diff --git "a/huggingface_pytorch-image-models.txt" "b/huggingface_pytorch-image-models.txt" new file mode 100644--- /dev/null +++ "b/huggingface_pytorch-image-models.txt" @@ -0,0 +1,46027 @@ +# File: pytorch-image-models-main/avg_checkpoints.py +"""""" +import torch +import argparse +import os +import glob +import hashlib +from timm.models import load_state_dict +try: + import safetensors.torch + _has_safetensors = True +except ImportError: + _has_safetensors = False +DEFAULT_OUTPUT = './averaged.pth' +DEFAULT_SAFE_OUTPUT = './averaged.safetensors' +parser = argparse.ArgumentParser(description='PyTorch Checkpoint Averager') +parser.add_argument('--input', default='', type=str, metavar='PATH', help='path to base input folder containing checkpoints') +parser.add_argument('--filter', default='*.pth.tar', type=str, metavar='WILDCARD', help='checkpoint filter (path wildcard)') +parser.add_argument('--output', default=DEFAULT_OUTPUT, type=str, metavar='PATH', help=f'Output filename. Defaults to {DEFAULT_SAFE_OUTPUT} when passing --safetensors.') +parser.add_argument('--no-use-ema', dest='no_use_ema', action='store_true', help='Force not using ema version of weights (if present)') +parser.add_argument('--no-sort', dest='no_sort', action='store_true', help='Do not sort and select by checkpoint metric, also makes "n" argument irrelevant') +parser.add_argument('-n', type=int, default=10, metavar='N', help='Number of checkpoints to average') +parser.add_argument('--safetensors', action='store_true', help='Save weights using safetensors instead of the default torch way (pickle).') + +def checkpoint_metric(checkpoint_path): + if not checkpoint_path or not os.path.isfile(checkpoint_path): + return {} + print("=> Extracting metric from checkpoint '{}'".format(checkpoint_path)) + checkpoint = torch.load(checkpoint_path, map_location='cpu') + metric = None + if 'metric' in checkpoint: + metric = checkpoint['metric'] + elif 'metrics' in checkpoint and 'metric_name' in checkpoint: + metrics = checkpoint['metrics'] + print(metrics) + metric = metrics[checkpoint['metric_name']] + return metric + +def main(): + args = parser.parse_args() + args.use_ema = not args.no_use_ema + args.sort = not args.no_sort + if args.safetensors and args.output == DEFAULT_OUTPUT: + args.output = DEFAULT_SAFE_OUTPUT + (output, output_ext) = os.path.splitext(args.output) + if not output_ext: + output_ext = '.safetensors' if args.safetensors else '.pth' + output = output + output_ext + if args.safetensors and (not output_ext == '.safetensors'): + print(f"Warning: saving weights as safetensors but output file extension is not set to '.safetensors': {args.output}") + if os.path.exists(output): + print('Error: Output filename ({}) already exists.'.format(output)) + exit(1) + pattern = args.input + if not args.input.endswith(os.path.sep) and (not args.filter.startswith(os.path.sep)): + pattern += os.path.sep + pattern += args.filter + checkpoints = glob.glob(pattern, recursive=True) + if args.sort: + checkpoint_metrics = [] + for c in checkpoints: + metric = checkpoint_metric(c) + if metric is not None: + checkpoint_metrics.append((metric, c)) + checkpoint_metrics = list(sorted(checkpoint_metrics)) + checkpoint_metrics = checkpoint_metrics[-args.n:] + if checkpoint_metrics: + print('Selected checkpoints:') + [print(m, c) for (m, c) in checkpoint_metrics] + avg_checkpoints = [c for (m, c) in checkpoint_metrics] + else: + avg_checkpoints = checkpoints + if avg_checkpoints: + print('Selected checkpoints:') + [print(c) for c in checkpoints] + if not avg_checkpoints: + print('Error: No checkpoints found to average.') + exit(1) + avg_state_dict = {} + avg_counts = {} + for c in avg_checkpoints: + new_state_dict = load_state_dict(c, args.use_ema) + if not new_state_dict: + print(f"Error: Checkpoint ({c}) doesn't exist") + continue + for (k, v) in new_state_dict.items(): + if k not in avg_state_dict: + avg_state_dict[k] = v.clone().to(dtype=torch.float64) + avg_counts[k] = 1 + else: + avg_state_dict[k] += v.to(dtype=torch.float64) + avg_counts[k] += 1 + for (k, v) in avg_state_dict.items(): + v.div_(avg_counts[k]) + float32_info = torch.finfo(torch.float32) + final_state_dict = {} + for (k, v) in avg_state_dict.items(): + v = v.clamp(float32_info.min, float32_info.max) + final_state_dict[k] = v.to(dtype=torch.float32) + if args.safetensors: + assert _has_safetensors, '`pip install safetensors` to use .safetensors' + safetensors.torch.save_file(final_state_dict, output) + else: + torch.save(final_state_dict, output) + with open(output, 'rb') as f: + sha_hash = hashlib.sha256(f.read()).hexdigest() + print(f"=> Saved state_dict to '{output}, SHA256: {sha_hash}'") +if __name__ == '__main__': + main() + +# File: pytorch-image-models-main/benchmark.py +"""""" +import argparse +import csv +import json +import logging +import time +from collections import OrderedDict +from contextlib import suppress +from functools import partial +import torch +import torch.nn as nn +import torch.nn.parallel +from timm.data import resolve_data_config +from timm.layers import set_fast_norm +from timm.models import create_model, is_model, list_models +from timm.optim import create_optimizer_v2 +from timm.utils import setup_default_logging, set_jit_fuser, decay_batch_step, check_batch_size_retry, ParseKwargs, reparameterize_model +has_apex = False +try: + from apex import amp + has_apex = True +except ImportError: + pass +has_native_amp = False +try: + if getattr(torch.cuda.amp, 'autocast') is not None: + has_native_amp = True +except AttributeError: + pass +try: + from deepspeed.profiling.flops_profiler import get_model_profile + has_deepspeed_profiling = True +except ImportError as e: + has_deepspeed_profiling = False +try: + from fvcore.nn import FlopCountAnalysis, flop_count_str, ActivationCountAnalysis + has_fvcore_profiling = True +except ImportError as e: + FlopCountAnalysis = None + has_fvcore_profiling = False +try: + from functorch.compile import memory_efficient_fusion + has_functorch = True +except ImportError as e: + has_functorch = False +has_compile = hasattr(torch, 'compile') +if torch.cuda.is_available(): + torch.backends.cuda.matmul.allow_tf32 = True + torch.backends.cudnn.benchmark = True +_logger = logging.getLogger('validate') +parser = argparse.ArgumentParser(description='PyTorch Benchmark') +parser.add_argument('--model-list', metavar='NAME', default='', help='txt file based list of model names to benchmark') +parser.add_argument('--bench', default='both', type=str, help="Benchmark mode. One of 'inference', 'train', 'both'. Defaults to 'both'") +parser.add_argument('--detail', action='store_true', default=False, help='Provide train fwd/bwd/opt breakdown detail if True. Defaults to False') +parser.add_argument('--no-retry', action='store_true', default=False, help='Do not decay batch size and retry on error.') +parser.add_argument('--results-file', default='', type=str, help='Output csv file for validation results (summary)') +parser.add_argument('--results-format', default='csv', type=str, help='Format for results file one of (csv, json) (default: csv).') +parser.add_argument('--num-warm-iter', default=10, type=int, help='Number of warmup iterations (default: 10)') +parser.add_argument('--num-bench-iter', default=40, type=int, help='Number of benchmark iterations (default: 40)') +parser.add_argument('--device', default='cuda', type=str, help='device to run benchmark on') +parser.add_argument('--model', '-m', metavar='NAME', default='resnet50', help='model architecture (default: resnet50)') +parser.add_argument('-b', '--batch-size', default=256, type=int, metavar='N', help='mini-batch size (default: 256)') +parser.add_argument('--img-size', default=None, type=int, metavar='N', help='Input image dimension, uses model default if empty') +parser.add_argument('--input-size', default=None, nargs=3, type=int, metavar='N N N', help='Input all image dimensions (d h w, e.g. --input-size 3 224 224), uses model default if empty') +parser.add_argument('--use-train-size', action='store_true', default=False, help='Run inference at train size, not test-input-size if it exists.') +parser.add_argument('--num-classes', type=int, default=None, help='Number classes in dataset') +parser.add_argument('--gp', default=None, type=str, metavar='POOL', help='Global pool type, one of (fast, avg, max, avgmax, avgmaxc). Model default if None.') +parser.add_argument('--channels-last', action='store_true', default=False, help='Use channels_last memory layout') +parser.add_argument('--grad-checkpointing', action='store_true', default=False, help='Enable gradient checkpointing through model blocks/stages') +parser.add_argument('--amp', action='store_true', default=False, help='use PyTorch Native AMP for mixed precision training. Overrides --precision arg.') +parser.add_argument('--amp-dtype', default='float16', type=str, help='lower precision AMP dtype (default: float16). Overrides --precision arg if args.amp True.') +parser.add_argument('--precision', default='float32', type=str, help='Numeric precision. One of (amp, float32, float16, bfloat16, tf32)') +parser.add_argument('--fuser', default='', type=str, help="Select jit fuser. One of ('', 'te', 'old', 'nvfuser')") +parser.add_argument('--fast-norm', default=False, action='store_true', help='enable experimental fast-norm') +parser.add_argument('--reparam', default=False, action='store_true', help='Reparameterize model') +parser.add_argument('--model-kwargs', nargs='*', default={}, action=ParseKwargs) +scripting_group = parser.add_mutually_exclusive_group() +scripting_group.add_argument('--torchscript', dest='torchscript', action='store_true', help='convert model torchscript for inference') +scripting_group.add_argument('--torchcompile', nargs='?', type=str, default=None, const='inductor', help='Enable compilation w/ specified backend (default: inductor).') +scripting_group.add_argument('--aot-autograd', default=False, action='store_true', help='Enable AOT Autograd optimization.') +parser.add_argument('--opt', default='sgd', type=str, metavar='OPTIMIZER', help='Optimizer (default: "sgd"') +parser.add_argument('--opt-eps', default=None, type=float, metavar='EPSILON', help='Optimizer Epsilon (default: None, use opt default)') +parser.add_argument('--opt-betas', default=None, type=float, nargs='+', metavar='BETA', help='Optimizer Betas (default: None, use opt default)') +parser.add_argument('--momentum', type=float, default=0.9, metavar='M', help='Optimizer momentum (default: 0.9)') +parser.add_argument('--weight-decay', type=float, default=0.0001, help='weight decay (default: 0.0001)') +parser.add_argument('--clip-grad', type=float, default=None, metavar='NORM', help='Clip gradient norm (default: None, no clipping)') +parser.add_argument('--clip-mode', type=str, default='norm', help='Gradient clipping mode. One of ("norm", "value", "agc")') +parser.add_argument('--smoothing', type=float, default=0.1, help='Label smoothing (default: 0.1)') +parser.add_argument('--drop', type=float, default=0.0, metavar='PCT', help='Dropout rate (default: 0.)') +parser.add_argument('--drop-path', type=float, default=None, metavar='PCT', help='Drop path rate (default: None)') +parser.add_argument('--drop-block', type=float, default=None, metavar='PCT', help='Drop block rate (default: None)') + +def timestamp(sync=False): + return time.perf_counter() + +def cuda_timestamp(sync=False, device=None): + if sync: + torch.cuda.synchronize(device=device) + return time.perf_counter() + +def count_params(model: nn.Module): + return sum([m.numel() for m in model.parameters()]) + +def resolve_precision(precision: str): + assert precision in ('amp', 'amp_bfloat16', 'float16', 'bfloat16', 'float32') + amp_dtype = None + model_dtype = torch.float32 + data_dtype = torch.float32 + if precision == 'amp': + amp_dtype = torch.float16 + elif precision == 'amp_bfloat16': + amp_dtype = torch.bfloat16 + elif precision == 'float16': + model_dtype = torch.float16 + data_dtype = torch.float16 + elif precision == 'bfloat16': + model_dtype = torch.bfloat16 + data_dtype = torch.bfloat16 + return (amp_dtype, model_dtype, data_dtype) + +def profile_deepspeed(model, input_size=(3, 224, 224), batch_size=1, detailed=False): + (_, macs, _) = get_model_profile(model=model, input_shape=(batch_size,) + input_size, print_profile=detailed, detailed=detailed, warm_up=10, as_string=False, output_file=None, ignore_modules=None) + return (macs, 0) + +def profile_fvcore(model, input_size=(3, 224, 224), batch_size=1, detailed=False, force_cpu=False): + if force_cpu: + model = model.to('cpu') + (device, dtype) = (next(model.parameters()).device, next(model.parameters()).dtype) + example_input = torch.ones((batch_size,) + input_size, device=device, dtype=dtype) + fca = FlopCountAnalysis(model, example_input) + aca = ActivationCountAnalysis(model, example_input) + if detailed: + fcs = flop_count_str(fca) + print(fcs) + return (fca.total(), aca.total()) + +class BenchmarkRunner: + + def __init__(self, model_name, detail=False, device='cuda', torchscript=False, torchcompile=None, aot_autograd=False, reparam=False, precision='float32', fuser='', num_warm_iter=10, num_bench_iter=50, use_train_size=False, **kwargs): + self.model_name = model_name + self.detail = detail + self.device = device + (self.amp_dtype, self.model_dtype, self.data_dtype) = resolve_precision(precision) + self.channels_last = kwargs.pop('channels_last', False) + if self.amp_dtype is not None: + self.amp_autocast = partial(torch.cuda.amp.autocast, dtype=self.amp_dtype) + else: + self.amp_autocast = suppress + if fuser: + set_jit_fuser(fuser) + self.model = create_model(model_name, num_classes=kwargs.pop('num_classes', None), in_chans=3, global_pool=kwargs.pop('gp', 'fast'), scriptable=torchscript, drop_rate=kwargs.pop('drop', 0.0), drop_path_rate=kwargs.pop('drop_path', None), drop_block_rate=kwargs.pop('drop_block', None), **kwargs.pop('model_kwargs', {})) + if reparam: + self.model = reparameterize_model(self.model) + self.model.to(device=self.device, dtype=self.model_dtype, memory_format=torch.channels_last if self.channels_last else None) + self.num_classes = self.model.num_classes + self.param_count = count_params(self.model) + _logger.info('Model %s created, param count: %d' % (model_name, self.param_count)) + data_config = resolve_data_config(kwargs, model=self.model, use_test_size=not use_train_size) + self.input_size = data_config['input_size'] + self.batch_size = kwargs.pop('batch_size', 256) + self.compiled = False + if torchscript: + self.model = torch.jit.script(self.model) + self.compiled = True + elif torchcompile: + assert has_compile, 'A version of torch w/ torch.compile() is required, possibly a nightly.' + torch._dynamo.reset() + self.model = torch.compile(self.model, backend=torchcompile) + self.compiled = True + elif aot_autograd: + assert has_functorch, 'functorch is needed for --aot-autograd' + self.model = memory_efficient_fusion(self.model) + self.compiled = True + self.example_inputs = None + self.num_warm_iter = num_warm_iter + self.num_bench_iter = num_bench_iter + self.log_freq = num_bench_iter // 5 + if 'cuda' in self.device: + self.time_fn = partial(cuda_timestamp, device=self.device) + else: + self.time_fn = timestamp + + def _init_input(self): + self.example_inputs = torch.randn((self.batch_size,) + self.input_size, device=self.device, dtype=self.data_dtype) + if self.channels_last: + self.example_inputs = self.example_inputs.contiguous(memory_format=torch.channels_last) + +class InferenceBenchmarkRunner(BenchmarkRunner): + + def __init__(self, model_name, device='cuda', torchscript=False, **kwargs): + super().__init__(model_name=model_name, device=device, torchscript=torchscript, **kwargs) + self.model.eval() + + def run(self): + + def _step(): + t_step_start = self.time_fn() + with self.amp_autocast(): + output = self.model(self.example_inputs) + t_step_end = self.time_fn(True) + return t_step_end - t_step_start + _logger.info(f'Running inference benchmark on {self.model_name} for {self.num_bench_iter} steps w/ input size {self.input_size} and batch size {self.batch_size}.') + with torch.no_grad(): + self._init_input() + for _ in range(self.num_warm_iter): + _step() + total_step = 0.0 + num_samples = 0 + t_run_start = self.time_fn() + for i in range(self.num_bench_iter): + delta_fwd = _step() + total_step += delta_fwd + num_samples += self.batch_size + num_steps = i + 1 + if num_steps % self.log_freq == 0: + _logger.info(f'Infer [{num_steps}/{self.num_bench_iter}]. {num_samples / total_step:0.2f} samples/sec. {1000 * total_step / num_steps:0.3f} ms/step.') + t_run_end = self.time_fn(True) + t_run_elapsed = t_run_end - t_run_start + results = dict(samples_per_sec=round(num_samples / t_run_elapsed, 2), step_time=round(1000 * total_step / self.num_bench_iter, 3), batch_size=self.batch_size, img_size=self.input_size[-1], param_count=round(self.param_count / 1000000.0, 2)) + retries = 0 if self.compiled else 2 + while retries: + retries -= 1 + try: + if has_deepspeed_profiling: + (macs, _) = profile_deepspeed(self.model, self.input_size) + results['gmacs'] = round(macs / 1000000000.0, 2) + elif has_fvcore_profiling: + (macs, activations) = profile_fvcore(self.model, self.input_size, force_cpu=not retries) + results['gmacs'] = round(macs / 1000000000.0, 2) + results['macts'] = round(activations / 1000000.0, 2) + except RuntimeError as e: + pass + _logger.info(f"Inference benchmark of {self.model_name} done. {results['samples_per_sec']:.2f} samples/sec, {results['step_time']:.2f} ms/step") + return results + +class TrainBenchmarkRunner(BenchmarkRunner): + + def __init__(self, model_name, device='cuda', torchscript=False, **kwargs): + super().__init__(model_name=model_name, device=device, torchscript=torchscript, **kwargs) + self.model.train() + self.loss = nn.CrossEntropyLoss().to(self.device) + self.target_shape = tuple() + self.optimizer = create_optimizer_v2(self.model, opt=kwargs.pop('opt', 'sgd'), lr=kwargs.pop('lr', 0.0001)) + if kwargs.pop('grad_checkpointing', False): + self.model.set_grad_checkpointing() + + def _gen_target(self, batch_size): + return torch.empty((batch_size,) + self.target_shape, device=self.device, dtype=torch.long).random_(self.num_classes) + + def run(self): + + def _step(detail=False): + self.optimizer.zero_grad() + t_start = self.time_fn() + t_fwd_end = t_start + t_bwd_end = t_start + with self.amp_autocast(): + output = self.model(self.example_inputs) + if isinstance(output, tuple): + output = output[0] + if detail: + t_fwd_end = self.time_fn(True) + target = self._gen_target(output.shape[0]) + self.loss(output, target).backward() + if detail: + t_bwd_end = self.time_fn(True) + self.optimizer.step() + t_end = self.time_fn(True) + if detail: + delta_fwd = t_fwd_end - t_start + delta_bwd = t_bwd_end - t_fwd_end + delta_opt = t_end - t_bwd_end + return (delta_fwd, delta_bwd, delta_opt) + else: + delta_step = t_end - t_start + return delta_step + _logger.info(f'Running train benchmark on {self.model_name} for {self.num_bench_iter} steps w/ input size {self.input_size} and batch size {self.batch_size}.') + self._init_input() + for _ in range(self.num_warm_iter): + _step() + t_run_start = self.time_fn() + if self.detail: + total_fwd = 0.0 + total_bwd = 0.0 + total_opt = 0.0 + num_samples = 0 + for i in range(self.num_bench_iter): + (delta_fwd, delta_bwd, delta_opt) = _step(True) + num_samples += self.batch_size + total_fwd += delta_fwd + total_bwd += delta_bwd + total_opt += delta_opt + num_steps = i + 1 + if num_steps % self.log_freq == 0: + total_step = total_fwd + total_bwd + total_opt + _logger.info(f'Train [{num_steps}/{self.num_bench_iter}]. {num_samples / total_step:0.2f} samples/sec. {1000 * total_fwd / num_steps:0.3f} ms/step fwd, {1000 * total_bwd / num_steps:0.3f} ms/step bwd, {1000 * total_opt / num_steps:0.3f} ms/step opt.') + total_step = total_fwd + total_bwd + total_opt + t_run_elapsed = self.time_fn() - t_run_start + results = dict(samples_per_sec=round(num_samples / t_run_elapsed, 2), step_time=round(1000 * total_step / self.num_bench_iter, 3), fwd_time=round(1000 * total_fwd / self.num_bench_iter, 3), bwd_time=round(1000 * total_bwd / self.num_bench_iter, 3), opt_time=round(1000 * total_opt / self.num_bench_iter, 3), batch_size=self.batch_size, img_size=self.input_size[-1], param_count=round(self.param_count / 1000000.0, 2)) + else: + total_step = 0.0 + num_samples = 0 + for i in range(self.num_bench_iter): + delta_step = _step(False) + num_samples += self.batch_size + total_step += delta_step + num_steps = i + 1 + if num_steps % self.log_freq == 0: + _logger.info(f'Train [{num_steps}/{self.num_bench_iter}]. {num_samples / total_step:0.2f} samples/sec. {1000 * total_step / num_steps:0.3f} ms/step.') + t_run_elapsed = self.time_fn() - t_run_start + results = dict(samples_per_sec=round(num_samples / t_run_elapsed, 2), step_time=round(1000 * total_step / self.num_bench_iter, 3), batch_size=self.batch_size, img_size=self.input_size[-1], param_count=round(self.param_count / 1000000.0, 2)) + _logger.info(f"Train benchmark of {self.model_name} done. {results['samples_per_sec']:.2f} samples/sec, {results['step_time']:.2f} ms/sample") + return results + +class ProfileRunner(BenchmarkRunner): + + def __init__(self, model_name, device='cuda', profiler='', **kwargs): + super().__init__(model_name=model_name, device=device, **kwargs) + if not profiler: + if has_deepspeed_profiling: + profiler = 'deepspeed' + elif has_fvcore_profiling: + profiler = 'fvcore' + assert profiler, 'One of deepspeed or fvcore needs to be installed for profiling to work.' + self.profiler = profiler + self.model.eval() + + def run(self): + _logger.info(f'Running profiler on {self.model_name} w/ input size {self.input_size} and batch size {self.batch_size}.') + macs = 0 + activations = 0 + if self.profiler == 'deepspeed': + (macs, _) = profile_deepspeed(self.model, self.input_size, batch_size=self.batch_size, detailed=True) + elif self.profiler == 'fvcore': + (macs, activations) = profile_fvcore(self.model, self.input_size, batch_size=self.batch_size, detailed=True) + results = dict(gmacs=round(macs / 1000000000.0, 2), macts=round(activations / 1000000.0, 2), batch_size=self.batch_size, img_size=self.input_size[-1], param_count=round(self.param_count / 1000000.0, 2)) + _logger.info(f"Profile of {self.model_name} done. {results['gmacs']:.2f} GMACs, {results['param_count']:.2f} M params.") + return results + +def _try_run(model_name, bench_fn, bench_kwargs, initial_batch_size, no_batch_size_retry=False): + batch_size = initial_batch_size + results = dict() + error_str = 'Unknown' + while batch_size: + try: + torch.cuda.empty_cache() + bench = bench_fn(model_name=model_name, batch_size=batch_size, **bench_kwargs) + results = bench.run() + return results + except RuntimeError as e: + error_str = str(e) + _logger.error(f'"{error_str}" while running benchmark.') + if not check_batch_size_retry(error_str): + _logger.error(f'Unrecoverable error encountered while benchmarking {model_name}, skipping.') + break + if no_batch_size_retry: + break + batch_size = decay_batch_step(batch_size) + _logger.warning(f'Reducing batch size to {batch_size} for retry.') + results['error'] = error_str + return results + +def benchmark(args): + if args.amp: + _logger.warning("Overriding precision to 'amp' since --amp flag set.") + args.precision = 'amp' if args.amp_dtype == 'float16' else '_'.join(['amp', args.amp_dtype]) + _logger.info(f"Benchmarking in {args.precision} precision. {('NHWC' if args.channels_last else 'NCHW')} layout. torchscript {('enabled' if args.torchscript else 'disabled')}") + bench_kwargs = vars(args).copy() + bench_kwargs.pop('amp') + model = bench_kwargs.pop('model') + batch_size = bench_kwargs.pop('batch_size') + bench_fns = (InferenceBenchmarkRunner,) + prefixes = ('infer',) + if args.bench == 'both': + bench_fns = (InferenceBenchmarkRunner, TrainBenchmarkRunner) + prefixes = ('infer', 'train') + elif args.bench == 'train': + bench_fns = (TrainBenchmarkRunner,) + prefixes = ('train',) + elif args.bench.startswith('profile'): + if 'deepspeed' in args.bench: + assert has_deepspeed_profiling, 'deepspeed must be installed to use deepspeed flop counter' + bench_kwargs['profiler'] = 'deepspeed' + elif 'fvcore' in args.bench: + assert has_fvcore_profiling, 'fvcore must be installed to use fvcore flop counter' + bench_kwargs['profiler'] = 'fvcore' + bench_fns = (ProfileRunner,) + batch_size = 1 + model_results = OrderedDict(model=model) + for (prefix, bench_fn) in zip(prefixes, bench_fns): + run_results = _try_run(model, bench_fn, bench_kwargs=bench_kwargs, initial_batch_size=batch_size, no_batch_size_retry=args.no_retry) + if prefix and 'error' not in run_results: + run_results = {'_'.join([prefix, k]): v for (k, v) in run_results.items()} + model_results.update(run_results) + if 'error' in run_results: + break + if 'error' not in model_results: + param_count = model_results.pop('infer_param_count', model_results.pop('train_param_count', 0)) + model_results.setdefault('param_count', param_count) + model_results.pop('train_param_count', 0) + return model_results + +def main(): + setup_default_logging() + args = parser.parse_args() + model_cfgs = [] + model_names = [] + if args.fast_norm: + set_fast_norm() + if args.model_list: + args.model = '' + with open(args.model_list) as f: + model_names = [line.rstrip() for line in f] + model_cfgs = [(n, None) for n in model_names] + elif args.model == 'all': + args.pretrained = True + model_names = list_models(pretrained=True, exclude_filters=['*in21k']) + model_cfgs = [(n, None) for n in model_names] + elif not is_model(args.model): + model_names = list_models(args.model) + model_cfgs = [(n, None) for n in model_names] + if len(model_cfgs): + _logger.info('Running bulk validation on these pretrained models: {}'.format(', '.join(model_names))) + results = [] + try: + for (m, _) in model_cfgs: + if not m: + continue + args.model = m + r = benchmark(args) + if r: + results.append(r) + time.sleep(10) + except KeyboardInterrupt as e: + pass + sort_key = 'infer_samples_per_sec' + if 'train' in args.bench: + sort_key = 'train_samples_per_sec' + elif 'profile' in args.bench: + sort_key = 'infer_gmacs' + results = filter(lambda x: sort_key in x, results) + results = sorted(results, key=lambda x: x[sort_key], reverse=True) + else: + results = benchmark(args) + if args.results_file: + write_results(args.results_file, results, format=args.results_format) + print(f'--result\n{json.dumps(results, indent=4)}') + +def write_results(results_file, results, format='csv'): + with open(results_file, mode='w') as cf: + if format == 'json': + json.dump(results, cf, indent=4) + else: + if not isinstance(results, (list, tuple)): + results = [results] + if not results: + return + dw = csv.DictWriter(cf, fieldnames=results[0].keys()) + dw.writeheader() + for r in results: + dw.writerow(r) + cf.flush() +if __name__ == '__main__': + main() + +# File: pytorch-image-models-main/bulk_runner.py +"""""" +import argparse +import os +import sys +import csv +import json +import subprocess +import time +from typing import Callable, List, Tuple, Union +from timm.models import is_model, list_models, get_pretrained_cfg, get_arch_pretrained_cfgs +parser = argparse.ArgumentParser(description='Per-model process launcher') +parser.add_argument('--model-list', metavar='NAME', default='', help='txt file based list of model names to benchmark') +parser.add_argument('--results-file', default='', type=str, metavar='FILENAME', help='Output csv file for validation results (summary)') +parser.add_argument('--sort-key', default='', type=str, metavar='COL', help='Specify sort key for results csv') +parser.add_argument('--pretrained', action='store_true', help='only run models with pretrained weights') +parser.add_argument('--delay', type=float, default=0, help='Interval, in seconds, to delay between model invocations.') +parser.add_argument('--start_method', type=str, default='spawn', choices=['spawn', 'fork', 'forkserver'], help='Multiprocessing start method to use when creating workers.') +parser.add_argument('--no_python', help="Skip prepending the script with 'python' - just execute it directly. Useful when the script is not a Python script.") +parser.add_argument('-m', '--module', help="Change each process to interpret the launch script as a Python module, executing with the same behavior as 'python -m'.") +parser.add_argument('script', type=str, help='Full path to the program/script to be launched for each model config.') +parser.add_argument('script_args', nargs=argparse.REMAINDER) + +def cmd_from_args(args) -> Tuple[Union[Callable, str], List[str]]: + with_python = not args.no_python + cmd: Union[Callable, str] + cmd_args = [] + if with_python: + cmd = os.getenv('PYTHON_EXEC', sys.executable) + cmd_args.append('-u') + if args.module: + cmd_args.append('-m') + cmd_args.append(args.script) + else: + if args.module: + raise ValueError("Don't use both the '--no_python' flag and the '--module' flag at the same time.") + cmd = args.script + cmd_args.extend(args.script_args) + return (cmd, cmd_args) + +def _get_model_cfgs(model_names, num_classes=None, expand_train_test=False, include_crop=True, expand_arch=False): + model_cfgs = set() + for name in model_names: + if expand_arch: + pt_cfgs = get_arch_pretrained_cfgs(name).values() + else: + pt_cfg = get_pretrained_cfg(name) + pt_cfgs = [pt_cfg] if pt_cfg is not None else [] + for cfg in pt_cfgs: + if cfg.input_size is None: + continue + if num_classes is not None and getattr(cfg, 'num_classes', 0) != num_classes: + continue + size = cfg.input_size[-1] + if include_crop: + model_cfgs.add((name, size, cfg.crop_pct)) + else: + model_cfgs.add((name, size)) + if expand_train_test and cfg.test_input_size is not None: + test_size = cfg.test_input_size[-1] + if include_crop: + test_crop = cfg.test_crop_pct or cfg.crop_pct + model_cfgs.add((name, test_size, test_crop)) + else: + model_cfgs.add((name, test_size)) + if include_crop: + return [(n, {'img-size': r, 'crop-pct': cp}) for (n, r, cp) in sorted(model_cfgs)] + else: + return [(n, {'img-size': r}) for (n, r) in sorted(model_cfgs)] + +def main(): + args = parser.parse_args() + (cmd, cmd_args) = cmd_from_args(args) + model_cfgs = [] + if args.model_list == 'all': + model_names = list_models(pretrained=args.pretrained) + model_cfgs = [(n, None) for n in model_names] + elif args.model_list == 'all_in1k': + model_names = list_models(pretrained=True) + model_cfgs = _get_model_cfgs(model_names, num_classes=1000, expand_train_test=True) + elif args.model_list == 'all_res': + model_names = list_models() + model_cfgs = _get_model_cfgs(model_names, expand_train_test=True, include_crop=False, expand_arch=True) + elif not is_model(args.model_list): + model_names = list_models(args.model_list) + model_cfgs = [(n, None) for n in model_names] + if not model_cfgs and os.path.exists(args.model_list): + with open(args.model_list) as f: + model_names = [line.rstrip() for line in f] + model_cfgs = _get_model_cfgs(model_names, expand_train_test=True) + if len(model_cfgs): + results_file = args.results_file or './results.csv' + results = [] + errors = [] + model_strings = '\n'.join([f'{x[0]}, {x[1]}' for x in model_cfgs]) + print(f'Running script on these models:\n {model_strings}') + if not args.sort_key: + if 'benchmark' in args.script: + if any(['train' in a for a in args.script_args]): + sort_key = 'train_samples_per_sec' + else: + sort_key = 'infer_samples_per_sec' + else: + sort_key = 'top1' + else: + sort_key = args.sort_key + print(f'Script: {args.script}, Args: {args.script_args}, Sort key: {sort_key}') + try: + for (m, ax) in model_cfgs: + if not m: + continue + args_str = (cmd, *[str(e) for e in cmd_args], '--model', m) + if ax is not None: + extra_args = [(f'--{k}', str(v)) for (k, v) in ax.items()] + extra_args = [i for t in extra_args for i in t] + args_str += tuple(extra_args) + try: + o = subprocess.check_output(args=args_str).decode('utf-8').split('--result')[-1] + r = json.loads(o) + results.append(r) + except Exception as e: + errors.append(dict(model=m, error=str(e))) + if args.delay: + time.sleep(args.delay) + except KeyboardInterrupt as e: + pass + errors.extend(list(filter(lambda x: 'error' in x, results))) + if errors: + print(f'{len(errors)} models had errors during run.') + for e in errors: + if 'model' in e: + print(f"\t {e['model']} ({e.get('error', 'Unknown')})") + else: + print(e) + results = list(filter(lambda x: 'error' not in x, results)) + no_sortkey = list(filter(lambda x: sort_key not in x, results)) + if no_sortkey: + print(f'{len(no_sortkey)} results missing sort key, skipping sort.') + else: + results = sorted(results, key=lambda x: x[sort_key], reverse=True) + if len(results): + print(f'{len(results)} models run successfully. Saving results to {results_file}.') + write_results(results_file, results) + +def write_results(results_file, results): + with open(results_file, mode='w') as cf: + dw = csv.DictWriter(cf, fieldnames=results[0].keys()) + dw.writeheader() + for r in results: + dw.writerow(r) + cf.flush() +if __name__ == '__main__': + main() + +# File: pytorch-image-models-main/clean_checkpoint.py +"""""" +import torch +import argparse +import os +import hashlib +import shutil +import tempfile +from timm.models import load_state_dict +try: + import safetensors.torch + _has_safetensors = True +except ImportError: + _has_safetensors = False +parser = argparse.ArgumentParser(description='PyTorch Checkpoint Cleaner') +parser.add_argument('--checkpoint', default='', type=str, metavar='PATH', help='path to latest checkpoint (default: none)') +parser.add_argument('--output', default='', type=str, metavar='PATH', help='output path') +parser.add_argument('--no-use-ema', dest='no_use_ema', action='store_true', help='use ema version of weights if present') +parser.add_argument('--no-hash', dest='no_hash', action='store_true', help='no hash in output filename') +parser.add_argument('--clean-aux-bn', dest='clean_aux_bn', action='store_true', help='remove auxiliary batch norm layers (from SplitBN training) from checkpoint') +parser.add_argument('--safetensors', action='store_true', help='Save weights using safetensors instead of the default torch way (pickle).') + +def main(): + args = parser.parse_args() + if os.path.exists(args.output): + print('Error: Output filename ({}) already exists.'.format(args.output)) + exit(1) + clean_checkpoint(args.checkpoint, args.output, not args.no_use_ema, args.no_hash, args.clean_aux_bn, safe_serialization=args.safetensors) + +def clean_checkpoint(checkpoint, output, use_ema=True, no_hash=False, clean_aux_bn=False, safe_serialization: bool=False): + if checkpoint and os.path.isfile(checkpoint): + print("=> Loading checkpoint '{}'".format(checkpoint)) + state_dict = load_state_dict(checkpoint, use_ema=use_ema) + new_state_dict = {} + for (k, v) in state_dict.items(): + if clean_aux_bn and 'aux_bn' in k: + continue + name = k[7:] if k.startswith('module.') else k + new_state_dict[name] = v + print("=> Loaded state_dict from '{}'".format(checkpoint)) + ext = '' + if output: + (checkpoint_root, checkpoint_base) = os.path.split(output) + (checkpoint_base, ext) = os.path.splitext(checkpoint_base) + else: + checkpoint_root = '' + checkpoint_base = os.path.split(checkpoint)[1] + checkpoint_base = os.path.splitext(checkpoint_base)[0] + temp_filename = '__' + checkpoint_base + if safe_serialization: + assert _has_safetensors, '`pip install safetensors` to use .safetensors' + safetensors.torch.save_file(new_state_dict, temp_filename) + else: + torch.save(new_state_dict, temp_filename) + with open(temp_filename, 'rb') as f: + sha_hash = hashlib.sha256(f.read()).hexdigest() + if ext: + final_ext = ext + else: + final_ext = '.safetensors' if safe_serialization else '.pth' + if no_hash: + final_filename = checkpoint_base + final_ext + else: + final_filename = '-'.join([checkpoint_base, sha_hash[:8]]) + final_ext + shutil.move(temp_filename, os.path.join(checkpoint_root, final_filename)) + print("=> Saved state_dict to '{}, SHA256: {}'".format(final_filename, sha_hash)) + return final_filename + else: + print("Error: Checkpoint ({}) doesn't exist".format(checkpoint)) + return '' +if __name__ == '__main__': + main() + +# File: pytorch-image-models-main/convert/convert_from_mxnet.py +import argparse +import hashlib +import os +import mxnet as mx +import gluoncv +import torch +from timm import create_model +parser = argparse.ArgumentParser(description='Convert from MXNet') +parser.add_argument('--model', default='all', type=str, metavar='MODEL', help='Name of model to train (default: "all"') + +def convert(mxnet_name, torch_name): + net = gluoncv.model_zoo.get_model(mxnet_name, pretrained=True) + torch_net = create_model(torch_name) + mxp = [(k, v) for (k, v) in net.collect_params().items() if 'running' not in k] + torchp = list(torch_net.named_parameters()) + torch_params = {} + for ((tn, tv), (mn, mv)) in zip(torchp, mxp): + m_split = mn.split('_') + t_split = tn.split('.') + print(t_split, m_split) + print(tv.shape, mv.shape) + if m_split[-1] == 'gamma': + assert t_split[-1] == 'weight' + if m_split[-1] == 'beta': + assert t_split[-1] == 'bias' + assert all((t == m for (t, m) in zip(tv.shape, mv.shape))) + torch_tensor = torch.from_numpy(mv.data().asnumpy()) + torch_params[tn] = torch_tensor + mxb = [(k, v) for (k, v) in net.collect_params().items() if any((x in k for x in ['running_mean', 'running_var']))] + torchb = [(k, v) for (k, v) in torch_net.named_buffers() if 'num_batches' not in k] + for ((tn, tv), (mn, mv)) in zip(torchb, mxb): + print(tn, mn) + print(tv.shape, mv.shape) + if 'running_var' in tn: + assert 'running_var' in mn + if 'running_mean' in tn: + assert 'running_mean' in mn + torch_tensor = torch.from_numpy(mv.data().asnumpy()) + torch_params[tn] = torch_tensor + torch_net.load_state_dict(torch_params) + torch_filename = './%s.pth' % torch_name + torch.save(torch_net.state_dict(), torch_filename) + with open(torch_filename, 'rb') as f: + sha_hash = hashlib.sha256(f.read()).hexdigest() + final_filename = os.path.splitext(torch_filename)[0] + '-' + sha_hash[:8] + '.pth' + os.rename(torch_filename, final_filename) + print("=> Saved converted model to '{}, SHA256: {}'".format(final_filename, sha_hash)) + +def map_mx_to_torch_model(mx_name): + torch_name = mx_name.lower() + if torch_name.startswith('se_'): + torch_name = torch_name.replace('se_', 'se') + elif torch_name.startswith('senet_'): + torch_name = torch_name.replace('senet_', 'senet') + elif torch_name.startswith('inceptionv3'): + torch_name = torch_name.replace('inceptionv3', 'inception_v3') + torch_name = 'gluon_' + torch_name + return torch_name +ALL = ['resnet18_v1b', 'resnet34_v1b', 'resnet50_v1b', 'resnet101_v1b', 'resnet152_v1b', 'resnet50_v1c', 'resnet101_v1c', 'resnet152_v1c', 'resnet50_v1d', 'resnet101_v1d', 'resnet152_v1d', 'resnet50_v1s', 'resnet101_v1s', 'resnet152_v1s', 'resnext50_32x4d', 'resnext101_32x4d', 'resnext101_64x4d', 'se_resnext50_32x4d', 'se_resnext101_32x4d', 'se_resnext101_64x4d', 'senet_154', 'inceptionv3'] + +def main(): + args = parser.parse_args() + if not args.model or args.model == 'all': + for mx_model in ALL: + torch_model = map_mx_to_torch_model(mx_model) + convert(mx_model, torch_model) + else: + mx_model = args.model + torch_model = map_mx_to_torch_model(mx_model) + convert(mx_model, torch_model) +if __name__ == '__main__': + main() + +# File: pytorch-image-models-main/convert/convert_nest_flax.py +"""""" +import sys +import numpy as np +import torch +from clu import checkpoint +arch_depths = {'nest_base': [2, 2, 20], 'nest_small': [2, 2, 20], 'nest_tiny': [2, 2, 8]} + +def convert_nest(checkpoint_path, arch): + assert arch in ['nest_base', 'nest_small', 'nest_tiny'], 'Your `arch` is not supported' + flax_dict = checkpoint.load_state_dict(checkpoint_path)['optimizer']['target'] + state_dict = {} + state_dict['patch_embed.proj.weight'] = torch.tensor(flax_dict['PatchEmbedding_0']['Conv_0']['kernel']).permute(3, 2, 0, 1) + state_dict['patch_embed.proj.bias'] = torch.tensor(flax_dict['PatchEmbedding_0']['Conv_0']['bias']) + posemb_keys = [k for k in flax_dict.keys() if k.startswith('PositionEmbedding')] + for (i, k) in enumerate(posemb_keys): + state_dict[f'levels.{i}.pos_embed'] = torch.tensor(flax_dict[k]['pos_embedding']) + depths = arch_depths[arch] + for level in range(len(depths)): + for layer in range(depths[level]): + global_layer_ix = sum(depths[:level]) + layer + for i in range(2): + state_dict[f'levels.{level}.transformer_encoder.{layer}.norm{i + 1}.weight'] = torch.tensor(flax_dict[f'EncoderNDBlock_{global_layer_ix}'][f'LayerNorm_{i}']['scale']) + state_dict[f'levels.{level}.transformer_encoder.{layer}.norm{i + 1}.bias'] = torch.tensor(flax_dict[f'EncoderNDBlock_{global_layer_ix}'][f'LayerNorm_{i}']['bias']) + w_q = flax_dict[f'EncoderNDBlock_{global_layer_ix}']['MultiHeadAttention_0']['DenseGeneral_0']['kernel'] + w_kv = flax_dict[f'EncoderNDBlock_{global_layer_ix}']['MultiHeadAttention_0']['DenseGeneral_1']['kernel'] + w_kv = np.concatenate(np.split(w_kv, 2, -1), 1) + w_qkv = np.concatenate([w_q, w_kv], 1) + state_dict[f'levels.{level}.transformer_encoder.{layer}.attn.qkv.weight'] = torch.tensor(w_qkv).flatten(1).permute(1, 0) + b_q = flax_dict[f'EncoderNDBlock_{global_layer_ix}']['MultiHeadAttention_0']['DenseGeneral_0']['bias'] + b_kv = flax_dict[f'EncoderNDBlock_{global_layer_ix}']['MultiHeadAttention_0']['DenseGeneral_1']['bias'] + b_kv = np.concatenate(np.split(b_kv, 2, -1), 0) + b_qkv = np.concatenate([b_q, b_kv], 0) + state_dict[f'levels.{level}.transformer_encoder.{layer}.attn.qkv.bias'] = torch.tensor(b_qkv).reshape(-1) + w_proj = flax_dict[f'EncoderNDBlock_{global_layer_ix}']['MultiHeadAttention_0']['proj_kernel'] + w_proj = torch.tensor(w_proj).permute(2, 1, 0).flatten(1) + state_dict[f'levels.{level}.transformer_encoder.{layer}.attn.proj.weight'] = w_proj + state_dict[f'levels.{level}.transformer_encoder.{layer}.attn.proj.bias'] = torch.tensor(flax_dict[f'EncoderNDBlock_{global_layer_ix}']['MultiHeadAttention_0']['bias']) + for i in range(2): + state_dict[f'levels.{level}.transformer_encoder.{layer}.mlp.fc{i + 1}.weight'] = torch.tensor(flax_dict[f'EncoderNDBlock_{global_layer_ix}']['MlpBlock_0'][f'Dense_{i}']['kernel']).permute(1, 0) + state_dict[f'levels.{level}.transformer_encoder.{layer}.mlp.fc{i + 1}.bias'] = torch.tensor(flax_dict[f'EncoderNDBlock_{global_layer_ix}']['MlpBlock_0'][f'Dense_{i}']['bias']) + for level in range(1, len(depths)): + state_dict[f'levels.{level}.pool.conv.weight'] = torch.tensor(flax_dict[f'ConvPool_{level - 1}']['Conv_0']['kernel']).permute(3, 2, 0, 1) + state_dict[f'levels.{level}.pool.conv.bias'] = torch.tensor(flax_dict[f'ConvPool_{level - 1}']['Conv_0']['bias']) + state_dict[f'levels.{level}.pool.norm.weight'] = torch.tensor(flax_dict[f'ConvPool_{level - 1}']['LayerNorm_0']['scale']) + state_dict[f'levels.{level}.pool.norm.bias'] = torch.tensor(flax_dict[f'ConvPool_{level - 1}']['LayerNorm_0']['bias']) + state_dict[f'norm.weight'] = torch.tensor(flax_dict['LayerNorm_0']['scale']) + state_dict[f'norm.bias'] = torch.tensor(flax_dict['LayerNorm_0']['bias']) + state_dict['head.weight'] = torch.tensor(flax_dict['Dense_0']['kernel']).permute(1, 0) + state_dict['head.bias'] = torch.tensor(flax_dict['Dense_0']['bias']) + return state_dict +if __name__ == '__main__': + variant = sys.argv[1] + state_dict = convert_nest(f'./nest-{variant[0]}_imagenet', f'nest_{variant}') + torch.save(state_dict, f'./jx_nest_{variant}.pth') + +# File: pytorch-image-models-main/inference.py +"""""" +import argparse +import json +import logging +import os +import time +from contextlib import suppress +from functools import partial +import numpy as np +import pandas as pd +import torch +from timm.data import create_dataset, create_loader, resolve_data_config, ImageNetInfo, infer_imagenet_subset +from timm.layers import apply_test_time_pool +from timm.models import create_model +from timm.utils import AverageMeter, setup_default_logging, set_jit_fuser, ParseKwargs +try: + from apex import amp + has_apex = True +except ImportError: + has_apex = False +has_native_amp = False +try: + if getattr(torch.cuda.amp, 'autocast') is not None: + has_native_amp = True +except AttributeError: + pass +try: + from functorch.compile import memory_efficient_fusion + has_functorch = True +except ImportError as e: + has_functorch = False +has_compile = hasattr(torch, 'compile') +_FMT_EXT = {'json': '.json', 'json-record': '.json', 'json-split': '.json', 'parquet': '.parquet', 'csv': '.csv'} +torch.backends.cudnn.benchmark = True +_logger = logging.getLogger('inference') +parser = argparse.ArgumentParser(description='PyTorch ImageNet Inference') +parser.add_argument('data', nargs='?', metavar='DIR', const=None, help='path to dataset (*deprecated*, use --data-dir)') +parser.add_argument('--data-dir', metavar='DIR', help='path to dataset (root dir)') +parser.add_argument('--dataset', metavar='NAME', default='', help='dataset type + name ("/") (default: ImageFolder or ImageTar if empty)') +parser.add_argument('--split', metavar='NAME', default='validation', help='dataset split (default: validation)') +parser.add_argument('--model', '-m', metavar='MODEL', default='resnet50', help='model architecture (default: resnet50)') +parser.add_argument('-j', '--workers', default=2, type=int, metavar='N', help='number of data loading workers (default: 2)') +parser.add_argument('-b', '--batch-size', default=256, type=int, metavar='N', help='mini-batch size (default: 256)') +parser.add_argument('--img-size', default=None, type=int, metavar='N', help='Input image dimension, uses model default if empty') +parser.add_argument('--in-chans', type=int, default=None, metavar='N', help='Image input channels (default: None => 3)') +parser.add_argument('--input-size', default=None, nargs=3, type=int, metavar='N N N', help='Input all image dimensions (d h w, e.g. --input-size 3 224 224), uses model default if empty') +parser.add_argument('--use-train-size', action='store_true', default=False, help='force use of train input size, even when test size is specified in pretrained cfg') +parser.add_argument('--crop-pct', default=None, type=float, metavar='N', help='Input image center crop pct') +parser.add_argument('--crop-mode', default=None, type=str, metavar='N', help='Input image crop mode (squash, border, center). Model default if None.') +parser.add_argument('--mean', type=float, nargs='+', default=None, metavar='MEAN', help='Override mean pixel value of dataset') +parser.add_argument('--std', type=float, nargs='+', default=None, metavar='STD', help='Override std deviation of of dataset') +parser.add_argument('--interpolation', default='', type=str, metavar='NAME', help='Image resize interpolation type (overrides model)') +parser.add_argument('--num-classes', type=int, default=None, help='Number classes in dataset') +parser.add_argument('--class-map', default='', type=str, metavar='FILENAME', help='path to class to idx mapping file (default: "")') +parser.add_argument('--log-freq', default=10, type=int, metavar='N', help='batch logging frequency (default: 10)') +parser.add_argument('--checkpoint', default='', type=str, metavar='PATH', help='path to latest checkpoint (default: none)') +parser.add_argument('--pretrained', dest='pretrained', action='store_true', help='use pre-trained model') +parser.add_argument('--num-gpu', type=int, default=1, help='Number of GPUS to use') +parser.add_argument('--test-pool', dest='test_pool', action='store_true', help='enable test time pool') +parser.add_argument('--channels-last', action='store_true', default=False, help='Use channels_last memory layout') +parser.add_argument('--device', default='cuda', type=str, help='Device (accelerator) to use.') +parser.add_argument('--amp', action='store_true', default=False, help='use Native AMP for mixed precision training') +parser.add_argument('--amp-dtype', default='float16', type=str, help='lower precision AMP dtype (default: float16)') +parser.add_argument('--fuser', default='', type=str, help="Select jit fuser. One of ('', 'te', 'old', 'nvfuser')") +parser.add_argument('--model-kwargs', nargs='*', default={}, action=ParseKwargs) +scripting_group = parser.add_mutually_exclusive_group() +scripting_group.add_argument('--torchscript', default=False, action='store_true', help='torch.jit.script the full model') +scripting_group.add_argument('--torchcompile', nargs='?', type=str, default=None, const='inductor', help='Enable compilation w/ specified backend (default: inductor).') +scripting_group.add_argument('--aot-autograd', default=False, action='store_true', help='Enable AOT Autograd support.') +parser.add_argument('--results-dir', type=str, default=None, help='folder for output results') +parser.add_argument('--results-file', type=str, default=None, help='results filename (relative to results-dir)') +parser.add_argument('--results-format', type=str, nargs='+', default=['csv'], help='results format (one of "csv", "json", "json-split", "parquet")') +parser.add_argument('--results-separate-col', action='store_true', default=False, help='separate output columns per result index.') +parser.add_argument('--topk', default=1, type=int, metavar='N', help='Top-k to output to CSV') +parser.add_argument('--fullname', action='store_true', default=False, help='use full sample name in output (not just basename).') +parser.add_argument('--filename-col', type=str, default='filename', help='name for filename / sample name column') +parser.add_argument('--index-col', type=str, default='index', help='name for output indices column(s)') +parser.add_argument('--label-col', type=str, default='label', help='name for output indices column(s)') +parser.add_argument('--output-col', type=str, default=None, help='name for logit/probs output column(s)') +parser.add_argument('--output-type', type=str, default='prob', help='output type colum ("prob" for probabilities, "logit" for raw logits)') +parser.add_argument('--label-type', type=str, default='description', help='type of label to output, one of "none", "name", "description", "detailed"') +parser.add_argument('--include-index', action='store_true', default=False, help='include the class index in results') +parser.add_argument('--exclude-output', action='store_true', default=False, help='exclude logits/probs from results, just indices. topk must be set !=0.') + +def main(): + setup_default_logging() + args = parser.parse_args() + args.pretrained = args.pretrained or not args.checkpoint + if torch.cuda.is_available(): + torch.backends.cuda.matmul.allow_tf32 = True + torch.backends.cudnn.benchmark = True + device = torch.device(args.device) + amp_autocast = suppress + if args.amp: + assert has_native_amp, 'Please update PyTorch to a version with native AMP (or use APEX).' + assert args.amp_dtype in ('float16', 'bfloat16') + amp_dtype = torch.bfloat16 if args.amp_dtype == 'bfloat16' else torch.float16 + amp_autocast = partial(torch.autocast, device_type=device.type, dtype=amp_dtype) + _logger.info('Running inference in mixed precision with native PyTorch AMP.') + else: + _logger.info('Running inference in float32. AMP not enabled.') + if args.fuser: + set_jit_fuser(args.fuser) + in_chans = 3 + if args.in_chans is not None: + in_chans = args.in_chans + elif args.input_size is not None: + in_chans = args.input_size[0] + model = create_model(args.model, num_classes=args.num_classes, in_chans=in_chans, pretrained=args.pretrained, checkpoint_path=args.checkpoint, **args.model_kwargs) + if args.num_classes is None: + assert hasattr(model, 'num_classes'), 'Model must have `num_classes` attr if not set on cmd line/config.' + args.num_classes = model.num_classes + _logger.info(f'Model {args.model} created, param count: {sum([m.numel() for m in model.parameters()])}') + data_config = resolve_data_config(vars(args), model=model) + test_time_pool = False + if args.test_pool: + (model, test_time_pool) = apply_test_time_pool(model, data_config) + model = model.to(device) + model.eval() + if args.channels_last: + model = model.to(memory_format=torch.channels_last) + if args.torchscript: + model = torch.jit.script(model) + elif args.torchcompile: + assert has_compile, 'A version of torch w/ torch.compile() is required for --compile, possibly a nightly.' + torch._dynamo.reset() + model = torch.compile(model, backend=args.torchcompile) + elif args.aot_autograd: + assert has_functorch, 'functorch is needed for --aot-autograd' + model = memory_efficient_fusion(model) + if args.num_gpu > 1: + model = torch.nn.DataParallel(model, device_ids=list(range(args.num_gpu))) + root_dir = args.data or args.data_dir + dataset = create_dataset(root=root_dir, name=args.dataset, split=args.split, class_map=args.class_map) + if test_time_pool: + data_config['crop_pct'] = 1.0 + workers = 1 if 'tfds' in args.dataset or 'wds' in args.dataset else args.workers + loader = create_loader(dataset, batch_size=args.batch_size, use_prefetcher=True, num_workers=workers, device=device, **data_config) + to_label = None + if args.label_type in ('name', 'description', 'detail'): + imagenet_subset = infer_imagenet_subset(model) + if imagenet_subset is not None: + dataset_info = ImageNetInfo(imagenet_subset) + if args.label_type == 'name': + to_label = lambda x: dataset_info.index_to_label_name(x) + elif args.label_type == 'detail': + to_label = lambda x: dataset_info.index_to_description(x, detailed=True) + else: + to_label = lambda x: dataset_info.index_to_description(x) + to_label = np.vectorize(to_label) + else: + _logger.error('Cannot deduce ImageNet subset from model, no labelling will be performed.') + top_k = min(args.topk, args.num_classes) + batch_time = AverageMeter() + end = time.time() + all_indices = [] + all_labels = [] + all_outputs = [] + use_probs = args.output_type == 'prob' + with torch.no_grad(): + for (batch_idx, (input, _)) in enumerate(loader): + with amp_autocast(): + output = model(input) + if use_probs: + output = output.softmax(-1) + if top_k: + (output, indices) = output.topk(top_k) + np_indices = indices.cpu().numpy() + if args.include_index: + all_indices.append(np_indices) + if to_label is not None: + np_labels = to_label(np_indices) + all_labels.append(np_labels) + all_outputs.append(output.cpu().numpy()) + batch_time.update(time.time() - end) + end = time.time() + if batch_idx % args.log_freq == 0: + _logger.info('Predict: [{0}/{1}] Time {batch_time.val:.3f} ({batch_time.avg:.3f})'.format(batch_idx, len(loader), batch_time=batch_time)) + all_indices = np.concatenate(all_indices, axis=0) if all_indices else None + all_labels = np.concatenate(all_labels, axis=0) if all_labels else None + all_outputs = np.concatenate(all_outputs, axis=0).astype(np.float32) + filenames = loader.dataset.filenames(basename=not args.fullname) + output_col = args.output_col or ('prob' if use_probs else 'logit') + data_dict = {args.filename_col: filenames} + if args.results_separate_col and all_outputs.shape[-1] > 1: + if all_indices is not None: + for i in range(all_indices.shape[-1]): + data_dict[f'{args.index_col}_{i}'] = all_indices[:, i] + if all_labels is not None: + for i in range(all_labels.shape[-1]): + data_dict[f'{args.label_col}_{i}'] = all_labels[:, i] + for i in range(all_outputs.shape[-1]): + data_dict[f'{output_col}_{i}'] = all_outputs[:, i] + else: + if all_indices is not None: + if all_indices.shape[-1] == 1: + all_indices = all_indices.squeeze(-1) + data_dict[args.index_col] = list(all_indices) + if all_labels is not None: + if all_labels.shape[-1] == 1: + all_labels = all_labels.squeeze(-1) + data_dict[args.label_col] = list(all_labels) + if all_outputs.shape[-1] == 1: + all_outputs = all_outputs.squeeze(-1) + data_dict[output_col] = list(all_outputs) + df = pd.DataFrame(data=data_dict) + results_filename = args.results_file + if results_filename: + (filename_no_ext, ext) = os.path.splitext(results_filename) + if ext and ext in _FMT_EXT.values(): + results_filename = filename_no_ext + else: + img_size = data_config['input_size'][1] + results_filename = f'{args.model}-{img_size}' + if args.results_dir: + results_filename = os.path.join(args.results_dir, results_filename) + for fmt in args.results_format: + save_results(df, results_filename, fmt) + print(f'--result') + print(df.set_index(args.filename_col).to_json(orient='index', indent=4)) + +def save_results(df, results_filename, results_format='csv', filename_col='filename'): + results_filename += _FMT_EXT[results_format] + if results_format == 'parquet': + df.set_index(filename_col).to_parquet(results_filename) + elif results_format == 'json': + df.set_index(filename_col).to_json(results_filename, indent=4, orient='index') + elif results_format == 'json-records': + df.to_json(results_filename, lines=True, orient='records') + elif results_format == 'json-split': + df.to_json(results_filename, indent=4, orient='split', index=False) + else: + df.to_csv(results_filename, index=False) +if __name__ == '__main__': + main() + +# File: pytorch-image-models-main/onnx_export.py +"""""" +import argparse +import timm +from timm.utils.model import reparameterize_model +from timm.utils.onnx import onnx_export +parser = argparse.ArgumentParser(description='PyTorch ImageNet Validation') +parser.add_argument('output', metavar='ONNX_FILE', help='output model filename') +parser.add_argument('--model', '-m', metavar='MODEL', default='mobilenetv3_large_100', help='model architecture (default: mobilenetv3_large_100)') +parser.add_argument('--opset', type=int, default=None, help='ONNX opset to use (default: 10)') +parser.add_argument('--keep-init', action='store_true', default=False, help='Keep initializers as input. Needed for Caffe2 compatible export in newer PyTorch/ONNX.') +parser.add_argument('--aten-fallback', action='store_true', default=False, help='Fallback to ATEN ops. Helps fix AdaptiveAvgPool issue with Caffe2 in newer PyTorch/ONNX.') +parser.add_argument('--dynamic-size', action='store_true', default=False, help='Export model width dynamic width/height. Not recommended for "tf" models with SAME padding.') +parser.add_argument('--check-forward', action='store_true', default=False, help='Do a full check of torch vs onnx forward after export.') +parser.add_argument('-b', '--batch-size', default=1, type=int, metavar='N', help='mini-batch size (default: 1)') +parser.add_argument('--img-size', default=None, type=int, metavar='N', help='Input image dimension, uses model default if empty') +parser.add_argument('--mean', type=float, nargs='+', default=None, metavar='MEAN', help='Override mean pixel value of dataset') +parser.add_argument('--std', type=float, nargs='+', default=None, metavar='STD', help='Override std deviation of of dataset') +parser.add_argument('--num-classes', type=int, default=1000, help='Number classes in dataset') +parser.add_argument('--checkpoint', default='', type=str, metavar='PATH', help='path to checkpoint (default: none)') +parser.add_argument('--reparam', default=False, action='store_true', help='Reparameterize model') +parser.add_argument('--training', default=False, action='store_true', help='Export in training mode (default is eval)') +parser.add_argument('--verbose', default=False, action='store_true', help='Extra stdout output') +parser.add_argument('--dynamo', default=False, action='store_true', help='Use torch dynamo export.') + +def main(): + args = parser.parse_args() + args.pretrained = True + if args.checkpoint: + args.pretrained = False + print('==> Creating PyTorch {} model'.format(args.model)) + model = timm.create_model(args.model, num_classes=args.num_classes, in_chans=3, pretrained=args.pretrained, checkpoint_path=args.checkpoint, exportable=True) + if args.reparam: + model = reparameterize_model(model) + onnx_export(model, args.output, opset=args.opset, dynamic_size=args.dynamic_size, aten_fallback=args.aten_fallback, keep_initializers=args.keep_init, check_forward=args.check_forward, training=args.training, verbose=args.verbose, use_dynamo=args.dynamo, input_size=(3, args.img_size, args.img_size), batch_size=args.batch_size) +if __name__ == '__main__': + main() + +# File: pytorch-image-models-main/onnx_validate.py +"""""" +import argparse +import numpy as np +import onnxruntime +from timm.data import create_loader, resolve_data_config, create_dataset +from timm.utils import AverageMeter +import time +parser = argparse.ArgumentParser(description='ONNX Validation') +parser.add_argument('data', metavar='DIR', help='path to dataset') +parser.add_argument('--onnx-input', default='', type=str, metavar='PATH', help='path to onnx model/weights file') +parser.add_argument('--onnx-output-opt', default='', type=str, metavar='PATH', help='path to output optimized onnx graph') +parser.add_argument('--profile', action='store_true', default=False, help='Enable profiler output.') +parser.add_argument('-j', '--workers', default=2, type=int, metavar='N', help='number of data loading workers (default: 2)') +parser.add_argument('-b', '--batch-size', default=256, type=int, metavar='N', help='mini-batch size (default: 256)') +parser.add_argument('--img-size', default=None, type=int, metavar='N', help='Input image dimension, uses model default if empty') +parser.add_argument('--mean', type=float, nargs='+', default=None, metavar='MEAN', help='Override mean pixel value of dataset') +parser.add_argument('--std', type=float, nargs='+', default=None, metavar='STD', help='Override std deviation of of dataset') +parser.add_argument('--crop-pct', type=float, default=None, metavar='PCT', help='Override default crop pct of 0.875') +parser.add_argument('--interpolation', default='', type=str, metavar='NAME', help='Image resize interpolation type (overrides model)') +parser.add_argument('--print-freq', '-p', default=10, type=int, metavar='N', help='print frequency (default: 10)') + +def main(): + args = parser.parse_args() + args.gpu_id = 0 + sess_options = onnxruntime.SessionOptions() + sess_options.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL + if args.profile: + sess_options.enable_profiling = True + if args.onnx_output_opt: + sess_options.optimized_model_filepath = args.onnx_output_opt + session = onnxruntime.InferenceSession(args.onnx_input, sess_options) + data_config = resolve_data_config(vars(args)) + loader = create_loader(create_dataset('', args.data), input_size=data_config['input_size'], batch_size=args.batch_size, use_prefetcher=False, interpolation=data_config['interpolation'], mean=data_config['mean'], std=data_config['std'], num_workers=args.workers, crop_pct=data_config['crop_pct']) + input_name = session.get_inputs()[0].name + batch_time = AverageMeter() + top1 = AverageMeter() + top5 = AverageMeter() + end = time.time() + for (i, (input, target)) in enumerate(loader): + output = session.run([], {input_name: input.data.numpy()}) + output = output[0] + (prec1, prec5) = accuracy_np(output, target.numpy()) + top1.update(prec1.item(), input.size(0)) + top5.update(prec5.item(), input.size(0)) + batch_time.update(time.time() - end) + end = time.time() + if i % args.print_freq == 0: + print(f'Test: [{i}/{len(loader)}]\tTime {batch_time.val:.3f} ({batch_time.avg:.3f}, {input.size(0) / batch_time.avg:.3f}/s, {100 * batch_time.avg / input.size(0):.3f} ms/sample) \tPrec@1 {top1.val:.3f} ({top1.avg:.3f})\tPrec@5 {top5.val:.3f} ({top5.avg:.3f})') + print(f' * Prec@1 {top1.avg:.3f} ({100 - top1.avg:.3f}) Prec@5 {top5.avg:.3f} ({100.0 - top5.avg:.3f})') + +def accuracy_np(output, target): + max_indices = np.argsort(output, axis=1)[:, ::-1] + top5 = 100 * np.equal(max_indices[:, :5], target[:, np.newaxis]).sum(axis=1).mean() + top1 = 100 * np.equal(max_indices[:, 0], target).mean() + return (top1, top5) +if __name__ == '__main__': + main() + +# File: pytorch-image-models-main/results/generate_csv_results.py +import numpy as np +import pandas as pd +results = {'results-imagenet.csv': ['results-imagenet-real.csv', 'results-imagenetv2-matched-frequency.csv', 'results-sketch.csv'], 'results-imagenet-a-clean.csv': ['results-imagenet-a.csv'], 'results-imagenet-r-clean.csv': ['results-imagenet-r.csv']} + +def diff(base_df, test_csv): + base_df['mi'] = base_df.model + '-' + base_df.img_size.astype('str') + base_models = base_df['mi'].values + test_df = pd.read_csv(test_csv) + test_df['mi'] = test_df.model + '-' + test_df.img_size.astype('str') + test_models = test_df['mi'].values + rank_diff = np.zeros_like(test_models, dtype='object') + top1_diff = np.zeros_like(test_models, dtype='object') + top5_diff = np.zeros_like(test_models, dtype='object') + for (rank, model) in enumerate(test_models): + if model in base_models: + base_rank = int(np.where(base_models == model)[0]) + top1_d = test_df['top1'][rank] - base_df['top1'][base_rank] + top5_d = test_df['top5'][rank] - base_df['top5'][base_rank] + if rank == base_rank: + rank_diff[rank] = f'0' + elif rank > base_rank: + rank_diff[rank] = f'-{rank - base_rank}' + else: + rank_diff[rank] = f'+{base_rank - rank}' + if top1_d >= 0.0: + top1_diff[rank] = f'+{top1_d:.3f}' + else: + top1_diff[rank] = f'-{abs(top1_d):.3f}' + if top5_d >= 0.0: + top5_diff[rank] = f'+{top5_d:.3f}' + else: + top5_diff[rank] = f'-{abs(top5_d):.3f}' + else: + rank_diff[rank] = '' + top1_diff[rank] = '' + top5_diff[rank] = '' + test_df['top1_diff'] = top1_diff + test_df['top5_diff'] = top5_diff + test_df['rank_diff'] = rank_diff + test_df.drop('mi', axis=1, inplace=True) + base_df.drop('mi', axis=1, inplace=True) + test_df['param_count'] = test_df['param_count'].map('{:,.2f}'.format) + test_df.sort_values(['top1', 'top5', 'model'], ascending=[False, False, True], inplace=True) + test_df.to_csv(test_csv, index=False, float_format='%.3f') +for (base_results, test_results) in results.items(): + base_df = pd.read_csv(base_results) + base_df.sort_values(['top1', 'top5', 'model'], ascending=[False, False, True], inplace=True) + for test_csv in test_results: + diff(base_df, test_csv) + base_df['param_count'] = base_df['param_count'].map('{:,.2f}'.format) + base_df.to_csv(base_results, index=False, float_format='%.3f') + +# File: pytorch-image-models-main/timm/data/__init__.py +from .auto_augment import RandAugment, AutoAugment, rand_augment_ops, auto_augment_policy, rand_augment_transform, auto_augment_transform +from .config import resolve_data_config, resolve_model_data_config +from .constants import * +from .dataset import ImageDataset, IterableImageDataset, AugMixDataset +from .dataset_factory import create_dataset +from .dataset_info import DatasetInfo, CustomDatasetInfo +from .imagenet_info import ImageNetInfo, infer_imagenet_subset +from .loader import create_loader +from .mixup import Mixup, FastCollateMixup +from .readers import create_reader +from .readers import get_img_extensions, is_img_extension, set_img_extensions, add_img_extensions, del_img_extensions +from .real_labels import RealLabelsImagenet +from .transforms import * +from .transforms_factory import create_transform + +# File: pytorch-image-models-main/timm/data/auto_augment.py +"""""" +import random +import math +import re +from functools import partial +from typing import Dict, List, Optional, Union +from PIL import Image, ImageOps, ImageEnhance, ImageChops, ImageFilter +import PIL +import numpy as np +_PIL_VER = tuple([int(x) for x in PIL.__version__.split('.')[:2]]) +_FILL = (128, 128, 128) +_LEVEL_DENOM = 10.0 +_HPARAMS_DEFAULT = dict(translate_const=250, img_mean=_FILL) +if hasattr(Image, 'Resampling'): + _RANDOM_INTERPOLATION = (Image.Resampling.BILINEAR, Image.Resampling.BICUBIC) + _DEFAULT_INTERPOLATION = Image.Resampling.BICUBIC +else: + _RANDOM_INTERPOLATION = (Image.BILINEAR, Image.BICUBIC) + _DEFAULT_INTERPOLATION = Image.BICUBIC + +def _interpolation(kwargs): + interpolation = kwargs.pop('resample', _DEFAULT_INTERPOLATION) + if isinstance(interpolation, (list, tuple)): + return random.choice(interpolation) + return interpolation + +def _check_args_tf(kwargs): + if 'fillcolor' in kwargs and _PIL_VER < (5, 0): + kwargs.pop('fillcolor') + kwargs['resample'] = _interpolation(kwargs) + +def shear_x(img, factor, **kwargs): + _check_args_tf(kwargs) + return img.transform(img.size, Image.AFFINE, (1, factor, 0, 0, 1, 0), **kwargs) + +def shear_y(img, factor, **kwargs): + _check_args_tf(kwargs) + return img.transform(img.size, Image.AFFINE, (1, 0, 0, factor, 1, 0), **kwargs) + +def translate_x_rel(img, pct, **kwargs): + pixels = pct * img.size[0] + _check_args_tf(kwargs) + return img.transform(img.size, Image.AFFINE, (1, 0, pixels, 0, 1, 0), **kwargs) + +def translate_y_rel(img, pct, **kwargs): + pixels = pct * img.size[1] + _check_args_tf(kwargs) + return img.transform(img.size, Image.AFFINE, (1, 0, 0, 0, 1, pixels), **kwargs) + +def translate_x_abs(img, pixels, **kwargs): + _check_args_tf(kwargs) + return img.transform(img.size, Image.AFFINE, (1, 0, pixels, 0, 1, 0), **kwargs) + +def translate_y_abs(img, pixels, **kwargs): + _check_args_tf(kwargs) + return img.transform(img.size, Image.AFFINE, (1, 0, 0, 0, 1, pixels), **kwargs) + +def rotate(img, degrees, **kwargs): + _check_args_tf(kwargs) + if _PIL_VER >= (5, 2): + return img.rotate(degrees, **kwargs) + if _PIL_VER >= (5, 0): + (w, h) = img.size + post_trans = (0, 0) + rotn_center = (w / 2.0, h / 2.0) + angle = -math.radians(degrees) + matrix = [round(math.cos(angle), 15), round(math.sin(angle), 15), 0.0, round(-math.sin(angle), 15), round(math.cos(angle), 15), 0.0] + + def transform(x, y, matrix): + (a, b, c, d, e, f) = matrix + return (a * x + b * y + c, d * x + e * y + f) + (matrix[2], matrix[5]) = transform(-rotn_center[0] - post_trans[0], -rotn_center[1] - post_trans[1], matrix) + matrix[2] += rotn_center[0] + matrix[5] += rotn_center[1] + return img.transform(img.size, Image.AFFINE, matrix, **kwargs) + return img.rotate(degrees, resample=kwargs['resample']) + +def auto_contrast(img, **__): + return ImageOps.autocontrast(img) + +def invert(img, **__): + return ImageOps.invert(img) + +def equalize(img, **__): + return ImageOps.equalize(img) + +def solarize(img, thresh, **__): + return ImageOps.solarize(img, thresh) + +def solarize_add(img, add, thresh=128, **__): + lut = [] + for i in range(256): + if i < thresh: + lut.append(min(255, i + add)) + else: + lut.append(i) + if img.mode in ('L', 'RGB'): + if img.mode == 'RGB' and len(lut) == 256: + lut = lut + lut + lut + return img.point(lut) + return img + +def posterize(img, bits_to_keep, **__): + if bits_to_keep >= 8: + return img + return ImageOps.posterize(img, bits_to_keep) + +def contrast(img, factor, **__): + return ImageEnhance.Contrast(img).enhance(factor) + +def color(img, factor, **__): + return ImageEnhance.Color(img).enhance(factor) + +def brightness(img, factor, **__): + return ImageEnhance.Brightness(img).enhance(factor) + +def sharpness(img, factor, **__): + return ImageEnhance.Sharpness(img).enhance(factor) + +def gaussian_blur(img, factor, **__): + img = img.filter(ImageFilter.GaussianBlur(radius=factor)) + return img + +def gaussian_blur_rand(img, factor, **__): + radius_min = 0.1 + radius_max = 2.0 + img = img.filter(ImageFilter.GaussianBlur(radius=random.uniform(radius_min, radius_max * factor))) + return img + +def desaturate(img, factor, **_): + factor = min(1.0, max(0.0, 1.0 - factor)) + return ImageEnhance.Color(img).enhance(factor) + +def _randomly_negate(v): + return -v if random.random() > 0.5 else v + +def _rotate_level_to_arg(level, _hparams): + level = level / _LEVEL_DENOM * 30.0 + level = _randomly_negate(level) + return (level,) + +def _enhance_level_to_arg(level, _hparams): + return (level / _LEVEL_DENOM * 1.8 + 0.1,) + +def _enhance_increasing_level_to_arg(level, _hparams): + level = level / _LEVEL_DENOM * 0.9 + level = max(0.1, 1.0 + _randomly_negate(level)) + return (level,) + +def _minmax_level_to_arg(level, _hparams, min_val=0.0, max_val=1.0, clamp=True): + level = level / _LEVEL_DENOM + level = min_val + (max_val - min_val) * level + if clamp: + level = max(min_val, min(max_val, level)) + return (level,) + +def _shear_level_to_arg(level, _hparams): + level = level / _LEVEL_DENOM * 0.3 + level = _randomly_negate(level) + return (level,) + +def _translate_abs_level_to_arg(level, hparams): + translate_const = hparams['translate_const'] + level = level / _LEVEL_DENOM * float(translate_const) + level = _randomly_negate(level) + return (level,) + +def _translate_rel_level_to_arg(level, hparams): + translate_pct = hparams.get('translate_pct', 0.45) + level = level / _LEVEL_DENOM * translate_pct + level = _randomly_negate(level) + return (level,) + +def _posterize_level_to_arg(level, _hparams): + return (int(level / _LEVEL_DENOM * 4),) + +def _posterize_increasing_level_to_arg(level, hparams): + return (4 - _posterize_level_to_arg(level, hparams)[0],) + +def _posterize_original_level_to_arg(level, _hparams): + return (int(level / _LEVEL_DENOM * 4) + 4,) + +def _solarize_level_to_arg(level, _hparams): + return (min(256, int(level / _LEVEL_DENOM * 256)),) + +def _solarize_increasing_level_to_arg(level, _hparams): + return (256 - _solarize_level_to_arg(level, _hparams)[0],) + +def _solarize_add_level_to_arg(level, _hparams): + return (min(128, int(level / _LEVEL_DENOM * 110)),) +LEVEL_TO_ARG = {'AutoContrast': None, 'Equalize': None, 'Invert': None, 'Rotate': _rotate_level_to_arg, 'Posterize': _posterize_level_to_arg, 'PosterizeIncreasing': _posterize_increasing_level_to_arg, 'PosterizeOriginal': _posterize_original_level_to_arg, 'Solarize': _solarize_level_to_arg, 'SolarizeIncreasing': _solarize_increasing_level_to_arg, 'SolarizeAdd': _solarize_add_level_to_arg, 'Color': _enhance_level_to_arg, 'ColorIncreasing': _enhance_increasing_level_to_arg, 'Contrast': _enhance_level_to_arg, 'ContrastIncreasing': _enhance_increasing_level_to_arg, 'Brightness': _enhance_level_to_arg, 'BrightnessIncreasing': _enhance_increasing_level_to_arg, 'Sharpness': _enhance_level_to_arg, 'SharpnessIncreasing': _enhance_increasing_level_to_arg, 'ShearX': _shear_level_to_arg, 'ShearY': _shear_level_to_arg, 'TranslateX': _translate_abs_level_to_arg, 'TranslateY': _translate_abs_level_to_arg, 'TranslateXRel': _translate_rel_level_to_arg, 'TranslateYRel': _translate_rel_level_to_arg, 'Desaturate': partial(_minmax_level_to_arg, min_val=0.5, max_val=1.0), 'GaussianBlur': partial(_minmax_level_to_arg, min_val=0.1, max_val=2.0), 'GaussianBlurRand': _minmax_level_to_arg} +NAME_TO_OP = {'AutoContrast': auto_contrast, 'Equalize': equalize, 'Invert': invert, 'Rotate': rotate, 'Posterize': posterize, 'PosterizeIncreasing': posterize, 'PosterizeOriginal': posterize, 'Solarize': solarize, 'SolarizeIncreasing': solarize, 'SolarizeAdd': solarize_add, 'Color': color, 'ColorIncreasing': color, 'Contrast': contrast, 'ContrastIncreasing': contrast, 'Brightness': brightness, 'BrightnessIncreasing': brightness, 'Sharpness': sharpness, 'SharpnessIncreasing': sharpness, 'ShearX': shear_x, 'ShearY': shear_y, 'TranslateX': translate_x_abs, 'TranslateY': translate_y_abs, 'TranslateXRel': translate_x_rel, 'TranslateYRel': translate_y_rel, 'Desaturate': desaturate, 'GaussianBlur': gaussian_blur, 'GaussianBlurRand': gaussian_blur_rand} + +class AugmentOp: + + def __init__(self, name, prob=0.5, magnitude=10, hparams=None): + hparams = hparams or _HPARAMS_DEFAULT + self.name = name + self.aug_fn = NAME_TO_OP[name] + self.level_fn = LEVEL_TO_ARG[name] + self.prob = prob + self.magnitude = magnitude + self.hparams = hparams.copy() + self.kwargs = dict(fillcolor=hparams['img_mean'] if 'img_mean' in hparams else _FILL, resample=hparams['interpolation'] if 'interpolation' in hparams else _RANDOM_INTERPOLATION) + self.magnitude_std = self.hparams.get('magnitude_std', 0) + self.magnitude_max = self.hparams.get('magnitude_max', None) + + def __call__(self, img): + if self.prob < 1.0 and random.random() > self.prob: + return img + magnitude = self.magnitude + if self.magnitude_std > 0: + if self.magnitude_std == float('inf'): + magnitude = random.uniform(0, magnitude) + elif self.magnitude_std > 0: + magnitude = random.gauss(magnitude, self.magnitude_std) + upper_bound = self.magnitude_max or _LEVEL_DENOM + magnitude = max(0.0, min(magnitude, upper_bound)) + level_args = self.level_fn(magnitude, self.hparams) if self.level_fn is not None else tuple() + return self.aug_fn(img, *level_args, **self.kwargs) + + def __repr__(self): + fs = self.__class__.__name__ + f'(name={self.name}, p={self.prob}' + fs += f', m={self.magnitude}, mstd={self.magnitude_std}' + if self.magnitude_max is not None: + fs += f', mmax={self.magnitude_max}' + fs += ')' + return fs + +def auto_augment_policy_v0(hparams): + policy = [[('Equalize', 0.8, 1), ('ShearY', 0.8, 4)], [('Color', 0.4, 9), ('Equalize', 0.6, 3)], [('Color', 0.4, 1), ('Rotate', 0.6, 8)], [('Solarize', 0.8, 3), ('Equalize', 0.4, 7)], [('Solarize', 0.4, 2), ('Solarize', 0.6, 2)], [('Color', 0.2, 0), ('Equalize', 0.8, 8)], [('Equalize', 0.4, 8), ('SolarizeAdd', 0.8, 3)], [('ShearX', 0.2, 9), ('Rotate', 0.6, 8)], [('Color', 0.6, 1), ('Equalize', 1.0, 2)], [('Invert', 0.4, 9), ('Rotate', 0.6, 0)], [('Equalize', 1.0, 9), ('ShearY', 0.6, 3)], [('Color', 0.4, 7), ('Equalize', 0.6, 0)], [('Posterize', 0.4, 6), ('AutoContrast', 0.4, 7)], [('Solarize', 0.6, 8), ('Color', 0.6, 9)], [('Solarize', 0.2, 4), ('Rotate', 0.8, 9)], [('Rotate', 1.0, 7), ('TranslateYRel', 0.8, 9)], [('ShearX', 0.0, 0), ('Solarize', 0.8, 4)], [('ShearY', 0.8, 0), ('Color', 0.6, 4)], [('Color', 1.0, 0), ('Rotate', 0.6, 2)], [('Equalize', 0.8, 4), ('Equalize', 0.0, 8)], [('Equalize', 1.0, 4), ('AutoContrast', 0.6, 2)], [('ShearY', 0.4, 7), ('SolarizeAdd', 0.6, 7)], [('Posterize', 0.8, 2), ('Solarize', 0.6, 10)], [('Solarize', 0.6, 8), ('Equalize', 0.6, 1)], [('Color', 0.8, 6), ('Rotate', 0.4, 5)]] + pc = [[AugmentOp(*a, hparams=hparams) for a in sp] for sp in policy] + return pc + +def auto_augment_policy_v0r(hparams): + policy = [[('Equalize', 0.8, 1), ('ShearY', 0.8, 4)], [('Color', 0.4, 9), ('Equalize', 0.6, 3)], [('Color', 0.4, 1), ('Rotate', 0.6, 8)], [('Solarize', 0.8, 3), ('Equalize', 0.4, 7)], [('Solarize', 0.4, 2), ('Solarize', 0.6, 2)], [('Color', 0.2, 0), ('Equalize', 0.8, 8)], [('Equalize', 0.4, 8), ('SolarizeAdd', 0.8, 3)], [('ShearX', 0.2, 9), ('Rotate', 0.6, 8)], [('Color', 0.6, 1), ('Equalize', 1.0, 2)], [('Invert', 0.4, 9), ('Rotate', 0.6, 0)], [('Equalize', 1.0, 9), ('ShearY', 0.6, 3)], [('Color', 0.4, 7), ('Equalize', 0.6, 0)], [('PosterizeIncreasing', 0.4, 6), ('AutoContrast', 0.4, 7)], [('Solarize', 0.6, 8), ('Color', 0.6, 9)], [('Solarize', 0.2, 4), ('Rotate', 0.8, 9)], [('Rotate', 1.0, 7), ('TranslateYRel', 0.8, 9)], [('ShearX', 0.0, 0), ('Solarize', 0.8, 4)], [('ShearY', 0.8, 0), ('Color', 0.6, 4)], [('Color', 1.0, 0), ('Rotate', 0.6, 2)], [('Equalize', 0.8, 4), ('Equalize', 0.0, 8)], [('Equalize', 1.0, 4), ('AutoContrast', 0.6, 2)], [('ShearY', 0.4, 7), ('SolarizeAdd', 0.6, 7)], [('PosterizeIncreasing', 0.8, 2), ('Solarize', 0.6, 10)], [('Solarize', 0.6, 8), ('Equalize', 0.6, 1)], [('Color', 0.8, 6), ('Rotate', 0.4, 5)]] + pc = [[AugmentOp(*a, hparams=hparams) for a in sp] for sp in policy] + return pc + +def auto_augment_policy_original(hparams): + policy = [[('PosterizeOriginal', 0.4, 8), ('Rotate', 0.6, 9)], [('Solarize', 0.6, 5), ('AutoContrast', 0.6, 5)], [('Equalize', 0.8, 8), ('Equalize', 0.6, 3)], [('PosterizeOriginal', 0.6, 7), ('PosterizeOriginal', 0.6, 6)], [('Equalize', 0.4, 7), ('Solarize', 0.2, 4)], [('Equalize', 0.4, 4), ('Rotate', 0.8, 8)], [('Solarize', 0.6, 3), ('Equalize', 0.6, 7)], [('PosterizeOriginal', 0.8, 5), ('Equalize', 1.0, 2)], [('Rotate', 0.2, 3), ('Solarize', 0.6, 8)], [('Equalize', 0.6, 8), ('PosterizeOriginal', 0.4, 6)], [('Rotate', 0.8, 8), ('Color', 0.4, 0)], [('Rotate', 0.4, 9), ('Equalize', 0.6, 2)], [('Equalize', 0.0, 7), ('Equalize', 0.8, 8)], [('Invert', 0.6, 4), ('Equalize', 1.0, 8)], [('Color', 0.6, 4), ('Contrast', 1.0, 8)], [('Rotate', 0.8, 8), ('Color', 1.0, 2)], [('Color', 0.8, 8), ('Solarize', 0.8, 7)], [('Sharpness', 0.4, 7), ('Invert', 0.6, 8)], [('ShearX', 0.6, 5), ('Equalize', 1.0, 9)], [('Color', 0.4, 0), ('Equalize', 0.6, 3)], [('Equalize', 0.4, 7), ('Solarize', 0.2, 4)], [('Solarize', 0.6, 5), ('AutoContrast', 0.6, 5)], [('Invert', 0.6, 4), ('Equalize', 1.0, 8)], [('Color', 0.6, 4), ('Contrast', 1.0, 8)], [('Equalize', 0.8, 8), ('Equalize', 0.6, 3)]] + pc = [[AugmentOp(*a, hparams=hparams) for a in sp] for sp in policy] + return pc + +def auto_augment_policy_originalr(hparams): + policy = [[('PosterizeIncreasing', 0.4, 8), ('Rotate', 0.6, 9)], [('Solarize', 0.6, 5), ('AutoContrast', 0.6, 5)], [('Equalize', 0.8, 8), ('Equalize', 0.6, 3)], [('PosterizeIncreasing', 0.6, 7), ('PosterizeIncreasing', 0.6, 6)], [('Equalize', 0.4, 7), ('Solarize', 0.2, 4)], [('Equalize', 0.4, 4), ('Rotate', 0.8, 8)], [('Solarize', 0.6, 3), ('Equalize', 0.6, 7)], [('PosterizeIncreasing', 0.8, 5), ('Equalize', 1.0, 2)], [('Rotate', 0.2, 3), ('Solarize', 0.6, 8)], [('Equalize', 0.6, 8), ('PosterizeIncreasing', 0.4, 6)], [('Rotate', 0.8, 8), ('Color', 0.4, 0)], [('Rotate', 0.4, 9), ('Equalize', 0.6, 2)], [('Equalize', 0.0, 7), ('Equalize', 0.8, 8)], [('Invert', 0.6, 4), ('Equalize', 1.0, 8)], [('Color', 0.6, 4), ('Contrast', 1.0, 8)], [('Rotate', 0.8, 8), ('Color', 1.0, 2)], [('Color', 0.8, 8), ('Solarize', 0.8, 7)], [('Sharpness', 0.4, 7), ('Invert', 0.6, 8)], [('ShearX', 0.6, 5), ('Equalize', 1.0, 9)], [('Color', 0.4, 0), ('Equalize', 0.6, 3)], [('Equalize', 0.4, 7), ('Solarize', 0.2, 4)], [('Solarize', 0.6, 5), ('AutoContrast', 0.6, 5)], [('Invert', 0.6, 4), ('Equalize', 1.0, 8)], [('Color', 0.6, 4), ('Contrast', 1.0, 8)], [('Equalize', 0.8, 8), ('Equalize', 0.6, 3)]] + pc = [[AugmentOp(*a, hparams=hparams) for a in sp] for sp in policy] + return pc + +def auto_augment_policy_3a(hparams): + policy = [[('Solarize', 1.0, 5)], [('Desaturate', 1.0, 10)], [('GaussianBlurRand', 1.0, 10)]] + pc = [[AugmentOp(*a, hparams=hparams) for a in sp] for sp in policy] + return pc + +def auto_augment_policy(name='v0', hparams=None): + hparams = hparams or _HPARAMS_DEFAULT + if name == 'original': + return auto_augment_policy_original(hparams) + if name == 'originalr': + return auto_augment_policy_originalr(hparams) + if name == 'v0': + return auto_augment_policy_v0(hparams) + if name == 'v0r': + return auto_augment_policy_v0r(hparams) + if name == '3a': + return auto_augment_policy_3a(hparams) + assert False, f'Unknown AA policy {name}' + +class AutoAugment: + + def __init__(self, policy): + self.policy = policy + + def __call__(self, img): + sub_policy = random.choice(self.policy) + for op in sub_policy: + img = op(img) + return img + + def __repr__(self): + fs = self.__class__.__name__ + '(policy=' + for p in self.policy: + fs += '\n\t[' + fs += ', '.join([str(op) for op in p]) + fs += ']' + fs += ')' + return fs + +def auto_augment_transform(config_str: str, hparams: Optional[Dict]=None): + config = config_str.split('-') + policy_name = config[0] + config = config[1:] + for c in config: + cs = re.split('(\\d.*)', c) + if len(cs) < 2: + continue + (key, val) = cs[:2] + if key == 'mstd': + hparams.setdefault('magnitude_std', float(val)) + else: + assert False, 'Unknown AutoAugment config section' + aa_policy = auto_augment_policy(policy_name, hparams=hparams) + return AutoAugment(aa_policy) +_RAND_TRANSFORMS = ['AutoContrast', 'Equalize', 'Invert', 'Rotate', 'Posterize', 'Solarize', 'SolarizeAdd', 'Color', 'Contrast', 'Brightness', 'Sharpness', 'ShearX', 'ShearY', 'TranslateXRel', 'TranslateYRel'] +_RAND_INCREASING_TRANSFORMS = ['AutoContrast', 'Equalize', 'Invert', 'Rotate', 'PosterizeIncreasing', 'SolarizeIncreasing', 'SolarizeAdd', 'ColorIncreasing', 'ContrastIncreasing', 'BrightnessIncreasing', 'SharpnessIncreasing', 'ShearX', 'ShearY', 'TranslateXRel', 'TranslateYRel'] +_RAND_3A = ['SolarizeIncreasing', 'Desaturate', 'GaussianBlur'] +_RAND_WEIGHTED_3A = {'SolarizeIncreasing': 6, 'Desaturate': 6, 'GaussianBlur': 6, 'Rotate': 3, 'ShearX': 2, 'ShearY': 2, 'PosterizeIncreasing': 1, 'AutoContrast': 1, 'ColorIncreasing': 1, 'SharpnessIncreasing': 1, 'ContrastIncreasing': 1, 'BrightnessIncreasing': 1, 'Equalize': 1, 'Invert': 1} +_RAND_WEIGHTED_0 = {'Rotate': 3, 'ShearX': 2, 'ShearY': 2, 'TranslateXRel': 1, 'TranslateYRel': 1, 'ColorIncreasing': 0.25, 'SharpnessIncreasing': 0.25, 'AutoContrast': 0.25, 'SolarizeIncreasing': 0.05, 'SolarizeAdd': 0.05, 'ContrastIncreasing': 0.05, 'BrightnessIncreasing': 0.05, 'Equalize': 0.05, 'PosterizeIncreasing': 0.05, 'Invert': 0.05} + +def _get_weighted_transforms(transforms: Dict): + (transforms, probs) = list(zip(*transforms.items())) + probs = np.array(probs) + probs = probs / np.sum(probs) + return (transforms, probs) + +def rand_augment_choices(name: str, increasing=True): + if name == 'weights': + return _RAND_WEIGHTED_0 + if name == '3aw': + return _RAND_WEIGHTED_3A + if name == '3a': + return _RAND_3A + return _RAND_INCREASING_TRANSFORMS if increasing else _RAND_TRANSFORMS + +def rand_augment_ops(magnitude: Union[int, float]=10, prob: float=0.5, hparams: Optional[Dict]=None, transforms: Optional[Union[Dict, List]]=None): + hparams = hparams or _HPARAMS_DEFAULT + transforms = transforms or _RAND_TRANSFORMS + return [AugmentOp(name, prob=prob, magnitude=magnitude, hparams=hparams) for name in transforms] + +class RandAugment: + + def __init__(self, ops, num_layers=2, choice_weights=None): + self.ops = ops + self.num_layers = num_layers + self.choice_weights = choice_weights + + def __call__(self, img): + ops = np.random.choice(self.ops, self.num_layers, replace=self.choice_weights is None, p=self.choice_weights) + for op in ops: + img = op(img) + return img + + def __repr__(self): + fs = self.