.trunk.pretrained_cfg['mean'] |
|
img_std = self.model.image_encoder.trunk.pretrained_cfg['std'] |
|
self.img_mean = sum(img_mean) / len(img_mean) if cfg.model.image_encoder.image_fmt == 'L' else img_mean |
|
self.img_std = sum(img_std) / len(img_std) if cfg.model.image_encoder.image_fmt == 'L' else img_std |
|
self.image_preprocess_eval = transforms.Compose([transforms.ToTensor(), transforms.Grayscale(), transforms.Resize(cfg.model.image_encoder.image_size, interpolation=transforms.InterpolationMode.BICUBIC, antialias=True), transforms.Normalize(mean=self.img_mean, std=self.img_std)]) |
|
self.raw_predictions_test = dict() |
|
|
|
def setup(self): |
|
device = self.device_env.device |
|
self.model.load_state_dict(self.resume_state_dict) |
|
self.model.eval() |
|
self.model.to(device) |
|
self.all_ground_truths = [] |
|
self.all_predictions = [] |
|
self.acc_list = [] |
|
self.evaluator = JSONParseEvaluator() |
|
|
|
def prepare_inputs_for_inference(self, input_ids: torch.Tensor, encoder_outputs: torch.Tensor, past_key_values=None, past=None, use_cache: bool=None, attention_mask: torch.Tensor=None): |
|
if past is not None: |
|
past_key_values = past |
|
attention_mask = input_ids.ne(self.tokenizer.trunk.pad_token_id).long() |
|
if past_key_values is not None: |
|
input_ids = input_ids[:, -1:] |
|
output = {'input_ids': input_ids, 'attention_mask': attention_mask, 'past_key_values': past_key_values, 'use_cache': use_cache, 'encoder_hidden_states': encoder_outputs} |
|
return output |
|
|
|
def prepare_for_evaluation(self, loaders): |
|
loaders = {loader_key: loader for (loader_key, loader) in loaders.items() if loader_key in ['eval', 'eval_FUNSD']} |
|
return loaders |
|
|
|
def safe_image_transform(self, img): |
|
try: |
|
transformed_img = self.image_preprocess_eval(img) |
|
except PIL.UnidentifiedImageError as e: |
|
print(f'Encountered PIL issue {e}. Filtering...') |
|
transformed_img = None |
|
return transformed_img |
|
|
|
def text_input_to_target(self, text_input, ignore_id=-100): |
|
target = text_input.clone() |
|
target[target == self.tokenizer.trunk.pad_token_id] = ignore_id |
|
prompt_end_token_id = self.tokenizer.trunk.convert_tokens_to_ids(self.prompt_end_token) |
|
slice_id = torch.nonzero(target == prompt_end_token_id).sum() + 1 |
|
target[:slice_id] = ignore_id |
|
return target |
|
|
|
def collate_fn(self, batch): |
|
question_ids = [] |
|
image_ids = [] |
|
images = [] |
|
questions = [] |
|
answers = [] |
|
for item in batch: |
|
question_ids.append(item['question_id']) |
|
image_ids.append(item['image_id']) |
|
images.append(item['image']) |
|
questions.append(item['labels']['question']) |
|
answers.append(item['labels']['answers']) |
|
transform = self.image_preprocess_eval |
|
images = torch.stack([transform(img) for img in images]) |
|
return {'images': images, 'questions': questions, 'ground_truth_answers': answers, 'image_ids': image_ids, 'question_ids': question_ids} |
|
|
|
def step(self, batch): |
|
metrics = {} |
|
image_outputs = self.model.image_encoder(batch['images'].to(self.device_env.device)) |
|
for (output, question, answers, question_id) in zip(image_outputs, batch['questions'], batch['ground_truth_answers'], batch['question_ids']): |
|
self.all_ground_truths.append(answers) |
|
with torch.inference_mode(): |
|
current_string = self.task_start_token + '<s_question>' + question + '</s_question>' + '<s_answer>' |
|
input_ids = torch.tensor(self.tokenizer.trunk.encode(current_string, add_special_tokens=False)).unsqueeze(0).to(self.device_env.device) |
|
max_steps = 512 |
|
for step in range(max_steps): |
|
inputs = self.prepare_inputs_for_inference(input_ids=input_ids, encoder_outputs=output) |
|
decoder_outputs = self.model.text_decoder(**inputs) |
|
probabilities = F.softmax(decoder_outputs['logits'], dim=-1) |
|
next_token_id = torch.argmax(probabilities[0, -1]).item() |
|
next_token = self.tokenizer.trunk.decode([next_token_id]) |
|
current_string += next_token |
|
if next_token == '</s>': |
|
break |
|
input_ids = torch.tensor(self.tokenizer.trunk.encode(current_string, add_special_tokens=False)).unsqueeze(0).to(self.device_env.device) |
|
predicted_json = token2json(current_string) |
|
if 'answer' in predicted_json: |
|
self.all_predictions.append(predicted_json['answer']) |
|
else: |
|
self.all_predictions.append('') |
|
return metrics |
|
|
|
def average_metrics(self, metrics: dict): |
|
anls = average_normalized_levenshtein_similarity(ground_truth=self.all_ground_truths, predicted_answers=self.all_predictions) |
|
return {'ANLS': anls} |
|
|
|
def end(self): |
|
pass |
|
|
|
def state_dict(self): |
|
state_dicts = {} |
|
state_dicts['model'] = self.model.state_dict() |
|
return state_dicts |
|
|
|
# File: pixparse-main/src/pixparse/task/task_cruller_eval_ocr.py |
|
import logging |
|
from dataclasses import dataclass, field |
|
from functools import partial |
|
from typing import Optional |
|
import torch |
|
import torchvision.transforms as transforms |
|
from pixparse.framework import TaskEvalCfg, TaskEval, DeviceEnv, Monitor |
|
from pixparse.models import Cruller, ModelCfg, get_model_config |
|
from pixparse.tokenizers import TokenizerHF, TokenizerCfg |
|
from pixparse.data import preprocess_text_anno |
|
from pixparse.utils import get_ocr_metrics |
|
from chug.common import LoaderBundle |
|
_logger = logging.getLogger(__name__) |
|
import time |
|
|
|
@dataclass |
|
class TaskCrullerEvalOCRCfg(TaskEvalCfg): |
|
model_name: Optional[str] = None |
|
model: ModelCfg = field(default_factory=ModelCfg) |
|
tokenizer: TokenizerCfg = field(default_factory=TokenizerCfg) |
|
|
|
def __post_init__(self): |
|
if self.model_name: |
|
model = get_model_config(self.model_name) |
|
if model is None: |
|
_logger.warning(f'Model config for {self.model_name} was not found, using defaults.') |
|
else: |
|
self.model = model |
|
else: |
|
self.model_name = 'custom' |
|
|
|
class TaskCrullerEvalOCR(TaskEval): |
|
|
|
def __init__(self, cfg: TaskCrullerEvalOCRCfg, device_env: DeviceEnv, monitor: Monitor=None): |
|
super().__init__(cfg=cfg, device_env=device_env, monitor=monitor) |
|
self.cfg = cfg |
|
self.amp_dtype = None |
|
if cfg.dtype is not None: |
|
self.amp_dtype = torch.bfloat16 if cfg.dtype in ('bfloat16', 'bf16') else torch.float16 |
|
self.task_start_token = '<s_pretrain>' |
|
self.prompt_end_token = self.task_start_token |
|
self.max_position_embeddings = cfg.model.text_decoder.max_length |
|
self.text_anno_fn = True |
|
self.tokenizer = TokenizerHF(cfg.tokenizer) |
|
special_tokens = ['<sep/>', self.task_start_token, self.prompt_end_token] |
|
newly_added_num = self.tokenizer.trunk.add_special_tokens({'additional_special_tokens': sorted(set(special_tokens))}) |
|
self.vocab_size = len(self.tokenizer.trunk) |
|
preproc_fn = preprocess_text_anno |
|
self.anno_preprocess_eval = partial(preproc_fn, tokenizer=self.tokenizer.trunk, max_position_embeddings=self.max_position_embeddings, task_start_token=self.task_start_token, prompt_end_token=self.prompt_end_token) |
|
self.model = Cruller(cfg.model) |
|
if newly_added_num > 0: |
|
self.model.text_decoder.trunk.resize_token_embeddings(len(self.tokenizer.trunk)) |
|
self.has_no_sync = False |
|
self.num_image_chs = 1 if cfg.model.image_encoder.image_fmt == 'L' else 3 |
|
img_mean = self.model.image_encoder.trunk.pretrained_cfg['mean'] |
|
img_std = self.model.image_encoder.trunk.pretrained_cfg['std'] |
|
self.img_mean = sum(img_mean) / len(img_mean) if cfg.model.image_encoder.image_fmt == 'L' else img_mean |
|
self.img_std = sum(img_std) / len(img_std) if cfg.model.image_encoder.image_fmt == 'L' else img_std |
|
self.image_preprocess_eval = transforms.Compose([transforms.ToTensor(), transforms.Resize(cfg.model.image_encoder.image_size, interpolation=transforms.InterpolationMode.BICUBIC, antialias=True), transforms.Normalize(mean=self.img_mean, std=self.img_std)]) |
|
self.eval_metrics = {} |
|
self.max_recursion_length = 1000 |
|
|
|
def time_and_log(func): |
|
|
|
def wrapper(self, *args, **kwargs): |
|
start_time = time.time() |
|
result = func(self, *args, **kwargs) |
|
end_time = time.time() |
|
execution_time = end_time - start_time |
|
_logger.info(f'Executed method {func.__name__} in {execution_time:.2f} seconds') |
|
return result |
|
return wrapper |
|
|
|
def setup(self): |
|
device = self.device_env.device |
|
self.model.load_state_dict(self.resume_state_dict) |
|
self.model.eval() |
|
self.model.to(device) |
|
|
|
def prepare_for_evaluation(self, loaders: dict[str, LoaderBundle]) -> dict[str, LoaderBundle]: |
|
loaders = {loader_key: loader for (loader_key, loader) in loaders.items() if loader_key in ['eval', 'eval_FUNSD']} |
|
return loaders |
|
|
|
@time_and_log |
|
def step(self, sample): |
|
metrics = {} |
|
(image_input, text_input, text_target) = sample |
|
text_input = [item[0] for item in text_input] |
|
text_input = torch.stack(text_input, dim=0).to(self.device_env.device, non_blocking=True) |
|
text_target = [item[0] for item in text_target] |
|
text_target = torch.stack(text_target, dim=0).to(self.device_env.device, non_blocking=True) |
|
image_input = image_input.to(self.device_env.device, non_blocking=True) |
|
(ocr_metrics, _) = get_ocr_metrics(model=self.model, tokenizer=self.tokenizer, image_input=image_input, text_input=text_target, device_env=self.device_env, max_recursion_length=self.max_recursion_length, prompt_token=self.task_start_token) |
|