__class__.__name__ + f'(n={self.num_layers}, ops=' + for op in self.ops: + fs += f'\n\t{op}' + fs += ')' + return fs + +def rand_augment_transform(config_str: str, hparams: Optional[Dict]=None, transforms: Optional[Union[str, Dict, List]]=None): + magnitude = _LEVEL_DENOM + num_layers = 2 + increasing = False + prob = 0.5 + config = config_str.split('-') + assert config[0] == 'rand' + config = config[1:] + for c in config: + if c.startswith('t'): + val = str(c[1:]) + if transforms is None: + transforms = val + else: + cs = re.split('(\\d.*)', c) + if len(cs) < 2: + continue + (key, val) = cs[:2] + if key == 'mstd': + mstd = float(val) + if mstd > 100: + mstd = float('inf') + hparams.setdefault('magnitude_std', mstd) + elif key == 'mmax': + hparams.setdefault('magnitude_max', int(val)) + elif key == 'inc': + if bool(val): + increasing = True + elif key == 'm': + magnitude = int(val) + elif key == 'n': + num_layers = int(val) + elif key == 'p': + prob = float(val) + else: + assert False, 'Unknown RandAugment config section' + if isinstance(transforms, str): + transforms = rand_augment_choices(transforms, increasing=increasing) + elif transforms is None: + transforms = _RAND_INCREASING_TRANSFORMS if increasing else _RAND_TRANSFORMS + choice_weights = None + if isinstance(transforms, Dict): + (transforms, choice_weights) = _get_weighted_transforms(transforms) + ra_ops = rand_augment_ops(magnitude=magnitude, prob=prob, hparams=hparams, transforms=transforms) + return RandAugment(ra_ops, num_layers, choice_weights=choice_weights) +_AUGMIX_TRANSFORMS = ['AutoContrast', 'ColorIncreasing', 'ContrastIncreasing', 'BrightnessIncreasing', 'SharpnessIncreasing', 'Equalize', 'Rotate', 'PosterizeIncreasing', 'SolarizeIncreasing', 'ShearX', 'ShearY', 'TranslateXRel', 'TranslateYRel'] + +def augmix_ops(magnitude: Union[int, float]=10, hparams: Optional[Dict]=None, transforms: Optional[Union[str, Dict, List]]=None): + hparams = hparams or _HPARAMS_DEFAULT + transforms = transforms or _AUGMIX_TRANSFORMS + return [AugmentOp(name, prob=1.0, magnitude=magnitude, hparams=hparams) for name in transforms] + +class AugMixAugment: + + def __init__(self, ops, alpha=1.0, width=3, depth=-1, blended=False): + self.ops = ops + self.alpha = alpha + self.width = width + self.depth = depth + self.blended = blended + + def _calc_blended_weights(self, ws, m): + ws = ws * m + cump = 1.0 + rws = [] + for w in ws[::-1]: + alpha = w / cump + cump *= 1 - alpha + rws.append(alpha) + return np.array(rws[::-1], dtype=np.float32) + + def _apply_blended(self, img, mixing_weights, m): + img_orig = img.copy() + ws = self._calc_blended_weights(mixing_weights, m) + for w in ws: + depth = self.depth if self.depth > 0 else np.random.randint(1, 4) + ops = np.random.choice(self.ops, depth, replace=True) + img_aug = img_orig + for op in ops: + img_aug = op(img_aug) + img = Image.blend(img, img_aug, w) + return img + + def _apply_basic(self, img, mixing_weights, m): + img_shape = (img.size[0], img.size[1], len(img.getbands())) + mixed = np.zeros(img_shape, dtype=np.float32) + for mw in mixing_weights: + depth = self.depth if self.depth > 0 else np.random.randint(1, 4) + ops = np.random.choice(self.ops, depth, replace=True) + img_aug = img + for op in ops: + img_aug = op(img_aug) + mixed += mw * np.asarray(img_aug, dtype=np.float32) + np.clip(mixed, 0, 255.0, out=mixed) + mixed = Image.fromarray(mixed.astype(np.uint8)) + return Image.blend(img, mixed, m) + + def __call__(self, img): + mixing_weights = np.float32(np.random.dirichlet([self.alpha] * self.width)) + m = np.float32(np.random.beta(self.alpha, self.alpha)) + if self.blended: + mixed = self._apply_blended(img, mixing_weights, m) + else: + mixed = self._apply_basic(img, mixing_weights, m) + return mixed + + def __repr__(self): + fs = self.__class__.__name__ + f'(alpha={self.alpha}, width={self.width}, depth={self.depth}, ops=' + for op in self.ops: + fs += f'\n\t{op}' + fs += ')' + return fs + +def augment_and_mix_transform(config_str: str, hparams: Optional[Dict]=None): + magnitude = 3 + width = 3 + depth = -1 + alpha = 1.0 + blended = False + config = config_str.split('-') + assert config[0] == 'augmix' + config = config[1:] + for c in config: + cs = re.split('(\\d.*)', c) + if len(cs) < 2: + continue + (key, val) = cs[:2] + if key == 'mstd': + hparams.setdefault('magnitude_std', float(val)) + elif key == 'm': + magnitude = int(val) + elif key == 'w': + width = int(val) + elif key == 'd': + depth = int(val) + elif key == 'a': + alpha = float(val) + elif key == 'b': + blended = bool(val) + else: + assert False, 'Unknown AugMix config section' + hparams.setdefault('magnitude_std', float('inf')) + ops = augmix_ops(magnitude=magnitude, hparams=hparams) + return AugMixAugment(ops, alpha=alpha, width=width, depth=depth, blended=blended) + +# File: pytorch-image-models-main/timm/data/config.py +import logging +from .constants import * +_logger = logging.getLogger(__name__) + +def resolve_data_config(args=None, pretrained_cfg=None, model=None, use_test_size=False, verbose=False): + assert model or args or pretrained_cfg, 'At least one of model, args, or pretrained_cfg required for data config.' + args = args or {} + pretrained_cfg = pretrained_cfg or {} + if not pretrained_cfg and model is not None and hasattr(model, 'pretrained_cfg'): + pretrained_cfg = model.pretrained_cfg + data_config = {} + in_chans = 3 + if args.get('in_chans', None) is not None: + in_chans = args['in_chans'] + elif args.get('chans', None) is not None: + in_chans = args['chans'] + input_size = (in_chans, 224, 224) + if args.get('input_size', None) is not None: + assert isinstance(args['input_size'], (tuple, list)) + assert len(args['input_size']) == 3 + input_size = tuple(args['input_size']) + in_chans = input_size[0] + elif args.get('img_size', None) is not None: + assert isinstance(args['img_size'], int) + input_size = (in_chans, args['img_size'], args['img_size']) + elif use_test_size and pretrained_cfg.get('test_input_size', None) is not None: + input_size = pretrained_cfg['test_input_size'] + elif pretrained_cfg.get('input_size', None) is not None: + input_size = pretrained_cfg['input_size'] + data_config['input_size'] = input_size + data_config['interpolation'] = 'bicubic' + if args.get('interpolation', None): + data_config['interpolation'] = args['interpolation'] + elif pretrained_cfg.get('interpolation', None): + data_config['interpolation'] = pretrained_cfg['interpolation'] + data_config['mean'] = IMAGENET_DEFAULT_MEAN + if args.get('mean', None) is not None: + mean = tuple(args['mean']) + if len(mean) == 1: + mean = tuple(list(mean) * in_chans) + else: + assert len(mean) == in_chans + data_config['mean'] = mean + elif pretrained_cfg.get('mean', None): + data_config['mean'] = pretrained_cfg['mean'] + data_config['std'] = IMAGENET_DEFAULT_STD + if args.get('std', None) is not None: + std = tuple(args['std']) + if len(std) == 1: + std = tuple(list(std) * in_chans) + else: + assert len(std) == in_chans + data_config['std'] = std + elif pretrained_cfg.get('std', None): + data_config['std'] = pretrained_cfg['std'] + crop_pct = DEFAULT_CROP_PCT + if args.get('crop_pct', None): + crop_pct = args['crop_pct'] + elif use_test_size and pretrained_cfg.get('test_crop_pct', None): + crop_pct = pretrained_cfg['test_crop_pct'] + elif pretrained_cfg.get('crop_pct', None): + crop_pct = pretrained_cfg['crop_pct'] + data_config['crop_pct'] = crop_pct + crop_mode = DEFAULT_CROP_MODE + if args.get('crop_mode', None): + crop_mode = args['crop_mode'] + elif pretrained_cfg.get('crop_mode', None): + crop_mode = pretrained_cfg['crop_mode'] + data_config['crop_mode'] = crop_mode + if verbose: + _logger.info('Data processing configuration for current model + dataset:') + for (n, v) in data_config.items(): + _logger.info('\t%s: %s' % (n, str(v))) + return data_config + +def resolve_model_data_config(model, args=None, pretrained_cfg=None, use_test_size=False, verbose=False): + return resolve_data_config(args=args, pretrained_cfg=pretrained_cfg, model=model, use_test_size=use_test_size, verbose=verbose) + +# File: pytorch-image-models-main/timm/data/constants.py +DEFAULT_CROP_PCT = 0.875 +DEFAULT_CROP_MODE = 'center' +IMAGENET_DEFAULT_MEAN = (0.485, 0.456, 0.406) +IMAGENET_DEFAULT_STD = (0.229, 0.224, 0.225) +IMAGENET_INCEPTION_MEAN = (0.5, 0.5, 0.5) +IMAGENET_INCEPTION_STD = (0.5, 0.5, 0.5) +IMAGENET_DPN_MEAN = (124 / 255, 117 / 255, 104 / 255) +IMAGENET_DPN_STD = tuple([1 / (0.0167 * 255)] * 3) +OPENAI_CLIP_MEAN = (0.48145466, 0.4578275, 0.40821073) +OPENAI_CLIP_STD = (0.26862954, 0.26130258, 0.27577711) + +# File: pytorch-image-models-main/timm/data/dataset.py +"""""" +import io +import logging +from typing import Optional +import torch +import torch.utils.data as data +from PIL import Image +from .readers import create_reader +_logger = logging.getLogger(__name__) +_ERROR_RETRY = 50 + +class ImageDataset(data.Dataset): + + def __init__(self, root, reader=None, split='train', class_map=None, load_bytes=False, input_img_mode='RGB', transform=None, target_transform=None, **kwargs): + if reader is None or isinstance(reader, str): + reader = create_reader(reader or '', root=root, split=split, class_map=class_map, **kwargs) + self.reader = reader + self.load_bytes = load_bytes + self.input_img_mode = input_img_mode + self.transform = transform + self.target_transform = target_transform + self._consecutive_errors = 0 + + def __getitem__(self, index): + (img, target) = self.reader[index] + try: + img = img.read() if self.load_bytes else Image.open(img) + except Exception as e: + _logger.warning(f'Skipped sample (index {index}, file {self.reader.filename(index)}). {str(e)}') + self._consecutive_errors += 1 + if self._consecutive_errors < _ERROR_RETRY: + return self.__getitem__((index + 1) % len(self.reader)) + else: + raise e + self._consecutive_errors = 0 + if self.input_img_mode and (not self.load_bytes): + img = img.convert(self.input_img_mode) + if self.transform is not None: + img = self.transform(img) + if target is None: + target = -1 + elif self.target_transform is not None: + target = self.target_transform(target) + return (img, target) + + def __len__(self): + return len(self.reader) + + def filename(self, index, basename=False, absolute=False): + return self.reader.filename(index, basename, absolute) + + def filenames(self, basename=False, absolute=False): + return self.reader.filenames(basename, absolute) + +class IterableImageDataset(data.IterableDataset): + + def __init__(self, root, reader=None, split='train', class_map=None, is_training=False, batch_size=1, num_samples=None, seed=42, repeats=0, download=False, input_img_mode='RGB', input_key=None, target_key=None, transform=None, target_transform=None, max_steps=None): + assert reader is not None + if isinstance(reader, str): + self.reader = create_reader(reader, root=root, split=split, class_map=class_map, is_training=is_training, batch_size=batch_size, num_samples=num_samples, seed=seed, repeats=repeats, download=download, input_img_mode=input_img_mode, input_key=input_key, target_key=target_key, max_steps=max_steps) + else: + self.reader = reader + self.transform = transform + self.target_transform = target_transform + self._consecutive_errors = 0 + + def __iter__(self): + for (img, target) in self.reader: + if self.transform is not None: + img = self.transform(img) + if self.target_transform is not None: + target = self.target_transform(target) + yield (img, target) + + def __len__(self): + if hasattr(self.reader, '__len__'): + return len(self.reader) + else: + return 0 + + def set_epoch(self, count): + if hasattr(self.reader, 'set_epoch'): + self.reader.set_epoch(count) + + def set_loader_cfg(self, num_workers: Optional[int]=None): + if hasattr(self.reader, 'set_loader_cfg'): + self.reader.set_loader_cfg(num_workers=num_workers) + + def filename(self, index, basename=False, absolute=False): + assert False, 'Filename lookup by index not supported, use filenames().' + + def filenames(self, basename=False, absolute=False): + return self.reader.filenames(basename, absolute) + +class AugMixDataset(torch.utils.data.Dataset): + + def __init__(self, dataset, num_splits=2): + self.augmentation = None + self.normalize = None + self.dataset = dataset + if self.dataset.transform is not None: + self._set_transforms(self.dataset.transform) + self.num_splits = num_splits + + def _set_transforms(self, x): + assert isinstance(x, (list, tuple)) and len(x) == 3, 'Expecting a tuple/list of 3 transforms' + self.dataset.transform = x[0] + self.augmentation = x[1] + self.normalize = x[2] + + @property + def transform(self): + return self.dataset.transform + + @transform.setter + def transform(self, x): + self._set_transforms(x) + + def _normalize(self, x): + return x if self.normalize is None else self.normalize(x) + + def __getitem__(self, i): + (x, y) = self.dataset[i] + x_list = [self._normalize(x)] + for _ in range(self.num_splits - 1): + x_list.append(self._normalize(self.augmentation(x))) + return (tuple(x_list), y) + + def __len__(self): + return len(self.dataset) + +# File: pytorch-image-models-main/timm/data/dataset_factory.py +"""""" +import os +from typing import Optional +from torchvision.datasets import CIFAR100, CIFAR10, MNIST, KMNIST, FashionMNIST, ImageFolder +try: + from torchvision.datasets import Places365 + has_places365 = True +except ImportError: + has_places365 = False +try: + from torchvision.datasets import INaturalist + has_inaturalist = True +except ImportError: + has_inaturalist = False +try: + from torchvision.datasets import QMNIST + has_qmnist = True +except ImportError: + has_qmnist = False +try: + from torchvision.datasets import ImageNet + has_imagenet = True +except ImportError: + has_imagenet = False +from .dataset import IterableImageDataset, ImageDataset +_TORCH_BASIC_DS = dict(cifar10=CIFAR10, cifar100=CIFAR100, mnist=MNIST, kmnist=KMNIST, fashion_mnist=FashionMNIST) +_TRAIN_SYNONYM = dict(train=None, training=None) +_EVAL_SYNONYM = dict(val=None, valid=None, validation=None, eval=None, evaluation=None) + +def _search_split(root, split): + split_name = split.split('[')[0] + try_root = os.path.join(root, split_name) + if os.path.exists(try_root): + return try_root + + def _try(syn): + for s in syn: + try_root = os.path.join(root, s) + if os.path.exists(try_root): + return try_root + return root + if split_name in _TRAIN_SYNONYM: + root = _try(_TRAIN_SYNONYM) + elif split_name in _EVAL_SYNONYM: + root = _try(_EVAL_SYNONYM) + return root + +def create_dataset(name: str, root: Optional[str]=None, split: str='validation', search_split: bool=True, class_map: dict=None, load_bytes: bool=False, is_training: bool=False, download: bool=False, batch_size: int=1, num_samples: Optional[int]=None, seed: int=42, repeats: int=0, input_img_mode: str='RGB', **kwargs): + kwargs = {k: v for (k, v) in kwargs.items() if v is not None} + name = name.lower() + if name.startswith('torch/'): + name = name.split('/', 2)[-1] + torch_kwargs = dict(root=root, download=download, **kwargs) + if name in _TORCH_BASIC_DS: + ds_class = _TORCH_BASIC_DS[name] + use_train = split in _TRAIN_SYNONYM + ds = ds_class(train=use_train, **torch_kwargs) + elif name == 'inaturalist' or name == 'inat': + assert has_inaturalist, 'Please update to PyTorch 1.10, torchvision 0.11+ for Inaturalist' + target_type = 'full' + split_split = split.split('/') + if len(split_split) > 1: + target_type = split_split[0].split('_') + if len(target_type) == 1: + target_type = target_type[0] + split = split_split[-1] + if split in _TRAIN_SYNONYM: + split = '2021_train' + elif split in _EVAL_SYNONYM: + split = '2021_valid' + ds = INaturalist(version=split, target_type=target_type, **torch_kwargs) + elif name == 'places365': + assert has_places365, 'Please update to a newer PyTorch and torchvision for Places365 dataset.' + if split in _TRAIN_SYNONYM: + split = 'train-standard' + elif split in _EVAL_SYNONYM: + split = 'val' + ds = Places365(split=split, **torch_kwargs) + elif name == 'qmnist': + assert has_qmnist, 'Please update to a newer PyTorch and torchvision for QMNIST dataset.' + use_train = split in _TRAIN_SYNONYM + ds = QMNIST(train=use_train, **torch_kwargs) + elif name == 'imagenet': + assert has_imagenet, 'Please update to a newer PyTorch and torchvision for ImageNet dataset.' + if split in _EVAL_SYNONYM: + split = 'val' + ds = ImageNet(split=split, **torch_kwargs) + elif name == 'image_folder' or name == 'folder': + if search_split and os.path.isdir(root): + root = _search_split(root, split) + ds = ImageFolder(root, **kwargs) + else: + assert False, f'Unknown torchvision dataset {name}' + elif name.startswith('hfds/'): + ds = ImageDataset(root, reader=name, split=split, class_map=class_map, input_img_mode=input_img_mode, **kwargs) + elif name.startswith('hfids/'): + ds = IterableImageDataset(root, reader=name, split=split, class_map=class_map, is_training=is_training, download=download, batch_size=batch_size, num_samples=num_samples, repeats=repeats, seed=seed, input_img_mode=input_img_mode, **kwargs) + elif name.startswith('tfds/'): + ds = IterableImageDataset(root, reader=name, split=split, class_map=class_map, is_training=is_training, download=download, batch_size=batch_size, num_samples=num_samples, repeats=repeats, seed=seed, input_img_mode=input_img_mode, **kwargs) + elif name.startswith('wds/'): + ds = IterableImageDataset(root, reader=name, split=split, class_map=class_map, is_training=is_training, batch_size=batch_size, num_samples=num_samples, repeats=repeats, seed=seed, input_img_mode=input_img_mode, **kwargs) + else: + if search_split and os.path.isdir(root): + root = _search_split(root, split) + ds = ImageDataset(root, reader=name, class_map=class_map, load_bytes=load_bytes, input_img_mode=input_img_mode, **kwargs) + return ds + +# File: pytorch-image-models-main/timm/data/dataset_info.py +from abc import ABC, abstractmethod +from typing import Dict, List, Optional, Union + +class DatasetInfo(ABC): + + def __init__(self): + pass + + @abstractmethod + def num_classes(self): + pass + + @abstractmethod + def label_names(self): + pass + + @abstractmethod + def label_descriptions(self, detailed: bool=False, as_dict: bool=False) -> Union[List[str], Dict[str, str]]: + pass + + @abstractmethod + def index_to_label_name(self, index) -> str: + pass + + @abstractmethod + def index_to_description(self, index: int, detailed: bool=False) -> str: + pass + + @abstractmethod + def label_name_to_description(self, label: str, detailed: bool=False) -> str: + pass + +class CustomDatasetInfo(DatasetInfo): + + def __init__(self, label_names: Union[List[str], Dict[int, str]], label_descriptions: Optional[Dict[str, str]]=None): + super().__init__() + assert len(label_names) > 0 + self._label_names = label_names + self._label_descriptions = label_descriptions + if self._label_descriptions is not None: + assert isinstance(self._label_descriptions, dict) + for n in self._label_names: + assert n in self._label_descriptions + + def num_classes(self): + return len(self._label_names) + + def label_names(self): + return self._label_names + + def label_descriptions(self, detailed: bool=False, as_dict: bool=False) -> Union[List[str], Dict[str, str]]: + return self._label_descriptions + + def label_name_to_description(self, label: str, detailed: bool=False) -> str: + if self._label_descriptions: + return self._label_descriptions[label] + return label + + def index_to_label_name(self, index) -> str: + assert 0 <= index < len(self._label_names) + return self._label_names[index] + + def index_to_description(self, index: int, detailed: bool=False) -> str: + label = self.index_to_label_name(index) + return self.label_name_to_description(label, detailed=detailed) + +# File: pytorch-image-models-main/timm/data/distributed_sampler.py +import math +import torch +from torch.utils.data import Sampler +import torch.distributed as dist + +class OrderedDistributedSampler(Sampler): + + def __init__(self, dataset, num_replicas=None, rank=None): + if num_replicas is None: + if not dist.is_available(): + raise RuntimeError('Requires distributed package to be available') + num_replicas = dist.get_world_size() + if rank is None: + if not dist.is_available(): + raise RuntimeError('Requires distributed package to be available') + rank = dist.get_rank() + self.dataset = dataset + self.num_replicas = num_replicas + self.rank = rank + self.num_samples = int(math.ceil(len(self.dataset) * 1.0 / self.num_replicas)) + self.total_size = self.num_samples * self.num_replicas + + def __iter__(self): + indices = list(range(len(self.dataset))) + indices += indices[:self.total_size - len(indices)] + assert len(indices) == self.total_size + indices = indices[self.rank:self.total_size:self.num_replicas] + assert len(indices) == self.num_samples + return iter(indices) + + def __len__(self): + return self.num_samples + +class RepeatAugSampler(Sampler): + + def __init__(self, dataset, num_replicas=None, rank=None, shuffle=True, num_repeats=3, selected_round=256, selected_ratio=0): + if num_replicas is None: + if not dist.is_available(): + raise RuntimeError('Requires distributed package to be available') + num_replicas = dist.get_world_size() + if rank is None: + if not dist.is_available(): + raise RuntimeError('Requires distributed package to be available') + rank = dist.get_rank() + self.dataset = dataset + self.num_replicas = num_replicas + self.rank = rank + self.shuffle = shuffle + self.num_repeats = num_repeats + self.epoch = 0 + self.num_samples = int(math.ceil(len(self.dataset) * num_repeats / self.num_replicas)) + self.total_size = self.num_samples * self.num_replicas + selected_ratio = selected_ratio or num_replicas + if selected_round: + self.num_selected_samples = int(math.floor(len(self.dataset) // selected_round * selected_round / selected_ratio)) + else: + self.num_selected_samples = int(math.ceil(len(self.dataset) / selected_ratio)) + + def __iter__(self): + g = torch.Generator() + g.manual_seed(self.epoch) + if self.shuffle: + indices = torch.randperm(len(self.dataset), generator=g) + else: + indices = torch.arange(start=0, end=len(self.dataset)) + if isinstance(self.num_repeats, float) and (not self.num_repeats.is_integer()): + repeat_size = math.ceil(self.num_repeats * len(self.dataset)) + indices = indices[torch.tensor([int(i // self.num_repeats) for i in range(repeat_size)])] + else: + indices = torch.repeat_interleave(indices, repeats=int(self.num_repeats), dim=0) + indices = indices.tolist() + padding_size = self.total_size - len(indices) + if padding_size > 0: + indices += indices[:padding_size] + assert len(indices) == self.total_size + indices = indices[self.rank:self.total_size:self.num_replicas] + assert len(indices) == self.num_samples + return iter(indices[:self.num_selected_samples]) + + def __len__(self): + return self.num_selected_samples + + def set_epoch(self, epoch): + self.epoch = epoch + +# File: pytorch-image-models-main/timm/data/imagenet_info.py +import csv +import os +import pkgutil +import re +from typing import Dict, List, Optional, Union +from .dataset_info import DatasetInfo +_NUM_CLASSES_TO_SUBSET = {1000: 'imagenet-1k', 11221: 'imagenet-21k-miil', 11821: 'imagenet-12k', 21841: 'imagenet-22k', 21842: 'imagenet-22k-ms', 21843: 'imagenet-21k-goog'} +_SUBSETS = {'imagenet1k': 'imagenet_synsets.txt', 'imagenet12k': 'imagenet12k_synsets.txt', 'imagenet22k': 'imagenet22k_synsets.txt', 'imagenet21k': 'imagenet21k_goog_synsets.txt', 'imagenet21kgoog': 'imagenet21k_goog_synsets.txt', 'imagenet21kmiil': 'imagenet21k_miil_synsets.txt', 'imagenet22kms': 'imagenet22k_ms_synsets.txt'} +_LEMMA_FILE = 'imagenet_synset_to_lemma.txt' +_DEFINITION_FILE = 'imagenet_synset_to_definition.txt' + +def infer_imagenet_subset(model_or_cfg) -> Optional[str]: + if isinstance(model_or_cfg, dict): + num_classes = model_or_cfg.get('num_classes', None) + else: + num_classes = getattr(model_or_cfg, 'num_classes', None) + if not num_classes: + pretrained_cfg = getattr(model_or_cfg, 'pretrained_cfg', {}) + num_classes = pretrained_cfg.get('num_classes', None) + if not num_classes or num_classes not in _NUM_CLASSES_TO_SUBSET: + return None + return _NUM_CLASSES_TO_SUBSET[num_classes] + +class ImageNetInfo(DatasetInfo): + + def __init__(self, subset: str='imagenet-1k'): + super().__init__() + subset = re.sub('[-_\\s]', '', subset.lower()) + assert subset in _SUBSETS, f'Unknown imagenet subset {subset}.' + synset_file = _SUBSETS[subset] + synset_data = pkgutil.get_data(__name__, os.path.join('_info', synset_file)) + self._synsets = synset_data.decode('utf-8').splitlines() + lemma_data = pkgutil.get_data(__name__, os.path.join('_info', _LEMMA_FILE)) + reader = csv.reader(lemma_data.decode('utf-8').splitlines(), delimiter='\t') + self._lemmas = dict(reader) + definition_data = pkgutil.get_data(__name__, os.path.join('_info', _DEFINITION_FILE)) + reader = csv.reader(definition_data.decode('utf-8').splitlines(), delimiter='\t') + self._definitions = dict(reader) + + def num_classes(self): + return len(self._synsets) + + def label_names(self): + return self._synsets + + def label_descriptions(self, detailed: bool=False, as_dict: bool=False) -> Union[List[str], Dict[str, str]]: + if as_dict: + return {label: self.label_name_to_description(label, detailed=detailed) for label in self._synsets} + else: + return [self.label_name_to_description(label, detailed=detailed) for label in self._synsets] + + def index_to_label_name(self, index) -> str: + assert 0 <= index < len(self._synsets), f'Index ({index}) out of range for dataset with {len(self._synsets)} classes.' + return self._synsets[index] + + def index_to_description(self, index: int, detailed: bool=False) -> str: + label = self.index_to_label_name(index) + return self.label_name_to_description(label, detailed=detailed) + + def label_name_to_description(self, label: str, detailed: bool=False) -> str: + if detailed: + description = f'{self._lemmas[label]}: {self._definitions[label]}' + else: + description = f'{self._lemmas[label]}' + return description + +# File: pytorch-image-models-main/timm/data/loader.py +"""""" +import logging +import random +from contextlib import suppress +from functools import partial +from itertools import repeat +from typing import Callable, Optional, Tuple, Union +import torch +import torch.utils.data +import numpy as np +from .constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from .dataset import IterableImageDataset, ImageDataset +from .distributed_sampler import OrderedDistributedSampler, RepeatAugSampler +from .random_erasing import RandomErasing +from .mixup import FastCollateMixup +from .transforms_factory import create_transform +_logger = logging.getLogger(__name__) + +def fast_collate(batch): + assert isinstance(batch[0], tuple) + batch_size = len(batch) + if isinstance(batch[0][0], tuple): + inner_tuple_size = len(batch[0][0]) + flattened_batch_size = batch_size * inner_tuple_size + targets = torch.zeros(flattened_batch_size, dtype=torch.int64) + tensor = torch.zeros((flattened_batch_size, *batch[0][0][0].shape), dtype=torch.uint8) + for i in range(batch_size): + assert len(batch[i][0]) == inner_tuple_size + for j in range(inner_tuple_size): + targets[i + j * batch_size] = batch[i][1] + tensor[i + j * batch_size] += torch.from_numpy(batch[i][0][j]) + return (tensor, targets) + elif isinstance(batch[0][0], np.ndarray): + targets = torch.tensor([b[1] for b in batch], dtype=torch.int64) + assert len(targets) == batch_size + tensor = torch.zeros((batch_size, *batch[0][0].shape), dtype=torch.uint8) + for i in range(batch_size): + tensor[i] += torch.from_numpy(batch[i][0]) + return (tensor, targets) + elif isinstance(batch[0][0], torch.Tensor): + targets = torch.tensor([b[1] for b in batch], dtype=torch.int64) + assert len(targets) == batch_size + tensor = torch.zeros((batch_size, *batch[0][0].shape), dtype=torch.uint8) + for i in range(batch_size): + tensor[i].copy_(batch[i][0]) + return (tensor, targets) + else: + assert False + +def adapt_to_chs(x, n): + if not isinstance(x, (tuple, list)): + x = tuple(repeat(x, n)) + elif len(x) != n: + x_mean = np.mean(x).item() + x = (x_mean,) * n + _logger.warning(f'Pretrained mean/std different shape than model, using avg value {x}.') + else: + assert len(x) == n, 'normalization stats must match image channels' + return x + +class PrefetchLoader: + + def __init__(self, loader, mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, channels=3, device=torch.device('cuda'), img_dtype=torch.float32, fp16=False, re_prob=0.0, re_mode='const', re_count=1, re_num_splits=0): + mean = adapt_to_chs(mean, channels) + std = adapt_to_chs(std, channels) + normalization_shape = (1, channels, 1, 1) + self.loader = loader + self.device = device + if fp16: + img_dtype = torch.float16 + self.img_dtype = img_dtype + self.mean = torch.tensor([x * 255 for x in mean], device=device, dtype=img_dtype).view(normalization_shape) + self.std = torch.tensor([x * 255 for x in std], device=device, dtype=img_dtype).view(normalization_shape) + if re_prob > 0.0: + self.random_erasing = RandomErasing(probability=re_prob, mode=re_mode, max_count=re_count, num_splits=re_num_splits, device=device) + else: + self.random_erasing = None + self.is_cuda = torch.cuda.is_available() and device.type == 'cuda' + + def __iter__(self): + first = True + if self.is_cuda: + stream = torch.cuda.Stream() + stream_context = partial(torch.cuda.stream, stream=stream) + else: + stream = None + stream_context = suppress + for (next_input, next_target) in self.loader: + with stream_context(): + next_input = next_input.to(device=self.device, non_blocking=True) + next_target = next_target.to(device=self.device, non_blocking=True) + next_input = next_input.to(self.img_dtype).sub_(self.mean).div_(self.std) + if self.random_erasing is not None: + next_input = self.random_erasing(next_input) + if not first: + yield (input, target) + else: + first = False + if stream is not None: + torch.cuda.current_stream().wait_stream(stream) + input = next_input + target = next_target + yield (input, target) + + def __len__(self): + return len(self.loader) + + @property + def sampler(self): + return self.loader.sampler + + @property + def dataset(self): + return self.loader.dataset + + @property + def mixup_enabled(self): + if isinstance(self.loader.collate_fn, FastCollateMixup): + return self.loader.collate_fn.mixup_enabled + else: + return False + + @mixup_enabled.setter + def mixup_enabled(self, x): + if isinstance(self.loader.collate_fn, FastCollateMixup): + self.loader.collate_fn.mixup_enabled = x + +def _worker_init(worker_id, worker_seeding='all'): + worker_info = torch.utils.data.get_worker_info() + assert worker_info.id == worker_id + if isinstance(worker_seeding, Callable): + seed = worker_seeding(worker_info) + random.seed(seed) + torch.manual_seed(seed) + np.random.seed(seed % (2 ** 32 - 1)) + else: + assert worker_seeding in ('all', 'part') + if worker_seeding == 'all': + np.random.seed(worker_info.seed % (2 ** 32 - 1)) + +def create_loader(dataset: Union[ImageDataset, IterableImageDataset], input_size: Union[int, Tuple[int, int], Tuple[int, int, int]], batch_size: int, is_training: bool=False, no_aug: bool=False, re_prob: float=0.0, re_mode: str='const', re_count: int=1, re_split: bool=False, train_crop_mode: Optional[str]=None, scale: Optional[Tuple[float, float]]=None, ratio: Optional[Tuple[float, float]]=None, hflip: float=0.5, vflip: float=0.0, color_jitter: float=0.4, color_jitter_prob: Optional[float]=None, grayscale_prob: float=0.0, gaussian_blur_prob: float=0.0, auto_augment: Optional[str]=None, num_aug_repeats: int=0, num_aug_splits: int=0, interpolation: str='bilinear', mean: Tuple[float, ...]=IMAGENET_DEFAULT_MEAN, std: Tuple[float, ...]=IMAGENET_DEFAULT_STD, num_workers: int=1, distributed: bool=False, crop_pct: Optional[float]=None, crop_mode: Optional[str]=None, crop_border_pixels: Optional[int]=None, collate_fn: Optional[Callable]=None, pin_memory: bool=False, fp16: bool=False, img_dtype: torch.dtype=torch.float32, device: torch.device=torch.device('cuda'), use_prefetcher: bool=True, use_multi_epochs_loader: bool=False, persistent_workers: bool=True, worker_seeding: str='all', tf_preprocessing: bool=False): + re_num_splits = 0 + if re_split: + re_num_splits = num_aug_splits or 2 + dataset.transform = create_transform(input_size, is_training=is_training, no_aug=no_aug, train_crop_mode=train_crop_mode, scale=scale, ratio=ratio, hflip=hflip, vflip=vflip, color_jitter=color_jitter, color_jitter_prob=color_jitter_prob, grayscale_prob=grayscale_prob, gaussian_blur_prob=gaussian_blur_prob, auto_augment=auto_augment, interpolation=interpolation, mean=mean, std=std, crop_pct=crop_pct, crop_mode=crop_mode, crop_border_pixels=crop_border_pixels, re_prob=re_prob, re_mode=re_mode, re_count=re_count, re_num_splits=re_num_splits, tf_preprocessing=tf_preprocessing, use_prefetcher=use_prefetcher, separate=num_aug_splits > 0) + if isinstance(dataset, IterableImageDataset): + dataset.set_loader_cfg(num_workers=num_workers) + sampler = None + if distributed and (not isinstance(dataset, torch.utils.data.IterableDataset)): + if is_training: + if num_aug_repeats: + sampler = RepeatAugSampler(dataset, num_repeats=num_aug_repeats) + else: + sampler = torch.utils.data.distributed.DistributedSampler(dataset) + else: + sampler = OrderedDistributedSampler(dataset) + else: + assert num_aug_repeats == 0, 'RepeatAugment not currently supported in non-distributed or IterableDataset use' + if collate_fn is None: + collate_fn = fast_collate if use_prefetcher else torch.utils.data.dataloader.default_collate + loader_class = torch.utils.data.DataLoader + if use_multi_epochs_loader: + loader_class = MultiEpochsDataLoader + loader_args = dict(batch_size=batch_size, shuffle=not isinstance(dataset, torch.utils.data.IterableDataset) and sampler is None and is_training, num_workers=num_workers, sampler=sampler, collate_fn=collate_fn, pin_memory=pin_memory, drop_last=is_training, worker_init_fn=partial(_worker_init, worker_seeding=worker_seeding), persistent_workers=persistent_workers) + try: + loader = loader_class(dataset, **loader_args) + except TypeError as e: + loader_args.pop('persistent_workers') + loader = loader_class(dataset, **loader_args) + if use_prefetcher: + prefetch_re_prob = re_prob if is_training and (not no_aug) else 0.0 + loader = PrefetchLoader(loader, mean=mean, std=std, channels=input_size[0], device=device, fp16=fp16, img_dtype=img_dtype, re_prob=prefetch_re_prob, re_mode=re_mode, re_count=re_count, re_num_splits=re_num_splits) + return loader + +class MultiEpochsDataLoader(torch.utils.data.DataLoader): + + def __init__(self, *args, **kwargs): + super().__init__(*args, **kwargs) + self._DataLoader__initialized = False + if self.batch_sampler is None: + self.sampler = _RepeatSampler(self.sampler) + else: + self.batch_sampler = _RepeatSampler(self.batch_sampler) + self._DataLoader__initialized = True + self.iterator = super().__iter__() + + def __len__(self): + return len(self.sampler) if self.batch_sampler is None else len(self.batch_sampler.sampler) + + def __iter__(self): + for i in range(len(self)): + yield next(self.iterator) + +class _RepeatSampler(object): + + def __init__(self, sampler): + self.sampler = sampler + + def __iter__(self): + while True: + yield from iter(self.sampler) + +# File: pytorch-image-models-main/timm/data/mixup.py +"""""" +import numpy as np +import torch + +def one_hot(x, num_classes, on_value=1.0, off_value=0.0): + x = x.long().view(-1, 1) + return torch.full((x.size()[0], num_classes), off_value, device=x.device).scatter_(1, x, on_value) + +def mixup_target(target, num_classes, lam=1.0, smoothing=0.0): + off_value = smoothing / num_classes + on_value = 1.0 - smoothing + off_value + y1 = one_hot(target, num_classes, on_value=on_value, off_value=off_value) + y2 = one_hot(target.flip(0), num_classes, on_value=on_value, off_value=off_value) + return y1 * lam + y2 * (1.0 - lam) + +def rand_bbox(img_shape, lam, margin=0.0, count=None): + ratio = np.sqrt(1 - lam) + (img_h, img_w) = img_shape[-2:] + (cut_h, cut_w) = (int(img_h * ratio), int(img_w * ratio)) + (margin_y, margin_x) = (int(margin * cut_h), int(margin * cut_w)) + cy = np.random.randint(0 + margin_y, img_h - margin_y, size=count) + cx = np.random.randint(0 + margin_x, img_w - margin_x, size=count) + yl = np.clip(cy - cut_h // 2, 0, img_h) + yh = np.clip(cy + cut_h // 2, 0, img_h) + xl = np.clip(cx - cut_w // 2, 0, img_w) + xh = np.clip(cx + cut_w // 2, 0, img_w) + return (yl, yh, xl, xh) + +def rand_bbox_minmax(img_shape, minmax, count=None): + assert len(minmax) == 2 + (img_h, img_w) = img_shape[-2:] + cut_h = np.random.randint(int(img_h * minmax[0]), int(img_h * minmax[1]), size=count) + cut_w = np.random.randint(int(img_w * minmax[0]), int(img_w * minmax[1]), size=count) + yl = np.random.randint(0, img_h - cut_h, size=count) + xl = np.random.randint(0, img_w - cut_w, size=count) + yu = yl + cut_h + xu = xl + cut_w + return (yl, yu, xl, xu) + +def cutmix_bbox_and_lam(img_shape, lam, ratio_minmax=None, correct_lam=True, count=None): + if ratio_minmax is not None: + (yl, yu, xl, xu) = rand_bbox_minmax(img_shape, ratio_minmax, count=count) + else: + (yl, yu, xl, xu) = rand_bbox(img_shape, lam, count=count) + if correct_lam or ratio_minmax is not None: + bbox_area = (yu - yl) * (xu - xl) + lam = 1.0 - bbox_area / float(img_shape[-2] * img_shape[-1]) + return ((yl, yu, xl, xu), lam) + +class Mixup: + + def __init__(self, mixup_alpha=1.0, cutmix_alpha=0.0, cutmix_minmax=None, prob=1.0, switch_prob=0.5, mode='batch', correct_lam=True, label_smoothing=0.1, num_classes=1000): + self.mixup_alpha = mixup_alpha + self.cutmix_alpha = cutmix_alpha + self.cutmix_minmax = cutmix_minmax + if self.cutmix_minmax is not None: + assert len(self.cutmix_minmax) == 2 + self.cutmix_alpha = 1.0 + self.mix_prob = prob + self.switch_prob = switch_prob + self.label_smoothing = label_smoothing + self.num_classes = num_classes + self.mode = mode + self.correct_lam = correct_lam + self.mixup_enabled = True + + def _params_per_elem(self, batch_size): + lam = np.ones(batch_size, dtype=np.float32) + use_cutmix = np.zeros(batch_size, dtype=bool) + if self.mixup_enabled: + if self.mixup_alpha > 0.0 and self.cutmix_alpha > 0.0: + use_cutmix = np.random.rand(batch_size) < self.switch_prob + lam_mix = np.where(use_cutmix, np.random.beta(self.cutmix_alpha, self.cutmix_alpha, size=batch_size), np.random.beta(self.mixup_alpha, self.mixup_alpha, size=batch_size)) + elif self.mixup_alpha > 0.0: + lam_mix = np.random.beta(self.mixup_alpha, self.mixup_alpha, size=batch_size) + elif self.cutmix_alpha > 0.0: + use_cutmix = np.ones(batch_size, dtype=bool) + lam_mix = np.random.beta(self.cutmix_alpha, self.cutmix_alpha, size=batch_size) + else: + assert False, 'One of mixup_alpha > 0., cutmix_alpha > 0., cutmix_minmax not None should be true.' + lam = np.where(np.random.rand(batch_size) < self.mix_prob, lam_mix.astype(np.float32), lam) + return (lam, use_cutmix) + + def _params_per_batch(self): + lam = 1.0 + use_cutmix = False + if self.mixup_enabled and np.random.rand() < self.mix_prob: + if self.mixup_alpha > 0.0 and self.cutmix_alpha > 0.0: + use_cutmix = np.random.rand() < self.switch_prob + lam_mix = np.random.beta(self.cutmix_alpha, self.cutmix_alpha) if use_cutmix else np.random.beta(self.mixup_alpha, self.mixup_alpha) + elif self.mixup_alpha > 0.0: + lam_mix = np.random.beta(self.mixup_alpha, self.mixup_alpha) + elif self.cutmix_alpha > 0.0: + use_cutmix = True + lam_mix = np.random.beta(self.cutmix_alpha, self.cutmix_alpha) + else: + assert False, 'One of mixup_alpha > 0., cutmix_alpha > 0., cutmix_minmax not None should be true.' + lam = float(lam_mix) + return (lam, use_cutmix) + + def _mix_elem(self, x): + batch_size = len(x) + (lam_batch, use_cutmix) = self._params_per_elem(batch_size) + x_orig = x.clone() + for i in range(batch_size): + j = batch_size - i - 1 + lam = lam_batch[i] + if lam != 1.0: + if use_cutmix[i]: + ((yl, yh, xl, xh), lam) = cutmix_bbox_and_lam(x[i].shape, lam, ratio_minmax=self.cutmix_minmax, correct_lam=self.correct_lam) + x[i][:, yl:yh, xl:xh] = x_orig[j][:, yl:yh, xl:xh] + lam_batch[i] = lam + else: + x[i] = x[i] * lam + x_orig[j] * (1 - lam) + return torch.tensor(lam_batch, device=x.device, dtype=x.dtype).unsqueeze(1) + + def _mix_pair(self, x): + batch_size = len(x) + (lam_batch, use_cutmix) = self._params_per_elem(batch_size // 2) + x_orig = x.clone() + for i in range(batch_size // 2): + j = batch_size - i - 1 + lam = lam_batch[i] + if lam != 1.0: + if use_cutmix[i]: + ((yl, yh, xl, xh), lam) = cutmix_bbox_and_lam(x[i].shape, lam, ratio_minmax=self.cutmix_minmax, correct_lam=self.correct_lam) + x[i][:, yl:yh, xl:xh] = x_orig[j][:, yl:yh, xl:xh] + x[j][:, yl:yh, xl:xh] = x_orig[i][:, yl:yh, xl:xh] + lam_batch[i] = lam + else: + x[i] = x[i] * lam + x_orig[j] * (1 - lam) + x[j] = x[j] * lam + x_orig[i] * (1 - lam) + lam_batch = np.concatenate((lam_batch, lam_batch[::-1])) + return torch.tensor(lam_batch, device=x.device, dtype=x.dtype).unsqueeze(1) + + def _mix_batch(self, x): + (lam, use_cutmix) = self._params_per_batch() + if lam == 1.0: + return 1.0 + if use_cutmix: + ((yl, yh, xl, xh), lam) = cutmix_bbox_and_lam(x.shape, lam, ratio_minmax=self.cutmix_minmax, correct_lam=self.correct_lam) + x[:, :, yl:yh, xl:xh] = x.flip(0)[:, :, yl:yh, xl:xh] + else: + x_flipped = x.flip(0).mul_(1.0 - lam) + x.mul_(lam).add_(x_flipped) + return lam + + def __call__(self, x, target): + assert len(x) % 2 == 0, 'Batch size should be even when using this' + if self.mode == 'elem': + lam = self._mix_elem(x) + elif self.mode == 'pair': + lam = self._mix_pair(x) + else: + lam = self._mix_batch(x) + target = mixup_target(target, self.num_classes, lam, self.label_smoothing) + return (x, target) + +class FastCollateMixup(Mixup): + + def _mix_elem_collate(self, output, batch, half=False): + batch_size = len(batch) + num_elem = batch_size // 2 if half else batch_size + assert len(output) == num_elem + (lam_batch, use_cutmix) = self._params_per_elem(num_elem) + for i in range(num_elem): + j = batch_size - i - 1 + lam = lam_batch[i] + mixed = batch[i][0] + if lam != 1.0: + if use_cutmix[i]: + if not half: + mixed = mixed.copy() + ((yl, yh, xl, xh), lam) = cutmix_bbox_and_lam(output.shape, lam, ratio_minmax=self.cutmix_minmax, correct_lam=self.correct_lam) + mixed[:, yl:yh, xl:xh] = batch[j][0][:, yl:yh, xl:xh] + lam_batch[i] = lam + else: + mixed = mixed.astype(np.float32) * lam + batch[j][0].astype(np.float32) * (1 - lam) + np.rint(mixed, out=mixed) + output[i] += torch.from_numpy(mixed.astype(np.uint8)) + if half: + lam_batch = np.concatenate((lam_batch, np.ones(num_elem))) + return torch.tensor(lam_batch).unsqueeze(1) + + def _mix_pair_collate(self, output, batch): + batch_size = len(batch) + (lam_batch, use_cutmix) = self._params_per_elem(batch_size // 2) + for i in range(batch_size // 2): + j = batch_size - i - 1 + lam = lam_batch[i] + mixed_i = batch[i][0] + mixed_j = batch[j][0] + assert 0 <= lam <= 1.0 + if lam < 1.0: + if use_cutmix[i]: + ((yl, yh, xl, xh), lam) = cutmix_bbox_and_lam(output.shape, lam, ratio_minmax=self.cutmix_minmax, correct_lam=self.correct_lam) + patch_i = mixed_i[:, yl:yh, xl:xh].copy() + mixed_i[:, yl:yh, xl:xh] = mixed_j[:, yl:yh, xl:xh] + mixed_j[:, yl:yh, xl:xh] = patch_i + lam_batch[i] = lam + else: + mixed_temp = mixed_i.astype(np.float32) * lam + mixed_j.astype(np.float32) * (1 - lam) + mixed_j = mixed_j.astype(np.float32) * lam + mixed_i.astype(np.float32) * (1 - lam) + mixed_i = mixed_temp + np.rint(mixed_j, out=mixed_j) + np.rint(mixed_i, out=mixed_i) + output[i] += torch.from_numpy(mixed_i.astype(np.uint8)) + output[j] += torch.from_numpy(mixed_j.astype(np.uint8)) + lam_batch = np.concatenate((lam_batch, lam_batch[::-1])) + return torch.tensor(lam_batch).unsqueeze(1) + + def _mix_batch_collate(self, output, batch): + batch_size = len(batch) + (lam, use_cutmix) = self._params_per_batch() + if use_cutmix: + ((yl, yh, xl, xh), lam) = cutmix_bbox_and_lam(output.shape, lam, ratio_minmax=self.cutmix_minmax, correct_lam=self.correct_lam) + for i in range(batch_size): + j = batch_size - i - 1 + mixed = batch[i][0] + if lam != 1.0: + if use_cutmix: + mixed = mixed.copy() + mixed[:, yl:yh, xl:xh] = batch[j][0][:, yl:yh, xl:xh] + else: + mixed = mixed.astype(np.float32) * lam + batch[j][0].astype(np.float32) * (1 - lam) + np.rint(mixed, out=mixed) + output[i] += torch.from_numpy(mixed.astype(np.uint8)) + return lam + + def __call__(self, batch, _=None): + batch_size = len(batch) + assert batch_size % 2 == 0, 'Batch size should be even when using this' + half = 'half' in self.mode + if half: + batch_size //= 2 + output = torch.zeros((batch_size, *batch[0][0].shape), dtype=torch.uint8) + if self.mode == 'elem' or self.mode == 'half': + lam = self._mix_elem_collate(output, batch, half=half) + elif self.mode == 'pair': + lam = self._mix_pair_collate(output, batch) + else: + lam = self._mix_batch_collate(output, batch) + target = torch.tensor([b[1] for b in batch], dtype=torch.int64) + target = mixup_target(target, self.num_classes, lam, self.label_smoothing) + target = target[:batch_size] + return (output, target) + +# File: pytorch-image-models-main/timm/data/random_erasing.py +"""""" +import random +import math +import torch + +def _get_pixels(per_pixel, rand_color, patch_size, dtype=torch.float32, device='cuda'): + if per_pixel: + return torch.empty(patch_size, dtype=dtype, device=device).normal_() + elif rand_color: + return torch.empty((patch_size[0], 1, 1), dtype=dtype, device=device).normal_() + else: + return torch.zeros((patch_size[0], 1, 1), dtype=dtype, device=device) + +class RandomErasing: + + def __init__(self, probability=0.5, min_area=0.02, max_area=1 / 3, min_aspect=0.3, max_aspect=None, mode='const', min_count=1, max_count=None, num_splits=0, device='cuda'): + self.probability = probability + self.min_area = min_area + self.max_area = max_area + max_aspect = max_aspect or 1 / min_aspect + self.log_aspect_ratio = (math.log(min_aspect), math.log(max_aspect)) + self.min_count = min_count + self.max_count = max_count or min_count + self.num_splits = num_splits + self.mode = mode.lower() + self.rand_color = False + self.per_pixel = False + if self.mode == 'rand': + self.rand_color = True + elif self.mode == 'pixel': + self.per_pixel = True + else: + assert not self.mode or self.mode == 'const' + self.device = device + + def _erase(self, img, chan, img_h, img_w, dtype): + if random.random() > self.probability: + return + area = img_h * img_w + count = self.min_count if self.min_count == self.max_count else random.randint(self.min_count, self.max_count) + for _ in range(count): + for attempt in range(10): + target_area = random.uniform(self.min_area, self.max_area) * area / count + aspect_ratio = math.exp(random.uniform(*self.log_aspect_ratio)) + h = int(round(math.sqrt(target_area * aspect_ratio))) + w = int(round(math.sqrt(target_area / aspect_ratio))) + if w < img_w and h < img_h: + top = random.randint(0, img_h - h) + left = random.randint(0, img_w - w) + img[:, top:top + h, left:left + w] = _get_pixels(self.per_pixel, self.rand_color, (chan, h, w), dtype=dtype, device=self.device) + break + + def __call__(self, input): + if len(input.size()) == 3: + self._erase(input, *input.size(), input.dtype) + else: + (batch_size, chan, img_h, img_w) = input.size() + batch_start = batch_size // self.num_splits if self.num_splits > 1 else 0 + for i in range(batch_start, batch_size): + self._erase(input[i], chan, img_h, img_w, input.dtype) + return input + + def __repr__(self): + fs = self.__class__.__name__ + f'(p={self.probability}, mode={self.mode}' + fs += f', count=({self.min_count}, {self.max_count}))' + return fs + +# File: pytorch-image-models-main/timm/data/readers/class_map.py +import os +import pickle + +def load_class_map(map_or_filename, root=''): + if isinstance(map_or_filename, dict): + assert dict, 'class_map dict must be non-empty' + return map_or_filename + class_map_path = map_or_filename + if not os.path.exists(class_map_path): + class_map_path = os.path.join(root, class_map_path) + assert os.path.exists(class_map_path), 'Cannot locate specified class map file (%s)' % map_or_filename + class_map_ext = os.path.splitext(map_or_filename)[-1].lower() + if class_map_ext == '.txt': + with open(class_map_path) as f: + class_to_idx = {v.strip(): k for (k, v) in enumerate(f)} + elif class_map_ext == '.pkl': + with open(class_map_path, 'rb') as f: + class_to_idx = pickle.load(f) + else: + assert False, f'Unsupported class map file extension ({class_map_ext}).' + return class_to_idx + +# File: pytorch-image-models-main/timm/data/readers/img_extensions.py +from copy import deepcopy +__all__ = ['get_img_extensions', 'is_img_extension', 'set_img_extensions', 'add_img_extensions', 'del_img_extensions'] +IMG_EXTENSIONS = ('.png', '.jpg', '.jpeg') +_IMG_EXTENSIONS_SET = set(IMG_EXTENSIONS) + +def _set_extensions(extensions): + global IMG_EXTENSIONS + global _IMG_EXTENSIONS_SET + dedupe = set() + IMG_EXTENSIONS = tuple((x for x in extensions if x not in dedupe and (not dedupe.add(x)))) + _IMG_EXTENSIONS_SET = set(extensions) + +def _valid_extension(x: str): + return x and isinstance(x, str) and (len(x) >= 2) and x.startswith('.') + +def is_img_extension(ext): + return ext in _IMG_EXTENSIONS_SET + +def get_img_extensions(as_set=False): + return deepcopy(_IMG_EXTENSIONS_SET if as_set else IMG_EXTENSIONS) + +def set_img_extensions(extensions): + assert len(extensions) + for x in extensions: + assert _valid_extension(x) + _set_extensions(extensions) + +def add_img_extensions(ext): + if not isinstance(ext, (list, tuple, set)): + ext = (ext,) + for x in ext: + assert _valid_extension(x) + extensions = IMG_EXTENSIONS + tuple(ext) + _set_extensions(extensions) + +def del_img_extensions(ext): + if not isinstance(ext, (list, tuple, set)): + ext = (ext,) + extensions = tuple((x for x in IMG_EXTENSIONS if x not in ext)) + _set_extensions(extensions) + +# File: pytorch-image-models-main/timm/data/readers/reader.py +from abc import abstractmethod + +class Reader: + + def __init__(self): + pass + + @abstractmethod + def _filename(self, index, basename=False, absolute=False): + pass + + def filename(self, index, basename=False, absolute=False): + return self._filename(index, basename=basename, absolute=absolute) + + def filenames(self, basename=False, absolute=False): + return [self._filename(index, basename=basename, absolute=absolute) for index in range(len(self))] + +# File: pytorch-image-models-main/timm/data/readers/reader_factory.py +import os +from typing import Optional +from .reader_image_folder import ReaderImageFolder +from .reader_image_in_tar import ReaderImageInTar + +def create_reader(name: str, root: Optional[str]=None, split: str='train', **kwargs): + kwargs = {k: v for (k, v) in kwargs.items() if v is not None} + name = name.lower() + name = name.split('/', 1) + prefix = '' + if len(name) > 1: + prefix = name[0] + name = name[-1] + if prefix == 'hfds': + from .reader_hfds import ReaderHfds + reader = ReaderHfds(name=name, root=root, split=split, **kwargs) + elif prefix == 'hfids': + from .reader_hfids import ReaderHfids + reader = ReaderHfids(name=name, root=root, split=split, **kwargs) + elif prefix == 'tfds': + from .reader_tfds import ReaderTfds + reader = ReaderTfds(name=name, root=root, split=split, **kwargs) + elif prefix == 'wds': + from .reader_wds import ReaderWds + kwargs.pop('download', False) + reader = ReaderWds(root=root, name=name, split=split, **kwargs) + else: + assert os.path.exists(root) + if os.path.isfile(root) and os.path.splitext(root)[1] == '.tar': + reader = ReaderImageInTar(root, **kwargs) + else: + reader = ReaderImageFolder(root, **kwargs) + return reader + +# File: pytorch-image-models-main/timm/data/readers/reader_hfds.py +"""""" +import io +import math +from typing import Optional +import torch +import torch.distributed as dist +from PIL import Image +try: + import datasets +except ImportError as e: + print('Please install Hugging Face datasets package `pip install datasets`.') + raise e +from .class_map import load_class_map +from .reader import Reader + +def get_class_labels(info, label_key='label'): + if 'label' not in info.features: + return {} + class_label = info.features[label_key] + class_to_idx = {n: class_label.str2int(n) for n in class_label.names} + return class_to_idx + +class ReaderHfds(Reader): + + def __init__(self, name: str, root: Optional[str]=None, split: str='train', class_map: dict=None, input_key: str='image', target_key: str='label', download: bool=False): + super().__init__() + self.root = root + self.split = split + self.dataset = datasets.load_dataset(name, split=split, cache_dir=self.root) + self.dataset = self.dataset.cast_column(input_key, datasets.Image(decode=False)) + self.image_key = input_key + self.label_key = target_key + self.remap_class = False + if class_map: + self.class_to_idx = load_class_map(class_map) + self.remap_class = True + else: + self.class_to_idx = get_class_labels(self.dataset.info, self.label_key) + self.split_info = self.dataset.info.splits[split] + self.num_samples = self.split_info.num_examples + + def __getitem__(self, index): + item = self.dataset[index] + image = item[self.image_key] + if 'bytes' in image and image['bytes']: + image = io.BytesIO(image['bytes']) + else: + assert 'path' in image and image['path'] + image = open(image['path'], 'rb') + label = item[self.label_key] + if self.remap_class: + label = self.class_to_idx[label] + return (image, label) + + def __len__(self): + return len(self.dataset) + + def _filename(self, index, basename=False, absolute=False): + item = self.dataset[index] + return item[self.image_key]['path'] + +# File: pytorch-image-models-main/timm/data/readers/reader_hfids.py +"""""" +import math +import os +from itertools import repeat, chain +from typing import Optional +import torch +import torch.distributed as dist +from PIL import Image +try: + import datasets + from datasets.distributed import split_dataset_by_node + from datasets.splits import SplitInfo +except ImportError as e: + print('Please install Hugging Face datasets package `pip install datasets`.') + raise e +from .class_map import load_class_map +from .reader import Reader +from .shared_count import SharedCount +SHUFFLE_SIZE = int(os.environ.get('HFIDS_SHUFFLE_SIZE', 4096)) + +class ReaderHfids(Reader): + + def __init__(self, name: str, root: Optional[str]=None, split: str='train', is_training: bool=False, batch_size: int=1, download: bool=False, repeats: int=0, seed: int=42, class_map: Optional[dict]=None, input_key: str='image', input_img_mode: str='RGB', target_key: str='label', target_img_mode: str='', shuffle_size: Optional[int]=None, num_samples: Optional[int]=None): + super().__init__() + self.root = root + self.split = split + self.is_training = is_training + self.batch_size = batch_size + self.download = download + self.repeats = repeats + self.common_seed = seed + self.shuffle_size = shuffle_size or SHUFFLE_SIZE + self.input_key = input_key + self.input_img_mode = input_img_mode + self.target_key = target_key + self.target_img_mode = target_img_mode + self.builder = datasets.load_dataset_builder(name, cache_dir=root) + if download: + self.builder.download_and_prepare() + split_info: Optional[SplitInfo] = None + if self.builder.info.splits and split in self.builder.info.splits: + if isinstance(self.builder.info.splits[split], SplitInfo): + split_info: Optional[SplitInfo] = self.builder.info.splits[split] + if num_samples: + self.num_samples = num_samples + elif split_info and split_info.num_examples: + self.num_samples = split_info.num_examples + else: + raise ValueError('Dataset length is unknown, please pass `num_samples` explicitely. The number of steps needs to be known in advance for the learning rate scheduler.') + self.remap_class = False + if class_map: + self.class_to_idx = load_class_map(class_map) + self.remap_class = True + else: + self.class_to_idx = {} + self.dist_rank = 0 + self.dist_num_replicas = 1 + if dist.is_available() and dist.is_initialized() and (dist.get_world_size() > 1): + self.dist_rank = dist.get_rank() + self.dist_num_replicas = dist.get_world_size() + self.worker_info = None + self.worker_id = 0 + self.num_workers = 1 + self.global_worker_id = 0 + self.global_num_workers = 1 + self.ds: Optional[datasets.IterableDataset] = None + self.epoch = SharedCount() + + def set_epoch(self, count): + self.epoch.value = count + + def set_loader_cfg(self, num_workers: Optional[int]=None): + if self.ds is not None: + return + if num_workers is not None: + self.num_workers = num_workers + self.global_num_workers = self.dist_num_replicas * self.num_workers + + def _lazy_init(self): + if self.worker_info is None: + worker_info = torch.utils.data.get_worker_info() + if worker_info is not None: + self.worker_info = worker_info + self.worker_id = worker_info.id + self.num_workers = worker_info.num_workers + self.global_num_workers = self.dist_num_replicas * self.num_workers + self.global_worker_id = self.dist_rank * self.num_workers + self.worker_id + if self.download: + dataset = self.builder.as_dataset(split=self.split) + ds = dataset.to_iterable_dataset(num_shards=self.global_num_workers) + else: + ds = self.builder.as_streaming_dataset(split=self.split) + if self.is_training: + ds = ds.shuffle(seed=self.common_seed, buffer_size=self.shuffle_size) + self.ds = split_dataset_by_node(ds, rank=self.dist_rank, world_size=self.dist_num_replicas) + + def _num_samples_per_worker(self): + num_worker_samples = max(1, self.repeats) * self.num_samples / max(self.global_num_workers, self.dist_num_replicas) + if self.is_training or self.dist_num_replicas > 1: + num_worker_samples = math.ceil(num_worker_samples) + if self.is_training and self.batch_size is not None: + num_worker_samples = math.ceil(num_worker_samples / self.batch_size) * self.batch_size + return int(num_worker_samples) + + def __iter__(self): + if self.ds is None: + self._lazy_init() + self.ds.set_epoch(self.epoch.value) + target_sample_count = self._num_samples_per_worker() + sample_count = 0 + if self.is_training: + ds_iter = chain.from_iterable(repeat(self.ds)) + else: + ds_iter = iter(self.ds) + for sample in ds_iter: + input_data: Image.Image = sample[self.input_key] + if self.input_img_mode and input_data.mode != self.input_img_mode: + input_data = input_data.convert(self.input_img_mode) + target_data = sample[self.target_key] + if self.target_img_mode: + assert isinstance(target_data, Image.Image), 'target_img_mode is specified but target is not an image' + if target_data.mode != self.target_img_mode: + target_data = target_data.convert(self.target_img_mode) + elif self.remap_class: + target_data = self.class_to_idx[target_data] + yield (input_data, target_data) + sample_count += 1 + if self.is_training and sample_count >= target_sample_count: + break + + def __len__(self): + num_samples = self._num_samples_per_worker() * self.num_workers + return num_samples + + def _filename(self, index, basename=False, absolute=False): + assert False, 'Not supported' + + def filenames(self, basename=False, absolute=False): + if self.ds is None: + self._lazy_init() + names = [] + for sample in self.ds: + if 'file_name' in sample: + name = sample['file_name'] + elif 'filename' in sample: + name = sample['filename'] + elif 'id' in sample: + name = sample['id'] + elif 'image_id' in sample: + name = sample['image_id'] + else: + assert False, 'No supported name field present' + names.append(name) + return names + +# File: pytorch-image-models-main/timm/data/readers/reader_image_folder.py +"""""" +import os +from typing import Dict, List, Optional, Set, Tuple, Union +from timm.utils.misc import natural_key +from .class_map import load_class_map +from .img_extensions import get_img_extensions +from .reader import Reader + +def find_images_and_targets(folder: str, types: Optional[Union[List, Tuple, Set]]=None, class_to_idx: Optional[Dict]=None, leaf_name_only: bool=True, sort: bool=True): + types = get_img_extensions(as_set=True) if not types else set(types) + labels = [] + filenames = [] + for (root, subdirs, files) in os.walk(folder, topdown=False, followlinks=True): + rel_path = os.path.relpath(root, folder) if root != folder else '' + label = os.path.basename(rel_path) if leaf_name_only else rel_path.replace(os.path.sep, '_') + for f in files: + (base, ext) = os.path.splitext(f) + if ext.lower() in types: + filenames.append(os.path.join(root, f)) + labels.append(label) + if class_to_idx is None: + unique_labels = set(labels) + sorted_labels = list(sorted(unique_labels, key=natural_key)) + class_to_idx = {c: idx for (idx, c) in enumerate(sorted_labels)} + images_and_targets = [(f, class_to_idx[l]) for (f, l) in zip(filenames, labels) if l in class_to_idx] + if sort: + images_and_targets = sorted(images_and_targets, key=lambda k: natural_key(k[0])) + return (images_and_targets, class_to_idx) + +class ReaderImageFolder(Reader): + + def __init__(self, root, class_map='', input_key=None): + super().__init__() + self.root = root + class_to_idx = None + if class_map: + class_to_idx = load_class_map(class_map, root) + find_types = None + if input_key: + find_types = input_key.split(';') + (self.samples, self.class_to_idx) = find_images_and_targets(root, class_to_idx=class_to_idx, types=find_types) + if len(self.samples) == 0: + raise RuntimeError(f"Found 0 images in subfolders of {root}. Supported image extensions are {', '.join(get_img_extensions())}") + + def __getitem__(self, index): + (path, target) = self.samples[index] + return (open(path, 'rb'), target) + + def __len__(self): + return len(self.samples) + + def _filename(self, index, basename=False, absolute=False): + filename = self.samples[index][0] + if basename: + filename = os.path.basename(filename) + elif not absolute: + filename = os.path.relpath(filename, self.root) + return filename + +# File: pytorch-image-models-main/timm/data/readers/reader_image_in_tar.py +"""""" +import logging +import os +import pickle +import tarfile +from glob import glob +from typing import List, Tuple, Dict, Set, Optional, Union +import numpy as np +from timm.utils.misc import natural_key +from .class_map import load_class_map +from .img_extensions import get_img_extensions +from .reader import Reader +_logger = logging.getLogger(__name__) +CACHE_FILENAME_SUFFIX = '_tarinfos.pickle' + +class TarState: + + def __init__(self, tf: tarfile.TarFile=None, ti: tarfile.TarInfo=None): + self.tf: tarfile.TarFile = tf + self.ti: tarfile.TarInfo = ti + self.children: Dict[str, TarState] = {} + + def reset(self): + self.tf = None + +def _extract_tarinfo(tf: tarfile.TarFile, parent_info: Dict, extensions: Set[str]): + sample_count = 0 + for (i, ti) in enumerate(tf): + if not ti.isfile(): + continue + (dirname, basename) = os.path.split(ti.path) + (name, ext) = os.path.splitext(basename) + ext = ext.lower() + if ext == '.tar': + with tarfile.open(fileobj=tf.extractfile(ti), mode='r|') as ctf: + child_info = dict(name=ti.name, path=os.path.join(parent_info['path'], name), ti=ti, children=[], samples=[]) + sample_count += _extract_tarinfo(ctf, child_info, extensions=extensions) + _logger.debug(f"{i}/?. Extracted child tarinfos from {ti.name}. {len(child_info['samples'])} images.") + parent_info['children'].append(child_info) + elif ext in extensions: + parent_info['samples'].append(ti) + sample_count += 1 + return sample_count + +def extract_tarinfos(root, class_name_to_idx: Optional[Dict]=None, cache_tarinfo: Optional[bool]=None, extensions: Optional[Union[List, Tuple, Set]]=None, sort: bool=True): + extensions = get_img_extensions(as_set=True) if not extensions else set(extensions) + root_is_tar = False + if os.path.isfile(root): + assert os.path.splitext(root)[-1].lower() == '.tar' + tar_filenames = [root] + (root, root_name) = os.path.split(root) + root_name = os.path.splitext(root_name)[0] + root_is_tar = True + else: + root_name = root.strip(os.path.sep).split(os.path.sep)[-1] + tar_filenames = glob(os.path.join(root, '*.tar'), recursive=True) + num_tars = len(tar_filenames) + tar_bytes = sum([os.path.getsize(f) for f in tar_filenames]) + assert num_tars, f'No .tar files found at specified path ({root}).' + _logger.info(f'Scanning {tar_bytes / 1024 ** 2:.2f}MB of tar files...') + info = dict(tartrees=[]) + cache_path = '' + if cache_tarinfo is None: + cache_tarinfo = True if tar_bytes > 10 * 1024 ** 3 else False + if cache_tarinfo: + cache_filename = '_' + root_name + CACHE_FILENAME_SUFFIX + cache_path = os.path.join(root, cache_filename) + if os.path.exists(cache_path): + _logger.info(f'Reading tar info from cache file {cache_path}.') + with open(cache_path, 'rb') as pf: + info = pickle.load(pf) + assert len(info['tartrees']) == num_tars, "Cached tartree len doesn't match number of tarfiles" + else: + for (i, fn) in enumerate(tar_filenames): + path = '' if root_is_tar else os.path.splitext(os.path.basename(fn))[0] + with tarfile.open(fn, mode='r|') as tf: + parent_info = dict(name=os.path.relpath(fn, root), path=path, ti=None, children=[], samples=[]) + num_samples = _extract_tarinfo(tf, parent_info, extensions=extensions) + num_children = len(parent_info['children']) + _logger.debug(f'{i}/{num_tars}. Extracted tarinfos from {fn}. {num_children} children, {num_samples} samples.') + info['tartrees'].append(parent_info) + if cache_path: + _logger.info(f'Writing tar info to cache file {cache_path}.') + with open(cache_path, 'wb') as pf: + pickle.dump(info, pf) + samples = [] + labels = [] + build_class_map = False + if class_name_to_idx is None: + build_class_map = True + tarfiles = [] + + def _label_from_paths(*path, leaf_only=True): + path = os.path.join(*path).strip(os.path.sep) + return path.split(os.path.sep)[-1] if leaf_only else path.replace(os.path.sep, '_') + + def _add_samples(info, fn): + added = 0 + for s in info['samples']: + label = _label_from_paths(info['path'], os.path.dirname(s.path)) + if not build_class_map and label not in class_name_to_idx: + continue + samples.append((s, fn, info['ti'])) + labels.append(label) + added += 1 + return added + _logger.info(f'Collecting samples and building tar states.') + for parent_info in info['tartrees']: + tar_name = None if root_is_tar else parent_info['name'] + tar_state = TarState() + parent_added = 0 + for child_info in parent_info['children']: + child_added = _add_samples(child_info, fn=tar_name) + if child_added: + tar_state.children[child_info['name']] = TarState(ti=child_info['ti']) + parent_added += child_added + parent_added += _add_samples(parent_info, fn=tar_name) + if parent_added: + tarfiles.append((tar_name, tar_state)) + del info + if build_class_map: + sorted_labels = list(sorted(set(labels), key=natural_key)) + class_name_to_idx = {c: idx for (idx, c) in enumerate(sorted_labels)} + _logger.info(f'Mapping targets and sorting samples.') + samples_and_targets = [(s, class_name_to_idx[l]) for (s, l) in zip(samples, labels) if l in class_name_to_idx] + if sort: + samples_and_targets = sorted(samples_and_targets, key=lambda k: natural_key(k[0][0].path)) + (samples, targets) = zip(*samples_and_targets) + samples = np.array(samples) + targets = np.array(targets) + _logger.info(f'Finished processing {len(samples)} samples across {len(tarfiles)} tar files.') + return (samples, targets, class_name_to_idx, tarfiles) + +class ReaderImageInTar(Reader): + + def __init__(self, root, class_map='', cache_tarfiles=True, cache_tarinfo=None): + super().__init__() + class_name_to_idx = None + if class_map: + class_name_to_idx = load_class_map(class_map, root) + self.root = root + (self.samples, self.targets, self.class_name_to_idx, tarfiles) = extract_tarinfos(self.root, class_name_to_idx=class_name_to_idx, cache_tarinfo=cache_tarinfo) + self.class_idx_to_name = {v: k for (k, v) in self.class_name_to_idx.items()} + if len(tarfiles) == 1 and tarfiles[0][0] is None: + self.root_is_tar = True + self.tar_state = tarfiles[0][1] + else: + self.root_is_tar = False + self.tar_state = dict(tarfiles) + self.cache_tarfiles = cache_tarfiles + + def __len__(self): + return len(self.samples) + + def __getitem__(self, index): + sample = self.samples[index] + target = self.targets[index] + (sample_ti, parent_fn, child_ti) = sample + parent_abs = os.path.join(self.root, parent_fn) if parent_fn else self.root + tf = None + cache_state = None + if self.cache_tarfiles: + cache_state = self.tar_state if self.root_is_tar else self.tar_state[parent_fn] + tf = cache_state.tf + if tf is None: + tf = tarfile.open(parent_abs) + if self.cache_tarfiles: + cache_state.tf = tf + if child_ti is not None: + ctf = cache_state.children[child_ti.name].tf if self.cache_tarfiles else None + if ctf is None: + ctf = tarfile.open(fileobj=tf.extractfile(child_ti)) + if self.cache_tarfiles: + cache_state.children[child_ti.name].tf = ctf + tf = ctf + return (tf.extractfile(sample_ti), target) + + def _filename(self, index, basename=False, absolute=False): + filename = self.samples[index][0].name + if basename: + filename = os.path.basename(filename) + return filename + +# File: pytorch-image-models-main/timm/data/readers/reader_image_tar.py +"""""" +import os +import tarfile +from timm.utils.misc import natural_key +from .class_map import load_class_map +from .img_extensions import get_img_extensions +from .reader import Reader + +def extract_tarinfo(tarfile, class_to_idx=None, sort=True): + extensions = get_img_extensions(as_set=True) + files = [] + labels = [] + for ti in tarfile.getmembers(): + if not ti.isfile(): + continue + (dirname, basename) = os.path.split(ti.path) + label = os.path.basename(dirname) + ext = os.path.splitext(basename)[1] + if ext.lower() in extensions: + files.append(ti) + labels.append(label) + if class_to_idx is None: + unique_labels = set(labels) + sorted_labels = list(sorted(unique_labels, key=natural_key)) + class_to_idx = {c: idx for (idx, c) in enumerate(sorted_labels)} + tarinfo_and_targets = [(f, class_to_idx[l]) for (f, l) in zip(files, labels) if l in class_to_idx] + if sort: + tarinfo_and_targets = sorted(tarinfo_and_targets, key=lambda k: natural_key(k[0].path)) + return (tarinfo_and_targets, class_to_idx) + +class ReaderImageTar(Reader): + + def __init__(self, root, class_map=''): + super().__init__() + class_to_idx = None + if class_map: + class_to_idx = load_class_map(class_map, root) + assert os.path.isfile(root) + self.root = root + with tarfile.open(root) as tf: + (self.samples, self.class_to_idx) = extract_tarinfo(tf, class_to_idx) + self.imgs = self.samples + self.tarfile = None + + def __getitem__(self, index): + if self.tarfile is None: + self.tarfile = tarfile.open(self.root) + (tarinfo, target) = self.samples[index] + fileobj = self.tarfile.extractfile(tarinfo) + return (fileobj, target) + + def __len__(self): + return len(self.samples) + + def _filename(self, index, basename=False, absolute=False): + filename = self.samples[index][0].name + if basename: + filename = os.path.basename(filename) + return filename + +# File: pytorch-image-models-main/timm/data/readers/reader_tfds.py +"""""" +import math +import os +import sys +from typing import Optional +import torch +import torch.distributed as dist +from PIL import Image +try: + import tensorflow as tf + tf.config.set_visible_devices([], 'GPU') + import tensorflow_datasets as tfds + try: + tfds.even_splits('', 1, drop_remainder=False) + has_buggy_even_splits = False + except TypeError: + print("Warning: This version of tfds doesn't have the latest even_splits impl. Please update or use tfds-nightly for better fine-grained split behaviour.") + has_buggy_even_splits = True +except ImportError as e: + print(e) + print('Please install tensorflow_datasets package `pip install tensorflow-datasets`.') + raise e +from .class_map import load_class_map +from .reader import Reader +from .shared_count import SharedCount +MAX_TP_SIZE = int(os.environ.get('TFDS_TP_SIZE', 8)) +SHUFFLE_SIZE = int(os.environ.get('TFDS_SHUFFLE_SIZE', 8192)) +PREFETCH_SIZE = int(os.environ.get('TFDS_PREFETCH_SIZE', 2048)) + +@tfds.decode.make_decoder() +def decode_example(serialized_image, feature, dct_method='INTEGER_ACCURATE', channels=3): + return tf.image.decode_jpeg(serialized_image, channels=channels, dct_method=dct_method) + +def even_split_indices(split, n, num_samples): + partitions = [round(i * num_samples / n) for i in range(n + 1)] + return [f'{split}[{partitions[i]}:{partitions[i + 1]}]' for i in range(n)] + +def get_class_labels(info): + if 'label' not in info.features: + return {} + class_label = info.features['label'] + class_to_idx = {n: class_label.str2int(n) for n in class_label.names} + return class_to_idx + +class ReaderTfds(Reader): + + def __init__(self, name, root=None, split='train', class_map=None, is_training=False, batch_size=1, download=False, repeats=0, seed=42, input_key='image', input_img_mode='RGB', target_key='label', target_img_mode='', prefetch_size=None, shuffle_size=None, max_threadpool_size=None): + super().__init__() + self.root = root + self.split = split + self.is_training = is_training + self.batch_size = batch_size + self.repeats = repeats + self.common_seed = seed + self.prefetch_size = prefetch_size or PREFETCH_SIZE + self.shuffle_size = shuffle_size or SHUFFLE_SIZE + self.max_threadpool_size = max_threadpool_size or MAX_TP_SIZE + self.input_key = input_key + self.input_img_mode = input_img_mode + self.target_key = target_key + self.target_img_mode = target_img_mode + self.builder = tfds.builder(name, data_dir=root) + if download: + self.builder.download_and_prepare() + self.remap_class = False + if class_map: + self.class_to_idx = load_class_map(class_map) + self.remap_class = True + else: + self.class_to_idx = get_class_labels(self.builder.info) if self.target_key == 'label' else {} + self.split_info = self.builder.info.splits[split] + self.num_samples = self.split_info.num_examples + self.dist_rank = 0 + self.dist_num_replicas = 1 + if dist.is_available() and dist.is_initialized() and (dist.get_world_size() > 1): + self.dist_rank = dist.get_rank() + self.dist_num_replicas = dist.get_world_size() + self.global_num_workers = 1 + self.num_workers = 1 + self.worker_info = None + self.worker_seed = 0 + self.subsplit = None + self.ds = None + self.init_count = 0 + self.epoch_count = SharedCount() + self.reinit_each_iter = self.is_training + + def set_epoch(self, count): + self.epoch_count.value = count + + def set_loader_cfg(self, num_workers: Optional[int]=None): + if self.ds is not None: + return + if num_workers is not None: + self.num_workers = num_workers + self.global_num_workers = self.dist_num_replicas * self.num_workers + + def _lazy_init(self): + worker_info = torch.utils.data.get_worker_info() + num_workers = 1 + global_worker_id = 0 + if worker_info is not None: + self.worker_info = worker_info + self.worker_seed = worker_info.seed + self.num_workers = worker_info.num_workers + self.global_num_workers = self.dist_num_replicas * self.num_workers + global_worker_id = self.dist_rank * self.num_workers + worker_info.id + '' + should_subsplit = self.global_num_workers > 1 and (self.split_info.num_shards < self.global_num_workers or not self.is_training) + if should_subsplit: + if has_buggy_even_splits: + if not isinstance(self.split_info, tfds.core.splits.SubSplitInfo): + subsplits = even_split_indices(self.split, self.global_num_workers, self.num_samples) + self.subsplit = subsplits[global_worker_id] + else: + subsplits = tfds.even_splits(self.split, self.global_num_workers) + self.subsplit = subsplits[global_worker_id] + input_context = None + if self.global_num_workers > 1 and self.subsplit is None: + input_context = tf.distribute.InputContext(num_input_pipelines=self.global_num_workers, input_pipeline_id=global_worker_id, num_replicas_in_sync=self.dist_num_replicas) + read_config = tfds.ReadConfig(shuffle_seed=self.common_seed + self.epoch_count.value, shuffle_reshuffle_each_iteration=True, input_context=input_context) + ds = self.builder.as_dataset(split=self.subsplit or self.split, shuffle_files=self.is_training, decoders=dict(image=decode_example(channels=1 if self.input_img_mode == 'L' else 3)), read_config=read_config) + options = tf.data.Options() + thread_member = 'threading' if hasattr(options, 'threading') else 'experimental_threading' + getattr(options, thread_member).private_threadpool_size = max(1, self.max_threadpool_size // self.num_workers) + getattr(options, thread_member).max_intra_op_parallelism = 1 + ds = ds.with_options(options) + if self.is_training or self.repeats > 1: + ds = ds.repeat() + if self.is_training: + ds = ds.shuffle(min(self.num_samples, self.shuffle_size) // self.global_num_workers, seed=self.worker_seed) + ds = ds.prefetch(min(self.num_samples // self.global_num_workers, self.prefetch_size)) + self.ds = tfds.as_numpy(ds) + self.init_count += 1 + + def _num_samples_per_worker(self): + num_worker_samples = max(1, self.repeats) * self.num_samples / max(self.global_num_workers, self.dist_num_replicas) + if self.is_training or self.dist_num_replicas > 1: + num_worker_samples = math.ceil(num_worker_samples) + if self.is_training: + num_worker_samples = math.ceil(num_worker_samples / self.batch_size) * self.batch_size + return int(num_worker_samples) + + def __iter__(self): + if self.ds is None or self.reinit_each_iter: + self._lazy_init() + target_sample_count = self._num_samples_per_worker() + sample_count = 0 + for sample in self.ds: + input_data = sample[self.input_key] + if self.input_img_mode: + if self.input_img_mode == 'L' and input_data.ndim == 3: + input_data = input_data[:, :, 0] + input_data = Image.fromarray(input_data, mode=self.input_img_mode) + target_data = sample[self.target_key] + if self.target_img_mode: + target_data = Image.fromarray(target_data, mode=self.target_img_mode) + elif self.remap_class: + target_data = self.class_to_idx[target_data] + yield (input_data, target_data) + sample_count += 1 + if self.is_training and sample_count >= target_sample_count: + break + if not self.is_training and self.dist_num_replicas > 1 and (self.subsplit is not None) and (0 < sample_count < target_sample_count): + while sample_count < target_sample_count: + yield (input_data, target_data) + sample_count += 1 + + def __len__(self): + num_samples = self._num_samples_per_worker() * self.num_workers + return num_samples + + def _filename(self, index, basename=False, absolute=False): + assert False, 'Not supported' + + def filenames(self, basename=False, absolute=False): + if self.ds is None: + self._lazy_init() + names = [] + for sample in self.ds: + if len(names) > self.num_samples: + break + if 'file_name' in sample: + name = sample['file_name'] + elif 'filename' in sample: + name = sample['filename'] + elif 'id' in sample: + name = sample['id'] + else: + assert False, 'No supported name field present' + names.append(name) + return names + +# File: pytorch-image-models-main/timm/data/readers/reader_wds.py +"""""" +import io +import json +import logging +import math +import os +import random +import sys +from dataclasses import dataclass +from functools import partial +from itertools import islice +from typing import Any, Callable, Dict, List, Optional, Tuple +import torch +import torch.distributed as dist +import yaml +from PIL import Image +from torch.utils.data import Dataset, IterableDataset, get_worker_info +try: + import webdataset as wds + from webdataset.filters import _shuffle, getfirst + from webdataset.shardlists import expand_urls + from webdataset.tariterators import base_plus_ext, url_opener, tar_file_expander, valid_sample +except ImportError: + wds = None + expand_urls = None +from .class_map import load_class_map +from .reader import Reader +from .shared_count import SharedCount +_logger = logging.getLogger(__name__) +SAMPLE_SHUFFLE_SIZE = int(os.environ.get('WDS_SHUFFLE_SIZE', 8192)) +SAMPLE_INITIAL_SIZE = int(os.environ.get('WDS_INITIAL_SIZE', 2048)) + +def _load_info(root, names=('_info.json', 'info.json')): + if isinstance(names, str): + names = (names,) + tried = [] + err_str = '' + for n in names: + full_path = os.path.join(root, n) + try: + tried.append(full_path) + with wds.gopen(full_path) as f: + if n.endswith('.json'): + info_dict = json.load(f) + else: + info_dict = yaml.safe_load(f) + return info_dict + except Exception as e: + err_str = str(e) + _logger.warning(f'Dataset info file not found at {tried}. Error: {err_str}. Falling back to provided split and size arg.') + return {} + +@dataclass +class SplitInfo: + num_samples: int + filenames: Tuple[str] + shard_lengths: Tuple[int] = () + alt_label: str = '' + name: str = '' + +def _parse_split_info(split: str, info: Dict): + + def _info_convert(dict_info): + return SplitInfo(num_samples=dict_info['num_samples'], filenames=tuple(dict_info['filenames']), shard_lengths=tuple(dict_info['shard_lengths']), alt_label=dict_info.get('alt_label', ''), name=dict_info['name']) + if 'tar' in split or '..' in split: + split = split.split('|') + num_samples = 0 + split_name = '' + if len(split) > 1: + num_samples = int(split[1]) + split = split[0] + if '::' not in split: + split_parts = split.split('-', 3) + split_idx = len(split_parts) - 1 + if split_idx and 'splits' in info and (split_parts[split_idx] in info['splits']): + split_name = split_parts[split_idx] + split_filenames = expand_urls(split) + if split_name: + split_info = info['splits'][split_name] + if not num_samples: + _fc = {f: c for (f, c) in zip(split_info['filenames'], split_info['shard_lengths'])} + num_samples = sum((_fc[f] for f in split_filenames)) + split_info['filenames'] = tuple(_fc.keys()) + split_info['shard_lengths'] = tuple(_fc.values()) + split_info['num_samples'] = num_samples + split_info = _info_convert(split_info) + else: + split_info = SplitInfo(name=split_name, num_samples=num_samples, filenames=split_filenames) + else: + if 'splits' not in info or split not in info['splits']: + raise RuntimeError(f"split {split} not found in info ({info.get('splits', {}).keys()})") + split = split + split_info = info['splits'][split] + split_info = _info_convert(split_info) + return split_info + +def log_and_continue(exn): + _logger.warning(f'Handling webdataset error ({repr(exn)}). Ignoring.') + if isinstance(exn, TypeError): + raise exn + return True + +def _decode(sample, image_key='jpg', image_mode='RGB', target_key='cls', alt_label=''): + if alt_label: + meta = json.loads(sample['json']) + class_label = int(meta[alt_label]) + if class_label < 0: + return None + else: + class_label = int(sample[target_key]) + img = getfirst(sample, image_key) + with io.BytesIO(img) as b: + img = Image.open(b) + img.load() + if image_mode: + img = img.convert(image_mode) + decoded = dict(jpg=img, cls=class_label, json=sample.get('json', None)) + return decoded + +def pytorch_worker_seed(): + worker_info = get_worker_info() + if worker_info is not None: + return worker_info.seed + return wds.utils.pytorch_worker_seed() +if wds is not None: + + class detshuffle2(wds.PipelineStage): + + def __init__(self, bufsize=1000, initial=100, seed=0, epoch=-1): + self.bufsize = bufsize + self.initial = initial + self.seed = seed + self.epoch = epoch + + def run(self, src): + if isinstance(self.epoch, SharedCount): + epoch = self.epoch.value + else: + self.epoch += 1 + epoch = self.epoch + if self.seed < 0: + seed = pytorch_worker_seed() + epoch + else: + seed = self.seed + epoch + rng = random.Random(seed) + return _shuffle(src, self.bufsize, self.initial, rng) +else: + detshuffle2 = None + +class ResampledShards2(IterableDataset): + + def __init__(self, urls, nshards=sys.maxsize, worker_seed=None, deterministic=True, epoch=-1): + super().__init__() + urls = wds.shardlists.expand_urls(urls) + self.urls = urls + assert isinstance(self.urls[0], str) + self.nshards = nshards + self.rng = random.Random() + self.worker_seed = pytorch_worker_seed if worker_seed is None else worker_seed + self.deterministic = deterministic + self.epoch = epoch + + def __iter__(self): + if isinstance(self.epoch, SharedCount): + epoch = self.epoch.value + else: + self.epoch += 1 + epoch = self.epoch + if self.deterministic: + self.rng = random.Random(self.worker_seed() + epoch) + for _ in range(self.nshards): + index = self.rng.randint(0, len(self.urls) - 1) + yield dict(url=self.urls[index]) + +class ReaderWds(Reader): + + def __init__(self, root: str, name: Optional[str]=None, split: str='train', is_training: bool=False, num_samples: Optional[int]=None, batch_size: int=1, repeats: int=0, seed: int=42, class_map: Optional[dict]=None, input_key: str='jpg;png;webp', input_img_mode: str='RGB', target_key: str='cls', target_img_mode: str='', filename_key: str='filename', sample_shuffle_size: Optional[int]=None, smaple_initial_size: Optional[int]=None): + super().