metrics['ocr_reconstruction'] = ocr_metrics |
|
return metrics |
|
|
|
def average_metrics(self, metrics: dict): |
|
wer_sum = 0 |
|
cer_sum = 0 |
|
for batch_metrics in metrics.values(): |
|
wer_sum += batch_metrics['ocr_reconstruction']['wer'] |
|
cer_sum += batch_metrics['ocr_reconstruction']['cer'] |
|
num_batches = len(metrics) |
|
average_wer = wer_sum / num_batches |
|
average_cer = cer_sum / num_batches |
|
return {'ocr_reconstruction': {'wer': average_wer, 'cer': average_cer}} |
|
|
|
def end(self): |
|
pass |
|
|
|
def state_dict(self): |
|
state_dicts = {} |
|
state_dicts['model'] = self.model.state_dict() |
|
return state_dicts |
|
|
|
# File: pixparse-main/src/pixparse/task/task_cruller_eval_rvlcdip.py |
|
import logging |
|
from collections import OrderedDict |
|
from dataclasses import dataclass, field |
|
from functools import partial |
|
from typing import Optional |
|
import PIL |
|
import torch |
|
import torch.nn.functional as F |
|
from torchvision import transforms |
|
from pixparse.data import preprocess_ocr_anno, preprocess_text_anno |
|
from pixparse.framework import DeviceEnv, Monitor, TaskEval, TaskEvalCfg |
|
from pixparse.models import Cruller, ModelCfg, get_model_config |
|
from pixparse.tokenizers import TokenizerCfg, TokenizerHF |
|
_logger = logging.getLogger(__name__) |
|
|
|
@dataclass |
|
class TaskCrullerEvalRVLCDIPCfg(TaskEvalCfg): |
|
model_name: Optional[str] = None |
|
model: ModelCfg = field(default_factory=ModelCfg) |
|
tokenizer: TokenizerCfg = field(default_factory=TokenizerCfg) |
|
|
|
def __post_init__(self): |
|
if self.model_name: |
|
model = get_model_config(self.model_name) |
|
if model is None: |
|
_logger.warning(f'Model config for {self.model_name} was not found, using defaults.') |
|
else: |
|
self.model = model |
|
else: |
|
self.model_name = 'custom' |
|
|
|
class TaskCrullerEvalRVLCDIP(TaskEval): |
|
|
|
def __init__(self, cfg: TaskCrullerEvalRVLCDIPCfg, device_env: DeviceEnv, monitor: Monitor=None): |
|
super().__init__(cfg=cfg, device_env=device_env, monitor=monitor) |
|
self.cfg = cfg |
|
self.amp_dtype = None |
|
if cfg.dtype is not None: |
|
self.amp_dtype = torch.bfloat16 if cfg.dtype in ('bfloat16', 'bf16') else torch.float16 |
|
self.task_start_token = '<s_rvlcdip>' |
|
self.prompt_end_token = self.task_start_token |
|
self.max_position_embeddings = cfg.model.text_decoder.max_length |
|
self.text_anno_fn = True |
|
self.tokenizer = TokenizerHF(cfg.tokenizer) |
|
self.state_dict = OrderedDict() |
|
self.resume = False |
|
special_tokens = ['<sep/>', self.task_start_token, self.prompt_end_token, '<s_class>', '</s_class>', '<advertisement/>', '<budget/>', '<email/>', '<file_folder/>', '<form/>', '<handwritten/>', '<invoice/>', '<letter/>', '<memo/>', '<news_article/>', '<presentation/>', '<questionnaire/>', '<resume/>', '<scientific_publication/>', '<scientific_report/>', '<specification/>'] |
|
newly_added_num = self.tokenizer.trunk.add_special_tokens({'additional_special_tokens': sorted(set(special_tokens))}) |
|
self.has_no_sync = False |
|
self.num_image_chs = 1 if cfg.model.image_encoder.image_fmt == 'L' else 3 |
|
self.int2str = {0: 'letter', 1: 'form', 2: 'email', 3: 'handwritten', 4: 'advertisement', 5: 'scientific_report', 6: 'scientific_publication', 7: 'specification', 8: 'file_folder', 9: 'news_article', 10: 'budget', 11: 'invoice', 12: 'presentation', 13: 'questionnaire', 14: 'resume', 15: 'memo'} |
|
self.vocab_size = len(self.tokenizer.trunk) |
|
preproc_fn = preprocess_text_anno if self.text_anno_fn else preprocess_ocr_anno |
|
self.anno_preprocess_eval = partial(preproc_fn, tokenizer=self.tokenizer.trunk, max_position_embeddings=self.max_position_embeddings, task_start_token=self.task_start_token, prompt_end_token=self.prompt_end_token) |
|
self.model = Cruller(cfg.model) |
|
if newly_added_num > 0: |
|
self.model.text_decoder.trunk.resize_token_embeddings(len(self.tokenizer.trunk)) |
|
img_mean = self.model.image_encoder.trunk.pretrained_cfg['mean'] |
|
img_std = self.model.image_encoder.trunk.pretrained_cfg['std'] |
|
self.img_mean = sum(img_mean) / len(img_mean) if cfg.model.image_encoder.image_fmt == 'L' else img_mean |
|
self.img_std = sum(img_std) / len(img_std) if cfg.model.image_encoder.image_fmt == 'L' else img_std |
|
self.image_preprocess_eval = transforms.Compose([transforms.ToTensor(), transforms.Resize(cfg.model.image_encoder.image_size, interpolation=transforms.InterpolationMode.BICUBIC, antialias=True), transforms.Normalize(mean=self.img_mean, std=self.img_std)]) |
|
|
|
def setup(self): |
|
device = self.device_env.device |
|
self.model.load_state_dict(self.resume_state_dict) |
|
self.model.eval() |
|
self.model.to(device) |
|
|
|
def prepare_inputs_for_inference(self, input_ids: torch.Tensor, encoder_outputs: torch.Tensor, past_key_values=None, past=None, use_cache: bool=None, attention_mask: torch.Tensor=None): |
|
if past is not None: |
|
past_key_values = past |
|
attention_mask = input_ids.ne(self.tokenizer.trunk.pad_token_id).long() |
|
if past_key_values is not None: |
|
input_ids = input_ids[:, -1:] |
|
output = {'input_ids': input_ids, 'attention_mask': attention_mask, 'past_key_values': past_key_values, 'use_cache': use_cache, 'encoder_hidden_states': encoder_outputs} |
|
return output |
|
|
|
def prepare_for_evaluation(self, loaders): |
|
loaders = {loader_key: loader for (loader_key, loader) in loaders.items() if loader_key in ['eval', 'eval_FUNSD']} |
|
return loaders |
|
|
|
def safe_image_transform(self, img): |
|
try: |
|
transformed_img = self.image_preprocess_eval(img) |
|
except PIL.UnidentifiedImageError as e: |
|
print(f'Encountered PIL issue {e}. Filtering...') |
|
transformed_img = None |
|
return transformed_img |
|
|
|
def collate_fn(self, batch): |
|
images = [item['image'] for item in batch if item is not None] |
|
labels = [item['label'] for item in batch if item is not None] |
|
if len(images) == 0: |
|
return None |
|
transformed_images = [self.safe_image_transform(img) for img in images] |
|
valid_indices = [i for (i, img) in enumerate(transformed_images) if img is not None] |
|
images = torch.stack([transformed_images[i] for i in valid_indices]) |
|
labels = torch.tensor([labels[i] for i in valid_indices], dtype=torch.int64) |
|
return {'image': images, 'label': labels} |
|
|
|
def step(self, sample): |
|
metrics = {} |
|
metrics['classification'] = dict() |
|
correct_samples = 0 |
|
ground_truths = [self.int2str[int(gt)] for gt in sample['label']] |
|
already_counted = [False] * len(ground_truths) |
|
with torch.inference_mode(): |
|
tensor_images = torch.stack([im for im in sample['image']]).to(self.device_env.device) |
|
output = self.model.image_encoder(tensor_images) |
|
current_strings = ['<s_rvlcdip>' for _ in range(tensor_images.shape[0])] |
|
input_ids = torch.tensor(self.tokenizer.trunk.encode('<s_rvlcdip>')[1]).unsqueeze(0).repeat(tensor_images.shape[0], 1).to(self.device_env.device) |
|
max_steps = 5 |
|
for step in range(max_steps): |
|
inputs = self.prepare_inputs_for_inference(input_ids=input_ids, encoder_outputs=output) |
|
decoder_outputs = self.model.text_decoder(**inputs) |
|
probabilities = F.softmax(decoder_outputs['logits'], dim=-1) |
|
next_token_ids = torch.argmax(probabilities, dim=-1) |
|
for idx in range(next_token_ids.shape[0]): |
|
next_token_id = next_token_ids[idx, -1].item() |
|
next_token = self.tokenizer.trunk.decode([next_token_id]) |
|
current_strings[idx] += next_token |
|
if next_token == '</s>': |
|
generated_label = current_strings[idx].replace('<s_rvlcdip>', '').replace('</s>', '').replace('<s>', '').strip() |
|
ground_truth_label = '<' + ground_truths[idx] + '/>' |
|
if generated_label == ground_truth_label and (not already_counted[idx]): |
|
correct_samples += 1 |
|
already_counted[idx] = True |
|
input_ids = torch.tensor([self.tokenizer.trunk.encode(s)[1:] for s in current_strings]).to(self.device_env.device) |
|
metrics['classification']['correct_samples'] = correct_samples |
|
metrics['classification']['n_valid_samples'] = len(sample['label']) |
|
return metrics |
|
|
|
def average_metrics(self, metrics: dict): |
|
correct_samples = 0 |
|
total_samples = 0 |
|
for batch_metrics in metrics.values(): |
|
correct_samples += batch_metrics['classification']['correct_samples'] |
|
total_samples += batch_metrics['classification']['n_valid_samples'] |
|
average_acc = correct_samples / total_samples |
|
return {'classification': {'accuracy': average_acc}} |
|
|
|
def end(self): |
|
pass |
|
|
|
def state_dict(self): |
|
state_dicts = {} |
|
state_dicts['model'] = self.model.state_dict() |
|
return state_dicts |
|
|
|
# File: pixparse-main/src/pixparse/task/task_cruller_finetune_CORD.py |
|
import logging |
|
from contextlib import nullcontext |
|
from dataclasses import dataclass, field, asdict |
|
from functools import partial |
|
from typing import Optional, List, Any |
|
import torch |
|
from torch.utils.data import DataLoader |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import torchvision.transforms as transforms |
|
from torchvision.transforms import functional as transformsF |
|
from torchvision.transforms import Lambda |
|
import timm |
|
import timm.utils |
|
from timm.optim import create_optimizer_v2 |
|
from timm.scheduler import create_scheduler_v2 |
|
from pixparse.framework import TaskTrainCfg, TaskTrain, DeviceEnv, Monitor |
|
from pixparse.models import Cruller, ModelCfg, get_model_config |