__init__() + if wds is None: + raise RuntimeError('Please install webdataset 0.2.x package `pip install git+https://github.com/webdataset/webdataset`.') + self.root = root + self.is_training = is_training + self.batch_size = batch_size + self.repeats = repeats + self.common_seed = seed + self.shard_shuffle_size = 500 + self.sample_shuffle_size = sample_shuffle_size or SAMPLE_SHUFFLE_SIZE + self.sample_initial_size = smaple_initial_size or SAMPLE_INITIAL_SIZE + self.input_key = input_key + self.input_img_mode = input_img_mode + self.target_key = target_key + self.filename_key = filename_key + self.key_ext = '.JPEG' + self.info = _load_info(self.root) + self.split_info = _parse_split_info(split, self.info) + if num_samples is not None: + self.num_samples = num_samples + else: + self.num_samples = self.split_info.num_samples + if not self.num_samples: + raise RuntimeError(f'Invalid split definition, num_samples not specified.') + self.remap_class = False + if class_map: + self.class_to_idx = load_class_map(class_map) + self.remap_class = True + else: + self.class_to_idx = {} + self.dist_rank = 0 + self.dist_num_replicas = 1 + if dist.is_available() and dist.is_initialized() and (dist.get_world_size() > 1): + self.dist_rank = dist.get_rank() + self.dist_num_replicas = dist.get_world_size() + self.worker_info = None + self.worker_id = 0 + self.worker_seed = seed + self.num_workers = 1 + self.global_worker_id = 0 + self.global_num_workers = 1 + self.init_count = 0 + self.epoch_count = SharedCount() + self.ds = None + + def set_epoch(self, count): + self.epoch_count.value = count + + def set_loader_cfg(self, num_workers: Optional[int]=None): + if self.ds is not None: + return + if num_workers is not None: + self.num_workers = num_workers + self.global_num_workers = self.dist_num_replicas * self.num_workers + + def _lazy_init(self): + if self.worker_info is None: + worker_info = torch.utils.data.get_worker_info() + if worker_info is not None: + self.worker_info = worker_info + self.worker_id = worker_info.id + self.worker_seed = worker_info.seed + self.num_workers = worker_info.num_workers + self.global_num_workers = self.dist_num_replicas * self.num_workers + self.global_worker_id = self.dist_rank * self.num_workers + self.worker_id + abs_shard_filenames = [os.path.join(self.root, f) for f in self.split_info.filenames] + pipeline = [wds.SimpleShardList(abs_shard_filenames)] + if self.is_training: + pipeline.extend([detshuffle2(self.shard_shuffle_size, seed=self.common_seed, epoch=self.epoch_count), self._split_by_node_and_worker, wds.tarfile_to_samples(handler=log_and_continue), wds.shuffle(bufsize=self.sample_shuffle_size, initial=self.sample_initial_size, rng=random.Random(self.worker_seed))]) + else: + pipeline.extend([self._split_by_node_and_worker, wds.tarfile_to_samples(handler=log_and_continue)]) + pipeline.extend([wds.map(partial(_decode, image_key=self.input_key, image_mode=self.input_img_mode, alt_label=self.split_info.alt_label), handler=log_and_continue), wds.rename(image=self.input_key, target=self.target_key)]) + self.ds = wds.DataPipeline(*pipeline) + + def _split_by_node_and_worker(self, src): + if self.global_num_workers > 1: + for s in islice(src, self.global_worker_id, None, self.global_num_workers): + yield s + else: + for s in src: + yield s + + def _num_samples_per_worker(self): + num_worker_samples = self.num_samples / max(self.global_num_workers, self.dist_num_replicas) + if self.is_training or self.dist_num_replicas > 1: + num_worker_samples = math.ceil(num_worker_samples) + if self.is_training: + num_worker_samples = math.ceil(num_worker_samples / self.batch_size) * self.batch_size + return int(num_worker_samples) + + def __iter__(self): + if self.ds is None: + self._lazy_init() + num_worker_samples = self._num_samples_per_worker() + if self.is_training or self.dist_num_replicas > 1: + ds = self.ds.with_epoch(num_worker_samples) + else: + ds = self.ds + i = 0 + for sample in ds: + target = sample['target'] + if self.remap_class: + target = self.class_to_idx[target] + yield (sample['image'], target) + i += 1 + + def __len__(self): + num_samples = self._num_samples_per_worker() * self.num_workers + return num_samples + + def _filename(self, index, basename=False, absolute=False): + assert False, 'Not supported' + + def filenames(self, basename=False, absolute=False): + if self.ds is None: + self._lazy_init() + names = [] + for sample in self.ds: + if self.filename_key in sample: + name = sample[self.filename_key] + elif '__key__' in sample: + name = sample['__key__'] + self.key_ext + else: + assert False, 'No supported name field present' + names.append(name) + if len(names) >= self.num_samples: + break + return names + +# File: pytorch-image-models-main/timm/data/readers/shared_count.py +from multiprocessing import Value + +class SharedCount: + + def __init__(self, epoch: int=0): + self.shared_epoch = Value('i', epoch) + + @property + def value(self): + return self.shared_epoch.value + + @value.setter + def value(self, epoch): + self.shared_epoch.value = epoch + +# File: pytorch-image-models-main/timm/data/real_labels.py +"""""" +import os +import json +import numpy as np +import pkgutil + +class RealLabelsImagenet: + + def __init__(self, filenames, real_json=None, topk=(1, 5)): + if real_json is not None: + with open(real_json) as real_labels: + real_labels = json.load(real_labels) + else: + real_labels = json.loads(pkgutil.get_data(__name__, os.path.join('_info', 'imagenet_real_labels.json')).decode('utf-8')) + real_labels = {f'ILSVRC2012_val_{i + 1:08d}.JPEG': labels for (i, labels) in enumerate(real_labels)} + self.real_labels = real_labels + self.filenames = filenames + assert len(self.filenames) == len(self.real_labels) + self.topk = topk + self.is_correct = {k: [] for k in topk} + self.sample_idx = 0 + + def add_result(self, output): + maxk = max(self.topk) + (_, pred_batch) = output.topk(maxk, 1, True, True) + pred_batch = pred_batch.cpu().numpy() + for pred in pred_batch: + filename = self.filenames[self.sample_idx] + filename = os.path.basename(filename) + if self.real_labels[filename]: + for k in self.topk: + self.is_correct[k].append(any([p in self.real_labels[filename] for p in pred[:k]])) + self.sample_idx += 1 + + def get_accuracy(self, k=None): + if k is None: + return {k: float(np.mean(self.is_correct[k])) * 100 for k in self.topk} + else: + return float(np.mean(self.is_correct[k])) * 100 + +# File: pytorch-image-models-main/timm/data/tf_preprocessing.py +"""""" +'' +import tensorflow.compat.v1 as tf +import numpy as np +IMAGE_SIZE = 224 +CROP_PADDING = 32 +tf.compat.v1.disable_eager_execution() + +def distorted_bounding_box_crop(image_bytes, bbox, min_object_covered=0.1, aspect_ratio_range=(0.75, 1.33), area_range=(0.05, 1.0), max_attempts=100, scope=None): + with tf.name_scope(scope, 'distorted_bounding_box_crop', [image_bytes, bbox]): + shape = tf.image.extract_jpeg_shape(image_bytes) + sample_distorted_bounding_box = tf.image.sample_distorted_bounding_box(shape, bounding_boxes=bbox, min_object_covered=min_object_covered, aspect_ratio_range=aspect_ratio_range, area_range=area_range, max_attempts=max_attempts, use_image_if_no_bounding_boxes=True) + (bbox_begin, bbox_size, _) = sample_distorted_bounding_box + (offset_y, offset_x, _) = tf.unstack(bbox_begin) + (target_height, target_width, _) = tf.unstack(bbox_size) + crop_window = tf.stack([offset_y, offset_x, target_height, target_width]) + image = tf.image.decode_and_crop_jpeg(image_bytes, crop_window, channels=3) + return image + +def _at_least_x_are_equal(a, b, x): + match = tf.equal(a, b) + match = tf.cast(match, tf.int32) + return tf.greater_equal(tf.reduce_sum(match), x) + +def _decode_and_random_crop(image_bytes, image_size, resize_method): + bbox = tf.constant([0.0, 0.0, 1.0, 1.0], dtype=tf.float32, shape=[1, 1, 4]) + image = distorted_bounding_box_crop(image_bytes, bbox, min_object_covered=0.1, aspect_ratio_range=(3.0 / 4, 4.0 / 3.0), area_range=(0.08, 1.0), max_attempts=10, scope=None) + original_shape = tf.image.extract_jpeg_shape(image_bytes) + bad = _at_least_x_are_equal(original_shape, tf.shape(image), 3) + image = tf.cond(bad, lambda : _decode_and_center_crop(image_bytes, image_size), lambda : tf.image.resize([image], [image_size, image_size], resize_method)[0]) + return image + +def _decode_and_center_crop(image_bytes, image_size, resize_method): + shape = tf.image.extract_jpeg_shape(image_bytes) + image_height = shape[0] + image_width = shape[1] + padded_center_crop_size = tf.cast(image_size / (image_size + CROP_PADDING) * tf.cast(tf.minimum(image_height, image_width), tf.float32), tf.int32) + offset_height = (image_height - padded_center_crop_size + 1) // 2 + offset_width = (image_width - padded_center_crop_size + 1) // 2 + crop_window = tf.stack([offset_height, offset_width, padded_center_crop_size, padded_center_crop_size]) + image = tf.image.decode_and_crop_jpeg(image_bytes, crop_window, channels=3) + image = tf.image.resize([image], [image_size, image_size], resize_method)[0] + return image + +def _flip(image): + image = tf.image.random_flip_left_right(image) + return image + +def preprocess_for_train(image_bytes, use_bfloat16, image_size=IMAGE_SIZE, interpolation='bicubic'): + resize_method = tf.image.ResizeMethod.BICUBIC if interpolation == 'bicubic' else tf.image.ResizeMethod.BILINEAR + image = _decode_and_random_crop(image_bytes, image_size, resize_method) + image = _flip(image) + image = tf.reshape(image, [image_size, image_size, 3]) + image = tf.image.convert_image_dtype(image, dtype=tf.bfloat16 if use_bfloat16 else tf.float32) + return image + +def preprocess_for_eval(image_bytes, use_bfloat16, image_size=IMAGE_SIZE, interpolation='bicubic'): + resize_method = tf.image.ResizeMethod.BICUBIC if interpolation == 'bicubic' else tf.image.ResizeMethod.BILINEAR + image = _decode_and_center_crop(image_bytes, image_size, resize_method) + image = tf.reshape(image, [image_size, image_size, 3]) + image = tf.image.convert_image_dtype(image, dtype=tf.bfloat16 if use_bfloat16 else tf.float32) + return image + +def preprocess_image(image_bytes, is_training=False, use_bfloat16=False, image_size=IMAGE_SIZE, interpolation='bicubic'): + if is_training: + return preprocess_for_train(image_bytes, use_bfloat16, image_size, interpolation) + else: + return preprocess_for_eval(image_bytes, use_bfloat16, image_size, interpolation) + +class TfPreprocessTransform: + + def __init__(self, is_training=False, size=224, interpolation='bicubic'): + self.is_training = is_training + self.size = size[0] if isinstance(size, tuple) else size + self.interpolation = interpolation + self._image_bytes = None + self.process_image = self._build_tf_graph() + self.sess = None + + def _build_tf_graph(self): + with tf.device('/cpu:0'): + self._image_bytes = tf.placeholder(shape=[], dtype=tf.string) + img = preprocess_image(self._image_bytes, self.is_training, False, self.size, self.interpolation) + return img + + def __call__(self, image_bytes): + if self.sess is None: + self.sess = tf.Session() + img = self.sess.run(self.process_image, feed_dict={self._image_bytes: image_bytes}) + img = img.round().clip(0, 255).astype(np.uint8) + if img.ndim < 3: + img = np.expand_dims(img, axis=-1) + img = np.rollaxis(img, 2) + return img + +# File: pytorch-image-models-main/timm/data/transforms.py +import math +import numbers +import random +import warnings +from typing import List, Sequence, Tuple, Union +import torch +import torchvision.transforms as transforms +import torchvision.transforms.functional as F +try: + from torchvision.transforms.functional import InterpolationMode + has_interpolation_mode = True +except ImportError: + has_interpolation_mode = False +from PIL import Image +import numpy as np +__all__ = ['ToNumpy', 'ToTensor', 'str_to_interp_mode', 'str_to_pil_interp', 'interp_mode_to_str', 'RandomResizedCropAndInterpolation', 'CenterCropOrPad', 'center_crop_or_pad', 'crop_or_pad', 'RandomCropOrPad', 'RandomPad', 'ResizeKeepRatio', 'TrimBorder', 'MaybeToTensor', 'MaybePILToTensor'] + +class ToNumpy: + + def __call__(self, pil_img): + np_img = np.array(pil_img, dtype=np.uint8) + if np_img.ndim < 3: + np_img = np.expand_dims(np_img, axis=-1) + np_img = np.rollaxis(np_img, 2) + return np_img + +class ToTensor: + + def __init__(self, dtype=torch.float32): + self.dtype = dtype + + def __call__(self, pil_img): + return F.pil_to_tensor(pil_img).to(dtype=self.dtype) + +class MaybeToTensor(transforms.ToTensor): + + def __init__(self) -> None: + super().__init__() + + def __call__(self, pic) -> torch.Tensor: + if isinstance(pic, torch.Tensor): + return pic + return F.to_tensor(pic) + + def __repr__(self) -> str: + return f'{self.__class__.__name__}()' + +class MaybePILToTensor: + + def __init__(self) -> None: + super().__init__() + + def __call__(self, pic): + if isinstance(pic, torch.Tensor): + return pic + return F.pil_to_tensor(pic) + + def __repr__(self) -> str: + return f'{self.__class__.__name__}()' +if hasattr(Image, 'Resampling'): + _pil_interpolation_to_str = {Image.Resampling.NEAREST: 'nearest', Image.Resampling.BILINEAR: 'bilinear', Image.Resampling.BICUBIC: 'bicubic', Image.Resampling.BOX: 'box', Image.Resampling.HAMMING: 'hamming', Image.Resampling.LANCZOS: 'lanczos'} +else: + _pil_interpolation_to_str = {Image.NEAREST: 'nearest', Image.BILINEAR: 'bilinear', Image.BICUBIC: 'bicubic', Image.BOX: 'box', Image.HAMMING: 'hamming', Image.LANCZOS: 'lanczos'} +_str_to_pil_interpolation = {b: a for (a, b) in _pil_interpolation_to_str.items()} +if has_interpolation_mode: + _torch_interpolation_to_str = {InterpolationMode.NEAREST: 'nearest', InterpolationMode.BILINEAR: 'bilinear', InterpolationMode.BICUBIC: 'bicubic', InterpolationMode.BOX: 'box', InterpolationMode.HAMMING: 'hamming', InterpolationMode.LANCZOS: 'lanczos'} + _str_to_torch_interpolation = {b: a for (a, b) in _torch_interpolation_to_str.items()} +else: + _pil_interpolation_to_torch = {} + _torch_interpolation_to_str = {} + +def str_to_pil_interp(mode_str): + return _str_to_pil_interpolation[mode_str] + +def str_to_interp_mode(mode_str): + if has_interpolation_mode: + return _str_to_torch_interpolation[mode_str] + else: + return _str_to_pil_interpolation[mode_str] + +def interp_mode_to_str(mode): + if has_interpolation_mode: + return _torch_interpolation_to_str[mode] + else: + return _pil_interpolation_to_str[mode] +_RANDOM_INTERPOLATION = (str_to_interp_mode('bilinear'), str_to_interp_mode('bicubic')) + +def _setup_size(size, error_msg='Please provide only two dimensions (h, w) for size.'): + if isinstance(size, numbers.Number): + return (int(size), int(size)) + if isinstance(size, Sequence) and len(size) == 1: + return (size[0], size[0]) + if len(size) != 2: + raise ValueError(error_msg) + return size + +class RandomResizedCropAndInterpolation: + + def __init__(self, size, scale=(0.08, 1.0), ratio=(3.0 / 4.0, 4.0 / 3.0), interpolation='bilinear'): + if isinstance(size, (list, tuple)): + self.size = tuple(size) + else: + self.size = (size, size) + if scale[0] > scale[1] or ratio[0] > ratio[1]: + warnings.warn('range should be of kind (min, max)') + if interpolation == 'random': + self.interpolation = _RANDOM_INTERPOLATION + else: + self.interpolation = str_to_interp_mode(interpolation) + self.scale = scale + self.ratio = ratio + + @staticmethod + def get_params(img, scale, ratio): + (img_w, img_h) = F.get_image_size(img) + area = img_w * img_h + for attempt in range(10): + target_area = random.uniform(*scale) * area + log_ratio = (math.log(ratio[0]), math.log(ratio[1])) + aspect_ratio = math.exp(random.uniform(*log_ratio)) + target_w = int(round(math.sqrt(target_area * aspect_ratio))) + target_h = int(round(math.sqrt(target_area / aspect_ratio))) + if target_w <= img_w and target_h <= img_h: + i = random.randint(0, img_h - target_h) + j = random.randint(0, img_w - target_w) + return (i, j, target_h, target_w) + in_ratio = img_w / img_h + if in_ratio < min(ratio): + target_w = img_w + target_h = int(round(target_w / min(ratio))) + elif in_ratio > max(ratio): + target_h = img_h + target_w = int(round(target_h * max(ratio))) + else: + target_w = img_w + target_h = img_h + i = (img_h - target_h) // 2 + j = (img_w - target_w) // 2 + return (i, j, target_h, target_w) + + def __call__(self, img): + (i, j, h, w) = self.get_params(img, self.scale, self.ratio) + if isinstance(self.interpolation, (tuple, list)): + interpolation = random.choice(self.interpolation) + else: + interpolation = self.interpolation + return F.resized_crop(img, i, j, h, w, self.size, interpolation) + + def __repr__(self): + if isinstance(self.interpolation, (tuple, list)): + interpolate_str = ' '.join([interp_mode_to_str(x) for x in self.interpolation]) + else: + interpolate_str = interp_mode_to_str(self.interpolation) + format_string = self.__class__.__name__ + '(size={0}'.format(self.size) + format_string += ', scale={0}'.format(tuple((round(s, 4) for s in self.scale))) + format_string += ', ratio={0}'.format(tuple((round(r, 4) for r in self.ratio))) + format_string += ', interpolation={0})'.format(interpolate_str) + return format_string + +def center_crop_or_pad(img: torch.Tensor, output_size: Union[int, List[int]], fill: Union[int, Tuple[int, int, int]]=0, padding_mode: str='constant') -> torch.Tensor: + output_size = _setup_size(output_size) + (crop_height, crop_width) = output_size + (_, image_height, image_width) = F.get_dimensions(img) + if crop_width > image_width or crop_height > image_height: + padding_ltrb = [(crop_width - image_width) // 2 if crop_width > image_width else 0, (crop_height - image_height) // 2 if crop_height > image_height else 0, (crop_width - image_width + 1) // 2 if crop_width > image_width else 0, (crop_height - image_height + 1) // 2 if crop_height > image_height else 0] + img = F.pad(img, padding_ltrb, fill=fill, padding_mode=padding_mode) + (_, image_height, image_width) = F.get_dimensions(img) + if crop_width == image_width and crop_height == image_height: + return img + crop_top = int(round((image_height - crop_height) / 2.0)) + crop_left = int(round((image_width - crop_width) / 2.0)) + return F.crop(img, crop_top, crop_left, crop_height, crop_width) + +class CenterCropOrPad(torch.nn.Module): + + def __init__(self, size: Union[int, List[int]], fill: Union[int, Tuple[int, int, int]]=0, padding_mode: str='constant'): + super().__init__() + self.size = _setup_size(size) + self.fill = fill + self.padding_mode = padding_mode + + def forward(self, img): + return center_crop_or_pad(img, self.size, fill=self.fill, padding_mode=self.padding_mode) + + def __repr__(self) -> str: + return f'{self.__class__.__name__}(size={self.size})' + +def crop_or_pad(img: torch.Tensor, top: int, left: int, height: int, width: int, fill: Union[int, Tuple[int, int, int]]=0, padding_mode: str='constant') -> torch.Tensor: + (_, image_height, image_width) = F.get_dimensions(img) + right = left + width + bottom = top + height + if left < 0 or top < 0 or right > image_width or (bottom > image_height): + padding_ltrb = [max(-left + min(0, right), 0), max(-top + min(0, bottom), 0), max(right - max(image_width, left), 0), max(bottom - max(image_height, top), 0)] + img = F.pad(img, padding_ltrb, fill=fill, padding_mode=padding_mode) + top = max(top, 0) + left = max(left, 0) + return F.crop(img, top, left, height, width) + +class RandomCropOrPad(torch.nn.Module): + + def __init__(self, size: Union[int, List[int]], fill: Union[int, Tuple[int, int, int]]=0, padding_mode: str='constant'): + super().__init__() + self.size = _setup_size(size) + self.fill = fill + self.padding_mode = padding_mode + + @staticmethod + def get_params(img, size): + (_, image_height, image_width) = F.get_dimensions(img) + delta_height = image_height - size[0] + delta_width = image_width - size[1] + top = int(math.copysign(random.randint(0, abs(delta_height)), delta_height)) + left = int(math.copysign(random.randint(0, abs(delta_width)), delta_width)) + return (top, left) + + def forward(self, img): + (top, left) = self.get_params(img, self.size) + return crop_or_pad(img, top=top, left=left, height=self.size[0], width=self.size[1], fill=self.fill, padding_mode=self.padding_mode) + + def __repr__(self) -> str: + return f'{self.__class__.__name__}(size={self.size})' + +class RandomPad: + + def __init__(self, input_size, fill=0): + self.input_size = input_size + self.fill = fill + + @staticmethod + def get_params(img, input_size): + (width, height) = F.get_image_size(img) + delta_width = max(input_size[1] - width, 0) + delta_height = max(input_size[0] - height, 0) + pad_left = random.randint(0, delta_width) + pad_top = random.randint(0, delta_height) + pad_right = delta_width - pad_left + pad_bottom = delta_height - pad_top + return (pad_left, pad_top, pad_right, pad_bottom) + + def __call__(self, img): + padding = self.get_params(img, self.input_size) + img = F.pad(img, padding, self.fill) + return img + +class ResizeKeepRatio: + + def __init__(self, size, longest=0.0, interpolation='bilinear', random_scale_prob=0.0, random_scale_range=(0.85, 1.05), random_scale_area=False, random_aspect_prob=0.0, random_aspect_range=(0.9, 1.11)): + if isinstance(size, (list, tuple)): + self.size = tuple(size) + else: + self.size = (size, size) + if interpolation == 'random': + self.interpolation = _RANDOM_INTERPOLATION + else: + self.interpolation = str_to_interp_mode(interpolation) + self.longest = float(longest) + self.random_scale_prob = random_scale_prob + self.random_scale_range = random_scale_range + self.random_scale_area = random_scale_area + self.random_aspect_prob = random_aspect_prob + self.random_aspect_range = random_aspect_range + + @staticmethod + def get_params(img, target_size, longest, random_scale_prob=0.0, random_scale_range=(1.0, 1.33), random_scale_area=False, random_aspect_prob=0.0, random_aspect_range=(0.9, 1.11)): + (img_h, img_w) = img_size = F.get_dimensions(img)[1:] + (target_h, target_w) = target_size + ratio_h = img_h / target_h + ratio_w = img_w / target_w + ratio = max(ratio_h, ratio_w) * longest + min(ratio_h, ratio_w) * (1.0 - longest) + if random_scale_prob > 0 and random.random() < random_scale_prob: + ratio_factor = random.uniform(random_scale_range[0], random_scale_range[1]) + if random_scale_area: + ratio_factor = 1.0 / math.sqrt(ratio_factor) + ratio_factor = (ratio_factor, ratio_factor) + else: + ratio_factor = (1.0, 1.0) + if random_aspect_prob > 0 and random.random() < random_aspect_prob: + log_aspect = (math.log(random_aspect_range[0]), math.log(random_aspect_range[1])) + aspect_factor = math.exp(random.uniform(*log_aspect)) + aspect_factor = math.sqrt(aspect_factor) + ratio_factor = (ratio_factor[0] / aspect_factor, ratio_factor[1] * aspect_factor) + size = [round(x * f / ratio) for (x, f) in zip(img_size, ratio_factor)] + return size + + def __call__(self, img): + size = self.get_params(img, self.size, self.longest, self.random_scale_prob, self.random_scale_range, self.random_scale_area, self.random_aspect_prob, self.random_aspect_range) + if isinstance(self.interpolation, (tuple, list)): + interpolation = random.choice(self.interpolation) + else: + interpolation = self.interpolation + img = F.resize(img, size, interpolation) + return img + + def __repr__(self): + if isinstance(self.interpolation, (tuple, list)): + interpolate_str = ' '.join([interp_mode_to_str(x) for x in self.interpolation]) + else: + interpolate_str = interp_mode_to_str(self.interpolation) + format_string = self.__class__.__name__ + '(size={0}'.format(self.size) + format_string += f', interpolation={interpolate_str}' + format_string += f', longest={self.longest:.3f}' + format_string += f', random_scale_prob={self.random_scale_prob:.3f}' + format_string += f', random_scale_range=({self.random_scale_range[0]:.3f}, {self.random_aspect_range[1]:.3f})' + format_string += f', random_aspect_prob={self.random_aspect_prob:.3f}' + format_string += f', random_aspect_range=({self.random_aspect_range[0]:.3f}, {self.random_aspect_range[1]:.3f}))' + return format_string + +class TrimBorder(torch.nn.Module): + + def __init__(self, border_size: int): + super().__init__() + self.border_size = border_size + + def forward(self, img): + (w, h) = F.get_image_size(img) + top = left = self.border_size + top = min(top, h) + left = min(left, h) + height = max(0, h - 2 * self.border_size) + width = max(0, w - 2 * self.border_size) + return F.crop(img, top, left, height, width) + +# File: pytorch-image-models-main/timm/data/transforms_factory.py +"""""" +import math +from typing import Optional, Tuple, Union +import torch +from torchvision import transforms +from timm.data.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, DEFAULT_CROP_PCT +from timm.data.auto_augment import rand_augment_transform, augment_and_mix_transform, auto_augment_transform +from timm.data.transforms import str_to_interp_mode, str_to_pil_interp, RandomResizedCropAndInterpolation, ResizeKeepRatio, CenterCropOrPad, RandomCropOrPad, TrimBorder, ToNumpy, MaybeToTensor, MaybePILToTensor +from timm.data.random_erasing import RandomErasing + +def transforms_noaug_train(img_size: Union[int, Tuple[int, int]]=224, interpolation: str='bilinear', mean: Tuple[float, ...]=IMAGENET_DEFAULT_MEAN, std: Tuple[float, ...]=IMAGENET_DEFAULT_STD, use_prefetcher: bool=False, normalize: bool=True): + if interpolation == 'random': + interpolation = 'bilinear' + tfl = [transforms.Resize(img_size, interpolation=str_to_interp_mode(interpolation)), transforms.CenterCrop(img_size)] + if use_prefetcher: + tfl += [ToNumpy()] + elif not normalize: + tfl += [MaybePILToTensor()] + else: + tfl += [MaybeToTensor(), transforms.Normalize(mean=torch.tensor(mean), std=torch.tensor(std))] + return transforms.Compose(tfl) + +def transforms_imagenet_train(img_size: Union[int, Tuple[int, int]]=224, scale: Optional[Tuple[float, float]]=None, ratio: Optional[Tuple[float, float]]=None, train_crop_mode: Optional[str]=None, hflip: float=0.5, vflip: float=0.0, color_jitter: Union[float, Tuple[float, ...]]=0.4, color_jitter_prob: Optional[float]=None, force_color_jitter: bool=False, grayscale_prob: float=0.0, gaussian_blur_prob: float=0.0, auto_augment: Optional[str]=None, interpolation: str='random', mean: Tuple[float, ...]=IMAGENET_DEFAULT_MEAN, std: Tuple[float, ...]=IMAGENET_DEFAULT_STD, re_prob: float=0.0, re_mode: str='const', re_count: int=1, re_num_splits: int=0, use_prefetcher: bool=False, normalize: bool=True, separate: bool=False): + train_crop_mode = train_crop_mode or 'rrc' + assert train_crop_mode in {'rrc', 'rkrc', 'rkrr'} + if train_crop_mode in ('rkrc', 'rkrr'): + scale = tuple(scale or (0.8, 1.0)) + ratio = tuple(ratio or (0.9, 1 / 0.9)) + primary_tfl = [ResizeKeepRatio(img_size, interpolation=interpolation, random_scale_prob=0.5, random_scale_range=scale, random_scale_area=True, random_aspect_prob=0.5, random_aspect_range=ratio), CenterCropOrPad(img_size, padding_mode='reflect') if train_crop_mode == 'rkrc' else RandomCropOrPad(img_size, padding_mode='reflect')] + else: + scale = tuple(scale or (0.08, 1.0)) + ratio = tuple(ratio or (3.0 / 4.0, 4.0 / 3.0)) + primary_tfl = [RandomResizedCropAndInterpolation(img_size, scale=scale, ratio=ratio, interpolation=interpolation)] + if hflip > 0.0: + primary_tfl += [transforms.RandomHorizontalFlip(p=hflip)] + if vflip > 0.0: + primary_tfl += [transforms.RandomVerticalFlip(p=vflip)] + secondary_tfl = [] + disable_color_jitter = False + if auto_augment: + assert isinstance(auto_augment, str) + disable_color_jitter = not (force_color_jitter or '3a' in auto_augment) + if isinstance(img_size, (tuple, list)): + img_size_min = min(img_size) + else: + img_size_min = img_size + aa_params = dict(translate_const=int(img_size_min * 0.45), img_mean=tuple([min(255, round(255 * x)) for x in mean])) + if interpolation and interpolation != 'random': + aa_params['interpolation'] = str_to_pil_interp(interpolation) + if auto_augment.startswith('rand'): + secondary_tfl += [rand_augment_transform(auto_augment, aa_params)] + elif auto_augment.startswith('augmix'): + aa_params['translate_pct'] = 0.3 + secondary_tfl += [augment_and_mix_transform(auto_augment, aa_params)] + else: + secondary_tfl += [auto_augment_transform(auto_augment, aa_params)] + if color_jitter is not None and (not disable_color_jitter): + if isinstance(color_jitter, (list, tuple)): + assert len(color_jitter) in (3, 4) + else: + color_jitter = (float(color_jitter),) * 3 + if color_jitter_prob is not None: + secondary_tfl += [transforms.RandomApply([transforms.ColorJitter(*color_jitter)], p=color_jitter_prob)] + else: + secondary_tfl += [transforms.ColorJitter(*color_jitter)] + if grayscale_prob: + secondary_tfl += [transforms.RandomGrayscale(p=grayscale_prob)] + if gaussian_blur_prob: + secondary_tfl += [transforms.RandomApply([transforms.GaussianBlur(kernel_size=23)], p=gaussian_blur_prob)] + final_tfl = [] + if use_prefetcher: + final_tfl += [ToNumpy()] + elif not normalize: + final_tfl += [MaybePILToTensor()] + else: + final_tfl += [MaybeToTensor(), transforms.Normalize(mean=torch.tensor(mean), std=torch.tensor(std))] + if re_prob > 0.0: + final_tfl += [RandomErasing(re_prob, mode=re_mode, max_count=re_count, num_splits=re_num_splits, device='cpu')] + if separate: + return (transforms.Compose(primary_tfl), transforms.Compose(secondary_tfl), transforms.Compose(final_tfl)) + else: + return transforms.Compose(primary_tfl + secondary_tfl + final_tfl) + +def transforms_imagenet_eval(img_size: Union[int, Tuple[int, int]]=224, crop_pct: Optional[float]=None, crop_mode: Optional[str]=None, crop_border_pixels: Optional[int]=None, interpolation: str='bilinear', mean: Tuple[float, ...]=IMAGENET_DEFAULT_MEAN, std: Tuple[float, ...]=IMAGENET_DEFAULT_STD, use_prefetcher: bool=False, normalize: bool=True): + crop_pct = crop_pct or DEFAULT_CROP_PCT + if isinstance(img_size, (tuple, list)): + assert len(img_size) == 2 + scale_size = tuple([math.floor(x / crop_pct) for x in img_size]) + else: + scale_size = math.floor(img_size / crop_pct) + scale_size = (scale_size, scale_size) + tfl = [] + if crop_border_pixels: + tfl += [TrimBorder(crop_border_pixels)] + if crop_mode == 'squash': + tfl += [transforms.Resize(scale_size, interpolation=str_to_interp_mode(interpolation)), transforms.CenterCrop(img_size)] + elif crop_mode == 'border': + fill = [round(255 * v) for v in mean] + tfl += [ResizeKeepRatio(scale_size, interpolation=interpolation, longest=1.0), CenterCropOrPad(img_size, fill=fill)] + else: + if scale_size[0] == scale_size[1]: + tfl += [transforms.Resize(scale_size[0], interpolation=str_to_interp_mode(interpolation))] + else: + tfl += [ResizeKeepRatio(scale_size)] + tfl += [transforms.CenterCrop(img_size)] + if use_prefetcher: + tfl += [ToNumpy()] + elif not normalize: + tfl += [MaybePILToTensor()] + else: + tfl += [MaybeToTensor(), transforms.Normalize(mean=torch.tensor(mean), std=torch.tensor(std))] + return transforms.Compose(tfl) + +def create_transform(input_size: Union[int, Tuple[int, int], Tuple[int, int, int]]=224, is_training: bool=False, no_aug: bool=False, train_crop_mode: Optional[str]=None, scale: Optional[Tuple[float, float]]=None, ratio: Optional[Tuple[float, float]]=None, hflip: float=0.5, vflip: float=0.0, color_jitter: Union[float, Tuple[float, ...]]=0.4, color_jitter_prob: Optional[float]=None, grayscale_prob: float=0.0, gaussian_blur_prob: float=0.0, auto_augment: Optional[str]=None, interpolation: str='bilinear', mean: Tuple[float, ...]=IMAGENET_DEFAULT_MEAN, std: Tuple[float, ...]=IMAGENET_DEFAULT_STD, re_prob: float=0.0, re_mode: str='const', re_count: int=1, re_num_splits: int=0, crop_pct: Optional[float]=None, crop_mode: Optional[str]=None, crop_border_pixels: Optional[int]=None, tf_preprocessing: bool=False, use_prefetcher: bool=False, normalize: bool=True, separate: bool=False): + if isinstance(input_size, (tuple, list)): + img_size = input_size[-2:] + else: + img_size = input_size + if tf_preprocessing and use_prefetcher: + assert not separate, 'Separate transforms not supported for TF preprocessing' + from timm.data.tf_preprocessing import TfPreprocessTransform + transform = TfPreprocessTransform(is_training=is_training, size=img_size, interpolation=interpolation) + elif is_training and no_aug: + assert not separate, 'Cannot perform split augmentation with no_aug' + transform = transforms_noaug_train(img_size, interpolation=interpolation, mean=mean, std=std, use_prefetcher=use_prefetcher, normalize=normalize) + elif is_training: + transform = transforms_imagenet_train(img_size, train_crop_mode=train_crop_mode, scale=scale, ratio=ratio, hflip=hflip, vflip=vflip, color_jitter=color_jitter, color_jitter_prob=color_jitter_prob, grayscale_prob=grayscale_prob, gaussian_blur_prob=gaussian_blur_prob, auto_augment=auto_augment, interpolation=interpolation, mean=mean, std=std, re_prob=re_prob, re_mode=re_mode, re_count=re_count, re_num_splits=re_num_splits, use_prefetcher=use_prefetcher, normalize=normalize, separate=separate) + else: + assert not separate, 'Separate transforms not supported for validation preprocessing' + transform = transforms_imagenet_eval(img_size, interpolation=interpolation, mean=mean, std=std, crop_pct=crop_pct, crop_mode=crop_mode, crop_border_pixels=crop_border_pixels, use_prefetcher=use_prefetcher, normalize=normalize) + return transform + +# File: pytorch-image-models-main/timm/layers/__init__.py +from .activations import * +from .adaptive_avgmax_pool import adaptive_avgmax_pool2d, select_adaptive_pool2d, AdaptiveAvgMaxPool2d, SelectAdaptivePool2d +from .attention2d import MultiQueryAttention2d, Attention2d, MultiQueryAttentionV2 +from .attention_pool import AttentionPoolLatent +from .attention_pool2d import AttentionPool2d, RotAttentionPool2d, RotaryEmbedding +from .blur_pool import BlurPool2d, create_aa +from .classifier import create_classifier, ClassifierHead, NormMlpClassifierHead, ClNormMlpClassifierHead +from .cond_conv2d import CondConv2d, get_condconv_initializer +from .config import is_exportable, is_scriptable, is_no_jit, use_fused_attn, set_exportable, set_scriptable, set_no_jit, set_layer_config, set_fused_attn +from .conv2d_same import Conv2dSame, conv2d_same +from .conv_bn_act import ConvNormAct, ConvNormActAa, ConvBnAct +from .create_act import create_act_layer, get_act_layer, get_act_fn +from .create_attn import get_attn, create_attn +from .create_conv2d import create_conv2d +from .create_norm import get_norm_layer, create_norm_layer +from .create_norm_act import get_norm_act_layer, create_norm_act_layer, get_norm_act_layer +from .drop import DropBlock2d, DropPath, drop_block_2d, drop_path +from .eca import EcaModule, CecaModule, EfficientChannelAttn, CircularEfficientChannelAttn +from .evo_norm import EvoNorm2dB0, EvoNorm2dB1, EvoNorm2dB2, EvoNorm2dS0, EvoNorm2dS0a, EvoNorm2dS1, EvoNorm2dS1a, EvoNorm2dS2, EvoNorm2dS2a +from .fast_norm import is_fast_norm, set_fast_norm, fast_group_norm, fast_layer_norm +from .filter_response_norm import FilterResponseNormTlu2d, FilterResponseNormAct2d +from .format import Format, get_channel_dim, get_spatial_dim, nchw_to, nhwc_to +from .gather_excite import GatherExcite +from .global_context import GlobalContext +from .grid import ndgrid, meshgrid +from .helpers import to_ntuple, to_2tuple, to_3tuple, to_4tuple, make_divisible, extend_tuple +from .hybrid_embed import HybridEmbed, HybridEmbedWithSize +from .inplace_abn import InplaceAbn +from .layer_scale import LayerScale, LayerScale2d +from .linear import Linear +from .mixed_conv2d import MixedConv2d +from .mlp import Mlp, GluMlp, GatedMlp, SwiGLU, SwiGLUPacked, ConvMlp, GlobalResponseNormMlp +from .non_local_attn import NonLocalAttn, BatNonLocalAttn +from .norm import GroupNorm, GroupNorm1, LayerNorm, LayerNorm2d, RmsNorm +from .norm_act import BatchNormAct2d, GroupNormAct, GroupNorm1Act, LayerNormAct, LayerNormAct2d, SyncBatchNormAct, convert_sync_batchnorm, FrozenBatchNormAct2d, freeze_batch_norm_2d, unfreeze_batch_norm_2d +from .padding import get_padding, get_same_padding, pad_same +from .patch_dropout import PatchDropout +from .patch_embed import PatchEmbed, PatchEmbedWithSize, resample_patch_embed +from .pool2d_same import AvgPool2dSame, create_pool2d +from .pos_embed import resample_abs_pos_embed, resample_abs_pos_embed_nhwc +from .pos_embed_rel import RelPosMlp, RelPosBias, RelPosBiasTf, gen_relative_position_index, gen_relative_log_coords, resize_rel_pos_bias_table, resize_rel_pos_bias_table_simple, resize_rel_pos_bias_table_levit +from .pos_embed_sincos import pixel_freq_bands, freq_bands, build_sincos2d_pos_embed, build_fourier_pos_embed, build_rotary_pos_embed, apply_rot_embed, apply_rot_embed_cat, apply_rot_embed_list, apply_keep_indices_nlc, FourierEmbed, RotaryEmbedding, RotaryEmbeddingCat +from .squeeze_excite import SEModule, SqueezeExcite, EffectiveSEModule, EffectiveSqueezeExcite +from .selective_kernel import SelectiveKernel +from .separable_conv import SeparableConv2d, SeparableConvNormAct +from .space_to_depth import SpaceToDepth, DepthToSpace +from .split_attn import SplitAttn +from .split_batchnorm import SplitBatchNorm2d, convert_splitbn_model +from .std_conv import StdConv2d, StdConv2dSame, ScaledStdConv2d, ScaledStdConv2dSame +from .test_time_pool import TestTimePoolHead, apply_test_time_pool +from .trace_utils import _assert, _float_to_int +from .typing import LayerType, PadType +from .weight_init import trunc_normal_, trunc_normal_tf_, variance_scaling_, lecun_normal_, init_weight_jax, init_weight_vit + +# File: pytorch-image-models-main/timm/layers/activations.py +"""""" +import torch +from torch import nn as nn +from torch.nn import functional as F + +def swish(x, inplace: bool=False): + return x.mul_(x.sigmoid()) if inplace else x.mul(x.sigmoid()) + +class Swish(nn.Module): + + def __init__(self, inplace: bool=False): + super(Swish, self).__init__() + self.inplace = inplace + + def forward(self, x): + return swish(x, self.inplace) + +def mish(x, inplace: bool=False): + return x.mul(F.softplus(x).tanh()) + +class Mish(nn.Module): + + def __init__(self, inplace: bool=False): + super(Mish, self).__init__() + + def forward(self, x): + return mish(x) + +def sigmoid(x, inplace: bool=False): + return x.sigmoid_() if inplace else x.sigmoid() + +class Sigmoid(nn.Module): + + def __init__(self, inplace: bool=False): + super(Sigmoid, self).__init__() + self.inplace = inplace + + def forward(self, x): + return x.sigmoid_() if self.inplace else x.sigmoid() + +def tanh(x, inplace: bool=False): + return x.tanh_() if inplace else x.tanh() + +class Tanh(nn.Module): + + def __init__(self, inplace: bool=False): + super(Tanh, self).__init__() + self.inplace = inplace + + def forward(self, x): + return x.tanh_() if self.inplace else x.tanh() + +def hard_swish(x, inplace: bool=False): + inner = F.relu6(x + 3.0).div_(6.0) + return x.mul_(inner) if inplace else x.mul(inner) + +class HardSwish(nn.Module): + + def __init__(self, inplace: bool=False): + super(HardSwish, self).__init__() + self.inplace = inplace + + def forward(self, x): + return hard_swish(x, self.inplace) + +def hard_sigmoid(x, inplace: bool=False): + if inplace: + return x.add_(3.0).clamp_(0.0, 6.0).div_(6.0) + else: + return F.relu6(x + 3.0) / 6.0 + +class HardSigmoid(nn.Module): + + def __init__(self, inplace: bool=False): + super(HardSigmoid, self).__init__() + self.inplace = inplace + + def forward(self, x): + return hard_sigmoid(x, self.inplace) + +def hard_mish(x, inplace: bool=False): + if inplace: + return x.mul_(0.5 * (x + 2).clamp(min=0, max=2)) + else: + return 0.5 * x * (x + 2).clamp(min=0, max=2) + +class HardMish(nn.Module): + + def __init__(self, inplace: bool=False): + super(HardMish, self).__init__() + self.inplace = inplace + + def forward(self, x): + return hard_mish(x, self.inplace) + +class PReLU(nn.PReLU): + + def __init__(self, num_parameters: int=1, init: float=0.25, inplace: bool=False) -> None: + super(PReLU, self).__init__(num_parameters=num_parameters, init=init) + + def forward(self, input: torch.Tensor) -> torch.Tensor: + return F.prelu(input, self.weight) + +def gelu(x: torch.Tensor, inplace: bool=False) -> torch.Tensor: + return F.gelu(x) + +class GELU(nn.Module): + + def __init__(self, inplace: bool=False): + super(GELU, self).__init__() + + def forward(self, input: torch.Tensor) -> torch.Tensor: + return F.gelu(input) + +def gelu_tanh(x: torch.Tensor, inplace: bool=False) -> torch.Tensor: + return F.gelu(x, approximate='tanh') + +class GELUTanh(nn.Module): + + def __init__(self, inplace: bool=False): + super(GELUTanh, self).__init__() + + def forward(self, input: torch.Tensor) -> torch.Tensor: + return F.gelu(input, approximate='tanh') + +def quick_gelu(x: torch.Tensor, inplace: bool=False) -> torch.Tensor: + return x * torch.sigmoid(1.702 * x) + +class QuickGELU(nn.Module): + + def __init__(self, inplace: bool=False): + super(QuickGELU, self).__init__() + + def forward(self, input: torch.Tensor) -> torch.Tensor: + return quick_gelu(input) + +# File: pytorch-image-models-main/timm/layers/activations_me.py +"""""" +import torch +from torch import nn as nn +from torch.nn import functional as F + +def swish_fwd(x): + return x.mul(torch.sigmoid(x)) + +def swish_bwd(x, grad_output): + x_sigmoid = torch.sigmoid(x) + return grad_output * (x_sigmoid * (1 + x * (1 - x_sigmoid))) + +class SwishAutoFn(torch.autograd.Function): + + @staticmethod + def symbolic(g, x): + return g.op('Mul', x, g.op('Sigmoid', x)) + + @staticmethod + def forward(ctx, x): + ctx.save_for_backward(x) + return swish_fwd(x) + + @staticmethod + def backward(ctx, grad_output): + x = ctx.saved_tensors[0] + return swish_bwd(x, grad_output) + +def swish_me(x, inplace=False): + return SwishAutoFn.apply(x) + +class SwishMe(nn.Module): + + def __init__(self, inplace: bool=False): + super(SwishMe, self).__init__() + + def forward(self, x): + return SwishAutoFn.apply(x) + +def mish_fwd(x): + return x.mul(torch.tanh(F.softplus(x))) + +def mish_bwd(x, grad_output): + x_sigmoid = torch.sigmoid(x) + x_tanh_sp = F.softplus(x).tanh() + return grad_output.mul(x_tanh_sp + x * x_sigmoid * (1 - x_tanh_sp * x_tanh_sp)) + +class MishAutoFn(torch.autograd.Function): + + @staticmethod + def forward(ctx, x): + ctx.save_for_backward(x) + return mish_fwd(x) + + @staticmethod + def backward(ctx, grad_output): + x = ctx.saved_tensors[0] + return mish_bwd(x, grad_output) + +def mish_me(x, inplace=False): + return MishAutoFn.apply(x) + +class MishMe(nn.Module): + + def __init__(self, inplace: bool=False): + super(MishMe, self).__init__() + + def forward(self, x): + return MishAutoFn.apply(x) + +def hard_sigmoid_fwd(x, inplace: bool=False): + return (x + 3).clamp(min=0, max=6).div(6.0) + +def hard_sigmoid_bwd(x, grad_output): + m = torch.ones_like(x) * ((x >= -3.0) & (x <= 3.0)) / 6.0 + return grad_output * m + +class HardSigmoidAutoFn(torch.autograd.Function): + + @staticmethod + def forward(ctx, x): + ctx.save_for_backward(x) + return hard_sigmoid_fwd(x) + + @staticmethod + def backward(ctx, grad_output): + x = ctx.saved_tensors[0] + return hard_sigmoid_bwd(x, grad_output) + +def hard_sigmoid_me(x, inplace: bool=False): + return HardSigmoidAutoFn.apply(x) + +class HardSigmoidMe(nn.Module): + + def __init__(self, inplace: bool=False): + super(HardSigmoidMe, self).__init__() + + def forward(self, x): + return HardSigmoidAutoFn.apply(x) + +def hard_swish_fwd(x): + return x * (x + 3).clamp(min=0, max=6).div(6.0) + +def hard_swish_bwd(x, grad_output): + m = torch.ones_like(x) * (x >= 3.0) + m = torch.where((x >= -3.0) & (x <= 3.0), x / 3.0 + 0.5, m) + return grad_output * m + +class HardSwishAutoFn(torch.autograd.Function): + + @staticmethod + def forward(ctx, x): + ctx.save_for_backward(x) + return hard_swish_fwd(x) + + @staticmethod + def backward(ctx, grad_output): + x = ctx.saved_tensors[0] + return hard_swish_bwd(x, grad_output) + + @staticmethod + def symbolic(g, self): + input = g.op('Add', self, g.op('Constant', value_t=torch.tensor(3, dtype=torch.float))) + hardtanh_ = g.op('Clip', input, g.op('Constant', value_t=torch.tensor(0, dtype=torch.float)), g.op('Constant', value_t=torch.tensor(6, dtype=torch.float))) + hardtanh_ = g.op('Div', hardtanh_, g.op('Constant', value_t=torch.tensor(6, dtype=torch.float))) + return g.op('Mul', self, hardtanh_) + +def hard_swish_me(x, inplace=False): + return HardSwishAutoFn.apply(x) + +class HardSwishMe(nn.Module): + + def __init__(self, inplace: bool=False): + super(HardSwishMe, self).__init__() + + def forward(self, x): + return HardSwishAutoFn.apply(x) + +def hard_mish_fwd(x): + return 0.5 * x * (x + 2).clamp(min=0, max=2) + +def hard_mish_bwd(x, grad_output): + m = torch.ones_like(x) * (x >= -2.0) + m = torch.where((x >= -2.0) & (x <= 0.0), x + 1.0, m) + return grad_output * m + +class HardMishAutoFn(torch.autograd.Function): + + @staticmethod + def forward(ctx, x): + ctx.save_for_backward(x) + return hard_mish_fwd(x) + + @staticmethod + def backward(ctx, grad_output): + x = ctx.saved_tensors[0] + return hard_mish_bwd(x, grad_output) + +def hard_mish_me(x, inplace: bool=False): + return HardMishAutoFn.apply(x) + +class HardMishMe(nn.Module): + + def __init__(self, inplace: bool=False): + super(HardMishMe, self).__init__() + + def forward(self, x): + return HardMishAutoFn.apply(x) + +# File: pytorch-image-models-main/timm/layers/adaptive_avgmax_pool.py +"""""" +from typing import Optional, Tuple, Union +import torch +import torch.nn as nn +import torch.nn.functional as F +from .format import get_spatial_dim, get_channel_dim +_int_tuple_2_t = Union[int, Tuple[int, int]] + +def adaptive_pool_feat_mult(pool_type='avg'): + if pool_type.endswith('catavgmax'): + return 2 + else: + return 1 + +def adaptive_avgmax_pool2d(x, output_size: _int_tuple_2_t=1): + x_avg = F.adaptive_avg_pool2d(x, output_size) + x_max = F.adaptive_max_pool2d(x, output_size) + return 0.5 * (x_avg + x_max) + +def adaptive_catavgmax_pool2d(x, output_size: _int_tuple_2_t=1): + x_avg = F.adaptive_avg_pool2d(x, output_size) + x_max = F.adaptive_max_pool2d(x, output_size) + return torch.cat((x_avg, x_max), 1) + +def select_adaptive_pool2d(x, pool_type='avg', output_size: _int_tuple_2_t=1): + if pool_type == 'avg': + x = F.adaptive_avg_pool2d(x, output_size) + elif pool_type == 'avgmax': + x = adaptive_avgmax_pool2d(x, output_size) + elif pool_type == 'catavgmax': + x = adaptive_catavgmax_pool2d(x, output_size) + elif pool_type == 'max': + x = F.adaptive_max_pool2d(x, output_size) + else: + assert False, 'Invalid pool type: %s' % pool_type + return x + +class FastAdaptiveAvgPool(nn.Module): + + def __init__(self, flatten: bool=False, input_fmt: F='NCHW'): + super(FastAdaptiveAvgPool, self).__init__() + self.flatten = flatten + self.dim = get_spatial_dim(input_fmt) + + def forward(self, x): + return x.mean(self.dim, keepdim=not self.flatten) + +class FastAdaptiveMaxPool(nn.Module): + + def __init__(self, flatten: bool=False, input_fmt: str='NCHW'): + super(FastAdaptiveMaxPool, self).__init__() + self.flatten = flatten + self.dim = get_spatial_dim(input_fmt) + + def forward(self, x): + return x.amax(self.dim, keepdim=not self.flatten) + +class FastAdaptiveAvgMaxPool(nn.Module): + + def __init__(self, flatten: bool=False, input_fmt: str='NCHW'): + super(FastAdaptiveAvgMaxPool, self).__init__() + self.flatten = flatten + self.dim = get_spatial_dim(input_fmt) + + def forward(self, x): + x_avg = x.mean(self.dim, keepdim=not self.flatten) + x_max = x.amax(self.dim, keepdim=not self.flatten) + return 0.5 * x_avg + 0.5 * x_max + +class FastAdaptiveCatAvgMaxPool(nn.Module): + + def __init__(self, flatten: bool=False, input_fmt: str='NCHW'): + super(FastAdaptiveCatAvgMaxPool, self).__init__() + self.flatten = flatten + self.dim_reduce = get_spatial_dim(input_fmt) + if flatten: + self.dim_cat = 1 + else: + self.dim_cat = get_channel_dim(input_fmt) + + def forward(self, x): + x_avg = x.mean(self.dim_reduce, keepdim=not self.flatten) + x_max = x.amax(self.dim_reduce, keepdim=not self.flatten) + return torch.cat((x_avg, x_max), self.dim_cat) + +class AdaptiveAvgMaxPool2d(nn.Module): + + def __init__(self, output_size: _int_tuple_2_t=1): + super(AdaptiveAvgMaxPool2d, self).__init__() + self.output_size = output_size + + def forward(self, x): + return adaptive_avgmax_pool2d(x, self.output_size) + +class AdaptiveCatAvgMaxPool2d(nn.Module): + + def __init__(self, output_size: _int_tuple_2_t=1): + super(AdaptiveCatAvgMaxPool2d, self).__init__() + self.output_size = output_size + + def forward(self, x): + return adaptive_catavgmax_pool2d(x, self.output_size) + +class SelectAdaptivePool2d(nn.Module): + + def __init__(self, output_size: _int_tuple_2_t=1, pool_type: str='fast', flatten: bool=False, input_fmt: str='NCHW'): + super(SelectAdaptivePool2d, self).__init__() + assert input_fmt in ('NCHW', 'NHWC') + self.pool_type = pool_type or '' + pool_type = pool_type.lower() + if not pool_type: + self.pool = nn.Identity() + self.flatten = nn.Flatten(1) if flatten else nn.Identity() + elif pool_type.startswith('fast') or input_fmt != 'NCHW': + assert output_size == 1, 'Fast pooling and non NCHW input formats require output_size == 1.' + if pool_type.endswith('catavgmax'): + self.pool = FastAdaptiveCatAvgMaxPool(flatten, input_fmt=input_fmt) + elif pool_type.endswith('avgmax'): + self.pool = FastAdaptiveAvgMaxPool(flatten, input_fmt=input_fmt) + elif pool_type.endswith('max'): + self.pool = FastAdaptiveMaxPool(flatten, input_fmt=input_fmt) + elif pool_type == 'fast' or pool_type.endswith('avg'): + self.pool = FastAdaptiveAvgPool(flatten, input_fmt=input_fmt) + else: + assert False, 'Invalid pool type: %s' % pool_type + self.flatten = nn.Identity() + else: + assert input_fmt == 'NCHW' + if pool_type == 'avgmax': + self.pool = AdaptiveAvgMaxPool2d(output_size) + elif pool_type == 'catavgmax': + self.pool = AdaptiveCatAvgMaxPool2d(output_size) + elif pool_type == 'max': + self.pool = nn.AdaptiveMaxPool2d(output_size) + elif pool_type == 'avg': + self.pool = nn.AdaptiveAvgPool2d(output_size) + else: + assert False, 'Invalid pool type: %s' % pool_type + self.flatten = nn.Flatten(1) if flatten else nn.Identity() + + def is_identity(self): + return not self.pool_type + + def forward(self, x): + x = self.pool(x) + x = self.flatten(x) + return x + + def feat_mult(self): + return adaptive_pool_feat_mult(self.pool_type) + + def __repr__(self): + return self.__class__.__name__ + '(' + 'pool_type=' + self.pool_type + ', flatten=' + str(self.flatten) + ')' + +# File: pytorch-image-models-main/timm/layers/attention2d.py +from typing import List, Optional, Union +import torch +from torch import nn as nn +from torch.nn import functional as F +from .config import use_fused_attn +from .create_conv2d import create_conv2d +from .helpers import to_2tuple +from .pool2d_same import create_pool2d + +class MultiQueryAttentionV2(nn.Module): + + def __init__(self, dim: int, dim_out: Optional[int]=None, num_heads: int=8, key_dim: int=64, value_dim: int=64, attn_drop: float=0.0, proj_drop: float=0.0): + super().__init__() + dim_out = dim_out or dim + self.num_heads = num_heads + self.key_dim = key_dim + self.value_dim = value_dim + self.scale = key_dim ** (-0.5) + self.query_proj = nn.Parameter(torch.randn([self.num_heads, self.key_dim, dim])) + self.key_proj = nn.Parameter(torch.randn([dim, self.key_dim])) + self.value_proj = nn.Parameter(torch.randn([dim, self.value_dim])) + self.attn_drop = nn.Dropout(attn_drop) + self.out_proj = nn.Parameter(torch.randn([dim_out, self.num_heads, self.value_dim])) + self.proj_drop = nn.Dropout(proj_drop) + + def _reshape_input(self, t): + s = t.shape + return t.reshape(s[0], s[1], -1).transpose(1, 2) + + def forward(self, x, m: Optional[torch.Tensor]=None): + s = x.shape + m = m or x + reshaped_x = self._reshape_input(x) + reshaped_m = self._reshape_input(m) + q = torch.einsum('bnd,hkd->bnhk', reshaped_x, self.query_proj) + k = torch.einsum('bmd,dk->bmk', reshaped_m, self.key_proj) + attn = torch.einsum('bnhk,bmk->bnhm', q, k) + attn = attn.softmax(dim=-1) + attn = self.attn_drop(attn) + v = torch.einsum('bmd,dv->bmv', reshaped_m, self.value_proj) + o = torch.einsum('bnhm,bmv->bnhv', attn, v) + result = torch.einsum('bnhv,dhv->bnd', o, self.out_proj) + result = self.proj_drop(result) + return result.reshape(s) + +class MultiQueryAttention2d(nn.Module): + fused_attn: torch.jit.Final[bool] + + def __init__(self, dim: int, dim_out: Optional[int]=None, num_heads: int=8, key_dim: Optional[int]=None, value_dim: Optional[int]=None, query_strides: int=1, kv_stride: int=1, dw_kernel_size: int=3, dilation: int=1, padding: Union[str, int, List[int]]='', attn_drop: float=0.0, proj_drop: float=0.0, norm_layer: nn.Module=nn.BatchNorm2d, use_bias: bool=False): + super().__init__() + dim_out = dim_out or dim + self.num_heads = num_heads + self.key_dim = key_dim or dim // num_heads + self.value_dim = value_dim or dim // num_heads + self.query_strides = to_2tuple(query_strides) + self.kv_stride = kv_stride + self.has_query_strides = any([s > 1 for s in self.query_strides]) + self.scale = self.key_dim ** (-0.5) + self.fused_attn = use_fused_attn() + self.drop = attn_drop + self.query = nn.Sequential() + if self.has_query_strides: + if padding == 'same': + self.query.add_module('down_pool', create_pool2d('avg', kernel_size=self.query_strides, padding='same')) + else: + self.query.add_module('down_pool', nn.AvgPool2d(kernel_size=query_strides)) + self.query.add_module('norm', norm_layer(dim)) + self.query.add_module('proj', create_conv2d(dim, self.num_heads * self.key_dim, kernel_size=1, bias=use_bias)) + self.key = nn.Sequential() + if kv_stride > 1: + self.key.add_module('down_conv', create_conv2d(dim, dim, kernel_size=dw_kernel_size, stride=kv_stride, dilation=dilation, padding=padding, depthwise=True)) + self.key.add_module('norm', norm_layer(dim)) + self.key.add_module('proj', create_conv2d(dim, self.key_dim, kernel_size=1, padding=padding, bias=use_bias)) + self.value = nn.Sequential() + if kv_stride > 1: + self.value.add_module('down_conv', create_conv2d(dim, dim, kernel_size=dw_kernel_size, stride=kv_stride, dilation=dilation, padding=padding, depthwise=True)) + self.value.add_module('norm', norm_layer(dim)) + self.value.add_module('proj', create_conv2d(dim, self.value_dim, kernel_size=1, bias=use_bias)) + self.attn_drop = nn.Dropout(attn_drop) + self.output = nn.Sequential() + if self.has_query_strides: + self.output.add_module('upsample', nn.Upsample(scale_factor=self.query_strides, mode='bilinear', align_corners=False)) + self.output.add_module('proj', create_conv2d(self.value_dim * self.num_heads, dim_out, kernel_size=1, bias=use_bias)) + self.output.add_module('drop', nn.Dropout(proj_drop)) + self.einsum = False + + def init_weights(self): + nn.init.xavier_uniform_(self.query.proj.weight) + nn.init.xavier_uniform_(self.key.proj.weight) + nn.init.xavier_uniform_(self.value.proj.weight) + if self.kv_stride > 1: + nn.init.xavier_uniform_(self.key.down_conv.weight) + nn.init.xavier_uniform_(self.value.down_conv.weight) + nn.init.xavier_uniform_(self.output.proj.weight) + + def _reshape_input(self, t: torch.Tensor): + s = t.shape + t = t.reshape(s[0], s[1], -1).transpose(1, 2) + if self.einsum: + return t + else: + return t.unsqueeze(1).contiguous() + + def _reshape_projected_query(self, t: torch.Tensor, num_heads: int, key_dim: int): + s = t.shape + t = t.reshape(s[0], num_heads, key_dim, -1) + if self.einsum: + return t.permute(0, 3, 1, 2).contiguous() + else: + return t.transpose(-1, -2).contiguous() + + def _reshape_output(self, t: torch.Tensor, num_heads: int, h_px: int, w_px: int): + s = t.shape + feat_dim = s[-1] * num_heads + if not self.einsum: + t = t.transpose(1, 2) + return t.reshape(s[0], h_px, w_px, feat_dim).permute(0, 3, 1, 2).contiguous() + + def forward(self, x, attn_mask: Optional[torch.Tensor]=None): + (B, C, H, W) = s = x.shape + q = self.query(x) + q = self._reshape_projected_query(q, self.num_heads, self.key_dim) + k = self.key(x) + k = self._reshape_input(k) + v = self.value(x) + v = self._reshape_input(v) + if self.einsum: + attn = torch.einsum('blhk,bpk->blhp', q, k) * self.scale + if attn_mask is not None: + attn = attn + attn_mask + attn = attn.softmax(dim=-1) + attn = self.attn_drop(attn) + o = torch.einsum('blhp,bpk->blhk', attn, v) + elif self.fused_attn: + o = F.scaled_dot_product_attention(q, k, v, attn_mask=attn_mask, dropout_p=self.attn_drop.p if self.training else 0.0) + else: + q = q * self.scale + attn = q @ k.transpose(-1, -2) + if attn_mask is not None: + attn = attn + attn_mask + attn = attn.softmax(dim=-1) + attn = self.attn_drop(attn) + o = attn @ v + o = self._reshape_output(o, self.num_heads, H // self.query_strides[0], W // self.query_strides[1]) + x = self.output(o) + return x + +class Attention2d(nn.Module): + fused_attn: torch.jit.Final[bool] + '' + + def __init__(self, dim: int, dim_out: Optional[int]=None, num_heads: int=32, bias: bool=True, expand_first: bool=False, head_first: bool=False, attn_drop: float=0.0, proj_drop: float=0.0): + super().__init__() + dim_out = dim_out or dim + dim_attn = dim_out if expand_first else dim + self.num_heads = num_heads + self.dim_head = dim_attn // num_heads + self.head_first = head_first + self.scale = num_heads ** (-0.5) + self.fused_attn = use_fused_attn() + self.qkv = nn.Conv2d(dim, dim_attn * 3, 1, bias=bias) + self.attn_drop = nn.Dropout(attn_drop) + self.proj = nn.Conv2d(dim_attn, dim_out, 1, bias=bias) + self.proj_drop = nn.Dropout(proj_drop) + + def forward(self, x, attn_mask: Optional[torch.Tensor]=None): + (B, C, H, W) = x.shape + if self.head_first: + (q, k, v) = self.qkv(x).view(B, self.num_heads, self.dim_head * 3, -1).chunk(3, dim=2) + else: + (q, k, v) = self.qkv(x).reshape(B, 3, self.num_heads, self.dim_head, -1).unbind(1) + if self.fused_attn: + x = torch.nn.functional.scaled_dot_product_attention(q.transpose(-1, -2).contiguous(), k.transpose(-1, -2).contiguous(), v.transpose(-1, -2).contiguous(), attn_mask=attn_mask, dropout_p=self.attn_drop.p if self.training else 0.0).transpose(-1, -2).reshape(B, -1, H, W) + else: + q = q * self.scale + attn = q.transpose(-2, -1) @ k + if attn_mask is not None: + attn = attn + attn_mask + attn = attn.softmax(dim=-1) + attn = self.attn_drop(attn) + x = (v @ attn.transpose(-2, -1)).view(B, -1, H, W) + x = self.proj(x) + x = self.proj_drop(x) + return x + +# File: pytorch-image-models-main/timm/layers/attention_pool.py +from typing import Optional +import torch +import torch.nn as nn +import torch.nn.functional as F +from .config import use_fused_attn +from .mlp import Mlp +from .weight_init import trunc_normal_tf_ + +class AttentionPoolLatent(nn.Module): + fused_attn: torch.jit.Final[bool] + + def __init__(self, in_features: int, out_features: int=None, embed_dim: int=None, num_heads: int=8, feat_size: Optional[int]=None, mlp_ratio: float=4.0, qkv_bias: bool=True, qk_norm: bool=False, latent_len: int=1, latent_dim: int=None, pos_embed: str='', pool_type: str='token', norm_layer: Optional[nn.Module]=None, drop: float=0.0): + super().__init__() + embed_dim = embed_dim or in_features + out_features = out_features or in_features + assert embed_dim % num_heads == 0 + self.num_heads = num_heads + self.head_dim = embed_dim // num_heads + self.feat_size = feat_size + self.scale = self.head_dim ** (-0.5) + self.pool = pool_type + self.fused_attn = use_fused_attn() + if pos_embed == 'abs': + assert feat_size is not None + self.pos_embed = nn.Parameter(torch.zeros(feat_size, in_features)) + else: + self.pos_embed = None + self.latent_dim = latent_dim or embed_dim + self.latent_len = latent_len + self.latent = nn.Parameter(torch.zeros(1, self.latent_len, embed_dim)) + self.q = nn.Linear(embed_dim, embed_dim, bias=qkv_bias) + self.kv = nn.Linear(embed_dim, embed_dim * 2, bias=qkv_bias) + self.q_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity() + self.k_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity() + self.proj = nn.Linear(embed_dim, embed_dim) + self.proj_drop = nn.Dropout(drop) + self.norm = norm_layer(out_features) if norm_layer is not None else nn.Identity() + self.mlp = Mlp(embed_dim, int(embed_dim * mlp_ratio)) + self.init_weights() + + def init_weights(self): + if self.pos_embed is not None: + trunc_normal_tf_(self.pos_embed, std=self.pos_embed.shape[1] ** (-0.5)) + trunc_normal_tf_(self.latent, std=self.latent_dim ** (-0.5)) + + def forward(self, x): + (B, N, C) = x.shape + if self.pos_embed is not None: + x = x + self.pos_embed.unsqueeze(0).to(x.dtype) + q_latent = self.latent.expand(B, -1, -1) + q = self.q(q_latent).reshape(B, self.latent_len, self.num_heads, self.head_dim).transpose(1, 2) + kv = self.kv(x).reshape(B, N, 2, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4) + (k, v) = kv.unbind(0) + (q, k) = (self.q_norm(q), self.k_norm(k)) + if self.fused_attn: + x = F.scaled_dot_product_attention(q, k, v) + else: + q = q * self.scale + attn = q @ k.transpose(-2, -1) + attn = attn.softmax(dim=-1) + x = attn @ v + x = x.transpose(1, 2).reshape(B, self.latent_len, C) + x = self.proj(x) + x = self.proj_drop(x) + x = x + self.mlp(self.norm(x)) + if self.pool == 'token': + x = x[:, 0] + elif self.pool == 'avg': + x = x.mean(1) + return x + +# File: pytorch-image-models-main/timm/layers/attention_pool2d.py +"""""" +from typing import Optional, Union, Tuple +import torch +import torch.nn as nn +from .config import use_fused_attn +from .helpers import to_2tuple +from .pos_embed import resample_abs_pos_embed +from .pos_embed_sincos import apply_rot_embed, RotaryEmbedding +from .weight_init import trunc_normal_ + +class RotAttentionPool2d(nn.Module): + fused_attn: torch.jit.Final[bool] + + def __init__(self, in_features: int, out_features: Optional[int]=None, ref_feat_size: Union[int, Tuple[int, int]]=7, embed_dim: Optional[int]=None, head_dim: Optional[int]=64, num_heads: Optional[int]=None, qkv_bias: bool=True, qkv_separate: bool=False, pool_type: str='token', class_token: bool=False, drop_rate: float=0.0): + super().__init__() + assert pool_type in ('', 'token') + self.embed_dim = embed_dim = embed_dim or in_features + self.in_features = in_features + self.out_features = out_features or in_features + ref_feat_size = to_2tuple(ref_feat_size) + if num_heads is not None: + assert embed_dim % num_heads == 0 + head_dim = embed_dim // num_heads + else: + assert embed_dim % head_dim == 0 + num_heads = embed_dim // head_dim + self.num_heads = num_heads + self.head_dim = head_dim + self.pool_type = pool_type.lower() + self.scale = self.head_dim ** (-0.5) + self.fused_attn = use_fused_attn() + if class_token: + self.cls_token = nn.Parameter(torch.zeros(1, embed_dim)) + else: + self.cls_token = None + if qkv_separate: + self.q = nn.Linear(in_features, embed_dim, bias=qkv_bias) + self.k = nn.Linear(in_features, embed_dim, bias=qkv_bias) + self.v = nn.Linear(in_features, embed_dim, bias=qkv_bias) + self.qkv = None + else: + self.qkv = nn.Linear(in_features, embed_dim * 3, bias=qkv_bias) + self.drop = nn.Dropout(drop_rate) + self.proj = nn.Linear(embed_dim, self.out_features) + self.pos_embed = RotaryEmbedding(self.head_dim, in_pixels=False, ref_feat_shape=ref_feat_size) + + def init_weights(self, zero_init_last: bool=False): + if self.qkv is None: + in_features = self.q.in_features + trunc_normal_(self.q.weight, std=in_features ** (-0.5)) + nn.init.zeros_(self.q.bias) + trunc_normal_(self.k.weight, std=in_features ** (-0.5)) + nn.init.zeros_(self.k.bias) + trunc_normal_(self.v.weight, std=in_features ** (-0.5)) + nn.init.zeros_(self.v.bias) + else: + in_features = self.qkv.in_features + trunc_normal_(self.qkv.weight, std=in_features ** (-0.5)) + nn.init.zeros_(self.qkv.bias) + + def reset(self, num_classes: Optional[int]=None, pool_type: Optional[str]=None): + if pool_type is not None: + assert pool_type in ('', 'token') + self.pool_type = pool_type + if num_classes is not None: + self.proj = nn.Linear(self.in_features, num_classes) if num_classes > 0 else nn.Identity() + self.out_features = num_classes if num_classes > 0 else self.embed_dim + + def _pool(self, x: torch.Tensor, H: int, W: int) -> torch.Tensor: + if self.pool_type == 'token': + x = x[:, 0] + else: + x = x[:, 1:].reshape(x.shape[0], H, W, -1).permute(0, 3, 1, 2) + return x + + def forward(self, x, pre_logits: bool=False): + (B, _, H, W) = x.shape + N = H * W + x = x.flatten(2).transpose(1, 2) + if self.cls_token is None: + x = torch.cat([x.mean(1, keepdim=True), x], dim=1) + else: + x = torch.cat([self.cls_token.expand(x.shape[0], -1, -1), x], dim=1) + if self.qkv is None: + q = self.q(x).reshape(B, N + 1, self.num_heads, self.head_dim).transpose(1, 2) + k = self.k(x).reshape(B, N + 1, self.num_heads, self.head_dim).transpose(1, 2) + v = self.v(x).reshape(B, N + 1, self.num_heads, self.head_dim).transpose(1, 2) + else: + x = self.qkv(x).reshape(B, N + 1, 3, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4) + (q, k, v) = x.unbind(0) + (rse, rce) = self.pos_embed.get_embed((H, W)) + q = torch.cat([q[:, :, :1, :], apply_rot_embed(q[:, :, 1:, :], rse, rce)], dim=2).type_as(v) + k = torch.cat([k[:, :, :1, :], apply_rot_embed(k[:, :, 1:, :], rse, rce)], dim=2).type_as(v) + if self.fused_attn: + x = nn.functional.scaled_dot_product_attention(q, k, v) + else: + q = q * self.scale + attn = q @ k.transpose(-2, -1) + attn = attn.softmax(dim=-1) + x = attn @ v + x = x.transpose(1, 2).reshape(B, N + 1, -1) + x = self.drop(x) + if pre_logits: + x = self._pool(x, H, W) + return x + x = self.proj(x) + x = self._pool(x, H, W) + return x + +class AttentionPool2d(nn.Module): + fused_attn: torch.jit.Final[bool] + + def __init__(self, in_features: int, feat_size: Union[int, Tuple[int, int]]=7, out_features: Optional[int]=None, embed_dim: Optional[int]=None, head_dim: Optional[int]=64, num_heads: Optional[int]=None, qkv_bias: bool=True, qkv_separate: bool=False, pool_type: str='token', class_token: bool=False, drop_rate: float=0.0): + super().__init__() + assert pool_type in ('', 'token') + self.embed_dim = embed_dim = embed_dim or in_features + self.in_features = in_features + self.out_features = out_features or in_features + if num_heads is not None: + assert embed_dim % num_heads == 0 + head_dim = embed_dim // num_heads + else: + assert embed_dim % head_dim == 0 + num_heads = embed_dim // head_dim + self.feat_size = to_2tuple(feat_size) + self.seq_len = self.feat_size[0] * self.feat_size[1] + self.num_heads = num_heads + self.head_dim = head_dim + self.pool_type = pool_type + self.scale = self.head_dim ** (-0.5) + self.fused_attn = use_fused_attn() + if class_token: + self.cls_token = nn.Parameter(torch.zeros(1, embed_dim)) + else: + self.cls_token = None + if qkv_separate: + self.q = nn.Linear(in_features, embed_dim, bias=qkv_bias) + self.k = nn.Linear(in_features, embed_dim, bias=qkv_bias) + self.v = nn.Linear(in_features, embed_dim, bias=qkv_bias) + self.qkv = None + else: + self.q = self.k = self.v = None + self.qkv = nn.Linear(in_features, embed_dim * 3, bias=qkv_bias) + self.drop = nn.Dropout(drop_rate) + self.proj = nn.Linear(embed_dim, self.out_features) + self.pos_embed = nn.Parameter(torch.zeros(self.seq_len + 1, in_features)) + self.init_weights() + + def init_weights(self, zero_init_last: bool=False): + if self.qkv is None: + in_features = self.q.in_features + trunc_normal_(self.q.weight, std=in_features ** (-0.5)) + nn.init.zeros_(self.q.bias) + trunc_normal_(self.k.weight, std=in_features ** (-0.5)) + nn.init.zeros_(self.k.bias) + trunc_normal_(self.v.weight, std=in_features ** (-0.5)) + nn.init.zeros_(self.v.bias) + else: + in_features = self.qkv.in_features + trunc_normal_(self.qkv.weight, std=in_features ** (-0.5)) + nn.init.zeros_(self.qkv.bias) + trunc_normal_(self.pos_embed, std=in_features ** (-0.5)) + + def reset(self, num_classes: Optional[int]=None, pool_type: Optional[str]=None): + if pool_type is not None: + assert pool_type in ('', 'token') + self.pool_type = pool_type + if num_classes is not None: + self.proj = nn.Linear(self.in_features, num_classes) if num_classes > 0 else nn.Identity() + self.out_features = num_classes if num_classes > 0 else self.embed_dim + + def _pool(self, x: torch.Tensor, H: int, W: int) -> torch.Tensor: + if self.pool_type == 'token': + x = x[:, 0] + else: + x = x[:, 1:].reshape(x.shape[0], H, W, -1).permute(0, 3, 1, 2) + return x + + def forward(self, x, pre_logits: bool=False): + (B, _, H, W) = x.shape + N = H * W + x = x.flatten(2).transpose(1, 2) + if self.cls_token is None: + x = torch.cat([x.mean(1, keepdim=True), x], dim=1) + else: + x = torch.cat([self.cls_token.expand(x.shape[0], -1, -1), x], dim=1) + pos_embed = resample_abs_pos_embed(self.pos_embed.unsqueeze(0), (H, W), num_prefix_tokens=1) + x = x + pos_embed + if self.qkv is None: + q = self.q(x).reshape(B, N + 1, self.num_heads, self.head_dim).transpose(1, 2) + k = self.k(x).reshape(B, N + 1, self.num_heads, self.head_dim).transpose(1, 2) + v = self.v(x).reshape(B, N + 1, self.num_heads, self.head_dim).transpose(1, 2) + else: + x = self.qkv(x).reshape(B, -1, 3, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4) + (q, k, v) = x.unbind(0) + if self.fused_attn: + x = nn.functional.scaled_dot_product_attention(q, k, v) + else: + q = q * self.scale + attn = q @ k.transpose(-2, -1) + attn = attn.softmax(dim=-1) + x = attn @ v + x = x.transpose(1, 2).reshape(B, N + 1, -1) + x = self.drop(x) + if pre_logits: + x = self._pool(x, H, W) + return x + x = self.proj(x) + x = self._pool(x, H, W) + return x + +# File: pytorch-image-models-main/timm/layers/blur_pool.py +"""""" +from functools import partial +from typing import Optional, Type +import torch +import torch.nn as nn +import torch.nn.functional as F +import numpy as np +from .padding import get_padding +from .typing import LayerType + +class BlurPool2d(nn.Module): + + def __init__(self, channels: Optional[int]=None, filt_size: int=3, stride: int=2, pad_mode: str='reflect') -> None: + super(BlurPool2d, self).__init__() + assert filt_size > 1 + self.channels = channels + self.filt_size = filt_size + self.stride = stride + self.pad_mode = pad_mode + self.padding = [get_padding(filt_size, stride, dilation=1)] * 4 + coeffs = torch.tensor((np.poly1d((0.5, 0.5)) ** (self.filt_size - 1)).coeffs.astype(np.float32)) + blur_filter = (coeffs[:, None] * coeffs[None, :])[None, None, :, :] + if channels is not None: + blur_filter = blur_filter.repeat(self.channels, 1, 1, 1) + self.register_buffer('filt', blur_filter, persistent=False) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + x = F.pad(x, self.padding, mode=self.pad_mode) + if self.channels is None: + channels = x.shape[1] + weight = self.filt.expand(channels, 1, self.filt_size, self.filt_size) + else: + channels = self.channels + weight = self.filt + return F.conv2d(x, weight, stride=self.stride, groups=channels) + +def create_aa(aa_layer: LayerType, channels: Optional[int]=None, stride: int=2, enable: bool=True, noop: Optional[Type[nn.Module]]=nn.Identity) -> nn.Module: + if not aa_layer or not enable: + return noop() if noop is not None else None + if isinstance(aa_layer, str): + aa_layer = aa_layer.lower().replace('_', '').replace('-', '') + if aa_layer == 'avg' or aa_layer == 'avgpool': + aa_layer = nn.AvgPool2d + elif aa_layer == 'blur' or aa_layer == 'blurpool': + aa_layer = BlurPool2d + elif aa_layer == 'blurpc': + aa_layer = partial(BlurPool2d, pad_mode='constant') + else: + assert False, f'Unknown anti-aliasing layer ({aa_layer}).' + try: + return aa_layer(channels=channels, stride=stride) + except TypeError as e: + return aa_layer(stride) + +# File: pytorch-image-models-main/timm/layers/bottleneck_attn.py +"""""" +from typing import List +import torch +import torch.nn as nn +import torch.nn.functional as F +from .helpers import to_2tuple, make_divisible +from .weight_init import trunc_normal_ +from .trace_utils import _assert + +def rel_logits_1d(q, rel_k, permute_mask: List[int]): + (B, H, W, dim) = q.shape + x = q @ rel_k.transpose(-1, -2) + x = x.reshape(-1, W, 2 * W - 1) + x_pad = F.pad(x, [0, 1]).flatten(1) + x_pad = F.pad(x_pad, [0, W - 1]) + x_pad = x_pad.reshape(-1, W + 1, 2 * W - 1) + x = x_pad[:, :W, W - 1:] + x = x.reshape(B, H, 1, W, W).expand(-1, -1, H, -1, -1) + return x.permute(permute_mask) + +class PosEmbedRel(nn.Module): + + def __init__(self, feat_size, dim_head, scale): + super().__init__() + (self.height, self.width) = to_2tuple(feat_size) + self.dim_head = dim_head + self.height_rel = nn.Parameter(torch.randn(self.height * 2 - 1, dim_head) * scale) + self.width_rel = nn.Parameter(torch.randn(self.width * 2 - 1, dim_head) * scale) + + def forward(self, q): + (B, HW, _) = q.shape + q = q.reshape(B, self.height, self.width, -1) + rel_logits_w = rel_logits_1d(q, self.width_rel, permute_mask=(0, 1, 3, 2, 4)) + q = q.transpose(1, 2) + rel_logits_h = rel_logits_1d(q, self.height_rel, permute_mask=(0, 3, 1, 4, 2)) + rel_logits = rel_logits_h + rel_logits_w + rel_logits = rel_logits.reshape(B, HW, HW) + return rel_logits + +class BottleneckAttn(nn.Module): + + def __init__(self, dim, dim_out=None, feat_size=None, stride=1, num_heads=4, dim_head=None, qk_ratio=1.0, qkv_bias=False, scale_pos_embed=False): + super().__init__() + assert feat_size is not None, 'A concrete feature size matching expected input (H, W) is required' + dim_out = dim_out or dim + assert dim_out % num_heads == 0 + self.num_heads = num_heads + self.dim_head_qk = dim_head or make_divisible(dim_out * qk_ratio, divisor=8) // num_heads + self.dim_head_v = dim_out // self.num_heads + self.dim_out_qk = num_heads * self.dim_head_qk + self.dim_out_v = num_heads * self.dim_head_v + self.scale = self.dim_head_qk ** (-0.5) + self.scale_pos_embed = scale_pos_embed + self.qkv = nn.Conv2d(dim, self.dim_out_qk * 2 + self.dim_out_v, 1, bias=qkv_bias) + self.pos_embed = PosEmbedRel(feat_size, dim_head=self.dim_head_qk, scale=self.scale) + self.pool = nn.AvgPool2d(2, 2) if stride == 2 else nn.Identity() + self.reset_parameters() + + def reset_parameters(self): + trunc_normal_(self.qkv.weight, std=self.qkv.weight.shape[1] ** (-0.5)) + trunc_normal_(self.pos_embed.height_rel, std=self.scale) + trunc_normal_(self.pos_embed.width_rel, std=self.scale) + + def forward(self, x): + (B, C, H, W) = x.shape + _assert(H == self.pos_embed.height, '') + _assert(W == self.pos_embed.width, '') + x = self.qkv(x) + (q, k, v) = torch.split(x, [self.dim_out_qk, self.dim_out_qk, self.dim_out_v], dim=1) + q = q.reshape(B * self.num_heads, self.dim_head_qk, -1).transpose(-1, -2) + k = k.reshape(B * self.num_heads, self.dim_head_qk, -1) + v = v.reshape(B * self.num_heads, self.dim_head_v, -1).transpose(-1, -2) + if self.scale_pos_embed: + attn = (q @ k + self.pos_embed(q)) * self.scale + else: + attn = q @ k * self.scale + self.pos_embed(q) + attn = attn.softmax(dim=-1) + out = (attn @ v).transpose(-1, -2).reshape(B, self.dim_out_v, H, W) + out = self.pool(out) + return out + +# File: pytorch-image-models-main/timm/layers/cbam.py +"""""" +import torch +from torch import nn as nn +import torch.nn.functional as F +from .conv_bn_act import ConvNormAct +from .create_act import create_act_layer, get_act_layer +from .helpers import make_divisible + +class ChannelAttn(nn.Module): + + def __init__(self, channels, rd_ratio=1.0 / 16, rd_channels=None, rd_divisor=1, act_layer=nn.ReLU, gate_layer='sigmoid', mlp_bias=False): + super(ChannelAttn, self).__init__() + if not rd_channels: + rd_channels = make_divisible(channels * rd_ratio, rd_divisor, round_limit=0.0) + self.fc1 = nn.Conv2d(channels, rd_channels, 1, bias=mlp_bias) + self.act = act_layer(inplace=True) + self.fc2 = nn.Conv2d(rd_channels, channels, 1, bias=mlp_bias) + self.gate = create_act_layer(gate_layer) + + def forward(self, x): + x_avg = self.fc2(self.act(self.fc1(x.mean((2, 3), keepdim=True)))) + x_max = self.fc2(self.act(self.fc1(x.amax((2, 3), keepdim=True)))) + return x * self.gate(x_avg + x_max) + +class LightChannelAttn(ChannelAttn): + + def __init__(self, channels, rd_ratio=1.0 / 16, rd_channels=None, rd_divisor=1, act_layer=nn.ReLU, gate_layer='sigmoid', mlp_bias=False): + super(LightChannelAttn, self).__init__(channels, rd_ratio, rd_channels, rd_divisor, act_layer, gate_layer, mlp_bias) + + def forward(self, x): + x_pool = 0.5 * x.mean((2, 3), keepdim=True) + 0.5 * x.amax((2, 3), keepdim=True) + x_attn = self.fc2(self.act(self.fc1(x_pool))) + return x * F.sigmoid(x_attn) + +class SpatialAttn(nn.Module): + + def __init__(self, kernel_size=7, gate_layer='sigmoid'): + super(SpatialAttn, self).__init__() + self.conv = ConvNormAct(2, 1, kernel_size, apply_act=False) + self.gate = create_act_layer(gate_layer) + + def forward(self, x): + x_attn = torch.cat([x.mean(dim=1, keepdim=True), x.amax(dim=1, keepdim=True)], dim=1) + x_attn = self.conv(x_attn) + return x * self.gate(x_attn) + +class LightSpatialAttn(nn.Module): + + def __init__(self, kernel_size=7, gate_layer='sigmoid'): + super(LightSpatialAttn, self).__init__() + self.conv = ConvNormAct(1, 1, kernel_size, apply_act=False) + self.gate = create_act_layer(gate_layer) + + def forward(self, x): + x_attn = 0.5 * x.mean(dim=1, keepdim=True) + 0.5 * x.amax(dim=1, keepdim=True) + x_attn = self.conv(x_attn) + return x * self.gate(x_attn) + +class CbamModule(nn.Module): + + def __init__(self, channels, rd_ratio=1.0 / 16, rd_channels=None, rd_divisor=1, spatial_kernel_size=7, act_layer=nn.ReLU, gate_layer='sigmoid', mlp_bias=False): + super(CbamModule, self).__init__() + self.channel = ChannelAttn(channels, rd_ratio=rd_ratio, rd_channels=rd_channels, rd_divisor=rd_divisor, act_layer=act_layer, gate_layer=gate_layer, mlp_bias=mlp_bias) + self.spatial = SpatialAttn(spatial_kernel_size, gate_layer=gate_layer) + + def forward(self, x): + x = self.channel(x) + x = self.spatial(x) + return x + +class LightCbamModule(nn.Module): + + def __init__(self, channels, rd_ratio=1.0 / 16, rd_channels=None, rd_divisor=1, spatial_kernel_size=7, act_layer=nn.ReLU, gate_layer='sigmoid', mlp_bias=False): + super(LightCbamModule, self).__init__() + self.channel = LightChannelAttn(channels, rd_ratio=rd_ratio, rd_channels=rd_channels, rd_divisor=rd_divisor, act_layer=act_layer, gate_layer=gate_layer, mlp_bias=mlp_bias) + self.spatial = LightSpatialAttn(spatial_kernel_size) + + def forward(self, x): + x = self.channel(x) + x = self.spatial(x) + return x + +# File: pytorch-image-models-main/timm/layers/classifier.py +"""""" +from collections import OrderedDict +from functools import partial +from typing import Optional, Union, Callable +import torch +import torch.nn as nn +from torch.nn import functional as F +from .adaptive_avgmax_pool import SelectAdaptivePool2d +from .create_act import get_act_layer +from .create_norm import get_norm_layer + +def _create_pool(num_features: int, num_classes: int, pool_type: str='avg', use_conv: bool=False, input_fmt: Optional[str]=None): + flatten_in_pool = not use_conv + if not pool_type: + flatten_in_pool = False + global_pool = SelectAdaptivePool2d(pool_type=pool_type, flatten=flatten_in_pool, input_fmt=input_fmt) + num_pooled_features = num_features * global_pool.feat_mult() + return (global_pool, num_pooled_features) + +def _create_fc(num_features, num_classes, use_conv=False): + if num_classes <= 0: + fc = nn.Identity() + elif use_conv: + fc = nn.Conv2d(num_features, num_classes, 1, bias=True) + else: + fc = nn.Linear(num_features, num_classes, bias=True) + return fc + +def create_classifier(num_features: int, num_classes: int, pool_type: str='avg', use_conv: bool=False, input_fmt: str='NCHW', drop_rate: Optional[float]=None): + (global_pool, num_pooled_features) = _create_pool(num_features, num_classes, pool_type, use_conv=use_conv, input_fmt=input_fmt) + fc = _create_fc(num_pooled_features, num_classes, use_conv=use_conv) + if drop_rate is not None: + dropout = nn.Dropout(drop_rate) + return (global_pool, dropout, fc) + return (global_pool, fc) + +class ClassifierHead(nn.Module): + + def __init__(self, in_features: int, num_classes: int, pool_type: str='avg', drop_rate: float=0.0, use_conv: bool=False, input_fmt: str='NCHW'): + super(ClassifierHead, self).__init__() + self.in_features = in_features + self.use_conv = use_conv + self.input_fmt = input_fmt + (global_pool, fc) = create_classifier(in_features, num_classes, pool_type, use_conv=use_conv, input_fmt=input_fmt) + self.global_pool = global_pool + self.drop = nn.Dropout(drop_rate) + self.fc = fc + self.flatten = nn.Flatten(1) if use_conv and pool_type else nn.Identity() + + def reset(self, num_classes: int, pool_type: Optional[str]=None): + if pool_type is not None and pool_type != self.global_pool.pool_type: + (self.global_pool, self.fc) = create_classifier(self.in_features, num_classes, pool_type=pool_type, use_conv=self.use_conv, input_fmt=self.input_fmt) + self.flatten = nn.Flatten(1) if self.use_conv and pool_type else nn.Identity() + else: + num_pooled_features = self.in_features * self.global_pool.feat_mult() + self.fc = _create_fc(num_pooled_features, num_classes, use_conv=self.use_conv) + + def forward(self, x, pre_logits: bool=False): + x = self.global_pool(x) + x = self.drop(x) + if pre_logits: + return self.flatten(x) + x = self.fc(x) + return self.flatten(x) + +class NormMlpClassifierHead(nn.Module): + + def __init__(self, in_features: int, num_classes: int, hidden_size: Optional[int]=None, pool_type: str='avg', drop_rate: float=0.0, norm_layer: Union[str, Callable]='layernorm2d', act_layer: Union[str, Callable]='tanh'): + super().__init__() + self.in_features = in_features + self.hidden_size = hidden_size + self.num_features = in_features + self.use_conv = not pool_type + norm_layer = get_norm_layer(norm_layer) + act_layer = get_act_layer(act_layer) + linear_layer = partial(nn.Conv2d, kernel_size=1) if self.use_conv else nn.Linear + self.global_pool = SelectAdaptivePool2d(pool_type=pool_type) + self.norm = norm_layer(in_features) + self.flatten = nn.Flatten(1) if pool_type else nn.Identity() + if hidden_size: + self.pre_logits = nn.Sequential(OrderedDict([('fc', linear_layer(in_features, hidden_size)), ('act', act_layer())])) + self.num_features = hidden_size + else: + self.pre_logits = nn.Identity() + self.drop = nn.Dropout(drop_rate) + self.fc = linear_layer(self.num_features, num_classes) if num_classes > 0 else nn.Identity() + + def reset(self, num_classes: int, pool_type: Optional[str]=None): + if pool_type is not None: + self.global_pool = SelectAdaptivePool2d(pool_type=pool_type) + self.flatten = nn.Flatten(1) if pool_type else nn.Identity() + self.use_conv = self.global_pool.is_identity() + linear_layer = partial(nn.Conv2d, kernel_size=1) if self.use_conv else nn.Linear + if self.hidden_size: + if isinstance(self.pre_logits.fc, nn.Conv2d) and (not self.use_conv) or (isinstance(self.pre_logits.fc, nn.Linear) and self.use_conv): + with torch.no_grad(): + new_fc = linear_layer(self.in_features, self.hidden_size) + new_fc.weight.copy_(self.pre_logits.fc.weight.reshape(new_fc.weight.shape)) + new_fc.bias.copy_(self.pre_logits.fc.bias) + self.pre_logits.fc = new_fc + self.fc = linear_layer(self.num_features, num_classes) if num_classes > 0 else nn.Identity() + + def forward(self, x, pre_logits: bool=False): + x = self.global_pool(x) + x = self.norm(x) + x = self.flatten(x) + x = self.pre_logits(x) + x = self.drop(x) + if pre_logits: + return x + x = self.fc(x) + return x + +class ClNormMlpClassifierHead(nn.Module): + + def __init__(self, in_features: int, num_classes: int, hidden_size: Optional[int]=None, pool_type: str='avg', drop_rate: float=0.0, norm_layer: Union[str, Callable]='layernorm', act_layer: Union[str, Callable]='gelu', input_fmt: str='NHWC'): + super().__init__() + self.in_features = in_features + self.hidden_size = hidden_size + self.num_features = in_features + assert pool_type in ('', 'avg', 'max', 'avgmax') + self.pool_type = pool_type + assert input_fmt in ('NHWC', 'NLC') + self.pool_dim = 1 if input_fmt == 'NLC' else (1, 2) + norm_layer = get_norm_layer(norm_layer) + act_layer = get_act_layer(act_layer) + self.norm = norm_layer(in_features) + if hidden_size: + self.pre_logits = nn.Sequential(OrderedDict([('fc', nn.Linear(in_features, hidden_size)), ('act', act_layer())])) + self.num_features = hidden_size + else: + self.pre_logits = nn.Identity() + self.drop = nn.Dropout(drop_rate) + self.fc = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() + + def reset(self, num_classes: int, pool_type: Optional[str]=None, reset_other: bool=False): + if pool_type is not None: + self.pool_type = pool_type + if reset_other: + self.pre_logits = nn.Identity() + self.norm = nn.Identity() + self.fc = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() + + def _global_pool(self, x): + if self.pool_type: + if self.pool_type == 'avg': + x = x.mean(dim=self.pool_dim) + elif self.pool_type == 'max': + x = x.amax(dim=self.pool_dim) + elif self.pool_type == 'avgmax': + x = 0.5 * (x.amax(dim=self.pool_dim) + x.mean(dim=self.pool_dim)) + return x + + def forward(self, x, pre_logits: bool=False): + x = self._global_pool(x) + x = self.norm(x) + x = self.pre_logits(x) + x = self.drop(x) + if pre_logits: + return x + x = self.fc(x) + return x + +# File: pytorch-image-models-main/timm/layers/cond_conv2d.py +"""""" +import math +from functools import partial +import numpy as np +import torch +from torch import nn as nn +from torch.nn import functional as F +from .helpers import to_2tuple +from .conv2d_same import conv2d_same +from .padding import get_padding_value + +def get_condconv_initializer(initializer, num_experts, expert_shape): + + def condconv_initializer(weight): + num_params = np.prod(expert_shape) + if len(weight.shape) != 2 or weight.shape[0] != num_experts or weight.shape[1] != num_params: + raise ValueError('CondConv variables must have shape [num_experts, num_params]') + for i in range(num_experts): + initializer(weight[i].view(expert_shape)) + return condconv_initializer + +class CondConv2d(nn.Module): + __constants__ = ['in_channels', 'out_channels', 'dynamic_padding'] + + def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding='', dilation=1, groups=1, bias=False, num_experts=4): + super(CondConv2d, self).