|
from pixparse.tokenizers import TokenizerHF, TokenizerCfg |
|
from pixparse.data import preprocess_ocr_anno, preprocess_text_anno |
|
from timm.layers import SelectAdaptivePool2d |
|
from typing import Dict, List |
|
from collections import OrderedDict |
|
from ast import literal_eval |
|
from datasets import load_dataset |
|
from pixparse.utils.json_utils import json2token, token2json |
|
from transformers import DonutProcessor, VisionEncoderDecoderModel |
|
from timm.data.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD |
|
from pixparse.utils.json_utils import JSONParseEvaluator |
|
_logger = logging.getLogger(__name__) |
|
|
|
@dataclass |
|
class TaskCrullerFinetuneCORDCfg(TaskTrainCfg): |
|
model_name: Optional[str] = None |
|
model: ModelCfg = field(default_factory=ModelCfg) |
|
tokenizer: TokenizerCfg = field(default_factory=TokenizerCfg) |
|
|
|
def __post_init__(self): |
|
if self.model_name: |
|
model = get_model_config(self.model_name) |
|
if model is None: |
|
_logger.warning(f'Model config for {self.model_name} was not found, using defaults.') |
|
else: |
|
self.model = model |
|
else: |
|
self.model_name = 'custom' |
|
|
|
def prepare_inputs_for_inference(tokenizer, input_ids: torch.Tensor, encoder_outputs: torch.Tensor, past_key_values=None, past=None, use_cache: bool=None, attention_mask: torch.Tensor=None): |
|
if past is not None: |
|
past_key_values = past |
|
attention_mask = input_ids.ne(tokenizer.trunk.pad_token_id).long() |
|
if past_key_values is not None: |
|
input_ids = input_ids[:, -1:] |
|
output = {'input_ids': input_ids, 'attention_mask': attention_mask, 'past_key_values': past_key_values, 'use_cache': use_cache, 'encoder_hidden_states': encoder_outputs} |
|
return output |
|
|
|
class TaskCrullerFinetuneCORD(TaskTrain): |
|
|
|
def __init__(self, cfg: TaskCrullerFinetuneCORDCfg, device_env: DeviceEnv, monitor: Monitor=None): |
|
super().__init__(cfg=cfg, device_env=device_env, monitor=monitor) |
|
self.cfg = cfg |
|
self.amp_dtype = None |
|
if cfg.dtype is not None: |
|
self.amp_dtype = torch.bfloat16 if cfg.dtype in ('bfloat16', 'bf16') else torch.float16 |
|
self.task_start_token = '<s_cord>' |
|
self.prompt_end_token = self.task_start_token |
|
self.max_position_embeddings = cfg.model.text_decoder.max_length |
|
self.text_anno_fn = True |
|
self.tokenizer = TokenizerHF(cfg.tokenizer) |
|
self.state_dict = OrderedDict() |
|
self.resume = False |
|
self.special_tokens_finetune = ['<sep/>', self.task_start_token, self.prompt_end_token, '</s_service_price>', '<s_subtotal_price>', '<s_discountprice>', '</s_sub>', '<s_sub>', '</s_total_etc>', '</s_discountprice>', '</s_vatyn>', '</s_subtotal_price>', '<s_changeprice>', '</s_total>', '</s_unitprice>', '<s_emoneyprice>', '</s_tax_price>', '</s_othersvc_price>', '</s_cnt>', '<s_vatyn>', '<s_unitprice>', '<s_total>', '<s_price>', '</s_price>', '<s_sub_total>', '</s_num>', '<s_total_etc>', '</s_creditcardprice>', '<s_tax_price>', '<s_menu>', '<s_nm>', '<s_menutype_cnt>', '</s_changeprice>', '<s_num>', '<s_itemsubtotal>', '</s_etc>', '<s_creditcardprice>', '</s_menuqty_cnt>', '</s_emoneyprice>', '<s_menuqty_cnt>', '<s_discount_price>', '</s_menu>', '</s_sub_total>', '<s_etc>', '</s_void_menu>', '<s_cashprice>', '</s_discount_price>', '</s_total_price>', '</s_nm>', '<s_service_price>', '<s_othersvc_price>', '</s_itemsubtotal>', '<s_void_menu>', '<s_total_price>', '</s_cashprice>', '</s_menutype_cnt>', '<s_cnt>'] |
|
preproc_fn = preprocess_text_anno if self.text_anno_fn else preprocess_ocr_anno |
|
self.anno_preprocess_train = partial(preproc_fn, tokenizer=self.tokenizer.trunk, max_position_embeddings=self.max_position_embeddings, task_start_token=self.task_start_token, prompt_end_token=self.prompt_end_token) |
|
'' |
|
self.finetune_donut_weights = False |
|
_logger.info(f'Finetuning donut weights? {self.finetune_donut_weights}') |
|
if self.finetune_donut_weights: |
|
self.model = VisionEncoderDecoderModel.from_pretrained('naver-clova-ix/donut-base') |
|
else: |
|
self.model = Cruller(cfg.model) |
|
special_tokens_from_pretrain = ['<sep/>', '<s_pretrain>'] |
|
num_tokens_from_pretrain = self.tokenizer.trunk.add_special_tokens({'additional_special_tokens': sorted(set(special_tokens_from_pretrain))}) |
|
if num_tokens_from_pretrain > 0: |
|
self.model.text_decoder.trunk.resize_token_embeddings(len(self.tokenizer.trunk)) |
|
self.loss = nn.CrossEntropyLoss(ignore_index=-100) |
|
self.has_no_sync = False |
|
if self.finetune_donut_weights: |
|
self.num_image_chs = 3 |
|
else: |
|
self.num_image_chs = 1 if cfg.model.image_encoder.image_fmt == 'L' else 3 |
|
if self.finetune_donut_weights: |
|
img_mean = IMAGENET_DEFAULT_MEAN |
|
img_std = IMAGENET_DEFAULT_STD |
|
else: |
|
img_mean = self.model.image_encoder.trunk.pretrained_cfg['mean'] |
|
img_std = self.model.image_encoder.trunk.pretrained_cfg['std'] |
|
self.img_mean = sum(img_mean) / len(img_mean) if cfg.model.image_encoder.image_fmt == 'L' else img_mean |
|
self.img_std = sum(img_std) / len(img_std) if cfg.model.image_encoder.image_fmt == 'L' else img_std |
|
if self.finetune_donut_weights: |
|
image_size = (1280, 960) |
|
color_transform = Lambda(lambda x: x) |
|
else: |
|
image_size = cfg.model.image_encoder.image_size |
|
color_transform = transforms.Grayscale() |
|
self.image_preprocess_train = transforms.Compose([transforms.ToTensor(), color_transform, transforms.Resize(image_size, interpolation=transforms.InterpolationMode.BICUBIC, antialias=True), transforms.Normalize(mean=self.img_mean, std=self.img_std)]) |
|
|
|
def train_setup(self, num_batches_per_interval: int): |
|
if self.finetune_donut_weights: |
|
self.newly_added_num = self.tokenizer.trunk.add_special_tokens({'additional_special_tokens': sorted(set(self.special_tokens_finetune))}) |
|
self.vocab_size = len(self.tokenizer.trunk) |
|
if self.newly_added_num > 0: |
|
self.model.decoder.resize_token_embeddings(len(self.tokenizer.trunk)) |
|
else: |
|
_logger.info(f'Resuming from existing checkpoint. ') |
|
self.state_dict = {k.replace('module.', ''): v for (k, v) in self.state_dict.items()} |
|
self.model.load_state_dict(self.state_dict) |
|
self.newly_added_num = self.tokenizer.trunk.add_special_tokens({'additional_special_tokens': sorted(set(self.special_tokens_finetune))}) |
|
self.vocab_size = len(self.tokenizer.trunk) |
|
if self.newly_added_num > 0: |
|
self.model.text_decoder.trunk.resize_token_embeddings(len(self.tokenizer.trunk)) |
|
device = self.device_env.device |
|
self.model.to(device) |
|
if self.device_env.world_size > 1: |
|
self.model = torch.nn.parallel.DistributedDataParallel(self.model, device_ids=[device], static_graph=True) |
|
self.has_no_sync = hasattr(self.model, 'no_sync') |
|
opt_kwargs = {} |
|
if self.cfg.opt.betas is not None: |
|
opt_kwargs['betas'] = self.cfg.opt.betas |
|
if self.cfg.opt.momentum is not None: |
|
opt_kwargs['momentum'] = self.cfg.opt.momentum |
|
self.optimizer = create_optimizer_v2(self.model, self.cfg.opt.optimizer, lr=self.cfg.opt.learning_rate, eps=self.cfg.opt.eps, layer_decay=self.cfg.opt.layer_decay, **opt_kwargs) |
|
if self.cfg.amp: |
|
self.scaler = timm.utils.NativeScaler() |
|
self.autocast = partial(torch.autocast, device_type=device.type, dtype=self.amp_dtype) |
|
else: |
|
self.scaler = None |
|
self.autocast = nullcontext |
|
self.num_steps_per_interval = num_batches_per_interval // self.cfg.opt.grad_accum_steps |
|
(self.scheduler, num_scheduled_epochs) = create_scheduler_v2(self.optimizer, self.cfg.opt.scheduler, warmup_lr=self.cfg.opt.warmup_learning_rate, warmup_epochs=self.num_warmup_intervals, num_epochs=self.num_intervals, step_on_epochs=False, updates_per_epoch=self.num_steps_per_interval) |
|
self.scheduler.step_update(0) |
|
|
|
def text_input_to_target(self, text_input, ignore_id=-100): |
|
target = text_input.clone() |
|
target[target == self.tokenizer.trunk.pad_token_id] = ignore_id |
|
prompt_end_token_id = self.tokenizer.trunk.convert_tokens_to_ids(self.prompt_end_token) |
|
slice_id = torch.nonzero(target == prompt_end_token_id).sum() + 1 |
|
target[:slice_id] = ignore_id |
|
return target |
|
|
|
def collate_fn(self, batch): |
|
tokenizer_fn = lambda x: self.tokenizer.trunk(x, add_special_tokens=False, return_tensors='pt', max_length=512, padding='max_length', truncation=True).input_ids[0] |
|
images = [item['image'] for item in batch] |
|
raw_texts = [literal_eval(item['ground_truth'])['gt_parse'] for item in batch] |
|
inputs_to_stack = [] |
|
for text in raw_texts: |
|
(tokens_from_json, _) = json2token(text, self.tokenizer.trunk.all_special_tokens, sort_json_key=False) |
|
inputs_to_stack.append(tokenizer_fn(self.task_start_token + tokens_from_json + self.tokenizer.trunk.eos_token)) |
|
text_inputs = torch.stack(inputs_to_stack) |
|
targets = torch.stack([self.text_input_to_target(text) for text in text_inputs]) |
|
transform = self.image_preprocess_train |
|
images = torch.stack([transform(img) for img in images]) |
|
text_inputs = text_inputs[:, :-1] |
|
targets = targets[:, 1:] |
|
return {'image': images, 'label': text_inputs, 'text_target': targets} |
|
|
|
def train_step(self, sample: Dict[str, Any]) -> Dict[str, Any]: |
|
image_input = sample['image'] |
|
label = sample['label'] |
|
text_target = sample['text_target'] |
|
result = {} |
|
image_input = image_input.to(self.device_env.device, non_blocking=True) |
|
label = label.to(self.device_env.device, non_blocking=True) |