__init__() + self.in_channels = in_channels + self.out_channels = out_channels + self.kernel_size = to_2tuple(kernel_size) + self.stride = to_2tuple(stride) + (padding_val, is_padding_dynamic) = get_padding_value(padding, kernel_size, stride=stride, dilation=dilation) + self.dynamic_padding = is_padding_dynamic + self.padding = to_2tuple(padding_val) + self.dilation = to_2tuple(dilation) + self.groups = groups + self.num_experts = num_experts + self.weight_shape = (self.out_channels, self.in_channels // self.groups) + self.kernel_size + weight_num_param = 1 + for wd in self.weight_shape: + weight_num_param *= wd + self.weight = torch.nn.Parameter(torch.Tensor(self.num_experts, weight_num_param)) + if bias: + self.bias_shape = (self.out_channels,) + self.bias = torch.nn.Parameter(torch.Tensor(self.num_experts, self.out_channels)) + else: + self.register_parameter('bias', None) + self.reset_parameters() + + def reset_parameters(self): + init_weight = get_condconv_initializer(partial(nn.init.kaiming_uniform_, a=math.sqrt(5)), self.num_experts, self.weight_shape) + init_weight(self.weight) + if self.bias is not None: + fan_in = np.prod(self.weight_shape[1:]) + bound = 1 / math.sqrt(fan_in) + init_bias = get_condconv_initializer(partial(nn.init.uniform_, a=-bound, b=bound), self.num_experts, self.bias_shape) + init_bias(self.bias) + + def forward(self, x, routing_weights): + (B, C, H, W) = x.shape + weight = torch.matmul(routing_weights, self.weight) + new_weight_shape = (B * self.out_channels, self.in_channels // self.groups) + self.kernel_size + weight = weight.view(new_weight_shape) + bias = None + if self.bias is not None: + bias = torch.matmul(routing_weights, self.bias) + bias = bias.view(B * self.out_channels) + x = x.reshape(1, B * C, H, W) + if self.dynamic_padding: + out = conv2d_same(x, weight, bias, stride=self.stride, padding=self.padding, dilation=self.dilation, groups=self.groups * B) + else: + out = F.conv2d(x, weight, bias, stride=self.stride, padding=self.padding, dilation=self.dilation, groups=self.groups * B) + out = out.permute([1, 0, 2, 3]).view(B, self.out_channels, out.shape[-2], out.shape[-1]) + return out + +# File: pytorch-image-models-main/timm/layers/config.py +"""""" +import os +import warnings +from typing import Any, Optional +import torch +__all__ = ['is_exportable', 'is_scriptable', 'is_no_jit', 'use_fused_attn', 'set_exportable', 'set_scriptable', 'set_no_jit', 'set_layer_config', 'set_fused_attn'] +_NO_JIT = False +_NO_ACTIVATION_JIT = False +_EXPORTABLE = False +_SCRIPTABLE = False +_HAS_FUSED_ATTN = hasattr(torch.nn.functional, 'scaled_dot_product_attention') +if 'TIMM_FUSED_ATTN' in os.environ: + _USE_FUSED_ATTN = int(os.environ['TIMM_FUSED_ATTN']) +else: + _USE_FUSED_ATTN = 1 + +def is_no_jit(): + return _NO_JIT + +class set_no_jit: + + def __init__(self, mode: bool) -> None: + global _NO_JIT + self.prev = _NO_JIT + _NO_JIT = mode + + def __enter__(self) -> None: + pass + + def __exit__(self, *args: Any) -> bool: + global _NO_JIT + _NO_JIT = self.prev + return False + +def is_exportable(): + return _EXPORTABLE + +class set_exportable: + + def __init__(self, mode: bool) -> None: + global _EXPORTABLE + self.prev = _EXPORTABLE + _EXPORTABLE = mode + + def __enter__(self) -> None: + pass + + def __exit__(self, *args: Any) -> bool: + global _EXPORTABLE + _EXPORTABLE = self.prev + return False + +def is_scriptable(): + return _SCRIPTABLE + +class set_scriptable: + + def __init__(self, mode: bool) -> None: + global _SCRIPTABLE + self.prev = _SCRIPTABLE + _SCRIPTABLE = mode + + def __enter__(self) -> None: + pass + + def __exit__(self, *args: Any) -> bool: + global _SCRIPTABLE + _SCRIPTABLE = self.prev + return False + +class set_layer_config: + + def __init__(self, scriptable: Optional[bool]=None, exportable: Optional[bool]=None, no_jit: Optional[bool]=None, no_activation_jit: Optional[bool]=None): + global _SCRIPTABLE + global _EXPORTABLE + global _NO_JIT + global _NO_ACTIVATION_JIT + self.prev = (_SCRIPTABLE, _EXPORTABLE, _NO_JIT, _NO_ACTIVATION_JIT) + if scriptable is not None: + _SCRIPTABLE = scriptable + if exportable is not None: + _EXPORTABLE = exportable + if no_jit is not None: + _NO_JIT = no_jit + if no_activation_jit is not None: + _NO_ACTIVATION_JIT = no_activation_jit + + def __enter__(self) -> None: + pass + + def __exit__(self, *args: Any) -> bool: + global _SCRIPTABLE + global _EXPORTABLE + global _NO_JIT + global _NO_ACTIVATION_JIT + (_SCRIPTABLE, _EXPORTABLE, _NO_JIT, _NO_ACTIVATION_JIT) = self.prev + return False + +def use_fused_attn(experimental: bool=False) -> bool: + if not _HAS_FUSED_ATTN or _EXPORTABLE: + return False + if experimental: + return _USE_FUSED_ATTN > 1 + return _USE_FUSED_ATTN > 0 + +def set_fused_attn(enable: bool=True, experimental: bool=False): + global _USE_FUSED_ATTN + if not _HAS_FUSED_ATTN: + warnings.warn('This version of pytorch does not have F.scaled_dot_product_attention, fused_attn flag ignored.') + return + if experimental and enable: + _USE_FUSED_ATTN = 2 + elif enable: + _USE_FUSED_ATTN = 1 + else: + _USE_FUSED_ATTN = 0 + +# File: pytorch-image-models-main/timm/layers/conv2d_same.py +"""""" +import torch +import torch.nn as nn +import torch.nn.functional as F +from typing import Tuple, Optional +from .config import is_exportable, is_scriptable +from .padding import pad_same, pad_same_arg, get_padding_value +_USE_EXPORT_CONV = False + +def conv2d_same(x, weight: torch.Tensor, bias: Optional[torch.Tensor]=None, stride: Tuple[int, int]=(1, 1), padding: Tuple[int, int]=(0, 0), dilation: Tuple[int, int]=(1, 1), groups: int=1): + x = pad_same(x, weight.shape[-2:], stride, dilation) + return F.conv2d(x, weight, bias, stride, (0, 0), dilation, groups) + +class Conv2dSame(nn.Conv2d): + + def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True): + super(Conv2dSame, self).__init__(in_channels, out_channels, kernel_size, stride, 0, dilation, groups, bias) + + def forward(self, x): + return conv2d_same(x, self.weight, self.bias, self.stride, self.padding, self.dilation, self.groups) + +class Conv2dSameExport(nn.Conv2d): + + def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True): + super(Conv2dSameExport, self).__init__(in_channels, out_channels, kernel_size, stride, 0, dilation, groups, bias) + self.pad = None + self.pad_input_size = (0, 0) + + def forward(self, x): + input_size = x.size()[-2:] + if self.pad is None: + pad_arg = pad_same_arg(input_size, self.weight.size()[-2:], self.stride, self.dilation) + self.pad = nn.ZeroPad2d(pad_arg) + self.pad_input_size = input_size + x = self.pad(x) + return F.conv2d(x, self.weight, self.bias, self.stride, self.padding, self.dilation, self.groups) + +def create_conv2d_pad(in_chs, out_chs, kernel_size, **kwargs): + padding = kwargs.pop('padding', '') + kwargs.setdefault('bias', False) + (padding, is_dynamic) = get_padding_value(padding, kernel_size, **kwargs) + if is_dynamic: + if _USE_EXPORT_CONV and is_exportable(): + assert not is_scriptable() + return Conv2dSameExport(in_chs, out_chs, kernel_size, **kwargs) + else: + return Conv2dSame(in_chs, out_chs, kernel_size, **kwargs) + else: + return nn.Conv2d(in_chs, out_chs, kernel_size, padding=padding, **kwargs) + +# File: pytorch-image-models-main/timm/layers/conv_bn_act.py +"""""" +from typing import Any, Dict, Optional, Type +from torch import nn as nn +from .typing import LayerType, PadType +from .blur_pool import create_aa +from .create_conv2d import create_conv2d +from .create_norm_act import get_norm_act_layer + +class ConvNormAct(nn.Module): + + def __init__(self, in_channels: int, out_channels: int, kernel_size: int=1, stride: int=1, padding: PadType='', dilation: int=1, groups: int=1, bias: bool=False, apply_norm: bool=True, apply_act: bool=True, norm_layer: LayerType=nn.BatchNorm2d, act_layer: Optional[LayerType]=nn.ReLU, aa_layer: Optional[LayerType]=None, drop_layer: Optional[Type[nn.Module]]=None, conv_kwargs: Optional[Dict[str, Any]]=None, norm_kwargs: Optional[Dict[str, Any]]=None, act_kwargs: Optional[Dict[str, Any]]=None): + super(ConvNormAct, self).__init__() + conv_kwargs = conv_kwargs or {} + norm_kwargs = norm_kwargs or {} + act_kwargs = act_kwargs or {} + use_aa = aa_layer is not None and stride > 1 + self.conv = create_conv2d(in_channels, out_channels, kernel_size, stride=1 if use_aa else stride, padding=padding, dilation=dilation, groups=groups, bias=bias, **conv_kwargs) + if apply_norm: + norm_act_layer = get_norm_act_layer(norm_layer, act_layer) + if drop_layer: + norm_kwargs['drop_layer'] = drop_layer + self.bn = norm_act_layer(out_channels, apply_act=apply_act, act_kwargs=act_kwargs, **norm_kwargs) + else: + self.bn = nn.Sequential() + if drop_layer: + norm_kwargs['drop_layer'] = drop_layer + self.bn.add_module('drop', drop_layer()) + self.aa = create_aa(aa_layer, out_channels, stride=stride, enable=use_aa, noop=None) + + @property + def in_channels(self): + return self.conv.in_channels + + @property + def out_channels(self): + return self.conv.out_channels + + def forward(self, x): + x = self.conv(x) + x = self.bn(x) + if self.aa is not None: + x = self.aa(x) + return x +ConvBnAct = ConvNormAct +ConvNormActAa = ConvNormAct + +# File: pytorch-image-models-main/timm/layers/create_act.py +"""""" +from typing import Union, Callable, Type +from .activations import * +from .activations_me import * +from .config import is_exportable, is_scriptable +_has_silu = 'silu' in dir(torch.nn.functional) +_has_hardswish = 'hardswish' in dir(torch.nn.functional) +_has_hardsigmoid = 'hardsigmoid' in dir(torch.nn.functional) +_has_mish = 'mish' in dir(torch.nn.functional) +_ACT_FN_DEFAULT = dict(silu=F.silu if _has_silu else swish, swish=F.silu if _has_silu else swish, mish=F.mish if _has_mish else mish, relu=F.relu, relu6=F.relu6, leaky_relu=F.leaky_relu, elu=F.elu, celu=F.celu, selu=F.selu, gelu=gelu, gelu_tanh=gelu_tanh, quick_gelu=quick_gelu, sigmoid=sigmoid, tanh=tanh, hard_sigmoid=F.hardsigmoid if _has_hardsigmoid else hard_sigmoid, hard_swish=F.hardswish if _has_hardswish else hard_swish, hard_mish=hard_mish) +_ACT_FN_ME = dict(silu=F.silu if _has_silu else swish_me, swish=F.silu if _has_silu else swish_me, mish=F.mish if _has_mish else mish_me, hard_sigmoid=F.hardsigmoid if _has_hardsigmoid else hard_sigmoid_me, hard_swish=F.hardswish if _has_hardswish else hard_swish_me, hard_mish=hard_mish_me) +_ACT_FNS = (_ACT_FN_ME, _ACT_FN_DEFAULT) +for a in _ACT_FNS: + a.setdefault('hardsigmoid', a.get('hard_sigmoid')) + a.setdefault('hardswish', a.get('hard_swish')) +_ACT_LAYER_DEFAULT = dict(silu=nn.SiLU if _has_silu else Swish, swish=nn.SiLU if _has_silu else Swish, mish=nn.Mish if _has_mish else Mish, relu=nn.ReLU, relu6=nn.ReLU6, leaky_relu=nn.LeakyReLU, elu=nn.ELU, prelu=PReLU, celu=nn.CELU, selu=nn.SELU, gelu=GELU, gelu_tanh=GELUTanh, quick_gelu=QuickGELU, sigmoid=Sigmoid, tanh=Tanh, hard_sigmoid=nn.Hardsigmoid if _has_hardsigmoid else HardSigmoid, hard_swish=nn.Hardswish if _has_hardswish else HardSwish, hard_mish=HardMish, identity=nn.Identity) +_ACT_LAYER_ME = dict(silu=nn.SiLU if _has_silu else SwishMe, swish=nn.SiLU if _has_silu else SwishMe, mish=nn.Mish if _has_mish else MishMe, hard_sigmoid=nn.Hardsigmoid if _has_hardsigmoid else HardSigmoidMe, hard_swish=nn.Hardswish if _has_hardswish else HardSwishMe, hard_mish=HardMishMe) +_ACT_LAYERS = (_ACT_LAYER_ME, _ACT_LAYER_DEFAULT) +for a in _ACT_LAYERS: + a.setdefault('hardsigmoid', a.get('hard_sigmoid')) + a.setdefault('hardswish', a.get('hard_swish')) + +def get_act_fn(name: Union[Callable, str]='relu'): + if not name: + return None + if isinstance(name, Callable): + return name + name = name.lower() + if not (is_exportable() or is_scriptable()): + if name in _ACT_FN_ME: + return _ACT_FN_ME[name] + return _ACT_FN_DEFAULT[name] + +def get_act_layer(name: Union[Type[nn.Module], str]='relu'): + if name is None: + return None + if not isinstance(name, str): + return name + if not name: + return None + name = name.lower() + if not (is_exportable() or is_scriptable()): + if name in _ACT_LAYER_ME: + return _ACT_LAYER_ME[name] + return _ACT_LAYER_DEFAULT[name] + +def create_act_layer(name: Union[Type[nn.Module], str], inplace=None, **kwargs): + act_layer = get_act_layer(name) + if act_layer is None: + return None + if inplace is None: + return act_layer(**kwargs) + try: + return act_layer(inplace=inplace, **kwargs) + except TypeError: + return act_layer(**kwargs) + +# File: pytorch-image-models-main/timm/layers/create_attn.py +"""""" +import torch +from functools import partial +from .bottleneck_attn import BottleneckAttn +from .cbam import CbamModule, LightCbamModule +from .eca import EcaModule, CecaModule +from .gather_excite import GatherExcite +from .global_context import GlobalContext +from .halo_attn import HaloAttn +from .lambda_layer import LambdaLayer +from .non_local_attn import NonLocalAttn, BatNonLocalAttn +from .selective_kernel import SelectiveKernel +from .split_attn import SplitAttn +from .squeeze_excite import SEModule, EffectiveSEModule + +def get_attn(attn_type): + if isinstance(attn_type, torch.nn.Module): + return attn_type + module_cls = None + if attn_type: + if isinstance(attn_type, str): + attn_type = attn_type.lower() + if attn_type == 'se': + module_cls = SEModule + elif attn_type == 'ese': + module_cls = EffectiveSEModule + elif attn_type == 'eca': + module_cls = EcaModule + elif attn_type == 'ecam': + module_cls = partial(EcaModule, use_mlp=True) + elif attn_type == 'ceca': + module_cls = CecaModule + elif attn_type == 'ge': + module_cls = GatherExcite + elif attn_type == 'gc': + module_cls = GlobalContext + elif attn_type == 'gca': + module_cls = partial(GlobalContext, fuse_add=True, fuse_scale=False) + elif attn_type == 'cbam': + module_cls = CbamModule + elif attn_type == 'lcbam': + module_cls = LightCbamModule + elif attn_type == 'sk': + module_cls = SelectiveKernel + elif attn_type == 'splat': + module_cls = SplitAttn + elif attn_type == 'lambda': + return LambdaLayer + elif attn_type == 'bottleneck': + return BottleneckAttn + elif attn_type == 'halo': + return HaloAttn + elif attn_type == 'nl': + module_cls = NonLocalAttn + elif attn_type == 'bat': + module_cls = BatNonLocalAttn + else: + assert False, 'Invalid attn module (%s)' % attn_type + elif isinstance(attn_type, bool): + if attn_type: + module_cls = SEModule + else: + module_cls = attn_type + return module_cls + +def create_attn(attn_type, channels, **kwargs): + module_cls = get_attn(attn_type) + if module_cls is not None: + return module_cls(channels, **kwargs) + return None + +# File: pytorch-image-models-main/timm/layers/create_conv2d.py +"""""" +from .mixed_conv2d import MixedConv2d +from .cond_conv2d import CondConv2d +from .conv2d_same import create_conv2d_pad + +def create_conv2d(in_channels, out_channels, kernel_size, **kwargs): + if isinstance(kernel_size, list): + assert 'num_experts' not in kwargs + if 'groups' in kwargs: + groups = kwargs.pop('groups') + if groups == in_channels: + kwargs['depthwise'] = True + else: + assert groups == 1 + m = MixedConv2d(in_channels, out_channels, kernel_size, **kwargs) + else: + depthwise = kwargs.pop('depthwise', False) + groups = in_channels if depthwise else kwargs.pop('groups', 1) + if 'num_experts' in kwargs and kwargs['num_experts'] > 0: + m = CondConv2d(in_channels, out_channels, kernel_size, groups=groups, **kwargs) + else: + m = create_conv2d_pad(in_channels, out_channels, kernel_size, groups=groups, **kwargs) + return m + +# File: pytorch-image-models-main/timm/layers/create_norm.py +"""""" +import functools +import types +from typing import Type +import torch.nn as nn +from .norm import GroupNorm, GroupNorm1, LayerNorm, LayerNorm2d, RmsNorm +from torchvision.ops.misc import FrozenBatchNorm2d +_NORM_MAP = dict(batchnorm=nn.BatchNorm2d, batchnorm2d=nn.BatchNorm2d, batchnorm1d=nn.BatchNorm1d, groupnorm=GroupNorm, groupnorm1=GroupNorm1, layernorm=LayerNorm, layernorm2d=LayerNorm2d, rmsnorm=RmsNorm, frozenbatchnorm2d=FrozenBatchNorm2d) +_NORM_TYPES = {m for (n, m) in _NORM_MAP.items()} + +def create_norm_layer(layer_name, num_features, **kwargs): + layer = get_norm_layer(layer_name) + layer_instance = layer(num_features, **kwargs) + return layer_instance + +def get_norm_layer(norm_layer): + if norm_layer is None: + return None + assert isinstance(norm_layer, (type, str, types.FunctionType, functools.partial)) + norm_kwargs = {} + if isinstance(norm_layer, functools.partial): + norm_kwargs.update(norm_layer.keywords) + norm_layer = norm_layer.func + if isinstance(norm_layer, str): + if not norm_layer: + return None + layer_name = norm_layer.replace('_', '').lower() + norm_layer = _NORM_MAP[layer_name] + else: + norm_layer = norm_layer + if norm_kwargs: + norm_layer = functools.partial(norm_layer, **norm_kwargs) + return norm_layer + +# File: pytorch-image-models-main/timm/layers/create_norm_act.py +"""""" +import types +import functools +from .evo_norm import * +from .filter_response_norm import FilterResponseNormAct2d, FilterResponseNormTlu2d +from .norm_act import BatchNormAct2d, GroupNormAct, LayerNormAct, LayerNormAct2d +from .inplace_abn import InplaceAbn +_NORM_ACT_MAP = dict(batchnorm=BatchNormAct2d, batchnorm2d=BatchNormAct2d, groupnorm=GroupNormAct, groupnorm1=functools.partial(GroupNormAct, num_groups=1), layernorm=LayerNormAct, layernorm2d=LayerNormAct2d, evonormb0=EvoNorm2dB0, evonormb1=EvoNorm2dB1, evonormb2=EvoNorm2dB2, evonorms0=EvoNorm2dS0, evonorms0a=EvoNorm2dS0a, evonorms1=EvoNorm2dS1, evonorms1a=EvoNorm2dS1a, evonorms2=EvoNorm2dS2, evonorms2a=EvoNorm2dS2a, frn=FilterResponseNormAct2d, frntlu=FilterResponseNormTlu2d, inplaceabn=InplaceAbn, iabn=InplaceAbn) +_NORM_ACT_TYPES = {m for (n, m) in _NORM_ACT_MAP.items()} +_NORM_ACT_REQUIRES_ARG = {BatchNormAct2d, GroupNormAct, LayerNormAct, LayerNormAct2d, FilterResponseNormAct2d, InplaceAbn} + +def create_norm_act_layer(layer_name, num_features, act_layer=None, apply_act=True, jit=False, **kwargs): + layer = get_norm_act_layer(layer_name, act_layer=act_layer) + layer_instance = layer(num_features, apply_act=apply_act, **kwargs) + if jit: + layer_instance = torch.jit.script(layer_instance) + return layer_instance + +def get_norm_act_layer(norm_layer, act_layer=None): + if norm_layer is None: + return None + assert isinstance(norm_layer, (type, str, types.FunctionType, functools.partial)) + assert act_layer is None or isinstance(act_layer, (type, str, types.FunctionType, functools.partial)) + norm_act_kwargs = {} + if isinstance(norm_layer, functools.partial): + norm_act_kwargs.update(norm_layer.keywords) + norm_layer = norm_layer.func + if isinstance(norm_layer, str): + if not norm_layer: + return None + layer_name = norm_layer.replace('_', '').lower().split('-')[0] + norm_act_layer = _NORM_ACT_MAP[layer_name] + elif norm_layer in _NORM_ACT_TYPES: + norm_act_layer = norm_layer + elif isinstance(norm_layer, types.FunctionType): + norm_act_layer = norm_layer + else: + type_name = norm_layer.__name__.lower() + if type_name.startswith('batchnorm'): + norm_act_layer = BatchNormAct2d + elif type_name.startswith('groupnorm'): + norm_act_layer = GroupNormAct + elif type_name.startswith('groupnorm1'): + norm_act_layer = functools.partial(GroupNormAct, num_groups=1) + elif type_name.startswith('layernorm2d'): + norm_act_layer = LayerNormAct2d + elif type_name.startswith('layernorm'): + norm_act_layer = LayerNormAct + else: + assert False, f'No equivalent norm_act layer for {type_name}' + if norm_act_layer in _NORM_ACT_REQUIRES_ARG: + norm_act_kwargs.setdefault('act_layer', act_layer) + if norm_act_kwargs: + norm_act_layer = functools.partial(norm_act_layer, **norm_act_kwargs) + return norm_act_layer + +# File: pytorch-image-models-main/timm/layers/drop.py +"""""" +import torch +import torch.nn as nn +import torch.nn.functional as F +from .grid import ndgrid + +def drop_block_2d(x, drop_prob: float=0.1, block_size: int=7, gamma_scale: float=1.0, with_noise: bool=False, inplace: bool=False, batchwise: bool=False): + (B, C, H, W) = x.shape + total_size = W * H + clipped_block_size = min(block_size, min(W, H)) + gamma = gamma_scale * drop_prob * total_size / clipped_block_size ** 2 / ((W - block_size + 1) * (H - block_size + 1)) + (w_i, h_i) = ndgrid(torch.arange(W, device=x.device), torch.arange(H, device=x.device)) + valid_block = (w_i >= clipped_block_size // 2) & (w_i < W - (clipped_block_size - 1) // 2) & ((h_i >= clipped_block_size // 2) & (h_i < H - (clipped_block_size - 1) // 2)) + valid_block = torch.reshape(valid_block, (1, 1, H, W)).to(dtype=x.dtype) + if batchwise: + uniform_noise = torch.rand((1, C, H, W), dtype=x.dtype, device=x.device) + else: + uniform_noise = torch.rand_like(x) + block_mask = (2 - gamma - valid_block + uniform_noise >= 1).to(dtype=x.dtype) + block_mask = -F.max_pool2d(-block_mask, kernel_size=clipped_block_size, stride=1, padding=clipped_block_size // 2) + if with_noise: + normal_noise = torch.randn((1, C, H, W), dtype=x.dtype, device=x.device) if batchwise else torch.randn_like(x) + if inplace: + x.mul_(block_mask).add_(normal_noise * (1 - block_mask)) + else: + x = x * block_mask + normal_noise * (1 - block_mask) + else: + normalize_scale = (block_mask.numel() / block_mask.to(dtype=torch.float32).sum().add(1e-07)).to(x.dtype) + if inplace: + x.mul_(block_mask * normalize_scale) + else: + x = x * block_mask * normalize_scale + return x + +def drop_block_fast_2d(x: torch.Tensor, drop_prob: float=0.1, block_size: int=7, gamma_scale: float=1.0, with_noise: bool=False, inplace: bool=False): + (B, C, H, W) = x.shape + total_size = W * H + clipped_block_size = min(block_size, min(W, H)) + gamma = gamma_scale * drop_prob * total_size / clipped_block_size ** 2 / ((W - block_size + 1) * (H - block_size + 1)) + block_mask = torch.empty_like(x).bernoulli_(gamma) + block_mask = F.max_pool2d(block_mask.to(x.dtype), kernel_size=clipped_block_size, stride=1, padding=clipped_block_size // 2) + if with_noise: + normal_noise = torch.empty_like(x).normal_() + if inplace: + x.mul_(1.0 - block_mask).add_(normal_noise * block_mask) + else: + x = x * (1.0 - block_mask) + normal_noise * block_mask + else: + block_mask = 1 - block_mask + normalize_scale = (block_mask.numel() / block_mask.to(dtype=torch.float32).sum().add(1e-06)).to(dtype=x.dtype) + if inplace: + x.mul_(block_mask * normalize_scale) + else: + x = x * block_mask * normalize_scale + return x + +class DropBlock2d(nn.Module): + + def __init__(self, drop_prob: float=0.1, block_size: int=7, gamma_scale: float=1.0, with_noise: bool=False, inplace: bool=False, batchwise: bool=False, fast: bool=True): + super(DropBlock2d, self).__init__() + self.drop_prob = drop_prob + self.gamma_scale = gamma_scale + self.block_size = block_size + self.with_noise = with_noise + self.inplace = inplace + self.batchwise = batchwise + self.fast = fast + + def forward(self, x): + if not self.training or not self.drop_prob: + return x + if self.fast: + return drop_block_fast_2d(x, self.drop_prob, self.block_size, self.gamma_scale, self.with_noise, self.inplace) + else: + return drop_block_2d(x, self.drop_prob, self.block_size, self.gamma_scale, self.with_noise, self.inplace, self.batchwise) + +def drop_path(x, drop_prob: float=0.0, training: bool=False, scale_by_keep: bool=True): + if drop_prob == 0.0 or not training: + return x + keep_prob = 1 - drop_prob + shape = (x.shape[0],) + (1,) * (x.ndim - 1) + random_tensor = x.new_empty(shape).bernoulli_(keep_prob) + if keep_prob > 0.0 and scale_by_keep: + random_tensor.div_(keep_prob) + return x * random_tensor + +class DropPath(nn.Module): + + def __init__(self, drop_prob: float=0.0, scale_by_keep: bool=True): + super(DropPath, self).__init__() + self.drop_prob = drop_prob + self.scale_by_keep = scale_by_keep + + def forward(self, x): + return drop_path(x, self.drop_prob, self.training, self.scale_by_keep) + + def extra_repr(self): + return f'drop_prob={round(self.drop_prob, 3):0.3f}' + +# File: pytorch-image-models-main/timm/layers/eca.py +"""""" +import math +from torch import nn +import torch.nn.functional as F +from .create_act import create_act_layer +from .helpers import make_divisible + +class EcaModule(nn.Module): + + def __init__(self, channels=None, kernel_size=3, gamma=2, beta=1, act_layer=None, gate_layer='sigmoid', rd_ratio=1 / 8, rd_channels=None, rd_divisor=8, use_mlp=False): + super(EcaModule, self).__init__() + if channels is not None: + t = int(abs(math.log(channels, 2) + beta) / gamma) + kernel_size = max(t if t % 2 else t + 1, 3) + assert kernel_size % 2 == 1 + padding = (kernel_size - 1) // 2 + if use_mlp: + assert channels is not None + if rd_channels is None: + rd_channels = make_divisible(channels * rd_ratio, divisor=rd_divisor) + act_layer = act_layer or nn.ReLU + self.conv = nn.Conv1d(1, rd_channels, kernel_size=1, padding=0, bias=True) + self.act = create_act_layer(act_layer) + self.conv2 = nn.Conv1d(rd_channels, 1, kernel_size=kernel_size, padding=padding, bias=True) + else: + self.conv = nn.Conv1d(1, 1, kernel_size=kernel_size, padding=padding, bias=False) + self.act = None + self.conv2 = None + self.gate = create_act_layer(gate_layer) + + def forward(self, x): + y = x.mean((2, 3)).view(x.shape[0], 1, -1) + y = self.conv(y) + if self.conv2 is not None: + y = self.act(y) + y = self.conv2(y) + y = self.gate(y).view(x.shape[0], -1, 1, 1) + return x * y.expand_as(x) +EfficientChannelAttn = EcaModule + +class CecaModule(nn.Module): + + def __init__(self, channels=None, kernel_size=3, gamma=2, beta=1, act_layer=None, gate_layer='sigmoid'): + super(CecaModule, self).__init__() + if channels is not None: + t = int(abs(math.log(channels, 2) + beta) / gamma) + kernel_size = max(t if t % 2 else t + 1, 3) + has_act = act_layer is not None + assert kernel_size % 2 == 1 + self.padding = (kernel_size - 1) // 2 + self.conv = nn.Conv1d(1, 1, kernel_size=kernel_size, padding=0, bias=has_act) + self.gate = create_act_layer(gate_layer) + + def forward(self, x): + y = x.mean((2, 3)).view(x.shape[0], 1, -1) + y = F.pad(y, (self.padding, self.padding), mode='circular') + y = self.conv(y) + y = self.gate(y).view(x.shape[0], -1, 1, 1) + return x * y.expand_as(x) +CircularEfficientChannelAttn = CecaModule + +# File: pytorch-image-models-main/timm/layers/evo_norm.py +"""""" +from typing import Sequence, Union +import torch +import torch.nn as nn +import torch.nn.functional as F +from .create_act import create_act_layer +from .trace_utils import _assert + +def instance_std(x, eps: float=1e-05): + std = x.float().var(dim=(2, 3), unbiased=False, keepdim=True).add(eps).sqrt().to(x.dtype) + return std.expand(x.shape) + +def instance_std_tpu(x, eps: float=1e-05): + std = manual_var(x, dim=(2, 3)).add(eps).sqrt() + return std.expand(x.shape) + +def instance_rms(x, eps: float=1e-05): + rms = x.float().square().mean(dim=(2, 3), keepdim=True).add(eps).sqrt().to(x.dtype) + return rms.expand(x.shape) + +def manual_var(x, dim: Union[int, Sequence[int]], diff_sqm: bool=False): + xm = x.mean(dim=dim, keepdim=True) + if diff_sqm: + var = ((x * x).mean(dim=dim, keepdim=True) - xm * xm).clamp(0) + else: + var = ((x - xm) * (x - xm)).mean(dim=dim, keepdim=True) + return var + +def group_std(x, groups: int=32, eps: float=1e-05, flatten: bool=False): + (B, C, H, W) = x.shape + x_dtype = x.dtype + _assert(C % groups == 0, '') + if flatten: + x = x.reshape(B, groups, -1) + std = x.float().var(dim=2, unbiased=False, keepdim=True).add(eps).sqrt().to(x_dtype) + else: + x = x.reshape(B, groups, C // groups, H, W) + std = x.float().var(dim=(2, 3, 4), unbiased=False, keepdim=True).add(eps).sqrt().to(x_dtype) + return std.expand(x.shape).reshape(B, C, H, W) + +def group_std_tpu(x, groups: int=32, eps: float=1e-05, diff_sqm: bool=False, flatten: bool=False): + (B, C, H, W) = x.shape + _assert(C % groups == 0, '') + if flatten: + x = x.reshape(B, groups, -1) + var = manual_var(x, dim=-1, diff_sqm=diff_sqm) + else: + x = x.reshape(B, groups, C // groups, H, W) + var = manual_var(x, dim=(2, 3, 4), diff_sqm=diff_sqm) + return var.add(eps).sqrt().expand(x.shape).reshape(B, C, H, W) + +def group_rms(x, groups: int=32, eps: float=1e-05): + (B, C, H, W) = x.shape + _assert(C % groups == 0, '') + x_dtype = x.dtype + x = x.reshape(B, groups, C // groups, H, W) + rms = x.float().square().mean(dim=(2, 3, 4), keepdim=True).add(eps).sqrt_().to(x_dtype) + return rms.expand(x.shape).reshape(B, C, H, W) + +class EvoNorm2dB0(nn.Module): + + def __init__(self, num_features, apply_act=True, momentum=0.1, eps=0.001, **_): + super().__init__() + self.apply_act = apply_act + self.momentum = momentum + self.eps = eps + self.weight = nn.Parameter(torch.ones(num_features)) + self.bias = nn.Parameter(torch.zeros(num_features)) + self.v = nn.Parameter(torch.ones(num_features)) if apply_act else None + self.register_buffer('running_var', torch.ones(num_features)) + self.reset_parameters() + + def reset_parameters(self): + nn.init.ones_(self.weight) + nn.init.zeros_(self.bias) + if self.v is not None: + nn.init.ones_(self.v) + + def forward(self, x): + _assert(x.dim() == 4, 'expected 4D input') + x_dtype = x.dtype + v_shape = (1, -1, 1, 1) + if self.v is not None: + if self.training: + var = x.float().var(dim=(0, 2, 3), unbiased=False) + n = x.numel() / x.shape[1] + self.running_var.copy_(self.running_var * (1 - self.momentum) + var.detach() * self.momentum * (n / (n - 1))) + else: + var = self.running_var + left = var.add(self.eps).sqrt_().to(x_dtype).view(v_shape).expand_as(x) + v = self.v.to(x_dtype).view(v_shape) + right = x * v + instance_std(x, self.eps) + x = x / left.max(right) + return x * self.weight.to(x_dtype).view(v_shape) + self.bias.to(x_dtype).view(v_shape) + +class EvoNorm2dB1(nn.Module): + + def __init__(self, num_features, apply_act=True, momentum=0.1, eps=1e-05, **_): + super().__init__() + self.apply_act = apply_act + self.momentum = momentum + self.eps = eps + self.weight = nn.Parameter(torch.ones(num_features)) + self.bias = nn.Parameter(torch.zeros(num_features)) + self.register_buffer('running_var', torch.ones(num_features)) + self.reset_parameters() + + def reset_parameters(self): + nn.init.ones_(self.weight) + nn.init.zeros_(self.bias) + + def forward(self, x): + _assert(x.dim() == 4, 'expected 4D input') + x_dtype = x.dtype + v_shape = (1, -1, 1, 1) + if self.apply_act: + if self.training: + var = x.float().var(dim=(0, 2, 3), unbiased=False) + n = x.numel() / x.shape[1] + self.running_var.copy_(self.running_var * (1 - self.momentum) + var.detach().to(self.running_var.dtype) * self.momentum * (n / (n - 1))) + else: + var = self.running_var + var = var.to(x_dtype).view(v_shape) + left = var.add(self.eps).sqrt_() + right = (x + 1) * instance_rms(x, self.eps) + x = x / left.max(right) + return x * self.weight.view(v_shape).to(x_dtype) + self.bias.view(v_shape).to(x_dtype) + +class EvoNorm2dB2(nn.Module): + + def __init__(self, num_features, apply_act=True, momentum=0.1, eps=1e-05, **_): + super().__init__() + self.apply_act = apply_act + self.momentum = momentum + self.eps = eps + self.weight = nn.Parameter(torch.ones(num_features)) + self.bias = nn.Parameter(torch.zeros(num_features)) + self.register_buffer('running_var', torch.ones(num_features)) + self.reset_parameters() + + def reset_parameters(self): + nn.init.ones_(self.weight) + nn.init.zeros_(self.bias) + + def forward(self, x): + _assert(x.dim() == 4, 'expected 4D input') + x_dtype = x.dtype + v_shape = (1, -1, 1, 1) + if self.apply_act: + if self.training: + var = x.float().var(dim=(0, 2, 3), unbiased=False) + n = x.numel() / x.shape[1] + self.running_var.copy_(self.running_var * (1 - self.momentum) + var.detach().to(self.running_var.dtype) * self.momentum * (n / (n - 1))) + else: + var = self.running_var + var = var.to(x_dtype).view(v_shape) + left = var.add(self.eps).sqrt_() + right = instance_rms(x, self.eps) - x + x = x / left.max(right) + return x * self.weight.view(v_shape).to(x_dtype) + self.bias.view(v_shape).to(x_dtype) + +class EvoNorm2dS0(nn.Module): + + def __init__(self, num_features, groups=32, group_size=None, apply_act=True, eps=1e-05, **_): + super().__init__() + self.apply_act = apply_act + if group_size: + assert num_features % group_size == 0 + self.groups = num_features // group_size + else: + self.groups = groups + self.eps = eps + self.weight = nn.Parameter(torch.ones(num_features)) + self.bias = nn.Parameter(torch.zeros(num_features)) + self.v = nn.Parameter(torch.ones(num_features)) if apply_act else None + self.reset_parameters() + + def reset_parameters(self): + nn.init.ones_(self.weight) + nn.init.zeros_(self.bias) + if self.v is not None: + nn.init.ones_(self.v) + + def forward(self, x): + _assert(x.dim() == 4, 'expected 4D input') + x_dtype = x.dtype + v_shape = (1, -1, 1, 1) + if self.v is not None: + v = self.v.view(v_shape).to(x_dtype) + x = x * (x * v).sigmoid() / group_std(x, self.groups, self.eps) + return x * self.weight.view(v_shape).to(x_dtype) + self.bias.view(v_shape).to(x_dtype) + +class EvoNorm2dS0a(EvoNorm2dS0): + + def __init__(self, num_features, groups=32, group_size=None, apply_act=True, eps=0.001, **_): + super().__init__(num_features, groups=groups, group_size=group_size, apply_act=apply_act, eps=eps) + + def forward(self, x): + _assert(x.dim() == 4, 'expected 4D input') + x_dtype = x.dtype + v_shape = (1, -1, 1, 1) + d = group_std(x, self.groups, self.eps) + if self.v is not None: + v = self.v.view(v_shape).to(x_dtype) + x = x * (x * v).sigmoid() + x = x / d + return x * self.weight.view(v_shape).to(x_dtype) + self.bias.view(v_shape).to(x_dtype) + +class EvoNorm2dS1(nn.Module): + + def __init__(self, num_features, groups=32, group_size=None, apply_act=True, act_layer=None, eps=1e-05, **_): + super().__init__() + act_layer = act_layer or nn.SiLU + self.apply_act = apply_act + if act_layer is not None and apply_act: + self.act = create_act_layer(act_layer) + else: + self.act = nn.Identity() + if group_size: + assert num_features % group_size == 0 + self.groups = num_features // group_size + else: + self.groups = groups + self.eps = eps + self.pre_act_norm = False + self.weight = nn.Parameter(torch.ones(num_features)) + self.bias = nn.Parameter(torch.zeros(num_features)) + self.reset_parameters() + + def reset_parameters(self): + nn.init.ones_(self.weight) + nn.init.zeros_(self.bias) + + def forward(self, x): + _assert(x.dim() == 4, 'expected 4D input') + x_dtype = x.dtype + v_shape = (1, -1, 1, 1) + if self.apply_act: + x = self.act(x) / group_std(x, self.groups, self.eps) + return x * self.weight.view(v_shape).to(x_dtype) + self.bias.view(v_shape).to(x_dtype) + +class EvoNorm2dS1a(EvoNorm2dS1): + + def __init__(self, num_features, groups=32, group_size=None, apply_act=True, act_layer=None, eps=0.001, **_): + super().__init__(num_features, groups=groups, group_size=group_size, apply_act=apply_act, act_layer=act_layer, eps=eps) + + def forward(self, x): + _assert(x.dim() == 4, 'expected 4D input') + x_dtype = x.dtype + v_shape = (1, -1, 1, 1) + x = self.act(x) / group_std(x, self.groups, self.eps) + return x * self.weight.view(v_shape).to(x_dtype) + self.bias.view(v_shape).to(x_dtype) + +class EvoNorm2dS2(nn.Module): + + def __init__(self, num_features, groups=32, group_size=None, apply_act=True, act_layer=None, eps=1e-05, **_): + super().__init__() + act_layer = act_layer or nn.SiLU + self.apply_act = apply_act + if act_layer is not None and apply_act: + self.act = create_act_layer(act_layer) + else: + self.act = nn.Identity() + if group_size: + assert num_features % group_size == 0 + self.groups = num_features // group_size + else: + self.groups = groups + self.eps = eps + self.weight = nn.Parameter(torch.ones(num_features)) + self.bias = nn.Parameter(torch.zeros(num_features)) + self.reset_parameters() + + def reset_parameters(self): + nn.init.ones_(self.weight) + nn.init.zeros_(self.bias) + + def forward(self, x): + _assert(x.dim() == 4, 'expected 4D input') + x_dtype = x.dtype + v_shape = (1, -1, 1, 1) + if self.apply_act: + x = self.act(x) / group_rms(x, self.groups, self.eps) + return x * self.weight.view(v_shape).to(x_dtype) + self.bias.view(v_shape).to(x_dtype) + +class EvoNorm2dS2a(EvoNorm2dS2): + + def __init__(self, num_features, groups=32, group_size=None, apply_act=True, act_layer=None, eps=0.001, **_): + super().__init__(num_features, groups=groups, group_size=group_size, apply_act=apply_act, act_layer=act_layer, eps=eps) + + def forward(self, x): + _assert(x.dim() == 4, 'expected 4D input') + x_dtype = x.dtype + v_shape = (1, -1, 1, 1) + x = self.act(x) / group_rms(x, self.groups, self.eps) + return x * self.weight.view(v_shape).to(x_dtype) + self.bias.view(v_shape).to(x_dtype) + +# File: pytorch-image-models-main/timm/layers/fast_norm.py +"""""" +from typing import List, Optional +import torch +from torch.nn import functional as F +try: + from apex.normalization.fused_layer_norm import fused_layer_norm_affine + has_apex = True +except ImportError: + has_apex = False +try: + from apex.normalization.fused_layer_norm import fused_rms_norm_affine, fused_rms_norm + has_apex_rmsnorm = True +except ImportError: + has_apex_rmsnorm = False +_USE_FAST_NORM = False + +def is_fast_norm(): + return _USE_FAST_NORM + +def set_fast_norm(enable=True): + global _USE_FAST_NORM + _USE_FAST_NORM = enable + +def fast_group_norm(x: torch.Tensor, num_groups: int, weight: Optional[torch.Tensor]=None, bias: Optional[torch.Tensor]=None, eps: float=1e-05) -> torch.Tensor: + if torch.jit.is_scripting(): + return F.group_norm(x, num_groups, weight, bias, eps) + if torch.is_autocast_enabled(): + dt = torch.get_autocast_gpu_dtype() + (x, weight, bias) = (x.to(dt), weight.to(dt), bias.to(dt) if bias is not None else None) + with torch.cuda.amp.autocast(enabled=False): + return F.group_norm(x, num_groups, weight, bias, eps) + +def fast_layer_norm(x: torch.Tensor, normalized_shape: List[int], weight: Optional[torch.Tensor]=None, bias: Optional[torch.Tensor]=None, eps: float=1e-05) -> torch.Tensor: + if torch.jit.is_scripting(): + return F.layer_norm(x, normalized_shape, weight, bias, eps) + if has_apex: + return fused_layer_norm_affine(x, weight, bias, normalized_shape, eps) + if torch.is_autocast_enabled(): + dt = torch.get_autocast_gpu_dtype() + (x, weight, bias) = (x.to(dt), weight.to(dt), bias.to(dt) if bias is not None else None) + with torch.cuda.amp.autocast(enabled=False): + return F.layer_norm(x, normalized_shape, weight, bias, eps) + +def rms_norm(x: torch.Tensor, normalized_shape: List[int], weight: Optional[torch.Tensor]=None, eps: float=1e-05): + norm_ndim = len(normalized_shape) + if torch.jit.is_scripting(): + assert norm_ndim == 1 + v = torch.var(x, dim=-1).unsqueeze(-1) + else: + dims = tuple(range(-1, -norm_ndim - 1, -1)) + v = torch.var(x, dim=dims, keepdim=True) + x = x * torch.rsqrt(v + eps) + if weight is not None: + x = x * weight + return x + +def fast_rms_norm(x: torch.Tensor, normalized_shape: List[int], weight: Optional[torch.Tensor]=None, eps: float=1e-05) -> torch.Tensor: + if torch.jit.is_scripting(): + return rms_norm(x, normalized_shape, weight, eps) + if has_apex_rmsnorm: + if weight is None: + return fused_rms_norm(x, normalized_shape, eps) + else: + return fused_rms_norm_affine(x, weight, normalized_shape, eps) + return rms_norm(x, normalized_shape, weight, eps) + +# File: pytorch-image-models-main/timm/layers/filter_response_norm.py +"""""" +import torch +import torch.nn as nn +from .create_act import create_act_layer +from .trace_utils import _assert + +def inv_instance_rms(x, eps: float=1e-05): + rms = x.square().float().mean(dim=(2, 3), keepdim=True).add(eps).rsqrt().to(x.dtype) + return rms.expand(x.shape) + +class FilterResponseNormTlu2d(nn.Module): + + def __init__(self, num_features, apply_act=True, eps=1e-05, rms=True, **_): + super(FilterResponseNormTlu2d, self).__init__() + self.apply_act = apply_act + self.rms = rms + self.eps = eps + self.weight = nn.Parameter(torch.ones(num_features)) + self.bias = nn.Parameter(torch.zeros(num_features)) + self.tau = nn.Parameter(torch.zeros(num_features)) if apply_act else None + self.reset_parameters() + + def reset_parameters(self): + nn.init.ones_(self.weight) + nn.init.zeros_(self.bias) + if self.tau is not None: + nn.init.zeros_(self.tau) + + def forward(self, x): + _assert(x.dim() == 4, 'expected 4D input') + x_dtype = x.dtype + v_shape = (1, -1, 1, 1) + x = x * inv_instance_rms(x, self.eps) + x = x * self.weight.view(v_shape).to(dtype=x_dtype) + self.bias.view(v_shape).to(dtype=x_dtype) + return torch.maximum(x, self.tau.reshape(v_shape).to(dtype=x_dtype)) if self.tau is not None else x + +class FilterResponseNormAct2d(nn.Module): + + def __init__(self, num_features, apply_act=True, act_layer=nn.ReLU, inplace=None, rms=True, eps=1e-05, **_): + super(FilterResponseNormAct2d, self).__init__() + if act_layer is not None and apply_act: + self.act = create_act_layer(act_layer, inplace=inplace) + else: + self.act = nn.Identity() + self.rms = rms + self.eps = eps + self.weight = nn.Parameter(torch.ones(num_features)) + self.bias = nn.Parameter(torch.zeros(num_features)) + self.reset_parameters() + + def reset_parameters(self): + nn.init.ones_(self.weight) + nn.init.zeros_(self.bias) + + def forward(self, x): + _assert(x.dim() == 4, 'expected 4D input') + x_dtype = x.dtype + v_shape = (1, -1, 1, 1) + x = x * inv_instance_rms(x, self.eps) + x = x * self.weight.view(v_shape).to(dtype=x_dtype) + self.bias.view(v_shape).to(dtype=x_dtype) + return self.act(x) + +# File: pytorch-image-models-main/timm/layers/format.py +from enum import Enum +from typing import Union +import torch + +class Format(str, Enum): + NCHW = 'NCHW' + NHWC = 'NHWC' + NCL = 'NCL' + NLC = 'NLC' +FormatT = Union[str, Format] + +def get_spatial_dim(fmt: FormatT): + fmt = Format(fmt) + if fmt is Format.NLC: + dim = (1,) + elif fmt is Format.NCL: + dim = (2,) + elif fmt is Format.NHWC: + dim = (1, 2) + else: + dim = (2, 3) + return dim + +def get_channel_dim(fmt: FormatT): + fmt = Format(fmt) + if fmt is Format.NHWC: + dim = 3 + elif fmt is Format.NLC: + dim = 2 + else: + dim = 1 + return dim + +def nchw_to(x: torch.Tensor, fmt: Format): + if fmt == Format.NHWC: + x = x.permute(0, 2, 3, 1) + elif fmt == Format.NLC: + x = x.flatten(2).transpose(1, 2) + elif fmt == Format.NCL: + x = x.flatten(2) + return x + +def nhwc_to(x: torch.Tensor, fmt: Format): + if fmt == Format.NCHW: + x = x.permute(0, 3, 1, 2) + elif fmt == Format.NLC: + x = x.flatten(1, 2) + elif fmt == Format.NCL: + x = x.flatten(1, 2).transpose(1, 2) + return x + +# File: pytorch-image-models-main/timm/layers/gather_excite.py +"""""" +import math +from torch import nn as nn +import torch.nn.functional as F +from .create_act import create_act_layer, get_act_layer +from .create_conv2d import create_conv2d +from .helpers import make_divisible +from .mlp import ConvMlp + +class GatherExcite(nn.Module): + + def __init__(self, channels, feat_size=None, extra_params=False, extent=0, use_mlp=True, rd_ratio=1.0 / 16, rd_channels=None, rd_divisor=1, add_maxpool=False, act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d, gate_layer='sigmoid'): + super(GatherExcite, self).__init__() + self.add_maxpool = add_maxpool + act_layer = get_act_layer(act_layer) + self.extent = extent + if extra_params: + self.gather = nn.Sequential() + if extent == 0: + assert feat_size is not None, 'spatial feature size must be specified for global extent w/ params' + self.gather.add_module('conv1', create_conv2d(channels, channels, kernel_size=feat_size, stride=1, depthwise=True)) + if norm_layer: + self.gather.add_module(f'norm1', nn.BatchNorm2d(channels)) + else: + assert extent % 2 == 0 + num_conv = int(math.log2(extent)) + for i in range(num_conv): + self.gather.add_module(f'conv{i + 1}', create_conv2d(channels, channels, kernel_size=3, stride=2, depthwise=True)) + if norm_layer: + self.gather.add_module(f'norm{i + 1}', nn.BatchNorm2d(channels)) + if i != num_conv - 1: + self.gather.add_module(f'act{i + 1}', act_layer(inplace=True)) + else: + self.gather = None + if self.extent == 0: + self.gk = 0 + self.gs = 0 + else: + assert extent % 2 == 0 + self.gk = self.extent * 2 - 1 + self.gs = self.extent + if not rd_channels: + rd_channels = make_divisible(channels * rd_ratio, rd_divisor, round_limit=0.0) + self.mlp = ConvMlp(channels, rd_channels, act_layer=act_layer) if use_mlp else nn.Identity() + self.gate = create_act_layer(gate_layer) + + def forward(self, x): + size = x.shape[-2:] + if self.gather is not None: + x_ge = self.gather(x) + elif self.extent == 0: + x_ge = x.mean(dim=(2, 3), keepdims=True) + if self.add_maxpool: + x_ge = 0.5 * x_ge + 0.5 * x.amax((2, 3), keepdim=True) + else: + x_ge = F.avg_pool2d(x, kernel_size=self.gk, stride=self.gs, padding=self.gk // 2, count_include_pad=False) + if self.add_maxpool: + x_ge = 0.5 * x_ge + 0.5 * F.max_pool2d(x, kernel_size=self.gk, stride=self.gs, padding=self.gk // 2) + x_ge = self.mlp(x_ge) + if x_ge.shape[-1] != 1 or x_ge.shape[-2] != 1: + x_ge = F.interpolate(x_ge, size=size) + return x * self.gate(x_ge) + +# File: pytorch-image-models-main/timm/layers/global_context.py +"""""" +from torch import nn as nn +import torch.nn.functional as F +from .create_act import create_act_layer, get_act_layer +from .helpers import make_divisible +from .mlp import ConvMlp +from .norm import LayerNorm2d + +class GlobalContext(nn.Module): + + def __init__(self, channels, use_attn=True, fuse_add=False, fuse_scale=True, init_last_zero=False, rd_ratio=1.0 / 8, rd_channels=None, rd_divisor=1, act_layer=nn.ReLU, gate_layer='sigmoid'): + super(GlobalContext, self).__init__() + act_layer = get_act_layer(act_layer) + self.conv_attn = nn.Conv2d(channels, 1, kernel_size=1, bias=True) if use_attn else None + if rd_channels is None: + rd_channels = make_divisible(channels * rd_ratio, rd_divisor, round_limit=0.0) + if fuse_add: + self.mlp_add = ConvMlp(channels, rd_channels, act_layer=act_layer, norm_layer=LayerNorm2d) + else: + self.mlp_add = None + if fuse_scale: + self.mlp_scale = ConvMlp(channels, rd_channels, act_layer=act_layer, norm_layer=LayerNorm2d) + else: + self.mlp_scale = None + self.gate = create_act_layer(gate_layer) + self.init_last_zero = init_last_zero + self.reset_parameters() + + def reset_parameters(self): + if self.conv_attn is not None: + nn.init.kaiming_normal_(self.conv_attn.weight, mode='fan_in', nonlinearity='relu') + if self.mlp_add is not None: + nn.init.zeros_(self.mlp_add.fc2.weight) + + def forward(self, x): + (B, C, H, W) = x.shape + if self.conv_attn is not None: + attn = self.conv_attn(x).reshape(B, 1, H * W) + attn = F.softmax(attn, dim=-1).unsqueeze(3) + context = x.reshape(B, C, H * W).unsqueeze(1) @ attn + context = context.view(B, C, 1, 1) + else: + context = x.mean(dim=(2, 3), keepdim=True) + if self.mlp_scale is not None: + mlp_x = self.mlp_scale(context) + x = x * self.gate(mlp_x) + if self.mlp_add is not None: + mlp_x = self.mlp_add(context) + x = x + mlp_x + return x + +# File: pytorch-image-models-main/timm/layers/grid.py +from typing import Tuple +import torch + +def ndgrid(*tensors) -> Tuple[torch.Tensor, ...]: + try: + return torch.meshgrid(*tensors, indexing='ij') + except TypeError: + return torch.meshgrid(*tensors) + +def meshgrid(*tensors) -> Tuple[torch.Tensor, ...]: + return torch.meshgrid(*tensors, indexing='xy') + +# File: pytorch-image-models-main/timm/layers/grn.py +"""""" +import torch +from torch import nn as nn + +class GlobalResponseNorm(nn.Module): + + def __init__(self, dim, eps=1e-06, channels_last=True): + super().__init__() + self.eps = eps + if channels_last: + self.spatial_dim = (1, 2) + self.channel_dim = -1 + self.wb_shape = (1, 1, 1, -1) + else: + self.spatial_dim = (2, 3) + self.channel_dim = 1 + self.wb_shape = (1, -1, 1, 1) + self.weight = nn.Parameter(torch.zeros(dim)) + self.bias = nn.Parameter(torch.zeros(dim)) + + def forward(self, x): + x_g = x.norm(p=2, dim=self.spatial_dim, keepdim=True) + x_n = x_g / (x_g.mean(dim=self.channel_dim, keepdim=True) + self.eps) + return x + torch.addcmul(self.bias.view(self.wb_shape), self.weight.view(self.wb_shape), x * x_n) + +# File: pytorch-image-models-main/timm/layers/halo_attn.py +"""""" +from typing import List +import torch +from torch import nn +import torch.nn.functional as F +from .helpers import make_divisible +from .weight_init import trunc_normal_ +from .trace_utils import _assert + +def rel_logits_1d(q, rel_k, permute_mask: List[int]): + (B, H, W, dim) = q.shape + rel_size = rel_k.shape[0] + win_size = (rel_size + 1) // 2 + x = q @ rel_k.transpose(-1, -2) + x = x.reshape(-1, W, rel_size) + x_pad = F.pad(x, [0, 1]).flatten(1) + x_pad = F.pad(x_pad, [0, rel_size - W]) + x_pad = x_pad.reshape(-1, W + 1, rel_size) + x = x_pad[:, :W, win_size - 1:] + x = x.reshape(B, H, 1, W, win_size).expand(-1, -1, win_size, -1, -1) + return x.permute(permute_mask) + +class PosEmbedRel(nn.Module): + + def __init__(self, block_size, win_size, dim_head, scale): + super().__init__() + self.block_size = block_size + self.dim_head = dim_head + self.height_rel = nn.Parameter(torch.randn(win_size * 2 - 1, dim_head) * scale) + self.width_rel = nn.Parameter(torch.randn(win_size * 2 - 1, dim_head) * scale) + + def forward(self, q): + (B, BB, HW, _) = q.shape + q = q.reshape(-1, self.block_size, self.block_size, self.dim_head) + rel_logits_w = rel_logits_1d(q, self.width_rel, permute_mask=(0, 1, 3, 2, 4)) + q = q.transpose(1, 2) + rel_logits_h = rel_logits_1d(q, self.height_rel, permute_mask=(0, 3, 1, 4, 2)) + rel_logits = rel_logits_h + rel_logits_w + rel_logits = rel_logits.reshape(B, BB, HW, -1) + return rel_logits + +class HaloAttn(nn.Module): + + def __init__(self, dim, dim_out=None, feat_size=None, stride=1, num_heads=8, dim_head=None, block_size=8, halo_size=3, qk_ratio=1.0, qkv_bias=False, avg_down=False, scale_pos_embed=False): + super().__init__() + dim_out = dim_out or dim + assert dim_out % num_heads == 0 + assert stride in (1, 2) + self.num_heads = num_heads + self.dim_head_qk = dim_head or make_divisible(dim_out * qk_ratio, divisor=8) // num_heads + self.dim_head_v = dim_out // self.num_heads + self.dim_out_qk = num_heads * self.dim_head_qk + self.dim_out_v = num_heads * self.dim_head_v + self.scale = self.dim_head_qk ** (-0.5) + self.scale_pos_embed = scale_pos_embed + self.block_size = self.block_size_ds = block_size + self.halo_size = halo_size + self.win_size = block_size + halo_size * 2 + self.block_stride = 1 + use_avg_pool = False + if stride > 1: + use_avg_pool = avg_down or block_size % stride != 0 + self.block_stride = 1 if use_avg_pool else stride + self.block_size_ds = self.block_size // self.block_stride + self.q = nn.Conv2d(dim, self.dim_out_qk, 1, stride=self.block_stride, bias=qkv_bias) + self.kv = nn.Conv2d(dim, self.dim_out_qk + self.dim_out_v, 1, bias=qkv_bias) + self.pos_embed = PosEmbedRel(block_size=self.block_size_ds, win_size=self.win_size, dim_head=self.dim_head_qk, scale=self.scale) + self.pool = nn.AvgPool2d(2, 2) if use_avg_pool else nn.Identity() + self.reset_parameters() + + def reset_parameters(self): + std = self.q.weight.shape[1] ** (-0.5) + trunc_normal_(self.q.weight, std=std) + trunc_normal_(self.kv.weight, std=std) + trunc_normal_(self.pos_embed.height_rel, std=self.scale) + trunc_normal_(self.pos_embed.width_rel, std=self.scale) + + def forward(self, x): + (B, C, H, W) = x.shape + _assert(H % self.block_size == 0, '') + _assert(W % self.block_size == 0, '') + num_h_blocks = H // self.block_size + num_w_blocks = W // self.block_size + num_blocks = num_h_blocks * num_w_blocks + q = self.q(x) + q = q.reshape(-1, self.dim_head_qk, num_h_blocks, self.block_size_ds, num_w_blocks, self.block_size_ds).permute(0, 1, 3, 5, 2, 4) + q = q.reshape(B * self.num_heads, self.dim_head_qk, -1, num_blocks).transpose(1, 3) + kv = self.kv(x) + kv = F.pad(kv, [self.halo_size, self.halo_size, self.halo_size, self.halo_size]) + kv = kv.unfold(2, self.win_size, self.block_size).unfold(3, self.win_size, self.block_size).reshape(B * self.num_heads, self.dim_head_qk + self.dim_head_v, num_blocks, -1).permute(0, 2, 3, 1) + (k, v) = torch.split(kv, [self.dim_head_qk, self.dim_head_v], dim=-1) + if self.scale_pos_embed: + attn = (q @ k.transpose(-1, -2) + self.pos_embed(q)) * self.scale + else: + attn = q @ k.transpose(-1, -2) * self.scale + self.pos_embed(q) + attn = attn.softmax(dim=-1) + out = (attn @ v).transpose(1, 3) + out = out.reshape(-1, self.block_size_ds, self.block_size_ds, num_h_blocks, num_w_blocks) + out = out.permute(0, 3, 1, 4, 2).contiguous().view(B, self.dim_out_v, H // self.block_stride, W // self.block_stride) + out = self.pool(out) + return out +'' + +# File: pytorch-image-models-main/timm/layers/helpers.py +"""""" +from itertools import repeat +import collections.abc + +def _ntuple(n): + + def parse(x): + if isinstance(x, collections.abc.Iterable) and (not isinstance(x, str)): + return tuple(x) + return tuple(repeat(x, n)) + return parse +to_1tuple = _ntuple(1) +to_2tuple = _ntuple(2) +to_3tuple = _ntuple(3) +to_4tuple = _ntuple(4) +to_ntuple = _ntuple + +def make_divisible(v, divisor=8, min_value=None, round_limit=0.9): + min_value = min_value or divisor + new_v = max(min_value, int(v + divisor / 2) // divisor * divisor) + if new_v < round_limit * v: + new_v += divisor + return new_v + +def extend_tuple(x, n): + if not isinstance(x, (tuple, list)): + x = (x,) + else: + x = tuple(x) + pad_n = n - len(x) + if pad_n <= 0: + return x[:n] + return x + (x[-1],) * pad_n + +# File: pytorch-image-models-main/timm/layers/hybrid_embed.py +"""""" +import logging +import math +from typing import List, Optional, Tuple, Union +import torch +from torch import nn as nn +import torch.nn.functional as F +from .format import Format, nchw_to +from .helpers import to_2tuple +from .patch_embed import resample_patch_embed +_logger = logging.getLogger(__name__) + +class HybridEmbed(nn.Module): + output_fmt: Format + dynamic_img_pad: torch.jit.Final[bool] + + def __init__(self, backbone: nn.Module, img_size: Union[int, Tuple[int, int]]=224, patch_size: Union[int, Tuple[int, int]]=1, feature_size: Optional[Union[int, Tuple[int, int]]]=None, feature_ratio: Optional[Union[int, Tuple[int, int]]]=None, in_chans: int=3, embed_dim: int=768, bias: bool=True, proj: bool=True, flatten: bool=True, output_fmt: Optional[str]=None, strict_img_size: bool=True, dynamic_img_pad: bool=False): + super().__init__() + assert isinstance(backbone, nn.Module) + self.backbone = backbone + self.in_chans = in_chans + (self.img_size, self.patch_size, self.feature_size, self.feature_ratio, self.feature_dim, self.grid_size, self.num_patches) = self._init_backbone(img_size=img_size, patch_size=patch_size, feature_size=feature_size, feature_ratio=feature_ratio) + if output_fmt is not None: + self.flatten = False + self.output_fmt = Format(output_fmt) + else: + self.flatten = flatten + self.output_fmt = Format.NCHW + self.strict_img_size = strict_img_size + self.dynamic_img_pad = dynamic_img_pad + if not dynamic_img_pad: + assert self.feature_size[0] % self.patch_size[0] == 0 and self.feature_size[1] % self.patch_size[1] == 0 + if proj: + self.proj = nn.Conv2d(self.feature_dim, embed_dim, kernel_size=patch_size, stride=patch_size, bias=bias) + else: + assert self.feature_dim == embed_dim, f'The feature dim ({self.feature_dim} must match embed dim ({embed_dim}) when projection disabled.' + self.proj = nn.Identity() + + def _init_backbone(self, img_size: Union[int, Tuple[int, int]]=224, patch_size: Union[int, Tuple[int, int]]=1, feature_size: Optional[Union[int, Tuple[int, int]]]=None, feature_ratio: Optional[Union[int, Tuple[int, int]]]=None, feature_dim: Optional[int]=None): + img_size = to_2tuple(img_size) + patch_size = to_2tuple(patch_size) + if feature_size is None: + with torch.no_grad(): + training = self.backbone.training + if training: + self.backbone.eval() + o = self.backbone(torch.zeros(1, self.in_chans, img_size[0], img_size[1])) + if isinstance(o, (list, tuple)): + o = o[-1] + feature_size = o.shape[-2:] + feature_dim = o.shape[1] + self.backbone.train(training) + feature_ratio = tuple([s // f for (s, f) in zip(img_size, feature_size)]) + else: + feature_size = to_2tuple(feature_size) + feature_ratio = to_2tuple(feature_ratio or 16) + if feature_dim is None: + if hasattr(self.backbone, 'feature_info'): + feature_dim = self.backbone.feature_info.channels()[-1] + else: + feature_dim = self.backbone.num_features + grid_size = tuple([f // p for (f, p) in zip(feature_size, patch_size)]) + num_patches = grid_size[0] * grid_size[1] + return (img_size, patch_size, feature_size, feature_ratio, feature_dim, grid_size, num_patches) + + def set_input_size(self, img_size: Optional[Union[int, Tuple[int, int]]]=None, patch_size: Optional[Union[int, Tuple[int, int]]]=None, feature_size: Optional[Union[int, Tuple[int, int]]]=None, feature_ratio: Optional[Union[int, Tuple[int, int]]]=None, feature_dim: Optional[int]=None): + assert img_size is not None or patch_size is not None + img_size = img_size or self.img_size + new_patch_size = None + if patch_size is not None: + new_patch_size = to_2tuple(patch_size) + if new_patch_size is not None and new_patch_size != self.patch_size: + assert isinstance(self.proj, nn.Conv2d), 'HybridEmbed must have a projection layer to change patch size.' + with torch.no_grad(): + new_proj = nn.Conv2d(self.proj.in_channels, self.proj.out_channels, kernel_size=new_patch_size, stride=new_patch_size, bias=self.proj.bias is not None) + new_proj.weight.copy_(resample_patch_embed(self.proj.weight, new_patch_size, verbose=True)) + if self.proj.bias is not None: + new_proj.bias.copy_(self.proj.bias) + self.proj = new_proj + patch_size = new_patch_size + patch_size = patch_size or self.patch_size + if img_size != self.img_size or patch_size != self.patch_size: + (self.img_size, self.patch_size, self.feature_size, self.feature_ratio, self.feature_dim, self.grid_size, self.num_patches) = self._init_backbone(img_size=img_size, patch_size=patch_size, feature_size=feature_size, feature_ratio=feature_ratio, feature_dim=feature_dim) + + def feat_ratio(self, as_scalar=True) -> Union[Tuple[int, int], int]: + total_reduction = (self.feature_ratio[0] * self.patch_size[0], self.feature_ratio[1] * self.patch_size[1]) + if as_scalar: + return max(total_reduction) + else: + return total_reduction + + def dynamic_feat_size(self, img_size: Tuple[int, int]) -> Tuple[int, int]: + feat_size = (img_size[0] // self.feature_ratio[0], img_size[1] // self.feature_ratio[1]) + if self.dynamic_img_pad: + return (math.ceil(feat_size[0] / self.patch_size[0]), math.ceil(feat_size[1] / self.patch_size[1])) + else: + return (feat_size[0] // self.patch_size[0], feat_size[1] // self.patch_size[1]) + + @torch.jit.ignore + def set_grad_checkpointing(self, enable: bool=True): + if hasattr(self.backbone, 'set_grad_checkpointing'): + self.backbone.set_grad_checkpointing(enable=enable) + elif hasattr(self.backbone, 'grad_checkpointing'): + self.backbone.grad_checkpointing = enable + + def forward(self, x): + x = self.backbone(x) + if isinstance(x, (list, tuple)): + x = x[-1] + (_, _, H, W) = x.shape + if self.dynamic_img_pad: + pad_h = (self.patch_size[0] - H % self.patch_size[0]) % self.patch_size[0] + pad_w = (self.patch_size[1] - W % self.patch_size[1]) % self.patch_size[1] + x = F.pad(x, (0, pad_w, 0, pad_h)) + x = self.proj(x) + if self.flatten: + x = x.flatten(2).transpose(1, 2) + elif self.output_fmt != Format.NCHW: + x = nchw_to(x, self.output_fmt) + return x + +class HybridEmbedWithSize(HybridEmbed): + + def __init__(self, backbone: nn.Module, img_size: Union[int, Tuple[int, int]]=224, patch_size: Union[int, Tuple[int, int]]=1, feature_size: Optional[Union[int, Tuple[int, int]]]=None, feature_ratio: Optional[Union[int, Tuple[int, int]]]=None, in_chans: int=3, embed_dim: int=768, bias=True, proj=True): + super().__init__(backbone=backbone, img_size=img_size, patch_size=patch_size, feature_size=feature_size, feature_ratio=feature_ratio, in_chans=in_chans, embed_dim=embed_dim, bias=bias, proj=proj) + + @torch.jit.ignore + def set_grad_checkpointing(self, enable: bool=True): + if hasattr(self.backbone, 'set_grad_checkpointing'): + self.backbone.set_grad_checkpointing(enable=enable) + elif hasattr(self.backbone, 'grad_checkpointing'): + self.backbone.grad_checkpointing = enable + + def forward(self, x) -> Tuple[torch.Tensor, List[int]]: + x = self.backbone(x) + if isinstance(x, (list, tuple)): + x = x[-1] + x = self.proj(x) + return (x.flatten(2).transpose(1, 2), x.shape[-2:]) + +# File: pytorch-image-models-main/timm/layers/inplace_abn.py +import torch +from torch import nn as nn +try: + from inplace_abn.functions import inplace_abn, inplace_abn_sync + has_iabn = True +except ImportError: + has_iabn = False + + def inplace_abn(x, weight, bias, running_mean, running_var, training=True, momentum=0.1, eps=1e-05, activation='leaky_relu', activation_param=0.01): + raise ImportError("Please install InplaceABN:'pip install git+https://github.com/mapillary/inplace_abn.git@v1.0.12'") + + def inplace_abn_sync(**kwargs): + inplace_abn(**kwargs) + +class InplaceAbn(nn.Module): + + def __init__(self, num_features, eps=1e-05, momentum=0.1, affine=True, apply_act=True, act_layer='leaky_relu', act_param=0.01, drop_layer=None): + super(InplaceAbn, self).__init__() + self.num_features = num_features + self.affine = affine + self.eps = eps + self.momentum = momentum + if apply_act: + if isinstance(act_layer, str): + assert act_layer in ('leaky_relu', 'elu', 'identity', '') + self.act_name = act_layer if act_layer else 'identity' + elif act_layer == nn.ELU: + self.act_name = 'elu' + elif act_layer == nn.LeakyReLU: + self.act_name = 'leaky_relu' + elif act_layer is None or act_layer == nn.Identity: + self.act_name = 'identity' + else: + assert False, f'Invalid act layer {act_layer.__name__} for IABN' + else: + self.act_name = 'identity' + self.act_param = act_param + if self.affine: + self.weight = nn.Parameter(torch.ones(num_features)) + self.bias = nn.Parameter(torch.zeros(num_features)) + else: + self.register_parameter('weight', None) + self.register_parameter('bias', None) + self.register_buffer('running_mean', torch.zeros(num_features)) + self.register_buffer('running_var', torch.ones(num_features)) + self.reset_parameters() + + def reset_parameters(self): + nn.init.constant_(self.running_mean, 0) + nn.init.constant_(self.running_var, 1) + if self.affine: + nn.init.constant_(self.weight, 1) + nn.init.constant_(self.bias, 0) + + def forward(self, x): + output = inplace_abn(x, self.weight, self.bias, self.running_mean, self.running_var, self.training, self.momentum, self.eps, self.act_name, self.act_param) + if isinstance(output, tuple): + output = output[0] + return output + +# File: pytorch-image-models-main/timm/layers/interpolate.py +"""""" +import torch +from itertools import product + +class RegularGridInterpolator: + + def __init__(self, points, values): + self.points = points + self.values = values + assert isinstance(self.points, tuple) or isinstance(self.points, list) + assert isinstance(self.values, torch.Tensor) + self.ms = list(self.values.shape) + self.n = len(self.points) + assert len(self.ms) == self.n + for (i, p) in enumerate(self.points): + assert isinstance(p, torch.Tensor) + assert p.shape[0] == self.values.shape[i] + + def __call__(self, points_to_interp): + assert self.points is not None + assert self.values is not None + assert len(points_to_interp) == len(self.points) + K = points_to_interp[0].shape[0] + for x in points_to_interp: + assert x.shape[0] == K + idxs = [] + dists = [] + overalls = [] + for (p, x) in zip(self.points, points_to_interp): + idx_right = torch.bucketize(x, p) + idx_right[idx_right >= p.shape[0]] = p.shape[0] - 1 + idx_left = (idx_right - 1).clamp(0, p.shape[0] - 1) + dist_left = x - p[idx_left] + dist_right = p[idx_right] - x + dist_left[dist_left < 0] = 0.0 + dist_right[dist_right < 0] = 0.0 + both_zero = (dist_left == 0) & (dist_right == 0) + dist_left[both_zero] = dist_right[both_zero] = 1.0 + idxs.append((idx_left, idx_right)) + dists.append((dist_left, dist_right)) + overalls.append(dist_left + dist_right) + numerator = 0.0 + for indexer in product([0, 1], repeat=self.n): + as_s = [idx[onoff] for (onoff, idx) in zip(indexer, idxs)] + bs_s = [dist[1 - onoff] for (onoff, dist) in zip(indexer, dists)] + numerator += self.values[as_s] * torch.prod(torch.stack(bs_s), dim=0) + denominator = torch.prod(torch.stack(overalls), dim=0) + return numerator / denominator + +# File: pytorch-image-models-main/timm/layers/lambda_layer.py +"""""" +import torch +from torch import nn +import torch.nn.functional as F +from .grid import ndgrid +from .helpers import to_2tuple, make_divisible +from .weight_init import trunc_normal_ + +def rel_pos_indices(size): + size = to_2tuple(size) + pos = torch.stack(ndgrid(torch.arange(size[0]), torch.arange(size[1]))).flatten(1) + rel_pos = pos[:, None, :] - pos[:, :, None] + rel_pos[0] += size[0] - 1 + rel_pos[1] += size[1] - 1 + return rel_pos + +class LambdaLayer(nn.Module): + + def __init__(self, dim, dim_out=None, feat_size=None, stride=1, num_heads=4, dim_head=16, r=9, qk_ratio=1.0, qkv_bias=False): + super().__init__() + dim_out = dim_out or dim + assert dim_out % num_heads == 0, ' should be divided by num_heads' + self.dim_qk = dim_head or make_divisible(dim_out * qk_ratio, divisor=8) // num_heads + self.num_heads = num_heads + self.dim_v = dim_out // num_heads + self.qkv = nn.Conv2d(dim, num_heads * self.dim_qk + self.dim_qk + self.dim_v, kernel_size=1, bias=qkv_bias) + self.norm_q = nn.BatchNorm2d(num_heads * self.dim_qk) + self.norm_v = nn.BatchNorm2d(self.dim_v) + if r is not None: + self.conv_lambda = nn.Conv3d(1, self.dim_qk, (r, r, 1), padding=(r // 2, r // 2, 0)) + self.pos_emb = None + self.rel_pos_indices = None + else: + assert feat_size is not None + feat_size = to_2tuple(feat_size) + rel_size = [2 * s - 1 for s in feat_size] + self.conv_lambda = None + self.pos_emb = nn.Parameter(torch.zeros(rel_size[0], rel_size[1], self.dim_qk)) + self.register_buffer('rel_pos_indices', rel_pos_indices(feat_size), persistent=False) + self.pool = nn.AvgPool2d(2, 2) if stride == 2 else nn.Identity() + self.reset_parameters() + + def reset_parameters(self): + trunc_normal_(self.qkv.weight, std=self.qkv.weight.shape[1] ** (-0.5)) + if self.conv_lambda is not None: + trunc_normal_(self.conv_lambda.weight, std=self.dim_qk ** (-0.5)) + if self.pos_emb is not None: + trunc_normal_(self.pos_emb, std=0.02) + + def forward(self, x): + (B, C, H, W) = x.shape + M = H * W + qkv = self.qkv(x) + (q, k, v) = torch.split(qkv, [self.num_heads * self.dim_qk, self.dim_qk, self.dim_v], dim=1) + q = self.norm_q(q).reshape(B, self.num_heads, self.dim_qk, M).transpose(-1, -2) + v = self.norm_v(v).reshape(B, self.dim_v, M).transpose(-1, -2) + k = F.softmax(k.reshape(B, self.dim_qk, M), dim=-1) + content_lam = k @ v + content_out = q @ content_lam.unsqueeze(1) + if self.pos_emb is None: + position_lam = self.conv_lambda(v.reshape(B, 1, H, W, self.dim_v)) + position_lam = position_lam.reshape(B, 1, self.dim_qk, H * W, self.dim_v).transpose(2, 3) + else: + pos_emb = self.pos_emb[self.rel_pos_indices[0], self.rel_pos_indices[1]].expand(B, -1, -1, -1) + position_lam = (pos_emb.transpose(-1, -2) @ v.unsqueeze(1)).unsqueeze(1) + position_out = (q.unsqueeze(-2) @ position_lam).squeeze(-2) + out = (content_out + position_out).transpose(-1, -2).reshape(B, C, H, W) + out = self.pool(out) + return out + +# File: pytorch-image-models-main/timm/layers/layer_scale.py +import torch +from torch import nn + +class LayerScale(nn.Module): + + def __init__(self, dim: int, init_values: float=1e-05, inplace: bool=False) -> None: + super().__init__() + self.inplace = inplace + self.gamma = nn.Parameter(init_values * torch.ones(dim)) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + return x.mul_(self.gamma) if self.inplace else x * self.gamma + +class LayerScale2d(nn.Module): + + def __init__(self, dim: int, init_values: float=1e-05, inplace: bool=False): + super().__init__() + self.inplace = inplace + self.gamma = nn.Parameter(init_values * torch.ones(dim)) + + def forward(self, x): + gamma = self.gamma.view(1, -1, 1, 1) + return x.mul_(gamma) if self.inplace else x * gamma + +# File: pytorch-image-models-main/timm/layers/linear.py +"""""" +import torch +import torch.nn.functional as F +from torch import nn as nn + +class Linear(nn.Linear): + + def forward(self, input: torch.Tensor) -> torch.Tensor: + if torch.jit.is_scripting(): + bias = self.bias.to(dtype=input.dtype) if self.bias is not None else None + return F.linear(input, self.weight.to(dtype=input.dtype), bias=bias) + else: + return F.linear(input, self.weight, self.bias) + +# File: pytorch-image-models-main/timm/layers/median_pool.py +"""""" +import torch.nn as nn +import torch.nn.functional as F +from .helpers import to_2tuple, to_4tuple + +class MedianPool2d(nn.Module): + + def __init__(self, kernel_size=3, stride=1, padding=0, same=False): + super(MedianPool2d, self).__init__() + self.k = to_2tuple(kernel_size) + self.stride = to_2tuple(stride) + self.padding = to_4tuple(padding) + self.same = same + + def _padding(self, x): + if self.same: + (ih, iw) = x.size()[2:] + if ih % self.stride[0] == 0: + ph = max(self.k[0] - self.stride[0], 0) + else: + ph = max(self.k[0] - ih % self.stride[0], 0) + if iw % self.stride[1] == 0: + pw = max(self.k[1] - self.stride[1], 0) + else: + pw = max(self.k[1] - iw % self.stride[1], 0) + pl = pw // 2 + pr = pw - pl + pt = ph // 2 + pb = ph - pt + padding = (pl, pr, pt, pb) + else: + padding = self.padding + return padding + + def forward(self, x): + x = F.pad(x, self._padding(x), mode='reflect') + x = x.unfold(2, self.k[0], self.stride[0]).unfold(3, self.k[1], self.stride[1]) + x = x.contiguous().view(x.size()[:4] + (-1,)).median(dim=-1)[0] + return x + +# File: pytorch-image-models-main/timm/layers/mixed_conv2d.py +"""""" +import torch +from torch import nn as nn +from .conv2d_same import create_conv2d_pad + +def _split_channels(num_chan, num_groups): + split = [num_chan // num_groups for _ in range(num_groups)] + split[0] += num_chan - sum(split) + return split + +class MixedConv2d(nn.ModuleDict): + + def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding='', dilation=1, depthwise=False, **kwargs): + super(MixedConv2d, self).__init__() + kernel_size = kernel_size if isinstance(kernel_size, list) else [kernel_size] + num_groups = len(kernel_size) + in_splits = _split_channels(in_channels, num_groups) + out_splits = _split_channels(out_channels, num_groups) + self.in_channels = sum(in_splits) + self.out_channels = sum(out_splits) + for (idx, (k, in_ch, out_ch)) in enumerate(zip(kernel_size, in_splits, out_splits)): + conv_groups = in_ch if depthwise else 1 + self.add_module(str(idx), create_conv2d_pad(in_ch, out_ch, k, stride=stride, padding=padding, dilation=dilation, groups=conv_groups, **kwargs)) + self.splits = in_splits + + def forward(self, x): + x_split = torch.split(x, self.splits, 1) + x_out = [c(x_split[i]) for (i, c) in enumerate(self.values())] + x = torch.cat(x_out, 1) + return x + +# File: pytorch-image-models-main/timm/layers/ml_decoder.py +from typing import Optional +import torch +from torch import nn +from torch import nn, Tensor +from torch.nn.modules.transformer import _get_activation_fn + +def add_ml_decoder_head(model): + if hasattr(model, 'global_pool') and hasattr(model, 'fc'): + model.global_pool = nn.Identity() + del model.fc + num_classes = model.num_classes + num_features = model.num_features + model.fc = MLDecoder(num_classes=num_classes, initial_num_features=num_features) + elif hasattr(model, 'global_pool') and hasattr(model, 'classifier'): + model.global_pool = nn.Identity() + del model.classifier + num_classes = model.num_classes + num_features = model.num_features + model.classifier = MLDecoder(num_classes=num_classes, initial_num_features=num_features) + elif 'RegNet' in model._get_name() or 'TResNet' in model._get_name(): + del model.head + num_classes = model.num_classes + num_features = model.num_features + model.head = MLDecoder(num_classes=num_classes, initial_num_features=num_features) + else: + print('Model code-writing is not aligned currently with ml-decoder') + exit(-1) + if hasattr(model, 'drop_rate'): + model.drop_rate = 0 + return model + +class TransformerDecoderLayerOptimal(nn.Module): + + def __init__(self, d_model, nhead=8, dim_feedforward=2048, dropout=0.1, activation='relu', layer_norm_eps=1e-05) -> None: + super(TransformerDecoderLayerOptimal, self).__init__() + self.norm1 = nn.LayerNorm(d_model, eps=layer_norm_eps) + self.dropout = nn.Dropout(dropout) + self.dropout1 = nn.Dropout(dropout) + self.dropout2 = nn.Dropout(dropout) + self.dropout3 = nn.Dropout(dropout) + self.multihead_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout) + self.linear1 = nn.Linear(d_model, dim_feedforward) + self.linear2 = nn.Linear(dim_feedforward, d_model) + self.norm2 = nn.LayerNorm(d_model, eps=layer_norm_eps) + self.norm3 = nn.LayerNorm(d_model, eps=layer_norm_eps) + self.activation = _get_activation_fn(activation) + + def __setstate__(self, state): + if 'activation' not in state: + state['activation'] = torch.nn.functional.relu + super(TransformerDecoderLayerOptimal, self).__setstate__(state) + + def forward(self, tgt: Tensor, memory: Tensor, tgt_mask: Optional[Tensor]=None, memory_mask: Optional[Tensor]=None, tgt_key_padding_mask: Optional[Tensor]=None, memory_key_padding_mask: Optional[Tensor]=None) -> Tensor: + tgt = tgt + self.dropout1(tgt) + tgt = self.norm1(tgt) + tgt2 = self.multihead_attn(tgt, memory, memory)[0] + tgt = tgt + self.dropout2(tgt2) + tgt = self.norm2(tgt) + tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt)))) + tgt = tgt + self.dropout3(tgt2) + tgt = self.norm3(tgt) + return tgt + +class MLDecoder(nn.Module): + + def __init__(self, num_classes, num_of_groups=-1, decoder_embedding=768, initial_num_features=2048): + super(MLDecoder, self).__init__() + embed_len_decoder = 100 if num_of_groups < 0 else num_of_groups + if embed_len_decoder > num_classes: + embed_len_decoder = num_classes + self.embed_len_decoder = embed_len_decoder + decoder_embedding = 768 if decoder_embedding < 0 else decoder_embedding + self.embed_standart = nn.Linear(initial_num_features, decoder_embedding) + decoder_dropout = 0.1 + num_layers_decoder = 1 + dim_feedforward = 2048 + layer_decode = TransformerDecoderLayerOptimal(d_model=decoder_embedding, dim_feedforward=dim_feedforward, dropout=decoder_dropout) + self.decoder = nn.TransformerDecoder(layer_decode, num_layers=num_layers_decoder) + self.query_embed = nn.Embedding(embed_len_decoder, decoder_embedding) + self.query_embed.requires_grad_(False) + self.num_classes = num_classes + self.duplicate_factor = int(num_classes / embed_len_decoder + 0.999) + self.duplicate_pooling = torch.nn.Parameter(torch.Tensor(embed_len_decoder, decoder_embedding, self.duplicate_factor)) + self.duplicate_pooling_bias = torch.nn.Parameter(torch.Tensor(num_classes)) + torch.nn.init.xavier_normal_(self.duplicate_pooling) + torch.nn.init.constant_(self.duplicate_pooling_bias, 0) + + def forward(self, x): + if len(x.shape) == 4: + embedding_spatial = x.flatten(2).transpose(1, 2) + else: + embedding_spatial = x + embedding_spatial_786 = self.embed_standart(embedding_spatial) + embedding_spatial_786 = torch.nn.functional.relu(embedding_spatial_786, inplace=True) + bs = embedding_spatial_786.shape[0] + query_embed = self.query_embed.weight + tgt = query_embed.unsqueeze(1).expand(-1, bs, -1) + h = self.decoder(tgt, embedding_spatial_786.transpose(0, 1)) + h = h.transpose(0, 1) + out_extrap = torch.zeros(h.shape[0], h.shape[1], self.duplicate_factor, device=h.device, dtype=h.dtype) + for i in range(self.embed_len_decoder): + h_i = h[:, i, :] + w_i = self.duplicate_pooling[i, :, :] + out_extrap[:, i, :] = torch.matmul(h_i, w_i) + h_out = out_extrap.flatten(1)[:, :self.num_classes] + h_out += self.duplicate_pooling_bias + logits = h_out + return logits + +# File: pytorch-image-models-main/timm/layers/mlp.py +"""""" +from functools import partial +from torch import nn as nn +from .grn import GlobalResponseNorm +from .helpers import to_2tuple + +class Mlp(nn.Module): + + def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, norm_layer=None, bias=True, drop=0.0, use_conv=False): + super().__init__() + out_features = out_features or in_features + hidden_features = hidden_features or in_features + bias = to_2tuple(bias) + drop_probs = to_2tuple(drop) + linear_layer = partial(nn.Conv2d, kernel_size=1) if use_conv else nn.Linear + self.fc1 = linear_layer(in_features, hidden_features, bias=bias[0]) + self.act = act_layer() + self.drop1 = nn.Dropout(drop_probs[0]) + self.norm = norm_layer(hidden_features) if norm_layer is not None else nn.Identity() + self.fc2 = linear_layer(hidden_features, out_features, bias=bias[1]) + self.drop2 = nn.Dropout(drop_probs[1]) + + def forward(self, x): + x = self.fc1(x) + x = self.act(x) + x = self.drop1(x) + x = self.norm(x) + x = self.fc2(x) + x = self.drop2(x) + return x + +class GluMlp(nn.Module): + + def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.Sigmoid, norm_layer=None, bias=True, drop=0.0, use_conv=False, gate_last=True): + super().__init__() + out_features = out_features or in_features + hidden_features = hidden_features or in_features + assert hidden_features % 2 == 0 + bias = to_2tuple(bias) + drop_probs = to_2tuple(drop) + linear_layer = partial(nn.Conv2d, kernel_size=1) if use_conv else nn.Linear + self.chunk_dim = 1 if use_conv else -1 + self.gate_last = gate_last + self.fc1 = linear_layer(in_features, hidden_features, bias=bias[0]) + self.act = act_layer() + self.drop1 = nn.Dropout(drop_probs[0]) + self.norm = norm_layer(hidden_features // 2) if norm_layer is not None else nn.Identity() + self.fc2 = linear_layer(hidden_features // 2, out_features, bias=bias[1]) + self.drop2 = nn.Dropout(drop_probs[1]) + + def init_weights(self): + fc1_mid = self.fc1.bias.shape[0] // 2 + nn.init.ones_(self.fc1.bias[fc1_mid:]) + nn.init.normal_(self.fc1.weight[fc1_mid:], std=1e-06) + + def forward(self, x): + x = self.fc1(x) + (x1, x2) = x.chunk(2, dim=self.chunk_dim) + x = x1 * self.act(x2) if self.gate_last else self.act(x1) * x2 + x = self.drop1(x) + x = self.norm(x) + x = self.fc2(x) + x = self.drop2(x) + return x +SwiGLUPacked = partial(GluMlp, act_layer=nn.SiLU, gate_last=False) + +class SwiGLU(nn.Module): + + def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.SiLU, norm_layer=None, bias=True, drop=0.0): + super().__init__() + out_features = out_features or in_features + hidden_features = hidden_features or in_features + bias = to_2tuple(bias) + drop_probs = to_2tuple(drop) + self.fc1_g = nn.Linear(in_features, hidden_features, bias=bias[0]) + self.fc1_x = nn.Linear(in_features, hidden_features, bias=bias[0]) + self.act = act_layer() + self.drop1 = nn.Dropout(drop_probs[0]) + self.norm = norm_layer(hidden_features) if norm_layer is not None else nn.Identity() + self.fc2 = nn.Linear(hidden_features, out_features, bias=bias[1]) + self.drop2 = nn.Dropout(drop_probs[1]) + + def init_weights(self): + nn.init.ones_(self.fc1_g.bias) + nn.init.normal_(self.fc1_g.weight, std=1e-06) + + def forward(self, x): + x_gate = self.fc1_g(x) + x = self.fc1_x(x) + x = self.act(x_gate) * x + x = self.drop1(x) + x = self.norm(x) + x = self.fc2(x) + x = self.drop2(x) + return x + +class GatedMlp(nn.Module): + + def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, norm_layer=None, gate_layer=None, bias=True, drop=0.0): + super().__init__() + out_features = out_features or in_features + hidden_features = hidden_features or in_features + bias = to_2tuple(bias) + drop_probs = to_2tuple(drop) + self.fc1 = nn.Linear(in_features, hidden_features, bias=bias[0]) + self.act = act_layer() + self.drop1 = nn.Dropout(drop_probs[0]) + if gate_layer is not None: + assert hidden_features % 2 == 0 + self.gate = gate_layer(hidden_features) + hidden_features = hidden_features // 2 + else: + self.gate = nn.Identity() + self.norm = norm_layer(hidden_features) if norm_layer is not None else nn.Identity() + self.fc2 = nn.Linear(hidden_features, out_features, bias=bias[1]) + self.drop2 = nn.Dropout(drop_probs[1]) + + def forward(self, x): + x = self.fc1(x) + x = self.act(x) + x = self.drop1(x) + x = self.gate(x) + x = self.norm(x) + x = self.fc2(x) + x = self.drop2(x) + return x + +class ConvMlp(nn.Module): + + def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.ReLU, norm_layer=None, bias=True, drop=0.0): + super().__init__() + out_features = out_features or in_features + hidden_features = hidden_features or in_features + bias = to_2tuple(bias) + self.fc1 = nn.Conv2d(in_features, hidden_features, kernel_size=1, bias=bias[0]) + self.norm = norm_layer(hidden_features) if norm_layer else nn.Identity() + self.act = act_layer() + self.drop = nn.Dropout(drop) + self.fc2 = nn.Conv2d(hidden_features, out_features, kernel_size=1, bias=bias[1]) + + def forward(self, x): + x = self.fc1(x) + x = self.norm(x) + x = self.act(x) + x = self.drop(x) + x = self.fc2(x) + return x + +class GlobalResponseNormMlp(nn.Module): + + def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, bias=True, drop=0.0, use_conv=False): + super().__init__() + out_features = out_features or in_features + hidden_features = hidden_features or in_features + bias = to_2tuple(bias) + drop_probs = to_2tuple(drop) + linear_layer = partial(nn.Conv2d, kernel_size=1) if use_conv else nn.Linear + self.fc1 = linear_layer(in_features, hidden_features, bias=bias[0]) + self.act = act_layer() + self.drop1 = nn.Dropout(drop_probs[0]) + self.grn = GlobalResponseNorm(hidden_features, channels_last=not use_conv) + self.fc2 = linear_layer(hidden_features, out_features, bias=bias[1]) + self.drop2 = nn.Dropout(drop_probs[1]) + + def forward(self, x): + x = self.fc1(x) + x = self.act(x) + x = self.drop1(x) + x = self.grn(x) + x = self.fc2(x) + x = self.drop2(x) + return x + +# File: pytorch-image-models-main/timm/layers/non_local_attn.py +"""""" +import torch +from torch import nn +from torch.nn import functional as F +from .conv_bn_act import ConvNormAct +from .helpers import make_divisible +from .trace_utils import _assert + +class NonLocalAttn(nn.Module): + + def __init__(self, in_channels, use_scale=True, rd_ratio=1 / 8, rd_channels=None, rd_divisor=8, **kwargs): + super(NonLocalAttn, self).__init__() + if rd_channels is None: + rd_channels = make_divisible(in_channels * rd_ratio, divisor=rd_divisor) + self.scale = in_channels ** (-0.5) if use_scale else 1.0 + self.t = nn.Conv2d(in_channels, rd_channels, kernel_size=1, stride=1, bias=True) + self.p = nn.Conv2d(in_channels, rd_channels, kernel_size=1, stride=1, bias=True) + self.g = nn.Conv2d(in_channels, rd_channels, kernel_size=1, stride=1, bias=True) + self.z = nn.Conv2d(rd_channels, in_channels, kernel_size=1, stride=1, bias=True) + self.norm = nn.BatchNorm2d(in_channels) + self.reset_parameters() + + def forward(self, x): + shortcut = x + t = self.t(x) + p = self.p(x) + g = self.g(x) + (B, C, H, W) = t.size() + t = t.view(B, C, -1).permute(0, 2, 1) + p = p.view(B, C, -1) + g = g.view(B, C, -1).permute(0, 2, 1) + att = torch.bmm(t, p) * self.scale + att = F.softmax(att, dim=2) + x = torch.bmm(att, g) + x = x.permute(0, 2, 1).reshape(B, C, H, W) + x = self.z(x) + x = self.norm(x) + shortcut + return x + + def reset_parameters(self): + for (name, m) in self.named_modules(): + if isinstance(m, nn.Conv2d): + nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') + if len(list(m.parameters())) > 1: + nn.init.constant_(m.bias, 0.0) + elif isinstance(m, nn.BatchNorm2d): + nn.init.constant_(m.weight, 0) + nn.init.constant_(m.bias, 0) + elif isinstance(m, nn.GroupNorm): + nn.init.constant_(m.weight, 0) + nn.init.constant_(m.bias, 0) + +class BilinearAttnTransform(nn.Module): + + def __init__(self, in_channels, block_size, groups, act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d): + super(BilinearAttnTransform, self).