|
text_target = text_target.to(self.device_env.device, non_blocking=True) |
|
accum_steps = self.cfg.opt.grad_accum_steps |
|
need_update = (self.interval_batch_idx + 1) % accum_steps == 0 |
|
|
|
def _forward(): |
|
with self.autocast(): |
|
if self.finetune_donut_weights: |
|
output = self.model(pixel_values=image_input, decoder_input_ids=label, labels=text_target) |
|
logits = output['logits'] |
|
else: |
|
output = self.model(image_input, label) |
|
logits = output['logits'] |
|
loss = self.loss(logits.view(-1, self.vocab_size), text_target.view(-1)) |
|
if accum_steps > 1: |
|
loss /= accum_steps |
|
return loss |
|
|
|
def _backward(_loss): |
|
if self.scaler is not None: |
|
self.scaler(_loss, self.optimizer, clip_grad=self.cfg.opt.clip_grad_value, clip_mode=self.cfg.opt.clip_grad_mode, parameters=self.model.parameters(), need_update=need_update) |
|
else: |
|
_loss.backward() |
|
if need_update: |
|
if self.cfg.opt.clip_grad_value is not None: |
|
timm.utils.dispatch_clip_grad(self.model.parameters(), value=self.cfg.opt.clip_grad_value, mode=self.cfg.opt.clip_grad_mode) |
|
self.optimizer.step() |
|
if self.has_no_sync and (not need_update): |
|
with self.model.no_sync(): |
|
loss = _forward() |
|
_backward(loss) |
|
else: |
|
loss = _forward() |
|
_backward(loss) |
|
self.batch_idx += 1 |
|
self.interval_batch_idx += 1 |
|
if self.step % 100 == 0: |
|
self.monitor.log_step('finetune', step_idx=self.step, step_end_idx=self.num_intervals * self.num_steps_per_interval, interval=self.interval_idx, loss=loss.item(), lr=self.get_current_lr(), metrics=None, eval_data=None) |
|
if not need_update: |
|
return result |
|
self.step += 1 |
|
self.scheduler.step_update(self.step) |
|
self.optimizer.zero_grad() |
|
|
|
def state_dict(self): |
|
state_dicts = {} |
|
state_dicts['model'] = self.model.state_dict() |
|
state_dicts['tokenizer'] = self.tokenizer.state_dict() |
|
return state_dicts |
|
|
|
# File: pixparse-main/src/pixparse/task/task_cruller_finetune_RVLCDIP.py |
|
import logging |
|
from contextlib import nullcontext |
|
from dataclasses import dataclass, field, asdict |
|
from functools import partial |
|
from typing import Optional, List, Any |
|
import torch |
|
import torch.nn as nn |
|
import torchvision.transforms as transforms |
|
import timm |
|
import timm.utils |
|
from timm.optim import create_optimizer_v2 |
|
from timm.scheduler import create_scheduler_v2 |
|
from pixparse.framework import TaskTrainCfg, TaskTrain, DeviceEnv, Monitor |
|
from pixparse.models import Cruller, ModelCfg, get_model_config |
|
from pixparse.tokenizers import TokenizerHF, TokenizerCfg |
|
from pixparse.data import preprocess_ocr_anno, preprocess_text_anno |
|
from timm.layers import SelectAdaptivePool2d |
|
from typing import Dict, List |
|
from collections import OrderedDict |
|
_logger = logging.getLogger(__name__) |
|
|
|
class GetCLSToken(nn.Module): |
|
|
|
def forward(self, x): |
|
return x[:, 0, :] |
|
|
|
@dataclass |
|
class TaskCrullerFinetuneRVLCDIPCfg(TaskTrainCfg): |
|
model_name: Optional[str] = None |
|
model: ModelCfg = field(default_factory=ModelCfg) |
|
tokenizer: TokenizerCfg = field(default_factory=TokenizerCfg) |
|
|
|
def __post_init__(self): |
|
if self.model_name: |
|
model = get_model_config(self.model_name) |
|
if model is None: |
|
_logger.warning(f'Model config for {self.model_name} was not found, using defaults.') |
|
else: |
|
self.model = model |
|
else: |
|
self.model_name = 'custom' |
|
|
|
class TaskCrullerFinetuneRVLCDIP(TaskTrain): |
|
|
|
def __init__(self, cfg: TaskCrullerFinetuneRVLCDIPCfg, device_env: DeviceEnv, monitor: Monitor=None): |
|
super().__init__(cfg=cfg, device_env=device_env, monitor=monitor) |
|
self.cfg = cfg |
|
self.amp_dtype = None |
|
if cfg.dtype is not None: |
|
self.amp_dtype = torch.bfloat16 if cfg.dtype in ('bfloat16', 'bf16') else torch.float16 |
|
self.task_start_token = '<s_rvlcdip>' |
|
self.prompt_end_token = self.task_start_token |
|
self.max_position_embeddings = cfg.model.text_decoder.max_length |
|
self.text_anno_fn = True |
|
self.tokenizer = TokenizerHF(cfg.tokenizer) |
|
self.state_dict = OrderedDict() |
|
self.resume = False |
|
self.special_tokens_finetune = ['<sep/>', self.task_start_token, self.prompt_end_token, '<s_class>', '</s_class>', '<advertisement/>', '<budget/>', '<email/>', '<file_folder/>', '<form/>', '<handwritten/>', '<invoice/>', '<letter/>', '<memo/>', '<news_article/>', '<presentation/>', '<questionnaire/>', '<resume/>', '<scientific_publication/>', '<scientific_report/>', '<specification/>'] |
|
self.int2str = {0: 'letter', 1: 'form', 2: 'email', 3: 'handwritten', 4: 'advertisement', 5: 'scientific_report', 6: 'scientific_publication', 7: 'specification', 8: 'file_folder', 9: 'news_article', 10: 'budget', 11: 'invoice', 12: 'presentation', 13: 'questionnaire', 14: 'resume', 15: 'memo'} |
|
preproc_fn = preprocess_text_anno if self.text_anno_fn else preprocess_ocr_anno |
|
self.anno_preprocess_train = partial(preproc_fn, tokenizer=self.tokenizer.trunk, max_position_embeddings=self.max_position_embeddings, task_start_token=self.task_start_token, prompt_end_token=self.prompt_end_token) |
|
self.model = Cruller(cfg.model) |
|
special_tokens_from_pretrain = ['<sep/>', '<s_pretrain>'] |
|
num_tokens_from_pretrain = self.tokenizer.trunk.add_special_tokens({'additional_special_tokens': sorted(set(special_tokens_from_pretrain))}) |
|
if num_tokens_from_pretrain > 0: |
|
self.model.text_decoder.trunk.resize_token_embeddings(len(self.tokenizer.trunk)) |
|
self.loss = nn.CrossEntropyLoss(ignore_index=-100) |
|
self.has_no_sync = False |
|
self.num_image_chs = 1 if cfg.model.image_encoder.image_fmt == 'L' else 3 |
|
img_mean = self.model.image_encoder.trunk.pretrained_cfg['mean'] |
|
img_std = self.model.image_encoder.trunk.pretrained_cfg['std'] |
|
self.img_mean = sum(img_mean) / len(img_mean) if cfg.model.image_encoder.image_fmt == 'L' else img_mean |
|
self.img_std = sum(img_std) / len(img_std) if cfg.model.image_encoder.image_fmt == 'L' else img_std |
|
self.image_preprocess_train = transforms.Compose([transforms.ToTensor(), transforms.Resize(cfg.model.image_encoder.image_size, interpolation=transforms.InterpolationMode.BICUBIC, antialias=True), transforms.Normalize(mean=self.img_mean, std=self.img_std)]) |
|
|
|
def train_setup(self, num_batches_per_interval: int): |
|
_logger.info(f'Resuming from existing checkpoint. ') |
|
self.state_dict = {k.replace('module.', ''): v for (k, v) in self.state_dict.items()} |
|
self.model.load_state_dict(self.state_dict) |
|
self.newly_added_num = self.tokenizer.trunk.add_special_tokens({'additional_special_tokens': sorted(set(self.special_tokens_finetune))}) |
|
self.vocab_size = len(self.tokenizer.trunk) |
|
if self.newly_added_num > 0: |
|
self.model.text_decoder.trunk.resize_token_embeddings(len(self.tokenizer.trunk)) |
|
device = self.device_env.device |
|
self.model.to(device) |
|
if self.device_env.world_size > 1: |
|
self.model = torch.nn.parallel.DistributedDataParallel(self.model, device_ids=[device], static_graph=True) |
|
self.has_no_sync = hasattr(self.model, 'no_sync') |
|
opt_kwargs = {} |
|
if self.cfg.opt.betas is not None: |
|
opt_kwargs['betas'] = self.cfg.opt.betas |
|
if self.cfg.opt.momentum is not None: |
|
opt_kwargs['momentum'] = self.cfg.opt.momentum |
|
self.optimizer = create_optimizer_v2(self.model, self.cfg.opt.optimizer, lr=self.cfg.opt.learning_rate, eps=self.cfg.opt.eps, layer_decay=self.cfg.opt.layer_decay, **opt_kwargs) |
|
if self.cfg.amp: |
|
self.scaler = timm.utils.NativeScaler() |
|
self.autocast = partial(torch.autocast, device_type=device.type, dtype=self.amp_dtype) |
|
else: |
|
self.scaler = None |
|
self.autocast = nullcontext |
|
self.num_steps_per_interval = num_batches_per_interval // self.cfg.opt.grad_accum_steps |
|
(self.scheduler, num_scheduled_epochs) = create_scheduler_v2(self.optimizer, self.cfg.opt.scheduler, warmup_lr=self.cfg.opt.warmup_learning_rate, warmup_epochs=self.num_warmup_intervals, num_epochs=self.num_intervals, step_on_epochs=False, updates_per_epoch=self.num_steps_per_interval) |
|
self.scheduler.step_update(0) |
|
|
|
def text_input_to_target(self, text_input, ignore_id=-100): |
|
target = text_input.clone() |
|
target[target == self.tokenizer.trunk.pad_token_id] = ignore_id |
|
prompt_end_token_id = self.tokenizer.trunk.convert_tokens_to_ids(self.prompt_end_token) |
|
target[:torch.nonzero(target == prompt_end_token_id).sum() + 1] = ignore_id |
|
return target |
|
|
|
def collate_fn(self, batch): |
|
images = [item['image'] for item in batch] |
|
labels = [item['label'] for item in batch] |
|
tokenizer_fn = lambda x: self.tokenizer.trunk(x, add_special_tokens=False, return_tensors='pt', max_length=5, padding='max_length', truncation=True).input_ids[0] |
|
labels_tokens = [tokenizer_fn(self.task_start_token + '<' + self.int2str[label] + '/>' + self.tokenizer.trunk.eos_token) for label in labels] |
|
transform = self.image_preprocess_train |
|
images = torch.stack([transform(img) for img in images]) |
|
labels = torch.stack(labels_tokens) |
|
targets = torch.stack([self.text_input_to_target(text) for text in labels]) |
|
labels = labels[:, :-1] |
|
targets = targets[:, 1:] |
|
return {'image': images, 'label': labels, 'text_target': targets} |
|
|
|
def train_step(self, sample: Dict[str, Any]) -> Dict[str, Any]: |
|
image_input = sample['image'] |
|
label = sample['label'] |
|
text_target = sample['text_target'] |
|
result = {} |
|
image_input = image_input.to(self.device_env.device, non_blocking=True) |
|
label = label.to(self.device_env.device, non_blocking=True) |
|
text_target = text_target.to(self.device_env.device, non_blocking=True) |
|
accum_steps = self.cfg.opt.grad_accum_steps |
|
need_update = (self.interval_batch_idx + 1) % accum_steps == 0 |
|
|
|
def _forward(): |
|
with self.autocast(): |
|
output = self.model(image_input, label) |
|
logits = output['logits'] |
|
loss = self.loss(logits.view(-1, self.vocab_size), text_target.view(-1)) |
|
if accum_steps > 1: |
|
loss /= accum_steps |
|
return loss |
|
|
|
def _backward(_loss): |
|
if self.scaler is not None: |
|
self.scaler(_loss, self.optimizer, clip_grad=self.cfg.opt.clip_grad_value, clip_mode=self.cfg.opt.clip_grad_mode, parameters=self.model.parameters(), need_update=need_update) |
|
else: |
|
_loss.backward() |
|
if need_update: |
|
if self.cfg.opt.clip_grad_value is not None: |
|
timm.utils.dispatch_clip_grad(self.model.parameters(), value=self.cfg.opt.clip_grad_value, mode=self.cfg.opt.clip_grad_mode) |
|
self.optimizer.step() |
|
if self.has_no_sync and (not need_update): |
|
with self.model.no_sync(): |
|
loss = _forward() |
|
_backward(loss) |
|
else: |
|
loss = _forward() |
|
_backward(loss) |
|
self.batch_idx += 1 |
|
self.interval_batch_idx += 1 |
|
if self.step % self.eval_frequency == 0: |
|
self.monitor.log_step('finetune', step_idx=self.step, step_end_idx=self.num_intervals * self.num_steps_per_interval, interval=self.interval_idx, loss=loss.item(), lr=self.get_current_lr(), metrics=None, eval_data=None) |
|
if not need_update: |
|
return result |
|
self.step += 1 |
|
self.scheduler.step_update(self.step) |
|
self.optimizer.zero_grad() |
|
|
|
# File: pixparse-main/src/pixparse/task/task_cruller_finetune_docvqa.py |
|
import logging |
|
from contextlib import nullcontext |
|
from dataclasses import dataclass, field, asdict |
|
from functools import partial |
|
from typing import Optional, List, Any |
|
import torch |
|
from torch.utils.data import DataLoader |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import torchvision.transforms as transforms |
|
from torchvision.transforms import functional as transformsF |
|
from torchvision.transforms import Lambda |
|
import timm |
|
import timm.utils |
|
from timm.optim import create_optimizer_v2 |
|
from timm.scheduler import create_scheduler_v2 |
|
from pixparse.framework import TaskTrainCfg, TaskTrain, DeviceEnv, Monitor |
|
from pixparse.models import Cruller, ModelCfg, get_model_config |
|
from pixparse.tokenizers import TokenizerHF, TokenizerCfg |
|
from pixparse.data import preprocess_ocr_anno, preprocess_text_anno |
|
from timm.layers import SelectAdaptivePool2d |
|
from typing import Dict, List |
|
from collections import OrderedDict |
|
from ast import literal_eval |
|
from datasets import load_dataset |
|
from pixparse.utils.json_utils import json2token, token2json |
|
from timm.data.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD |
|
from pixparse.utils.json_utils import JSONParseEvaluator |
|
import numpy as np |
|
_logger = logging.getLogger(__name__) |
|
|
|
@dataclass |
|
class TaskCrullerFinetuneDOCVQACfg(TaskTrainCfg): |
|
model_name: Optional[str] = None |
|
model: ModelCfg = field(default_factory=ModelCfg) |
|
tokenizer: TokenizerCfg = field(default_factory=TokenizerCfg) |
|
|
|
def __post_init__(self): |
|
if self.model_name: |
|
model = get_model_config(self.model_name) |
|
if model is None: |
|
_logger.warning(f'Model config for {self.model_name} was not found, using defaults.') |
|
else: |
|
self.model = model |
|
else: |
|
self.model_name = 'custom' |
|
|
|
class TaskCrullerFinetuneDOCVQA(TaskTrain): |
|
|
|
def __init__(self, cfg: TaskCrullerFinetuneDOCVQACfg, device_env: DeviceEnv, monitor: Monitor=None): |
|
super().__init__(cfg=cfg, device_env=device_env, monitor=monitor) |
|
self.cfg = cfg |
|
self.amp_dtype = None |
|
if cfg.dtype is not None: |
|
self.amp_dtype = torch.bfloat16 if cfg.dtype in ('bfloat16', 'bf16') else torch.float16 |
|
self.task_start_token = '<s_docvqa>' |
|
self.prompt_end_token = '<s_answer>' |
|
self.max_position_embeddings = cfg.model.text_decoder.max_length |
|
self.text_anno_fn = True |
|
self.tokenizer = TokenizerHF(cfg.tokenizer) |
|
self.state_dict = OrderedDict() |
|
self.resume = False |
|
self.special_tokens_finetune = ['<sep/>', self.task_start_token, self.prompt_end_token, '<s_question>', '</s_question>', '</s_answer>'] |
|
preproc_fn = preprocess_text_anno if self.text_anno_fn else preprocess_ocr_anno |
|
self.anno_preprocess_train = partial(preproc_fn, tokenizer=self.tokenizer.trunk, max_position_embeddings=self.max_position_embeddings, task_start_token=self.task_start_token, prompt_end_token=self.prompt_end_token) |
|
self.model = Cruller(cfg.model) |
|
special_tokens_from_pretrain = ['<sep/>', '<s_pretrain>'] |
|
num_tokens_from_pretrain = self.tokenizer.trunk.add_special_tokens({'additional_special_tokens': sorted(set(special_tokens_from_pretrain))}) |
|
if num_tokens_from_pretrain > 0: |
|
self.model.text_decoder.trunk.resize_token_embeddings(len(self.tokenizer.trunk)) |
|
self.loss = nn.CrossEntropyLoss(ignore_index=-100) |
|
self.has_no_sync = False |
|
self.num_image_chs = 1 if cfg.model.image_encoder.image_fmt == 'L' else 3 |
|
img_mean = self.model.image_encoder.trunk.pretrained_cfg['mean'] |
|
img_std = self.model.image_encoder.trunk.pretrained_cfg['std'] |
|
self.img_mean = sum(img_mean) / len(img_mean) if cfg.model.image_encoder.image_fmt == 'L' else img_mean |
|
self.img_std = sum(img_std) / len(img_std) if cfg.model.image_encoder.image_fmt == 'L' else img_std |
|
image_size = cfg.model.image_encoder.image_size |
|
color_transform = transforms.Grayscale() |
|
self.image_preprocess_train = transforms.Compose([transforms.ToTensor(), color_transform, transforms.Resize(image_size, interpolation=transforms.InterpolationMode.BICUBIC, antialias=True), transforms.Normalize(mean=self.img_mean, std=self.img_std)]) |
|
|
|
def train_setup(self, num_batches_per_interval: int): |
|
_logger.info(f'Resuming from existing checkpoint. ') |
|
self.state_dict = {k.replace('module.', ''): v for (k, v) in self.state_dict.items()} |
|
self.model.load_state_dict(self.state_dict) |
|
self.newly_added_num = self.tokenizer.trunk.add_special_tokens({'additional_special_tokens': sorted(set(self.special_tokens_finetune))}) |
|
self.vocab_size = len(self.tokenizer.trunk) |
|
if self.newly_added_num > 0: |
|
self.model.text_decoder.trunk.resize_token_embeddings(len(self.tokenizer.trunk)) |
|
device = self.device_env.device |
|
self.model.to(device) |
|
if self.device_env.world_size > 1: |
|
self.model = torch.nn.parallel.DistributedDataParallel(self.model, device_ids=[device], static_graph=True) |
|
self.has_no_sync = hasattr(self.model, 'no_sync') |
|
opt_kwargs = {} |
|
if self.cfg.opt.betas is not None: |
|
opt_kwargs['betas'] = self.cfg.opt.betas |
|
if self.cfg.opt.momentum is not None: |
|
opt_kwargs['momentum'] = self.cfg.opt.momentum |
|
self.optimizer = create_optimizer_v2(self.model, self.cfg.opt.optimizer, lr=self.cfg.opt.learning_rate, eps=self.cfg.opt.eps, layer_decay=self.cfg.opt.layer_decay, **opt_kwargs) |
|
if self.cfg.amp: |
|
self.scaler = timm.utils.NativeScaler() |
|
self.autocast = partial(torch.autocast, device_type=device.type, dtype=self.amp_dtype) |
|
else: |
|
self.scaler = None |
|
self.autocast = nullcontext |
|
self.num_steps_per_interval = num_batches_per_interval // self.cfg.opt.grad_accum_steps |
|
(self.scheduler, num_scheduled_epochs) = create_scheduler_v2(self.optimizer, self.cfg.opt.scheduler, warmup_lr=self.cfg.opt.warmup_learning_rate, warmup_epochs=self.num_warmup_intervals, num_epochs=self.num_intervals, step_on_epochs=False, updates_per_epoch=self.num_steps_per_interval) |
|
self.scheduler.step_update(0) |
|
|
|
def text_input_to_target(self, text_input, ignore_id=-100): |
|
target = text_input.clone() |
|
target[target == self.tokenizer.trunk.pad_token_id] = ignore_id |
|
prompt_end_token_id = self.tokenizer.trunk.convert_tokens_to_ids(self.prompt_end_token) |
|
slice_id = torch.nonzero(target == prompt_end_token_id).sum() + 1 |
|
target[:slice_id] = ignore_id |
|
return target |
|
|
|
def collate_fn(self, batch): |
|
tokenizer_fn = lambda x: self.tokenizer.trunk(x, add_special_tokens=False, return_tensors='pt', max_length=512, padding='max_length', truncation=True).input_ids[0] |
|
images = [item['image'] for item in batch] |
|
q_and_as = [np.random.choice(item['labels']) for item in batch] |
|
inputs_to_stack = [] |
|
for text in q_and_as: |
|
inputs_to_stack.append(tokenizer_fn('<s_docvqa>' + text + self.tokenizer.trunk.eos_token)) |
|
text_inputs = torch.stack(inputs_to_stack) |
|
targets = torch.stack([self.text_input_to_target(text) for text in text_inputs]) |
|
transform = self.image_preprocess_train |
|
images = torch.stack([transform(img) for img in images]) |
|
text_inputs = text_inputs[:, :-1] |
|
targets = targets[:, 1:] |
|
return {'image': images, 'label': text_inputs, 'text_target': targets} |
|
|
|
def train_step(self, sample: Dict[str, Any]) -> Dict[str, Any]: |
|
image_input = sample['image'] |
|
label = sample['label'] |
|
text_target = sample['text_target'] |
|
result = {} |
|
image_input = image_input.to(self.device_env.device, non_blocking=True) |
|