__init__() + self.conv1 = ConvNormAct(in_channels, groups, 1, act_layer=act_layer, norm_layer=norm_layer) + self.conv_p = nn.Conv2d(groups, block_size * block_size * groups, kernel_size=(block_size, 1)) + self.conv_q = nn.Conv2d(groups, block_size * block_size * groups, kernel_size=(1, block_size)) + self.conv2 = ConvNormAct(in_channels, in_channels, 1, act_layer=act_layer, norm_layer=norm_layer) + self.block_size = block_size + self.groups = groups + self.in_channels = in_channels + + def resize_mat(self, x, t: int): + (B, C, block_size, block_size1) = x.shape + _assert(block_size == block_size1, '') + if t <= 1: + return x + x = x.view(B * C, -1, 1, 1) + x = x * torch.eye(t, t, dtype=x.dtype, device=x.device) + x = x.view(B * C, block_size, block_size, t, t) + x = torch.cat(torch.split(x, 1, dim=1), dim=3) + x = torch.cat(torch.split(x, 1, dim=2), dim=4) + x = x.view(B, C, block_size * t, block_size * t) + return x + + def forward(self, x): + _assert(x.shape[-1] % self.block_size == 0, '') + _assert(x.shape[-2] % self.block_size == 0, '') + (B, C, H, W) = x.shape + out = self.conv1(x) + rp = F.adaptive_max_pool2d(out, (self.block_size, 1)) + cp = F.adaptive_max_pool2d(out, (1, self.block_size)) + p = self.conv_p(rp).view(B, self.groups, self.block_size, self.block_size).sigmoid() + q = self.conv_q(cp).view(B, self.groups, self.block_size, self.block_size).sigmoid() + p = p / p.sum(dim=3, keepdim=True) + q = q / q.sum(dim=2, keepdim=True) + p = p.view(B, self.groups, 1, self.block_size, self.block_size).expand(x.size(0), self.groups, C // self.groups, self.block_size, self.block_size).contiguous() + p = p.view(B, C, self.block_size, self.block_size) + q = q.view(B, self.groups, 1, self.block_size, self.block_size).expand(x.size(0), self.groups, C // self.groups, self.block_size, self.block_size).contiguous() + q = q.view(B, C, self.block_size, self.block_size) + p = self.resize_mat(p, H // self.block_size) + q = self.resize_mat(q, W // self.block_size) + y = p.matmul(x) + y = y.matmul(q) + y = self.conv2(y) + return y + +class BatNonLocalAttn(nn.Module): + + def __init__(self, in_channels, block_size=7, groups=2, rd_ratio=0.25, rd_channels=None, rd_divisor=8, drop_rate=0.2, act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d, **_): + super().__init__() + if rd_channels is None: + rd_channels = make_divisible(in_channels * rd_ratio, divisor=rd_divisor) + self.conv1 = ConvNormAct(in_channels, rd_channels, 1, act_layer=act_layer, norm_layer=norm_layer) + self.ba = BilinearAttnTransform(rd_channels, block_size, groups, act_layer=act_layer, norm_layer=norm_layer) + self.conv2 = ConvNormAct(rd_channels, in_channels, 1, act_layer=act_layer, norm_layer=norm_layer) + self.dropout = nn.Dropout2d(p=drop_rate) + + def forward(self, x): + xl = self.conv1(x) + y = self.ba(xl) + y = self.conv2(y) + y = self.dropout(y) + return y + x + +# File: pytorch-image-models-main/timm/layers/norm.py +"""""" +import numbers +from typing import Tuple +import torch +import torch.nn as nn +import torch.nn.functional as F +from .fast_norm import is_fast_norm, fast_group_norm, fast_layer_norm, fast_rms_norm + +class GroupNorm(nn.GroupNorm): + + def __init__(self, num_channels, num_groups=32, eps=1e-05, affine=True): + super().__init__(num_groups, num_channels, eps=eps, affine=affine) + self.fast_norm = is_fast_norm() + + def forward(self, x): + if self.fast_norm: + return fast_group_norm(x, self.num_groups, self.weight, self.bias, self.eps) + else: + return F.group_norm(x, self.num_groups, self.weight, self.bias, self.eps) + +class GroupNorm1(nn.GroupNorm): + + def __init__(self, num_channels, **kwargs): + super().__init__(1, num_channels, **kwargs) + self.fast_norm = is_fast_norm() + + def forward(self, x: torch.Tensor) -> torch.Tensor: + if self.fast_norm: + return fast_group_norm(x, self.num_groups, self.weight, self.bias, self.eps) + else: + return F.group_norm(x, self.num_groups, self.weight, self.bias, self.eps) + +class LayerNorm(nn.LayerNorm): + + def __init__(self, num_channels, eps=1e-06, affine=True): + super().__init__(num_channels, eps=eps, elementwise_affine=affine) + self._fast_norm = is_fast_norm() + + def forward(self, x: torch.Tensor) -> torch.Tensor: + if self._fast_norm: + x = fast_layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps) + else: + x = F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps) + return x + +class LayerNorm2d(nn.LayerNorm): + + def __init__(self, num_channels, eps=1e-06, affine=True): + super().__init__(num_channels, eps=eps, elementwise_affine=affine) + self._fast_norm = is_fast_norm() + + def forward(self, x: torch.Tensor) -> torch.Tensor: + x = x.permute(0, 2, 3, 1) + if self._fast_norm: + x = fast_layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps) + else: + x = F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps) + x = x.permute(0, 3, 1, 2) + return x + +def _is_contiguous(tensor: torch.Tensor) -> bool: + if torch.jit.is_scripting(): + return tensor.is_contiguous() + else: + return tensor.is_contiguous(memory_format=torch.contiguous_format) + +def _layer_norm_cf(x: torch.Tensor, weight: torch.Tensor, bias: torch.Tensor, eps: float): + (s, u) = torch.var_mean(x, dim=1, unbiased=False, keepdim=True) + x = (x - u) * torch.rsqrt(s + eps) + x = x * weight[:, None, None] + bias[:, None, None] + return x + +def _layer_norm_cf_sqm(x: torch.Tensor, weight: torch.Tensor, bias: torch.Tensor, eps: float): + u = x.mean(dim=1, keepdim=True) + s = ((x * x).mean(dim=1, keepdim=True) - u * u).clamp(0) + x = (x - u) * torch.rsqrt(s + eps) + x = x * weight.view(1, -1, 1, 1) + bias.view(1, -1, 1, 1) + return x + +class LayerNormExp2d(nn.LayerNorm): + + def __init__(self, num_channels, eps=1e-06): + super().__init__(num_channels, eps=eps) + + def forward(self, x) -> torch.Tensor: + if _is_contiguous(x): + x = F.layer_norm(x.permute(0, 2, 3, 1), self.normalized_shape, self.weight, self.bias, self.eps).permute(0, 3, 1, 2) + else: + x = _layer_norm_cf(x, self.weight, self.bias, self.eps) + return x + +class RmsNorm(nn.Module): + __constants__ = ['normalized_shape', 'eps', 'elementwise_affine'] + normalized_shape: Tuple[int, ...] + eps: float + elementwise_affine: bool + + def __init__(self, channels, eps=1e-06, affine=True, device=None, dtype=None) -> None: + factory_kwargs = {'device': device, 'dtype': dtype} + super().__init__() + normalized_shape = channels + if isinstance(normalized_shape, numbers.Integral): + normalized_shape = (normalized_shape,) + self.normalized_shape = tuple(normalized_shape) + self.eps = eps + self.elementwise_affine = affine + if self.elementwise_affine: + self.weight = nn.Parameter(torch.empty(self.normalized_shape, **factory_kwargs)) + else: + self.register_parameter('weight', None) + self.reset_parameters() + + def reset_parameters(self) -> None: + if self.elementwise_affine: + nn.init.ones_(self.weight) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + x = fast_rms_norm(x, self.normalized_shape, self.weight, self.eps) + return x + +# File: pytorch-image-models-main/timm/layers/norm_act.py +"""""" +from typing import Union, List, Optional, Any +import torch +from torch import nn as nn +from torch.nn import functional as F +from torchvision.ops.misc import FrozenBatchNorm2d +from .create_act import create_act_layer +from .fast_norm import is_fast_norm, fast_group_norm, fast_layer_norm +from .trace_utils import _assert + +def _create_act(act_layer, act_kwargs=None, inplace=False, apply_act=True): + act_kwargs = act_kwargs or {} + act_kwargs.setdefault('inplace', inplace) + act = None + if apply_act: + act = create_act_layer(act_layer, **act_kwargs) + return nn.Identity() if act is None else act + +class BatchNormAct2d(nn.BatchNorm2d): + + def __init__(self, num_features, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True, apply_act=True, act_layer=nn.ReLU, act_kwargs=None, inplace=True, drop_layer=None, device=None, dtype=None): + try: + factory_kwargs = {'device': device, 'dtype': dtype} + super(BatchNormAct2d, self).__init__(num_features, eps=eps, momentum=momentum, affine=affine, track_running_stats=track_running_stats, **factory_kwargs) + except TypeError: + super(BatchNormAct2d, self).__init__(num_features, eps=eps, momentum=momentum, affine=affine, track_running_stats=track_running_stats) + self.drop = drop_layer() if drop_layer is not None else nn.Identity() + self.act = _create_act(act_layer, act_kwargs=act_kwargs, inplace=inplace, apply_act=apply_act) + + def forward(self, x): + _assert(x.ndim == 4, f'expected 4D input (got {x.ndim}D input)') + if self.momentum is None: + exponential_average_factor = 0.0 + else: + exponential_average_factor = self.momentum + if self.training and self.track_running_stats: + if self.num_batches_tracked is not None: + self.num_batches_tracked.add_(1) + if self.momentum is None: + exponential_average_factor = 1.0 / float(self.num_batches_tracked) + else: + exponential_average_factor = self.momentum + '' + if self.training: + bn_training = True + else: + bn_training = self.running_mean is None and self.running_var is None + '' + x = F.batch_norm(x, self.running_mean if not self.training or self.track_running_stats else None, self.running_var if not self.training or self.track_running_stats else None, self.weight, self.bias, bn_training, exponential_average_factor, self.eps) + x = self.drop(x) + x = self.act(x) + return x + +class SyncBatchNormAct(nn.SyncBatchNorm): + + def forward(self, x: torch.Tensor) -> torch.Tensor: + x = super().forward(x) + if hasattr(self, 'drop'): + x = self.drop(x) + if hasattr(self, 'act'): + x = self.act(x) + return x + +def convert_sync_batchnorm(module, process_group=None): + module_output = module + if isinstance(module, torch.nn.modules.batchnorm._BatchNorm): + if isinstance(module, BatchNormAct2d): + module_output = SyncBatchNormAct(module.num_features, module.eps, module.momentum, module.affine, module.track_running_stats, process_group=process_group) + module_output.act = module.act + module_output.drop = module.drop + else: + module_output = torch.nn.SyncBatchNorm(module.num_features, module.eps, module.momentum, module.affine, module.track_running_stats, process_group) + if module.affine: + with torch.no_grad(): + module_output.weight = module.weight + module_output.bias = module.bias + module_output.running_mean = module.running_mean + module_output.running_var = module.running_var + module_output.num_batches_tracked = module.num_batches_tracked + if hasattr(module, 'qconfig'): + module_output.qconfig = module.qconfig + for (name, child) in module.named_children(): + module_output.add_module(name, convert_sync_batchnorm(child, process_group)) + del module + return module_output + +class FrozenBatchNormAct2d(torch.nn.Module): + + def __init__(self, num_features: int, eps: float=1e-05, apply_act=True, act_layer=nn.ReLU, act_kwargs=None, inplace=True, drop_layer=None): + super().__init__() + self.eps = eps + self.register_buffer('weight', torch.ones(num_features)) + self.register_buffer('bias', torch.zeros(num_features)) + self.register_buffer('running_mean', torch.zeros(num_features)) + self.register_buffer('running_var', torch.ones(num_features)) + self.drop = drop_layer() if drop_layer is not None else nn.Identity() + self.act = _create_act(act_layer, act_kwargs=act_kwargs, inplace=inplace, apply_act=apply_act) + + def _load_from_state_dict(self, state_dict: dict, prefix: str, local_metadata: dict, strict: bool, missing_keys: List[str], unexpected_keys: List[str], error_msgs: List[str]): + num_batches_tracked_key = prefix + 'num_batches_tracked' + if num_batches_tracked_key in state_dict: + del state_dict[num_batches_tracked_key] + super()._load_from_state_dict(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + w = self.weight.reshape(1, -1, 1, 1) + b = self.bias.reshape(1, -1, 1, 1) + rv = self.running_var.reshape(1, -1, 1, 1) + rm = self.running_mean.reshape(1, -1, 1, 1) + scale = w * (rv + self.eps).rsqrt() + bias = b - rm * scale + x = x * scale + bias + x = self.act(self.drop(x)) + return x + + def __repr__(self) -> str: + return f'{self.__class__.__name__}({self.weight.shape[0]}, eps={self.eps}, act={self.act})' + +def freeze_batch_norm_2d(module): + res = module + if isinstance(module, (BatchNormAct2d, SyncBatchNormAct)): + res = FrozenBatchNormAct2d(module.num_features) + res.num_features = module.num_features + res.affine = module.affine + if module.affine: + res.weight.data = module.weight.data.clone().detach() + res.bias.data = module.bias.data.clone().detach() + res.running_mean.data = module.running_mean.data + res.running_var.data = module.running_var.data + res.eps = module.eps + res.drop = module.drop + res.act = module.act + elif isinstance(module, (torch.nn.modules.batchnorm.BatchNorm2d, torch.nn.modules.batchnorm.SyncBatchNorm)): + res = FrozenBatchNorm2d(module.num_features) + res.num_features = module.num_features + res.affine = module.affine + if module.affine: + res.weight.data = module.weight.data.clone().detach() + res.bias.data = module.bias.data.clone().detach() + res.running_mean.data = module.running_mean.data + res.running_var.data = module.running_var.data + res.eps = module.eps + else: + for (name, child) in module.named_children(): + new_child = freeze_batch_norm_2d(child) + if new_child is not child: + res.add_module(name, new_child) + return res + +def unfreeze_batch_norm_2d(module): + res = module + if isinstance(module, FrozenBatchNormAct2d): + res = BatchNormAct2d(module.num_features) + if module.affine: + res.weight.data = module.weight.data.clone().detach() + res.bias.data = module.bias.data.clone().detach() + res.running_mean.data = module.running_mean.data + res.running_var.data = module.running_var.data + res.eps = module.eps + res.drop = module.drop + res.act = module.act + elif isinstance(module, FrozenBatchNorm2d): + res = torch.nn.BatchNorm2d(module.num_features) + if module.affine: + res.weight.data = module.weight.data.clone().detach() + res.bias.data = module.bias.data.clone().detach() + res.running_mean.data = module.running_mean.data + res.running_var.data = module.running_var.data + res.eps = module.eps + else: + for (name, child) in module.named_children(): + new_child = unfreeze_batch_norm_2d(child) + if new_child is not child: + res.add_module(name, new_child) + return res + +def _num_groups(num_channels, num_groups, group_size): + if group_size: + assert num_channels % group_size == 0 + return num_channels // group_size + return num_groups + +class GroupNormAct(nn.GroupNorm): + + def __init__(self, num_channels, num_groups=32, eps=1e-05, affine=True, group_size=None, apply_act=True, act_layer=nn.ReLU, act_kwargs=None, inplace=True, drop_layer=None): + super(GroupNormAct, self).__init__(_num_groups(num_channels, num_groups, group_size), num_channels, eps=eps, affine=affine) + self.drop = drop_layer() if drop_layer is not None else nn.Identity() + self.act = _create_act(act_layer, act_kwargs=act_kwargs, inplace=inplace, apply_act=apply_act) + self._fast_norm = is_fast_norm() + + def forward(self, x): + if self._fast_norm: + x = fast_group_norm(x, self.num_groups, self.weight, self.bias, self.eps) + else: + x = F.group_norm(x, self.num_groups, self.weight, self.bias, self.eps) + x = self.drop(x) + x = self.act(x) + return x + +class GroupNorm1Act(nn.GroupNorm): + + def __init__(self, num_channels, eps=1e-05, affine=True, apply_act=True, act_layer=nn.ReLU, act_kwargs=None, inplace=True, drop_layer=None): + super(GroupNorm1Act, self).__init__(1, num_channels, eps=eps, affine=affine) + self.drop = drop_layer() if drop_layer is not None else nn.Identity() + self.act = _create_act(act_layer, act_kwargs=act_kwargs, inplace=inplace, apply_act=apply_act) + self._fast_norm = is_fast_norm() + + def forward(self, x): + if self._fast_norm: + x = fast_group_norm(x, self.num_groups, self.weight, self.bias, self.eps) + else: + x = F.group_norm(x, self.num_groups, self.weight, self.bias, self.eps) + x = self.drop(x) + x = self.act(x) + return x + +class LayerNormAct(nn.LayerNorm): + + def __init__(self, normalization_shape: Union[int, List[int], torch.Size], eps=1e-05, affine=True, apply_act=True, act_layer=nn.ReLU, act_kwargs=None, inplace=True, drop_layer=None): + super(LayerNormAct, self).__init__(normalization_shape, eps=eps, elementwise_affine=affine) + self.drop = drop_layer() if drop_layer is not None else nn.Identity() + self.act = _create_act(act_layer, act_kwargs=act_kwargs, inplace=inplace, apply_act=apply_act) + self._fast_norm = is_fast_norm() + + def forward(self, x): + if self._fast_norm: + x = fast_layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps) + else: + x = F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps) + x = self.drop(x) + x = self.act(x) + return x + +class LayerNormAct2d(nn.LayerNorm): + + def __init__(self, num_channels, eps=1e-05, affine=True, apply_act=True, act_layer=nn.ReLU, act_kwargs=None, inplace=True, drop_layer=None): + super(LayerNormAct2d, self).__init__(num_channels, eps=eps, elementwise_affine=affine) + self.drop = drop_layer() if drop_layer is not None else nn.Identity() + self.act = _create_act(act_layer, act_kwargs=act_kwargs, inplace=inplace, apply_act=apply_act) + self._fast_norm = is_fast_norm() + + def forward(self, x): + x = x.permute(0, 2, 3, 1) + if self._fast_norm: + x = fast_layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps) + else: + x = F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps) + x = x.permute(0, 3, 1, 2) + x = self.drop(x) + x = self.act(x) + return x + +# File: pytorch-image-models-main/timm/layers/padding.py +"""""" +import math +from typing import List, Tuple, Union +import torch +import torch.nn.functional as F +from .helpers import to_2tuple + +def get_padding(kernel_size: int, stride: int=1, dilation: int=1, **_) -> Union[int, List[int]]: + if any([isinstance(v, (tuple, list)) for v in [kernel_size, stride, dilation]]): + (kernel_size, stride, dilation) = (to_2tuple(kernel_size), to_2tuple(stride), to_2tuple(dilation)) + return [get_padding(*a) for a in zip(kernel_size, stride, dilation)] + padding = (stride - 1 + dilation * (kernel_size - 1)) // 2 + return padding + +def get_same_padding(x: int, kernel_size: int, stride: int, dilation: int): + if isinstance(x, torch.Tensor): + return torch.clamp(((x / stride).ceil() - 1) * stride + (kernel_size - 1) * dilation + 1 - x, min=0) + else: + return max((math.ceil(x / stride) - 1) * stride + (kernel_size - 1) * dilation + 1 - x, 0) + +def is_static_pad(kernel_size: int, stride: int=1, dilation: int=1, **_): + if any([isinstance(v, (tuple, list)) for v in [kernel_size, stride, dilation]]): + (kernel_size, stride, dilation) = (to_2tuple(kernel_size), to_2tuple(stride), to_2tuple(dilation)) + return all([is_static_pad(*a) for a in zip(kernel_size, stride, dilation)]) + return stride == 1 and dilation * (kernel_size - 1) % 2 == 0 + +def pad_same_arg(input_size: List[int], kernel_size: List[int], stride: List[int], dilation: List[int]=(1, 1)) -> List[int]: + (ih, iw) = input_size + (kh, kw) = kernel_size + pad_h = get_same_padding(ih, kh, stride[0], dilation[0]) + pad_w = get_same_padding(iw, kw, stride[1], dilation[1]) + return [pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2] + +def pad_same(x, kernel_size: List[int], stride: List[int], dilation: List[int]=(1, 1), value: float=0): + (ih, iw) = x.size()[-2:] + pad_h = get_same_padding(ih, kernel_size[0], stride[0], dilation[0]) + pad_w = get_same_padding(iw, kernel_size[1], stride[1], dilation[1]) + x = F.pad(x, (pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2), value=value) + return x + +def get_padding_value(padding, kernel_size, **kwargs) -> Tuple[Tuple, bool]: + dynamic = False + if isinstance(padding, str): + padding = padding.lower() + if padding == 'same': + if is_static_pad(kernel_size, **kwargs): + padding = get_padding(kernel_size, **kwargs) + else: + padding = 0 + dynamic = True + elif padding == 'valid': + padding = 0 + else: + padding = get_padding(kernel_size, **kwargs) + return (padding, dynamic) + +# File: pytorch-image-models-main/timm/layers/patch_dropout.py +from typing import Optional, Tuple, Union +import torch +import torch.nn as nn + +class PatchDropout(nn.Module): + return_indices: torch.jit.Final[bool] + + def __init__(self, prob: float=0.5, num_prefix_tokens: int=1, ordered: bool=False, return_indices: bool=False): + super().__init__() + assert 0 <= prob < 1.0 + self.prob = prob + self.num_prefix_tokens = num_prefix_tokens + self.ordered = ordered + self.return_indices = return_indices + + def forward(self, x) -> Union[torch.Tensor, Tuple[torch.Tensor, Optional[torch.Tensor]]]: + if not self.training or self.prob == 0.0: + if self.return_indices: + return (x, None) + return x + if self.num_prefix_tokens: + (prefix_tokens, x) = (x[:, :self.num_prefix_tokens], x[:, self.num_prefix_tokens:]) + else: + prefix_tokens = None + B = x.shape[0] + L = x.shape[1] + num_keep = max(1, int(L * (1.0 - self.prob))) + keep_indices = torch.argsort(torch.randn(B, L, device=x.device), dim=-1)[:, :num_keep] + if self.ordered: + keep_indices = keep_indices.sort(dim=-1)[0] + x = x.gather(1, keep_indices.unsqueeze(-1).expand((-1, -1) + x.shape[2:])) + if prefix_tokens is not None: + x = torch.cat((prefix_tokens, x), dim=1) + if self.return_indices: + return (x, keep_indices) + return x + +# File: pytorch-image-models-main/timm/layers/patch_embed.py +"""""" +import logging +import math +from typing import Callable, List, Optional, Tuple, Union +import torch +from torch import nn as nn +import torch.nn.functional as F +from .format import Format, nchw_to +from .helpers import to_2tuple +from .trace_utils import _assert +_logger = logging.getLogger(__name__) + +class PatchEmbed(nn.Module): + output_fmt: Format + dynamic_img_pad: torch.jit.Final[bool] + + def __init__(self, img_size: Optional[int]=224, patch_size: int=16, in_chans: int=3, embed_dim: int=768, norm_layer: Optional[Callable]=None, flatten: bool=True, output_fmt: Optional[str]=None, bias: bool=True, strict_img_size: bool=True, dynamic_img_pad: bool=False): + super().__init__() + self.patch_size = to_2tuple(patch_size) + (self.img_size, self.grid_size, self.num_patches) = self._init_img_size(img_size) + if output_fmt is not None: + self.flatten = False + self.output_fmt = Format(output_fmt) + else: + self.flatten = flatten + self.output_fmt = Format.NCHW + self.strict_img_size = strict_img_size + self.dynamic_img_pad = dynamic_img_pad + self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size, bias=bias) + self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity() + + def _init_img_size(self, img_size: Union[int, Tuple[int, int]]): + assert self.patch_size + if img_size is None: + return (None, None, None) + img_size = to_2tuple(img_size) + grid_size = tuple([s // p for (s, p) in zip(img_size, self.patch_size)]) + num_patches = grid_size[0] * grid_size[1] + return (img_size, grid_size, num_patches) + + def set_input_size(self, img_size: Optional[Union[int, Tuple[int, int]]]=None, patch_size: Optional[Union[int, Tuple[int, int]]]=None): + new_patch_size = None + if patch_size is not None: + new_patch_size = to_2tuple(patch_size) + if new_patch_size is not None and new_patch_size != self.patch_size: + with torch.no_grad(): + new_proj = nn.Conv2d(self.proj.in_channels, self.proj.out_channels, kernel_size=new_patch_size, stride=new_patch_size, bias=self.proj.bias is not None) + new_proj.weight.copy_(resample_patch_embed(self.proj.weight, new_patch_size, verbose=True)) + if self.proj.bias is not None: + new_proj.bias.copy_(self.proj.bias) + self.proj = new_proj + self.patch_size = new_patch_size + img_size = img_size or self.img_size + if img_size != self.img_size or new_patch_size is not None: + (self.img_size, self.grid_size, self.num_patches) = self._init_img_size(img_size) + + def feat_ratio(self, as_scalar=True) -> Union[Tuple[int, int], int]: + if as_scalar: + return max(self.patch_size) + else: + return self.patch_size + + def dynamic_feat_size(self, img_size: Tuple[int, int]) -> Tuple[int, int]: + if self.dynamic_img_pad: + return (math.ceil(img_size[0] / self.patch_size[0]), math.ceil(img_size[1] / self.patch_size[1])) + else: + return (img_size[0] // self.patch_size[0], img_size[1] // self.patch_size[1]) + + def forward(self, x): + (B, C, H, W) = x.shape + if self.img_size is not None: + if self.strict_img_size: + _assert(H == self.img_size[0], f"Input height ({H}) doesn't match model ({self.img_size[0]}).") + _assert(W == self.img_size[1], f"Input width ({W}) doesn't match model ({self.img_size[1]}).") + elif not self.dynamic_img_pad: + _assert(H % self.patch_size[0] == 0, f'Input height ({H}) should be divisible by patch size ({self.patch_size[0]}).') + _assert(W % self.patch_size[1] == 0, f'Input width ({W}) should be divisible by patch size ({self.patch_size[1]}).') + if self.dynamic_img_pad: + pad_h = (self.patch_size[0] - H % self.patch_size[0]) % self.patch_size[0] + pad_w = (self.patch_size[1] - W % self.patch_size[1]) % self.patch_size[1] + x = F.pad(x, (0, pad_w, 0, pad_h)) + x = self.proj(x) + if self.flatten: + x = x.flatten(2).transpose(1, 2) + elif self.output_fmt != Format.NCHW: + x = nchw_to(x, self.output_fmt) + x = self.norm(x) + return x + +class PatchEmbedWithSize(PatchEmbed): + output_fmt: Format + + def __init__(self, img_size: Optional[int]=224, patch_size: int=16, in_chans: int=3, embed_dim: int=768, norm_layer: Optional[Callable]=None, flatten: bool=True, output_fmt: Optional[str]=None, bias: bool=True): + super().__init__(img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim, norm_layer=norm_layer, flatten=flatten, output_fmt=output_fmt, bias=bias) + + def forward(self, x) -> Tuple[torch.Tensor, List[int]]: + (B, C, H, W) = x.shape + if self.img_size is not None: + _assert(H % self.patch_size[0] == 0, f'Input image height ({H}) must be divisible by patch size ({self.patch_size[0]}).') + _assert(W % self.patch_size[1] == 0, f'Input image width ({W}) must be divisible by patch size ({self.patch_size[1]}).') + x = self.proj(x) + feat_size = x.shape[-2:] + if self.flatten: + x = x.flatten(2).transpose(1, 2) + elif self.output_fmt != Format.NCHW: + x = nchw_to(x, self.output_fmt) + x = self.norm(x) + return (x, feat_size) + +def resample_patch_embed(patch_embed, new_size: List[int], interpolation: str='bicubic', antialias: bool=True, verbose: bool=False): + import numpy as np + try: + from torch import vmap + except ImportError: + from functorch import vmap + assert len(patch_embed.shape) == 4, 'Four dimensions expected' + assert len(new_size) == 2, 'New shape should only be hw' + old_size = patch_embed.shape[-2:] + if tuple(old_size) == tuple(new_size): + return patch_embed + if verbose: + _logger.info(f'Resize patch embedding {patch_embed.shape} to {new_size}, w/ {interpolation} interpolation.') + + def resize(x_np, _new_size): + x_tf = torch.Tensor(x_np)[None, None, ...] + x_upsampled = F.interpolate(x_tf, size=_new_size, mode=interpolation, antialias=antialias)[0, 0, ...].numpy() + return x_upsampled + + def get_resize_mat(_old_size, _new_size): + mat = [] + for i in range(np.prod(_old_size)): + basis_vec = np.zeros(_old_size) + basis_vec[np.unravel_index(i, _old_size)] = 1.0 + mat.append(resize(basis_vec, _new_size).reshape(-1)) + return np.stack(mat).T + resize_mat = get_resize_mat(old_size, new_size) + resize_mat_pinv = torch.tensor(np.linalg.pinv(resize_mat.T), device=patch_embed.device) + + def resample_kernel(kernel): + resampled_kernel = resize_mat_pinv @ kernel.reshape(-1) + return resampled_kernel.reshape(new_size) + v_resample_kernel = vmap(vmap(resample_kernel, 0, 0), 1, 1) + orig_dtype = patch_embed.dtype + patch_embed = patch_embed.float() + patch_embed = v_resample_kernel(patch_embed) + patch_embed = patch_embed.to(orig_dtype) + return patch_embed + +# File: pytorch-image-models-main/timm/layers/pool2d_same.py +"""""" +import torch +import torch.nn as nn +import torch.nn.functional as F +from typing import List, Tuple, Optional +from .helpers import to_2tuple +from .padding import pad_same, get_padding_value + +def avg_pool2d_same(x, kernel_size: List[int], stride: List[int], padding: List[int]=(0, 0), ceil_mode: bool=False, count_include_pad: bool=True): + x = pad_same(x, kernel_size, stride) + return F.avg_pool2d(x, kernel_size, stride, (0, 0), ceil_mode, count_include_pad) + +class AvgPool2dSame(nn.AvgPool2d): + + def __init__(self, kernel_size: int, stride=None, padding=0, ceil_mode=False, count_include_pad=True): + kernel_size = to_2tuple(kernel_size) + stride = to_2tuple(stride) + super(AvgPool2dSame, self).__init__(kernel_size, stride, (0, 0), ceil_mode, count_include_pad) + + def forward(self, x): + x = pad_same(x, self.kernel_size, self.stride) + return F.avg_pool2d(x, self.kernel_size, self.stride, self.padding, self.ceil_mode, self.count_include_pad) + +def max_pool2d_same(x, kernel_size: List[int], stride: List[int], padding: List[int]=(0, 0), dilation: List[int]=(1, 1), ceil_mode: bool=False): + x = pad_same(x, kernel_size, stride, value=-float('inf')) + return F.max_pool2d(x, kernel_size, stride, (0, 0), dilation, ceil_mode) + +class MaxPool2dSame(nn.MaxPool2d): + + def __init__(self, kernel_size: int, stride=None, padding=0, dilation=1, ceil_mode=False): + kernel_size = to_2tuple(kernel_size) + stride = to_2tuple(stride) + dilation = to_2tuple(dilation) + super(MaxPool2dSame, self).__init__(kernel_size, stride, (0, 0), dilation, ceil_mode) + + def forward(self, x): + x = pad_same(x, self.kernel_size, self.stride, value=-float('inf')) + return F.max_pool2d(x, self.kernel_size, self.stride, (0, 0), self.dilation, self.ceil_mode) + +def create_pool2d(pool_type, kernel_size, stride=None, **kwargs): + stride = stride or kernel_size + padding = kwargs.pop('padding', '') + (padding, is_dynamic) = get_padding_value(padding, kernel_size, stride=stride, **kwargs) + if is_dynamic: + if pool_type == 'avg': + return AvgPool2dSame(kernel_size, stride=stride, **kwargs) + elif pool_type == 'max': + return MaxPool2dSame(kernel_size, stride=stride, **kwargs) + else: + assert False, f'Unsupported pool type {pool_type}' + elif pool_type == 'avg': + return nn.AvgPool2d(kernel_size, stride=stride, padding=padding, **kwargs) + elif pool_type == 'max': + return nn.MaxPool2d(kernel_size, stride=stride, padding=padding, **kwargs) + else: + assert False, f'Unsupported pool type {pool_type}' + +# File: pytorch-image-models-main/timm/layers/pos_embed.py +"""""" +import logging +import math +from typing import List, Tuple, Optional, Union +import torch +import torch.nn.functional as F +from .helpers import to_2tuple +_logger = logging.getLogger(__name__) + +def resample_abs_pos_embed(posemb: torch.Tensor, new_size: List[int], old_size: Optional[List[int]]=None, num_prefix_tokens: int=1, interpolation: str='bicubic', antialias: bool=True, verbose: bool=False): + num_pos_tokens = posemb.shape[1] + num_new_tokens = new_size[0] * new_size[1] + num_prefix_tokens + if num_new_tokens == num_pos_tokens and new_size[0] == new_size[1]: + return posemb + if old_size is None: + hw = int(math.sqrt(num_pos_tokens - num_prefix_tokens)) + old_size = (hw, hw) + if num_prefix_tokens: + (posemb_prefix, posemb) = (posemb[:, :num_prefix_tokens], posemb[:, num_prefix_tokens:]) + else: + (posemb_prefix, posemb) = (None, posemb) + embed_dim = posemb.shape[-1] + orig_dtype = posemb.dtype + posemb = posemb.float() + posemb = posemb.reshape(1, old_size[0], old_size[1], -1).permute(0, 3, 1, 2) + posemb = F.interpolate(posemb, size=new_size, mode=interpolation, antialias=antialias) + posemb = posemb.permute(0, 2, 3, 1).reshape(1, -1, embed_dim) + posemb = posemb.to(orig_dtype) + if posemb_prefix is not None: + posemb = torch.cat([posemb_prefix, posemb], dim=1) + if not torch.jit.is_scripting() and verbose: + _logger.info(f'Resized position embedding: {old_size} to {new_size}.') + return posemb + +def resample_abs_pos_embed_nhwc(posemb: torch.Tensor, new_size: List[int], interpolation: str='bicubic', antialias: bool=True, verbose: bool=False): + if new_size[0] == posemb.shape[-3] and new_size[1] == posemb.shape[-2]: + return posemb + orig_dtype = posemb.dtype + posemb = posemb.float() + posemb = posemb.reshape(1, posemb.shape[-3], posemb.shape[-2], posemb.shape[-1]).permute(0, 3, 1, 2) + posemb = F.interpolate(posemb, size=new_size, mode=interpolation, antialias=antialias) + posemb = posemb.permute(0, 2, 3, 1).to(orig_dtype) + if not torch.jit.is_scripting() and verbose: + _logger.info(f'Resized position embedding: {posemb.shape[-3:-1]} to {new_size}.') + return posemb + +# File: pytorch-image-models-main/timm/layers/pos_embed_rel.py +"""""" +import math +import os +from typing import Optional, Tuple +import torch +import torch.nn as nn +import torch.nn.functional as F +from .grid import ndgrid +from .interpolate import RegularGridInterpolator +from .mlp import Mlp +from .weight_init import trunc_normal_ +_USE_SCIPY = int(os.environ.get('TIMM_USE_SCIPY_INTERP', 0)) > 0 + +def gen_relative_position_index(q_size: Tuple[int, int], k_size: Optional[Tuple[int, int]]=None, class_token: bool=False) -> torch.Tensor: + assert k_size is None, 'Different q & k sizes not currently supported' + coords = torch.stack(ndgrid(torch.arange(q_size[0]), torch.arange(q_size[1]))).flatten(1) + relative_coords = coords[:, :, None] - coords[:, None, :] + relative_coords = relative_coords.permute(1, 2, 0) + relative_coords[:, :, 0] += q_size[0] - 1 + relative_coords[:, :, 1] += q_size[1] - 1 + relative_coords[:, :, 0] *= 2 * q_size[1] - 1 + num_relative_distance = (2 * q_size[0] - 1) * (2 * q_size[1] - 1) + relative_position_index = relative_coords.sum(-1) + if class_token: + relative_position_index = F.pad(relative_position_index, [1, 0, 1, 0]) + relative_position_index[0, 0:] = num_relative_distance + relative_position_index[0:, 0] = num_relative_distance + 1 + relative_position_index[0, 0] = num_relative_distance + 2 + return relative_position_index.contiguous() + +def resize_rel_pos_bias_table_simple(rel_pos_bias, new_window_size: Tuple[int, int], new_bias_shape: Tuple[int, ...]): + dst_size = (new_window_size[0] * 2 - 1, new_window_size[1] * 2 - 1) + if rel_pos_bias.ndim == 3: + (_, dst_h, dst_w) = new_bias_shape + (num_attn_heads, src_h, src_w) = rel_pos_bias.shape + assert dst_h == dst_size[0] and dst_w == dst_size[1] + if src_h != dst_h or src_w != dst_w: + rel_pos_bias = torch.nn.functional.interpolate(rel_pos_bias.unsqueeze(0), size=dst_size, mode='bicubic', align_corners=False).squeeze(0) + else: + assert rel_pos_bias.ndim == 2 + (dst_num_pos, _) = new_bias_shape + (src_num_pos, num_attn_heads) = rel_pos_bias.shape + num_extra_tokens = dst_num_pos - dst_size[0] * dst_size[1] + src_size = int((src_num_pos - num_extra_tokens) ** 0.5) + src_size = (src_size, src_size) + if src_size[0] != dst_size[0] or src_size[1] != dst_size[1]: + if num_extra_tokens: + extra_tokens = rel_pos_bias[-num_extra_tokens:, :] + rel_pos_bias = rel_pos_bias[:-num_extra_tokens, :] + else: + extra_tokens = None + rel_pos_bias = torch.nn.functional.interpolate(rel_pos_bias.transpose(1, 0).reshape((1, -1, src_size[0], src_size[1])), size=dst_size, mode='bicubic', align_corners=False).view(-1, dst_num_pos - num_extra_tokens).transpose(0, 1) + if extra_tokens is not None: + rel_pos_bias = torch.cat((rel_pos_bias, extra_tokens), dim=0) + return rel_pos_bias + +def resize_rel_pos_bias_table_levit(position_bias_table, new_size, interpolation: str='bicubic', antialias: bool=True): + (L1, nH1) = position_bias_table.size() + (L2, nH2) = new_size + assert nH1 == nH2 + if L1 != L2: + orig_dtype = position_bias_table.dtype + position_bias_table = position_bias_table.float() + S1 = int(L1 ** 0.5) + S2 = int(L2 ** 0.5) + relative_position_bias_table_resized = F.interpolate(position_bias_table.permute(1, 0).view(1, nH1, S1, S1), size=(S2, S2), mode=interpolation, antialias=antialias) + relative_position_bias_table_resized = relative_position_bias_table_resized.view(nH2, L2).permute(1, 0) + relative_position_bias_table_resized.to(orig_dtype) + return relative_position_bias_table_resized + else: + return position_bias_table + +def resize_rel_pos_bias_table(rel_pos_bias, new_window_size: Tuple[int, int], new_bias_shape: Tuple[int, ...]): + if _USE_SCIPY: + from scipy import interpolate + dst_size = (new_window_size[0] * 2 - 1, new_window_size[1] * 2 - 1) + if rel_pos_bias.ndim == 3: + num_extra_tokens = 0 + (_, dst_h, dst_w) = new_bias_shape + assert dst_h == dst_size[0] and dst_w == dst_size[1] + (num_attn_heads, src_h, src_w) = rel_pos_bias.shape + src_size = (src_h, src_w) + has_flat_shape = False + else: + assert rel_pos_bias.ndim == 2 + (dst_num_pos, _) = new_bias_shape + (src_num_pos, num_attn_heads) = rel_pos_bias.shape + num_extra_tokens = dst_num_pos - dst_size[0] * dst_size[1] + src_size = int((src_num_pos - num_extra_tokens) ** 0.5) + src_size = (src_size, src_size) + has_flat_shape = True + if src_size[0] != dst_size[0] or src_size[1] != dst_size[1]: + if num_extra_tokens: + extra_tokens = rel_pos_bias[-num_extra_tokens:, :] + rel_pos_bias = rel_pos_bias[:-num_extra_tokens, :] + else: + extra_tokens = None + + def geometric_progression(a, r, n): + return a * (1.0 - r ** n) / (1.0 - r) + + def _calc(src, dst): + (left, right) = (1.01, 1.5) + while right - left > 1e-06: + q = (left + right) / 2.0 + gp = geometric_progression(1, q, src // 2) + if gp > dst // 2: + right = q + else: + left = q + dis = [] + cur = 1 + for i in range(src // 2): + dis.append(cur) + cur += q ** (i + 1) + r_ids = [-_ for _ in reversed(dis)] + return r_ids + [0] + dis + y = _calc(src_size[0], dst_size[0]) + x = _calc(src_size[1], dst_size[1]) + yx = [torch.tensor(y), torch.tensor(x)] + ty = dst_size[0] // 2.0 + tx = dst_size[1] // 2.0 + dy = torch.arange(-ty, ty + 0.1, 1.0) + dx = torch.arange(-tx, tx + 0.1, 1.0) + dyx = ndgrid(dy, dx) + all_rel_pos_bias = [] + for i in range(num_attn_heads): + if has_flat_shape: + z = rel_pos_bias[:, i].view(src_size[0], src_size[1]).float() + else: + z = rel_pos_bias[i, :, :].float() + if _USE_SCIPY: + f = interpolate.interp2d(x, y, z.numpy(), kind='cubic') + r = torch.Tensor(f(dx, dy)).contiguous().to(rel_pos_bias.device) + else: + f = RegularGridInterpolator(yx, z) + r = f(dyx).contiguous().to(rel_pos_bias.device) + if has_flat_shape: + r = r.view(-1, 1) + all_rel_pos_bias.append(r) + if has_flat_shape: + rel_pos_bias = torch.cat(all_rel_pos_bias, dim=-1) + else: + rel_pos_bias = torch.cat(all_rel_pos_bias, dim=0) + if extra_tokens is not None: + assert has_flat_shape + rel_pos_bias = torch.cat((rel_pos_bias, extra_tokens), dim=0) + return rel_pos_bias + +class RelPosBias(nn.Module): + + def __init__(self, window_size, num_heads, prefix_tokens=0): + super().__init__() + assert prefix_tokens <= 1 + self.window_size = window_size + self.window_area = window_size[0] * window_size[1] + self.bias_shape = (self.window_area + prefix_tokens,) * 2 + (num_heads,) + num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3 * prefix_tokens + self.relative_position_bias_table = nn.Parameter(torch.zeros(num_relative_distance, num_heads)) + self.register_buffer('relative_position_index', gen_relative_position_index(self.window_size, class_token=prefix_tokens > 0).view(-1), persistent=False) + self.init_weights() + + def init_weights(self): + trunc_normal_(self.relative_position_bias_table, std=0.02) + + def get_bias(self) -> torch.Tensor: + relative_position_bias = self.relative_position_bias_table[self.relative_position_index] + relative_position_bias = relative_position_bias.view(self.bias_shape).permute(2, 0, 1) + return relative_position_bias.unsqueeze(0).contiguous() + + def forward(self, attn, shared_rel_pos: Optional[torch.Tensor]=None): + return attn + self.get_bias() + +def gen_relative_log_coords(win_size: Tuple[int, int], pretrained_win_size: Tuple[int, int]=(0, 0), mode='swin'): + assert mode in ('swin', 'cr') + relative_coords_h = torch.arange(-(win_size[0] - 1), win_size[0]).to(torch.float32) + relative_coords_w = torch.arange(-(win_size[1] - 1), win_size[1]).to(torch.float32) + relative_coords_table = torch.stack(ndgrid(relative_coords_h, relative_coords_w)) + relative_coords_table = relative_coords_table.permute(1, 2, 0).contiguous() + if mode == 'swin': + if pretrained_win_size[0] > 0: + relative_coords_table[:, :, 0] /= pretrained_win_size[0] - 1 + relative_coords_table[:, :, 1] /= pretrained_win_size[1] - 1 + else: + relative_coords_table[:, :, 0] /= win_size[0] - 1 + relative_coords_table[:, :, 1] /= win_size[1] - 1 + relative_coords_table *= 8 + relative_coords_table = torch.sign(relative_coords_table) * torch.log2(1.0 + relative_coords_table.abs()) / math.log2(8) + else: + relative_coords_table = torch.sign(relative_coords_table) * torch.log(1.0 + relative_coords_table.abs()) + return relative_coords_table + +class RelPosMlp(nn.Module): + + def __init__(self, window_size, num_heads=8, hidden_dim=128, prefix_tokens=0, mode='cr', pretrained_window_size=(0, 0)): + super().__init__() + self.window_size = window_size + self.window_area = self.window_size[0] * self.window_size[1] + self.prefix_tokens = prefix_tokens + self.num_heads = num_heads + self.bias_shape = (self.window_area,) * 2 + (num_heads,) + if mode == 'swin': + self.bias_act = nn.Sigmoid() + self.bias_gain = 16 + mlp_bias = (True, False) + else: + self.bias_act = nn.Identity() + self.bias_gain = None + mlp_bias = True + self.mlp = Mlp(2, hidden_features=hidden_dim, out_features=num_heads, act_layer=nn.ReLU, bias=mlp_bias, drop=(0.125, 0.0)) + self.register_buffer('relative_position_index', gen_relative_position_index(window_size).view(-1), persistent=False) + self.register_buffer('rel_coords_log', gen_relative_log_coords(window_size, pretrained_window_size, mode=mode), persistent=False) + + def get_bias(self) -> torch.Tensor: + relative_position_bias = self.mlp(self.rel_coords_log) + if self.relative_position_index is not None: + relative_position_bias = relative_position_bias.view(-1, self.num_heads)[self.relative_position_index] + relative_position_bias = relative_position_bias.view(self.bias_shape) + relative_position_bias = relative_position_bias.permute(2, 0, 1) + relative_position_bias = self.bias_act(relative_position_bias) + if self.bias_gain is not None: + relative_position_bias = self.bias_gain * relative_position_bias + if self.prefix_tokens: + relative_position_bias = F.pad(relative_position_bias, [self.prefix_tokens, 0, self.prefix_tokens, 0]) + return relative_position_bias.unsqueeze(0).contiguous() + + def forward(self, attn, shared_rel_pos: Optional[torch.Tensor]=None): + return attn + self.get_bias() + +def generate_lookup_tensor(length: int, max_relative_position: Optional[int]=None): + if max_relative_position is None: + max_relative_position = length - 1 + vocab_size = 2 * max_relative_position + 1 + ret = torch.zeros(length, length, vocab_size) + for i in range(length): + for x in range(length): + v = x - i + max_relative_position + if abs(x - i) > max_relative_position: + continue + ret[i, x, v] = 1 + return ret + +def reindex_2d_einsum_lookup(relative_position_tensor, height: int, width: int, height_lookup: torch.Tensor, width_lookup: torch.Tensor) -> torch.Tensor: + reindexed_tensor = torch.einsum('nhw,ixh->nixw', relative_position_tensor, height_lookup) + reindexed_tensor = torch.einsum('nixw,jyw->nijxy', reindexed_tensor, width_lookup) + area = height * width + return reindexed_tensor.reshape(relative_position_tensor.shape[0], area, area) + +class RelPosBiasTf(nn.Module): + + def __init__(self, window_size, num_heads, prefix_tokens=0): + super().__init__() + assert prefix_tokens <= 1 + self.window_size = window_size + self.window_area = window_size[0] * window_size[1] + self.num_heads = num_heads + vocab_height = 2 * window_size[0] - 1 + vocab_width = 2 * window_size[1] - 1 + self.bias_shape = (self.num_heads, vocab_height, vocab_width) + self.relative_position_bias_table = nn.Parameter(torch.zeros(self.bias_shape)) + self.register_buffer('height_lookup', generate_lookup_tensor(window_size[0]), persistent=False) + self.register_buffer('width_lookup', generate_lookup_tensor(window_size[1]), persistent=False) + self.init_weights() + + def init_weights(self): + nn.init.normal_(self.relative_position_bias_table, std=0.02) + + def get_bias(self) -> torch.Tensor: + return reindex_2d_einsum_lookup(self.relative_position_bias_table, self.window_size[0], self.window_size[1], self.height_lookup, self.width_lookup) + + def forward(self, attn, shared_rel_pos: Optional[torch.Tensor]=None): + return attn + self.get_bias() + +# File: pytorch-image-models-main/timm/layers/pos_embed_sincos.py +"""""" +import math +from typing import List, Tuple, Optional, Union +import torch +from torch import nn as nn +from .grid import ndgrid +from .trace_utils import _assert + +def pixel_freq_bands(num_bands: int, max_freq: float=224.0, linear_bands: bool=True, device: Optional[torch.device]=None): + if linear_bands: + bands = torch.linspace(1.0, max_freq / 2, num_bands, dtype=torch.float32, device=device) + else: + bands = 2 ** torch.linspace(0, math.log(max_freq, 2) - 1, num_bands, dtype=torch.float32, device=device) + return bands * torch.pi + +def freq_bands(num_bands: int, temperature: float=10000.0, step: int=2, device: Optional[torch.device]=None) -> torch.Tensor: + exp = torch.arange(0, num_bands, step, dtype=torch.int64, device=device).to(torch.float32) / num_bands + bands = 1.0 / temperature ** exp + return bands + +def build_sincos2d_pos_embed(feat_shape: List[int], dim: int=64, temperature: float=10000.0, reverse_coord: bool=False, interleave_sin_cos: bool=False, dtype: torch.dtype=torch.float32, device: Optional[torch.device]=None) -> torch.Tensor: + assert dim % 4 == 0, 'Embed dimension must be divisible by 4 for sin-cos 2D position embedding' + pos_dim = dim // 4 + bands = freq_bands(pos_dim, temperature=temperature, step=1, device=device) + if reverse_coord: + feat_shape = feat_shape[::-1] + grid = torch.stack(ndgrid([torch.arange(s, device=device, dtype=torch.int64).to(torch.float32) for s in feat_shape])).flatten(1).transpose(0, 1) + pos2 = grid.unsqueeze(-1) * bands.unsqueeze(0) + stack_dim = 2 if interleave_sin_cos else 1 + pos_emb = torch.stack([torch.sin(pos2), torch.cos(pos2)], dim=stack_dim).flatten(1) + return pos_emb.to(dtype=dtype) + +def build_fourier_pos_embed(feat_shape: List[int], bands: Optional[torch.Tensor]=None, num_bands: int=64, max_res: int=224, temperature: float=10000.0, linear_bands: bool=False, include_grid: bool=False, in_pixels: bool=True, ref_feat_shape: Optional[List[int]]=None, dtype: torch.dtype=torch.float32, device: Optional[torch.device]=None) -> List[torch.Tensor]: + if bands is None: + if in_pixels: + bands = pixel_freq_bands(num_bands, float(max_res), linear_bands=linear_bands, device=device) + else: + bands = freq_bands(num_bands, temperature=temperature, step=1, device=device) + else: + if device is None: + device = bands.device + if dtype is None: + dtype = bands.dtype + if in_pixels: + t = [torch.linspace(-1.0, 1.0, steps=s, device=device, dtype=torch.float32) for s in feat_shape] + else: + t = [torch.arange(s, device=device, dtype=torch.int64).to(torch.float32) for s in feat_shape] + if ref_feat_shape is not None: + t = [x / f * r for (x, f, r) in zip(t, feat_shape, ref_feat_shape)] + grid = torch.stack(ndgrid(t), dim=-1) + grid = grid.unsqueeze(-1) + pos = grid * bands + (pos_sin, pos_cos) = (pos.sin().to(dtype=dtype), pos.cos().to(dtype)) + out = [grid, pos_sin, pos_cos] if include_grid else [pos_sin, pos_cos] + return out + +class FourierEmbed(nn.Module): + + def __init__(self, max_res: int=224, num_bands: int=64, concat_grid=True, keep_spatial=False): + super().__init__() + self.max_res = max_res + self.num_bands = num_bands + self.concat_grid = concat_grid + self.keep_spatial = keep_spatial + self.register_buffer('bands', pixel_freq_bands(max_res, num_bands), persistent=False) + + def forward(self, x): + (B, C) = x.shape[:2] + feat_shape = x.shape[2:] + emb = build_fourier_pos_embed(feat_shape, self.bands, include_grid=self.concat_grid, dtype=x.dtype, device=x.device) + emb = torch.cat(emb, dim=-1) + emb = emb.transpose(-1, -2).flatten(len(feat_shape)) + batch_expand = (B,) + (-1,) * (x.ndim - 1) + if self.keep_spatial: + x = torch.cat([x, emb.unsqueeze(0).expand(batch_expand).permute(0, 3, 1, 2)], dim=1) + else: + x = torch.cat([x.permute(0, 2, 3, 1), emb.unsqueeze(0).expand(batch_expand)], dim=-1) + x = x.reshape(B, feat_shape.numel(), -1) + return x + +def rot(x): + return torch.stack([-x[..., 1::2], x[..., ::2]], -1).reshape(x.shape) + +def apply_rot_embed(x: torch.Tensor, sin_emb, cos_emb): + if sin_emb.ndim == 3: + return x * cos_emb.unsqueeze(1).expand_as(x) + rot(x) * sin_emb.unsqueeze(1).expand_as(x) + return x * cos_emb + rot(x) * sin_emb + +def apply_rot_embed_list(x: List[torch.Tensor], sin_emb, cos_emb): + if isinstance(x, torch.Tensor): + x = [x] + return [t * cos_emb + rot(t) * sin_emb for t in x] + +def apply_rot_embed_cat(x: torch.Tensor, emb): + (sin_emb, cos_emb) = emb.tensor_split(2, -1) + if sin_emb.ndim == 3: + return x * cos_emb.unsqueeze(1).expand_as(x) + rot(x) * sin_emb.unsqueeze(1).expand_as(x) + return x * cos_emb + rot(x) * sin_emb + +def apply_keep_indices_nlc(x, pos_embed, keep_indices): + pos_embed = pos_embed.unsqueeze(0).expand(x.shape[0], -1, -1) + pos_embed = pos_embed.gather(1, keep_indices.unsqueeze(-1).expand(-1, -1, pos_embed.shape[-1])) + return pos_embed + +def build_rotary_pos_embed(feat_shape: List[int], bands: Optional[torch.Tensor]=None, dim: int=64, max_res: int=224, temperature: float=10000.0, linear_bands: bool=False, in_pixels: bool=True, ref_feat_shape: Optional[List[int]]=None, dtype: torch.dtype=torch.float32, device: Optional[torch.device]=None): + (sin_emb, cos_emb) = build_fourier_pos_embed(feat_shape, bands=bands, num_bands=dim // 4, max_res=max_res, temperature=temperature, linear_bands=linear_bands, in_pixels=in_pixels, ref_feat_shape=ref_feat_shape, device=device, dtype=dtype) + num_spatial_dim = 1 + for x in feat_shape: + num_spatial_dim *= x + sin_emb = sin_emb.reshape(num_spatial_dim, -1).repeat_interleave(2, -1) + cos_emb = cos_emb.reshape(num_spatial_dim, -1).repeat_interleave(2, -1) + return (sin_emb, cos_emb) + +class RotaryEmbedding(nn.Module): + + def __init__(self, dim, max_res=224, temperature=10000, in_pixels=True, linear_bands: bool=False, feat_shape: Optional[List[int]]=None, ref_feat_shape: Optional[List[int]]=None): + super().__init__() + self.dim = dim + self.max_res = max_res + self.temperature = temperature + self.in_pixels = in_pixels + self.feat_shape = feat_shape + self.ref_feat_shape = ref_feat_shape + if feat_shape is None: + if in_pixels: + bands = pixel_freq_bands(dim // 4, float(max_res), linear_bands=linear_bands) + else: + bands = freq_bands(dim // 4, temperature=temperature, step=1) + self.register_buffer('bands', bands, persistent=False) + self.pos_embed_sin = None + self.pos_embed_cos = None + else: + (emb_sin, emb_cos) = build_rotary_pos_embed(feat_shape=feat_shape, dim=dim, max_res=max_res, linear_bands=linear_bands, in_pixels=in_pixels, ref_feat_shape=self.ref_feat_shape) + self.bands = None + self.register_buffer('pos_embed_sin', emb_sin, persistent=False) + self.register_buffer('pos_embed_cos', emb_cos, persistent=False) + + def get_embed(self, shape: Optional[List[int]]=None): + if self.bands is not None: + assert shape is not None + return build_rotary_pos_embed(shape, self.bands, in_pixels=self.in_pixels) + else: + return (self.pos_embed_sin, self.pos_embed_cos) + + def forward(self, x): + (sin_emb, cos_emb) = self.get_embed(x.shape[2:]) + return apply_rot_embed(x, sin_emb, cos_emb) + +class RotaryEmbeddingCat(nn.Module): + + def __init__(self, dim, max_res=224, temperature=10000, in_pixels=True, linear_bands: bool=False, feat_shape: Optional[List[int]]=None, ref_feat_shape: Optional[List[int]]=None): + super().__init__() + self.dim = dim + self.max_res = max_res + self.temperature = temperature + self.in_pixels = in_pixels + self.feat_shape = feat_shape + self.ref_feat_shape = ref_feat_shape + if feat_shape is None: + if in_pixels: + bands = pixel_freq_bands(dim // 4, float(max_res), linear_bands=linear_bands) + else: + bands = freq_bands(dim // 4, temperature=temperature, step=1) + self.register_buffer('bands', bands, persistent=False) + self.pos_embed = None + else: + embeds = build_rotary_pos_embed(feat_shape=feat_shape, dim=dim, max_res=max_res, linear_bands=linear_bands, in_pixels=in_pixels, ref_feat_shape=self.ref_feat_shape) + self.bands = None + self.register_buffer('pos_embed', torch.cat(embeds, -1), persistent=False) + + def get_embed(self, shape: Optional[List[int]]=None): + if self.bands is not None and shape is not None: + embeds = build_rotary_pos_embed(shape, self.bands, in_pixels=self.in_pixels, ref_feat_shape=self.ref_feat_shape) + return torch.cat(embeds, -1) + elif self.pos_embed is not None: + return self.pos_embed + else: + assert False, 'get_embed() requires pre-computed pos_embed or valid shape w/ pre-computed bands' + + def forward(self, x): + pos_embed = self.get_embed(x.shape[2:]) + return apply_rot_embed_cat(x, pos_embed) + +# File: pytorch-image-models-main/timm/layers/selective_kernel.py +"""""" +import torch +from torch import nn as nn +from .conv_bn_act import ConvNormAct +from .helpers import make_divisible +from .trace_utils import _assert + +def _kernel_valid(k): + if isinstance(k, (list, tuple)): + for ki in k: + return _kernel_valid(ki) + assert k >= 3 and k % 2 + +class SelectiveKernelAttn(nn.Module): + + def __init__(self, channels, num_paths=2, attn_channels=32, act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d): + super(SelectiveKernelAttn, self).__init__() + self.num_paths = num_paths + self.fc_reduce = nn.Conv2d(channels, attn_channels, kernel_size=1, bias=False) + self.bn = norm_layer(attn_channels) + self.act = act_layer(inplace=True) + self.fc_select = nn.Conv2d(attn_channels, channels * num_paths, kernel_size=1, bias=False) + + def forward(self, x): + _assert(x.shape[1] == self.num_paths, '') + x = x.sum(1).mean((2, 3), keepdim=True) + x = self.fc_reduce(x) + x = self.bn(x) + x = self.act(x) + x = self.fc_select(x) + (B, C, H, W) = x.shape + x = x.view(B, self.num_paths, C // self.num_paths, H, W) + x = torch.softmax(x, dim=1) + return x + +class SelectiveKernel(nn.Module): + + def __init__(self, in_channels, out_channels=None, kernel_size=None, stride=1, dilation=1, groups=1, rd_ratio=1.0 / 16, rd_channels=None, rd_divisor=8, keep_3x3=True, split_input=True, act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d, aa_layer=None, drop_layer=None): + super(SelectiveKernel, self).__init__() + out_channels = out_channels or in_channels + kernel_size = kernel_size or [3, 5] + _kernel_valid(kernel_size) + if not isinstance(kernel_size, list): + kernel_size = [kernel_size] * 2 + if keep_3x3: + dilation = [dilation * (k - 1) // 2 for k in kernel_size] + kernel_size = [3] * len(kernel_size) + else: + dilation = [dilation] * len(kernel_size) + self.num_paths = len(kernel_size) + self.in_channels = in_channels + self.out_channels = out_channels + self.split_input = split_input + if self.split_input: + assert in_channels % self.num_paths == 0 + in_channels = in_channels // self.num_paths + groups = min(out_channels, groups) + conv_kwargs = dict(stride=stride, groups=groups, act_layer=act_layer, norm_layer=norm_layer, aa_layer=aa_layer, drop_layer=drop_layer) + self.paths = nn.ModuleList([ConvNormAct(in_channels, out_channels, kernel_size=k, dilation=d, **conv_kwargs) for (k, d) in zip(kernel_size, dilation)]) + attn_channels = rd_channels or make_divisible(out_channels * rd_ratio, divisor=rd_divisor) + self.attn = SelectiveKernelAttn(out_channels, self.num_paths, attn_channels) + + def forward(self, x): + if self.split_input: + x_split = torch.split(x, self.in_channels // self.num_paths, 1) + x_paths = [op(x_split[i]) for (i, op) in enumerate(self.paths)] + else: + x_paths = [op(x) for op in self.paths] + x = torch.stack(x_paths, dim=1) + x_attn = self.attn(x) + x = x * x_attn + x = torch.sum(x, dim=1) + return x + +# File: pytorch-image-models-main/timm/layers/separable_conv.py +"""""" +from torch import nn as nn +from .create_conv2d import create_conv2d +from .create_norm_act import get_norm_act_layer + +class SeparableConvNormAct(nn.Module): + + def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, dilation=1, padding='', bias=False, channel_multiplier=1.0, pw_kernel_size=1, norm_layer=nn.BatchNorm2d, act_layer=nn.ReLU, apply_act=True, drop_layer=None): + super(SeparableConvNormAct, self).__init__() + self.conv_dw = create_conv2d(in_channels, int(in_channels * channel_multiplier), kernel_size, stride=stride, dilation=dilation, padding=padding, depthwise=True) + self.conv_pw = create_conv2d(int(in_channels * channel_multiplier), out_channels, pw_kernel_size, padding=padding, bias=bias) + norm_act_layer = get_norm_act_layer(norm_layer, act_layer) + norm_kwargs = dict(drop_layer=drop_layer) if drop_layer is not None else {} + self.bn = norm_act_layer(out_channels, apply_act=apply_act, **norm_kwargs) + + @property + def in_channels(self): + return self.conv_dw.in_channels + + @property + def out_channels(self): + return self.conv_pw.out_channels + + def forward(self, x): + x = self.conv_dw(x) + x = self.conv_pw(x) + x = self.bn(x) + return x +SeparableConvBnAct = SeparableConvNormAct + +class SeparableConv2d(nn.Module): + + def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, dilation=1, padding='', bias=False, channel_multiplier=1.0, pw_kernel_size=1): + super(SeparableConv2d, self).__init__() + self.conv_dw = create_conv2d(in_channels, int(in_channels * channel_multiplier), kernel_size, stride=stride, dilation=dilation, padding=padding, depthwise=True) + self.conv_pw = create_conv2d(int(in_channels * channel_multiplier), out_channels, pw_kernel_size, padding=padding, bias=bias) + + @property + def in_channels(self): + return self.conv_dw.in_channels + + @property + def out_channels(self): + return self.conv_pw.out_channels + + def forward(self, x): + x = self.conv_dw(x) + x = self.conv_pw(x) + return x + +# File: pytorch-image-models-main/timm/layers/space_to_depth.py +import torch +import torch.nn as nn + +class SpaceToDepth(nn.Module): + bs: torch.jit.Final[int] + + def __init__(self, block_size=4): + super().__init__() + assert block_size == 4 + self.bs = block_size + + def forward(self, x): + (N, C, H, W) = x.size() + x = x.view(N, C, H // self.bs, self.bs, W // self.bs, self.bs) + x = x.permute(0, 3, 5, 1, 2, 4).contiguous() + x = x.view(N, C * self.bs * self.bs, H // self.bs, W // self.bs) + return x + +class DepthToSpace(nn.Module): + + def __init__(self, block_size): + super().__init__() + self.bs = block_size + + def forward(self, x): + (N, C, H, W) = x.size() + x = x.view(N, self.bs, self.bs, C // self.bs ** 2, H, W) + x = x.permute(0, 3, 4, 1, 5, 2).contiguous() + x = x.view(N, C // self.bs ** 2, H * self.bs, W * self.bs) + return x + +# File: pytorch-image-models-main/timm/layers/split_attn.py +"""""" +import torch +import torch.nn.functional as F +from torch import nn +from .helpers import make_divisible + +class RadixSoftmax(nn.Module): + + def __init__(self, radix, cardinality): + super(RadixSoftmax, self).__init__() + self.radix = radix + self.cardinality = cardinality + + def forward(self, x): + batch = x.size(0) + if self.radix > 1: + x = x.view(batch, self.cardinality, self.radix, -1).transpose(1, 2) + x = F.softmax(x, dim=1) + x = x.reshape(batch, -1) + else: + x = torch.sigmoid(x) + return x + +class SplitAttn(nn.Module): + + def __init__(self, in_channels, out_channels=None, kernel_size=3, stride=1, padding=None, dilation=1, groups=1, bias=False, radix=2, rd_ratio=0.25, rd_channels=None, rd_divisor=8, act_layer=nn.ReLU, norm_layer=None, drop_layer=None, **kwargs): + super(SplitAttn, self).__init__() + out_channels = out_channels or in_channels + self.radix = radix + mid_chs = out_channels * radix + if rd_channels is None: + attn_chs = make_divisible(in_channels * radix * rd_ratio, min_value=32, divisor=rd_divisor) + else: + attn_chs = rd_channels * radix + padding = kernel_size // 2 if padding is None else padding + self.conv = nn.Conv2d(in_channels, mid_chs, kernel_size, stride, padding, dilation, groups=groups * radix, bias=bias, **kwargs) + self.bn0 = norm_layer(mid_chs) if norm_layer else nn.Identity() + self.drop = drop_layer() if drop_layer is not None else nn.Identity() + self.act0 = act_layer(inplace=True) + self.fc1 = nn.Conv2d(out_channels, attn_chs, 1, groups=groups) + self.bn1 = norm_layer(attn_chs) if norm_layer else nn.Identity() + self.act1 = act_layer(inplace=True) + self.fc2 = nn.Conv2d(attn_chs, mid_chs, 1, groups=groups) + self.rsoftmax = RadixSoftmax(radix, groups) + + def forward(self, x): + x = self.conv(x) + x = self.bn0(x) + x = self.drop(x) + x = self.act0(x) + (B, RC, H, W) = x.shape + if self.radix > 1: + x = x.reshape((B, self.radix, RC // self.radix, H, W)) + x_gap = x.sum(dim=1) + else: + x_gap = x + x_gap = x_gap.mean((2, 3), keepdim=True) + x_gap = self.fc1(x_gap) + x_gap = self.bn1(x_gap) + x_gap = self.act1(x_gap) + x_attn = self.fc2(x_gap) + x_attn = self.rsoftmax(x_attn).view(B, -1, 1, 1) + if self.radix > 1: + out = (x * x_attn.reshape((B, self.radix, RC // self.radix, 1, 1))).sum(dim=1) + else: + out = x * x_attn + return out.contiguous() + +# File: pytorch-image-models-main/timm/layers/split_batchnorm.py +"""""" +import torch +import torch.nn as nn + +class SplitBatchNorm2d(torch.nn.BatchNorm2d): + + def __init__(self, num_features, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True, num_splits=2): + super().__init__(num_features, eps, momentum, affine, track_running_stats) + assert num_splits > 1, 'Should have at least one aux BN layer (num_splits at least 2)' + self.num_splits = num_splits + self.aux_bn = nn.ModuleList([nn.BatchNorm2d(num_features, eps, momentum, affine, track_running_stats) for _ in range(num_splits - 1)]) + + def forward(self, input: torch.Tensor): + if self.training: + split_size = input.shape[0] // self.num_splits + assert input.shape[0] == split_size * self.num_splits, 'batch size must be evenly divisible by num_splits' + split_input = input.split(split_size) + x = [super().forward(split_input[0])] + for (i, a) in enumerate(self.aux_bn): + x.append(a(split_input[i + 1])) + return torch.cat(x, dim=0) + else: + return super().forward(input) + +def convert_splitbn_model(module, num_splits=2): + mod = module + if isinstance(module, torch.nn.modules.instancenorm._InstanceNorm): + return module + if isinstance(module, torch.nn.modules.batchnorm._BatchNorm): + mod = SplitBatchNorm2d(module.num_features, module.eps, module.momentum, module.affine, module.track_running_stats, num_splits=num_splits) + mod.running_mean = module.running_mean + mod.running_var = module.running_var + mod.num_batches_tracked = module.num_batches_tracked + if module.affine: + mod.weight.data = module.weight.data.clone().detach() + mod.bias.data = module.bias.data.clone().detach() + for aux in mod.aux_bn: + aux.running_mean = module.running_mean.clone() + aux.running_var = module.running_var.clone() + aux.num_batches_tracked = module.num_batches_tracked.clone() + if module.affine: + aux.weight.data = module.weight.data.clone().detach() + aux.bias.data = module.bias.data.clone().detach() + for (name, child) in module.named_children(): + mod.add_module(name, convert_splitbn_model(child, num_splits=num_splits)) + del module + return mod + +# File: pytorch-image-models-main/timm/layers/squeeze_excite.py +"""""" +from torch import nn as nn +from .create_act import create_act_layer +from .helpers import make_divisible + +class SEModule(nn.Module): + + def __init__(self, channels, rd_ratio=1.0 / 16, rd_channels=None, rd_divisor=8, add_maxpool=False, bias=True, act_layer=nn.ReLU, norm_layer=None, gate_layer='sigmoid'): + super(SEModule, self).__init__() + self.add_maxpool = add_maxpool + if not rd_channels: + rd_channels = make_divisible(channels * rd_ratio, rd_divisor, round_limit=0.0) + self.fc1 = nn.Conv2d(channels, rd_channels, kernel_size=1, bias=bias) + self.bn = norm_layer(rd_channels) if norm_layer else nn.Identity() + self.act = create_act_layer(act_layer, inplace=True) + self.fc2 = nn.Conv2d(rd_channels, channels, kernel_size=1, bias=bias) + self.gate = create_act_layer(gate_layer) + + def forward(self, x): + x_se = x.mean((2, 3), keepdim=True) + if self.add_maxpool: + x_se = 0.5 * x_se + 0.5 * x.amax((2, 3), keepdim=True) + x_se = self.fc1(x_se) + x_se = self.act(self.bn(x_se)) + x_se = self.fc2(x_se) + return x * self.gate(x_se) +SqueezeExcite = SEModule + +class EffectiveSEModule(nn.Module): + + def __init__(self, channels, add_maxpool=False, gate_layer='hard_sigmoid', **_): + super(EffectiveSEModule, self).__init__() + self.add_maxpool = add_maxpool + self.fc = nn.Conv2d(channels, channels, kernel_size=1, padding=0) + self.gate = create_act_layer(gate_layer) + + def forward(self, x): + x_se = x.mean((2, 3), keepdim=True) + if self.add_maxpool: + x_se = 0.5 * x_se + 0.5 * x.amax((2, 3), keepdim=True) + x_se = self.fc(x_se) + return x * self.gate(x_se) +EffectiveSqueezeExcite = EffectiveSEModule + +class SqueezeExciteCl(nn.Module): + + def __init__(self, channels, rd_ratio=1.0 / 16, rd_channels=None, rd_divisor=8, bias=True, act_layer=nn.ReLU, gate_layer='sigmoid'): + super().__init__() + if not rd_channels: + rd_channels = make_divisible(channels * rd_ratio, rd_divisor, round_limit=0.0) + self.fc1 = nn.Linear(channels, rd_channels, bias=bias) + self.act = create_act_layer(act_layer, inplace=True) + self.fc2 = nn.Linear(rd_channels, channels, bias=bias) + self.gate = create_act_layer(gate_layer) + + def forward(self, x): + x_se = x.mean((1, 2), keepdims=True) + x_se = self.fc1(x_se) + x_se = self.act(x_se) + x_se = self.fc2(x_se) + return x * self.gate(x_se) + +# File: pytorch-image-models-main/timm/layers/std_conv.py +"""""" +import torch +import torch.nn as nn +import torch.nn.functional as F +from .padding import get_padding, get_padding_value, pad_same + +class StdConv2d(nn.Conv2d): + + def __init__(self, in_channel, out_channels, kernel_size, stride=1, padding=None, dilation=1, groups=1, bias=False, eps=1e-06): + if padding is None: + padding = get_padding(kernel_size, stride, dilation) + super().__init__(in_channel, out_channels, kernel_size, stride=stride, padding=padding, dilation=dilation, groups=groups, bias=bias) + self.eps = eps + + def forward(self, x): + weight = F.batch_norm(self.weight.reshape(1, self.out_channels, -1), None, None, training=True, momentum=0.0, eps=self.eps).reshape_as(self.weight) + x = F.conv2d(x, weight, self.bias, self.stride, self.padding, self.dilation, self.groups) + return x + +class StdConv2dSame(nn.Conv2d): + + def __init__(self, in_channel, out_channels, kernel_size, stride=1, padding='SAME', dilation=1, groups=1, bias=False, eps=1e-06): + (padding, is_dynamic) = get_padding_value(padding, kernel_size, stride=stride, dilation=dilation) + super().__init__(in_channel, out_channels, kernel_size, stride=stride, padding=padding, dilation=dilation, groups=groups, bias=bias) + self.same_pad = is_dynamic + self.eps = eps + + def forward(self, x): + if self.same_pad: + x = pad_same(x, self.kernel_size, self.stride, self.dilation) + weight = F.batch_norm(self.weight.reshape(1, self.out_channels, -1), None, None, training=True, momentum=0.0, eps=self.eps).reshape_as(self.weight) + x = F.conv2d(x, weight, self.bias, self.stride, self.padding, self.dilation, self.groups) + return x + +class ScaledStdConv2d(nn.Conv2d): + + def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=None, dilation=1, groups=1, bias=True, gamma=1.0, eps=1e-06, gain_init=1.0): + if padding is None: + padding = get_padding(kernel_size, stride, dilation) + super().__init__(in_channels, out_channels, kernel_size, stride=stride, padding=padding, dilation=dilation, groups=groups, bias=bias) + self.gain = nn.Parameter(torch.full((self.out_channels, 1, 1, 1), gain_init)) + self.scale = gamma * self.weight[0].numel() ** (-0.5) + self.eps = eps + + def forward(self, x): + weight = F.batch_norm(self.weight.reshape(1, self.out_channels, -1), None, None, weight=(self.gain * self.scale).view(-1), training=True, momentum=0.0, eps=self.eps).reshape_as(self.weight) + return F.conv2d(x, weight, self.bias, self.stride, self.padding, self.dilation, self.groups) + +class ScaledStdConv2dSame(nn.Conv2d): + + def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding='SAME', dilation=1, groups=1, bias=True, gamma=1.0, eps=1e-06, gain_init=1.0): + (padding, is_dynamic) = get_padding_value(padding, kernel_size, stride=stride, dilation=dilation) + super().__init__(in_channels, out_channels, kernel_size, stride=stride, padding=padding, dilation=dilation, groups=groups, bias=bias) + self.gain = nn.Parameter(torch.full((self.out_channels, 1, 1, 1), gain_init)) + self.scale = gamma * self.weight[0].numel() ** (-0.5) + self.same_pad = is_dynamic + self.eps = eps + + def forward(self, x): + if self.same_pad: + x = pad_same(x, self.kernel_size, self.stride, self.dilation) + weight = F.batch_norm(self.weight.reshape(1, self.out_channels, -1), None, None, weight=(self.gain * self.scale).view(-1), training=True, momentum=0.0, eps=self.eps).reshape_as(self.weight) + return F.conv2d(x, weight, self.bias, self.stride, self.padding, self.dilation, self.groups) + +# File: pytorch-image-models-main/timm/layers/trace_utils.py +try: + from torch import _assert +except ImportError: + + def _assert(condition: bool, message: str): + assert condition, message + +def _float_to_int(x: float) -> int: + return int(x) + +# File: pytorch-image-models-main/timm/layers/weight_init.py +import torch +import math +import warnings +from torch import nn +from torch.nn.init import _calculate_fan_in_and_fan_out + +def _trunc_normal_(tensor, mean, std, a, b): + + def norm_cdf(x): + return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0 + if mean < a - 2 * std or mean > b + 2 * std: + warnings.warn('mean is more than 2 std from [a, b] in nn.init.trunc_normal_. The distribution of values may be incorrect.', stacklevel=2) + l = norm_cdf((a - mean) / std) + u = norm_cdf((b - mean) / std) + tensor.uniform_(2 * l - 1, 2 * u - 1) + tensor.erfinv_() + tensor.mul_(std * math.sqrt(2.0)) + tensor.add_(mean) + tensor.clamp_(min=a, max=b) + return tensor + +def trunc_normal_(tensor, mean=0.0, std=1.0, a=-2.0, b=2.0): + with torch.no_grad(): + return _trunc_normal_(tensor, mean, std, a, b) + +def trunc_normal_tf_(tensor, mean=0.0, std=1.0, a=-2.0, b=2.0): + with torch.no_grad(): + _trunc_normal_(tensor, 0, 1.0, a, b) + tensor.mul_(std).add_(mean) + return tensor + +def variance_scaling_(tensor, scale=1.0, mode='fan_in', distribution='normal'): + (fan_in, fan_out) = _calculate_fan_in_and_fan_out(tensor) + if mode == 'fan_in': + denom = fan_in + elif mode == 'fan_out': + denom = fan_out + elif mode == 'fan_avg': + denom = (fan_in + fan_out) / 2 + variance = scale / denom + if distribution == 'truncated_normal': + trunc_normal_tf_(tensor, std=math.sqrt(variance) / 0.8796256610342398) + elif distribution == 'normal': + with torch.no_grad(): + tensor.normal_(std=math.sqrt(variance)) + elif distribution == 'uniform': + bound = math.sqrt(3 * variance) + with torch.no_grad(): + tensor.uniform_(-bound, bound) + else: + raise ValueError(f'invalid distribution {distribution}') + +def lecun_normal_(tensor): + variance_scaling_(tensor, mode='fan_in', distribution='truncated_normal') + +def init_weight_vit(module: nn.Module, name: str, init_bias: float=0.02, head_bias: float=0.0, classifier_name: str='head'): + if isinstance(module, (nn.Linear, nn.Conv1d, nn.Conv2d, nn.Conv3d)): + if name.startswith(classifier_name): + nn.init.zeros_(module.weight) + nn.init.constant_(module.bias, head_bias) + else: + nn.init.trunc_normal_(module.weight, std=0.02) + if isinstance(module, nn.Linear) and module.bias is not None: + nn.init.constant_(module.bias, init_bias) + elif hasattr(module, 'init_weights'): + module.init_weights() + +def init_weight_jax(module: nn.Module, name: str, head_bias: float=0.0, classifier_name: str='head'): + if isinstance(module, nn.Linear): + if name.startswith(classifier_name): + nn.init.zeros_(module.weight) + nn.init.constant_(module.bias, head_bias) + else: + nn.init.xavier_uniform_(module.weight) + if module.bias is not None: + nn.init.normal_(module.bias, std=1e-06) if 'mlp' in name else nn.init.zeros_(module.bias) + elif isinstance(module, nn.Conv2d): + lecun_normal_(module.weight) + if module.bias is not None: + nn.init.zeros_(module.bias) + elif hasattr(module, 'init_weights'): + module.init_weights() + +# File: pytorch-image-models-main/timm/loss/asymmetric_loss.py +import torch +import torch.nn as nn + +class AsymmetricLossMultiLabel(nn.Module): + + def __init__(self, gamma_neg=4, gamma_pos=1, clip=0.05, eps=1e-08, disable_torch_grad_focal_loss=False): + super(AsymmetricLossMultiLabel, self).__init__() + self.gamma_neg = gamma_neg + self.gamma_pos = gamma_pos + self.clip = clip + self.disable_torch_grad_focal_loss = disable_torch_grad_focal_loss + self.eps = eps + + def forward(self, x, y): + x_sigmoid = torch.sigmoid(x) + xs_pos = x_sigmoid + xs_neg = 1 - x_sigmoid + if self.clip is not None and self.clip > 0: + xs_neg = (xs_neg + self.clip).clamp(max=1) + los_pos = y * torch.log(xs_pos.clamp(min=self.eps)) + los_neg = (1 - y) * torch.log(xs_neg.clamp(min=self.eps)) + loss = los_pos + los_neg + if self.gamma_neg > 0 or self.gamma_pos > 0: + if self.disable_torch_grad_focal_loss: + torch.set_grad_enabled(False) + pt0 = xs_pos * y + pt1 = xs_neg * (1 - y) + pt = pt0 + pt1 + one_sided_gamma = self.gamma_pos * y + self.gamma_neg * (1 - y) + one_sided_w = torch.pow(1 - pt, one_sided_gamma) + if self.disable_torch_grad_focal_loss: + torch.set_grad_enabled(True) + loss *= one_sided_w + return -loss.sum() + +class AsymmetricLossSingleLabel(nn.Module): + + def __init__(self, gamma_pos=1, gamma_neg=4, eps: float=0.1, reduction='mean'): + super(AsymmetricLossSingleLabel, self).__init__() + self.eps = eps + self.logsoftmax = nn.LogSoftmax(dim=-1) + self.targets_classes = [] + self.gamma_pos = gamma_pos + self.gamma_neg = gamma_neg + self.reduction = reduction + + def forward(self, inputs, target, reduction=None): + num_classes = inputs.size()[-1] + log_preds = self.logsoftmax(inputs) + self.targets_classes = torch.zeros_like(inputs).scatter_(1, target.long().unsqueeze(1), 1) + targets = self.targets_classes + anti_targets = 1 - targets + xs_pos = torch.exp(log_preds) + xs_neg = 1 - xs_pos + xs_pos = xs_pos * targets + xs_neg = xs_neg * anti_targets + asymmetric_w = torch.pow(1 - xs_pos - xs_neg, self.gamma_pos * targets + self.gamma_neg * anti_targets) + log_preds = log_preds * asymmetric_w + if self.eps > 0: + self.targets_classes = self.targets_classes.mul(1 - self.eps).add(self.eps / num_classes) + loss = -self.targets_classes.mul(log_preds) + loss = loss.sum(dim=-1) + if self.reduction == 'mean': + loss = loss.mean() + return loss + +# File: pytorch-image-models-main/timm/loss/binary_cross_entropy.py +"""""" +from typing import Optional, Union +import torch +import torch.nn as nn +import torch.nn.functional as F + +class BinaryCrossEntropy(nn.Module): + + def __init__(self, smoothing=0.1, target_threshold: Optional[float]=None, weight: Optional[torch.Tensor]=None, reduction: str='mean', sum_classes: bool=False, pos_weight: Optional[Union[torch.Tensor, float]]=None): + super(BinaryCrossEntropy, self).__init__() + assert 0.0 <= smoothing < 1.0 + if pos_weight is not None: + if not isinstance(pos_weight, torch.Tensor): + pos_weight = torch.tensor(pos_weight) + self.smoothing = smoothing + self.target_threshold = target_threshold + self.reduction = 'none' if sum_classes else reduction + self.sum_classes = sum_classes + self.register_buffer('weight', weight) + self.register_buffer('pos_weight', pos_weight) + + def forward(self, x: torch.Tensor, target: torch.Tensor) -> torch.Tensor: + batch_size = x.shape[0] + assert batch_size == target.shape[0] + if target.shape != x.shape: + num_classes = x.shape[-1] + off_value = self.smoothing / num_classes + on_value = 1.0 - self.smoothing + off_value + target = target.long().view(-1, 1) + target = torch.full((batch_size, num_classes), off_value, device=x.device, dtype=x.dtype).scatter_(1, target, on_value) + if self.target_threshold is not None: + target = target.gt(self.target_threshold).to(dtype=target.dtype) + loss = F.binary_cross_entropy_with_logits(x, target, self.weight, pos_weight=self.pos_weight, reduction=self.reduction) + if self.sum_classes: + loss = loss.sum(-1).mean() + return loss + +# File: pytorch-image-models-main/timm/loss/cross_entropy.py +"""""" +import torch +import torch.nn as nn +import torch.nn.functional as F + +class LabelSmoothingCrossEntropy(nn.Module): + + def __init__(self, smoothing=0.1): + super(LabelSmoothingCrossEntropy, self).__init__() + assert smoothing < 1.0 + self.smoothing = smoothing + self.confidence = 1.0 - smoothing + + def forward(self, x: torch.Tensor, target: torch.Tensor) -> torch.Tensor: + logprobs = F.log_softmax(x, dim=-1) + nll_loss = -logprobs.gather(dim=-1, index=target.unsqueeze(1)) + nll_loss = nll_loss.squeeze(1) + smooth_loss = -logprobs.mean(dim=-1) + loss = self.confidence * nll_loss + self.smoothing * smooth_loss + return loss.mean() + +class SoftTargetCrossEntropy(nn.Module): + + def __init__(self): + super(SoftTargetCrossEntropy, self).__init__() + + def forward(self, x: torch.Tensor, target: torch.Tensor) -> torch.Tensor: + loss = torch.sum(-target * F.log_softmax(x, dim=-1), dim=-1) + return loss.mean() + +# File: pytorch-image-models-main/timm/loss/jsd.py +import torch +import torch.nn as nn +import torch.nn.functional as F +from .cross_entropy import LabelSmoothingCrossEntropy + +class JsdCrossEntropy(nn.Module): + + def __init__(self, num_splits=3, alpha=12, smoothing=0.1): + super().__init__() + self.num_splits = num_splits + self.alpha = alpha + if smoothing is not None and smoothing > 0: + self.cross_entropy_loss = LabelSmoothingCrossEntropy(smoothing) + else: + self.cross_entropy_loss = torch.nn.CrossEntropyLoss() + + def __call__(self, output, target): + split_size = output.shape[0] // self.num_splits + assert split_size * self.num_splits == output.shape[0] + logits_split = torch.split(output, split_size) + loss = self.cross_entropy_loss(logits_split[0], target[:split_size]) + probs = [F.softmax(logits, dim=1) for logits in logits_split] + logp_mixture = torch.clamp(torch.stack(probs).mean(axis=0), 1e-07, 1).log() + loss += self.alpha * sum([F.kl_div(logp_mixture, p_split, reduction='batchmean') for p_split in probs]) / len(probs) + return loss + +# File: pytorch-image-models-main/timm/models/__init__.py +from .beit import * +from .byoanet import * +from .byobnet import * +from .cait import * +from .coat import * +from .convit import * +from .convmixer import * +from .convnext import * +from .crossvit import * +from .cspnet import * +from .davit import * +from .deit import * +from .densenet import * +from .dla import * +from .dpn import * +from .edgenext import * +from .efficientformer import * +from .efficientformer_v2 import * +from .efficientnet import * +from .efficientvit_mit import * +from .efficientvit_msra import * +from .eva import * +from .fastvit import * +from .focalnet import * +from .gcvit import * +from .ghostnet import * +from .hardcorenas import * +from .hgnet import * +from .hiera import * +from .hieradet_sam2 import * +from .hrnet import * +from .inception_next import * +from .inception_resnet_v2 import * +from .inception_v3 import * +from .inception_v4 import * +from .levit import * +from .maxxvit import * +from .metaformer import * +from .mlp_mixer import * +from .mobilenetv3 import * +from .mobilevit import * +from .mvitv2 import * +from .nasnet import * +from .nest import * +from .nextvit import * +from .nfnet import * +from .pit import * +from .pnasnet import * +from .pvt_v2 import * +from .rdnet import * +from .regnet import * +from .repghost import * +from .repvit import * +from .res2net import * +from .resnest import * +from .resnet import * +from .resnetv2 import * +from .rexnet import * +from .selecsls import * +from .senet import * +from .sequencer import * +from .sknet import * +from .swin_transformer import * +from .swin_transformer_v2 import * +from .swin_transformer_v2_cr import * +from .tiny_vit import * +from .tnt import * +from .tresnet import * +from .twins import * +from .vgg import * +from .visformer import * +from .vision_transformer import * +from .vision_transformer_hybrid import * +from .vision_transformer_relpos import * +from .vision_transformer_sam import * +from .vitamin import * +from .volo import * +from .vovnet import * +from .xception import * +from .xception_aligned import * +from .xcit import * +from ._builder import build_model_with_cfg, load_pretrained, load_custom_pretrained, resolve_pretrained_cfg, set_pretrained_download_progress, set_pretrained_check_hash +from ._factory import create_model, parse_model_name, safe_model_name +from ._features import FeatureInfo, FeatureHooks, FeatureHookNet, FeatureListNet, FeatureDictNet +from ._features_fx import FeatureGraphNet, GraphExtractNet, create_feature_extractor, get_graph_node_names, register_notrace_module, is_notrace_module, get_notrace_modules, register_notrace_function, is_notrace_function, get_notrace_functions +from ._helpers import clean_state_dict, load_state_dict, load_checkpoint, remap_state_dict, resume_checkpoint +from ._hub import load_model_config_from_hf, load_state_dict_from_hf, push_to_hf_hub +from ._manipulate import model_parameters, named_apply, named_modules, named_modules_with_params, group_modules, group_parameters, checkpoint_seq, adapt_input_conv +from ._pretrained import PretrainedCfg, DefaultCfg, filter_pretrained_cfg +from ._prune import adapt_model_from_string +from ._registry import split_model_name_tag, get_arch_name, generate_default_cfgs, register_model, register_model_deprecations, model_entrypoint, list_models, list_pretrained, get_deprecated_models, is_model, list_modules, is_model_in_modules, is_model_pretrained, get_pretrained_cfg, get_pretrained_cfg_value, get_arch_pretrained_cfgs + +# File: pytorch-image-models-main/timm/models/_builder.py +import dataclasses +import logging +import os +from copy import deepcopy +from typing import Any, Callable, Dict, List, Optional, Tuple +from torch import nn as nn +from torch.hub import load_state_dict_from_url +from timm.models._features import FeatureListNet, FeatureDictNet, FeatureHookNet, FeatureGetterNet +from timm.models._features_fx import FeatureGraphNet +from timm.models._helpers import load_state_dict +from timm.models._hub import has_hf_hub, download_cached_file, check_cached_file, load_state_dict_from_hf, load_custom_from_hf +from timm.models._manipulate import adapt_input_conv +from timm.models._pretrained import PretrainedCfg +from timm.models._prune import adapt_model_from_file +from timm.models._registry import get_pretrained_cfg +_logger = logging.getLogger(__name__) +_DOWNLOAD_PROGRESS = False +_CHECK_HASH = False +_USE_OLD_CACHE = int(os.environ.get('TIMM_USE_OLD_CACHE', 0)) > 0 +__all__ = ['set_pretrained_download_progress', 'set_pretrained_check_hash', 'load_custom_pretrained', 'load_pretrained', 'pretrained_cfg_for_features', 'resolve_pretrained_cfg', 'build_model_with_cfg'] + +def _resolve_pretrained_source(pretrained_cfg): + cfg_source = pretrained_cfg.get('source', '') + pretrained_url = pretrained_cfg.get('url', None) + pretrained_file = pretrained_cfg.get('file', None) + pretrained_sd = pretrained_cfg.get('state_dict', None) + hf_hub_id = pretrained_cfg.get('hf_hub_id', None) + load_from = '' + pretrained_loc = '' + if cfg_source == 'hf-hub' and has_hf_hub(necessary=True): + load_from = 'hf-hub' + assert hf_hub_id + pretrained_loc = hf_hub_id + elif pretrained_sd: + load_from = 'state_dict' + pretrained_loc = pretrained_sd + assert isinstance(pretrained_loc, dict) + elif pretrained_file: + load_from = 'file' + pretrained_loc = pretrained_file + else: + old_cache_valid = False + if _USE_OLD_CACHE: + old_cache_valid = check_cached_file(pretrained_url) if pretrained_url else False + if not old_cache_valid and hf_hub_id and has_hf_hub(necessary=True): + load_from = 'hf-hub' + pretrained_loc = hf_hub_id + elif pretrained_url: + load_from = 'url' + pretrained_loc = pretrained_url + if load_from == 'hf-hub' and pretrained_cfg.get('hf_hub_filename', None): + pretrained_loc = (pretrained_loc, pretrained_cfg['hf_hub_filename']) + return (load_from, pretrained_loc) + +def set_pretrained_download_progress(enable=True): + global _DOWNLOAD_PROGRESS + _DOWNLOAD_PROGRESS = enable + +def set_pretrained_check_hash(enable=True): + global _CHECK_HASH + _CHECK_HASH = enable + +def load_custom_pretrained(model: nn.Module, pretrained_cfg: Optional[Dict]=None, load_fn: Optional[Callable]=None): + pretrained_cfg = pretrained_cfg or getattr(model, 'pretrained_cfg', None) + if not pretrained_cfg: + _logger.warning('Invalid pretrained config, cannot load weights.') + return + (load_from, pretrained_loc) = _resolve_pretrained_source(pretrained_cfg) + if not load_from: + _logger.warning('No pretrained weights exist for this model. Using random initialization.') + return + if load_from == 'hf-hub': + _logger.warning('Hugging Face hub not currently supported for custom load pretrained models.') + elif load_from == 'url': + pretrained_loc = download_cached_file(pretrained_loc, check_hash=_CHECK_HASH, progress=_DOWNLOAD_PROGRESS) + if load_fn is not None: + load_fn(model, pretrained_loc) + elif hasattr(model, 'load_pretrained'): + model.load_pretrained(pretrained_loc) + else: + _logger.warning('Valid function to load pretrained weights is not available, using random initialization.') + +def load_pretrained(model: nn.Module, pretrained_cfg: Optional[Dict]=None, num_classes: int=1000, in_chans: int=3, filter_fn: Optional[Callable]=None, strict: bool=True): + pretrained_cfg = pretrained_cfg or getattr(model, 'pretrained_cfg', None) + if not pretrained_cfg: + raise RuntimeError('Invalid pretrained config, cannot load weights. Use `pretrained=False` for random init.') + (load_from, pretrained_loc) = _resolve_pretrained_source(pretrained_cfg) + if load_from == 'state_dict': + _logger.info(f'Loading pretrained weights from state dict') + state_dict = pretrained_loc + elif load_from == 'file': + _logger.info(f'Loading pretrained weights from file ({pretrained_loc})') + if pretrained_cfg.get('custom_load', False): + model.load_pretrained(pretrained_loc) + return + else: + state_dict = load_state_dict(pretrained_loc) + elif load_from == 'url': + _logger.info(f'Loading pretrained weights from url ({pretrained_loc})') + if pretrained_cfg.get('custom_load', False): + pretrained_loc = download_cached_file(pretrained_loc, progress=_DOWNLOAD_PROGRESS, check_hash=_CHECK_HASH) + model.load_pretrained(pretrained_loc) + return + else: + try: + state_dict = load_state_dict_from_url(pretrained_loc, map_location='cpu', progress=_DOWNLOAD_PROGRESS, check_hash=_CHECK_HASH, weights_only=True) + except TypeError: + state_dict = load_state_dict_from_url(pretrained_loc, map_location='cpu', progress=_DOWNLOAD_PROGRESS, check_hash=_CHECK_HASH) + elif load_from == 'hf-hub': + _logger.info(f'Loading pretrained weights from Hugging Face hub ({pretrained_loc})') + if isinstance(pretrained_loc, (list, tuple)): + custom_load = pretrained_cfg.get('custom_load', False) + if isinstance(custom_load, str) and custom_load == 'hf': + load_custom_from_hf(*pretrained_loc, model) + return + else: + state_dict = load_state_dict_from_hf(*pretrained_loc) + else: + state_dict = load_state_dict_from_hf(pretrained_loc, weights_only=True) + else: + model_name = pretrained_cfg.get('architecture', 'this model') + raise RuntimeError(f'No pretrained weights exist for {model_name}. Use `pretrained=False` for random init.') + if filter_fn is not None: + try: + state_dict = filter_fn(state_dict, model) + except TypeError as e: + state_dict = filter_fn(state_dict) + input_convs = pretrained_cfg.get('first_conv', None) + if input_convs is not None and in_chans != 3: + if isinstance(input_convs, str): + input_convs = (input_convs,) + for input_conv_name in input_convs: + weight_name = input_conv_name + '.weight' + try: + state_dict[weight_name] = adapt_input_conv(in_chans, state_dict[weight_name]) + _logger.info(f'Converted input conv {input_conv_name} pretrained weights from 3 to {in_chans} channel(s)') + except NotImplementedError as e: + del state_dict[weight_name] + strict = False + _logger.warning(f'Unable to convert pretrained {input_conv_name} weights, using random init for this layer.') + classifiers = pretrained_cfg.get('classifier', None) + label_offset = pretrained_cfg.get('label_offset', 0) + if classifiers is not None: + if isinstance(classifiers, str): + classifiers = (classifiers,) + if num_classes != pretrained_cfg['num_classes']: + for classifier_name in classifiers: + state_dict.pop(classifier_name + '.weight', None) + state_dict.pop(classifier_name + '.bias', None) + strict = False + elif label_offset > 0: + for classifier_name in classifiers: + classifier_weight = state_dict[classifier_name + '.weight'] + state_dict[classifier_name + '.weight'] = classifier_weight[label_offset:] + classifier_bias = state_dict[classifier_name + '.bias'] + state_dict[classifier_name + '.bias'] = classifier_bias[label_offset:] + load_result = model.load_state_dict(state_dict, strict=strict) + if load_result.missing_keys: + _logger.info(f"Missing keys ({', '.join(load_result.missing_keys)}) discovered while loading pretrained weights. This is expected if model is being adapted.") + if load_result.unexpected_keys: + _logger.warning(f"Unexpected keys ({', '.join(load_result.unexpected_keys)}) found while loading pretrained weights. This may be expected if model is being adapted.") + +def pretrained_cfg_for_features(pretrained_cfg): + pretrained_cfg = deepcopy(pretrained_cfg) + to_remove = ('num_classes', 'classifier', 'global_pool') + for tr in to_remove: + pretrained_cfg.pop(tr, None) + return pretrained_cfg + +def _filter_kwargs(kwargs, names): + if not kwargs or not names: + return + for n in names: + kwargs.pop(n, None) + +def _update_default_model_kwargs(pretrained_cfg, kwargs, kwargs_filter): + default_kwarg_names = ('num_classes', 'global_pool', 'in_chans') + if pretrained_cfg.get('fixed_input_size', False): + default_kwarg_names += ('img_size',) + for n in default_kwarg_names: + if n == 'img_size': + input_size = pretrained_cfg.get('input_size', None) + if input_size is not None: + assert len(input_size) == 3 + kwargs.setdefault(n, input_size[-2:]) + elif n == 'in_chans': + input_size = pretrained_cfg.get('input_size', None) + if input_size is not None: + assert len(input_size) == 3 + kwargs.setdefault(n, input_size[0]) + elif n == 'num_classes': + default_val = pretrained_cfg.get(n, None) + if default_val is not None and default_val >= 0: + kwargs.setdefault(n, pretrained_cfg[n]) + else: + default_val = pretrained_cfg.get(n, None) + if default_val is not None: + kwargs.setdefault(n, pretrained_cfg[n]) + _filter_kwargs(kwargs, names=kwargs_filter) + +def resolve_pretrained_cfg(variant: str, pretrained_cfg=None, pretrained_cfg_overlay=None) -> PretrainedCfg: + model_with_tag = variant + pretrained_tag = None + if pretrained_cfg: + if isinstance(pretrained_cfg, dict): + pretrained_cfg = PretrainedCfg(**pretrained_cfg) + elif isinstance(pretrained_cfg, str): + pretrained_tag = pretrained_cfg + pretrained_cfg = None + if not pretrained_cfg: + if pretrained_tag: + model_with_tag = '.'