label = label.to(self.device_env.device, non_blocking=True) |
|
text_target = text_target.to(self.device_env.device, non_blocking=True) |
|
accum_steps = self.cfg.opt.grad_accum_steps |
|
need_update = (self.interval_batch_idx + 1) % accum_steps == 0 |
|
|
|
def _forward(): |
|
with self.autocast(): |
|
output = self.model(image_input, label) |
|
logits = output['logits'] |
|
loss = self.loss(logits.view(-1, self.vocab_size), text_target.view(-1)) |
|
if accum_steps > 1: |
|
loss /= accum_steps |
|
return loss |
|
|
|
def _backward(_loss): |
|
if self.scaler is not None: |
|
self.scaler(_loss, self.optimizer, clip_grad=self.cfg.opt.clip_grad_value, clip_mode=self.cfg.opt.clip_grad_mode, parameters=self.model.parameters(), need_update=need_update) |
|
else: |
|
_loss.backward() |
|
if need_update: |
|
if self.cfg.opt.clip_grad_value is not None: |
|
timm.utils.dispatch_clip_grad(self.model.parameters(), value=self.cfg.opt.clip_grad_value, mode=self.cfg.opt.clip_grad_mode) |
|
self.optimizer.step() |
|
if self.has_no_sync and (not need_update): |
|
with self.model.no_sync(): |
|
loss = _forward() |
|
_backward(loss) |
|
else: |
|
loss = _forward() |
|
_backward(loss) |
|
self.batch_idx += 1 |
|
self.interval_batch_idx += 1 |
|
if self.step % 100 == 0: |
|
self.monitor.log_step('finetune', step_idx=self.step, step_end_idx=self.num_intervals * self.num_steps_per_interval, interval=self.interval_idx, loss=loss.item(), lr=self.get_current_lr(), metrics=None, eval_data=None) |
|
if not need_update: |
|
return result |
|
self.step += 1 |
|
self.scheduler.step_update(self.step) |
|
self.optimizer.zero_grad() |
|
|
|
def state_dict(self): |
|
state_dicts = {} |
|
state_dicts['model'] = self.model.state_dict() |
|
state_dicts['tokenizer'] = self.tokenizer.state_dict() |
|
return state_dicts |
|
|
|
# File: pixparse-main/src/pixparse/task/task_cruller_finetune_xent.py |
|
import logging |
|
from contextlib import nullcontext |
|
from dataclasses import dataclass, field, asdict |
|
from functools import partial |
|
from typing import Optional, List, Any |
|
import torch |
|
import torch.nn as nn |
|
import torchvision.transforms as transforms |
|
import timm |
|
import timm.utils |
|
from timm.optim import create_optimizer_v2 |
|
from timm.scheduler import create_scheduler_v2 |
|
from pixparse.framework import TaskTrainCfg, TaskTrain, DeviceEnv, Monitor |
|
from pixparse.models import Cruller, ModelCfg, get_model_config |
|
from pixparse.tokenizers import TokenizerHF, TokenizerCfg |
|
from pixparse.data import preprocess_ocr_anno, preprocess_text_anno |
|
from timm.layers import SelectAdaptivePool2d |
|
from typing import Dict, List |
|
from collections import OrderedDict |
|
_logger = logging.getLogger(__name__) |
|
|
|
class GetCLSToken(nn.Module): |
|
|
|
def forward(self, x): |
|
return x[:, 0, :] |
|
|
|
@dataclass |
|
class TaskCrullerFinetuneXentCfg(TaskTrainCfg): |
|
model_name: Optional[str] = None |
|
model: ModelCfg = field(default_factory=ModelCfg) |
|
tokenizer: TokenizerCfg = field(default_factory=TokenizerCfg) |
|
|
|
def __post_init__(self): |
|
if self.model_name: |
|
model = get_model_config(self.model_name) |
|
if model is None: |
|
_logger.warning(f'Model config for {self.model_name} was not found, using defaults.') |
|
else: |
|
self.model = model |
|
else: |
|
self.model_name = 'custom' |
|
|
|
class TaskCrullerFinetuneXent(TaskTrain): |
|
|
|
def __init__(self, cfg: TaskCrullerFinetuneXentCfg, device_env: DeviceEnv, monitor: Monitor=None): |
|
super().__init__(cfg=cfg, device_env=device_env, monitor=monitor) |
|
self.cfg = cfg |
|
self.amp_dtype = None |
|
if cfg.dtype is not None: |
|
self.amp_dtype = torch.bfloat16 if cfg.dtype in ('bfloat16', 'bf16') else torch.float16 |
|
self.task_start_token = '<s_finetune>' |
|
self.prompt_end_token = self.task_start_token |
|
self.max_position_embeddings = cfg.model.text_decoder.max_length |
|
self.text_anno_fn = False |
|
self.tokenizer = TokenizerHF(cfg.tokenizer) |
|
self.state_dict = OrderedDict() |
|
self.resume = False |
|
special_tokens = ['<sep/>', self.task_start_token, self.prompt_end_token] |
|
newly_added_num = self.tokenizer.trunk.add_special_tokens({'additional_special_tokens': sorted(set(special_tokens))}) |
|
self.vocab_size = len(self.tokenizer.trunk) |
|
preproc_fn = preprocess_text_anno if self.text_anno_fn else preprocess_ocr_anno |
|
self.anno_preprocess_train = partial(preproc_fn, tokenizer=self.tokenizer.trunk, max_position_embeddings=self.max_position_embeddings, task_start_token=self.task_start_token, prompt_end_token=self.prompt_end_token) |
|
self.model = Cruller(cfg.model) |
|
if newly_added_num > 0: |
|
self.model.text_decoder.trunk.resize_token_embeddings(len(self.tokenizer.trunk)) |
|
self.loss = nn.CrossEntropyLoss(ignore_index=-100) |
|
self.has_no_sync = False |
|
self.num_image_chs = 1 if cfg.model.image_encoder.image_fmt == 'L' else 3 |
|
img_mean = self.model.image_encoder.trunk.pretrained_cfg['mean'] |
|
img_std = self.model.image_encoder.trunk.pretrained_cfg['std'] |
|
self.img_mean = sum(img_mean) / len(img_mean) if cfg.model.image_encoder.image_fmt == 'L' else img_mean |
|
self.img_std = sum(img_std) / len(img_std) if cfg.model.image_encoder.image_fmt == 'L' else img_std |
|
self.image_preprocess_train = transforms.Compose([transforms.ToTensor(), transforms.Resize(cfg.model.image_encoder.image_size, interpolation=transforms.InterpolationMode.BICUBIC, antialias=True), transforms.Normalize(mean=self.img_mean, std=self.img_std)]) |
|
|
|
def train_setup(self, num_batches_per_interval: int): |
|
if self.resume: |
|
_logger.info(f'Resuming from existing checkpoint. ') |
|
self.state_dict = {k.replace('module.', ''): v for (k, v) in self.state_dict.items()} |
|
self.model.load_state_dict(self.state_dict) |
|
self.model = nn.Sequential(OrderedDict([('encoder', self.model.image_encoder), ('token_pool', GetCLSToken()), ('final_fc', nn.Linear(768, 16))])) |
|
device = self.device_env.device |
|
print(f'Local rank for this process: {self.device_env.local_rank}') |
|
device = torch.device(f'cuda:{self.device_env.local_rank}') |
|
self.model.to(device) |
|
if self.device_env.world_size > 1: |
|
self.model = torch.nn.parallel.DistributedDataParallel(self.model, device_ids=[device], static_graph=True) |
|
self.has_no_sync = hasattr(self.model, 'no_sync') |
|
opt_kwargs = {} |
|
if self.cfg.opt.betas is not None: |
|
opt_kwargs['betas'] = self.cfg.opt.betas |
|
if self.cfg.opt.momentum is not None: |
|
opt_kwargs['momentum'] = self.cfg.opt.momentum |
|
self.optimizer = create_optimizer_v2(self.model, self.cfg.opt.optimizer, lr=self.cfg.opt.learning_rate, eps=self.cfg.opt.eps, layer_decay=self.cfg.opt.layer_decay, **opt_kwargs) |
|
if self.cfg.amp: |
|
self.scaler = timm.utils.NativeScaler() |
|
self.autocast = partial(torch.autocast, device_type=device.type, dtype=self.amp_dtype) |
|
else: |
|
self.scaler = None |
|
self.autocast = nullcontext |
|
self.num_steps_per_interval = num_batches_per_interval // self.cfg.opt.grad_accum_steps |
|
(self.scheduler, num_scheduled_epochs) = create_scheduler_v2(self.optimizer, self.cfg.opt.scheduler, warmup_lr=self.cfg.opt.warmup_learning_rate, warmup_epochs=self.num_warmup_intervals, num_epochs=self.num_intervals, step_on_epochs=False, updates_per_epoch=self.num_steps_per_interval) |
|
self.scheduler.step_update(0) |
|
|
|
def collate_fn(self, batch): |
|
images = [item['image'] for item in batch] |
|
labels = [item['label'] for item in batch] |
|
transform = self.image_preprocess_train |
|
images = torch.stack([transform(img) for img in images]) |
|
labels = torch.tensor(labels, dtype=torch.int64) |
|
return {'image': images, 'label': labels} |
|
|
|
def train_interval_start(self): |
|
self.optimizer.zero_grad() |
|
self.interval_batch_idx = 0 |
|
|
|
def train_interval_end(self): |
|
self.monitor.log_phase('finetune', self.interval_idx) |
|
self.interval_idx += 1 |
|
|
|
def train_step(self, sample: Dict[str, Any]) -> Dict[str, Any]: |
|
image_input = sample['image'] |
|
label = sample['label'] |
|
result = {} |
|
image_input = image_input.to(self.device_env.device, non_blocking=True) |
|
label = label.to(self.device_env.device, non_blocking=True) |
|
accum_steps = self.cfg.opt.grad_accum_steps |
|
need_update = (self.interval_batch_idx + 1) % accum_steps == 0 |
|
|
|
def _forward(): |
|
with self.autocast(): |
|
outputs = self.model(image_input) |
|
loss = self.loss(outputs, label) |
|
if accum_steps > 1: |
|
loss /= accum_steps |
|
return loss |
|
|
|
def _backward(_loss): |
|
if self.scaler is not None: |
|
self.scaler(_loss, self.optimizer, clip_grad=self.cfg.opt.clip_grad_value, clip_mode=self.cfg.opt.clip_grad_mode, parameters=self.model.parameters(), need_update=need_update) |
|
else: |
|
_loss.backward() |
|
if need_update: |
|
if self.cfg.opt.clip_grad_value is not None: |
|
timm.utils.dispatch_clip_grad(self.model.parameters(), value=self.cfg.opt.clip_grad_value, mode=self.cfg.opt.clip_grad_mode) |
|
self.optimizer.step() |
|
if self.has_no_sync and (not need_update): |
|
with self.model.no_sync(): |
|
loss = _forward() |
|
_backward(loss) |
|
else: |
|
loss = _forward() |
|
_backward(loss) |
|
self.batch_idx += 1 |
|
self.interval_batch_idx += 1 |
|
if self.step % self.eval_frequency == 0: |
|
self.monitor.log_step('finetune', step_idx=self.step, step_end_idx=self.num_intervals * self.num_steps_per_interval, interval=self.interval_idx, loss=loss.item(), lr=self.get_current_lr(), metrics=None, eval_data=None) |
|
if not need_update: |
|
return result |
|
self.step += 1 |
|
self.scheduler.step_update(self.step) |
|
self.optimizer.zero_grad() |
|
|
|
def eval_step(self, sample: Dict[str, Any]) -> Dict[str, Any]: |
|
pass |
|
|
|
def get_current_lr(self): |
|
lrl = [param_group['lr'] for param_group in self.optimizer.param_groups] |
|
lr = sum(lrl) / len(lrl) |
|
return lr |
|
|
|
# File: pixparse-main/src/pixparse/task/task_cruller_pretrain.py |
|
import logging |
|
from contextlib import nullcontext |
|
from dataclasses import dataclass, field, asdict |
|
from functools import partial |
|
from typing import Optional, List, Any |
|
import torch |
|
import torch.nn as nn |
|
import torchvision.transforms as transforms |
|
import timm |
|
import timm.utils |
|
from timm.optim import create_optimizer_v2 |
|
from timm.scheduler import create_scheduler_v2 |
|
from pixparse.framework import TaskTrainCfg, TaskTrain, DeviceEnv, Monitor |
|
from pixparse.models import Cruller, ModelCfg, get_model_config |
|
from pixparse.tokenizers import TokenizerHF, TokenizerCfg |
|
from pixparse.data import preprocess_ocr_anno, preprocess_text_anno |
|
from pixparse.utils.ocr_utils import get_ocr_metrics |
|
_logger = logging.getLogger(__name__) |
|
|
|
@dataclass |
|
class TaskCrullerPretrainCfg(TaskTrainCfg): |
|
model_name: Optional[str] = None |
|
model: ModelCfg = field(default_factory=ModelCfg) |
|
tokenizer: TokenizerCfg = field(default_factory=TokenizerCfg) |
|
|
|
def __post_init__(self): |
|
if self.model_name: |
|
model = get_model_config(self.model_name) |
|
if model is None: |
|
_logger.warning(f'Model config for {self.model_name} was not found, using defaults.') |
|
else: |
|
self.model = model |
|
else: |
|
self.model_name = 'custom' |
|
|
|
class TaskCrullerPretrain(TaskTrain): |
|
|
|
def __init__(self, cfg: TaskCrullerPretrainCfg, device_env: DeviceEnv, monitor: Monitor=None): |
|
super().__init__(cfg=cfg, device_env=device_env, monitor=monitor) |
|
self.cfg = cfg |
|
self.amp_dtype = None |
|
if cfg.dtype is not None: |
|
self.amp_dtype = torch.bfloat16 if cfg.dtype in ('bfloat16', 'bf16') else torch.float16 |
|
self.task_start_token = '<s_pretrain>' |
|
self.prompt_end_token = self.task_start_token |
|
self.max_position_embeddings = cfg.model.text_decoder.max_length |
|
self.text_anno_fn = False |
|
self.tokenizer = TokenizerHF(cfg.tokenizer) |
|
special_tokens = ['<sep/>', self.task_start_token, self.prompt_end_token] |
|
newly_added_num = self.tokenizer.trunk.add_special_tokens({'additional_special_tokens': sorted(set(special_tokens))}) |
|
self.vocab_size = len(self.tokenizer.trunk) |
|
preproc_fn = preprocess_text_anno if self.text_anno_fn else preprocess_ocr_anno |
|
self.anno_preprocess_train = partial(preproc_fn, tokenizer=self.tokenizer.trunk, max_position_embeddings=self.max_position_embeddings, task_start_token=self.task_start_token, prompt_end_token=self.prompt_end_token) |
|
self.model = Cruller(cfg.model) |
|
if newly_added_num > 0: |
|
self.model.text_decoder.trunk.resize_token_embeddings(len(self.tokenizer.trunk)) |
|
self.loss = nn.CrossEntropyLoss(ignore_index=-100) |
|
self.has_no_sync = False |
|
self.num_image_chs = 1 if cfg.model.image_encoder.image_fmt == 'L' else 3 |
|
img_mean = self.model.image_encoder.trunk.pretrained_cfg['mean'] |
|
img_std = self.model.image_encoder.trunk.pretrained_cfg['std'] |
|
self.img_mean = sum(img_mean) / len(img_mean) if cfg.model.image_encoder.image_fmt == 'L' else img_mean |
|
self.img_std = sum(img_std) / len(img_std) if cfg.model.image_encoder.image_fmt == 'L' else img_std |
|
self.image_preprocess_train = transforms.Compose([transforms.ToTensor(), transforms.Resize(cfg.model.image_encoder.image_size, interpolation=transforms.InterpolationMode.BICUBIC, antialias=True), transforms.Normalize(mean=self.img_mean, std=self.img_std)]) |
|
self.image_preprocess_eval = None |
|
self.train_metrics = {} |
|
self.eval_metrics = {} |
|
self.max_recursion_length = 1000 |
|
|
|
def train_setup(self, num_batches_per_interval: int): |
|
device = self.device_env.device |
|
self.model.to(device) |
|
if self.device_env.world_size > 1: |
|
self.model = torch.nn.parallel.DistributedDataParallel(self.model, device_ids=[device], static_graph=True) |
|
self.has_no_sync = hasattr(self.model, 'no_sync') |
|
opt_kwargs = {} |
|
if self.cfg.opt.betas is not None: |
|
opt_kwargs['betas'] = self.cfg.opt.betas |
|
if self.cfg.opt.momentum is not None: |
|
opt_kwargs['momentum'] = self.cfg.opt.momentum |
|
self.optimizer = create_optimizer_v2(self.model, self.cfg.opt.optimizer, lr=self.cfg.opt.learning_rate, eps=self.cfg.opt.eps, layer_decay=self.cfg.opt.layer_decay, **opt_kwargs) |
|
if self.cfg.amp: |
|
self.scaler = timm.utils.NativeScaler() |
|
self.autocast = partial(torch.autocast, device_type=device.type, dtype=self.amp_dtype) |
|
else: |
|
self.scaler = None |
|
self.autocast = nullcontext |
|
self.num_steps_per_interval = num_batches_per_interval // self.cfg.opt.grad_accum_steps |
|
(self.scheduler, num_scheduled_epochs) = create_scheduler_v2(self.optimizer, self.cfg.opt.scheduler, warmup_lr=self.cfg.opt.warmup_learning_rate, warmup_epochs=self.num_warmup_intervals, num_epochs=self.num_intervals, step_on_epochs=False, updates_per_epoch=self.num_steps_per_interval) |
|
self.scheduler.step_update(0) |
|
|
|
def train_interval_start(self): |
|
self.optimizer.zero_grad() |
|
self.interval_batch_idx = 0 |
|
|
|
def train_interval_end(self): |
|
self.monitor.log_phase('train', self.interval_idx) |
|
self.interval_idx += 1 |
|
|
|
def train_step(self, sample): |
|
(image_input, text_input, text_target) = sample |
|
result = {} |
|
image_input = image_input.to(self.device_env.device, non_blocking=True) |
|
text_input = text_input[:, :-1].to(self.device_env.device, non_blocking=True) |
|
text_target = text_target[:, 1:].to(self.device_env.device, non_blocking=True) |
|
accum_steps = self.cfg.opt.grad_accum_steps |
|
need_update = (self.interval_batch_idx + 1) % accum_steps == 0 |
|
|
|
def _forward(): |
|
with self.autocast(): |
|
output = self.model(image_input, text_input) |
|
logits = output['logits'] |
|
loss = self.loss(logits.view(-1, self.vocab_size), text_target.view(-1)) |
|
if accum_steps > 1: |
|
loss /= accum_steps |
|
return loss |
|
|
|
def _backward(_loss): |
|
if self.scaler is not None: |
|
self.scaler(_loss, self.optimizer, clip_grad=self.cfg.opt.clip_grad_value, clip_mode=self.cfg.opt.clip_grad_mode, parameters=self.model.parameters(), need_update=need_update) |
|
else: |
|
_loss.backward() |
|
if need_update: |
|
if self.cfg.opt.clip_grad_value is not None: |
|
timm.utils.dispatch_clip_grad(self.model.parameters(), value=self.cfg.opt.clip_grad_value, mode=self.cfg.opt.clip_grad_mode) |
|
self.optimizer.step() |
|
if self.has_no_sync and (not need_update): |
|
with self.model.no_sync(): |
|
loss = _forward() |
|
_backward(loss) |
|
else: |
|
loss = _forward() |
|
_backward(loss) |
|
self.batch_idx += 1 |
|
self.interval_batch_idx += 1 |
|
if not need_update: |
|
return result |
|
self.step += 1 |
|
self.scheduler.step_update(self.step) |
|
self.optimizer.zero_grad() |
|
if self.step % self.eval_frequency == 0: |
|
(metrics, eval_gallery) = self.get_train_ocr_metrics(sample) |
|
self.train_metrics |= metrics |
|
self.monitor.log_step('train', step_idx=self.step, step_end_idx=self.num_intervals * self.num_steps_per_interval, interval=self.interval_idx, loss=loss.item(), lr=self.get_current_lr(), metrics=self.train_metrics, eval_data=eval_gallery) |
|
return result |
|
|
|
def get_train_ocr_metrics(self, sample): |
|
metrics = {} |
|
eval_data = {} |
|
(image_input, text_input, text_target) = sample |
|
image_input = image_input.to(self.device_env.device, non_blocking=True) |
|
text_input = text_input[:, :-1].to(self.device_env.device, non_blocking=True) |
|
text_target = text_target[:, 1:].to(self.device_env.device, non_blocking=True) |
|
'' |
|
(ocr_metrics, ocr_reconstructed_sample) = get_ocr_metrics(model=self.model, tokenizer=self.tokenizer, image_input=image_input, text_input=text_target, device_env=self.device_env, max_recursion_length=self.max_recursion_length) |
|
if ocr_metrics and ocr_reconstructed_sample: |
|
metrics['ocr_reconstruction'] = ocr_metrics |
|
eval_data['ocr_reconstruction_data'] = ocr_reconstructed_sample |
|
else: |
|
_logger.info("Can't generate text from current batch. Skipping metrics...") |
|
return (metrics, eval_data) |
|
|
|
def state_dict(self): |
|
state_dicts = {} |
|
state_dicts['model'] = self.model.state_dict() |
|
state_dicts['optimizer'] = self.optimizer.state_dict() |
|
if hasattr(self.scheduler, 'state_dict'): |
|
state_dicts['scheduler'] = self.scheduler.state_dict() |
|
if self.scaler is not None: |
|
state_dicts['scaler'] = self.scaler.state_dict() |
|
return state_dicts |
|
|
|
def load_state_dict(self, state_dict): |
|
pass |
|
|
|
def __repr__(self): |
|
outputs = [f'model: {repr(self.model)}', f'opt: {repr(self.optimizer)}', f'sched: {repr(self.scheduler)}'] |
|
return '\n'.join(outputs) |
|
|
|
# File: pixparse-main/src/pixparse/task/task_donut_eval_ocr.py |
|
from PIL import Image |
|
import re |
|
from transformers import DonutProcessor, VisionEncoderDecoderModel |
|
import torch |
|
from dataclasses import dataclass |
|
from functools import partial |
|
from pixparse.framework import TaskEvalCfg, TaskEval, DeviceEnv, Monitor |