.join([variant, pretrained_tag]) + pretrained_cfg = get_pretrained_cfg(model_with_tag) + if not pretrained_cfg: + _logger.warning(f'No pretrained configuration specified for {model_with_tag} model. Using a default. Please add a config to the model pretrained_cfg registry or pass explicitly.') + pretrained_cfg = PretrainedCfg() + pretrained_cfg_overlay = pretrained_cfg_overlay or {} + if not pretrained_cfg.architecture: + pretrained_cfg_overlay.setdefault('architecture', variant) + pretrained_cfg = dataclasses.replace(pretrained_cfg, **pretrained_cfg_overlay) + return pretrained_cfg + +def build_model_with_cfg(model_cls: Callable, variant: str, pretrained: bool, pretrained_cfg: Optional[Dict]=None, pretrained_cfg_overlay: Optional[Dict]=None, model_cfg: Optional[Any]=None, feature_cfg: Optional[Dict]=None, pretrained_strict: bool=True, pretrained_filter_fn: Optional[Callable]=None, kwargs_filter: Optional[Tuple[str]]=None, **kwargs): + pruned = kwargs.pop('pruned', False) + features = False + feature_cfg = feature_cfg or {} + pretrained_cfg = resolve_pretrained_cfg(variant, pretrained_cfg=pretrained_cfg, pretrained_cfg_overlay=pretrained_cfg_overlay) + pretrained_cfg = pretrained_cfg.to_dict() + _update_default_model_kwargs(pretrained_cfg, kwargs, kwargs_filter) + if kwargs.pop('features_only', False): + features = True + feature_cfg.setdefault('out_indices', (0, 1, 2, 3, 4)) + if 'out_indices' in kwargs: + feature_cfg['out_indices'] = kwargs.pop('out_indices') + if 'feature_cls' in kwargs: + feature_cfg['feature_cls'] = kwargs.pop('feature_cls') + if model_cfg is None: + model = model_cls(**kwargs) + else: + model = model_cls(cfg=model_cfg, **kwargs) + model.pretrained_cfg = pretrained_cfg + model.default_cfg = model.pretrained_cfg + if pruned: + model = adapt_model_from_file(model, variant) + num_classes_pretrained = 0 if features else getattr(model, 'num_classes', kwargs.get('num_classes', 1000)) + if pretrained: + load_pretrained(model, pretrained_cfg=pretrained_cfg, num_classes=num_classes_pretrained, in_chans=kwargs.get('in_chans', 3), filter_fn=pretrained_filter_fn, strict=pretrained_strict) + if features: + use_getter = False + if 'feature_cls' in feature_cfg: + feature_cls = feature_cfg.pop('feature_cls') + if isinstance(feature_cls, str): + feature_cls = feature_cls.lower() + if feature_cls not in ('dict', 'list', 'hook'): + feature_cfg.pop('flatten_sequential', None) + if 'hook' in feature_cls: + feature_cls = FeatureHookNet + elif feature_cls == 'list': + feature_cls = FeatureListNet + elif feature_cls == 'dict': + feature_cls = FeatureDictNet + elif feature_cls == 'fx': + feature_cls = FeatureGraphNet + elif feature_cls == 'getter': + use_getter = True + feature_cls = FeatureGetterNet + else: + assert False, f'Unknown feature class {feature_cls}' + else: + feature_cls = FeatureListNet + output_fmt = getattr(model, 'output_fmt', None) + if output_fmt is not None and (not use_getter): + feature_cfg.setdefault('output_fmt', output_fmt) + model = feature_cls(model, **feature_cfg) + model.pretrained_cfg = pretrained_cfg_for_features(pretrained_cfg) + model.default_cfg = model.pretrained_cfg + return model + +# File: pytorch-image-models-main/timm/models/_efficientnet_blocks.py +"""""" +from typing import Callable, Dict, Optional, Type +import torch +import torch.nn as nn +from torch.nn import functional as F +from timm.layers import create_conv2d, DropPath, make_divisible, create_act_layer, create_aa, to_2tuple, LayerType, ConvNormAct, get_norm_act_layer, MultiQueryAttention2d, Attention2d +__all__ = ['SqueezeExcite', 'ConvBnAct', 'DepthwiseSeparableConv', 'InvertedResidual', 'CondConvResidual', 'EdgeResidual', 'UniversalInvertedResidual', 'MobileAttention'] +ModuleType = Type[nn.Module] + +def num_groups(group_size: Optional[int], channels: int): + if not group_size: + return 1 + else: + assert channels % group_size == 0 + return channels // group_size + +class SqueezeExcite(nn.Module): + + def __init__(self, in_chs: int, rd_ratio: float=0.25, rd_channels: Optional[int]=None, act_layer: LayerType=nn.ReLU, gate_layer: LayerType=nn.Sigmoid, force_act_layer: Optional[LayerType]=None, rd_round_fn: Optional[Callable]=None): + super(SqueezeExcite, self).__init__() + if rd_channels is None: + rd_round_fn = rd_round_fn or round + rd_channels = rd_round_fn(in_chs * rd_ratio) + act_layer = force_act_layer or act_layer + self.conv_reduce = nn.Conv2d(in_chs, rd_channels, 1, bias=True) + self.act1 = create_act_layer(act_layer, inplace=True) + self.conv_expand = nn.Conv2d(rd_channels, in_chs, 1, bias=True) + self.gate = create_act_layer(gate_layer) + + def forward(self, x): + x_se = x.mean((2, 3), keepdim=True) + x_se = self.conv_reduce(x_se) + x_se = self.act1(x_se) + x_se = self.conv_expand(x_se) + return x * self.gate(x_se) + +class ConvBnAct(nn.Module): + + def __init__(self, in_chs: int, out_chs: int, kernel_size: int, stride: int=1, dilation: int=1, group_size: int=0, pad_type: str='', skip: bool=False, act_layer: LayerType=nn.ReLU, norm_layer: LayerType=nn.BatchNorm2d, aa_layer: Optional[LayerType]=None, drop_path_rate: float=0.0): + super(ConvBnAct, self).__init__() + norm_act_layer = get_norm_act_layer(norm_layer, act_layer) + groups = num_groups(group_size, in_chs) + self.has_skip = skip and stride == 1 and (in_chs == out_chs) + use_aa = aa_layer is not None and stride > 1 + self.conv = create_conv2d(in_chs, out_chs, kernel_size, stride=1 if use_aa else stride, dilation=dilation, groups=groups, padding=pad_type) + self.bn1 = norm_act_layer(out_chs, inplace=True) + self.aa = create_aa(aa_layer, channels=out_chs, stride=stride, enable=use_aa) + self.drop_path = DropPath(drop_path_rate) if drop_path_rate else nn.Identity() + + def feature_info(self, location): + if location == 'expansion': + return dict(module='bn1', hook_type='forward', num_chs=self.conv.out_channels) + else: + return dict(module='', num_chs=self.conv.out_channels) + + def forward(self, x): + shortcut = x + x = self.conv(x) + x = self.bn1(x) + x = self.aa(x) + if self.has_skip: + x = self.drop_path(x) + shortcut + return x + +class DepthwiseSeparableConv(nn.Module): + + def __init__(self, in_chs: int, out_chs: int, dw_kernel_size: int=3, stride: int=1, dilation: int=1, group_size: int=1, pad_type: str='', noskip: bool=False, pw_kernel_size: int=1, pw_act: bool=False, s2d: int=0, act_layer: LayerType=nn.ReLU, norm_layer: LayerType=nn.BatchNorm2d, aa_layer: Optional[LayerType]=None, se_layer: Optional[ModuleType]=None, drop_path_rate: float=0.0): + super(DepthwiseSeparableConv, self).__init__() + norm_act_layer = get_norm_act_layer(norm_layer, act_layer) + self.has_skip = (stride == 1 and in_chs == out_chs) and (not noskip) + self.has_pw_act = pw_act + use_aa = aa_layer is not None and stride > 1 + if s2d == 1: + sd_chs = int(in_chs * 4) + self.conv_s2d = create_conv2d(in_chs, sd_chs, kernel_size=2, stride=2, padding='same') + self.bn_s2d = norm_act_layer(sd_chs, sd_chs) + dw_kernel_size = (dw_kernel_size + 1) // 2 + dw_pad_type = 'same' if dw_kernel_size == 2 else pad_type + in_chs = sd_chs + use_aa = False + else: + self.conv_s2d = None + self.bn_s2d = None + dw_pad_type = pad_type + groups = num_groups(group_size, in_chs) + self.conv_dw = create_conv2d(in_chs, in_chs, dw_kernel_size, stride=1 if use_aa else stride, dilation=dilation, padding=dw_pad_type, groups=groups) + self.bn1 = norm_act_layer(in_chs, inplace=True) + self.aa = create_aa(aa_layer, channels=out_chs, stride=stride, enable=use_aa) + self.se = se_layer(in_chs, act_layer=act_layer) if se_layer else nn.Identity() + self.conv_pw = create_conv2d(in_chs, out_chs, pw_kernel_size, padding=pad_type) + self.bn2 = norm_act_layer(out_chs, inplace=True, apply_act=self.has_pw_act) + self.drop_path = DropPath(drop_path_rate) if drop_path_rate else nn.Identity() + + def feature_info(self, location): + if location == 'expansion': + return dict(module='conv_pw', hook_type='forward_pre', num_chs=self.conv_pw.in_channels) + else: + return dict(module='', num_chs=self.conv_pw.out_channels) + + def forward(self, x): + shortcut = x + if self.conv_s2d is not None: + x = self.conv_s2d(x) + x = self.bn_s2d(x) + x = self.conv_dw(x) + x = self.bn1(x) + x = self.aa(x) + x = self.se(x) + x = self.conv_pw(x) + x = self.bn2(x) + if self.has_skip: + x = self.drop_path(x) + shortcut + return x + +class InvertedResidual(nn.Module): + + def __init__(self, in_chs: int, out_chs: int, dw_kernel_size: int=3, stride: int=1, dilation: int=1, group_size: int=1, pad_type: str='', noskip: bool=False, exp_ratio: float=1.0, exp_kernel_size: int=1, pw_kernel_size: int=1, s2d: int=0, act_layer: LayerType=nn.ReLU, norm_layer: LayerType=nn.BatchNorm2d, aa_layer: Optional[LayerType]=None, se_layer: Optional[ModuleType]=None, conv_kwargs: Optional[Dict]=None, drop_path_rate: float=0.0): + super(InvertedResidual, self).__init__() + norm_act_layer = get_norm_act_layer(norm_layer, act_layer) + conv_kwargs = conv_kwargs or {} + self.has_skip = (in_chs == out_chs and stride == 1) and (not noskip) + use_aa = aa_layer is not None and stride > 1 + if s2d == 1: + sd_chs = int(in_chs * 4) + self.conv_s2d = create_conv2d(in_chs, sd_chs, kernel_size=2, stride=2, padding='same') + self.bn_s2d = norm_act_layer(sd_chs, sd_chs) + dw_kernel_size = (dw_kernel_size + 1) // 2 + dw_pad_type = 'same' if dw_kernel_size == 2 else pad_type + in_chs = sd_chs + use_aa = False + else: + self.conv_s2d = None + self.bn_s2d = None + dw_pad_type = pad_type + mid_chs = make_divisible(in_chs * exp_ratio) + groups = num_groups(group_size, mid_chs) + self.conv_pw = create_conv2d(in_chs, mid_chs, exp_kernel_size, padding=pad_type, **conv_kwargs) + self.bn1 = norm_act_layer(mid_chs, inplace=True) + self.conv_dw = create_conv2d(mid_chs, mid_chs, dw_kernel_size, stride=1 if use_aa else stride, dilation=dilation, groups=groups, padding=dw_pad_type, **conv_kwargs) + self.bn2 = norm_act_layer(mid_chs, inplace=True) + self.aa = create_aa(aa_layer, channels=mid_chs, stride=stride, enable=use_aa) + self.se = se_layer(mid_chs, act_layer=act_layer) if se_layer else nn.Identity() + self.conv_pwl = create_conv2d(mid_chs, out_chs, pw_kernel_size, padding=pad_type, **conv_kwargs) + self.bn3 = norm_act_layer(out_chs, apply_act=False) + self.drop_path = DropPath(drop_path_rate) if drop_path_rate else nn.Identity() + + def feature_info(self, location): + if location == 'expansion': + return dict(module='conv_pwl', hook_type='forward_pre', num_chs=self.conv_pwl.in_channels) + else: + return dict(module='', num_chs=self.conv_pwl.out_channels) + + def forward(self, x): + shortcut = x + if self.conv_s2d is not None: + x = self.conv_s2d(x) + x = self.bn_s2d(x) + x = self.conv_pw(x) + x = self.bn1(x) + x = self.conv_dw(x) + x = self.bn2(x) + x = self.aa(x) + x = self.se(x) + x = self.conv_pwl(x) + x = self.bn3(x) + if self.has_skip: + x = self.drop_path(x) + shortcut + return x + +class LayerScale2d(nn.Module): + + def __init__(self, dim: int, init_values: float=1e-05, inplace: bool=False): + super().__init__() + self.inplace = inplace + self.gamma = nn.Parameter(init_values * torch.ones(dim)) + + def forward(self, x): + gamma = self.gamma.view(1, -1, 1, 1) + return x.mul_(gamma) if self.inplace else x * gamma + +class UniversalInvertedResidual(nn.Module): + + def __init__(self, in_chs: int, out_chs: int, dw_kernel_size_start: int=0, dw_kernel_size_mid: int=3, dw_kernel_size_end: int=0, stride: int=1, dilation: int=1, group_size: int=1, pad_type: str='', noskip: bool=False, exp_ratio: float=1.0, act_layer: LayerType=nn.ReLU, norm_layer: LayerType=nn.BatchNorm2d, aa_layer: Optional[LayerType]=None, se_layer: Optional[ModuleType]=None, conv_kwargs: Optional[Dict]=None, drop_path_rate: float=0.0, layer_scale_init_value: Optional[float]=1e-05): + super(UniversalInvertedResidual, self).__init__() + conv_kwargs = conv_kwargs or {} + self.has_skip = (in_chs == out_chs and stride == 1) and (not noskip) + if stride > 1: + assert dw_kernel_size_start or dw_kernel_size_mid or dw_kernel_size_end + if dw_kernel_size_start: + dw_start_stride = stride if not dw_kernel_size_mid else 1 + dw_start_groups = num_groups(group_size, in_chs) + self.dw_start = ConvNormAct(in_chs, in_chs, dw_kernel_size_start, stride=dw_start_stride, dilation=dilation, groups=dw_start_groups, padding=pad_type, apply_act=False, act_layer=act_layer, norm_layer=norm_layer, aa_layer=aa_layer, **conv_kwargs) + else: + self.dw_start = nn.Identity() + mid_chs = make_divisible(in_chs * exp_ratio) + self.pw_exp = ConvNormAct(in_chs, mid_chs, 1, padding=pad_type, act_layer=act_layer, norm_layer=norm_layer, **conv_kwargs) + if dw_kernel_size_mid: + groups = num_groups(group_size, mid_chs) + self.dw_mid = ConvNormAct(mid_chs, mid_chs, dw_kernel_size_mid, stride=stride, dilation=dilation, groups=groups, padding=pad_type, act_layer=act_layer, norm_layer=norm_layer, aa_layer=aa_layer, **conv_kwargs) + else: + self.dw_mid = nn.Identity() + self.se = se_layer(mid_chs, act_layer=act_layer) if se_layer else nn.Identity() + self.pw_proj = ConvNormAct(mid_chs, out_chs, 1, padding=pad_type, apply_act=False, act_layer=act_layer, norm_layer=norm_layer, **conv_kwargs) + if dw_kernel_size_end: + dw_end_stride = stride if not dw_kernel_size_start and (not dw_kernel_size_mid) else 1 + dw_end_groups = num_groups(group_size, out_chs) + if dw_end_stride > 1: + assert not aa_layer + self.dw_end = ConvNormAct(out_chs, out_chs, dw_kernel_size_end, stride=dw_end_stride, dilation=dilation, groups=dw_end_groups, padding=pad_type, apply_act=False, act_layer=act_layer, norm_layer=norm_layer, **conv_kwargs) + else: + self.dw_end = nn.Identity() + if layer_scale_init_value is not None: + self.layer_scale = LayerScale2d(out_chs, layer_scale_init_value) + else: + self.layer_scale = nn.Identity() + self.drop_path = DropPath(drop_path_rate) if drop_path_rate else nn.Identity() + + def feature_info(self, location): + if location == 'expansion': + return dict(module='pw_proj.conv', hook_type='forward_pre', num_chs=self.pw_proj.conv.in_channels) + else: + return dict(module='', num_chs=self.pw_proj.conv.out_channels) + + def forward(self, x): + shortcut = x + x = self.dw_start(x) + x = self.pw_exp(x) + x = self.dw_mid(x) + x = self.se(x) + x = self.pw_proj(x) + x = self.dw_end(x) + x = self.layer_scale(x) + if self.has_skip: + x = self.drop_path(x) + shortcut + return x + +class MobileAttention(nn.Module): + + def __init__(self, in_chs: int, out_chs: int, stride: int=1, dw_kernel_size: int=3, dilation: int=1, group_size: int=1, pad_type: str='', num_heads: int=8, key_dim: int=64, value_dim: int=64, use_multi_query: bool=False, query_strides: int=(1, 1), kv_stride: int=1, cpe_dw_kernel_size: int=3, noskip: bool=False, act_layer: LayerType=nn.ReLU, norm_layer: LayerType=nn.BatchNorm2d, aa_layer: Optional[LayerType]=None, drop_path_rate: float=0.0, attn_drop: float=0.0, proj_drop: float=0.0, layer_scale_init_value: Optional[float]=1e-05, use_bias: bool=False, use_cpe: bool=False): + super(MobileAttention, self).__init__() + norm_act_layer = get_norm_act_layer(norm_layer, act_layer) + self.has_skip = (stride == 1 and in_chs == out_chs) and (not noskip) + self.query_strides = to_2tuple(query_strides) + self.kv_stride = kv_stride + self.has_query_stride = any([s > 1 for s in self.query_strides]) + if use_cpe: + self.conv_cpe_dw = create_conv2d(in_chs, in_chs, kernel_size=cpe_dw_kernel_size, dilation=dilation, depthwise=True, bias=True) + else: + self.conv_cpe_dw = None + self.norm = norm_act_layer(in_chs, apply_act=False) + if num_heads is None: + assert in_chs % key_dim == 0 + num_heads = in_chs // key_dim + if use_multi_query: + self.attn = MultiQueryAttention2d(in_chs, dim_out=out_chs, num_heads=num_heads, key_dim=key_dim, value_dim=value_dim, query_strides=query_strides, kv_stride=kv_stride, dilation=dilation, padding=pad_type, dw_kernel_size=dw_kernel_size, attn_drop=attn_drop, proj_drop=proj_drop) + else: + self.attn = Attention2d(in_chs, dim_out=out_chs, num_heads=num_heads, attn_drop=attn_drop, proj_drop=proj_drop, bias=use_bias) + if layer_scale_init_value is not None: + self.layer_scale = LayerScale2d(out_chs, layer_scale_init_value) + else: + self.layer_scale = nn.Identity() + self.drop_path = DropPath(drop_path_rate) if drop_path_rate else nn.Identity() + + def feature_info(self, location): + if location == 'expansion': + return dict(module='conv_pw', hook_type='forward_pre', num_chs=self.conv_pw.in_channels) + else: + return dict(module='', num_chs=self.conv_pw.out_channels) + + def forward(self, x): + if self.conv_cpe_dw is not None: + x_cpe = self.conv_cpe_dw(x) + x = x + x_cpe + shortcut = x + x = self.norm(x) + x = self.attn(x) + x = self.layer_scale(x) + if self.has_skip: + x = self.drop_path(x) + shortcut + return x + +class CondConvResidual(InvertedResidual): + + def __init__(self, in_chs: int, out_chs: int, dw_kernel_size: int=3, stride: int=1, dilation: int=1, group_size: int=1, pad_type: str='', noskip: bool=False, exp_ratio: float=1.0, exp_kernel_size: int=1, pw_kernel_size: int=1, act_layer: LayerType=nn.ReLU, norm_layer: LayerType=nn.BatchNorm2d, aa_layer: Optional[LayerType]=None, se_layer: Optional[ModuleType]=None, num_experts: int=0, drop_path_rate: float=0.0): + self.num_experts = num_experts + conv_kwargs = dict(num_experts=self.num_experts) + super(CondConvResidual, self).__init__(in_chs, out_chs, dw_kernel_size=dw_kernel_size, stride=stride, dilation=dilation, group_size=group_size, pad_type=pad_type, noskip=noskip, exp_ratio=exp_ratio, exp_kernel_size=exp_kernel_size, pw_kernel_size=pw_kernel_size, act_layer=act_layer, norm_layer=norm_layer, aa_layer=aa_layer, se_layer=se_layer, conv_kwargs=conv_kwargs, drop_path_rate=drop_path_rate) + self.routing_fn = nn.Linear(in_chs, self.num_experts) + + def forward(self, x): + shortcut = x + pooled_inputs = F.adaptive_avg_pool2d(x, 1).flatten(1) + routing_weights = torch.sigmoid(self.routing_fn(pooled_inputs)) + x = self.conv_pw(x, routing_weights) + x = self.bn1(x) + x = self.conv_dw(x, routing_weights) + x = self.bn2(x) + x = self.se(x) + x = self.conv_pwl(x, routing_weights) + x = self.bn3(x) + if self.has_skip: + x = self.drop_path(x) + shortcut + return x + +class EdgeResidual(nn.Module): + + def __init__(self, in_chs: int, out_chs: int, exp_kernel_size: int=3, stride: int=1, dilation: int=1, group_size: int=0, pad_type: str='', force_in_chs: int=0, noskip: bool=False, exp_ratio: float=1.0, pw_kernel_size: int=1, act_layer: LayerType=nn.ReLU, norm_layer: LayerType=nn.BatchNorm2d, aa_layer: Optional[LayerType]=None, se_layer: Optional[ModuleType]=None, drop_path_rate: float=0.0): + super(EdgeResidual, self).__init__() + norm_act_layer = get_norm_act_layer(norm_layer, act_layer) + if force_in_chs > 0: + mid_chs = make_divisible(force_in_chs * exp_ratio) + else: + mid_chs = make_divisible(in_chs * exp_ratio) + groups = num_groups(group_size, mid_chs) + self.has_skip = (in_chs == out_chs and stride == 1) and (not noskip) + use_aa = aa_layer is not None and stride > 1 + self.conv_exp = create_conv2d(in_chs, mid_chs, exp_kernel_size, stride=1 if use_aa else stride, dilation=dilation, groups=groups, padding=pad_type) + self.bn1 = norm_act_layer(mid_chs, inplace=True) + self.aa = create_aa(aa_layer, channels=mid_chs, stride=stride, enable=use_aa) + self.se = se_layer(mid_chs, act_layer=act_layer) if se_layer else nn.Identity() + self.conv_pwl = create_conv2d(mid_chs, out_chs, pw_kernel_size, padding=pad_type) + self.bn2 = norm_act_layer(out_chs, apply_act=False) + self.drop_path = DropPath(drop_path_rate) if drop_path_rate else nn.Identity() + + def feature_info(self, location): + if location == 'expansion': + return dict(module='conv_pwl', hook_type='forward_pre', num_chs=self.conv_pwl.in_channels) + else: + return dict(module='', num_chs=self.conv_pwl.out_channels) + + def forward(self, x): + shortcut = x + x = self.conv_exp(x) + x = self.bn1(x) + x = self.aa(x) + x = self.se(x) + x = self.conv_pwl(x) + x = self.bn2(x) + if self.has_skip: + x = self.drop_path(x) + shortcut + return x + +# File: pytorch-image-models-main/timm/models/_efficientnet_builder.py +"""""" +from typing import Callable, Optional +import logging +import math +import re +from copy import deepcopy +from functools import partial +from typing import Any, Dict, List +import torch.nn as nn +from timm.layers import CondConv2d, get_condconv_initializer, get_act_layer, get_attn, make_divisible, LayerType +from ._efficientnet_blocks import * +from ._manipulate import named_modules +__all__ = ['EfficientNetBuilder', 'decode_arch_def', 'efficientnet_init_weights', 'resolve_bn_args', 'resolve_act_layer', 'round_channels', 'BN_MOMENTUM_TF_DEFAULT', 'BN_EPS_TF_DEFAULT'] +_logger = logging.getLogger(__name__) +_DEBUG_BUILDER = False +BN_MOMENTUM_TF_DEFAULT = 1 - 0.99 +BN_EPS_TF_DEFAULT = 0.001 +_BN_ARGS_TF = dict(momentum=BN_MOMENTUM_TF_DEFAULT, eps=BN_EPS_TF_DEFAULT) +BlockArgs = List[List[Dict[str, Any]]] + +def get_bn_args_tf(): + return _BN_ARGS_TF.copy() + +def resolve_bn_args(kwargs): + bn_args = {} + bn_momentum = kwargs.pop('bn_momentum', None) + if bn_momentum is not None: + bn_args['momentum'] = bn_momentum + bn_eps = kwargs.pop('bn_eps', None) + if bn_eps is not None: + bn_args['eps'] = bn_eps + return bn_args + +def resolve_act_layer(kwargs, default='relu'): + return get_act_layer(kwargs.pop('act_layer', default)) + +def round_channels(channels, multiplier=1.0, divisor=8, channel_min=None, round_limit=0.9): + if not multiplier: + return channels + return make_divisible(channels * multiplier, divisor, channel_min, round_limit=round_limit) + +def _log_info_if(msg, condition): + if condition: + _logger.info(msg) + +def _parse_ksize(ss): + if ss.isdigit(): + return int(ss) + else: + return [int(k) for k in ss.split('.')] + +def _decode_block_str(block_str): + assert isinstance(block_str, str) + ops = block_str.split('_') + block_type = ops[0] + ops = ops[1:] + options = {} + skip = None + for op in ops: + if op == 'noskip': + skip = False + elif op == 'skip': + skip = True + elif op.startswith('n'): + key = op[0] + v = op[1:] + if v == 're': + value = get_act_layer('relu') + elif v == 'r6': + value = get_act_layer('relu6') + elif v == 'hs': + value = get_act_layer('hard_swish') + elif v == 'sw': + value = get_act_layer('swish') + elif v == 'mi': + value = get_act_layer('mish') + else: + continue + options[key] = value + else: + splits = re.split('(\\d.*)', op) + if len(splits) >= 2: + (key, value) = splits[:2] + options[key] = value + act_layer = options['n'] if 'n' in options else None + start_kernel_size = _parse_ksize(options['a']) if 'a' in options else 1 + end_kernel_size = _parse_ksize(options['p']) if 'p' in options else 1 + force_in_chs = int(options['fc']) if 'fc' in options else 0 + num_repeat = int(options['r']) + block_args = dict(block_type=block_type, out_chs=int(options['c']), stride=int(options['s']), act_layer=act_layer) + if block_type == 'ir': + block_args.update(dict(dw_kernel_size=_parse_ksize(options['k']), exp_kernel_size=start_kernel_size, pw_kernel_size=end_kernel_size, exp_ratio=float(options['e']), se_ratio=float(options.get('se', 0.0)), noskip=skip is False, s2d=int(options.get('d', 0)) > 0)) + if 'cc' in options: + block_args['num_experts'] = int(options['cc']) + elif block_type == 'ds' or block_type == 'dsa': + block_args.update(dict(dw_kernel_size=_parse_ksize(options['k']), pw_kernel_size=end_kernel_size, se_ratio=float(options.get('se', 0.0)), pw_act=block_type == 'dsa', noskip=block_type == 'dsa' or skip is False, s2d=int(options.get('d', 0)) > 0)) + elif block_type == 'er': + block_args.update(dict(exp_kernel_size=_parse_ksize(options['k']), pw_kernel_size=end_kernel_size, exp_ratio=float(options['e']), force_in_chs=force_in_chs, se_ratio=float(options.get('se', 0.0)), noskip=skip is False)) + elif block_type == 'cn': + block_args.update(dict(kernel_size=int(options['k']), skip=skip is True)) + elif block_type == 'uir': + start_kernel_size = _parse_ksize(options['a']) if 'a' in options else 0 + end_kernel_size = _parse_ksize(options['p']) if 'p' in options else 0 + block_args.update(dict(dw_kernel_size_start=start_kernel_size, dw_kernel_size_mid=_parse_ksize(options['k']), dw_kernel_size_end=end_kernel_size, exp_ratio=float(options['e']), se_ratio=float(options.get('se', 0.0)), noskip=skip is False)) + elif block_type == 'mha': + kv_dim = int(options['d']) + block_args.update(dict(dw_kernel_size=_parse_ksize(options['k']), num_heads=int(options['h']), key_dim=kv_dim, value_dim=kv_dim, kv_stride=int(options.get('v', 1)), noskip=skip is False)) + elif block_type == 'mqa': + kv_dim = int(options['d']) + block_args.update(dict(dw_kernel_size=_parse_ksize(options['k']), num_heads=int(options['h']), key_dim=kv_dim, value_dim=kv_dim, kv_stride=int(options.get('v', 1)), noskip=skip is False)) + else: + assert False, 'Unknown block type (%s)' % block_type + if 'gs' in options: + block_args['group_size'] = int(options['gs']) + return (block_args, num_repeat) + +def _scale_stage_depth(stack_args, repeats, depth_multiplier=1.0, depth_trunc='ceil'): + num_repeat = sum(repeats) + if depth_trunc == 'round': + num_repeat_scaled = max(1, round(num_repeat * depth_multiplier)) + else: + num_repeat_scaled = int(math.ceil(num_repeat * depth_multiplier)) + repeats_scaled = [] + for r in repeats[::-1]: + rs = max(1, round(r / num_repeat * num_repeat_scaled)) + repeats_scaled.append(rs) + num_repeat -= r + num_repeat_scaled -= rs + repeats_scaled = repeats_scaled[::-1] + sa_scaled = [] + for (ba, rep) in zip(stack_args, repeats_scaled): + sa_scaled.extend([deepcopy(ba) for _ in range(rep)]) + return sa_scaled + +def decode_arch_def(arch_def, depth_multiplier=1.0, depth_trunc='ceil', experts_multiplier=1, fix_first_last=False, group_size=None): + arch_args = [] + if isinstance(depth_multiplier, tuple): + assert len(depth_multiplier) == len(arch_def) + else: + depth_multiplier = (depth_multiplier,) * len(arch_def) + for (stack_idx, (block_strings, multiplier)) in enumerate(zip(arch_def, depth_multiplier)): + assert isinstance(block_strings, list) + stack_args = [] + repeats = [] + for block_str in block_strings: + assert isinstance(block_str, str) + (ba, rep) = _decode_block_str(block_str) + if ba.get('num_experts', 0) > 0 and experts_multiplier > 1: + ba['num_experts'] *= experts_multiplier + if group_size is not None: + ba.setdefault('group_size', group_size) + stack_args.append(ba) + repeats.append(rep) + if fix_first_last and (stack_idx == 0 or stack_idx == len(arch_def) - 1): + arch_args.append(_scale_stage_depth(stack_args, repeats, 1.0, depth_trunc)) + else: + arch_args.append(_scale_stage_depth(stack_args, repeats, multiplier, depth_trunc)) + return arch_args + +class EfficientNetBuilder: + + def __init__(self, output_stride: int=32, pad_type: str='', round_chs_fn: Callable=round_channels, se_from_exp: bool=False, act_layer: Optional[LayerType]=None, norm_layer: Optional[LayerType]=None, aa_layer: Optional[LayerType]=None, se_layer: Optional[LayerType]=None, drop_path_rate: float=0.0, layer_scale_init_value: Optional[float]=None, feature_location: str=''): + self.output_stride = output_stride + self.pad_type = pad_type + self.round_chs_fn = round_chs_fn + self.se_from_exp = se_from_exp + self.act_layer = act_layer + self.norm_layer = norm_layer + self.aa_layer = aa_layer + self.se_layer = get_attn(se_layer) + try: + self.se_layer(8, rd_ratio=1.0) + self.se_has_ratio = True + except TypeError: + self.se_has_ratio = False + self.drop_path_rate = drop_path_rate + self.layer_scale_init_value = layer_scale_init_value + if feature_location == 'depthwise': + _logger.warning("feature_location=='depthwise' is deprecated, using 'expansion'") + feature_location = 'expansion' + self.feature_location = feature_location + assert feature_location in ('bottleneck', 'expansion', '') + self.verbose = _DEBUG_BUILDER + self.in_chs = None + self.features = [] + + def _make_block(self, ba, block_idx, block_count): + drop_path_rate = self.drop_path_rate * block_idx / block_count + bt = ba.pop('block_type') + ba['in_chs'] = self.in_chs + ba['out_chs'] = self.round_chs_fn(ba['out_chs']) + s2d = ba.get('s2d', 0) + if s2d > 0: + ba['out_chs'] *= 4 + if 'force_in_chs' in ba and ba['force_in_chs']: + ba['force_in_chs'] = self.round_chs_fn(ba['force_in_chs']) + ba['pad_type'] = self.pad_type + ba['act_layer'] = ba['act_layer'] if ba['act_layer'] is not None else self.act_layer + assert ba['act_layer'] is not None + ba['norm_layer'] = self.norm_layer + ba['drop_path_rate'] = drop_path_rate + if self.aa_layer is not None: + ba['aa_layer'] = self.aa_layer + se_ratio = ba.pop('se_ratio', None) + if se_ratio and self.se_layer is not None: + if not self.se_from_exp: + se_ratio /= ba.get('exp_ratio', 1.0) + if s2d == 1: + se_ratio /= 4 + if self.se_has_ratio: + ba['se_layer'] = partial(self.se_layer, rd_ratio=se_ratio) + else: + ba['se_layer'] = self.se_layer + if bt == 'ir': + _log_info_if(' InvertedResidual {}, Args: {}'.format(block_idx, str(ba)), self.verbose) + block = CondConvResidual(**ba) if ba.get('num_experts', 0) else InvertedResidual(**ba) + elif bt == 'ds' or bt == 'dsa': + _log_info_if(' DepthwiseSeparable {}, Args: {}'.format(block_idx, str(ba)), self.verbose) + block = DepthwiseSeparableConv(**ba) + elif bt == 'er': + _log_info_if(' EdgeResidual {}, Args: {}'.format(block_idx, str(ba)), self.verbose) + block = EdgeResidual(**ba) + elif bt == 'cn': + _log_info_if(' ConvBnAct {}, Args: {}'.format(block_idx, str(ba)), self.verbose) + block = ConvBnAct(**ba) + elif bt == 'uir': + _log_info_if(' UniversalInvertedResidual {}, Args: {}'.format(block_idx, str(ba)), self.verbose) + block = UniversalInvertedResidual(**ba, layer_scale_init_value=self.layer_scale_init_value) + elif bt == 'mqa': + _log_info_if(' MobileMultiQueryAttention {}, Args: {}'.format(block_idx, str(ba)), self.verbose) + block = MobileAttention(**ba, use_multi_query=True, layer_scale_init_value=self.layer_scale_init_value) + elif bt == 'mha': + _log_info_if(' MobileMultiHeadAttention {}, Args: {}'.format(block_idx, str(ba)), self.verbose) + block = MobileAttention(**ba, layer_scale_init_value=self.layer_scale_init_value) + else: + assert False, 'Unknown block type (%s) while building model.' % bt + self.in_chs = ba['out_chs'] + return block + + def __call__(self, in_chs, model_block_args): + _log_info_if('Building model trunk with %d stages...' % len(model_block_args), self.verbose) + self.in_chs = in_chs + total_block_count = sum([len(x) for x in model_block_args]) + total_block_idx = 0 + current_stride = 2 + current_dilation = 1 + stages = [] + if model_block_args[0][0]['stride'] > 1: + feature_info = dict(module='bn1', num_chs=in_chs, stage=0, reduction=current_stride) + self.features.append(feature_info) + space2depth = 0 + for (stack_idx, stack_args) in enumerate(model_block_args): + last_stack = stack_idx + 1 == len(model_block_args) + _log_info_if('Stack: {}'.format(stack_idx), self.verbose) + assert isinstance(stack_args, list) + blocks = [] + for (block_idx, block_args) in enumerate(stack_args): + last_block = block_idx + 1 == len(stack_args) + _log_info_if(' Block: {}'.format(block_idx), self.verbose) + assert block_args['stride'] in (1, 2) + if block_idx >= 1: + block_args['stride'] = 1 + if not space2depth and block_args.pop('s2d', False): + assert block_args['stride'] == 1 + space2depth = 1 + if space2depth > 0: + if space2depth == 2 and block_args['stride'] == 2: + block_args['stride'] = 1 + block_args['exp_ratio'] /= 4 + space2depth = 0 + else: + block_args['s2d'] = space2depth + extract_features = False + if last_block: + next_stack_idx = stack_idx + 1 + extract_features = next_stack_idx >= len(model_block_args) or model_block_args[next_stack_idx][0]['stride'] > 1 + next_dilation = current_dilation + if block_args['stride'] > 1: + next_output_stride = current_stride * block_args['stride'] + if next_output_stride > self.output_stride: + next_dilation = current_dilation * block_args['stride'] + block_args['stride'] = 1 + _log_info_if(' Converting stride to dilation to maintain output_stride=={}'.format(self.output_stride), self.verbose) + else: + current_stride = next_output_stride + block_args['dilation'] = current_dilation + if next_dilation != current_dilation: + current_dilation = next_dilation + block = self._make_block(block_args, total_block_idx, total_block_count) + blocks.append(block) + if space2depth == 1: + space2depth = 2 + if extract_features: + feature_info = dict(stage=stack_idx + 1, reduction=current_stride, **block.feature_info(self.feature_location)) + leaf_name = feature_info.get('module', '') + if leaf_name: + feature_info['module'] = '.'.join([f'blocks.{stack_idx}.{block_idx}', leaf_name]) + else: + assert last_block + feature_info['module'] = f'blocks.{stack_idx}' + self.features.append(feature_info) + total_block_idx += 1 + stages.append(nn.Sequential(*blocks)) + return stages + +def _init_weight_goog(m, n='', fix_group_fanout=True): + if isinstance(m, CondConv2d): + fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels + if fix_group_fanout: + fan_out //= m.groups + init_weight_fn = get_condconv_initializer(lambda w: nn.init.normal_(w, 0, math.sqrt(2.0 / fan_out)), m.num_experts, m.weight_shape) + init_weight_fn(m.weight) + if m.bias is not None: + nn.init.zeros_(m.bias) + elif isinstance(m, nn.Conv2d): + fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels + if fix_group_fanout: + fan_out //= m.groups + nn.init.normal_(m.weight, 0, math.sqrt(2.0 / fan_out)) + if m.bias is not None: + nn.init.zeros_(m.bias) + elif isinstance(m, nn.BatchNorm2d): + nn.init.ones_(m.weight) + nn.init.zeros_(m.bias) + elif isinstance(m, nn.Linear): + fan_out = m.weight.size(0) + fan_in = 0 + if 'routing_fn' in n: + fan_in = m.weight.size(1) + init_range = 1.0 / math.sqrt(fan_in + fan_out) + nn.init.uniform_(m.weight, -init_range, init_range) + nn.init.zeros_(m.bias) + +def efficientnet_init_weights(model: nn.Module, init_fn=None): + init_fn = init_fn or _init_weight_goog + for (n, m) in model.named_modules(): + init_fn(m, n) + for (n, m) in named_modules(model): + if hasattr(m, 'init_weights'): + m.init_weights() + +# File: pytorch-image-models-main/timm/models/_factory.py +import os +from typing import Any, Dict, Optional, Union +from urllib.parse import urlsplit +from timm.layers import set_layer_config +from ._helpers import load_checkpoint +from ._hub import load_model_config_from_hf +from ._pretrained import PretrainedCfg +from ._registry import is_model, model_entrypoint, split_model_name_tag +__all__ = ['parse_model_name', 'safe_model_name', 'create_model'] + +def parse_model_name(model_name: str): + if model_name.startswith('hf_hub'): + model_name = model_name.replace('hf_hub', 'hf-hub') + parsed = urlsplit(model_name) + assert parsed.scheme in ('', 'timm', 'hf-hub') + if parsed.scheme == 'hf-hub': + return (parsed.scheme, parsed.path) + else: + model_name = os.path.split(parsed.path)[-1] + return ('timm', model_name) + +def safe_model_name(model_name: str, remove_source: bool=True): + + def make_safe(name): + return ''.join((c if c.isalnum() else '_' for c in name)).rstrip('_') + if remove_source: + model_name = parse_model_name(model_name)[-1] + return make_safe(model_name) + +def create_model(model_name: str, pretrained: bool=False, pretrained_cfg: Optional[Union[str, Dict[str, Any], PretrainedCfg]]=None, pretrained_cfg_overlay: Optional[Dict[str, Any]]=None, checkpoint_path: str='', scriptable: Optional[bool]=None, exportable: Optional[bool]=None, no_jit: Optional[bool]=None, **kwargs): + kwargs = {k: v for (k, v) in kwargs.items() if v is not None} + (model_source, model_name) = parse_model_name(model_name) + if model_source == 'hf-hub': + assert not pretrained_cfg, 'pretrained_cfg should not be set when sourcing model from Hugging Face Hub.' + (pretrained_cfg, model_name, model_args) = load_model_config_from_hf(model_name) + if model_args: + for (k, v) in model_args.items(): + kwargs.setdefault(k, v) + else: + (model_name, pretrained_tag) = split_model_name_tag(model_name) + if pretrained_tag and (not pretrained_cfg): + pretrained_cfg = pretrained_tag + if not is_model(model_name): + raise RuntimeError('Unknown model (%s)' % model_name) + create_fn = model_entrypoint(model_name) + with set_layer_config(scriptable=scriptable, exportable=exportable, no_jit=no_jit): + model = create_fn(pretrained=pretrained, pretrained_cfg=pretrained_cfg, pretrained_cfg_overlay=pretrained_cfg_overlay, **kwargs) + if checkpoint_path: + load_checkpoint(model, checkpoint_path) + return model + +# File: pytorch-image-models-main/timm/models/_features.py +"""""" +from collections import OrderedDict, defaultdict +from copy import deepcopy +from functools import partial +from typing import Dict, List, Optional, Sequence, Tuple, Union +import torch +import torch.nn as nn +from torch.utils.checkpoint import checkpoint +from timm.layers import Format, _assert +__all__ = ['FeatureInfo', 'FeatureHooks', 'FeatureDictNet', 'FeatureListNet', 'FeatureHookNet', 'FeatureGetterNet', 'feature_take_indices'] + +def feature_take_indices(num_features: int, indices: Optional[Union[int, List[int]]]=None, as_set: bool=False) -> Tuple[List[int], int]: + if indices is None: + indices = num_features + if isinstance(indices, int): + _assert(0 < indices <= num_features, f'last-n ({indices}) is out of range (1 to {num_features})') + take_indices = [num_features - indices + i for i in range(indices)] + else: + take_indices: List[int] = [] + for i in indices: + idx = num_features + i if i < 0 else i + _assert(0 <= idx < num_features, f'feature index {idx} is out of range (0 to {num_features - 1})') + take_indices.append(idx) + if not torch.jit.is_scripting() and as_set: + return (set(take_indices), max(take_indices)) + return (take_indices, max(take_indices)) + +def _out_indices_as_tuple(x: Union[int, Tuple[int, ...]]) -> Tuple[int, ...]: + if isinstance(x, int): + return tuple(range(-x, 0)) + return tuple(x) +OutIndicesT = Union[int, Tuple[int, ...]] + +class FeatureInfo: + + def __init__(self, feature_info: List[Dict], out_indices: OutIndicesT): + out_indices = _out_indices_as_tuple(out_indices) + prev_reduction = 1 + for (i, fi) in enumerate(feature_info): + assert 'num_chs' in fi and fi['num_chs'] > 0 + assert 'reduction' in fi and fi['reduction'] >= prev_reduction + prev_reduction = fi['reduction'] + assert 'module' in fi + fi.setdefault('index', i) + self.out_indices = out_indices + self.info = feature_info + + def from_other(self, out_indices: OutIndicesT): + out_indices = _out_indices_as_tuple(out_indices) + return FeatureInfo(deepcopy(self.info), out_indices) + + def get(self, key: str, idx: Optional[Union[int, List[int]]]=None): + if idx is None: + return [self.info[i][key] for i in self.out_indices] + if isinstance(idx, (tuple, list)): + return [self.info[i][key] for i in idx] + else: + return self.info[idx][key] + + def get_dicts(self, keys: Optional[List[str]]=None, idx: Optional[Union[int, List[int]]]=None): + if idx is None: + if keys is None: + return [self.info[i] for i in self.out_indices] + else: + return [{k: self.info[i][k] for k in keys} for i in self.out_indices] + if isinstance(idx, (tuple, list)): + return [self.info[i] if keys is None else {k: self.info[i][k] for k in keys} for i in idx] + else: + return self.info[idx] if keys is None else {k: self.info[idx][k] for k in keys} + + def channels(self, idx: Optional[Union[int, List[int]]]=None): + return self.get('num_chs', idx) + + def reduction(self, idx: Optional[Union[int, List[int]]]=None): + return self.get('reduction', idx) + + def module_name(self, idx: Optional[Union[int, List[int]]]=None): + return self.get('module', idx) + + def __getitem__(self, item): + return self.info[item] + + def __len__(self): + return len(self.info) + +class FeatureHooks: + + def __init__(self, hooks: Sequence[Union[str, Dict]], named_modules: dict, out_map: Sequence[Union[int, str]]=None, default_hook_type: str='forward'): + self._feature_outputs = defaultdict(OrderedDict) + self._handles = [] + modules = {k: v for (k, v) in named_modules} + for (i, h) in enumerate(hooks): + hook_name = h if isinstance(h, str) else h['module'] + m = modules[hook_name] + hook_id = out_map[i] if out_map else hook_name + hook_fn = partial(self._collect_output_hook, hook_id) + hook_type = default_hook_type + if isinstance(h, dict): + hook_type = h.get('hook_type', default_hook_type) + if hook_type == 'forward_pre': + handle = m.register_forward_pre_hook(hook_fn) + elif hook_type == 'forward': + handle = m.register_forward_hook(hook_fn) + else: + assert False, 'Unsupported hook type' + self._handles.append(handle) + + def _collect_output_hook(self, hook_id, *args): + x = args[-1] + if isinstance(x, tuple): + x = x[0] + self._feature_outputs[x.device][hook_id] = x + + def get_output(self, device) -> Dict[str, torch.tensor]: + output = self._feature_outputs[device] + self._feature_outputs[device] = OrderedDict() + return output + +def _module_list(module, flatten_sequential=False): + ml = [] + for (name, module) in module.named_children(): + if flatten_sequential and isinstance(module, nn.Sequential): + for (child_name, child_module) in module.named_children(): + combined = [name, child_name] + ml.append(('_'.join(combined), '.'.join(combined), child_module)) + else: + ml.append((name, name, module)) + return ml + +def _get_feature_info(net, out_indices: OutIndicesT): + feature_info = getattr(net, 'feature_info') + if isinstance(feature_info, FeatureInfo): + return feature_info.from_other(out_indices) + elif isinstance(feature_info, (list, tuple)): + return FeatureInfo(net.feature_info, out_indices) + else: + assert False, 'Provided feature_info is not valid' + +def _get_return_layers(feature_info, out_map): + module_names = feature_info.module_name() + return_layers = {} + for (i, name) in enumerate(module_names): + return_layers[name] = out_map[i] if out_map is not None else feature_info.out_indices[i] + return return_layers + +class FeatureDictNet(nn.ModuleDict): + + def __init__(self, model: nn.Module, out_indices: OutIndicesT=(0, 1, 2, 3, 4), out_map: Sequence[Union[int, str]]=None, output_fmt: str='NCHW', feature_concat: bool=False, flatten_sequential: bool=False): + super(FeatureDictNet, self).__init__() + self.feature_info = _get_feature_info(model, out_indices) + self.output_fmt = Format(output_fmt) + self.concat = feature_concat + self.grad_checkpointing = False + self.return_layers = {} + return_layers = _get_return_layers(self.feature_info, out_map) + modules = _module_list(model, flatten_sequential=flatten_sequential) + remaining = set(return_layers.keys()) + layers = OrderedDict() + for (new_name, old_name, module) in modules: + layers[new_name] = module + if old_name in remaining: + self.return_layers[new_name] = str(return_layers[old_name]) + remaining.remove(old_name) + if not remaining: + break + assert not remaining and len(self.return_layers) == len(return_layers), f'Return layers ({remaining}) are not present in model' + self.update(layers) + + def set_grad_checkpointing(self, enable: bool=True): + self.grad_checkpointing = enable + + def _collect(self, x) -> Dict[str, torch.Tensor]: + out = OrderedDict() + for (i, (name, module)) in enumerate(self.items()): + if self.grad_checkpointing and (not torch.jit.is_scripting()): + first_or_last_module = i == 0 or i == max(len(self) - 1, 0) + x = module(x) if first_or_last_module else checkpoint(module, x) + else: + x = module(x) + if name in self.return_layers: + out_id = self.return_layers[name] + if isinstance(x, (tuple, list)): + out[out_id] = torch.cat(x, 1) if self.concat else x[0] + else: + out[out_id] = x + return out + + def forward(self, x) -> Dict[str, torch.Tensor]: + return self._collect(x) + +class FeatureListNet(FeatureDictNet): + + def __init__(self, model: nn.Module, out_indices: OutIndicesT=(0, 1, 2, 3, 4), output_fmt: str='NCHW', feature_concat: bool=False, flatten_sequential: bool=False): + super().__init__(model, out_indices=out_indices, output_fmt=output_fmt, feature_concat=feature_concat, flatten_sequential=flatten_sequential) + + def forward(self, x) -> List[torch.Tensor]: + return list(self._collect(x).values()) + +class FeatureHookNet(nn.ModuleDict): + + def __init__(self, model: nn.Module, out_indices: OutIndicesT=(0, 1, 2, 3, 4), out_map: Optional[Sequence[Union[int, str]]]=None, return_dict: bool=False, output_fmt: str='NCHW', no_rewrite: Optional[bool]=None, flatten_sequential: bool=False, default_hook_type: str='forward'): + super().__init__() + assert not torch.jit.is_scripting() + self.feature_info = _get_feature_info(model, out_indices) + self.return_dict = return_dict + self.output_fmt = Format(output_fmt) + self.grad_checkpointing = False + if no_rewrite is None: + no_rewrite = not flatten_sequential + layers = OrderedDict() + hooks = [] + if no_rewrite: + assert not flatten_sequential + if hasattr(model, 'reset_classifier'): + model.reset_classifier(0) + layers['body'] = model + hooks.extend(self.feature_info.get_dicts()) + else: + modules = _module_list(model, flatten_sequential=flatten_sequential) + remaining = {f['module']: f['hook_type'] if 'hook_type' in f else default_hook_type for f in self.feature_info.get_dicts()} + for (new_name, old_name, module) in modules: + layers[new_name] = module + for (fn, fm) in module.named_modules(prefix=old_name): + if fn in remaining: + hooks.append(dict(module=fn, hook_type=remaining[fn])) + del remaining[fn] + if not remaining: + break + assert not remaining, f'Return layers ({remaining}) are not present in model' + self.update(layers) + self.hooks = FeatureHooks(hooks, model.named_modules(), out_map=out_map) + + def set_grad_checkpointing(self, enable: bool=True): + self.grad_checkpointing = enable + + def forward(self, x): + for (i, (name, module)) in enumerate(self.items()): + if self.grad_checkpointing and (not torch.jit.is_scripting()): + first_or_last_module = i == 0 or i == max(len(self) - 1, 0) + x = module(x) if first_or_last_module else checkpoint(module, x) + else: + x = module(x) + out = self.hooks.get_output(x.device) + return out if self.return_dict else list(out.values()) + +class FeatureGetterNet(nn.ModuleDict): + + def __init__(self, model: nn.Module, out_indices: OutIndicesT=4, out_map: Optional[Sequence[Union[int, str]]]=None, return_dict: bool=False, output_fmt: str='NCHW', norm: bool=False, prune: bool=True): + super().__init__() + if prune and hasattr(model, 'prune_intermediate_layers'): + out_indices = model.prune_intermediate_layers(out_indices, prune_norm=not norm) + self.feature_info = _get_feature_info(model, out_indices) + self.model = model + self.out_indices = out_indices + self.out_map = out_map + self.return_dict = return_dict + self.output_fmt = Format(output_fmt) + self.norm = norm + + def forward(self, x): + features = self.model.forward_intermediates(x, indices=self.out_indices, norm=self.norm, output_fmt=self.output_fmt, intermediates_only=True) + return features + +# File: pytorch-image-models-main/timm/models/_features_fx.py +"""""" +from typing import Callable, Dict, List, Optional, Union, Tuple, Type +import torch +from torch import nn +from ._features import _get_feature_info, _get_return_layers +try: + from torchvision.models.feature_extraction import create_feature_extractor as _create_feature_extractor + from torchvision.models.feature_extraction import get_graph_node_names as _get_graph_node_names + has_fx_feature_extraction = True +except ImportError: + has_fx_feature_extraction = False +from timm.layers import Conv2dSame, ScaledStdConv2dSame, CondConv2d, StdConv2dSame, Format +from timm.layers import resample_abs_pos_embed, resample_abs_pos_embed_nhwc +from timm.layers.non_local_attn import BilinearAttnTransform +from timm.layers.pool2d_same import MaxPool2dSame, AvgPool2dSame +from timm.layers.norm_act import BatchNormAct2d, SyncBatchNormAct, FrozenBatchNormAct2d, GroupNormAct, GroupNorm1Act, LayerNormAct, LayerNormAct2d +__all__ = ['register_notrace_module', 'is_notrace_module', 'get_notrace_modules', 'register_notrace_function', 'is_notrace_function', 'get_notrace_functions', 'create_feature_extractor', 'get_graph_node_names', 'FeatureGraphNet', 'GraphExtractNet'] +_leaf_modules = {BilinearAttnTransform, Conv2dSame, MaxPool2dSame, ScaledStdConv2dSame, StdConv2dSame, AvgPool2dSame, CondConv2d, BatchNormAct2d, SyncBatchNormAct, FrozenBatchNormAct2d, GroupNormAct, GroupNorm1Act, LayerNormAct, LayerNormAct2d} +try: + from timm.layers import InplaceAbn + _leaf_modules.add(InplaceAbn) +except ImportError: + pass + +def register_notrace_module(module: Type[nn.Module]): + _leaf_modules.add(module) + return module + +def is_notrace_module(module: Type[nn.Module]): + return module in _leaf_modules + +def get_notrace_modules(): + return list(_leaf_modules) +_autowrap_functions = {resample_abs_pos_embed, resample_abs_pos_embed_nhwc} + +def register_notrace_function(func: Callable): + _autowrap_functions.add(func) + return func + +def is_notrace_function(func: Callable): + return func in _autowrap_functions + +def get_notrace_functions(): + return list(_autowrap_functions) + +def get_graph_node_names(model: nn.Module) -> Tuple[List[str], List[str]]: + return _get_graph_node_names(model, tracer_kwargs={'leaf_modules': list(_leaf_modules), 'autowrap_functions': list(_autowrap_functions)}) + +def create_feature_extractor(model: nn.Module, return_nodes: Union[Dict[str, str], List[str]]): + assert has_fx_feature_extraction, 'Please update to PyTorch 1.10+, torchvision 0.11+ for FX feature extraction' + return _create_feature_extractor(model, return_nodes, tracer_kwargs={'leaf_modules': list(_leaf_modules), 'autowrap_functions': list(_autowrap_functions)}) + +class FeatureGraphNet(nn.Module): + return_dict: torch.jit.Final[bool] + + def __init__(self, model: nn.Module, out_indices: Tuple[int, ...], out_map: Optional[Dict]=None, output_fmt: str='NCHW', return_dict: bool=False): + super().__init__() + assert has_fx_feature_extraction, 'Please update to PyTorch 1.10+, torchvision 0.11+ for FX feature extraction' + self.feature_info = _get_feature_info(model, out_indices) + if out_map is not None: + assert len(out_map) == len(out_indices) + self.output_fmt = Format(output_fmt) + return_nodes = _get_return_layers(self.feature_info, out_map) + self.graph_module = create_feature_extractor(model, return_nodes) + self.return_dict = return_dict + + def forward(self, x): + out = self.graph_module(x) + if self.return_dict: + return out + return list(out.values()) + +class GraphExtractNet(nn.Module): + return_dict: torch.jit.Final[bool] + + def __init__(self, model: nn.Module, return_nodes: Union[Dict[str, str], List[str]], squeeze_out: bool=True, return_dict: bool=False): + super().__init__() + self.squeeze_out = squeeze_out + self.graph_module = create_feature_extractor(model, return_nodes) + self.return_dict = return_dict + + def forward(self, x) -> Union[List[torch.Tensor], torch.Tensor]: + out = self.graph_module(x) + if self.return_dict: + return out + out = list(out.values()) + return out[0] if self.squeeze_out and len(out) == 1 else out + +# File: pytorch-image-models-main/timm/models/_helpers.py +"""""" +import logging +import os +from collections import OrderedDict +from typing import Any, Callable, Dict, Optional, Union +import torch +try: + import safetensors.torch + _has_safetensors = True +except ImportError: + _has_safetensors = False +_logger = logging.getLogger(__name__) +__all__ = ['clean_state_dict', 'load_state_dict', 'load_checkpoint', 'remap_state_dict', 'resume_checkpoint'] + +def _remove_prefix(text, prefix): + if text.startswith(prefix): + return text[len(prefix):] + return text + +def clean_state_dict(state_dict: Dict[str, Any]) -> Dict[str, Any]: + cleaned_state_dict = {} + to_remove = ('module.', '_orig_mod.') + for (k, v) in state_dict.items(): + for r in to_remove: + k = _remove_prefix(k, r) + cleaned_state_dict[k] = v + return cleaned_state_dict + +def load_state_dict(checkpoint_path: str, use_ema: bool=True, device: Union[str, torch.device]='cpu', weights_only: bool=False) -> Dict[str, Any]: + if checkpoint_path and os.path.isfile(checkpoint_path): + if str(checkpoint_path).endswith('.safetensors'): + assert _has_safetensors, '`pip install safetensors` to use .safetensors' + checkpoint = safetensors.torch.load_file(checkpoint_path, device=device) + else: + try: + checkpoint = torch.load(checkpoint_path, map_location=device, weights_only=weights_only) + except TypeError: + checkpoint = torch.load(checkpoint_path, map_location=device) + state_dict_key = '' + if isinstance(checkpoint, dict): + if use_ema and checkpoint.get('state_dict_ema', None) is not None: + state_dict_key = 'state_dict_ema' + elif use_ema and checkpoint.get('model_ema', None) is not None: + state_dict_key = 'model_ema' + elif 'state_dict' in checkpoint: + state_dict_key = 'state_dict' + elif 'model' in checkpoint: + state_dict_key = 'model' + state_dict = clean_state_dict(checkpoint[state_dict_key] if state_dict_key else checkpoint) + _logger.info("Loaded {} from checkpoint '{}'".format(state_dict_key, checkpoint_path)) + return state_dict + else: + _logger.error("No checkpoint found at '{}'".format(checkpoint_path)) + raise FileNotFoundError() + +def load_checkpoint(model: torch.nn.Module, checkpoint_path: str, use_ema: bool=True, device: Union[str, torch.device]='cpu', strict: bool=True, remap: bool=False, filter_fn: Optional[Callable]=None, weights_only: bool=False): + if os.path.splitext(checkpoint_path)[-1].lower() in ('.npz', '.npy'): + if hasattr(model, 'load_pretrained'): + model.load_pretrained(checkpoint_path) + else: + raise NotImplementedError('Model cannot load numpy checkpoint') + return + state_dict = load_state_dict(checkpoint_path, use_ema, device=device, weights_only=weights_only) + if remap: + state_dict = remap_state_dict(state_dict, model) + elif filter_fn: + state_dict = filter_fn(state_dict, model) + incompatible_keys = model.load_state_dict(state_dict, strict=strict) + return incompatible_keys + +def remap_state_dict(state_dict: Dict[str, Any], model: torch.nn.Module, allow_reshape: bool=True): + out_dict = {} + for ((ka, va), (kb, vb)) in zip(model.state_dict().items(), state_dict.items()): + assert va.numel() == vb.numel(), f'Tensor size mismatch {ka}: {va.shape} vs {kb}: {vb.shape}. Remap failed.' + if va.shape != vb.shape: + if allow_reshape: + vb = vb.reshape(va.shape) + else: + assert False, f'Tensor shape mismatch {ka}: {va.shape} vs {kb}: {vb.shape}. Remap failed.' + out_dict[ka] = vb + return out_dict + +def resume_checkpoint(model: torch.nn.Module, checkpoint_path: str, optimizer: torch.optim.Optimizer=None, loss_scaler: Any=None, log_info: bool=True): + resume_epoch = None + if os.path.isfile(checkpoint_path): + checkpoint = torch.load(checkpoint_path, map_location='cpu', weights_only=False) + if isinstance(checkpoint, dict) and 'state_dict' in checkpoint: + if log_info: + _logger.info('Restoring model state from checkpoint...') + state_dict = clean_state_dict(checkpoint['state_dict']) + model.load_state_dict(state_dict) + if optimizer is not None and 'optimizer' in checkpoint: + if log_info: + _logger.info('Restoring optimizer state from checkpoint...') + optimizer.load_state_dict(checkpoint['optimizer']) + if loss_scaler is not None and loss_scaler.state_dict_key in checkpoint: + if log_info: + _logger.info('Restoring AMP loss scaler state from checkpoint...') + loss_scaler.load_state_dict(checkpoint[loss_scaler.state_dict_key]) + if 'epoch' in checkpoint: + resume_epoch = checkpoint['epoch'] + if 'version' in checkpoint and checkpoint['version'] > 1: + resume_epoch += 1 + if log_info: + _logger.info("Loaded checkpoint '{}' (epoch {})".format(checkpoint_path, checkpoint['epoch'])) + else: + model.load_state_dict(checkpoint) + if log_info: + _logger.info("Loaded checkpoint '{}'".format(checkpoint_path)) + return resume_epoch + else: + _logger.error("No checkpoint found at '{}'".format(checkpoint_path)) + raise FileNotFoundError() + +# File: pytorch-image-models-main/timm/models/_hub.py +import hashlib +import json +import logging +import os +from functools import partial +from pathlib import Path +from tempfile import TemporaryDirectory +from typing import Iterable, Optional, Union +import torch +from torch.hub import HASH_REGEX, download_url_to_file, urlparse +try: + from torch.hub import get_dir +except ImportError: + from torch.hub import _get_torch_home as get_dir +try: + import safetensors.torch + _has_safetensors = True +except ImportError: + _has_safetensors = False +try: + from typing import Literal +except ImportError: + from typing_extensions import Literal +from timm import __version__ +from timm.models._pretrained import filter_pretrained_cfg +try: + from huggingface_hub import create_repo, get_hf_file_metadata, hf_hub_download, hf_hub_url, repo_type_and_id_from_hf_id, upload_folder + from huggingface_hub.utils import EntryNotFoundError + hf_hub_download = partial(hf_hub_download, library_name='timm', library_version=__version__) + _has_hf_hub = True +except ImportError: + hf_hub_download = None + _has_hf_hub = False +_logger = logging.getLogger(__name__) +__all__ = ['get_cache_dir', 'download_cached_file', 'has_hf_hub', 'hf_split', 'load_model_config_from_hf', 'load_state_dict_from_hf', 'save_for_hf', 'push_to_hf_hub'] +HF_WEIGHTS_NAME = 'pytorch_model.bin' +HF_SAFE_WEIGHTS_NAME = 'model.safetensors' +HF_OPEN_CLIP_WEIGHTS_NAME = 'open_clip_pytorch_model.bin' +HF_OPEN_CLIP_SAFE_WEIGHTS_NAME = 'open_clip_model.safetensors' + +def get_cache_dir(child_dir=''): + if os.getenv('TORCH_MODEL_ZOO'): + _logger.warning('TORCH_MODEL_ZOO is deprecated, please use env TORCH_HOME instead') + hub_dir = get_dir() + child_dir = () if not child_dir else (child_dir,) + model_dir = os.path.join(hub_dir, 'checkpoints', *child_dir) + os.makedirs(model_dir, exist_ok=True) + return model_dir + +def download_cached_file(url, check_hash=True, progress=False): + if isinstance(url, (list, tuple)): + (url, filename) = url + else: + parts = urlparse(url) + filename = os.path.basename(parts.path) + cached_file = os.path.join(get_cache_dir(), filename) + if not os.path.exists(cached_file): + _logger.info('Downloading: "{}" to {}\n'.format(url, cached_file)) + hash_prefix = None + if check_hash: + r = HASH_REGEX.search(filename) + hash_prefix = r.group(1) if r else None + download_url_to_file(url, cached_file, hash_prefix, progress=progress) + return cached_file + +def check_cached_file(url, check_hash=True): + if isinstance(url, (list, tuple)): + (url, filename) = url + else: + parts = urlparse(url) + filename = os.path.basename(parts.path) + cached_file = os.path.join(get_cache_dir(), filename) + if os.path.exists(cached_file): + if check_hash: + r = HASH_REGEX.search(filename) + hash_prefix = r.group(1) if r else None + if hash_prefix: + with open(cached_file, 'rb') as f: + hd = hashlib.sha256(f.read()).hexdigest() + if hd[:len(hash_prefix)] != hash_prefix: + return False + return True + return False + +def has_hf_hub(necessary=False): + if not _has_hf_hub and necessary: + raise RuntimeError('Hugging Face hub model specified but package not installed. Run `pip install huggingface_hub`.') + return _has_hf_hub + +def hf_split(hf_id: str): + rev_split = hf_id.split('@') + assert 0 < len(rev_split) <= 2, 'hf_hub id should only contain one @ character to identify revision.' + hf_model_id = rev_split[0] + hf_revision = rev_split[-1] if len(rev_split) > 1 else None + return (hf_model_id, hf_revision) + +def load_cfg_from_json(json_file: Union[str, os.PathLike]): + with open(json_file, 'r', encoding='utf-8') as reader: + text = reader.read() + return json.loads(text) + +def download_from_hf(model_id: str, filename: str): + (hf_model_id, hf_revision) = hf_split(model_id) + return hf_hub_download(hf_model_id, filename, revision=hf_revision) + +def load_model_config_from_hf(model_id: str): + assert has_hf_hub(True) + cached_file = download_from_hf(model_id, 'config.json') + hf_config = load_cfg_from_json(cached_file) + if 'pretrained_cfg' not in hf_config: + pretrained_cfg = hf_config + hf_config = {} + hf_config['architecture'] = pretrained_cfg.pop('architecture') + hf_config['num_features'] = pretrained_cfg.pop('num_features', None) + if 'labels' in pretrained_cfg: + pretrained_cfg['label_names'] = pretrained_cfg.pop('labels') + hf_config['pretrained_cfg'] = pretrained_cfg + pretrained_cfg = hf_config['pretrained_cfg'] + pretrained_cfg['hf_hub_id'] = model_id + pretrained_cfg['source'] = 'hf-hub' + if 'num_classes' in hf_config: + pretrained_cfg['num_classes'] = hf_config['num_classes'] + if 'label_names' in hf_config: + pretrained_cfg['label_names'] = hf_config.pop('label_names') + if 'label_descriptions' in hf_config: + pretrained_cfg['label_descriptions'] = hf_config.pop('label_descriptions') + model_args = hf_config.get('model_args', {}) + model_name = hf_config['architecture'] + return (pretrained_cfg, model_name, model_args) + +def load_state_dict_from_hf(model_id: str, filename: str=HF_WEIGHTS_NAME, weights_only: bool=False): + assert has_hf_hub(True) + (hf_model_id, hf_revision) = hf_split(model_id) + if _has_safetensors: + for safe_filename in _get_safe_alternatives(filename): + try: + cached_safe_file = hf_hub_download(repo_id=hf_model_id, filename=safe_filename, revision=hf_revision) + _logger.info(f"[{model_id}] Safe alternative available for '{filename}' (as '{safe_filename}'). Loading weights using safetensors.") + return safetensors.torch.load_file(cached_safe_file, device='cpu') + except EntryNotFoundError: + pass + cached_file = hf_hub_download(hf_model_id, filename=filename, revision=hf_revision) + _logger.debug(f"[{model_id}] Safe alternative not found for '{filename}'. Loading weights using default pytorch.") + try: + state_dict = torch.load(cached_file, map_location='cpu', weights_only=weights_only) + except TypeError: + state_dict = torch.load(cached_file, map_location='cpu') + return state_dict + +def load_custom_from_hf(model_id: str, filename: str, model: torch.nn.Module): + assert has_hf_hub(True) + (hf_model_id, hf_revision) = hf_split(model_id) + cached_file = hf_hub_download(hf_model_id, filename=filename, revision=hf_revision) + return model.load_pretrained(cached_file) + +def save_config_for_hf(model, config_path: str, model_config: Optional[dict]=None, model_args: Optional[dict]=None): + model_config = model_config or {} + hf_config = {} + pretrained_cfg = filter_pretrained_cfg(model.pretrained_cfg, remove_source=True, remove_null=True) + hf_config['architecture'] = pretrained_cfg.pop('architecture') + hf_config['num_classes'] = model_config.pop('num_classes', model.num_classes) + hf_config['num_features'] = model_config.pop('num_features', model.num_features) + global_pool_type = model_config.pop('global_pool', getattr(model, 'global_pool', None)) + if isinstance(global_pool_type, str) and global_pool_type: + hf_config['global_pool'] = global_pool_type + if 'labels' in model_config: + _logger.warning("'labels' as a config field for is deprecated. Please use 'label_names' and 'label_descriptions'. Renaming provided 'labels' field to 'label_names'.") + model_config.setdefault('label_names', model_config.pop('labels')) + label_names = model_config.pop('label_names', None) + if label_names: + assert isinstance(label_names, (dict, list, tuple)) + hf_config['label_names'] = label_names + label_descriptions = model_config.pop('label_descriptions', None) + if label_descriptions: + assert isinstance(label_descriptions, dict) + hf_config['label_descriptions'] = label_descriptions + if model_args: + hf_config['model_args'] = model_args + hf_config['pretrained_cfg'] = pretrained_cfg + hf_config.update(model_config) + with config_path.open('w') as f: + json.dump(hf_config, f, indent=2) + +def save_for_hf(model, save_directory: str, model_config: Optional[dict]=None, model_args: Optional[dict]=None, safe_serialization: Union[bool, Literal['both']]=False): + assert has_hf_hub(True) + save_directory = Path(save_directory) + save_directory.mkdir(exist_ok=True, parents=True) + tensors = model.state_dict() + if safe_serialization is True or safe_serialization == 'both': + assert _has_safetensors, '`pip install safetensors` to use .safetensors' + safetensors.torch.save_file(tensors, save_directory / HF_SAFE_WEIGHTS_NAME) + if safe_serialization is False or safe_serialization == 'both': + torch.save(tensors, save_directory / HF_WEIGHTS_NAME) + config_path = save_directory / 'config.json' + save_config_for_hf(model, config_path, model_config=model_config, model_args=model_args) + +def push_to_hf_hub(model: torch.nn.Module, repo_id: str, commit_message: str='Add model', token: Optional[str]=None, revision: Optional[str]=None, private: bool=False, create_pr: bool=False, model_config: Optional[dict]=None, model_card: Optional[dict]=None, model_args: Optional[dict]=None, safe_serialization: Union[bool, Literal['both']]='both'): + repo_url = create_repo(repo_id, token=token, private=private, exist_ok=True) + (_, repo_owner, repo_name) = repo_type_and_id_from_hf_id(repo_url) + repo_id = f'{repo_owner}/{repo_name}' + try: + get_hf_file_metadata(hf_hub_url(repo_id=repo_id, filename='README.md', revision=revision)) + has_readme = True + except EntryNotFoundError: + has_readme = False + with TemporaryDirectory() as tmpdir: + save_for_hf(model, tmpdir, model_config=model_config, model_args=model_args, safe_serialization=safe_serialization) + if not has_readme: + model_card = model_card or {} + model_name = repo_id.split('/')[-1] + readme_path = Path(tmpdir) / 'README.md' + readme_text = generate_readme(model_card, model_name) + readme_path.write_text(readme_text) + return upload_folder(repo_id=repo_id, folder_path=tmpdir, revision=revision, create_pr=create_pr, commit_message=commit_message) + +def generate_readme(model_card: dict, model_name: str): + readme_text = '---\n' + readme_text += 'tags:\n- image-classification\n- timm\n' + readme_text += 'library_name: timm\n' + readme_text += f"license: {model_card.get('license', 'apache-2.0')}\n" + if 'details' in model_card and 'Dataset' in model_card['details']: + readme_text += 'datasets:\n' + if isinstance(model_card['details']['Dataset'], (tuple, list)): + for d in model_card['details']['Dataset']: + readme_text += f'- {d.lower()}\n' + else: + readme_text += f"- {model_card['details']['Dataset'].lower()}\n" + if 'Pretrain Dataset' in model_card['details']: + if isinstance(model_card['details']['Pretrain Dataset'], (tuple, list)): + for d in model_card['details']['Pretrain Dataset']: + readme_text += f'- {d.lower()}\n' + else: + readme_text += f"- {model_card['details']['Pretrain Dataset'].lower()}\n" + readme_text += '---\n' + readme_text += f'# Model card for {model_name}\n' + if 'description' in model_card: + readme_text += f"\n{model_card['description']}\n" + if 'details' in model_card: + readme_text += f'\n## Model Details\n' + for (k, v) in model_card['details'].items(): + if isinstance(v, (list, tuple)): + readme_text += f'- **{k}:**\n' + for vi in v: + readme_text += f' - {vi}\n' + elif isinstance(v, dict): + readme_text += f'- **{k}:**\n' + for (ki, vi) in v.items(): + readme_text += f' - {ki}: {vi}\n' + else: + readme_text += f'- **{k}:** {v}\n' + if 'usage' in model_card: + readme_text += f'\n## Model Usage\n' + readme_text += model_card['usage'] + readme_text += '\n' + if 'comparison' in model_card: + readme_text += f'\n## Model Comparison\n' + readme_text += model_card['comparison'] + readme_text += '\n' + if 'citation' in model_card: + readme_text += f'\n## Citation\n' + if not isinstance(model_card['citation'], (list, tuple)): + citations = [model_card['citation']] + else: + citations = model_card['citation'] + for c in citations: + readme_text += f'```bibtex\n{c}\n```\n' + return readme_text + +def _get_safe_alternatives(filename: str) -> Iterable[str]: + if filename == HF_WEIGHTS_NAME: + yield HF_SAFE_WEIGHTS_NAME + if filename == HF_OPEN_CLIP_WEIGHTS_NAME: + yield HF_OPEN_CLIP_SAFE_WEIGHTS_NAME + if filename not in (HF_WEIGHTS_NAME, HF_OPEN_CLIP_WEIGHTS_NAME) and filename.endswith('.bin'): + yield (filename[:-4] + '.safetensors') + +# File: pytorch-image-models-main/timm/models/_manipulate.py +import collections.abc +import math +import re +from collections import defaultdict +from itertools import chain +from typing import Any, Callable, Dict, Iterator, Tuple, Type, Union +import torch +from torch import nn as nn +from torch.utils.checkpoint import checkpoint +__all__ = ['model_parameters', 'named_apply', 'named_modules', 'named_modules_with_params', 'adapt_input_conv', 'group_with_matcher', 'group_modules', 'group_parameters', 'flatten_modules', 'checkpoint_seq'] + +def model_parameters(model: nn.Module, exclude_head: bool=False): + if exclude_head: + return [p for p in model.parameters()][:-2] + else: + return model.parameters() + +def named_apply(fn: Callable, module: nn.Module, name='', depth_first: bool=True, include_root: bool=False) -> nn.Module: + if not depth_first and include_root: + fn(module=module, name=name) + for (child_name, child_module) in module.named_children(): + child_name = '.'.join((name, child_name)) if name else child_name + named_apply(fn=fn, module=child_module, name=child_name, depth_first=depth_first, include_root=True) + if depth_first and include_root: + fn(module=module, name=name) + return module + +def named_modules(module: nn.Module, name: str='', depth_first: bool=True, include_root: bool=False): + if not depth_first and include_root: + yield (name, module) + for (child_name, child_module) in module.named_children(): + child_name = '.'.join((name, child_name)) if name else child_name + yield from named_modules(module=child_module, name=child_name, depth_first=depth_first, include_root=True) + if depth_first and include_root: + yield (name, module) + +def named_modules_with_params(module: nn.Module, name: str='', depth_first: bool=True, include_root: bool=False): + if module._parameters and (not depth_first) and include_root: + yield (name, module) + for (child_name, child_module) in module.named_children(): + child_name = '.'.join((name, child_name)) if name else child_name + yield from named_modules_with_params(module=child_module, name=child_name, depth_first=depth_first, include_root=True) + if module._parameters and depth_first and include_root: + yield (name, module) +MATCH_PREV_GROUP = (99999,) + +def group_with_matcher(named_objects: Iterator[Tuple[str, Any]], group_matcher: Union[Dict, Callable], return_values: bool=False, reverse: bool=False): + if isinstance(group_matcher, dict): + compiled = [] + for (group_ordinal, (group_name, mspec)) in enumerate(group_matcher.items()): + if mspec is None: + continue + if isinstance(mspec, (tuple, list)): + for sspec in mspec: + compiled += [(re.compile(sspec[0]), (group_ordinal,), sspec[1])] + else: + compiled += [(re.compile(mspec), (group_ordinal,), None)] + group_matcher = compiled + + def _get_grouping(name): + if isinstance(group_matcher, (list, tuple)): + for (match_fn, prefix, suffix) in group_matcher: + r = match_fn.match(name) + if r: + parts = (prefix, r.groups(), suffix) + return tuple(map(float, chain.from_iterable(filter(None, parts)))) + return (float('inf'),) + else: + ord = group_matcher(name) + if not isinstance(ord, collections.abc.Iterable): + return (ord,) + return tuple(ord) + grouping = defaultdict(list) + for (k, v) in named_objects: + grouping[_get_grouping(k)].append(v if return_values else k) + layer_id_to_param = defaultdict(list) + lid = -1 + for k in sorted(filter(lambda x: x is not None, grouping.keys())): + if lid < 0 or k[-1] != MATCH_PREV_GROUP[0]: + lid += 1 + layer_id_to_param[lid].extend(grouping[k]) + if reverse: + assert not return_values, 'reverse mapping only sensible for name output' + param_to_layer_id = {} + for (lid, lm) in layer_id_to_param.items(): + for n in lm: + param_to_layer_id[n] = lid + return param_to_layer_id + return layer_id_to_param + +def group_parameters(module: nn.Module, group_matcher, return_values: bool=False, reverse: bool=False): + return group_with_matcher(module.named_parameters(), group_matcher, return_values=return_values, reverse=reverse) + +def group_modules(module: nn.Module, group_matcher, return_values: bool=False, reverse: bool=False): + return group_with_matcher(named_modules_with_params(module), group_matcher, return_values=return_values, reverse=reverse) + +def flatten_modules(named_modules: Iterator[Tuple[str, nn.Module]], depth: int=1, prefix: Union[str, Tuple[str, ...]]='', module_types: Union[str, Tuple[Type[nn.Module]]]='sequential'): + prefix_is_tuple = isinstance(prefix, tuple) + if isinstance(module_types, str): + if module_types == 'container': + module_types = (nn.Sequential, nn.ModuleList, nn.ModuleDict) + else: + module_types = (nn.Sequential,) + for (name, module) in named_modules: + if depth and isinstance(module, module_types): + yield from flatten_modules(module.named_children(), depth - 1, prefix=(name,) if prefix_is_tuple else name, module_types=module_types) + elif prefix_is_tuple: + name = prefix + (name,) + yield (name, module) + else: + if prefix: + name = '.'.join([prefix, name]) + yield (name, module) + +def checkpoint_seq(functions, x, every=1, flatten=False, skip_last=False, preserve_rng_state=True): + + def run_function(start, end, functions): + + def forward(_x): + for j in range(start, end + 1): + _x = functions[j](_x) + return _x + return forward + if isinstance(functions, torch.nn.Sequential): + functions = functions.children() + if flatten: + functions = chain.from_iterable(functions) + if not isinstance(functions, (tuple, list)): + functions = tuple(functions) + num_checkpointed = len(functions) + if skip_last: + num_checkpointed -= 1 + end = -1 + for start in range(0, num_checkpointed, every): + end = min(start + every - 1, num_checkpointed - 1) + x = checkpoint(run_function(start, end, functions), x, preserve_rng_state=preserve_rng_state) + if skip_last: + return run_function(end + 1, len(functions) - 1, functions)(x) + return x + +def adapt_input_conv(in_chans, conv_weight): + conv_type = conv_weight.dtype + conv_weight = conv_weight.float() + (O, I, J, K) = conv_weight.shape + if in_chans == 1: + if I > 3: + assert conv_weight.shape[1] % 3 == 0 + conv_weight = conv_weight.reshape(O, I // 3, 3, J, K) + conv_weight = conv_weight.sum(dim=2, keepdim=False) + else: + conv_weight = conv_weight.sum(dim=1, keepdim=True) + elif in_chans != 3: + if I != 3: + raise NotImplementedError('Weight format not supported by conversion.') + else: + repeat = int(math.ceil(in_chans / 3)) + conv_weight = conv_weight.repeat(1, repeat, 1, 1)[:, :in_chans, :, :] + conv_weight *= 3 / float(in_chans) + conv_weight = conv_weight.to(conv_type) + return conv_weight + +# File: pytorch-image-models-main/timm/models/_pretrained.py +import copy +from collections import deque, defaultdict +from dataclasses import dataclass, field, replace, asdict +from typing import Any, Deque, Dict, Tuple, Optional, Union +__all__ = ['PretrainedCfg', 'filter_pretrained_cfg', 'DefaultCfg'] + +@dataclass +class PretrainedCfg: + url: Optional[Union[str, Tuple[str, str]]] = None + file: Optional[str] = None + state_dict: Optional[Dict[str, Any]] = None + hf_hub_id: Optional[str] = None + hf_hub_filename: Optional[str] = None + source: Optional[str] = None + architecture: Optional[str] = None + tag: Optional[str] = None + custom_load: bool = False + input_size: Tuple[int, int, int] = (3, 224, 224) + test_input_size: Optional[Tuple[int, int, int]] = None + min_input_size: Optional[Tuple[int, int, int]] = None + fixed_input_size: bool = False + interpolation: str = 'bicubic' + crop_pct: float = 0.875 + test_crop_pct: Optional[float] = None + crop_mode: str = 'center' + mean: Tuple[float, ...] = (0.485, 0.456, 0.406) + std: Tuple[float, ...] = (0.229, 0.224, 0.225) + num_classes: int = 1000 + label_offset: Optional[int] = None + label_names: Optional[Tuple[str]] = None + label_descriptions: Optional[Dict[str, str]] = None + pool_size: Optional[Tuple[int, ...]] = None + test_pool_size: Optional[Tuple[int, ...]] = None + first_conv: Optional[str] = None + classifier: Optional[str] = None + license: Optional[str] = None + description: Optional[str] = None + origin_url: Optional[str] = None + paper_name: Optional[str] = None + paper_ids: Optional[Union[str, Tuple[str]]] = None + notes: Optional[Tuple[str]] = None + + @property + def has_weights(self): + return self.url or self.file or self.hf_hub_id + + def to_dict(self, remove_source=False, remove_null=True): + return filter_pretrained_cfg(asdict(self), remove_source=remove_source, remove_null=remove_null) + +def filter_pretrained_cfg(cfg, remove_source=False, remove_null=True): + filtered_cfg = {} + keep_null = {'pool_size', 'first_conv', 'classifier'} + for (k, v) in cfg.items(): + if remove_source and k in {'url', 'file', 'hf_hub_id', 'hf_hub_id', 'hf_hub_filename', 'source'}: + continue + if remove_null and v is None and (k not in keep_null): + continue + filtered_cfg[k] = v + return filtered_cfg + +@dataclass +class DefaultCfg: + tags: Deque[str] = field(default_factory=deque) + cfgs: Dict[str, PretrainedCfg] = field(default_factory=dict) + is_pretrained: bool = False + + @property + def default(self): + return self.cfgs[self.tags[0]] + + @property + def default_with_tag(self): + tag = self.tags[0] + return (tag, self.cfgs[tag]) + +# File: pytorch-image-models-main/timm/models/_prune.py +import os +import pkgutil +from copy import deepcopy +from torch import nn as nn +from timm.layers import Conv2dSame, BatchNormAct2d, Linear +__all__ = ['extract_layer', 'set_layer', 'adapt_model_from_string', 'adapt_model_from_file'] + +def extract_layer(model, layer): + layer = layer.split('.') + module = model + if hasattr(model, 'module') and layer[0] != 'module': + module = model.module + if not hasattr(model, 'module') and layer[0] == 'module': + layer = layer[1:] + for l in layer: + if hasattr(module, l): + if not l.isdigit(): + module = getattr(module, l) + else: + module = module[int(l)] + else: + return module + return module + +def set_layer(model, layer, val): + layer = layer.split('.') + module = model + if hasattr(model, 'module') and layer[0] != 'module': + module = model.module + lst_index = 0 + module2 = module + for l in layer: + if hasattr(module2, l): + if not l.isdigit(): + module2 = getattr(module2, l) + else: + module2 = module2[int(l)] + lst_index += 1 + lst_index -= 1 + for l in layer[:lst_index]: + if not l.isdigit(): + module = getattr(module, l) + else: + module = module[int(l)] + l = layer[lst_index] + setattr(module, l, val) + +def adapt_model_from_string(parent_module, model_string): + separator = '***' + state_dict = {} + lst_shape = model_string.split(separator) + for k in lst_shape: + k = k.split(':') + key = k[0] + shape = k[1][1:-1].split(',') + if shape[0] != '': + state_dict[key] = [int(i) for i in shape] + new_module = deepcopy(parent_module) + for (n, m) in parent_module.named_modules(): + old_module = extract_layer(parent_module, n) + if isinstance(old_module, nn.Conv2d) or isinstance(old_module, Conv2dSame): + if isinstance(old_module, Conv2dSame): + conv = Conv2dSame + else: + conv = nn.Conv2d + s = state_dict[n + '.weight'] + in_channels = s[1] + out_channels = s[0] + g = 1 + if old_module.groups > 1: + in_channels = out_channels + g = in_channels + new_conv = conv(in_channels=in_channels, out_channels=out_channels, kernel_size=old_module.kernel_size, bias=old_module.bias is not None, padding=old_module.padding, dilation=old_module.dilation, groups=g, stride=old_module.stride) + set_layer(new_module, n, new_conv) + elif isinstance(old_module, BatchNormAct2d): + new_bn = BatchNormAct2d(state_dict[n + '.weight'][0], eps=old_module.eps, momentum=old_module.momentum, affine=old_module.affine, track_running_stats=True) + new_bn.drop = old_module.drop + new_bn.act = old_module.act + set_layer(new_module, n, new_bn) + elif isinstance(old_module, nn.BatchNorm2d): + new_bn = nn.BatchNorm2d(num_features=state_dict[n + '.weight'][0], eps=old_module.eps, momentum=old_module.momentum, affine=old_module.affine, track_running_stats=True) + set_layer(new_module, n, new_bn) + elif isinstance(old_module, nn.Linear): + num_features = state_dict[n + '.weight'][1] + new_fc = Linear(in_features=num_features, out_features=old_module.out_features, bias=old_module.bias is not None) + set_layer(new_module, n, new_fc) + if hasattr(new_module, 'num_features'): + if getattr(new_module, 'head_hidden_size', 0) == new_module.num_features: + new_module.head_hidden_size = num_features + new_module.num_features = num_features + new_module.eval() + parent_module.eval() + return new_module + +def adapt_model_from_file(parent_module, model_variant): + adapt_data = pkgutil.get_data(__name__, os.path.join('_pruned', model_variant + '.txt')) + return adapt_model_from_string(parent_module, adapt_data.decode('utf-8').strip()) + +# File: pytorch-image-models-main/timm/models/_registry.py +"""""" +import fnmatch +import re +import sys +import warnings +from collections import defaultdict, deque +from copy import deepcopy +from dataclasses import replace +from typing import Any, Callable, Dict, Iterable, List, Optional, Set, Sequence, Union, Tuple +from ._pretrained import PretrainedCfg, DefaultCfg +__all__ = ['split_model_name_tag', 'get_arch_name', 'register_model', 'generate_default_cfgs', 'list_models', 'list_pretrained', 'is_model', 'model_entrypoint', 'list_modules', 'is_model_in_modules', 'get_pretrained_cfg_value', 'is_model_pretrained', 'get_pretrained_cfgs_for_arch'] +_module_to_models: Dict[str, Set[str]] = defaultdict(set) +_model_to_module: Dict[str, str] = {} +_model_entrypoints: Dict[str, Callable[..., Any]] = {} +_model_has_pretrained: Set[str] = set() +_model_default_cfgs: Dict[str, PretrainedCfg] = {} +_model_pretrained_cfgs: Dict[str, PretrainedCfg] = {} +_model_with_tags: Dict[str, List[str]] = defaultdict(list) +_module_to_deprecated_models: Dict[str, Dict[str, Optional[str]]] = defaultdict(dict) +_deprecated_models: Dict[str, Optional[str]] = {} + +def split_model_name_tag(model_name: str, no_tag: str='') -> Tuple[str, str]: + (model_name, *tag_list) = model_name.split('.', 1) + tag = tag_list[0] if tag_list else no_tag + return (model_name, tag) + +def get_arch_name(model_name: str) -> str: + return split_model_name_tag(model_name)[0] + +def generate_default_cfgs(cfgs: Dict[str, Union[Dict[str, Any], PretrainedCfg]]): + out = defaultdict(DefaultCfg) + default_set = set() + for (k, v) in cfgs.items(): + if isinstance(v, dict): + v = PretrainedCfg(**v) + has_weights = v.has_weights + (model, tag) = split_model_name_tag(k) + is_default_set = model in default_set + priority = has_weights and (not tag) or (tag.endswith('*') and (not is_default_set)) + tag = tag.strip('*') + default_cfg = out[model] + if priority: + default_cfg.tags.appendleft(tag) + default_set.add(model) + elif has_weights and (not default_cfg.is_pretrained): + default_cfg.tags.appendleft(tag) + else: + default_cfg.tags.append(tag) + if has_weights: + default_cfg.is_pretrained = True + default_cfg.cfgs[tag] = v + return out + +def register_model(fn: Callable[..., Any]) -> Callable[..., Any]: + mod = sys.modules[fn.__module__] + module_name_split = fn.__module__.split('.') + module_name = module_name_split[-1] if len(module_name_split) else '' + model_name = fn.__name__ + if hasattr(mod, '__all__'): + mod.__all__.append(model_name) + else: + mod.__all__ = [model_name] + if model_name in _model_entrypoints: + warnings.warn(f'Overwriting {model_name} in registry with {fn.__module__}.{model_name}. This is because the name being registered conflicts with an existing name. Please check if this is not expected.', stacklevel=2) + _model_entrypoints[model_name] = fn + _model_to_module[model_name] = module_name + _module_to_models[module_name].add(model_name) + if hasattr(mod, 'default_cfgs') and model_name in mod.default_cfgs: + default_cfg = mod.default_cfgs[model_name] + if not isinstance(default_cfg, DefaultCfg): + assert isinstance(default_cfg, dict) + pretrained_cfg = PretrainedCfg(**default_cfg) + default_cfg = DefaultCfg(tags=deque(['']), cfgs={'': pretrained_cfg}) + for (tag_idx, tag) in enumerate(default_cfg.tags): + is_default = tag_idx == 0 + pretrained_cfg = default_cfg.cfgs[tag] + model_name_tag = '.'.join([model_name, tag]) if tag else model_name + replace_items = dict(architecture=model_name, tag=tag if tag else None) + if pretrained_cfg.hf_hub_id and pretrained_cfg.hf_hub_id == 'timm/': + replace_items['hf_hub_id'] = pretrained_cfg.hf_hub_id + model_name_tag + pretrained_cfg = replace(pretrained_cfg, **replace_items) + if is_default: + _model_pretrained_cfgs[model_name] = pretrained_cfg + if pretrained_cfg.has_weights: + _model_has_pretrained.add(model_name) + if tag: + _model_pretrained_cfgs[model_name_tag] = pretrained_cfg + if pretrained_cfg.has_weights: + _model_has_pretrained.add(model_name_tag) + _model_with_tags[model_name].append(model_name_tag) + else: + _model_with_tags[model_name].append(model_name) + _model_default_cfgs[model_name] = default_cfg + return fn + +def _deprecated_model_shim(deprecated_name: str, current_fn: Callable=None, current_tag: str=''): + + def _fn(pretrained=False, **kwargs): + assert current_fn is not None, f'Model {deprecated_name} has been removed with no replacement.' + current_name = '.'.join([current_fn.__name__, current_tag]) if current_tag else current_fn.__name__ + warnings.warn(f'Mapping deprecated model name {deprecated_name} to current {current_name}.', stacklevel=2) + pretrained_cfg = kwargs.pop('pretrained_cfg', None) + return current_fn(pretrained=pretrained, pretrained_cfg=pretrained_cfg or current_tag, **kwargs) + return _fn + +def register_model_deprecations(module_name: str, deprecation_map: Dict[str, Optional[str]]): + mod = sys.modules[module_name] + module_name_split = module_name.split('.') + module_name = module_name_split[-1] if len(module_name_split) else '' + for (deprecated, current) in deprecation_map.items(): + if hasattr(mod, '__all__'): + mod.__all__.append(deprecated) + current_fn = None + current_tag = '' + if current: + (current_name, current_tag) = split_model_name_tag(current) + current_fn = getattr(mod, current_name) + deprecated_entrypoint_fn = _deprecated_model_shim(deprecated, current_fn, current_tag) + setattr(mod, deprecated, deprecated_entrypoint_fn) + _model_entrypoints[deprecated] = deprecated_entrypoint_fn + _model_to_module[deprecated] = module_name + _module_to_models[module_name].add(deprecated) + _deprecated_models[deprecated] = current + _module_to_deprecated_models[module_name][deprecated] = current + +def _natural_key(string_: str) -> List[Union[int, str]]: + return [int(s) if s.isdigit() else s for s in re.split('(\\d+)', string_.lower())] + +def _expand_filter(filter: str): + (filter_base, filter_tag) = split_model_name_tag(filter) + if not filter_tag: + return ['.'.join([filter_base, '*']), filter] + else: + return [filter] + +def list_models(filter: Union[str, List[str]]='', module: Union[str, List[str]]='', pretrained: bool=False, exclude_filters: Union[str, List[str]]='', name_matches_cfg: bool=False, include_tags: Optional[bool]=None) -> List[str]: + if filter: + include_filters = filter if isinstance(filter, (tuple, list)) else [filter] + else: + include_filters = [] + if include_tags is None: + include_tags = pretrained + if not module: + all_models: Set[str] = set(_model_entrypoints.keys()) + elif isinstance(module, str): + all_models: Set[str] = _module_to_models[module] + else: + assert isinstance(module, Sequence) + all_models: Set[str] = set() + for m in module: + all_models.update(_module_to_models[m]) + all_models = all_models - _deprecated_models.keys() + if include_tags: + models_with_tags: Set[str] = set() + for m in all_models: + models_with_tags.update(_model_with_tags[m]) + all_models = models_with_tags + include_filters = [ef for f in include_filters for ef in _expand_filter(f)] + exclude_filters = [ef for f in exclude_filters for ef in _expand_filter(f)] + if include_filters: + models: Set[str] = set() + for f in include_filters: + include_models = fnmatch.filter(all_models, f) + if len(include_models): + models = models.union(include_models) + else: + models = all_models + if exclude_filters: + if not isinstance(exclude_filters, (tuple, list)): + exclude_filters = [exclude_filters] + for xf in exclude_filters: + exclude_models = fnmatch.filter(models, xf) + if len(exclude_models): + models = models.difference(exclude_models) + if pretrained: + models = _model_has_pretrained.intersection(models) + if name_matches_cfg: + models = set(_model_pretrained_cfgs).intersection(models) + return sorted(models, key=_natural_key) + +def list_pretrained(filter: Union[str, List[str]]='', exclude_filters: str='') -> List[str]: + return list_models(filter=filter, pretrained=True, exclude_filters=exclude_filters, include_tags=True) + +def get_deprecated_models(module: str='') -> Dict[str, str]: + all_deprecated = _module_to_deprecated_models[module] if module else _deprecated_models + return deepcopy(all_deprecated) + +def is_model(model_name: str) -> bool: + arch_name = get_arch_name(model_name) + return arch_name in _model_entrypoints + +def model_entrypoint(model_name: str, module_filter: Optional[str]=None) -> Callable[..., Any]: + arch_name = get_arch_name(model_name) + if module_filter and arch_name not in _module_to_models.get(module_filter, {}): + raise RuntimeError(f'Model ({model_name} not found in module {module_filter}.') + return _model_entrypoints[arch_name] + +def list_modules() -> List[str]: + modules = _module_to_models.keys() + return sorted(modules) + +def is_model_in_modules(model_name: str, module_names: Union[Tuple[str, ...], List[str], Set[str]]) -> bool: + arch_name = get_arch_name(model_name) + assert isinstance(module_names, (tuple, list, set)) + return any((arch_name in _module_to_models[n] for n in module_names)) + +def is_model_pretrained(model_name: str) -> bool: + return model_name in _model_has_pretrained + +def get_pretrained_cfg(model_name: str, allow_unregistered: bool=True) -> Optional[PretrainedCfg]: + if model_name in _model_pretrained_cfgs: + return deepcopy(_model_pretrained_cfgs[model_name]) + (arch_name, tag) = split_model_name_tag(model_name) + if arch_name in _model_default_cfgs: + raise RuntimeError(f'Invalid pretrained tag ({tag}) for {arch_name}.') + if allow_unregistered: + return None + raise RuntimeError(f'Model architecture ({arch_name}) has no pretrained cfg registered.') + +def get_pretrained_cfg_value(model_name: str, cfg_key: str) -> Optional[Any]: + cfg = get_pretrained_cfg(model_name, allow_unregistered=False) + return getattr(cfg, cfg_key, None) + +def get_arch_pretrained_cfgs(model_name: str) -> Dict[str, PretrainedCfg]: + (arch_name, _) = split_model_name_tag(model_name) + model_names = _model_with_tags[arch_name] + cfgs = {m: _model_pretrained_cfgs[m] for m in model_names} + return cfgs + +# File: pytorch-image-models-main/timm/models/beit.py +"""""" +import math +from typing import Callable, List, Optional, Tuple, Union +import torch +import torch.nn as nn +import torch.nn.functional as F +from torch.utils.checkpoint import checkpoint +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from timm.layers import PatchEmbed, Mlp, SwiGLU, LayerNorm, DropPath, trunc_normal_, use_fused_attn +from timm.layers import resample_patch_embed, resample_abs_pos_embed, resize_rel_pos_bias_table, ndgrid +from ._builder import build_model_with_cfg +from ._features import feature_take_indices +from ._registry import generate_default_cfgs, register_model +__all__ = ['Beit'] + +def gen_relative_position_index(window_size: Tuple[int, int]) -> torch.Tensor: + num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3 + window_area = window_size[0] * window_size[1] + coords = torch.stack(ndgrid(torch.arange(window_size[0]), torch.arange(window_size[1]))) + coords_flatten = torch.flatten(coords, 1) + relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] + relative_coords = relative_coords.permute(1, 2, 0).contiguous() + relative_coords[:, :, 0] += window_size[0] - 1 + relative_coords[:, :, 1] += window_size[1] - 1 + relative_coords[:, :, 0] *= 2 * window_size[1] - 1 + relative_position_index = torch.zeros(size=(window_area + 1,) * 2, dtype=relative_coords.dtype) + relative_position_index[1:, 1:] = relative_coords.sum(-1) + relative_position_index[0, 0:] = num_relative_distance - 3 + relative_position_index[0:, 0] = num_relative_distance - 2 + relative_position_index[0, 0] = num_relative_distance - 1 + return relative_position_index + +class Attention(nn.Module): + fused_attn: torch.jit.Final[bool] + + def __init__(self, dim: int, num_heads: int=8, qkv_bias: bool=False, qkv_bias_separate: bool=False, attn_drop: float=0.0, proj_drop: float=0.0, window_size: Optional[Tuple[int, int]]=None, attn_head_dim: Optional[int]=None): + super().__init__() + self.num_heads = num_heads + head_dim = dim // num_heads + if attn_head_dim is not None: + head_dim = attn_head_dim + all_head_dim = head_dim * self.num_heads + self.scale = head_dim ** (-0.5) + self.fused_attn = use_fused_attn() + self.qkv_bias_separate = qkv_bias_separate + self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False) + if qkv_bias: + self.q_bias = nn.Parameter(torch.zeros(all_head_dim)) + self.register_buffer('k_bias', torch.zeros(all_head_dim), persistent=False) + self.v_bias = nn.Parameter(torch.zeros(all_head_dim)) + else: + self.q_bias = None + self.k_bias = None + self.v_bias = None + if window_size: + self.window_size = window_size + self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3 + self.relative_position_bias_table = nn.Parameter(torch.zeros(self.num_relative_distance, num_heads)) + self.register_buffer('relative_position_index', gen_relative_position_index(window_size), persistent=False) + else: + self.window_size = None + self.relative_position_bias_table = None + self.relative_position_index = None + self.attn_drop = nn.Dropout(attn_drop) + self.proj = nn.Linear(all_head_dim, dim) + self.proj_drop = nn.Dropout(proj_drop) + + def _get_rel_pos_bias(self): + relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(self.window_size[0] * self.window_size[1] + 1, self.window_size[0] * self.window_size[1] + 1, -1) + relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() + return relative_position_bias.unsqueeze(0) + + def forward(self, x, shared_rel_pos_bias: Optional[torch.Tensor]=None): + (B, N, C) = x.shape + if self.q_bias is None: + qkv = self.qkv(x) + else: + qkv_bias = torch.cat((self.q_bias, self.k_bias, self.v_bias)) + if self.qkv_bias_separate: + qkv = self.qkv(x) + qkv += qkv_bias + else: + qkv = F.linear(x, weight=self.qkv.weight, bias=qkv_bias) + qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) + (q, k, v) = qkv.unbind(0) + if self.fused_attn: + rel_pos_bias = None + if self.relative_position_bias_table is not None: + rel_pos_bias = self._get_rel_pos_bias() + if shared_rel_pos_bias is not None: + rel_pos_bias = rel_pos_bias + shared_rel_pos_bias + elif shared_rel_pos_bias is not None: + rel_pos_bias = shared_rel_pos_bias + x = F.scaled_dot_product_attention(q, k, v, attn_mask=rel_pos_bias, dropout_p=self.attn_drop.p if self.training else 0.0) + else: + q = q * self.scale + attn = q @ k.transpose(-2, -1) + if self.relative_position_bias_table is not None: + attn = attn + self._get_rel_pos_bias() + if shared_rel_pos_bias is not None: + attn = attn + shared_rel_pos_bias + attn = attn.softmax(dim=-1) + attn = self.attn_drop(attn) + x = attn @ v + x = x.transpose(1, 2).reshape(B, N, C) + x = self.proj(x) + x = self.proj_drop(x) + return x + +class Block(nn.Module): + + def __init__(self, dim: int, num_heads: int, qkv_bias: bool=False, mlp_ratio: float=4.0, scale_mlp: bool=False, swiglu_mlp: bool=False, proj_drop: float=0.0, attn_drop: float=0.0, drop_path: float=0.0, init_values: Optional[float]=None, act_layer: Callable=nn.GELU, norm_layer: Callable=LayerNorm, window_size: Optional[Tuple[int, int]]=None, attn_head_dim: Optional[int]=None): + super().__init__() + self.norm1 = norm_layer(dim) + self.attn = Attention(dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=proj_drop, window_size=window_size, attn_head_dim=attn_head_dim) + self.drop_path1 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + self.norm2 = norm_layer(dim) + if swiglu_mlp: + self.mlp = SwiGLU(in_features=dim, hidden_features=int(dim * mlp_ratio), norm_layer=norm_layer if scale_mlp else None, drop=proj_drop) + else: + self.mlp = Mlp(in_features=dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer, norm_layer=norm_layer if scale_mlp else None, drop=proj_drop) + self.drop_path2 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + if init_values: + self.gamma_1 = nn.Parameter(init_values * torch.ones(dim)) + self.gamma_2 = nn.Parameter(init_values * torch.ones(dim)) + else: + (self.gamma_1, self.gamma_2) = (None, None) + + def forward(self, x, shared_rel_pos_bias: Optional[torch.Tensor]=None): + if self.gamma_1 is None: + x = x + self.drop_path1(self.attn(self.norm1(x), shared_rel_pos_bias=shared_rel_pos_bias)) + x = x + self.drop_path2(self.mlp(self.norm2(x))) + else: + x = x + self.drop_path1(self.gamma_1 * self.attn(self.norm1(x), shared_rel_pos_bias=shared_rel_pos_bias)) + x = x + self.drop_path2(self.gamma_2 * self.mlp(self.norm2(x))) + return x + +class RelativePositionBias(nn.Module): + + def __init__(self, window_size, num_heads): + super().__init__() + self.window_size = window_size + self.window_area = window_size[0] * window_size[1] + num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3 + self.relative_position_bias_table = nn.Parameter(torch.zeros(num_relative_distance, num_heads)) + self.register_buffer('relative_position_index', gen_relative_position_index(window_size)) + + def forward(self): + relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(self.window_area + 1, self.window_area + 1, -1) + return relative_position_bias.permute(2, 0, 1).contiguous() + +class Beit(nn.Module): + + def __init__(self, img_size: Union[int, Tuple[int, int]]=224, patch_size: Union[int, Tuple[int, int]]=16, in_chans: int=3, num_classes: int=1000, global_pool: str='avg', embed_dim: int=768, depth: int=12, num_heads: int=12, qkv_bias: bool=True, mlp_ratio: float=4.0, swiglu_mlp: bool=False, scale_mlp: bool=False, drop_rate: float=0.0, pos_drop_rate: float=0.0, proj_drop_rate: float=0.0, attn_drop_rate: float=0.0, drop_path_rate: float=0.0, norm_layer: Callable=LayerNorm, init_values: Optional[float]=None, use_abs_pos_emb: bool=True, use_rel_pos_bias: bool=False, use_shared_rel_pos_bias: bool=False, head_init_scale: float=0.001): + super().__init__() + self.num_classes = num_classes + self.global_pool = global_pool + self.num_features = self.head_hidden_size = self.embed_dim = embed_dim + self.num_prefix_tokens = 1 + self.grad_checkpointing = False + self.patch_embed = PatchEmbed(img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim) + num_patches = self.patch_embed.num_patches + r = self.patch_embed.feat_ratio() if hasattr(self.patch_embed, 'feat_ratio') else patch_size + self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) + self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) if use_abs_pos_emb else None + self.pos_drop = nn.Dropout(p=pos_drop_rate) + if use_shared_rel_pos_bias: + self.rel_pos_bias = RelativePositionBias(window_size=self.patch_embed.grid_size, num_heads=num_heads) + else: + self.rel_pos_bias = None + dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] + self.blocks = nn.ModuleList([Block(dim=embed_dim, num_heads=num_heads, qkv_bias=qkv_bias, mlp_ratio=mlp_ratio, scale_mlp=scale_mlp, swiglu_mlp=swiglu_mlp, proj_drop=proj_drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, init_values=init_values, window_size=self.patch_embed.grid_size if use_rel_pos_bias else None) for i in range(depth)]) + self.feature_info = [dict(module=f'blocks.{i}', num_chs=embed_dim, reduction=r) for i in range(depth)] + use_fc_norm = self.global_pool == 'avg' + self.norm = nn.Identity() if use_fc_norm else norm_layer(embed_dim) + self.fc_norm = norm_layer(embed_dim) if use_fc_norm else nn.Identity() + self.head_drop = nn.Dropout(drop_rate) + self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity() + self.apply(self._init_weights) + if self.pos_embed is not None: + trunc_normal_(self.pos_embed, std=0.02) + trunc_normal_(self.cls_token, std=0.02) + self.fix_init_weight() + if isinstance(self.head, nn.Linear): + trunc_normal_(self.head.weight, std=0.02) + self.head.weight.data.mul_(head_init_scale) + self.head.bias.data.mul_(head_init_scale) + + def fix_init_weight(self): + + def rescale(param, layer_id): + param.div_(math.sqrt(2.0 * layer_id)) + for (layer_id, layer) in enumerate(self.blocks): + rescale(layer.attn.proj.weight.data, layer_id + 1) + rescale(layer.mlp.fc2.weight.data, layer_id + 1) + + def _init_weights(self, m): + if isinstance(m, nn.Linear): + trunc_normal_(m.weight, std=0.02) + if isinstance(m, nn.Linear) and m.bias is not None: + nn.init.constant_(m.bias, 0) + elif isinstance(m, nn.LayerNorm): + nn.init.constant_(m.bias, 0) + nn.init.constant_(m.weight, 1.0) + + @torch.jit.ignore + def no_weight_decay(self): + nwd = {'pos_embed', 'cls_token'} + for (n, _) in self.named_parameters(): + if 'relative_position_bias_table' in n: + nwd.add(n) + return nwd + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + self.grad_checkpointing = enable + + @torch.jit.ignore + def group_matcher(self, coarse=False): + matcher = dict(stem='^cls_token|pos_embed|patch_embed|rel_pos_bias', blocks=[('^blocks\\.(\\d+)', None), ('^norm', (99999,))]) + return matcher + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.head + + def reset_classifier(self, num_classes: int, global_pool: Optional[str]=None): + self.num_classes = num_classes + if global_pool is not None: + self.global_pool = global_pool + self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() + + def forward_intermediates(self, x: torch.Tensor, indices: Optional[Union[int, List[int]]]=None, return_prefix_tokens: bool=False, norm: bool=False, stop_early: bool=False, output_fmt: str='NCHW', intermediates_only: bool=False) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]: + assert output_fmt in ('NCHW', 'NLC'), 'Output format must be one of NCHW or NLC.' + reshape = output_fmt == 'NCHW' + intermediates = [] + (take_indices, max_index) = feature_take_indices(len(self.blocks), indices) + (B, _, height, width) = x.shape + x = self.patch_embed(x) + x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1) + if self.pos_embed is not None: + x = x + self.pos_embed + x = self.pos_drop(x) + rel_pos_bias = self.rel_pos_bias() if self.rel_pos_bias is not None else None + if torch.jit.is_scripting() or not stop_early: + blocks = self.blocks + else: + blocks = self.blocks[:max_index + 1] + for (i, blk) in enumerate(blocks): + x = blk(x, shared_rel_pos_bias=rel_pos_bias) + if i in take_indices: + intermediates.append(self.norm(x) if norm else x) + if self.num_prefix_tokens: + prefix_tokens = [y[:, 0:self.num_prefix_tokens] for y in intermediates] + intermediates = [y[:, self.num_prefix_tokens:] for y in intermediates] + if reshape: + (H, W) = self.patch_embed.dynamic_feat_size((height, width)) + intermediates = [y.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous() for y in intermediates] + if not torch.jit.is_scripting() and return_prefix_tokens: + intermediates = list(zip(intermediates, prefix_tokens)) + if intermediates_only: + return intermediates + x = self.norm(x) + return (x, intermediates) + + def prune_intermediate_layers(self, indices: Union[int, List[int]]=1, prune_norm: bool=False, prune_head: bool=True): + (take_indices, max_index) = feature_take_indices(len(self.blocks), indices) + self.blocks = self.blocks[:max_index + 1] + if prune_norm: + self.norm = nn.Identity() + if prune_head: + self.fc_norm = nn.Identity() + self.reset_classifier(0, '') + return take_indices + + def forward_features(self, x): + x = self.patch_embed(x) + x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1) + if self.pos_embed is not None: + x = x + self.pos_embed + x = self.pos_drop(x) + rel_pos_bias = self.rel_pos_bias() if self.rel_pos_bias is not None else None + for blk in self.blocks: + if self.grad_checkpointing and (not torch.jit.is_scripting()): + x = checkpoint(blk, x, shared_rel_pos_bias=rel_pos_bias) + else: + x = blk(x, shared_rel_pos_bias=rel_pos_bias) + x = self.norm(x) + return x + + def forward_head(self, x, pre_logits: bool=False): + if self.global_pool: + x = x[:, self.num_prefix_tokens:].mean(dim=1) if self.global_pool == 'avg' else x[:, 0] + x = self.fc_norm(x) + x = self.head_drop(x) + return x if pre_logits else self.head(x) + + def forward(self, x): + x = self.forward_features(x) + x = self.forward_head(x) + return x + +def _cfg(url='', **kwargs): + return {'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, 'crop_pct': 0.9, 'interpolation': 'bicubic', 'fixed_input_size': True, 'mean': (0.5, 0.5, 0.5), 'std': (0.5, 0.5, 0.5), 'first_conv': 'patch_embed.proj', 'classifier': 'head', **kwargs} +default_cfgs = generate_default_cfgs({'beit_base_patch16_224.in22k_ft_in22k_in1k': _cfg(hf_hub_id='timm/'), 'beit_base_patch16_384.in22k_ft_in22k_in1k': _cfg(hf_hub_id='timm/', input_size=(3, 384, 384), crop_pct=1.0), 'beit_base_patch16_224.in22k_ft_in22k': _cfg(hf_hub_id='timm/', num_classes=21841), 'beit_large_patch16_224.in22k_ft_in22k_in1k': _cfg(hf_hub_id='timm/'), 'beit_large_patch16_384.in22k_ft_in22k_in1k': _cfg(hf_hub_id='timm/', input_size=(3, 384, 384), crop_pct=1.0), 'beit_large_patch16_512.in22k_ft_in22k_in1k': _cfg(hf_hub_id='timm/', input_size=(3, 512, 512), crop_pct=1.0), 'beit_large_patch16_224.in22k_ft_in22k': _cfg(hf_hub_id='timm/', num_classes=21841), 'beitv2_base_patch16_224.in1k_ft_in22k_in1k': _cfg(hf_hub_id='timm/', mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD), 'beitv2_base_patch16_224.in1k_ft_in1k': _cfg(hf_hub_id='timm/', mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD), 'beitv2_base_patch16_224.in1k_ft_in22k': _cfg(hf_hub_id='timm/', num_classes=21841, mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD), 'beitv2_large_patch16_224.in1k_ft_in22k_in1k': _cfg(hf_hub_id='timm/', crop_pct=0.95, mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD), 'beitv2_large_patch16_224.in1k_ft_in1k': _cfg(hf_hub_id='timm/', crop_pct=0.95, mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD), 'beitv2_large_patch16_224.in1k_ft_in22k': _cfg(hf_hub_id='timm/', num_classes=21841, mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD)}) + +def checkpoint_filter_fn(state_dict, model, interpolation='bicubic', antialias=True): + state_dict = state_dict.get('model', state_dict) + state_dict = state_dict.get('module', state_dict) + out_dict = {} + for (k, v) in state_dict.items(): + if 'relative_position_index' in k: + continue + if 'patch_embed.proj.weight' in k: + (O, I, H, W) = model.patch_embed.proj.weight.shape + if v.shape[-1] != W or v.shape[-2] != H: + v = resample_patch_embed(v, (H, W), interpolation=interpolation, antialias=antialias, verbose=True) + elif k == 'pos_embed' and v.shape[1] != model.pos_embed.shape[1]: + num_prefix_tokens = 1 + v = resample_abs_pos_embed(v, new_size=model.patch_embed.grid_size, num_prefix_tokens=num_prefix_tokens, interpolation=interpolation, antialias=antialias, verbose=True) + elif k.endswith('relative_position_bias_table'): + m = model.get_submodule(k[:-29]) + if v.shape != m.relative_position_bias_table.shape or m.window_size[0] != m.window_size[1]: + v = resize_rel_pos_bias_table(v, new_window_size=m.window_size, new_bias_shape=m.relative_position_bias_table.shape) + out_dict[k] = v + return out_dict + +def _create_beit(variant, pretrained=False, **kwargs): + out_indices = kwargs.pop('out_indices', 3) + model = build_model_with_cfg(Beit, variant, pretrained, pretrained_filter_fn=checkpoint_filter_fn, feature_cfg=dict(out_indices=out_indices, feature_cls='getter'), **kwargs) + return model + +@register_model +def beit_base_patch16_224(pretrained=False, **kwargs) -> Beit: + model_args = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=0.1) + model = _create_beit('beit_base_patch16_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def beit_base_patch16_384(pretrained=False, **kwargs) -> Beit: + model_args = dict(img_size=384, patch_size=16, embed_dim=768, depth=12, num_heads=12, use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=0.1) + model = _create_beit('beit_base_patch16_384', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def beit_large_patch16_224(pretrained=False, **kwargs) -> Beit: + model_args = dict(patch_size=16, embed_dim=1024, depth=24, num_heads=16, use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-05) + model = _create_beit('beit_large_patch16_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def beit_large_patch16_384(pretrained=False, **kwargs) -> Beit: + model_args = dict(img_size=384, patch_size=16, embed_dim=1024, depth=24, num_heads=16, use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-05) + model = _create_beit('beit_large_patch16_384', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def beit_large_patch16_512(pretrained=False, **kwargs) -> Beit: + model_args = dict(img_size=512, patch_size=16, embed_dim=1024, depth=24, num_heads=16, use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-05) + model = _create_beit('beit_large_patch16_512', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def beitv2_base_patch16_224(pretrained=False, **kwargs) -> Beit: + model_args = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-05) + model = _create_beit('beitv2_base_patch16_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def beitv2_large_patch16_224(pretrained=False, **kwargs) -> Beit: + model_args = dict(patch_size=16, embed_dim=1024, depth=24, num_heads=16, use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-05) + model = _create_beit('beitv2_large_patch16_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +# File: pytorch-image-models-main/timm/models/byoanet.py +"""""" +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from ._builder import build_model_with_cfg +from ._registry import register_model, generate_default_cfgs +from .byobnet import ByoBlockCfg, ByoModelCfg, ByobNet, interleave_blocks +__all__ = [] +model_cfgs = dict(botnet26t=ByoModelCfg(blocks=(ByoBlockCfg(type='bottle', d=2, c=256, s=1, gs=0, br=0.25), ByoBlockCfg(type='bottle', d=2, c=512, s=2, gs=0, br=0.25), interleave_blocks(types=('bottle', 'self_attn'), d=2, c=1024, s=2, gs=0, br=0.25), ByoBlockCfg(type='self_attn', d=2, c=2048, s=2, gs=0, br=0.25)), stem_chs=64, stem_type='tiered', stem_pool='maxpool', fixed_input_size=True, self_attn_layer='bottleneck', self_attn_kwargs=dict()), sebotnet33ts=ByoModelCfg(blocks=(ByoBlockCfg(type='bottle', d=2, c=256, s=1, gs=0, br=0.25), interleave_blocks(types=('bottle', 'self_attn'), every=[2], d=3, c=512, s=2, gs=0, br=0.25), interleave_blocks(types=('bottle', 'self_attn'), every=[2], d=3, c=1024, s=2, gs=0, br=0.25), ByoBlockCfg('self_attn', d=2, c=1536, s=2, gs=0, br=0.333)), stem_chs=64, stem_type='tiered', stem_pool='', act_layer='silu', num_features=1280, attn_layer='se', self_attn_layer='bottleneck', self_attn_kwargs=dict()), botnet50ts=ByoModelCfg(blocks=(ByoBlockCfg(type='bottle', d=3, c=256, s=1, gs=0, br=0.25), interleave_blocks(types=('bottle', 'self_attn'), every=4, d=4, c=512, s=2, gs=0, br=0.25), interleave_blocks(types=('bottle', 'self_attn'), d=6, c=1024, s=2, gs=0, br=0.25), interleave_blocks(types=('bottle', 'self_attn'), d=3, c=2048, s=2, gs=0, br=0.25)), stem_chs=64, stem_type='tiered', stem_pool='maxpool', act_layer='silu', fixed_input_size=True, self_attn_layer='bottleneck', self_attn_kwargs=dict()), eca_botnext26ts=ByoModelCfg(blocks=(ByoBlockCfg(type='bottle', d=2, c=256, s=1, gs=16, br=0.25), ByoBlockCfg(type='bottle', d=2, c=512, s=2, gs=16, br=0.25), interleave_blocks(types=('bottle', 'self_attn'), d=2, c=1024, s=2, gs=16, br=0.25), ByoBlockCfg(type='self_attn', d=2, c=2048, s=2, gs=16, br=0.25)), stem_chs=64, stem_type='tiered', stem_pool='maxpool', fixed_input_size=True, act_layer='silu', attn_layer='eca', self_attn_layer='bottleneck', self_attn_kwargs=dict(dim_head=16)), halonet_h1=ByoModelCfg(blocks=(ByoBlockCfg(type='self_attn', d=3, c=64, s=1, gs=0, br=1.0), ByoBlockCfg(type='self_attn', d=3, c=128, s=2, gs=0, br=1.0), ByoBlockCfg(type='self_attn', d=10, c=256, s=2, gs=0, br=1.0), ByoBlockCfg(type='self_attn', d=3, c=512, s=2, gs=0, br=1.0)), stem_chs=64, stem_type='7x7', stem_pool='maxpool', self_attn_layer='halo', self_attn_kwargs=dict(block_size=8, halo_size=3)), halonet26t=ByoModelCfg(blocks=(ByoBlockCfg(type='bottle', d=2, c=256, s=1, gs=0, br=0.25), ByoBlockCfg(type='bottle', d=2, c=512, s=2, gs=0, br=0.25), interleave_blocks(types=('bottle', 'self_attn'), d=2, c=1024, s=2, gs=0, br=0.25), ByoBlockCfg(type='self_attn', d=2, c=2048, s=2, gs=0, br=0.25)), stem_chs=64, stem_type='tiered', stem_pool='maxpool', self_attn_layer='halo', self_attn_kwargs=dict(block_size=8, halo_size=2)), sehalonet33ts=ByoModelCfg(blocks=(ByoBlockCfg(type='bottle', d=2, c=256, s=1, gs=0, br=0.25), interleave_blocks(types=('bottle', 'self_attn'), every=[2], d=3, c=512, s=2, gs=0, br=0.25), interleave_blocks(types=('bottle', 'self_attn'), every=[2], d=3, c=1024, s=2, gs=0, br=0.25), ByoBlockCfg('self_attn', d=2, c=1536, s=2, gs=0, br=0.333)), stem_chs=64, stem_type='tiered', stem_pool='', act_layer='silu', num_features=1280, attn_layer='se', self_attn_layer='halo', self_attn_kwargs=dict(block_size=8, halo_size=3)), halonet50ts=ByoModelCfg(blocks=(ByoBlockCfg(type='bottle', d=3, c=256, s=1, gs=0, br=0.25), interleave_blocks(types=('bottle', 'self_attn'), every=4, d=4, c=512, s=2, gs=0, br=0.25, self_attn_layer='halo', self_attn_kwargs=dict(block_size=8, halo_size=3, num_heads=4)), interleave_blocks(types=('bottle', 'self_attn'), d=6, c=1024, s=2, gs=0, br=0.25), interleave_blocks(types=('bottle', 'self_attn'), d=3, c=2048, s=2, gs=0, br=0.25)), stem_chs=64, stem_type='tiered', stem_pool='maxpool', act_layer='silu', self_attn_layer='halo', self_attn_kwargs=dict(block_size=8, halo_size=3)), eca_halonext26ts=ByoModelCfg(blocks=(ByoBlockCfg(type='bottle', d=2, c=256, s=1, gs=16, br=0.25), ByoBlockCfg(type='bottle', d=2, c=512, s=2, gs=16, br=0.25), interleave_blocks(types=('bottle', 'self_attn'), d=2, c=1024, s=2, gs=16, br=0.25), ByoBlockCfg(type='self_attn', d=2, c=2048, s=2, gs=16, br=0.25)), stem_chs=64, stem_type='tiered', stem_pool='maxpool', act_layer='silu', attn_layer='eca', self_attn_layer='halo', self_attn_kwargs=dict(block_size=8, halo_size=2, dim_head=16)), lambda_resnet26t=ByoModelCfg(blocks=(ByoBlockCfg(type='bottle', d=2, c=256, s=1, gs=0, br=0.25), ByoBlockCfg(type='bottle', d=2, c=512, s=2, gs=0, br=0.25), interleave_blocks(types=('bottle', 'self_attn'), d=2, c=1024, s=2, gs=0, br=0.25), ByoBlockCfg(type='self_attn', d=2, c=2048, s=2, gs=0, br=0.25)), stem_chs=64, stem_type='tiered', stem_pool='maxpool', self_attn_layer='lambda', self_attn_kwargs=dict(r=9)), lambda_resnet50ts=ByoModelCfg(blocks=(ByoBlockCfg(type='bottle', d=3, c=256, s=1, gs=0, br=0.25), interleave_blocks(types=('bottle', 'self_attn'), every=4, d=4, c=512, s=2, gs=0, br=0.25), interleave_blocks(types=('bottle', 'self_attn'), d=6, c=1024, s=2, gs=0, br=0.25), interleave_blocks(types=('bottle', 'self_attn'), d=3, c=2048, s=2, gs=0, br=0.25)), stem_chs=64, stem_type='tiered', stem_pool='maxpool', act_layer='silu', self_attn_layer='lambda', self_attn_kwargs=dict(r=9)), lambda_resnet26rpt_256=ByoModelCfg(blocks=(ByoBlockCfg(type='bottle', d=2, c=256, s=1, gs=0, br=0.25), ByoBlockCfg(type='bottle', d=2, c=512, s=2, gs=0, br=0.25), interleave_blocks(types=('bottle', 'self_attn'), d=2, c=1024, s=2, gs=0, br=0.25), ByoBlockCfg(type='self_attn', d=2, c=2048, s=2, gs=0, br=0.25)), stem_chs=64, stem_type='tiered', stem_pool='maxpool', self_attn_layer='lambda', self_attn_kwargs=dict(r=None)), haloregnetz_b=ByoModelCfg(blocks=(ByoBlockCfg(type='bottle', d=2, c=48, s=2, gs=16, br=3), ByoBlockCfg(type='bottle', d=6, c=96, s=2, gs=16, br=3), interleave_blocks(types=('bottle', 'self_attn'), every=3, d=12, c=192, s=2, gs=16, br=3), ByoBlockCfg('self_attn', d=2, c=288, s=2, gs=16, br=3)), stem_chs=32, stem_pool='', downsample='', num_features=1536, act_layer='silu', attn_layer='se', attn_kwargs=dict(rd_ratio=0.25), block_kwargs=dict(bottle_in=True, linear_out=True), self_attn_layer='halo', self_attn_kwargs=dict(block_size=7, halo_size=2, qk_ratio=0.33)), lamhalobotnet50ts=ByoModelCfg(blocks=(ByoBlockCfg(type='bottle', d=3, c=256, s=1, gs=0, br=0.25), interleave_blocks(types=('bottle', 'self_attn'), d=4, c=512, s=2, gs=0, br=0.25, self_attn_layer='lambda', self_attn_kwargs=dict(r=13)), interleave_blocks(types=('bottle', 'self_attn'), d=6, c=1024, s=2, gs=0, br=0.25, self_attn_layer='halo', self_attn_kwargs=dict(halo_size=3)), interleave_blocks(types=('bottle', 'self_attn'), d=3, c=2048, s=2, gs=0, br=0.25, self_attn_layer='bottleneck', self_attn_kwargs=dict())), stem_chs=64, stem_type='tiered', stem_pool='', act_layer='silu'), halo2botnet50ts=ByoModelCfg(blocks=(ByoBlockCfg(type='bottle', d=3, c=256, s=1, gs=0, br=0.25), interleave_blocks(types=('bottle', 'self_attn'), d=4, c=512, s=2, gs=0, br=0.25, self_attn_layer='halo', self_attn_kwargs=dict(halo_size=3)), interleave_blocks(types=('bottle', 'self_attn'), d=6, c=1024, s=2, gs=0, br=0.25, self_attn_layer='halo', self_attn_kwargs=dict(halo_size=3)), interleave_blocks(types=('bottle', 'self_attn'), d=3, c=2048, s=2, gs=0, br=0.25, self_attn_layer='bottleneck', self_attn_kwargs=dict())), stem_chs=64, stem_type='tiered', stem_pool='', act_layer='silu')) + +def _create_byoanet(variant, cfg_variant=None, pretrained=False, **kwargs): + return build_model_with_cfg(ByobNet, variant, pretrained, model_cfg=model_cfgs[variant] if not cfg_variant else model_cfgs[cfg_variant], feature_cfg=dict(flatten_sequential=True), **kwargs) + +def _cfg(url='', **kwargs): + return {'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), 'crop_pct': 0.95, 'interpolation': 'bicubic', 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'stem.conv1.conv', 'classifier': 'head.fc', 'fixed_input_size': False, 'min_input_size': (3, 224, 224), **kwargs} +default_cfgs = generate_default_cfgs({'botnet26t_256.c1_in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/botnet26t_c1_256-167a0e9f.pth', hf_hub_id='timm/', fixed_input_size=True, input_size=(3, 256, 256), pool_size=(8, 8)), 'sebotnet33ts_256.a1h_in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/sebotnet33ts_a1h2_256-957e3c3e.pth', hf_hub_id='timm/', fixed_input_size=True, input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=0.94), 'botnet50ts_256.untrained': _cfg(fixed_input_size=True, input_size=(3, 256, 256), pool_size=(8, 8)), 'eca_botnext26ts_256.c1_in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/eca_botnext26ts_c_256-95a898f6.pth', hf_hub_id='timm/', fixed_input_size=True, input_size=(3, 256, 256), pool_size=(8, 8)), 'halonet_h1.untrained': _cfg(input_size=(3, 256, 256), pool_size=(8, 8), min_input_size=(3, 256, 256)), 'halonet26t.a1h_in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/halonet26t_a1h_256-3083328c.pth', hf_hub_id='timm/', input_size=(3, 256, 256), pool_size=(8, 8), min_input_size=(3, 256, 256)), 'sehalonet33ts.ra2_in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/sehalonet33ts_256-87e053f9.pth', hf_hub_id='timm/', input_size=(3, 256, 256), pool_size=(8, 8), min_input_size=(3, 256, 256), crop_pct=0.94), 'halonet50ts.a1h_in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/halonet50ts_a1h2_256-f3a3daee.pth', hf_hub_id='timm/', input_size=(3, 256, 256), pool_size=(8, 8), min_input_size=(3, 256, 256), crop_pct=0.94), 'eca_halonext26ts.c1_in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/eca_halonext26ts_c_256-06906299.pth', hf_hub_id='timm/', input_size=(3, 256, 256), pool_size=(8, 8), min_input_size=(3, 256, 256), crop_pct=0.94), 'lambda_resnet26t.c1_in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/lambda_resnet26t_c_256-e5a5c857.pth', hf_hub_id='timm/', min_input_size=(3, 128, 128), input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=0.94), 'lambda_resnet50ts.a1h_in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/lambda_resnet50ts_a1h_256-b87370f7.pth', hf_hub_id='timm/', min_input_size=(3, 128, 128), input_size=(3, 256, 256), pool_size=(8, 8)), 'lambda_resnet26rpt_256.c1_in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/lambda_resnet26rpt_c_256-ab00292d.pth', hf_hub_id='timm/', fixed_input_size=True, input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=0.94), 'haloregnetz_b.ra3_in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/haloregnetz_c_raa_256-c8ad7616.pth', hf_hub_id='timm/', mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), first_conv='stem.conv', input_size=(3, 224, 224), pool_size=(7, 7), min_input_size=(3, 224, 224), crop_pct=0.94), 'lamhalobotnet50ts_256.a1h_in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/lamhalobotnet50ts_a1h2_256-fe3d9445.pth', hf_hub_id='timm/', fixed_input_size=True, input_size=(3, 256, 256), pool_size=(8, 8)), 'halo2botnet50ts_256.a1h_in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/halo2botnet50ts_a1h2_256-fd9c11a3.pth', hf_hub_id='timm/', fixed_input_size=True, input_size=(3, 256, 256), pool_size=(8, 8))}) + +@register_model +def botnet26t_256(pretrained=False, **kwargs) -> ByobNet: + kwargs.setdefault('img_size', 256) + return _create_byoanet('botnet26t_256', 'botnet26t', pretrained=pretrained, **kwargs) + +@register_model +def sebotnet33ts_256(pretrained=False, **kwargs) -> ByobNet: + return _create_byoanet('sebotnet33ts_256', 'sebotnet33ts', pretrained=pretrained, **kwargs) + +@register_model +def botnet50ts_256(pretrained=False, **kwargs) -> ByobNet: + kwargs.setdefault('img_size', 256) + return _create_byoanet('botnet50ts_256', 'botnet50ts', pretrained=pretrained, **kwargs) + +@register_model +def eca_botnext26ts_256(pretrained=False, **kwargs) -> ByobNet: + kwargs.setdefault('img_size', 256) + return _create_byoanet('eca_botnext26ts_256', 'eca_botnext26ts', pretrained=pretrained, **kwargs) + +@register_model +def halonet_h1(pretrained=False, **kwargs) -> ByobNet: + return _create_byoanet('halonet_h1', pretrained=pretrained, **kwargs) + +@register_model +def halonet26t(pretrained=False, **kwargs) -> ByobNet: + return _create_byoanet('halonet26t', pretrained=pretrained, **kwargs) + +@register_model +def sehalonet33ts(pretrained=False, **kwargs) -> ByobNet: + return _create_byoanet('sehalonet33ts', pretrained=pretrained, **kwargs) + +@register_model +def halonet50ts(pretrained=False, **kwargs) -> ByobNet: + return _create_byoanet('halonet50ts', pretrained=pretrained, **kwargs) + +@register_model +def eca_halonext26ts(pretrained=False, **kwargs) -> ByobNet: + return _create_byoanet('eca_halonext26ts', pretrained=pretrained, **kwargs) + +@register_model +def lambda_resnet26t(pretrained=False, **kwargs) -> ByobNet: + return _create_byoanet('lambda_resnet26t', pretrained=pretrained, **kwargs) + +@register_model +def lambda_resnet50ts(pretrained=False, **kwargs) -> ByobNet: + return _create_byoanet('lambda_resnet50ts', pretrained=pretrained, **kwargs) + +@register_model +def lambda_resnet26rpt_256(pretrained=False, **kwargs) -> ByobNet: + kwargs.setdefault('img_size', 256) + return _create_byoanet('lambda_resnet26rpt_256', pretrained=pretrained, **kwargs) + +@register_model +def haloregnetz_b(pretrained=False, **kwargs) -> ByobNet: + return _create_byoanet('haloregnetz_b', pretrained=pretrained, **kwargs) + +@register_model +def lamhalobotnet50ts_256(pretrained=False, **kwargs) -> ByobNet: + return _create_byoanet('lamhalobotnet50ts_256', 'lamhalobotnet50ts', pretrained=pretrained, **kwargs) + +@register_model +def halo2botnet50ts_256(pretrained=False, **kwargs) -> ByobNet: + return _create_byoanet('halo2botnet50ts_256', 'halo2botnet50ts', pretrained=pretrained, **kwargs) + +# File: pytorch-image-models-main/timm/models/byobnet.py +"""""" +import math +from dataclasses import dataclass, field, replace +from functools import partial +from typing import Tuple, List, Dict, Optional, Union, Any, Callable, Sequence +import torch +import torch.nn as nn +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, OPENAI_CLIP_MEAN, OPENAI_CLIP_STD +from timm.layers import ClassifierHead, NormMlpClassifierHead, ConvNormAct, BatchNormAct2d, EvoNorm2dS0a, AttentionPool2d, RotAttentionPool2d, DropPath, AvgPool2dSame, create_conv2d, get_act_layer, get_norm_act_layer, get_attn, make_divisible, to_2tuple +from ._builder import build_model_with_cfg +from ._features import feature_take_indices +from ._manipulate import named_apply, checkpoint_seq +from ._registry import generate_default_cfgs, register_model +__all__ = ['ByobNet', 'ByoModelCfg', 'ByoBlockCfg', 'create_byob_stem', 'create_block'] + +@dataclass +class ByoBlockCfg: + type: Union[str, nn.Module] + d: int + c: int + s: int = 2 + gs: Optional[Union[int, Callable]] = None + br: float = 1.0 + attn_layer: Optional[str] = None + attn_kwargs: Optional[Dict[str, Any]] = None + self_attn_layer: Optional[str] = None + self_attn_kwargs: Optional[Dict[str, Any]] = None + block_kwargs: Optional[Dict[str, Any]] = None + +@dataclass +class ByoModelCfg: + blocks: Tuple[Union[ByoBlockCfg, Tuple[ByoBlockCfg, ...]], ...] + downsample: str = 'conv1x1' + stem_type: str = '3x3' + stem_pool: Optional[str] = 'maxpool' + stem_chs: Union[int, List[int], Tuple[int, ...]] = 32 + width_factor: float = 1.0 + num_features: int = 0 + zero_init_last: bool = True + fixed_input_size: bool = False + act_layer: str = 'relu' + norm_layer: str = 'batchnorm' + aa_layer: str = '' + head_hidden_size: Optional[int] = None + head_type: str = 'classifier' + attn_layer: Optional[str] = None + attn_kwargs: dict = field(default_factory=lambda : dict()) + self_attn_layer: Optional[str] = None + self_attn_kwargs: dict = field(default_factory=lambda : dict()) + block_kwargs: Dict[str, Any] = field(default_factory=lambda : dict()) + +def _rep_vgg_bcfg(d=(4, 6, 16, 1), wf=(1.0, 1.0, 1.0, 1.0), groups=0): + c = (64, 128, 256, 512) + group_size = 0 + if groups > 0: + group_size = lambda chs, idx: chs // groups if (idx + 1) % 2 == 0 else 0 + bcfg = tuple([ByoBlockCfg(type='rep', d=d, c=c * wf, gs=group_size) for (d, c, wf) in zip(d, c, wf)]) + return bcfg + +def _mobileone_bcfg(d=(2, 8, 10, 1), wf=(1.0, 1.0, 1.0, 1.0), se_blocks=(), num_conv_branches=1): + c = (64, 128, 256, 512) + prev_c = min(64, c[0] * wf[0]) + se_blocks = se_blocks or (0,) * len(d) + bcfg = [] + for (d, c, w, se) in zip(d, c, wf, se_blocks): + scfg = [] + for i in range(d): + out_c = c * w + bk = dict(num_conv_branches=num_conv_branches) + ak = {} + if i >= d - se: + ak['attn_layer'] = 'se' + scfg += [ByoBlockCfg(type='one', d=1, c=prev_c, gs=1, block_kwargs=bk, **ak)] + scfg += [ByoBlockCfg(type='one', d=1, c=out_c, gs=0, block_kwargs=dict(kernel_size=1, **bk), **ak)] + prev_c = out_c + bcfg += [scfg] + return bcfg + +def interleave_blocks(types: Tuple[str, str], d, every: Union[int, List[int]]=1, first: bool=False, **kwargs) -> Tuple[ByoBlockCfg]: + assert len(types) == 2 + if isinstance(every, int): + every = list(range(0 if first else every, d, every + 1)) + if not every: + every = [d - 1] + set(every) + blocks = [] + for i in range(d): + block_type = types[1] if i in every else types[0] + blocks += [ByoBlockCfg(type=block_type, d=1, **kwargs)] + return tuple(blocks) + +def expand_blocks_cfg(stage_blocks_cfg: Union[ByoBlockCfg, Sequence[ByoBlockCfg]]) -> List[ByoBlockCfg]: + if not isinstance(stage_blocks_cfg, Sequence): + stage_blocks_cfg = (stage_blocks_cfg,) + block_cfgs = [] + for (i, cfg) in enumerate(stage_blocks_cfg): + block_cfgs += [replace(cfg, d=1) for _ in range(cfg.d)] + return block_cfgs + +def num_groups(group_size, channels): + if not group_size: + return 1 + else: + assert channels % group_size == 0 + return channels // group_size + +@dataclass +class LayerFn: + conv_norm_act: Callable = ConvNormAct + norm_act: Callable = BatchNormAct2d + act: Callable = nn.ReLU + attn: Optional[Callable] = None + self_attn: Optional[Callable] = None + +class DownsampleAvg(nn.Module): + + def __init__(self, in_chs: int, out_chs: int, stride: int=1, dilation: int=1, apply_act: bool=False, layers: LayerFn=None): + super(DownsampleAvg, self).__init__() + layers = layers or LayerFn() + avg_stride = stride if dilation == 1 else 1 + if stride > 1 or dilation > 1: + avg_pool_fn = AvgPool2dSame if avg_stride == 1 and dilation > 1 else nn.AvgPool2d + self.pool = avg_pool_fn(2, avg_stride, ceil_mode=True, count_include_pad=False) + else: + self.pool = nn.Identity() + self.conv = layers.conv_norm_act(in_chs, out_chs, 1, apply_act=apply_act) + + def forward(self, x): + return self.conv(self.pool(x)) + +def create_shortcut(downsample_type: str, in_chs: int, out_chs: int, stride: int, dilation: Tuple[int, int], layers: LayerFn, **kwargs): + assert downsample_type in ('avg', 'conv1x1', '') + if in_chs != out_chs or stride != 1 or dilation[0] != dilation[1]: + if not downsample_type: + return None + elif downsample_type == 'avg': + return DownsampleAvg(in_chs, out_chs, stride=stride, dilation=dilation[0], **kwargs) + else: + return layers.conv_norm_act(in_chs, out_chs, kernel_size=1, stride=stride, dilation=dilation[0], **kwargs) + else: + return nn.Identity() + +class BasicBlock(nn.Module): + + def __init__(self, in_chs: int, out_chs: int, kernel_size: int=3, stride: int=1, dilation: Tuple[int, int]=(1, 1), group_size: Optional[int]=None, bottle_ratio: float=1.0, downsample: str='avg', attn_last: bool=True, linear_out: bool=False, layers: LayerFn=None, drop_block: Callable=None, drop_path_rate: float=0.0): + super(BasicBlock, self).__init__() + layers = layers or LayerFn() + mid_chs = make_divisible(out_chs * bottle_ratio) + groups = num_groups(group_size, mid_chs) + self.shortcut = create_shortcut(downsample, in_chs, out_chs, stride=stride, dilation=dilation, apply_act=False, layers=layers) + self.conv1_kxk = layers.conv_norm_act(in_chs, mid_chs, kernel_size, stride=stride, dilation=dilation[0]) + self.attn = nn.Identity() if attn_last or layers.attn is None else layers.attn(mid_chs) + self.conv2_kxk = layers.conv_norm_act(mid_chs, out_chs, kernel_size, dilation=dilation[1], groups=groups, drop_layer=drop_block, apply_act=False) + self.attn_last = nn.Identity() if not attn_last or layers.attn is None else layers.attn(out_chs) + self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0.0 else nn.Identity() + self.act = nn.Identity() if linear_out else layers.act(inplace=True) + + def init_weights(self, zero_init_last: bool=False): + if zero_init_last and self.shortcut is not None and (getattr(self.conv2_kxk.bn, 'weight', None) is not None): + nn.init.zeros_(self.conv2_kxk.bn.weight) + for attn in (self.attn, self.attn_last): + if hasattr(attn, 'reset_parameters'): + attn.reset_parameters() + + def forward(self, x): + shortcut = x + x = self.conv1_kxk(x) + x = self.attn(x) + x = self.conv2_kxk(x) + x = self.attn_last(x) + x = self.drop_path(x) + if self.shortcut is not None: + x = x + self.shortcut(shortcut) + return self.act(x) + +class BottleneckBlock(nn.Module): + + def __init__(self, in_chs: int, out_chs: int, kernel_size: int=3, stride: int=1, dilation: Tuple[int, int]=(1, 1), bottle_ratio: float=1.0, group_size: Optional[int]=None, downsample: str='avg', attn_last: bool=False, linear_out: bool=False, extra_conv: bool=False, bottle_in: bool=False, layers: LayerFn=None, drop_block: Callable=None, drop_path_rate: float=0.0): + super(BottleneckBlock, self).__init__() + layers = layers or LayerFn() + mid_chs = make_divisible((in_chs if bottle_in else out_chs) * bottle_ratio) + groups = num_groups(group_size, mid_chs) + self.shortcut = create_shortcut(downsample, in_chs, out_chs, stride=stride, dilation=dilation, apply_act=False, layers=layers) + self.conv1_1x1 = layers.conv_norm_act(in_chs, mid_chs, 1) + self.conv2_kxk = layers.conv_norm_act(mid_chs, mid_chs, kernel_size, stride=stride, dilation=dilation[0], groups=groups, drop_layer=drop_block) + if extra_conv: + self.conv2b_kxk = layers.conv_norm_act(mid_chs, mid_chs, kernel_size, dilation=dilation[1], groups=groups) + else: + self.conv2b_kxk = nn.Identity() + self.attn = nn.Identity() if attn_last or layers.attn is None else layers.attn(mid_chs) + self.conv3_1x1 = layers.conv_norm_act(mid_chs, out_chs, 1, apply_act=False) + self.attn_last = nn.Identity() if not attn_last or layers.attn is None else layers.attn(out_chs) + self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0.0 else nn.Identity() + self.act = nn.Identity() if linear_out else layers.act(inplace=True) + + def init_weights(self, zero_init_last: bool=False): + if zero_init_last and self.shortcut is not None and (getattr(self.conv3_1x1.bn, 'weight', None) is not None): + nn.init.zeros_(self.conv3_1x1.bn.weight) + for attn in (self.attn, self.attn_last): + if hasattr(attn, 'reset_parameters'): + attn.reset_parameters() + + def forward(self, x): + shortcut = x + x = self.conv1_1x1(x) + x = self.conv2_kxk(x) + x = self.conv2b_kxk(x) + x = self.attn(x) + x = self.conv3_1x1(x) + x = self.attn_last(x) + x = self.drop_path(x) + if self.shortcut is not None: + x = x + self.shortcut(shortcut) + return self.act(x) + +class DarkBlock(nn.Module): + + def __init__(self, in_chs: int, out_chs: int, kernel_size: int=3, stride: int=1, dilation: Tuple[int, int]=(1, 1), bottle_ratio: float=1.0, group_size: Optional[int]=None, downsample: str='avg', attn_last: bool=True, linear_out: bool=False, layers: LayerFn=None, drop_block: Callable=None, drop_path_rate: float=0.0): + super(DarkBlock, self).__init__() + layers = layers or LayerFn() + mid_chs = make_divisible(out_chs * bottle_ratio) + groups = num_groups(group_size, mid_chs) + self.shortcut = create_shortcut(downsample, in_chs, out_chs, stride=stride, dilation=dilation, apply_act=False, layers=layers) + self.conv1_1x1 = layers.conv_norm_act(in_chs, mid_chs, 1) + self.attn = nn.Identity() if attn_last or layers.attn is None else layers.attn(mid_chs) + self.conv2_kxk = layers.conv_norm_act(mid_chs, out_chs, kernel_size, stride=stride, dilation=dilation[0], groups=groups, drop_layer=drop_block, apply_act=False) + self.attn_last = nn.Identity() if not attn_last or layers.attn is None else layers.attn(out_chs) + self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0.0 else nn.Identity() + self.act = nn.Identity() if linear_out else layers.act(inplace=True) + + def init_weights(self, zero_init_last: bool=False): + if zero_init_last and self.shortcut is not None and (getattr(self.conv2_kxk.bn, 'weight', None) is not None): + nn.init.zeros_(self.conv2_kxk.bn.weight) + for attn in (self.attn, self.attn_last): + if hasattr(attn, 'reset_parameters'): + attn.reset_parameters() + + def forward(self, x): + shortcut = x + x = self.conv1_1x1(x) + x = self.attn(x) + x = self.conv2_kxk(x) + x = self.attn_last(x) + x = self.drop_path(x) + if self.shortcut is not None: + x = x + self.shortcut(shortcut) + return self.act(x) + +class EdgeBlock(nn.Module): + + def __init__(self, in_chs: int, out_chs: int, kernel_size: int=3, stride: int=1, dilation: Tuple[int, int]=(1, 1), bottle_ratio: float=1.0, group_size: Optional[int]=None, downsample: str='avg', attn_last: bool=False, linear_out: bool=False, layers: LayerFn=None, drop_block: Callable=None, drop_path_rate: float=0.0): + super(EdgeBlock, self).__init__() + layers = layers or LayerFn() + mid_chs = make_divisible(out_chs * bottle_ratio) + groups = num_groups(group_size, mid_chs) + self.shortcut = create_shortcut(downsample, in_chs, out_chs, stride=stride, dilation=dilation, apply_act=False, layers=layers) + self.conv1_kxk = layers.conv_norm_act(in_chs, mid_chs, kernel_size, stride=stride, dilation=dilation[0], groups=groups, drop_layer=drop_block) + self.attn = nn.Identity() if attn_last or layers.attn is None else layers.attn(mid_chs) + self.conv2_1x1 = layers.conv_norm_act(mid_chs, out_chs, 1, apply_act=False) + self.attn_last = nn.Identity() if not attn_last or layers.attn is None else layers.attn(out_chs) + self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0.0 else nn.Identity() + self.act = nn.Identity() if linear_out else layers.act(inplace=True) + + def init_weights(self, zero_init_last: bool=False): + if zero_init_last and self.shortcut is not None and (getattr(self.conv2_1x1.bn, 'weight', None) is not None): + nn.init.zeros_(self.conv2_1x1.bn.weight) + for attn in (self.attn, self.attn_last): + if hasattr(attn, 'reset_parameters'): + attn.reset_parameters() + + def forward(self, x): + shortcut = x + x = self.conv1_kxk(x) + x = self.attn(x) + x = self.conv2_1x1(x) + x = self.attn_last(x) + x = self.drop_path(x) + if self.shortcut is not None: + x = x + self.shortcut(shortcut) + return self.act(x) + +class RepVggBlock(nn.Module): + + def __init__(self, in_chs: int, out_chs: int, kernel_size: int=3, stride: int=1, dilation: Tuple[int, int]=(1, 1), bottle_ratio: float=1.0, group_size: Optional[int]=None, downsample: str='', layers: LayerFn=None, drop_block: Callable=None, drop_path_rate: float=0.0, inference_mode: bool=False): + super(RepVggBlock, self).__init__() + self.groups = groups = num_groups(group_size, in_chs) + layers = layers or LayerFn() + if inference_mode: + self.reparam_conv = nn.Conv2d(in_channels=in_chs, out_channels=out_chs, kernel_size=kernel_size, stride=stride, dilation=dilation, groups=groups, bias=True) + else: + self.reparam_conv = None + use_ident = in_chs == out_chs and stride == 1 and (dilation[0] == dilation[1]) + self.identity = layers.norm_act(out_chs, apply_act=False) if use_ident else None + self.conv_kxk = layers.conv_norm_act(in_chs, out_chs, kernel_size, stride=stride, dilation=dilation[0], groups=groups, drop_layer=drop_block, apply_act=False) + self.conv_1x1 = layers.conv_norm_act(in_chs, out_chs, 1, stride=stride, groups=groups, apply_act=False) + self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0.0 and use_ident else nn.Identity() + self.attn = nn.Identity() if layers.attn is None else layers.attn(out_chs) + self.act = layers.act(inplace=True) + + def init_weights(self, zero_init_last: bool=False): + for m in self.modules(): + if isinstance(m, nn.BatchNorm2d): + nn.init.normal_(m.weight, 0.1, 0.1) + nn.init.normal_(m.bias, 0, 0.1) + if hasattr(self.attn, 'reset_parameters'): + self.attn.reset_parameters() + + def forward(self, x): + if self.reparam_conv is not None: + return self.act(self.attn(self.reparam_conv(x))) + if self.identity is None: + x = self.conv_1x1(x) + self.conv_kxk(x) + else: + identity = self.identity(x) + x = self.conv_1x1(x) + self.conv_kxk(x) + x = self.drop_path(x) + x += identity + x = self.attn(x) + return self.act(x) + + def reparameterize(self): + if self.reparam_conv is not None: + return + (kernel, bias) = self._get_kernel_bias() + self.reparam_conv = nn.Conv2d(in_channels=self.conv_kxk.conv.in_channels, out_channels=self.conv_kxk.conv.out_channels, kernel_size=self.conv_kxk.conv.kernel_size, stride=self.conv_kxk.conv.stride, padding=self.conv_kxk.conv.padding, dilation=self.conv_kxk.conv.dilation, groups=self.conv_kxk.conv.groups, bias=True) + self.reparam_conv.weight.data = kernel + self.reparam_conv.bias.data = bias + for (name, para) in self.named_parameters(): + if 'reparam_conv' in name: + continue + para.detach_() + self.__delattr__('conv_kxk') + self.__delattr__('conv_1x1') + self.__delattr__('identity') + self.__delattr__('drop_path') + + def _get_kernel_bias(self) -> Tuple[torch.Tensor, torch.Tensor]: + kernel_1x1 = 0 + bias_1x1 = 0 + if self.conv_1x1 is not None: + (kernel_1x1, bias_1x1) = self._fuse_bn_tensor(self.conv_1x1) + pad = self.conv_kxk.conv.kernel_size[0] // 2 + kernel_1x1 = torch.nn.functional.pad(kernel_1x1, [pad, pad, pad, pad]) + kernel_identity = 0 + bias_identity = 0 + if self.identity is not None: + (kernel_identity, bias_identity) = self._fuse_bn_tensor(self.identity) + (kernel_conv, bias_conv) = self._fuse_bn_tensor(self.conv_kxk) + kernel_final = kernel_conv + kernel_1x1 + kernel_identity + bias_final = bias_conv + bias_1x1 + bias_identity + return (kernel_final, bias_final) + + def _fuse_bn_tensor(self, branch) -> Tuple[torch.Tensor, torch.Tensor]: + if isinstance(branch, ConvNormAct): + kernel = branch.conv.weight + running_mean = branch.bn.running_mean + running_var = branch.bn.running_var + gamma = branch.bn.weight + beta = branch.bn.bias + eps = branch.bn.eps + else: + assert isinstance(branch, nn.BatchNorm2d) + if not hasattr(self, 'id_tensor'): + in_chs = self.conv_kxk.conv.in_channels + input_dim = in_chs // self.groups + kernel_size = self.conv_kxk.conv.kernel_size + kernel_value = torch.zeros_like(self.conv_kxk.conv.weight) + for i in range(in_chs): + kernel_value[i, i % input_dim, kernel_size[0] // 2, kernel_size[1] // 2] = 1 + self.id_tensor = kernel_value + kernel = self.id_tensor + running_mean = branch.running_mean + running_var = branch.running_var + gamma = branch.weight + beta = branch.bias + eps = branch.eps + std = (running_var + eps).sqrt() + t = (gamma / std).reshape(-1, 1, 1, 1) + return (kernel * t, beta - running_mean * gamma / std) + +class MobileOneBlock(nn.Module): + + def __init__(self, in_chs: int, out_chs: int, kernel_size: int=3, stride: int=1, dilation: Tuple[int, int]=(1, 1), bottle_ratio: float=1.0, group_size: Optional[int]=None, downsample: str='', inference_mode: bool=False, num_conv_branches: int=1, layers: LayerFn=None, drop_block: Callable=None, drop_path_rate: float=0.0) -> None: + super(MobileOneBlock, self).__init__() + self.num_conv_branches = num_conv_branches + self.groups = groups = num_groups(group_size, in_chs) + layers = layers or LayerFn() + if inference_mode: + self.reparam_conv = nn.Conv2d(in_channels=in_chs, out_channels=out_chs, kernel_size=kernel_size, stride=stride, dilation=dilation, groups=groups, bias=True) + else: + self.reparam_conv = None + use_ident = in_chs == out_chs and stride == 1 and (dilation[0] == dilation[1]) + self.identity = layers.norm_act(out_chs, apply_act=False) if use_ident else None + convs = [] + for _ in range(self.num_conv_branches): + convs.append(layers.conv_norm_act(in_chs, out_chs, kernel_size=kernel_size, stride=stride, groups=groups, apply_act=False)) + self.conv_kxk = nn.ModuleList(convs) + self.conv_scale = None + if kernel_size > 1: + self.conv_scale = layers.conv_norm_act(in_chs, out_chs, kernel_size=1, stride=stride, groups=groups, apply_act=False) + self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0.0 and use_ident else nn.Identity() + self.attn = nn.Identity() if layers.attn is None else layers.attn(out_chs) + self.act = layers.act(inplace=True) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + if self.reparam_conv is not None: + return self.act(self.attn(self.reparam_conv(x))) + identity_out = 0 + if self.identity is not None: + identity_out = self.identity(x) + scale_out = 0 + if self.conv_scale is not None: + scale_out = self.conv_scale(x) + out = scale_out + for ck in self.conv_kxk: + out += ck(x) + out = self.drop_path(out) + out += identity_out + return self.act(self.attn(out)) + + def reparameterize(self): + if self.reparam_conv is not None: + return + (kernel, bias) = self._get_kernel_bias() + self.reparam_conv = nn.Conv2d(in_channels=self.conv_kxk[0].conv.in_channels, out_channels=self.conv_kxk[0].conv.out_channels, kernel_size=self.conv_kxk[0].conv.kernel_size, stride=self.conv_kxk[0].conv.stride, padding=self.conv_kxk[0].conv.padding, dilation=self.conv_kxk[0].conv.dilation, groups=self.conv_kxk[0].conv.groups, bias=True) + self.reparam_conv.weight.data = kernel + self.reparam_conv.bias.data = bias + for (name, para) in self.named_parameters(): + if 'reparam_conv' in name: + continue + para.detach_() + self.__delattr__('conv_kxk') + self.__delattr__('conv_scale') + self.__delattr__('identity') + self.__delattr__('drop_path') + + def _get_kernel_bias(self) -> Tuple[torch.Tensor, torch.Tensor]: + kernel_scale = 0 + bias_scale = 0 + if self.conv_scale is not None: + (kernel_scale, bias_scale) = self._fuse_bn_tensor(self.conv_scale) + pad = self.conv_kxk[0].conv.kernel_size[0] // 2 + kernel_scale = torch.nn.functional.pad(kernel_scale, [pad, pad, pad, pad]) + kernel_identity = 0 + bias_identity = 0 + if self.identity is not None: + (kernel_identity, bias_identity) = self._fuse_bn_tensor(self.identity) + kernel_conv = 0 + bias_conv = 0 + for ix in range(self.num_conv_branches): + (_kernel, _bias) = self._fuse_bn_tensor(self.conv_kxk[ix]) + kernel_conv += _kernel + bias_conv += _bias + kernel_final = kernel_conv + kernel_scale + kernel_identity + bias_final = bias_conv + bias_scale + bias_identity + return (kernel_final, bias_final) + + def _fuse_bn_tensor(self, branch) -> Tuple[torch.Tensor, torch.Tensor]: + if isinstance(branch, ConvNormAct): + kernel = branch.conv.weight + running_mean = branch.bn.running_mean + running_var = branch.bn.running_var + gamma = branch.bn.weight + beta = branch.bn.bias + eps = branch.bn.eps + else: + assert isinstance(branch, nn.BatchNorm2d) + if not hasattr(self, 'id_tensor'): + in_chs = self.conv_kxk[0].conv.in_channels + input_dim = in_chs // self.groups + kernel_size = self.conv_kxk[0].conv.kernel_size + kernel_value = torch.zeros_like(self.conv_kxk[0].conv.weight) + for i in range(in_chs): + kernel_value[i, i % input_dim, kernel_size[0] // 2, kernel_size[1] // 2] = 1 + self.id_tensor = kernel_value + kernel = self.id_tensor + running_mean = branch.running_mean + running_var = branch.running_var + gamma = branch.weight + beta = branch.bias + eps = branch.eps + std = (running_var + eps).sqrt() + t = (gamma / std).reshape(-1, 1, 1, 1) + return (kernel * t, beta - running_mean * gamma / std) + +class SelfAttnBlock(nn.Module): + + def __init__(self, in_chs: int, out_chs: int, kernel_size: int=3, stride: int=1, dilation: Tuple[int, int]=(1, 1), bottle_ratio: float=1.0, group_size: Optional[int]=None, downsample: str='avg', extra_conv: bool=False, linear_out: bool=False, bottle_in: bool=False, post_attn_na: bool=True, feat_size: Optional[Tuple[int, int]]=None, layers: LayerFn=None, drop_block: Callable=None, drop_path_rate: float=0.0): + super(SelfAttnBlock, self).__init__() + assert layers is not None + mid_chs = make_divisible((in_chs if bottle_in else out_chs) * bottle_ratio) + groups = num_groups(group_size, mid_chs) + self.shortcut = create_shortcut(downsample, in_chs, out_chs, stride=stride, dilation=dilation, apply_act=False, layers=layers) + self.conv1_1x1 = layers.conv_norm_act(in_chs, mid_chs, 1) + if extra_conv: + self.conv2_kxk = layers.conv_norm_act(mid_chs, mid_chs, kernel_size, stride=stride, dilation=dilation[0], groups=groups, drop_layer=drop_block) + stride = 1 + else: + self.conv2_kxk = nn.Identity() + opt_kwargs = {} if feat_size is None else dict(feat_size=feat_size) + self.self_attn = layers.self_attn(mid_chs, stride=stride, **opt_kwargs) + self.post_attn = layers.norm_act(mid_chs) if post_attn_na else nn.Identity() + self.conv3_1x1 = layers.conv_norm_act(mid_chs, out_chs, 1, apply_act=False) + self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0.0 else nn.Identity() + self.act = nn.Identity() if linear_out else layers.act(inplace=True) + + def init_weights(self, zero_init_last: bool=False): + if zero_init_last and self.shortcut is not None and (getattr(self.conv3_1x1.bn, 'weight', None) is not None): + nn.init.zeros_(self.conv3_1x1.bn.weight) + if hasattr(self.self_attn, 'reset_parameters'): + self.self_attn.reset_parameters() + + def forward(self, x): + shortcut = x + x = self.conv1_1x1(x) + x = self.conv2_kxk(x) + x = self.self_attn(x) + x = self.post_attn(x) + x = self.conv3_1x1(x) + x = self.drop_path(x) + if self.shortcut is not None: + x = x + self.shortcut(shortcut) + return self.act(x) +_block_registry = dict(basic=BasicBlock, bottle=BottleneckBlock, dark=DarkBlock, edge=EdgeBlock, rep=RepVggBlock, one=MobileOneBlock, self_attn=SelfAttnBlock) + +def register_block(block_type: str, block_fn: nn.Module): + _block_registry[block_type] = block_fn + +def create_block(block: Union[str, nn.Module], **kwargs): + if isinstance(block, (nn.Module, partial)): + return block(**kwargs) + assert block in _block_registry, f'Unknown block type ({block}' + return _block_registry[block](**kwargs) + +class Stem(nn.Sequential): + + def __init__(self, in_chs: int, out_chs: Union[int, List[int], Tuple[int, ...]], kernel_size: int=3, stride: int=4, pool: str='maxpool', num_rep: int=3, num_act: Optional[int]=None, chs_decay: float=0.5, layers: LayerFn=None): + super().__init__() + assert stride in (2, 4) + layers = layers or LayerFn() + if isinstance(out_chs, (list, tuple)): + num_rep = len(out_chs) + stem_chs = out_chs + else: + stem_chs = [round(out_chs * chs_decay ** i) for i in range(num_rep)][::-1] + self.stride = stride + self.feature_info = [] + prev_feat = '' + stem_strides = [2] + [1] * (num_rep - 1) + if stride == 4 and (not pool): + stem_strides[-1] = 2 + num_act = num_rep if num_act is None else num_act + stem_norm_acts = [False] * (num_rep - num_act) + [True] * num_act + prev_chs = in_chs + curr_stride = 1 + last_feat_idx = -1 + for (i, (ch, s, na)) in enumerate(zip(stem_chs, stem_strides, stem_norm_acts)): + layer_fn = layers.conv_norm_act if na else create_conv2d + conv_name = f'conv{i + 1}' + if i > 0 and s > 1: + last_feat_idx = i - 1 + self.feature_info.append(dict(num_chs=prev_chs, reduction=curr_stride, module=prev_feat, stage=0)) + self.add_module(conv_name, layer_fn(prev_chs, ch, kernel_size=kernel_size, stride=s)) + prev_chs = ch + curr_stride *= s + prev_feat = conv_name + if pool: + pool = pool.lower() + assert pool in ('max', 'maxpool', 'avg', 'avgpool', 'max2', 'avg2') + last_feat_idx = i + self.feature_info.append(dict(num_chs=prev_chs, reduction=curr_stride, module=prev_feat, stage=0)) + if pool == 'max2': + self.add_module('pool', nn.MaxPool2d(2)) + elif pool == 'avg2': + self.add_module('pool', nn.AvgPool2d(2)) + elif 'max' in pool: + self.add_module('pool', nn.MaxPool2d(kernel_size=3, stride=2, padding=1)) + elif 'avg' in pool: + self.add_module('pool', nn.AvgPool2d(kernel_size=3, stride=2, padding=1, count_include_pad=False)) + curr_stride *= 2 + prev_feat = 'pool' + self.last_feat_idx = last_feat_idx if last_feat_idx >= 0 else None + self.feature_info.append(dict(num_chs=prev_chs, reduction=curr_stride, module=prev_feat, stage=0)) + assert curr_stride == stride + + def forward_intermediates(self, x) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: + intermediate: Optional[torch.Tensor] = None + for (i, m) in enumerate(self): + x = m(x) + if self.last_feat_idx is not None and i == self.last_feat_idx: + intermediate = x + return (x, intermediate) + +def create_byob_stem(in_chs: int, out_chs: int, stem_type: str='', pool_type: str='', feat_prefix: str='stem', layers: LayerFn=None): + layers = layers or LayerFn() + assert stem_type in ('', 'quad', 'quad2', 'tiered', 'deep', 'rep', 'one', '7x7', '3x3') + if 'quad' in stem_type: + num_act = 2 if 'quad2' in stem_type else None + stem = Stem(in_chs, out_chs, num_rep=4, num_act=num_act, pool=pool_type, layers=layers) + elif 'tiered' in stem_type: + stem = Stem(in_chs, (3 * out_chs // 8, out_chs // 2, out_chs), pool=pool_type, layers=layers) + elif 'deep' in stem_type: + stem = Stem(in_chs, out_chs, num_rep=3, chs_decay=1.0, pool=pool_type, layers=layers) + elif 'rep' in stem_type: + stem = RepVggBlock(in_chs, out_chs, stride=2, layers=layers) + elif 'one' in stem_type: + stem = MobileOneBlock(in_chs, out_chs, kernel_size=3, stride=2, layers=layers) + elif '7x7' in stem_type: + if pool_type: + stem = Stem(in_chs, out_chs, 7, num_rep=1, pool=pool_type, layers=layers) + else: + stem = layers.conv_norm_act(in_chs, out_chs, 7, stride=2) + elif isinstance(out_chs, (tuple, list)): + stem = Stem(in_chs, out_chs, 3, pool=pool_type, layers=layers) + elif pool_type: + stem = Stem(in_chs, out_chs, 3, num_rep=1, pool=pool_type, layers=layers) + else: + stem = layers.conv_norm_act(in_chs, out_chs, 3, stride=2) + if isinstance(stem, Stem): + feature_info = [dict(f, module='.'.join([feat_prefix, f['module']])) for f in stem.feature_info] + else: + feature_info = [dict(num_chs=out_chs, reduction=2, module=feat_prefix, stage=0)] + return (stem, feature_info) + +def reduce_feat_size(feat_size, stride=2): + return None if feat_size is None else tuple([s // stride for s in feat_size]) + +def override_kwargs(block_kwargs, model_kwargs): + out_kwargs = block_kwargs if block_kwargs is not None else model_kwargs + return out_kwargs or {} + +def update_block_kwargs(block_kwargs: Dict[str, Any], block_cfg: ByoBlockCfg, model_cfg: ByoModelCfg): + layer_fns = block_kwargs['layers'] + attn_set = block_cfg.attn_layer is not None + if attn_set or block_cfg.attn_kwargs is not None: + if attn_set and (not block_cfg.attn_layer): + attn_layer = None + else: + attn_kwargs = override_kwargs(block_cfg.attn_kwargs, model_cfg.attn_kwargs) + attn_layer = block_cfg.attn_layer or model_cfg.attn_layer + attn_layer = partial(get_attn(attn_layer), **attn_kwargs) if attn_layer is not None else None + layer_fns = replace(layer_fns, attn=attn_layer) + self_attn_set = block_cfg.self_attn_layer is not None + if self_attn_set or block_cfg.self_attn_kwargs is not None: + if self_attn_set and (not block_cfg.self_attn_layer): + self_attn_layer = None + else: + self_attn_kwargs = override_kwargs(block_cfg.self_attn_kwargs, model_cfg.self_attn_kwargs) + self_attn_layer = block_cfg.self_attn_layer or model_cfg.self_attn_layer + self_attn_layer = partial(get_attn(self_attn_layer), **self_attn_kwargs) if self_attn_layer is not None else None + layer_fns = replace(layer_fns, self_attn=self_attn_layer) + block_kwargs['layers'] = layer_fns + block_kwargs.update(override_kwargs(block_cfg.block_kwargs, model_cfg.block_kwargs)) + +def create_byob_stages(cfg: ByoModelCfg, drop_path_rate: float, output_stride: int, stem_feat: Dict[str, Any], feat_size: Optional[int]=None, layers: Optional[LayerFn]=None, block_kwargs_fn: Optional[Callable]=update_block_kwargs): + layers = layers or LayerFn() + feature_info = [] + block_cfgs = [expand_blocks_cfg(s) for s in cfg.blocks] + depths = [sum([bc.d for bc in stage_bcs]) for stage_bcs in block_cfgs] + dpr = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(depths)).split(depths)] + dilation = 1 + net_stride = stem_feat['reduction'] + prev_chs = stem_feat['num_chs'] + prev_feat = stem_feat + stages = [] + for (stage_idx, stage_block_cfgs) in enumerate(block_cfgs): + stride = stage_block_cfgs[0].s + if stride != 1 and prev_feat: + feature_info.append(prev_feat) + if net_stride >= output_stride and stride > 1: + dilation *= stride + stride = 1 + net_stride *= stride + first_dilation = 1 if dilation in (1, 2) else 2 + blocks = [] + for (block_idx, block_cfg) in enumerate(stage_block_cfgs): + out_chs = make_divisible(block_cfg.c * cfg.width_factor) + group_size = block_cfg.gs + if isinstance(group_size, Callable): + group_size = group_size(out_chs, block_idx) + block_kwargs = dict(in_chs=prev_chs, out_chs=out_chs, stride=stride if block_idx == 0 else 1, dilation=(first_dilation, dilation), group_size=group_size, bottle_ratio=block_cfg.br, downsample=cfg.downsample, drop_path_rate=dpr[stage_idx][block_idx], layers=layers) + if block_cfg.type in ('self_attn',): + block_kwargs['feat_size'] = feat_size + block_kwargs_fn(block_kwargs, block_cfg=block_cfg, model_cfg=cfg) + blocks += [create_block(block_cfg.type, **block_kwargs)] + first_dilation = dilation + prev_chs = out_chs + if stride > 1 and block_idx == 0: + feat_size = reduce_feat_size(feat_size, stride) + stages += [nn.Sequential(*blocks)] + prev_feat = dict(num_chs=prev_chs, reduction=net_stride, module=f'stages.{stage_idx}', stage=stage_idx + 1) + feature_info.append(prev_feat) + return (nn.Sequential(*stages), feature_info, feat_size) + +def get_layer_fns(cfg: ByoModelCfg, allow_aa: bool=True): + act = get_act_layer(cfg.act_layer) + norm_act = get_norm_act_layer(norm_layer=cfg.norm_layer, act_layer=act) + if cfg.aa_layer and allow_aa: + conv_norm_act = partial(ConvNormAct, norm_layer=cfg.norm_layer, act_layer=act, aa_layer=cfg.aa_layer) + else: + conv_norm_act = partial(ConvNormAct, norm_layer=cfg.norm_layer, act_layer=act) + attn = partial(get_attn(cfg.attn_layer), **cfg.attn_kwargs) if cfg.attn_layer else None + self_attn = partial(get_attn(cfg.self_attn_layer), **cfg.self_attn_kwargs) if cfg.self_attn_layer else None + layer_fn = LayerFn(conv_norm_act=conv_norm_act, norm_act=norm_act, act=act, attn=attn, self_attn=self_attn) + return layer_fn + +class ByobNet(nn.Module): + + def __init__(self, cfg: ByoModelCfg, num_classes: int=1000, in_chans: int=3, global_pool: Optional[str]=None, output_stride: int=32, img_size: Optional[Union[int, Tuple[int, int]]]=None, drop_rate: float=0.0, drop_path_rate: float=0.0, zero_init_last: bool=True, **kwargs): + super().__init__() + self.num_classes = num_classes + self.drop_rate = drop_rate + self.grad_checkpointing = False + cfg = replace(cfg, **kwargs) + stem_layers = get_layer_fns(cfg, allow_aa=False) + stage_layers = get_layer_fns(cfg) + if cfg.fixed_input_size: + assert img_size is not None, 'img_size argument is required for fixed input size model' + feat_size = to_2tuple(img_size) if img_size is not None else None + self.feature_info = [] + if isinstance(cfg.stem_chs, (list, tuple)): + stem_chs = [int(round(c * cfg.width_factor)) for c in cfg.stem_chs] + else: + stem_chs = int(round((cfg.stem_chs or cfg.blocks[0].c) * cfg.width_factor)) + (self.stem, stem_feat) = create_byob_stem(in_chs=in_chans, out_chs=stem_chs, stem_type=cfg.stem_type, pool_type=cfg.stem_pool, layers=stem_layers) + self.feature_info.extend(stem_feat[:-1]) + feat_size = reduce_feat_size(feat_size, stride=stem_feat[-1]['reduction']) + (self.stages, stage_feat, feat_size) = create_byob_stages(cfg, drop_path_rate, output_stride, stem_feat[-1], layers=stage_layers, feat_size=feat_size) + self.feature_info.extend(stage_feat[:-1]) + reduction = stage_feat[-1]['reduction'] + prev_chs = stage_feat[-1]['num_chs'] + if cfg.num_features: + self.num_features = int(round(cfg.width_factor * cfg.num_features)) + self.final_conv = stage_layers.conv_norm_act(prev_chs, self.num_features, 1) + else: + self.num_features = prev_chs + self.final_conv = nn.Identity() + self.feature_info += [dict(num_chs=self.num_features, reduction=reduction, module='final_conv', stage=len(self.stages))] + self.stage_ends = [f['stage'] for f in self.feature_info] + self.head_hidden_size = self.num_features + assert cfg.head_type in ('', 'classifier', 'mlp', 'attn_abs', 'attn_rot') + if cfg.head_type == 'mlp': + if global_pool is None: + global_pool = 'avg' + self.head = NormMlpClassifierHead(self.num_features, num_classes, hidden_size=cfg.head_hidden_size, pool_type=global_pool, norm_layer=cfg.norm_layer, act_layer=cfg.act_layer, drop_rate=self.drop_rate) + self.head_hidden_size = self.head.hidden_size + elif cfg.head_type == 'attn_abs': + if global_pool is None: + global_pool = 'token' + assert global_pool in ('', 'token') + self.head = AttentionPool2d(self.num_features, embed_dim=cfg.head_hidden_size, out_features=num_classes, feat_size=feat_size, pool_type=global_pool, drop_rate=self.drop_rate, qkv_separate=True) + self.head_hidden_size = self.head.embed_dim + elif cfg.head_type == 'attn_rot': + if global_pool is None: + global_pool = 'token' + assert global_pool in ('', 'token') + self.head = RotAttentionPool2d(self.num_features, embed_dim=cfg.head_hidden_size, out_features=num_classes, ref_feat_size=feat_size, pool_type=global_pool, drop_rate=self.drop_rate, qkv_separate=True) + self.head_hidden_size = self.head.embed_dim + else: + if global_pool is None: + global_pool = 'avg' + assert cfg.head_hidden_size is None + self.head = ClassifierHead(self.num_features, num_classes, pool_type=global_pool, drop_rate=self.drop_rate) + self.global_pool = global_pool + named_apply(partial(_init_weights, zero_init_last=zero_init_last), self) + + @torch.jit.ignore + def group_matcher(self, coarse=False): + matcher = dict(stem='^stem', blocks=[('^stages\\.(\\d+)' if coarse else '^stages\\.(\\d+)\\.(\\d+)', None), ('^final_conv', (99999,))]) + return matcher + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + self.grad_checkpointing = enable + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.head.fc + + def reset_classifier(self, num_classes: int, global_pool: Optional[str]=None): + self.num_classes = num_classes + self.head.reset(num_classes, global_pool) + + def forward_intermediates(self, x: torch.Tensor, indices: Optional[Union[int, List[int]]]=None, norm: bool=False, stop_early: bool=False, output_fmt: str='NCHW', intermediates_only: bool=False, exclude_final_conv: bool=False) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]: + assert output_fmt in ('NCHW',), 'Output shape must be NCHW.' + intermediates = [] + (take_indices, max_index) = feature_take_indices(len(self.stage_ends), indices) + take_indices = [self.stage_ends[i] for i in take_indices] + max_index = self.stage_ends[max_index] + feat_idx = 0 + if hasattr(self.stem, 'forward_intermediates'): + (x, x_inter) = self.stem.forward_intermediates(x) + else: + (x, x_inter) = (self.stem(x), None) + if feat_idx in take_indices: + intermediates.append(x if x_inter is None else x_inter) + last_idx = self.stage_ends[-1] + if torch.jit.is_scripting() or not stop_early: + stages = self.stages + else: + stages = self.stages[:max_index] + for stage in stages: + feat_idx += 1 + x = stage(x) + if not exclude_final_conv and feat_idx == last_idx: + x = self.final_conv(x) + if feat_idx in take_indices: + intermediates.append(x) + if intermediates_only: + return intermediates + if exclude_final_conv and feat_idx == last_idx: + x = self.final_conv(x) + return (x, intermediates) + + def prune_intermediate_layers(self, indices: Union[int, List[int]]=1, prune_norm: bool=False, prune_head: bool=True): + (take_indices, max_index) = feature_take_indices(len(self.stage_ends), indices) + max_index = self.stage_ends[max_index] + self.stages = self.stages[:max_index] + if max_index < self.stage_ends[-1]: + self.final_conv = nn.Identity() + if prune_head: + self.reset_classifier(0, '') + return take_indices + + def forward_features(self, x): + x = self.stem(x) + if self.grad_checkpointing and (not torch.jit.is_scripting()): + x = checkpoint_seq(self.stages, x) + else: + x = self.stages(x) + x = self.final_conv(x) + return x + + def forward_head(self, x, pre_logits: bool=False): + return self.head(x, pre_logits=pre_logits) if pre_logits else self.head(x) + + def forward(self, x): + x = self.forward_features(x) + x = self.forward_head(x) + return x + +def _init_weights(module, name='', zero_init_last=False): + if isinstance(module, nn.Conv2d): + fan_out = module.kernel_size[0] * module.kernel_size[1] * module.out_channels + fan_out //= module.groups + module.