|
from pixparse.models import Cruller, ModelCfg, get_model_config |
|
from pixparse.data import preprocess_text_anno |
|
from pixparse.utils import get_ocr_metrics |
|
from pixparse.utils.ocr_utils import get_cer_wer_metrics |
|
import jiwer.transforms as tr |
|
import torch |
|
import torchvision.transforms as transforms |
|
import numpy as np |
|
|
|
@dataclass |
|
class TaskDonutEvalOCRCfg(TaskEvalCfg): |
|
|
|
def __post_init__(self): |
|
pass |
|
|
|
class TaskDonutEvalOCR(TaskEval): |
|
|
|
def __init__(self, cfg: TaskDonutEvalOCRCfg, device_env: DeviceEnv, monitor: Monitor=None): |
|
super().__init__(cfg=cfg, device_env=device_env, monitor=monitor) |
|
self.cfg = cfg |
|
self.processor = DonutProcessor.from_pretrained('naver-clova-ix/donut-base-finetuned-cord-v2') |
|
self.model = VisionEncoderDecoderModel.from_pretrained('naver-clova-ix/donut-base-finetuned-cord-v2') |
|
self.task_prompt = '<s_cord-v2>' |
|
self.decoder_input_ids = self.processor.tokenizer(self.task_prompt, add_special_tokens=False, return_tensors='pt').input_ids |
|
self.vocab_size = len(self.processor.tokenizer) |
|
preproc_fn = preprocess_text_anno |
|
self.max_position_embeddings = 768 |
|
self.anno_preprocess_eval = partial(preproc_fn, tokenizer=self.processor.tokenizer, max_position_embeddings=self.max_position_embeddings, task_start_token='', prompt_end_token=self.task_prompt) |
|
self.model.eval() |
|
self.has_no_sync = False |
|
self.num_image_chs = 3 |
|
self.image_preprocess_eval = lambda x: x |
|
self.cer_transforms = tr.Compose([tr.RemoveSpecificWords('<pad>'), tr.Strip(), tr.ReduceToListOfListOfChars()]) |
|
self.wer_transforms = tr.Compose([tr.RemoveSpecificWords('<pad>'), tr.RemoveMultipleSpaces(), tr.Strip(), tr.ReduceToListOfListOfWords()]) |
|
self.eval_metrics = {} |
|
self.max_recursion_length = 1000 |
|
|
|
def setup(self): |
|
device = self.device_env.device |
|
self.model.to(device) |
|
|
|
def prepare_for_evaluation(self, loaders): |
|
loaders = {loader_key: loader for (loader_key, loader) in loaders.items() if loader_key in ['eval', 'eval_FUNSD']} |
|
return loaders |
|
|
|
def clean_text(self, text: str) -> str: |
|
sequence = text.replace(self.processor.tokenizer.eos_token, '').replace(self.processor.tokenizer.pad_token, '') |
|
cleaned_text = re.sub('<.*?>', '', sequence) |
|
return cleaned_text |
|
|
|
def step(self, sample): |
|
metrics = {} |
|
(image_input, text_input, text_target) = sample |
|
text_input = [item[0] for item in text_input] |
|
text_input = torch.stack(text_input, dim=0).to(self.device_env.device, non_blocking=True) |
|
text_target = [item[0] for item in text_target] |
|
text_target = torch.stack(text_target, dim=0).to(self.device_env.device, non_blocking=True) |
|
decoder_input_ids = self.processor.tokenizer(self.task_prompt, add_special_tokens=False, return_tensors='pt').input_ids |
|
pixel_values = self.processor([im.convert('RGB') for im in image_input], return_tensors='pt').pixel_values |
|
with torch.inference_mode(): |
|
outputs = [self.model.generate(pixel_value.unsqueeze(0).to(self.device_env.device), decoder_input_ids=decoder_input_ids.to(self.device_env.device), max_length=self.max_position_embeddings, early_stopping=True, pad_token_id=self.processor.tokenizer.pad_token_id, eos_token_id=self.processor.tokenizer.eos_token_id, use_cache=True, num_beams=1, bad_words_ids=[[self.processor.tokenizer.unk_token_id]], return_dict_in_generate=True) for pixel_value in pixel_values] |
|
generated_text = [self.clean_text(self.processor.decode(greedy_outputs.sequences[0])) for greedy_outputs in outputs] |
|
text_input[text_input == -100] = self.processor.tokenizer.pad_token_id |
|
raw_decoded_texts = self.processor.tokenizer.batch_decode(text_input) |
|
decoded_texts = [self.clean_text(t) for t in raw_decoded_texts] |
|
filtered = [(ref, pred) for (ref, pred) in zip(decoded_texts, generated_text) if ref and pred] |
|
if not filtered: |
|
return (None, None) |
|
(decoded_texts, ocr_predictions) = zip(*filtered) |
|
decoded_texts = list(decoded_texts) |
|
ocr_predictions = list(ocr_predictions) |
|
ocr_predictions = [text[0:len(reftext)] for (text, reftext) in zip(ocr_predictions, decoded_texts)] |
|
metrics['ocr_reconstruction'] = get_cer_wer_metrics(self.cer_transforms, self.wer_transforms, dict(), ocr_predictions, decoded_texts) |
|
return metrics |
|
|
|
def average_metrics(self, metrics: dict): |
|
wer_sum = 0 |
|
cer_sum = 0 |
|
for batch_metrics in metrics.values(): |
|
wer_sum += batch_metrics['ocr_reconstruction']['wer'] |
|
cer_sum += batch_metrics['ocr_reconstruction']['cer'] |
|
num_batches = len(metrics) |
|
average_wer = wer_sum / num_batches |
|
average_cer = cer_sum / num_batches |
|
return {'ocr_reconstruction': {'wer': average_wer, 'cer': average_cer}} |
|
|
|
def end(self): |
|
pass |
|
|
|
def state_dict(self): |
|
state_dicts = {} |
|
state_dicts['model'] = self.model.state_dict() |
|
return state_dicts |
|
|
|
# File: pixparse-main/src/pixparse/task/task_factory.py |
|
import logging |
|
from dataclasses import dataclass, field |
|
from functools import partial |
|
from typing import Optional |
|
import torch |
|
import torchvision.transforms as transforms |
|
from pixparse.framework import TaskEvalCfg, TaskEval, DeviceEnv, Monitor |
|
from pixparse.models import Cruller, ModelCfg, get_model_config |
|
from pixparse.tokenizers import TokenizerHF, TokenizerCfg |
|
from pixparse.data import preprocess_text_anno |
|
from pixparse.utils import get_ocr_metrics |
|
from pixparse.task import TaskCrullerEvalOCR, TaskCrullerEvalOCRCfg, TaskDonutEvalOCR, TaskDonutEvalOCRCfg, TaskCrullerEvalRVLCDIP, TaskCrullerEvalRVLCDIPCfg, TaskCrullerEvalCORD, TaskCrullerEvalCORDCfg, TaskCrullerEvalDOCVQA, TaskCrullerEvalDOCVQACfg, TaskCrullerPretrain, TaskCrullerPretrainCfg, TaskCrullerFinetuneRVLCDIP, TaskCrullerFinetuneRVLCDIPCfg, TaskCrullerFinetuneCORD, TaskCrullerFinetuneCORDCfg, TaskCrullerFinetuneDOCVQA, TaskCrullerFinetuneDOCVQACfg, TaskCrullerFinetuneXent, TaskCrullerFinetuneXentCfg |
|
|
|
class TaskFactory: |
|
TASK_CLASS_REGISTRY = {'cruller_eval_ocr': (TaskCrullerEvalOCR, TaskCrullerEvalOCRCfg), 'cruller_eval_rvlcdip': (TaskCrullerEvalRVLCDIP, TaskCrullerEvalRVLCDIPCfg), 'cruller_eval_cord': (TaskCrullerEvalCORD, TaskCrullerEvalCORDCfg), 'cruller_eval_docvqa': (TaskCrullerEvalDOCVQA, TaskCrullerEvalDOCVQACfg), 'donut_eval_ocr': (TaskDonutEvalOCR, TaskDonutEvalOCRCfg), 'cruller_pretrain': (TaskCrullerPretrain, TaskCrullerPretrainCfg), 'cruller_finetune_rvlcdip': (TaskCrullerFinetuneRVLCDIP, TaskCrullerFinetuneRVLCDIPCfg), 'cruller_finetune_cord': (TaskCrullerFinetuneCORD, TaskCrullerFinetuneCORDCfg), 'cruller_finetune_docvqa': (TaskCrullerFinetuneDOCVQA, TaskCrullerFinetuneDOCVQACfg), 'cruller_finetune_xent': (TaskCrullerFinetuneXent, TaskCrullerFinetuneXentCfg)} |
|
|
|
@classmethod |
|
def create_task(cls, task_name: str, task_args, device_env: DeviceEnv, monitor: Monitor): |
|
task_name = task_name.lower() |
|
if task_name not in cls.TASK_CLASS_REGISTRY: |
|
raise ValueError(f'Unknown task type: {task_name}. Available tasks are {list(cls.TASK_CLASS_REGISTRY.keys())}') |
|
task_cls = cls.TASK_CLASS_REGISTRY[task_name][0] |
|
task_cfg = cls.TASK_CLASS_REGISTRY[task_name][1] |
|
task_cfg_instance = task_cfg(**vars(task_args)) |
|
task_cls_instance = task_cls(cfg=task_cfg_instance, device_env=device_env, monitor=monitor) |
|
return (task_cls_instance, task_cfg_instance) |
|
|
|
# File: pixparse-main/src/pixparse/tokenizers/config.py |
|
import copy |
|
import re |
|
from pathlib import Path |
|
from dataclasses import dataclass, field |
|
from typing import Optional, Tuple |
|
from simple_parsing.helpers import Serializable |
|
from pixparse.utils.name_utils import _natural_key, clean_name |
|
_TOKENIZER_CONFIG_PATHS = [Path(__file__).parent / f'configs/'] |
|
_TOKENIZER_CONFIGS = {} |
|
|
|
@dataclass |
|
class TokenizerCfg(Serializable): |
|
name: str = 'facebook/bart-large' |
|
pretrained: bool = True |
|
|
|
def _scan_tokenizer_configs(): |
|
global _TOKENIZER_CONFIGS |
|
config_ext = ('.json',) |
|
config_files = [] |
|
for config_path in _TOKENIZER_CONFIG_PATHS: |
|
if config_path.is_file() and config_path.suffix in config_ext: |
|
config_files.append(config_path) |
|
elif config_path.is_dir(): |
|
for ext in config_ext: |
|
config_files.extend(config_path.glob(f'*{ext}')) |
|
for cf in config_files: |
|
tokenizer_cfg = TokenizerCfg.load(cf) |
|
_TOKENIZER_CONFIGS[cf.stem] = tokenizer_cfg |
|
_TOKENIZER_CONFIGS = {k: v for (k, v) in sorted(_TOKENIZER_CONFIGS.items(), key=lambda x: _natural_key(x[0]))} |
|
_scan_tokenizer_configs() |
|
|
|
def list_tokenizers(): |
|
return list(_TOKENIZER_CONFIGS.keys()) |
|
|
|
def get_tokenizer_config(tokenizer_name): |
|
tokenizer_name = clean_name(tokenizer_name) |
|
cfg = _TOKENIZER_CONFIGS.get(tokenizer_name, None) |
|
return copy.deepcopy(cfg) |
|
|
|
# File: pixparse-main/src/pixparse/tokenizers/tokenizer_hf.py |
|
from torch import nn as nn |
|
from pixparse.tokenizers.config import TokenizerCfg |
|
from transformers import AutoTokenizer |
|
|
|
def create_tokenizer(cfg: TokenizerCfg): |
|
assert cfg.name |
|
extra_kwargs = {} |
|
tokenizer = AutoTokenizer.from_pretrained(cfg.name, **extra_kwargs) |
|
return tokenizer |
|
|
|
class TokenizerHF(nn.Module): |
|
|
|
def __init__(self, cfg: TokenizerCfg): |
|
super().__init__() |
|
self.trunk = create_tokenizer(cfg) |
|
|
|
|