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.Linear): + nn.init.normal_(module.weight, mean=0.0, std=0.01) + if module.bias is not None: + nn.init.zeros_(module.bias) + elif isinstance(module, nn.BatchNorm2d): + nn.init.ones_(module.weight) + nn.init.zeros_(module.bias) + elif hasattr(module, 'init_weights'): + module.init_weights(zero_init_last=zero_init_last) +model_cfgs = dict(gernet_l=ByoModelCfg(blocks=(ByoBlockCfg(type='basic', d=1, c=128, s=2, gs=0, br=1.0), ByoBlockCfg(type='basic', d=2, c=192, s=2, gs=0, br=1.0), ByoBlockCfg(type='bottle', d=6, c=640, s=2, gs=0, br=1 / 4), ByoBlockCfg(type='bottle', d=5, c=640, s=2, gs=1, br=3.0), ByoBlockCfg(type='bottle', d=4, c=640, s=1, gs=1, br=3.0)), stem_chs=32, stem_pool=None, num_features=2560), gernet_m=ByoModelCfg(blocks=(ByoBlockCfg(type='basic', d=1, c=128, s=2, gs=0, br=1.0), ByoBlockCfg(type='basic', d=2, c=192, s=2, gs=0, br=1.0), ByoBlockCfg(type='bottle', d=6, c=640, s=2, gs=0, br=1 / 4), ByoBlockCfg(type='bottle', d=4, c=640, s=2, gs=1, br=3.0), ByoBlockCfg(type='bottle', d=1, c=640, s=1, gs=1, br=3.0)), stem_chs=32, stem_pool=None, num_features=2560), gernet_s=ByoModelCfg(blocks=(ByoBlockCfg(type='basic', d=1, c=48, s=2, gs=0, br=1.0), ByoBlockCfg(type='basic', d=3, c=48, s=2, gs=0, br=1.0), ByoBlockCfg(type='bottle', d=7, c=384, s=2, gs=0, br=1 / 4), ByoBlockCfg(type='bottle', d=2, c=560, s=2, gs=1, br=3.0), ByoBlockCfg(type='bottle', d=1, c=256, s=1, gs=1, br=3.0)), stem_chs=13, stem_pool=None, num_features=1920), repvgg_a0=ByoModelCfg(blocks=_rep_vgg_bcfg(d=(2, 4, 14, 1), wf=(0.75, 0.75, 0.75, 2.5)), stem_type='rep', stem_chs=48), repvgg_a1=ByoModelCfg(blocks=_rep_vgg_bcfg(d=(2, 4, 14, 1), wf=(1, 1, 1, 2.5)), stem_type='rep', stem_chs=64), repvgg_a2=ByoModelCfg(blocks=_rep_vgg_bcfg(d=(2, 4, 14, 1), wf=(1.5, 1.5, 1.5, 2.75)), stem_type='rep', stem_chs=64), repvgg_b0=ByoModelCfg(blocks=_rep_vgg_bcfg(wf=(1.0, 1.0, 1.0, 2.5)), stem_type='rep', stem_chs=64), repvgg_b1=ByoModelCfg(blocks=_rep_vgg_bcfg(wf=(2.0, 2.0, 2.0, 4.0)), stem_type='rep', stem_chs=64), repvgg_b1g4=ByoModelCfg(blocks=_rep_vgg_bcfg(wf=(2.0, 2.0, 2.0, 4.0), groups=4), stem_type='rep', stem_chs=64), repvgg_b2=ByoModelCfg(blocks=_rep_vgg_bcfg(wf=(2.5, 2.5, 2.5, 5.0)), stem_type='rep', stem_chs=64), repvgg_b2g4=ByoModelCfg(blocks=_rep_vgg_bcfg(wf=(2.5, 2.5, 2.5, 5.0), groups=4), stem_type='rep', stem_chs=64), repvgg_b3=ByoModelCfg(blocks=_rep_vgg_bcfg(wf=(3.0, 3.0, 3.0, 5.0)), stem_type='rep', stem_chs=64), repvgg_b3g4=ByoModelCfg(blocks=_rep_vgg_bcfg(wf=(3.0, 3.0, 3.0, 5.0), groups=4), stem_type='rep', stem_chs=64), repvgg_d2se=ByoModelCfg(blocks=_rep_vgg_bcfg(d=(8, 14, 24, 1), wf=(2.5, 2.5, 2.5, 5.0)), stem_type='rep', stem_chs=64, attn_layer='se', attn_kwargs=dict(rd_ratio=0.0625, rd_divisor=1)), resnet51q=ByoModelCfg(blocks=(ByoBlockCfg(type='bottle', d=2, c=256, s=1, gs=32, br=0.25), ByoBlockCfg(type='bottle', d=4, c=512, s=2, gs=32, br=0.25), ByoBlockCfg(type='bottle', d=6, c=1536, s=2, gs=32, br=0.25), ByoBlockCfg(type='bottle', d=4, c=1536, s=2, gs=1, br=1.0)), stem_chs=128, stem_type='quad2', stem_pool=None, num_features=2048, act_layer='silu'), resnet61q=ByoModelCfg(blocks=(ByoBlockCfg(type='edge', d=1, c=256, s=1, gs=0, br=1.0, block_kwargs=dict()), ByoBlockCfg(type='bottle', d=4, c=512, s=2, gs=32, br=0.25), ByoBlockCfg(type='bottle', d=6, c=1536, s=2, gs=32, br=0.25), ByoBlockCfg(type='bottle', d=4, c=1536, s=2, gs=1, br=1.0)), stem_chs=128, stem_type='quad', stem_pool=None, num_features=2048, act_layer='silu', block_kwargs=dict(extra_conv=True)), resnext26ts=ByoModelCfg(blocks=(ByoBlockCfg(type='bottle', d=2, c=256, s=1, gs=32, br=0.25), ByoBlockCfg(type='bottle', d=2, c=512, s=2, gs=32, br=0.25), ByoBlockCfg(type='bottle', d=2, c=1024, s=2, gs=32, br=0.25), ByoBlockCfg(type='bottle', d=2, c=2048, s=2, gs=32, br=0.25)), stem_chs=64, stem_type='tiered', stem_pool='maxpool', act_layer='silu'), gcresnext26ts=ByoModelCfg(blocks=(ByoBlockCfg(type='bottle', d=2, c=256, s=1, gs=32, br=0.25), ByoBlockCfg(type='bottle', d=2, c=512, s=2, gs=32, br=0.25), ByoBlockCfg(type='bottle', d=2, c=1024, s=2, gs=32, br=0.25), ByoBlockCfg(type='bottle', d=2, c=2048, s=2, gs=32, br=0.25)), stem_chs=64, stem_type='tiered', stem_pool='maxpool', act_layer='silu', attn_layer='gca'), seresnext26ts=ByoModelCfg(blocks=(ByoBlockCfg(type='bottle', d=2, c=256, s=1, gs=32, br=0.25), ByoBlockCfg(type='bottle', d=2, c=512, s=2, gs=32, br=0.25), ByoBlockCfg(type='bottle', d=2, c=1024, s=2, gs=32, br=0.25), ByoBlockCfg(type='bottle', d=2, c=2048, s=2, gs=32, br=0.25)), stem_chs=64, stem_type='tiered', stem_pool='maxpool', act_layer='silu', attn_layer='se'), eca_resnext26ts=ByoModelCfg(blocks=(ByoBlockCfg(type='bottle', d=2, c=256, s=1, gs=32, br=0.25), ByoBlockCfg(type='bottle', d=2, c=512, s=2, gs=32, br=0.25), ByoBlockCfg(type='bottle', d=2, c=1024, s=2, gs=32, br=0.25), ByoBlockCfg(type='bottle', d=2, c=2048, s=2, gs=32, br=0.25)), stem_chs=64, stem_type='tiered', stem_pool='maxpool', act_layer='silu', attn_layer='eca'), bat_resnext26ts=ByoModelCfg(blocks=(ByoBlockCfg(type='bottle', d=2, c=256, s=1, gs=32, br=0.25), ByoBlockCfg(type='bottle', d=2, c=512, s=2, gs=32, br=0.25), ByoBlockCfg(type='bottle', d=2, c=1024, s=2, gs=32, br=0.25), ByoBlockCfg(type='bottle', d=2, c=2048, s=2, gs=32, br=0.25)), stem_chs=64, stem_type='tiered', stem_pool='maxpool', act_layer='silu', attn_layer='bat', attn_kwargs=dict(block_size=8)), resnet32ts=ByoModelCfg(blocks=(ByoBlockCfg(type='bottle', d=2, c=256, s=1, gs=0, br=0.25), ByoBlockCfg(type='bottle', d=3, c=512, s=2, gs=0, br=0.25), ByoBlockCfg(type='bottle', d=3, c=1536, s=2, gs=0, br=0.25), ByoBlockCfg(type='bottle', d=2, c=1536, s=2, gs=0, br=0.25)), stem_chs=64, stem_type='tiered', stem_pool='', num_features=0, act_layer='silu'), resnet33ts=ByoModelCfg(blocks=(ByoBlockCfg(type='bottle', d=2, c=256, s=1, gs=0, br=0.25), ByoBlockCfg(type='bottle', d=3, c=512, s=2, gs=0, br=0.25), ByoBlockCfg(type='bottle', d=3, c=1536, s=2, gs=0, br=0.25), ByoBlockCfg(type='bottle', d=2, c=1536, s=2, gs=0, br=0.25)), stem_chs=64, stem_type='tiered', stem_pool='', num_features=1280, act_layer='silu'), gcresnet33ts=ByoModelCfg(blocks=(ByoBlockCfg(type='bottle', d=2, c=256, s=1, gs=0, br=0.25), ByoBlockCfg(type='bottle', d=3, c=512, s=2, gs=0, br=0.25), ByoBlockCfg(type='bottle', d=3, c=1536, s=2, gs=0, br=0.25), ByoBlockCfg(type='bottle', d=2, c=1536, s=2, gs=0, br=0.25)), stem_chs=64, stem_type='tiered', stem_pool='', num_features=1280, act_layer='silu', attn_layer='gca'), seresnet33ts=ByoModelCfg(blocks=(ByoBlockCfg(type='bottle', d=2, c=256, s=1, gs=0, br=0.25), ByoBlockCfg(type='bottle', d=3, c=512, s=2, gs=0, br=0.25), ByoBlockCfg(type='bottle', d=3, c=1536, s=2, gs=0, br=0.25), ByoBlockCfg(type='bottle', d=2, c=1536, s=2, gs=0, br=0.25)), stem_chs=64, stem_type='tiered', stem_pool='', num_features=1280, act_layer='silu', attn_layer='se'), eca_resnet33ts=ByoModelCfg(blocks=(ByoBlockCfg(type='bottle', d=2, c=256, s=1, gs=0, br=0.25), ByoBlockCfg(type='bottle', d=3, c=512, s=2, gs=0, br=0.25), ByoBlockCfg(type='bottle', d=3, c=1536, s=2, gs=0, br=0.25), ByoBlockCfg(type='bottle', d=2, c=1536, s=2, gs=0, br=0.25)), stem_chs=64, stem_type='tiered', stem_pool='', num_features=1280, act_layer='silu', attn_layer='eca'), gcresnet50t=ByoModelCfg(blocks=(ByoBlockCfg(type='bottle', d=3, c=256, s=1, br=0.25), ByoBlockCfg(type='bottle', d=4, c=512, s=2, br=0.25), ByoBlockCfg(type='bottle', d=6, c=1024, s=2, br=0.25), ByoBlockCfg(type='bottle', d=3, c=2048, s=2, br=0.25)), stem_chs=64, stem_type='tiered', stem_pool='', attn_layer='gca'), gcresnext50ts=ByoModelCfg(blocks=(ByoBlockCfg(type='bottle', d=3, c=256, s=1, gs=32, br=0.25), ByoBlockCfg(type='bottle', d=4, c=512, s=2, gs=32, br=0.25), ByoBlockCfg(type='bottle', d=6, c=1024, s=2, gs=32, br=0.25), ByoBlockCfg(type='bottle', d=3, c=2048, s=2, gs=32, br=0.25)), stem_chs=64, stem_type='tiered', stem_pool='maxpool', act_layer='silu', attn_layer='gca'), regnetz_b16=ByoModelCfg(blocks=(ByoBlockCfg(type='bottle', d=2, c=48, s=2, gs=16, br=3), ByoBlockCfg(type='bottle', d=6, c=96, s=2, gs=16, br=3), ByoBlockCfg(type='bottle', d=12, c=192, s=2, gs=16, br=3), ByoBlockCfg(type='bottle', d=2, c=288, s=2, gs=16, br=3)), stem_chs=32, stem_pool='', downsample='', num_features=1536, act_layer='silu', attn_layer='se', attn_kwargs=dict(rd_ratio=0.25), block_kwargs=dict(bottle_in=True, linear_out=True)), regnetz_c16=ByoModelCfg(blocks=(ByoBlockCfg(type='bottle', d=2, c=48, s=2, gs=16, br=4), ByoBlockCfg(type='bottle', d=6, c=96, s=2, gs=16, br=4), ByoBlockCfg(type='bottle', d=12, c=192, s=2, gs=16, br=4), ByoBlockCfg(type='bottle', d=2, c=288, s=2, gs=16, br=4)), stem_chs=32, stem_pool='', downsample='', num_features=1536, act_layer='silu', attn_layer='se', attn_kwargs=dict(rd_ratio=0.25), block_kwargs=dict(bottle_in=True, linear_out=True)), regnetz_d32=ByoModelCfg(blocks=(ByoBlockCfg(type='bottle', d=3, c=64, s=1, gs=32, br=4), ByoBlockCfg(type='bottle', d=6, c=128, s=2, gs=32, br=4), ByoBlockCfg(type='bottle', d=12, c=256, s=2, gs=32, br=4), ByoBlockCfg(type='bottle', d=3, c=384, s=2, gs=32, br=4)), stem_chs=64, stem_type='tiered', stem_pool='', downsample='', num_features=1792, act_layer='silu', attn_layer='se', attn_kwargs=dict(rd_ratio=0.25), block_kwargs=dict(bottle_in=True, linear_out=True)), regnetz_d8=ByoModelCfg(blocks=(ByoBlockCfg(type='bottle', d=3, c=64, s=1, gs=8, br=4), ByoBlockCfg(type='bottle', d=6, c=128, s=2, gs=8, br=4), ByoBlockCfg(type='bottle', d=12, c=256, s=2, gs=8, br=4), ByoBlockCfg(type='bottle', d=3, c=384, s=2, gs=8, br=4)), stem_chs=64, stem_type='tiered', stem_pool='', downsample='', num_features=1792, act_layer='silu', attn_layer='se', attn_kwargs=dict(rd_ratio=0.25), block_kwargs=dict(bottle_in=True, linear_out=True)), regnetz_e8=ByoModelCfg(blocks=(ByoBlockCfg(type='bottle', d=3, c=96, s=1, gs=8, br=4), ByoBlockCfg(type='bottle', d=8, c=192, s=2, gs=8, br=4), ByoBlockCfg(type='bottle', d=16, c=384, s=2, gs=8, br=4), ByoBlockCfg(type='bottle', d=3, c=512, s=2, gs=8, br=4)), stem_chs=64, stem_type='tiered', stem_pool='', downsample='', num_features=2048, act_layer='silu', attn_layer='se', attn_kwargs=dict(rd_ratio=0.25), block_kwargs=dict(bottle_in=True, linear_out=True)), regnetz_b16_evos=ByoModelCfg(blocks=(ByoBlockCfg(type='bottle', d=2, c=48, s=2, gs=16, br=3), ByoBlockCfg(type='bottle', d=6, c=96, s=2, gs=16, br=3), ByoBlockCfg(type='bottle', d=12, c=192, s=2, gs=16, br=3), ByoBlockCfg(type='bottle', d=2, c=288, s=2, gs=16, br=3)), stem_chs=32, stem_pool='', downsample='', num_features=1536, act_layer='silu', norm_layer=partial(EvoNorm2dS0a, group_size=16), attn_layer='se', attn_kwargs=dict(rd_ratio=0.25), block_kwargs=dict(bottle_in=True, linear_out=True)), regnetz_c16_evos=ByoModelCfg(blocks=(ByoBlockCfg(type='bottle', d=2, c=48, s=2, gs=16, br=4), ByoBlockCfg(type='bottle', d=6, c=96, s=2, gs=16, br=4), ByoBlockCfg(type='bottle', d=12, c=192, s=2, gs=16, br=4), ByoBlockCfg(type='bottle', d=2, c=288, s=2, gs=16, br=4)), stem_chs=32, stem_pool='', downsample='', num_features=1536, act_layer='silu', norm_layer=partial(EvoNorm2dS0a, group_size=16), attn_layer='se', attn_kwargs=dict(rd_ratio=0.25), block_kwargs=dict(bottle_in=True, linear_out=True)), regnetz_d8_evos=ByoModelCfg(blocks=(ByoBlockCfg(type='bottle', d=3, c=64, s=1, gs=8, br=4), ByoBlockCfg(type='bottle', d=6, c=128, s=2, gs=8, br=4), ByoBlockCfg(type='bottle', d=12, c=256, s=2, gs=8, br=4), ByoBlockCfg(type='bottle', d=3, c=384, s=2, gs=8, br=4)), stem_chs=64, stem_type='deep', stem_pool='', downsample='', num_features=1792, act_layer='silu', norm_layer=partial(EvoNorm2dS0a, group_size=16), attn_layer='se', attn_kwargs=dict(rd_ratio=0.25), block_kwargs=dict(bottle_in=True, linear_out=True)), mobileone_s0=ByoModelCfg(blocks=_mobileone_bcfg(wf=(0.75, 1.0, 1.0, 2.0), num_conv_branches=4), stem_type='one', stem_chs=48), mobileone_s1=ByoModelCfg(blocks=_mobileone_bcfg(wf=(1.5, 1.5, 2.0, 2.5)), stem_type='one', stem_chs=64), mobileone_s2=ByoModelCfg(blocks=_mobileone_bcfg(wf=(1.5, 2.0, 2.5, 4.0)), stem_type='one', stem_chs=64), mobileone_s3=ByoModelCfg(blocks=_mobileone_bcfg(wf=(2.0, 2.5, 3.0, 4.0)), stem_type='one', stem_chs=64), mobileone_s4=ByoModelCfg(blocks=_mobileone_bcfg(wf=(3.0, 3.5, 3.5, 4.0), se_blocks=(0, 0, 5, 1)), stem_type='one', stem_chs=64), resnet50_clip=ByoModelCfg(blocks=(ByoBlockCfg(type='bottle', d=3, c=256, s=1, br=0.25), ByoBlockCfg(type='bottle', d=4, c=512, s=2, br=0.25), ByoBlockCfg(type='bottle', d=6, c=1024, s=2, br=0.25), ByoBlockCfg(type='bottle', d=3, c=2048, s=2, br=0.25)), stem_chs=(32, 32, 64), stem_type='', stem_pool='avg2', downsample='avg', aa_layer='avg', head_type='attn_abs'), resnet101_clip=ByoModelCfg(blocks=(ByoBlockCfg(type='bottle', d=3, c=256, s=1, br=0.25), ByoBlockCfg(type='bottle', d=4, c=512, s=2, br=0.25), ByoBlockCfg(type='bottle', d=23, c=1024, s=2, br=0.25), ByoBlockCfg(type='bottle', d=3, c=2048, s=2, br=0.25)), stem_chs=(32, 32, 64), stem_type='', stem_pool='avg2', downsample='avg', aa_layer='avg', head_type='attn_abs'), resnet50x4_clip=ByoModelCfg(blocks=(ByoBlockCfg(type='bottle', d=4, c=256, s=1, br=0.25), ByoBlockCfg(type='bottle', d=6, c=512, s=2, br=0.25), ByoBlockCfg(type='bottle', d=10, c=1024, s=2, br=0.25), ByoBlockCfg(type='bottle', d=6, c=2048, s=2, br=0.25)), width_factor=1.25, stem_chs=(32, 32, 64), stem_type='', stem_pool='avg2', downsample='avg', aa_layer='avg', head_type='attn_abs'), resnet50x16_clip=ByoModelCfg(blocks=(ByoBlockCfg(type='bottle', d=6, c=256, s=1, br=0.25), ByoBlockCfg(type='bottle', d=8, c=512, s=2, br=0.25), ByoBlockCfg(type='bottle', d=18, c=1024, s=2, br=0.25), ByoBlockCfg(type='bottle', d=8, c=2048, s=2, br=0.25)), width_factor=1.5, stem_chs=(32, 32, 64), stem_type='', stem_pool='avg2', downsample='avg', aa_layer='avg', head_type='attn_abs'), resnet50x64_clip=ByoModelCfg(blocks=(ByoBlockCfg(type='bottle', d=3, c=256, s=1, br=0.25), ByoBlockCfg(type='bottle', d=15, c=512, s=2, br=0.25), ByoBlockCfg(type='bottle', d=36, c=1024, s=2, br=0.25), ByoBlockCfg(type='bottle', d=10, c=2048, s=2, br=0.25)), width_factor=2.0, stem_chs=(32, 32, 64), stem_type='', stem_pool='avg2', downsample='avg', aa_layer='avg', head_type='attn_abs'), resnet50_mlp=ByoModelCfg(blocks=(ByoBlockCfg(type='bottle', d=3, c=256, s=1, br=0.25), ByoBlockCfg(type='bottle', d=4, c=512, s=2, br=0.25), ByoBlockCfg(type='bottle', d=6, c=1024, s=2, br=0.25), ByoBlockCfg(type='bottle', d=3, c=2048, s=2, br=0.25)), stem_chs=(32, 32, 64), stem_type='', stem_pool='avg2', downsample='avg', aa_layer='avg', head_hidden_size=1024, head_type='mlp'), test_byobnet=ByoModelCfg(blocks=(ByoBlockCfg(type='edge', d=1, c=32, s=2, gs=0, br=0.5), ByoBlockCfg(type='dark', d=1, c=64, s=2, gs=0, br=0.5), ByoBlockCfg(type='basic', d=1, c=128, s=2, gs=32, br=0.25), ByoBlockCfg(type='bottle', d=1, c=256, s=2, gs=64, br=0.25)), stem_chs=24, downsample='avg', stem_pool='', act_layer='relu', attn_layer='se', attn_kwargs=dict(rd_ratio=0.25))) +for k in ('resnet50_clip', 'resnet101_clip', 'resnet50x4_clip', 'resnet50x16_clip', 'resnet50x64_clip'): + model_cfgs[k + '_gap'] = replace(model_cfgs[k], head_type='classifier') + +def _convert_openai_clip(state_dict: Dict[str, torch.Tensor], model: ByobNet, prefix: str='visual.') -> Dict[str, torch.Tensor]: + model_has_attn_pool = isinstance(model.head, (RotAttentionPool2d, AttentionPool2d)) + import re + + def _stage_sub(m): + stage_idx = int(m.group(1)) - 1 + (layer_idx, layer_type, layer_id) = (int(m.group(2)), m.group(3), int(m.group(4))) + prefix_str = f'stages.{stage_idx}.{layer_idx}.' + id_map = {1: 'conv1_1x1.', 2: 'conv2_kxk.', 3: 'conv3_1x1.'} + suffix_str = id_map[layer_id] + layer_type + return prefix_str + suffix_str + + def _down_sub(m): + stage_idx = int(m.group(1)) - 1 + (layer_idx, layer_id) = (int(m.group(2)), int(m.group(3))) + return f'stages.{stage_idx}.{layer_idx}.shortcut.' + ('conv.conv' if layer_id == 0 else 'conv.bn') + out_dict = {} + for (k, v) in state_dict.items(): + if not k.startswith(prefix): + continue + k = re.sub(f'{prefix}conv([0-9])', 'stem.conv\\1.conv', k) + k = re.sub(f'{prefix}bn([0-9])', 'stem.conv\\1.bn', k) + k = re.sub(f'{prefix}layer([0-9])\\.([0-9]+)\\.([a-z]+)([0-9])', _stage_sub, k) + k = re.sub(f'{prefix}layer([0-9])\\.([0-9]+)\\.downsample\\.([0-9])', _down_sub, k) + if k.startswith(f'{prefix}attnpool'): + if not model_has_attn_pool: + continue + k = k.replace(prefix + 'attnpool', 'head') + k = k.replace('positional_embedding', 'pos_embed') + k = k.replace('q_proj', 'q') + k = k.replace('k_proj', 'k') + k = k.replace('v_proj', 'v') + k = k.replace('c_proj', 'proj') + out_dict[k] = v + return out_dict + +def checkpoint_filter_fn(state_dict: Dict[str, torch.Tensor], model: ByobNet): + if 'visual.conv1.weight' in state_dict: + state_dict = _convert_openai_clip(state_dict, model) + return state_dict + +def _create_byobnet(variant, pretrained=False, **kwargs): + return build_model_with_cfg(ByobNet, variant, pretrained, model_cfg=model_cfgs[variant], pretrained_filter_fn=checkpoint_filter_fn, feature_cfg=dict(flatten_sequential=True), **kwargs) + +def _cfg(url='', **kwargs): + return {'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), 'crop_pct': 0.875, 'interpolation': 'bilinear', 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'stem.conv', 'classifier': 'head.fc', **kwargs} + +def _cfgr(url='', **kwargs): + return {'url': url, 'num_classes': 1000, 'input_size': (3, 256, 256), 'pool_size': (8, 8), 'crop_pct': 0.9, 'interpolation': 'bicubic', 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'stem.conv1.conv', 'classifier': 'head.fc', **kwargs} +default_cfgs = generate_default_cfgs({'gernet_s.idstcv_in1k': _cfg(hf_hub_id='timm/'), 'gernet_m.idstcv_in1k': _cfg(hf_hub_id='timm/'), 'gernet_l.idstcv_in1k': _cfg(hf_hub_id='timm/', input_size=(3, 256, 256), pool_size=(8, 8)), 'repvgg_a0.rvgg_in1k': _cfg(hf_hub_id='timm/', first_conv=('stem.conv_kxk.conv', 'stem.conv_1x1.conv'), license='mit'), 'repvgg_a1.rvgg_in1k': _cfg(hf_hub_id='timm/', first_conv=('stem.conv_kxk.conv', 'stem.conv_1x1.conv'), license='mit'), 'repvgg_a2.rvgg_in1k': _cfg(hf_hub_id='timm/', first_conv=('stem.conv_kxk.conv', 'stem.conv_1x1.conv'), license='mit'), 'repvgg_b0.rvgg_in1k': _cfg(hf_hub_id='timm/', first_conv=('stem.conv_kxk.conv', 'stem.conv_1x1.conv'), license='mit'), 'repvgg_b1.rvgg_in1k': _cfg(hf_hub_id='timm/', first_conv=('stem.conv_kxk.conv', 'stem.conv_1x1.conv'), license='mit'), 'repvgg_b1g4.rvgg_in1k': _cfg(hf_hub_id='timm/', first_conv=('stem.conv_kxk.conv', 'stem.conv_1x1.conv'), license='mit'), 'repvgg_b2.rvgg_in1k': _cfg(hf_hub_id='timm/', first_conv=('stem.conv_kxk.conv', 'stem.conv_1x1.conv'), license='mit'), 'repvgg_b2g4.rvgg_in1k': _cfg(hf_hub_id='timm/', first_conv=('stem.conv_kxk.conv', 'stem.conv_1x1.conv'), license='mit'), 'repvgg_b3.rvgg_in1k': _cfg(hf_hub_id='timm/', first_conv=('stem.conv_kxk.conv', 'stem.conv_1x1.conv'), license='mit'), 'repvgg_b3g4.rvgg_in1k': _cfg(hf_hub_id='timm/', first_conv=('stem.conv_kxk.conv', 'stem.conv_1x1.conv'), license='mit'), 'repvgg_d2se.rvgg_in1k': _cfg(hf_hub_id='timm/', first_conv=('stem.conv_kxk.conv', 'stem.conv_1x1.conv'), license='mit', input_size=(3, 320, 320), pool_size=(10, 10), crop_pct=1.0), 'resnet51q.ra2_in1k': _cfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet51q_ra2-d47dcc76.pth', first_conv='stem.conv1', input_size=(3, 256, 256), pool_size=(8, 8), test_input_size=(3, 288, 288), test_crop_pct=1.0), 'resnet61q.ra2_in1k': _cfgr(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet61q_ra2-6afc536c.pth', test_input_size=(3, 288, 288), test_crop_pct=1.0), 'resnext26ts.ra2_in1k': _cfgr(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/resnext26ts_256_ra2-8bbd9106.pth', test_input_size=(3, 288, 288), test_crop_pct=1.0), 'seresnext26ts.ch_in1k': _cfgr(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/seresnext26ts_256-6f0d74a3.pth', test_input_size=(3, 288, 288), test_crop_pct=1.0), 'gcresnext26ts.ch_in1k': _cfgr(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/gcresnext26ts_256-e414378b.pth', test_input_size=(3, 288, 288), test_crop_pct=1.0), 'eca_resnext26ts.ch_in1k': _cfgr(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/eca_resnext26ts_256-5a1d030f.pth', test_input_size=(3, 288, 288), test_crop_pct=1.0), 'bat_resnext26ts.ch_in1k': _cfgr(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/bat_resnext26ts_256-fa6fd595.pth', min_input_size=(3, 256, 256)), 'resnet32ts.ra2_in1k': _cfgr(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/resnet32ts_256-aacf5250.pth', test_input_size=(3, 288, 288), test_crop_pct=1.0), 'resnet33ts.ra2_in1k': _cfgr(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/resnet33ts_256-e91b09a4.pth', test_input_size=(3, 288, 288), test_crop_pct=1.0), 'gcresnet33ts.ra2_in1k': _cfgr(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/gcresnet33ts_256-0e0cd345.pth', test_input_size=(3, 288, 288), test_crop_pct=1.0), 'seresnet33ts.ra2_in1k': _cfgr(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/seresnet33ts_256-f8ad44d9.pth', test_input_size=(3, 288, 288), test_crop_pct=1.0), 'eca_resnet33ts.ra2_in1k': _cfgr(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/eca_resnet33ts_256-8f98face.pth', test_input_size=(3, 288, 288), test_crop_pct=1.0), 'gcresnet50t.ra2_in1k': _cfgr(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/gcresnet50t_256-96374d1c.pth', test_input_size=(3, 288, 288), test_crop_pct=1.0), 'gcresnext50ts.ch_in1k': _cfgr(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/gcresnext50ts_256-3e0f515e.pth', test_input_size=(3, 288, 288), test_crop_pct=1.0), 'regnetz_b16.ra3_in1k': _cfgr(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/regnetz_b_raa-677d9606.pth', first_conv='stem.conv', mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), input_size=(3, 224, 224), pool_size=(7, 7), crop_pct=0.94, test_input_size=(3, 288, 288), test_crop_pct=1.0), 'regnetz_c16.ra3_in1k': _cfgr(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/regnetz_c_rab2_256-a54bf36a.pth', first_conv='stem.conv', mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=0.94, test_input_size=(3, 320, 320), test_crop_pct=1.0), 'regnetz_d32.ra3_in1k': _cfgr(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/regnetz_d_rab_256-b8073a89.pth', mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=0.95, test_input_size=(3, 320, 320)), 'regnetz_d8.ra3_in1k': _cfgr(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/regnetz_d8_bh-afc03c55.pth', mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=0.94, test_input_size=(3, 320, 320), test_crop_pct=1.0), 'regnetz_e8.ra3_in1k': _cfgr(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/regnetz_e8_bh-aace8e6e.pth', mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=0.94, test_input_size=(3, 320, 320), test_crop_pct=1.0), 'regnetz_b16_evos.untrained': _cfgr(first_conv='stem.conv', mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), input_size=(3, 224, 224), pool_size=(7, 7), crop_pct=0.95, test_input_size=(3, 288, 288)), 'regnetz_c16_evos.ch_in1k': _cfgr(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/regnetz_c16_evos_ch-d8311942.pth', first_conv='stem.conv', mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=0.95, test_input_size=(3, 320, 320)), 'regnetz_d8_evos.ch_in1k': _cfgr(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/regnetz_d8_evos_ch-2bc12646.pth', mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=0.95, test_input_size=(3, 320, 320), test_crop_pct=1.0), 'mobileone_s0.apple_in1k': _cfg(hf_hub_id='timm/', crop_pct=0.875, first_conv=('stem.conv_kxk.0.conv', 'stem.conv_scale.conv')), 'mobileone_s1.apple_in1k': _cfg(hf_hub_id='timm/', crop_pct=0.9, first_conv=('stem.conv_kxk.0.conv', 'stem.conv_scale.conv')), 'mobileone_s2.apple_in1k': _cfg(hf_hub_id='timm/', crop_pct=0.9, first_conv=('stem.conv_kxk.0.conv', 'stem.conv_scale.conv')), 'mobileone_s3.apple_in1k': _cfg(hf_hub_id='timm/', crop_pct=0.9, first_conv=('stem.conv_kxk.0.conv', 'stem.conv_scale.conv')), 'mobileone_s4.apple_in1k': _cfg(hf_hub_id='timm/', crop_pct=0.9, first_conv=('stem.conv_kxk.0.conv', 'stem.conv_scale.conv')), 'resnet50_clip.openai': _cfgr(hf_hub_id='timm/', hf_hub_filename='open_clip_pytorch_model.bin', num_classes=1024, mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, fixed_input_size=True, input_size=(3, 224, 224), pool_size=(7, 7), classifier='head.proj'), 'resnet101_clip.openai': _cfgr(hf_hub_id='timm/', hf_hub_filename='open_clip_pytorch_model.bin', num_classes=512, mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, fixed_input_size=True, input_size=(3, 224, 224), pool_size=(7, 7), classifier='head.proj'), 'resnet50x4_clip.openai': _cfgr(hf_hub_id='timm/', hf_hub_filename='open_clip_pytorch_model.bin', num_classes=640, mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, fixed_input_size=True, input_size=(3, 288, 288), pool_size=(9, 9), classifier='head.proj'), 'resnet50x16_clip.openai': _cfgr(hf_hub_id='timm/', hf_hub_filename='open_clip_pytorch_model.bin', num_classes=768, mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, fixed_input_size=True, input_size=(3, 384, 384), pool_size=(12, 12), classifier='head.proj'), 'resnet50x64_clip.openai': _cfgr(hf_hub_id='timm/', hf_hub_filename='open_clip_pytorch_model.bin', num_classes=1024, mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, fixed_input_size=True, input_size=(3, 448, 448), pool_size=(14, 14), classifier='head.proj'), 'resnet50_clip_gap.openai': _cfgr(hf_hub_id='timm/resnet50_clip.openai', hf_hub_filename='open_clip_pytorch_model.bin', num_classes=0, mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, input_size=(3, 224, 224), pool_size=(7, 7)), 'resnet101_clip_gap.openai': _cfgr(hf_hub_id='timm/resnet101_clip.openai', hf_hub_filename='open_clip_pytorch_model.bin', num_classes=0, mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, input_size=(3, 224, 224), pool_size=(7, 7)), 'resnet50x4_clip_gap.openai': _cfgr(hf_hub_id='timm/resnet50x4_clip.openai', hf_hub_filename='open_clip_pytorch_model.bin', num_classes=0, mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, input_size=(3, 288, 288), pool_size=(9, 9)), 'resnet50x16_clip_gap.openai': _cfgr(hf_hub_id='timm/resnet50x16_clip.openai', hf_hub_filename='open_clip_pytorch_model.bin', num_classes=0, mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, input_size=(3, 384, 384), pool_size=(12, 12)), 'resnet50x64_clip_gap.openai': _cfgr(hf_hub_id='timm/resnet50x64_clip.openai', hf_hub_filename='open_clip_pytorch_model.bin', num_classes=0, mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, input_size=(3, 448, 448), pool_size=(14, 14)), 'resnet50_mlp.untrained': _cfgr(input_size=(3, 256, 256), pool_size=(8, 8)), 'test_byobnet.r160_in1k': _cfgr(hf_hub_id='timm/', first_conv='stem.conv', input_size=(3, 160, 160), crop_pct=0.875, pool_size=(5, 5))}) + +@register_model +def gernet_l(pretrained=False, **kwargs) -> ByobNet: + return _create_byobnet('gernet_l', pretrained=pretrained, **kwargs) + +@register_model +def gernet_m(pretrained=False, **kwargs) -> ByobNet: + return _create_byobnet('gernet_m', pretrained=pretrained, **kwargs) + +@register_model +def gernet_s(pretrained=False, **kwargs) -> ByobNet: + return _create_byobnet('gernet_s', pretrained=pretrained, **kwargs) + +@register_model +def repvgg_a0(pretrained=False, **kwargs) -> ByobNet: + return _create_byobnet('repvgg_a0', pretrained=pretrained, **kwargs) + +@register_model +def repvgg_a1(pretrained=False, **kwargs) -> ByobNet: + return _create_byobnet('repvgg_a1', pretrained=pretrained, **kwargs) + +@register_model +def repvgg_a2(pretrained=False, **kwargs) -> ByobNet: + return _create_byobnet('repvgg_a2', pretrained=pretrained, **kwargs) + +@register_model +def repvgg_b0(pretrained=False, **kwargs) -> ByobNet: + return _create_byobnet('repvgg_b0', pretrained=pretrained, **kwargs) + +@register_model +def repvgg_b1(pretrained=False, **kwargs) -> ByobNet: + return _create_byobnet('repvgg_b1', pretrained=pretrained, **kwargs) + +@register_model +def repvgg_b1g4(pretrained=False, **kwargs) -> ByobNet: + return _create_byobnet('repvgg_b1g4', pretrained=pretrained, **kwargs) + +@register_model +def repvgg_b2(pretrained=False, **kwargs) -> ByobNet: + return _create_byobnet('repvgg_b2', pretrained=pretrained, **kwargs) + +@register_model +def repvgg_b2g4(pretrained=False, **kwargs) -> ByobNet: + return _create_byobnet('repvgg_b2g4', pretrained=pretrained, **kwargs) + +@register_model +def repvgg_b3(pretrained=False, **kwargs) -> ByobNet: + return _create_byobnet('repvgg_b3', pretrained=pretrained, **kwargs) + +@register_model +def repvgg_b3g4(pretrained=False, **kwargs) -> ByobNet: + return _create_byobnet('repvgg_b3g4', pretrained=pretrained, **kwargs) + +@register_model +def repvgg_d2se(pretrained=False, **kwargs) -> ByobNet: + return _create_byobnet('repvgg_d2se', pretrained=pretrained, **kwargs) + +@register_model +def resnet51q(pretrained=False, **kwargs) -> ByobNet: + return _create_byobnet('resnet51q', pretrained=pretrained, **kwargs) + +@register_model +def resnet61q(pretrained=False, **kwargs) -> ByobNet: + return _create_byobnet('resnet61q', pretrained=pretrained, **kwargs) + +@register_model +def resnext26ts(pretrained=False, **kwargs) -> ByobNet: + return _create_byobnet('resnext26ts', pretrained=pretrained, **kwargs) + +@register_model +def gcresnext26ts(pretrained=False, **kwargs) -> ByobNet: + return _create_byobnet('gcresnext26ts', pretrained=pretrained, **kwargs) + +@register_model +def seresnext26ts(pretrained=False, **kwargs) -> ByobNet: + return _create_byobnet('seresnext26ts', pretrained=pretrained, **kwargs) + +@register_model +def eca_resnext26ts(pretrained=False, **kwargs) -> ByobNet: + return _create_byobnet('eca_resnext26ts', pretrained=pretrained, **kwargs) + +@register_model +def bat_resnext26ts(pretrained=False, **kwargs) -> ByobNet: + return _create_byobnet('bat_resnext26ts', pretrained=pretrained, **kwargs) + +@register_model +def resnet32ts(pretrained=False, **kwargs) -> ByobNet: + return _create_byobnet('resnet32ts', pretrained=pretrained, **kwargs) + +@register_model +def resnet33ts(pretrained=False, **kwargs) -> ByobNet: + return _create_byobnet('resnet33ts', pretrained=pretrained, **kwargs) + +@register_model +def gcresnet33ts(pretrained=False, **kwargs) -> ByobNet: + return _create_byobnet('gcresnet33ts', pretrained=pretrained, **kwargs) + +@register_model +def seresnet33ts(pretrained=False, **kwargs) -> ByobNet: + return _create_byobnet('seresnet33ts', pretrained=pretrained, **kwargs) + +@register_model +def eca_resnet33ts(pretrained=False, **kwargs) -> ByobNet: + return _create_byobnet('eca_resnet33ts', pretrained=pretrained, **kwargs) + +@register_model +def gcresnet50t(pretrained=False, **kwargs) -> ByobNet: + return _create_byobnet('gcresnet50t', pretrained=pretrained, **kwargs) + +@register_model +def gcresnext50ts(pretrained=False, **kwargs) -> ByobNet: + return _create_byobnet('gcresnext50ts', pretrained=pretrained, **kwargs) + +@register_model +def regnetz_b16(pretrained=False, **kwargs) -> ByobNet: + return _create_byobnet('regnetz_b16', pretrained=pretrained, **kwargs) + +@register_model +def regnetz_c16(pretrained=False, **kwargs) -> ByobNet: + return _create_byobnet('regnetz_c16', pretrained=pretrained, **kwargs) + +@register_model +def regnetz_d32(pretrained=False, **kwargs) -> ByobNet: + return _create_byobnet('regnetz_d32', pretrained=pretrained, **kwargs) + +@register_model +def regnetz_d8(pretrained=False, **kwargs) -> ByobNet: + return _create_byobnet('regnetz_d8', pretrained=pretrained, **kwargs) + +@register_model +def regnetz_e8(pretrained=False, **kwargs) -> ByobNet: + return _create_byobnet('regnetz_e8', pretrained=pretrained, **kwargs) + +@register_model +def regnetz_b16_evos(pretrained=False, **kwargs) -> ByobNet: + return _create_byobnet('regnetz_b16_evos', pretrained=pretrained, **kwargs) + +@register_model +def regnetz_c16_evos(pretrained=False, **kwargs) -> ByobNet: + return _create_byobnet('regnetz_c16_evos', pretrained=pretrained, **kwargs) + +@register_model +def regnetz_d8_evos(pretrained=False, **kwargs) -> ByobNet: + return _create_byobnet('regnetz_d8_evos', pretrained=pretrained, **kwargs) + +@register_model +def mobileone_s0(pretrained=False, **kwargs) -> ByobNet: + return _create_byobnet('mobileone_s0', pretrained=pretrained, **kwargs) + +@register_model +def mobileone_s1(pretrained=False, **kwargs) -> ByobNet: + return _create_byobnet('mobileone_s1', pretrained=pretrained, **kwargs) + +@register_model +def mobileone_s2(pretrained=False, **kwargs) -> ByobNet: + return _create_byobnet('mobileone_s2', pretrained=pretrained, **kwargs) + +@register_model +def mobileone_s3(pretrained=False, **kwargs) -> ByobNet: + return _create_byobnet('mobileone_s3', pretrained=pretrained, **kwargs) + +@register_model +def mobileone_s4(pretrained=False, **kwargs) -> ByobNet: + return _create_byobnet('mobileone_s4', pretrained=pretrained, **kwargs) + +@register_model +def resnet50_clip(pretrained=False, **kwargs) -> ByobNet: + return _create_byobnet('resnet50_clip', pretrained=pretrained, **kwargs) + +@register_model +def resnet101_clip(pretrained=False, **kwargs) -> ByobNet: + return _create_byobnet('resnet101_clip', pretrained=pretrained, **kwargs) + +@register_model +def resnet50x4_clip(pretrained=False, **kwargs) -> ByobNet: + return _create_byobnet('resnet50x4_clip', pretrained=pretrained, **kwargs) + +@register_model +def resnet50x16_clip(pretrained=False, **kwargs) -> ByobNet: + return _create_byobnet('resnet50x16_clip', pretrained=pretrained, **kwargs) + +@register_model +def resnet50x64_clip(pretrained=False, **kwargs) -> ByobNet: + return _create_byobnet('resnet50x64_clip', pretrained=pretrained, **kwargs) + +@register_model +def resnet50_clip_gap(pretrained=False, **kwargs) -> ByobNet: + return _create_byobnet('resnet50_clip_gap', pretrained=pretrained, **kwargs) + +@register_model +def resnet101_clip_gap(pretrained=False, **kwargs) -> ByobNet: + return _create_byobnet('resnet101_clip_gap', pretrained=pretrained, **kwargs) + +@register_model +def resnet50x4_clip_gap(pretrained=False, **kwargs) -> ByobNet: + return _create_byobnet('resnet50x4_clip_gap', pretrained=pretrained, **kwargs) + +@register_model +def resnet50x16_clip_gap(pretrained=False, **kwargs) -> ByobNet: + return _create_byobnet('resnet50x16_clip_gap', pretrained=pretrained, **kwargs) + +@register_model +def resnet50x64_clip_gap(pretrained=False, **kwargs) -> ByobNet: + return _create_byobnet('resnet50x64_clip_gap', pretrained=pretrained, **kwargs) + +@register_model +def resnet50_mlp(pretrained=False, **kwargs) -> ByobNet: + return _create_byobnet('resnet50_mlp', pretrained=pretrained, **kwargs) + +@register_model +def test_byobnet(pretrained=False, **kwargs) -> ByobNet: + return _create_byobnet('test_byobnet', pretrained=pretrained, **kwargs) + +# File: pytorch-image-models-main/timm/models/cait.py +"""""" +from functools import partial +from typing import List, Optional, Tuple, Union +import torch +import torch.nn as nn +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from timm.layers import PatchEmbed, Mlp, DropPath, trunc_normal_, use_fused_attn +from ._builder import build_model_with_cfg +from ._features import feature_take_indices +from ._manipulate import checkpoint_seq +from ._registry import register_model, generate_default_cfgs +__all__ = ['Cait', 'ClassAttn', 'LayerScaleBlockClassAttn', 'LayerScaleBlock', 'TalkingHeadAttn'] + +class ClassAttn(nn.Module): + fused_attn: torch.jit.Final[bool] + + def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0.0, proj_drop=0.0): + super().__init__() + self.num_heads = num_heads + head_dim = dim // num_heads + self.scale = head_dim ** (-0.5) + self.fused_attn = use_fused_attn() + self.q = nn.Linear(dim, dim, bias=qkv_bias) + self.k = nn.Linear(dim, dim, bias=qkv_bias) + self.v = nn.Linear(dim, dim, bias=qkv_bias) + self.attn_drop = nn.Dropout(attn_drop) + self.proj = nn.Linear(dim, dim) + self.proj_drop = nn.Dropout(proj_drop) + + def forward(self, x): + (B, N, C) = x.shape + q = self.q(x[:, 0]).unsqueeze(1).reshape(B, 1, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) + k = self.k(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) + v = self.v(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) + if self.fused_attn: + x_cls = torch.nn.functional.scaled_dot_product_attention(q, k, v, dropout_p=self.attn_drop.p if self.training else 0.0) + else: + q = q * self.scale + attn = q @ k.transpose(-2, -1) + attn = attn.softmax(dim=-1) + attn = self.attn_drop(attn) + x_cls = attn @ v + x_cls = x_cls.transpose(1, 2).reshape(B, 1, C) + x_cls = self.proj(x_cls) + x_cls = self.proj_drop(x_cls) + return x_cls + +class LayerScaleBlockClassAttn(nn.Module): + + def __init__(self, dim, num_heads, mlp_ratio=4.0, qkv_bias=False, proj_drop=0.0, attn_drop=0.0, drop_path=0.0, act_layer=nn.GELU, norm_layer=nn.LayerNorm, attn_block=ClassAttn, mlp_block=Mlp, init_values=0.0001): + super().__init__() + self.norm1 = norm_layer(dim) + self.attn = attn_block(dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=proj_drop) + self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + self.norm2 = norm_layer(dim) + mlp_hidden_dim = int(dim * mlp_ratio) + self.mlp = mlp_block(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=proj_drop) + self.gamma_1 = nn.Parameter(init_values * torch.ones(dim)) + self.gamma_2 = nn.Parameter(init_values * torch.ones(dim)) + + def forward(self, x, x_cls): + u = torch.cat((x_cls, x), dim=1) + x_cls = x_cls + self.drop_path(self.gamma_1 * self.attn(self.norm1(u))) + x_cls = x_cls + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x_cls))) + return x_cls + +class TalkingHeadAttn(nn.Module): + + def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0.0, proj_drop=0.0): + super().__init__() + self.num_heads = num_heads + head_dim = dim // num_heads + self.scale = head_dim ** (-0.5) + self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) + self.attn_drop = nn.Dropout(attn_drop) + self.proj = nn.Linear(dim, dim) + self.proj_l = nn.Linear(num_heads, num_heads) + self.proj_w = nn.Linear(num_heads, num_heads) + self.proj_drop = nn.Dropout(proj_drop) + + def forward(self, x): + (B, N, C) = x.shape + qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) + (q, k, v) = (qkv[0] * self.scale, qkv[1], qkv[2]) + attn = q @ k.transpose(-2, -1) + attn = self.proj_l(attn.permute(0, 2, 3, 1)).permute(0, 3, 1, 2) + attn = attn.softmax(dim=-1) + attn = self.proj_w(attn.permute(0, 2, 3, 1)).permute(0, 3, 1, 2) + attn = self.attn_drop(attn) + x = (attn @ v).transpose(1, 2).reshape(B, N, C) + x = self.proj(x) + x = self.proj_drop(x) + return x + +class LayerScaleBlock(nn.Module): + + def __init__(self, dim, num_heads, mlp_ratio=4.0, qkv_bias=False, proj_drop=0.0, attn_drop=0.0, drop_path=0.0, act_layer=nn.GELU, norm_layer=nn.LayerNorm, attn_block=TalkingHeadAttn, mlp_block=Mlp, init_values=0.0001): + super().__init__() + self.norm1 = norm_layer(dim) + self.attn = attn_block(dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=proj_drop) + self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + self.norm2 = norm_layer(dim) + mlp_hidden_dim = int(dim * mlp_ratio) + self.mlp = mlp_block(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=proj_drop) + self.gamma_1 = nn.Parameter(init_values * torch.ones(dim)) + self.gamma_2 = nn.Parameter(init_values * torch.ones(dim)) + + def forward(self, x): + x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x))) + x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x))) + return x + +class Cait(nn.Module): + + def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, global_pool='token', embed_dim=768, depth=12, num_heads=12, mlp_ratio=4.0, qkv_bias=True, drop_rate=0.0, pos_drop_rate=0.0, proj_drop_rate=0.0, attn_drop_rate=0.0, drop_path_rate=0.0, block_layers=LayerScaleBlock, block_layers_token=LayerScaleBlockClassAttn, patch_layer=PatchEmbed, norm_layer=partial(nn.LayerNorm, eps=1e-06), act_layer=nn.GELU, attn_block=TalkingHeadAttn, mlp_block=Mlp, init_values=0.0001, attn_block_token_only=ClassAttn, mlp_block_token_only=Mlp, depth_token_only=2, mlp_ratio_token_only=4.0): + super().__init__() + assert global_pool in ('', 'token', 'avg') + self.num_classes = num_classes + self.global_pool = global_pool + self.num_features = self.head_hidden_size = self.embed_dim = embed_dim + self.grad_checkpointing = False + self.patch_embed = patch_layer(img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim) + num_patches = self.patch_embed.num_patches + r = self.patch_embed.feat_ratio() if hasattr(self.patch_embed, 'feat_ratio') else patch_size + self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) + self.pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim)) + self.pos_drop = nn.Dropout(p=pos_drop_rate) + dpr = [drop_path_rate for i in range(depth)] + self.blocks = nn.Sequential(*[block_layers(dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, proj_drop=proj_drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, act_layer=act_layer, attn_block=attn_block, mlp_block=mlp_block, init_values=init_values) for i in range(depth)]) + self.feature_info = [dict(num_chs=embed_dim, reduction=r, module=f'blocks.{i}') for i in range(depth)] + self.blocks_token_only = nn.ModuleList([block_layers_token(dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio_token_only, qkv_bias=qkv_bias, norm_layer=norm_layer, act_layer=act_layer, attn_block=attn_block_token_only, mlp_block=mlp_block_token_only, init_values=init_values) for _ in range(depth_token_only)]) + self.norm = norm_layer(embed_dim) + self.head_drop = nn.Dropout(drop_rate) + self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity() + trunc_normal_(self.pos_embed, std=0.02) + trunc_normal_(self.cls_token, std=0.02) + self.apply(self._init_weights) + + def _init_weights(self, m): + if isinstance(m, nn.Linear): + trunc_normal_(m.weight, std=0.02) + if isinstance(m, nn.Linear) and m.bias is not None: + nn.init.constant_(m.bias, 0) + elif isinstance(m, nn.LayerNorm): + nn.init.constant_(m.bias, 0) + nn.init.constant_(m.weight, 1.0) + + @torch.jit.ignore + def no_weight_decay(self): + return {'pos_embed', 'cls_token'} + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + self.grad_checkpointing = enable + + @torch.jit.ignore + def group_matcher(self, coarse=False): + + def _matcher(name): + if any([name.startswith(n) for n in ('cls_token', 'pos_embed', 'patch_embed')]): + return 0 + elif name.startswith('blocks.'): + return int(name.split('.')[1]) + 1 + elif name.startswith('blocks_token_only.'): + to_offset = len(self.blocks) - len(self.blocks_token_only) + 1 + return int(name.split('.')[1]) + to_offset + elif name.startswith('norm.'): + return len(self.blocks) + else: + return float('inf') + return _matcher + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.head + + def reset_classifier(self, num_classes: int, global_pool: Optional[str]=None): + self.num_classes = num_classes + if global_pool is not None: + assert global_pool in ('', 'token', 'avg') + self.global_pool = global_pool + self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() + + def forward_intermediates(self, x: torch.Tensor, indices: Optional[Union[int, List[int]]]=None, norm: bool=False, stop_early: bool=False, output_fmt: str='NCHW', intermediates_only: bool=False) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]: + assert output_fmt in ('NCHW', 'NLC'), 'Output format must be one of NCHW or NLC.' + reshape = output_fmt == 'NCHW' + intermediates = [] + (take_indices, max_index) = feature_take_indices(len(self.blocks), indices) + (B, _, height, width) = x.shape + x = self.patch_embed(x) + x = x + self.pos_embed + x = self.pos_drop(x) + if torch.jit.is_scripting() or not stop_early: + blocks = self.blocks + else: + blocks = self.blocks[:max_index + 1] + for (i, blk) in enumerate(blocks): + x = blk(x) + if i in take_indices: + intermediates.append(self.norm(x) if norm else x) + if reshape: + (H, W) = self.patch_embed.dynamic_feat_size((height, width)) + intermediates = [y.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous() for y in intermediates] + if intermediates_only: + return intermediates + cls_tokens = self.cls_token.expand(x.shape[0], -1, -1) + for (i, blk) in enumerate(self.blocks_token_only): + cls_tokens = blk(x, cls_tokens) + x = torch.cat((cls_tokens, x), dim=1) + x = self.norm(x) + return (x, intermediates) + + def prune_intermediate_layers(self, indices: Union[int, List[int]]=1, prune_norm: bool=False, prune_head: bool=True): + (take_indices, max_index) = feature_take_indices(len(self.blocks), indices) + self.blocks = self.blocks[:max_index + 1] + if prune_norm: + self.norm = nn.Identity() + if prune_head: + self.blocks_token_only = nn.ModuleList() + self.reset_classifier(0, '') + return take_indices + + def forward_features(self, x): + x = self.patch_embed(x) + x = x + self.pos_embed + x = self.pos_drop(x) + if self.grad_checkpointing and (not torch.jit.is_scripting()): + x = checkpoint_seq(self.blocks, x) + else: + x = self.blocks(x) + cls_tokens = self.cls_token.expand(x.shape[0], -1, -1) + for (i, blk) in enumerate(self.blocks_token_only): + cls_tokens = blk(x, cls_tokens) + x = torch.cat((cls_tokens, x), dim=1) + x = self.norm(x) + return x + + def forward_head(self, x, pre_logits: bool=False): + if self.global_pool: + x = x[:, 1:].mean(dim=1) if self.global_pool == 'avg' else x[:, 0] + x = self.head_drop(x) + return x if pre_logits else self.head(x) + + def forward(self, x): + x = self.forward_features(x) + x = self.forward_head(x) + return x + +def checkpoint_filter_fn(state_dict, model=None): + if 'model' in state_dict: + state_dict = state_dict['model'] + checkpoint_no_module = {} + for (k, v) in state_dict.items(): + checkpoint_no_module[k.replace('module.', '')] = v + return checkpoint_no_module + +def _create_cait(variant, pretrained=False, **kwargs): + out_indices = kwargs.pop('out_indices', 3) + model = build_model_with_cfg(Cait, variant, pretrained, pretrained_filter_fn=checkpoint_filter_fn, feature_cfg=dict(out_indices=out_indices, feature_cls='getter'), **kwargs) + return model + +def _cfg(url='', **kwargs): + return {'url': url, 'num_classes': 1000, 'input_size': (3, 384, 384), 'pool_size': None, 'crop_pct': 1.0, 'interpolation': 'bicubic', 'fixed_input_size': True, 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'patch_embed.proj', 'classifier': 'head', **kwargs} +default_cfgs = generate_default_cfgs({'cait_xxs24_224.fb_dist_in1k': _cfg(hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/deit/XXS24_224.pth', input_size=(3, 224, 224)), 'cait_xxs24_384.fb_dist_in1k': _cfg(hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/deit/XXS24_384.pth'), 'cait_xxs36_224.fb_dist_in1k': _cfg(hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/deit/XXS36_224.pth', input_size=(3, 224, 224)), 'cait_xxs36_384.fb_dist_in1k': _cfg(hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/deit/XXS36_384.pth'), 'cait_xs24_384.fb_dist_in1k': _cfg(hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/deit/XS24_384.pth'), 'cait_s24_224.fb_dist_in1k': _cfg(hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/deit/S24_224.pth', input_size=(3, 224, 224)), 'cait_s24_384.fb_dist_in1k': _cfg(hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/deit/S24_384.pth'), 'cait_s36_384.fb_dist_in1k': _cfg(hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/deit/S36_384.pth'), 'cait_m36_384.fb_dist_in1k': _cfg(hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/deit/M36_384.pth'), 'cait_m48_448.fb_dist_in1k': _cfg(hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/deit/M48_448.pth', input_size=(3, 448, 448))}) + +@register_model +def cait_xxs24_224(pretrained=False, **kwargs) -> Cait: + model_args = dict(patch_size=16, embed_dim=192, depth=24, num_heads=4, init_values=1e-05) + model = _create_cait('cait_xxs24_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def cait_xxs24_384(pretrained=False, **kwargs) -> Cait: + model_args = dict(patch_size=16, embed_dim=192, depth=24, num_heads=4, init_values=1e-05) + model = _create_cait('cait_xxs24_384', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def cait_xxs36_224(pretrained=False, **kwargs) -> Cait: + model_args = dict(patch_size=16, embed_dim=192, depth=36, num_heads=4, init_values=1e-05) + model = _create_cait('cait_xxs36_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def cait_xxs36_384(pretrained=False, **kwargs) -> Cait: + model_args = dict(patch_size=16, embed_dim=192, depth=36, num_heads=4, init_values=1e-05) + model = _create_cait('cait_xxs36_384', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def cait_xs24_384(pretrained=False, **kwargs) -> Cait: + model_args = dict(patch_size=16, embed_dim=288, depth=24, num_heads=6, init_values=1e-05) + model = _create_cait('cait_xs24_384', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def cait_s24_224(pretrained=False, **kwargs) -> Cait: + model_args = dict(patch_size=16, embed_dim=384, depth=24, num_heads=8, init_values=1e-05) + model = _create_cait('cait_s24_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def cait_s24_384(pretrained=False, **kwargs) -> Cait: + model_args = dict(patch_size=16, embed_dim=384, depth=24, num_heads=8, init_values=1e-05) + model = _create_cait('cait_s24_384', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def cait_s36_384(pretrained=False, **kwargs) -> Cait: + model_args = dict(patch_size=16, embed_dim=384, depth=36, num_heads=8, init_values=1e-06) + model = _create_cait('cait_s36_384', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def cait_m36_384(pretrained=False, **kwargs) -> Cait: + model_args = dict(patch_size=16, embed_dim=768, depth=36, num_heads=16, init_values=1e-06) + model = _create_cait('cait_m36_384', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def cait_m48_448(pretrained=False, **kwargs) -> Cait: + model_args = dict(patch_size=16, embed_dim=768, depth=48, num_heads=16, init_values=1e-06) + model = _create_cait('cait_m48_448', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +# File: pytorch-image-models-main/timm/models/coat.py +"""""" +from typing import List, Optional, Tuple, Union +import torch +import torch.nn as nn +import torch.nn.functional as F +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from timm.layers import PatchEmbed, Mlp, DropPath, to_2tuple, trunc_normal_, _assert, LayerNorm +from ._builder import build_model_with_cfg +from ._registry import register_model, generate_default_cfgs +__all__ = ['CoaT'] + +class ConvRelPosEnc(nn.Module): + + def __init__(self, head_chs, num_heads, window): + super().__init__() + if isinstance(window, int): + window = {window: num_heads} + self.window = window + elif isinstance(window, dict): + self.window = window + else: + raise ValueError() + self.conv_list = nn.ModuleList() + self.head_splits = [] + for (cur_window, cur_head_split) in window.items(): + dilation = 1 + padding_size = (cur_window + (cur_window - 1) * (dilation - 1)) // 2 + cur_conv = nn.Conv2d(cur_head_split * head_chs, cur_head_split * head_chs, kernel_size=(cur_window, cur_window), padding=(padding_size, padding_size), dilation=(dilation, dilation), groups=cur_head_split * head_chs) + self.conv_list.append(cur_conv) + self.head_splits.append(cur_head_split) + self.channel_splits = [x * head_chs for x in self.head_splits] + + def forward(self, q, v, size: Tuple[int, int]): + (B, num_heads, N, C) = q.shape + (H, W) = size + _assert(N == 1 + H * W, '') + q_img = q[:, :, 1:, :] + v_img = v[:, :, 1:, :] + v_img = v_img.transpose(-1, -2).reshape(B, num_heads * C, H, W) + v_img_list = torch.split(v_img, self.channel_splits, dim=1) + conv_v_img_list = [] + for (i, conv) in enumerate(self.conv_list): + conv_v_img_list.append(conv(v_img_list[i])) + conv_v_img = torch.cat(conv_v_img_list, dim=1) + conv_v_img = conv_v_img.reshape(B, num_heads, C, H * W).transpose(-1, -2) + EV_hat = q_img * conv_v_img + EV_hat = F.pad(EV_hat, (0, 0, 1, 0, 0, 0)) + return EV_hat + +class FactorAttnConvRelPosEnc(nn.Module): + + def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0.0, proj_drop=0.0, shared_crpe=None): + super().__init__() + self.num_heads = num_heads + head_dim = dim // num_heads + self.scale = head_dim ** (-0.5) + self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) + self.attn_drop = nn.Dropout(attn_drop) + self.proj = nn.Linear(dim, dim) + self.proj_drop = nn.Dropout(proj_drop) + self.crpe = shared_crpe + + def forward(self, x, size: Tuple[int, int]): + (B, N, C) = x.shape + qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) + (q, k, v) = qkv.unbind(0) + k_softmax = k.softmax(dim=2) + factor_att = k_softmax.transpose(-1, -2) @ v + factor_att = q @ factor_att + crpe = self.crpe(q, v, size=size) + x = self.scale * factor_att + crpe + x = x.transpose(1, 2).reshape(B, N, C) + x = self.proj(x) + x = self.proj_drop(x) + return x + +class ConvPosEnc(nn.Module): + + def __init__(self, dim, k=3): + super(ConvPosEnc, self).__init__() + self.proj = nn.Conv2d(dim, dim, k, 1, k // 2, groups=dim) + + def forward(self, x, size: Tuple[int, int]): + (B, N, C) = x.shape + (H, W) = size + _assert(N == 1 + H * W, '') + (cls_token, img_tokens) = (x[:, :1], x[:, 1:]) + feat = img_tokens.transpose(1, 2).view(B, C, H, W) + x = self.proj(feat) + feat + x = x.flatten(2).transpose(1, 2) + x = torch.cat((cls_token, x), dim=1) + return x + +class SerialBlock(nn.Module): + + def __init__(self, dim, num_heads, mlp_ratio=4.0, qkv_bias=False, proj_drop=0.0, attn_drop=0.0, drop_path=0.0, act_layer=nn.GELU, norm_layer=nn.LayerNorm, shared_cpe=None, shared_crpe=None): + super().__init__() + self.cpe = shared_cpe + self.norm1 = norm_layer(dim) + self.factoratt_crpe = FactorAttnConvRelPosEnc(dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=proj_drop, shared_crpe=shared_crpe) + self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + self.norm2 = norm_layer(dim) + mlp_hidden_dim = int(dim * mlp_ratio) + self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=proj_drop) + + def forward(self, x, size: Tuple[int, int]): + x = self.cpe(x, size) + cur = self.norm1(x) + cur = self.factoratt_crpe(cur, size) + x = x + self.drop_path(cur) + cur = self.norm2(x) + cur = self.mlp(cur) + x = x + self.drop_path(cur) + return x + +class ParallelBlock(nn.Module): + + def __init__(self, dims, num_heads, mlp_ratios=[], qkv_bias=False, proj_drop=0.0, attn_drop=0.0, drop_path=0.0, act_layer=nn.GELU, norm_layer=nn.LayerNorm, shared_crpes=None): + super().__init__() + self.norm12 = norm_layer(dims[1]) + self.norm13 = norm_layer(dims[2]) + self.norm14 = norm_layer(dims[3]) + self.factoratt_crpe2 = FactorAttnConvRelPosEnc(dims[1], num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=proj_drop, shared_crpe=shared_crpes[1]) + self.factoratt_crpe3 = FactorAttnConvRelPosEnc(dims[2], num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=proj_drop, shared_crpe=shared_crpes[2]) + self.factoratt_crpe4 = FactorAttnConvRelPosEnc(dims[3], num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=proj_drop, shared_crpe=shared_crpes[3]) + self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + self.norm22 = norm_layer(dims[1]) + self.norm23 = norm_layer(dims[2]) + self.norm24 = norm_layer(dims[3]) + assert dims[1] == dims[2] == dims[3] + assert mlp_ratios[1] == mlp_ratios[2] == mlp_ratios[3] + mlp_hidden_dim = int(dims[1] * mlp_ratios[1]) + self.mlp2 = self.mlp3 = self.mlp4 = Mlp(in_features=dims[1], hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=proj_drop) + + def upsample(self, x, factor: float, size: Tuple[int, int]): + return self.interpolate(x, scale_factor=factor, size=size) + + def downsample(self, x, factor: float, size: Tuple[int, int]): + return self.interpolate(x, scale_factor=1.0 / factor, size=size) + + def interpolate(self, x, scale_factor: float, size: Tuple[int, int]): + (B, N, C) = x.shape + (H, W) = size + _assert(N == 1 + H * W, '') + cls_token = x[:, :1, :] + img_tokens = x[:, 1:, :] + img_tokens = img_tokens.transpose(1, 2).reshape(B, C, H, W) + img_tokens = F.interpolate(img_tokens, scale_factor=scale_factor, recompute_scale_factor=False, mode='bilinear', align_corners=False) + img_tokens = img_tokens.reshape(B, C, -1).transpose(1, 2) + out = torch.cat((cls_token, img_tokens), dim=1) + return out + + def forward(self, x1, x2, x3, x4, sizes: List[Tuple[int, int]]): + (_, S2, S3, S4) = sizes + cur2 = self.norm12(x2) + cur3 = self.norm13(x3) + cur4 = self.norm14(x4) + cur2 = self.factoratt_crpe2(cur2, size=S2) + cur3 = self.factoratt_crpe3(cur3, size=S3) + cur4 = self.factoratt_crpe4(cur4, size=S4) + upsample3_2 = self.upsample(cur3, factor=2.0, size=S3) + upsample4_3 = self.upsample(cur4, factor=2.0, size=S4) + upsample4_2 = self.upsample(cur4, factor=4.0, size=S4) + downsample2_3 = self.downsample(cur2, factor=2.0, size=S2) + downsample3_4 = self.downsample(cur3, factor=2.0, size=S3) + downsample2_4 = self.downsample(cur2, factor=4.0, size=S2) + cur2 = cur2 + upsample3_2 + upsample4_2 + cur3 = cur3 + upsample4_3 + downsample2_3 + cur4 = cur4 + downsample3_4 + downsample2_4 + x2 = x2 + self.drop_path(cur2) + x3 = x3 + self.drop_path(cur3) + x4 = x4 + self.drop_path(cur4) + cur2 = self.norm22(x2) + cur3 = self.norm23(x3) + cur4 = self.norm24(x4) + cur2 = self.mlp2(cur2) + cur3 = self.mlp3(cur3) + cur4 = self.mlp4(cur4) + x2 = x2 + self.drop_path(cur2) + x3 = x3 + self.drop_path(cur3) + x4 = x4 + self.drop_path(cur4) + return (x1, x2, x3, x4) + +class CoaT(nn.Module): + + def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dims=(64, 128, 320, 512), serial_depths=(3, 4, 6, 3), parallel_depth=0, num_heads=8, mlp_ratios=(4, 4, 4, 4), qkv_bias=True, drop_rate=0.0, proj_drop_rate=0.0, attn_drop_rate=0.0, drop_path_rate=0.0, norm_layer=LayerNorm, return_interm_layers=False, out_features=None, crpe_window=None, global_pool='token'): + super().__init__() + assert global_pool in ('token', 'avg') + crpe_window = crpe_window or {3: 2, 5: 3, 7: 3} + self.return_interm_layers = return_interm_layers + self.out_features = out_features + self.embed_dims = embed_dims + self.num_features = self.head_hidden_size = embed_dims[-1] + self.num_classes = num_classes + self.global_pool = global_pool + img_size = to_2tuple(img_size) + self.patch_embed1 = PatchEmbed(img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dims[0], norm_layer=nn.LayerNorm) + self.patch_embed2 = PatchEmbed(img_size=[x // 4 for x in img_size], patch_size=2, in_chans=embed_dims[0], embed_dim=embed_dims[1], norm_layer=nn.LayerNorm) + self.patch_embed3 = PatchEmbed(img_size=[x // 8 for x in img_size], patch_size=2, in_chans=embed_dims[1], embed_dim=embed_dims[2], norm_layer=nn.LayerNorm) + self.patch_embed4 = PatchEmbed(img_size=[x // 16 for x in img_size], patch_size=2, in_chans=embed_dims[2], embed_dim=embed_dims[3], norm_layer=nn.LayerNorm) + self.cls_token1 = nn.Parameter(torch.zeros(1, 1, embed_dims[0])) + self.cls_token2 = nn.Parameter(torch.zeros(1, 1, embed_dims[1])) + self.cls_token3 = nn.Parameter(torch.zeros(1, 1, embed_dims[2])) + self.cls_token4 = nn.Parameter(torch.zeros(1, 1, embed_dims[3])) + self.cpe1 = ConvPosEnc(dim=embed_dims[0], k=3) + self.cpe2 = ConvPosEnc(dim=embed_dims[1], k=3) + self.cpe3 = ConvPosEnc(dim=embed_dims[2], k=3) + self.cpe4 = ConvPosEnc(dim=embed_dims[3], k=3) + self.crpe1 = ConvRelPosEnc(head_chs=embed_dims[0] // num_heads, num_heads=num_heads, window=crpe_window) + self.crpe2 = ConvRelPosEnc(head_chs=embed_dims[1] // num_heads, num_heads=num_heads, window=crpe_window) + self.crpe3 = ConvRelPosEnc(head_chs=embed_dims[2] // num_heads, num_heads=num_heads, window=crpe_window) + self.crpe4 = ConvRelPosEnc(head_chs=embed_dims[3] // num_heads, num_heads=num_heads, window=crpe_window) + dpr = drop_path_rate + assert dpr == 0.0 + skwargs = dict(num_heads=num_heads, qkv_bias=qkv_bias, proj_drop=proj_drop_rate, attn_drop=attn_drop_rate, drop_path=dpr, norm_layer=norm_layer) + self.serial_blocks1 = nn.ModuleList([SerialBlock(dim=embed_dims[0], mlp_ratio=mlp_ratios[0], shared_cpe=self.cpe1, shared_crpe=self.crpe1, **skwargs) for _ in range(serial_depths[0])]) + self.serial_blocks2 = nn.ModuleList([SerialBlock(dim=embed_dims[1], mlp_ratio=mlp_ratios[1], shared_cpe=self.cpe2, shared_crpe=self.crpe2, **skwargs) for _ in range(serial_depths[1])]) + self.serial_blocks3 = nn.ModuleList([SerialBlock(dim=embed_dims[2], mlp_ratio=mlp_ratios[2], shared_cpe=self.cpe3, shared_crpe=self.crpe3, **skwargs) for _ in range(serial_depths[2])]) + self.serial_blocks4 = nn.ModuleList([SerialBlock(dim=embed_dims[3], mlp_ratio=mlp_ratios[3], shared_cpe=self.cpe4, shared_crpe=self.crpe4, **skwargs) for _ in range(serial_depths[3])]) + self.parallel_depth = parallel_depth + if self.parallel_depth > 0: + self.parallel_blocks = nn.ModuleList([ParallelBlock(dims=embed_dims, mlp_ratios=mlp_ratios, shared_crpes=(self.crpe1, self.crpe2, self.crpe3, self.crpe4), **skwargs) for _ in range(parallel_depth)]) + else: + self.parallel_blocks = None + if not self.return_interm_layers: + if self.parallel_blocks is not None: + self.norm2 = norm_layer(embed_dims[1]) + self.norm3 = norm_layer(embed_dims[2]) + else: + self.norm2 = self.norm3 = None + self.norm4 = norm_layer(embed_dims[3]) + if self.parallel_depth > 0: + assert embed_dims[1] == embed_dims[2] == embed_dims[3] + self.aggregate = torch.nn.Conv1d(in_channels=3, out_channels=1, kernel_size=1) + self.head_drop = nn.Dropout(drop_rate) + self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() + else: + self.aggregate = None + self.head_drop = nn.Dropout(drop_rate) + self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() + trunc_normal_(self.cls_token1, std=0.02) + trunc_normal_(self.cls_token2, std=0.02) + trunc_normal_(self.cls_token3, std=0.02) + trunc_normal_(self.cls_token4, std=0.02) + self.apply(self._init_weights) + + def _init_weights(self, m): + if isinstance(m, nn.Linear): + trunc_normal_(m.weight, std=0.02) + if isinstance(m, nn.Linear) and m.bias is not None: + nn.init.constant_(m.bias, 0) + elif isinstance(m, nn.LayerNorm): + nn.init.constant_(m.bias, 0) + nn.init.constant_(m.weight, 1.0) + + @torch.jit.ignore + def no_weight_decay(self): + return {'cls_token1', 'cls_token2', 'cls_token3', 'cls_token4'} + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + assert not enable, 'gradient checkpointing not supported' + + @torch.jit.ignore + def group_matcher(self, coarse=False): + matcher = dict(stem1='^cls_token1|patch_embed1|crpe1|cpe1', serial_blocks1='^serial_blocks1\\.(\\d+)', stem2='^cls_token2|patch_embed2|crpe2|cpe2', serial_blocks2='^serial_blocks2\\.(\\d+)', stem3='^cls_token3|patch_embed3|crpe3|cpe3', serial_blocks3='^serial_blocks3\\.(\\d+)', stem4='^cls_token4|patch_embed4|crpe4|cpe4', serial_blocks4='^serial_blocks4\\.(\\d+)', parallel_blocks=[('^parallel_blocks\\.(\\d+)', None), ('^norm|aggregate', (99999,))]) + return matcher + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.head + + def reset_classifier(self, num_classes: int, global_pool: Optional[str]=None): + self.num_classes = num_classes + if global_pool is not None: + assert global_pool in ('token', 'avg') + self.global_pool = global_pool + self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() + + def forward_features(self, x0): + B = x0.shape[0] + x1 = self.patch_embed1(x0) + (H1, W1) = self.patch_embed1.grid_size + x1 = insert_cls(x1, self.cls_token1) + for blk in self.serial_blocks1: + x1 = blk(x1, size=(H1, W1)) + x1_nocls = remove_cls(x1).reshape(B, H1, W1, -1).permute(0, 3, 1, 2).contiguous() + x2 = self.patch_embed2(x1_nocls) + (H2, W2) = self.patch_embed2.grid_size + x2 = insert_cls(x2, self.cls_token2) + for blk in self.serial_blocks2: + x2 = blk(x2, size=(H2, W2)) + x2_nocls = remove_cls(x2).reshape(B, H2, W2, -1).permute(0, 3, 1, 2).contiguous() + x3 = self.patch_embed3(x2_nocls) + (H3, W3) = self.patch_embed3.grid_size + x3 = insert_cls(x3, self.cls_token3) + for blk in self.serial_blocks3: + x3 = blk(x3, size=(H3, W3)) + x3_nocls = remove_cls(x3).reshape(B, H3, W3, -1).permute(0, 3, 1, 2).contiguous() + x4 = self.patch_embed4(x3_nocls) + (H4, W4) = self.patch_embed4.grid_size + x4 = insert_cls(x4, self.cls_token4) + for blk in self.serial_blocks4: + x4 = blk(x4, size=(H4, W4)) + x4_nocls = remove_cls(x4).reshape(B, H4, W4, -1).permute(0, 3, 1, 2).contiguous() + if self.parallel_blocks is None: + if not torch.jit.is_scripting() and self.return_interm_layers: + feat_out = {} + if 'x1_nocls' in self.out_features: + feat_out['x1_nocls'] = x1_nocls + if 'x2_nocls' in self.out_features: + feat_out['x2_nocls'] = x2_nocls + if 'x3_nocls' in self.out_features: + feat_out['x3_nocls'] = x3_nocls + if 'x4_nocls' in self.out_features: + feat_out['x4_nocls'] = x4_nocls + return feat_out + else: + x4 = self.norm4(x4) + return x4 + for blk in self.parallel_blocks: + (x2, x3, x4) = (self.cpe2(x2, (H2, W2)), self.cpe3(x3, (H3, W3)), self.cpe4(x4, (H4, W4))) + (x1, x2, x3, x4) = blk(x1, x2, x3, x4, sizes=[(H1, W1), (H2, W2), (H3, W3), (H4, W4)]) + if not torch.jit.is_scripting() and self.return_interm_layers: + feat_out = {} + if 'x1_nocls' in self.out_features: + x1_nocls = remove_cls(x1).reshape(B, H1, W1, -1).permute(0, 3, 1, 2).contiguous() + feat_out['x1_nocls'] = x1_nocls + if 'x2_nocls' in self.out_features: + x2_nocls = remove_cls(x2).reshape(B, H2, W2, -1).permute(0, 3, 1, 2).contiguous() + feat_out['x2_nocls'] = x2_nocls + if 'x3_nocls' in self.out_features: + x3_nocls = remove_cls(x3).reshape(B, H3, W3, -1).permute(0, 3, 1, 2).contiguous() + feat_out['x3_nocls'] = x3_nocls + if 'x4_nocls' in self.out_features: + x4_nocls = remove_cls(x4).reshape(B, H4, W4, -1).permute(0, 3, 1, 2).contiguous() + feat_out['x4_nocls'] = x4_nocls + return feat_out + else: + x2 = self.norm2(x2) + x3 = self.norm3(x3) + x4 = self.norm4(x4) + return [x2, x3, x4] + + def forward_head(self, x_feat: Union[torch.Tensor, List[torch.Tensor]], pre_logits: bool=False): + if isinstance(x_feat, list): + assert self.aggregate is not None + if self.global_pool == 'avg': + x = torch.cat([xl[:, 1:].mean(dim=1, keepdim=True) for xl in x_feat], dim=1) + else: + x = torch.stack([xl[:, 0] for xl in x_feat], dim=1) + x = self.aggregate(x).squeeze(dim=1) + else: + x = x_feat[:, 1:].mean(dim=1) if self.global_pool == 'avg' else x_feat[:, 0] + x = self.head_drop(x) + return x if pre_logits else self.head(x) + + def forward(self, x) -> torch.Tensor: + if not torch.jit.is_scripting() and self.return_interm_layers: + return self.forward_features(x) + else: + x_feat = self.forward_features(x) + x = self.forward_head(x_feat) + return x + +def insert_cls(x, cls_token): + cls_tokens = cls_token.expand(x.shape[0], -1, -1) + x = torch.cat((cls_tokens, x), dim=1) + return x + +def remove_cls(x): + return x[:, 1:, :] + +def checkpoint_filter_fn(state_dict, model): + out_dict = {} + state_dict = state_dict.get('model', state_dict) + for (k, v) in state_dict.items(): + if k.startswith('norm1') or (k.startswith('norm2') and getattr(model, 'norm2', None) is None) or (k.startswith('norm3') and getattr(model, 'norm3', None) is None) or (k.startswith('norm4') and getattr(model, 'norm4', None) is None) or (k.startswith('aggregate') and getattr(model, 'aggregate', None) is None) or (k.startswith('head') and getattr(model, 'head', None) is None): + continue + out_dict[k] = v + return out_dict + +def _create_coat(variant, pretrained=False, default_cfg=None, **kwargs): + if kwargs.get('features_only', None): + raise RuntimeError('features_only not implemented for Vision Transformer models.') + model = build_model_with_cfg(CoaT, variant, pretrained, pretrained_filter_fn=checkpoint_filter_fn, **kwargs) + return model + +def _cfg_coat(url='', **kwargs): + return {'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, 'crop_pct': 0.9, 'interpolation': 'bicubic', 'fixed_input_size': True, 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'patch_embed1.proj', 'classifier': 'head', **kwargs} +default_cfgs = generate_default_cfgs({'coat_tiny.in1k': _cfg_coat(hf_hub_id='timm/'), 'coat_mini.in1k': _cfg_coat(hf_hub_id='timm/'), 'coat_small.in1k': _cfg_coat(hf_hub_id='timm/'), 'coat_lite_tiny.in1k': _cfg_coat(hf_hub_id='timm/'), 'coat_lite_mini.in1k': _cfg_coat(hf_hub_id='timm/'), 'coat_lite_small.in1k': _cfg_coat(hf_hub_id='timm/'), 'coat_lite_medium.in1k': _cfg_coat(hf_hub_id='timm/'), 'coat_lite_medium_384.in1k': _cfg_coat(hf_hub_id='timm/', input_size=(3, 384, 384), crop_pct=1.0, crop_mode='squash')}) + +@register_model +def coat_tiny(pretrained=False, **kwargs) -> CoaT: + model_cfg = dict(patch_size=4, embed_dims=[152, 152, 152, 152], serial_depths=[2, 2, 2, 2], parallel_depth=6) + model = _create_coat('coat_tiny', pretrained=pretrained, **dict(model_cfg, **kwargs)) + return model + +@register_model +def coat_mini(pretrained=False, **kwargs) -> CoaT: + model_cfg = dict(patch_size=4, embed_dims=[152, 216, 216, 216], serial_depths=[2, 2, 2, 2], parallel_depth=6) + model = _create_coat('coat_mini', pretrained=pretrained, **dict(model_cfg, **kwargs)) + return model + +@register_model +def coat_small(pretrained=False, **kwargs) -> CoaT: + model_cfg = dict(patch_size=4, embed_dims=[152, 320, 320, 320], serial_depths=[2, 2, 2, 2], parallel_depth=6, **kwargs) + model = _create_coat('coat_small', pretrained=pretrained, **dict(model_cfg, **kwargs)) + return model + +@register_model +def coat_lite_tiny(pretrained=False, **kwargs) -> CoaT: + model_cfg = dict(patch_size=4, embed_dims=[64, 128, 256, 320], serial_depths=[2, 2, 2, 2], mlp_ratios=[8, 8, 4, 4]) + model = _create_coat('coat_lite_tiny', pretrained=pretrained, **dict(model_cfg, **kwargs)) + return model + +@register_model +def coat_lite_mini(pretrained=False, **kwargs) -> CoaT: + model_cfg = dict(patch_size=4, embed_dims=[64, 128, 320, 512], serial_depths=[2, 2, 2, 2], mlp_ratios=[8, 8, 4, 4]) + model = _create_coat('coat_lite_mini', pretrained=pretrained, **dict(model_cfg, **kwargs)) + return model + +@register_model +def coat_lite_small(pretrained=False, **kwargs) -> CoaT: + model_cfg = dict(patch_size=4, embed_dims=[64, 128, 320, 512], serial_depths=[3, 4, 6, 3], mlp_ratios=[8, 8, 4, 4]) + model = _create_coat('coat_lite_small', pretrained=pretrained, **dict(model_cfg, **kwargs)) + return model + +@register_model +def coat_lite_medium(pretrained=False, **kwargs) -> CoaT: + model_cfg = dict(patch_size=4, embed_dims=[128, 256, 320, 512], serial_depths=[3, 6, 10, 8]) + model = _create_coat('coat_lite_medium', pretrained=pretrained, **dict(model_cfg, **kwargs)) + return model + +@register_model +def coat_lite_medium_384(pretrained=False, **kwargs) -> CoaT: + model_cfg = dict(img_size=384, patch_size=4, embed_dims=[128, 256, 320, 512], serial_depths=[3, 6, 10, 8]) + model = _create_coat('coat_lite_medium_384', pretrained=pretrained, **dict(model_cfg, **kwargs)) + return model + +# File: pytorch-image-models-main/timm/models/convit.py +"""""" +'' +from typing import Optional +import torch +import torch.nn as nn +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from timm.layers import DropPath, trunc_normal_, PatchEmbed, Mlp, LayerNorm, HybridEmbed +from ._builder import build_model_with_cfg +from ._features_fx import register_notrace_module +from ._registry import register_model, generate_default_cfgs +__all__ = ['ConVit'] + +@register_notrace_module +class GPSA(nn.Module): + + def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0.0, proj_drop=0.0, locality_strength=1.0): + super().__init__() + self.num_heads = num_heads + self.dim = dim + head_dim = dim // num_heads + self.scale = head_dim ** (-0.5) + self.locality_strength = locality_strength + self.qk = nn.Linear(dim, dim * 2, bias=qkv_bias) + self.v = nn.Linear(dim, dim, bias=qkv_bias) + self.attn_drop = nn.Dropout(attn_drop) + self.proj = nn.Linear(dim, dim) + self.pos_proj = nn.Linear(3, num_heads) + self.proj_drop = nn.Dropout(proj_drop) + self.gating_param = nn.Parameter(torch.ones(self.num_heads)) + self.rel_indices: torch.Tensor = torch.zeros(1, 1, 1, 3) + + def forward(self, x): + (B, N, C) = x.shape + if self.rel_indices is None or self.rel_indices.shape[1] != N: + self.rel_indices = self.get_rel_indices(N) + attn = self.get_attention(x) + v = self.v(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) + x = (attn @ v).transpose(1, 2).reshape(B, N, C) + x = self.proj(x) + x = self.proj_drop(x) + return x + + def get_attention(self, x): + (B, N, C) = x.shape + qk = self.qk(x).reshape(B, N, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) + (q, k) = (qk[0], qk[1]) + pos_score = self.rel_indices.expand(B, -1, -1, -1) + pos_score = self.pos_proj(pos_score).permute(0, 3, 1, 2) + patch_score = q @ k.transpose(-2, -1) * self.scale + patch_score = patch_score.softmax(dim=-1) + pos_score = pos_score.softmax(dim=-1) + gating = self.gating_param.view(1, -1, 1, 1) + attn = (1.0 - torch.sigmoid(gating)) * patch_score + torch.sigmoid(gating) * pos_score + attn /= attn.sum(dim=-1).unsqueeze(-1) + attn = self.attn_drop(attn) + return attn + + def get_attention_map(self, x, return_map=False): + attn_map = self.get_attention(x).mean(0) + distances = self.rel_indices.squeeze()[:, :, -1] ** 0.5 + dist = torch.einsum('nm,hnm->h', (distances, attn_map)) / distances.size(0) + if return_map: + return (dist, attn_map) + else: + return dist + + def local_init(self): + self.v.weight.data.copy_(torch.eye(self.dim)) + locality_distance = 1 + kernel_size = int(self.num_heads ** 0.5) + center = (kernel_size - 1) / 2 if kernel_size % 2 == 0 else kernel_size // 2 + for h1 in range(kernel_size): + for h2 in range(kernel_size): + position = h1 + kernel_size * h2 + self.pos_proj.weight.data[position, 2] = -1 + self.pos_proj.weight.data[position, 1] = 2 * (h1 - center) * locality_distance + self.pos_proj.weight.data[position, 0] = 2 * (h2 - center) * locality_distance + self.pos_proj.weight.data *= self.locality_strength + + def get_rel_indices(self, num_patches: int) -> torch.Tensor: + img_size = int(num_patches ** 0.5) + rel_indices = torch.zeros(1, num_patches, num_patches, 3) + ind = torch.arange(img_size).view(1, -1) - torch.arange(img_size).view(-1, 1) + indx = ind.repeat(img_size, img_size) + indy = ind.repeat_interleave(img_size, dim=0).repeat_interleave(img_size, dim=1) + indd = indx ** 2 + indy ** 2 + rel_indices[:, :, :, 2] = indd.unsqueeze(0) + rel_indices[:, :, :, 1] = indy.unsqueeze(0) + rel_indices[:, :, :, 0] = indx.unsqueeze(0) + device = self.qk.weight.device + return rel_indices.to(device) + +class MHSA(nn.Module): + + def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0.0, proj_drop=0.0): + super().__init__() + self.num_heads = num_heads + head_dim = dim // num_heads + self.scale = head_dim ** (-0.5) + self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) + self.attn_drop = nn.Dropout(attn_drop) + self.proj = nn.Linear(dim, dim) + self.proj_drop = nn.Dropout(proj_drop) + + def get_attention_map(self, x, return_map=False): + (B, N, C) = x.shape + qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) + (q, k, v) = (qkv[0], qkv[1], qkv[2]) + attn_map = q @ k.transpose(-2, -1) * self.scale + attn_map = attn_map.softmax(dim=-1).mean(0) + img_size = int(N ** 0.5) + ind = torch.arange(img_size).view(1, -1) - torch.arange(img_size).view(-1, 1) + indx = ind.repeat(img_size, img_size) + indy = ind.repeat_interleave(img_size, dim=0).repeat_interleave(img_size, dim=1) + indd = indx ** 2 + indy ** 2 + distances = indd ** 0.5 + distances = distances.to(x.device) + dist = torch.einsum('nm,hnm->h', (distances, attn_map)) / N + if return_map: + return (dist, attn_map) + else: + return dist + + def forward(self, x): + (B, N, C) = x.shape + qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) + (q, k, v) = qkv.unbind(0) + attn = q @ k.transpose(-2, -1) * self.scale + attn = attn.softmax(dim=-1) + attn = self.attn_drop(attn) + x = (attn @ v).transpose(1, 2).reshape(B, N, C) + x = self.proj(x) + x = self.proj_drop(x) + return x + +class Block(nn.Module): + + def __init__(self, dim, num_heads, mlp_ratio=4.0, qkv_bias=False, proj_drop=0.0, attn_drop=0.0, drop_path=0.0, act_layer=nn.GELU, norm_layer=LayerNorm, use_gpsa=True, locality_strength=1.0): + super().__init__() + self.norm1 = norm_layer(dim) + self.use_gpsa = use_gpsa + if self.use_gpsa: + self.attn = GPSA(dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=proj_drop, locality_strength=locality_strength) + else: + self.attn = MHSA(dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=proj_drop) + self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + self.norm2 = norm_layer(dim) + mlp_hidden_dim = int(dim * mlp_ratio) + self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=proj_drop) + + def forward(self, x): + x = x + self.drop_path(self.attn(self.norm1(x))) + x = x + self.drop_path(self.mlp(self.norm2(x))) + return x + +class ConVit(nn.Module): + + def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, global_pool='token', embed_dim=768, depth=12, num_heads=12, mlp_ratio=4.0, qkv_bias=False, drop_rate=0.0, pos_drop_rate=0.0, proj_drop_rate=0.0, attn_drop_rate=0.0, drop_path_rate=0.0, hybrid_backbone=None, norm_layer=LayerNorm, local_up_to_layer=3, locality_strength=1.0, use_pos_embed=True): + super().__init__() + assert global_pool in ('', 'avg', 'token') + embed_dim *= num_heads + self.num_classes = num_classes + self.global_pool = global_pool + self.local_up_to_layer = local_up_to_layer + self.num_features = self.head_hidden_size = self.embed_dim = embed_dim + self.locality_strength = locality_strength + self.use_pos_embed = use_pos_embed + if hybrid_backbone is not None: + self.patch_embed = HybridEmbed(hybrid_backbone, img_size=img_size, in_chans=in_chans, embed_dim=embed_dim) + else: + self.patch_embed = PatchEmbed(img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim) + num_patches = self.patch_embed.num_patches + self.num_patches = num_patches + self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) + self.pos_drop = nn.Dropout(p=pos_drop_rate) + if self.use_pos_embed: + self.pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim)) + trunc_normal_(self.pos_embed, std=0.02) + dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] + self.blocks = nn.ModuleList([Block(dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, proj_drop=proj_drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, use_gpsa=i < local_up_to_layer, locality_strength=locality_strength) for i in range(depth)]) + self.norm = norm_layer(embed_dim) + self.feature_info = [dict(num_chs=embed_dim, reduction=0, module='head')] + self.head_drop = nn.Dropout(drop_rate) + self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity() + trunc_normal_(self.cls_token, std=0.02) + self.apply(self._init_weights) + for (n, m) in self.named_modules(): + if hasattr(m, 'local_init'): + m.local_init() + + def _init_weights(self, m): + if isinstance(m, nn.Linear): + trunc_normal_(m.weight, std=0.02) + if isinstance(m, nn.Linear) and m.bias is not None: + nn.init.constant_(m.bias, 0) + elif isinstance(m, nn.LayerNorm): + nn.init.constant_(m.bias, 0) + nn.init.constant_(m.weight, 1.0) + + @torch.jit.ignore + def no_weight_decay(self): + return {'pos_embed', 'cls_token'} + + @torch.jit.ignore + def group_matcher(self, coarse=False): + return dict(stem='^cls_token|pos_embed|patch_embed', blocks=[('^blocks\\.(\\d+)', None), ('^norm', (99999,))]) + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + assert not enable, 'gradient checkpointing not supported' + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.head + + def reset_classifier(self, num_classes: int, global_pool: Optional[str]=None): + self.num_classes = num_classes + if global_pool is not None: + assert global_pool in ('', 'token', 'avg') + self.global_pool = global_pool + self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() + + def forward_features(self, x): + x = self.patch_embed(x) + if self.use_pos_embed: + x = x + self.pos_embed + x = self.pos_drop(x) + cls_tokens = self.cls_token.expand(x.shape[0], -1, -1) + for (u, blk) in enumerate(self.blocks): + if u == self.local_up_to_layer: + x = torch.cat((cls_tokens, x), dim=1) + x = blk(x) + x = self.norm(x) + return x + + def forward_head(self, x, pre_logits: bool=False): + if self.global_pool: + x = x[:, 1:].mean(dim=1) if self.global_pool == 'avg' else x[:, 0] + x = self.head_drop(x) + return x if pre_logits else self.head(x) + + def forward(self, x): + x = self.forward_features(x) + x = self.forward_head(x) + return x + +def _create_convit(variant, pretrained=False, **kwargs): + if kwargs.get('features_only', None): + raise RuntimeError('features_only not implemented for Vision Transformer models.') + return build_model_with_cfg(ConVit, variant, pretrained, **kwargs) + +def _cfg(url='', **kwargs): + return {'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'fixed_input_size': True, 'first_conv': 'patch_embed.proj', 'classifier': 'head', **kwargs} +default_cfgs = generate_default_cfgs({'convit_tiny.fb_in1k': _cfg(hf_hub_id='timm/'), 'convit_small.fb_in1k': _cfg(hf_hub_id='timm/'), 'convit_base.fb_in1k': _cfg(hf_hub_id='timm/')}) + +@register_model +def convit_tiny(pretrained=False, **kwargs) -> ConVit: + model_args = dict(local_up_to_layer=10, locality_strength=1.0, embed_dim=48, num_heads=4) + model = _create_convit(variant='convit_tiny', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def convit_small(pretrained=False, **kwargs) -> ConVit: + model_args = dict(local_up_to_layer=10, locality_strength=1.0, embed_dim=48, num_heads=9) + model = _create_convit(variant='convit_small', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def convit_base(pretrained=False, **kwargs) -> ConVit: + model_args = dict(local_up_to_layer=10, locality_strength=1.0, embed_dim=48, num_heads=16) + model = _create_convit(variant='convit_base', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +# File: pytorch-image-models-main/timm/models/convmixer.py +"""""" +from typing import Optional +import torch +import torch.nn as nn +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from timm.layers import SelectAdaptivePool2d +from ._registry import register_model, generate_default_cfgs +from ._builder import build_model_with_cfg +from ._manipulate import checkpoint_seq +__all__ = ['ConvMixer'] + +class Residual(nn.Module): + + def __init__(self, fn): + super().__init__() + self.fn = fn + + def forward(self, x): + return self.fn(x) + x + +class ConvMixer(nn.Module): + + def __init__(self, dim, depth, kernel_size=9, patch_size=7, in_chans=3, num_classes=1000, global_pool='avg', drop_rate=0.0, act_layer=nn.GELU, **kwargs): + super().__init__() + self.num_classes = num_classes + self.num_features = self.head_hidden_size = dim + self.grad_checkpointing = False + self.stem = nn.Sequential(nn.Conv2d(in_chans, dim, kernel_size=patch_size, stride=patch_size), act_layer(), nn.BatchNorm2d(dim)) + self.blocks = nn.Sequential(*[nn.Sequential(Residual(nn.Sequential(nn.Conv2d(dim, dim, kernel_size, groups=dim, padding='same'), act_layer(), nn.BatchNorm2d(dim))), nn.Conv2d(dim, dim, kernel_size=1), act_layer(), nn.BatchNorm2d(dim)) for i in range(depth)]) + self.pooling = SelectAdaptivePool2d(pool_type=global_pool, flatten=True) + self.head_drop = nn.Dropout(drop_rate) + self.head = nn.Linear(dim, num_classes) if num_classes > 0 else nn.Identity() + + @torch.jit.ignore + def group_matcher(self, coarse=False): + matcher = dict(stem='^stem', blocks='^blocks\\.(\\d+)') + return matcher + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + self.grad_checkpointing = enable + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.head + + def reset_classifier(self, num_classes: int, global_pool: Optional[str]=None): + self.num_classes = num_classes + if global_pool is not None: + self.pooling = SelectAdaptivePool2d(pool_type=global_pool, flatten=True) + self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() + + def forward_features(self, x): + x = self.stem(x) + if self.grad_checkpointing and (not torch.jit.is_scripting()): + x = checkpoint_seq(self.blocks, x) + else: + x = self.blocks(x) + return x + + def forward_head(self, x, pre_logits: bool=False): + x = self.pooling(x) + x = self.head_drop(x) + return x if pre_logits else self.head(x) + + def forward(self, x): + x = self.forward_features(x) + x = self.forward_head(x) + return x + +def _create_convmixer(variant, pretrained=False, **kwargs): + if kwargs.get('features_only', None): + raise RuntimeError('features_only not implemented for ConvMixer models.') + return build_model_with_cfg(ConvMixer, variant, pretrained, **kwargs) + +def _cfg(url='', **kwargs): + return {'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, 'crop_pct': 0.96, 'interpolation': 'bicubic', 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'classifier': 'head', 'first_conv': 'stem.0', **kwargs} +default_cfgs = generate_default_cfgs({'convmixer_1536_20.in1k': _cfg(hf_hub_id='timm/'), 'convmixer_768_32.in1k': _cfg(hf_hub_id='timm/'), 'convmixer_1024_20_ks9_p14.in1k': _cfg(hf_hub_id='timm/')}) + +@register_model +def convmixer_1536_20(pretrained=False, **kwargs) -> ConvMixer: + model_args = dict(dim=1536, depth=20, kernel_size=9, patch_size=7, **kwargs) + return _create_convmixer('convmixer_1536_20', pretrained, **model_args) + +@register_model +def convmixer_768_32(pretrained=False, **kwargs) -> ConvMixer: + model_args = dict(dim=768, depth=32, kernel_size=7, patch_size=7, act_layer=nn.ReLU, **kwargs) + return _create_convmixer('convmixer_768_32', pretrained, **model_args) + +@register_model +def convmixer_1024_20_ks9_p14(pretrained=False, **kwargs) -> ConvMixer: + model_args = dict(dim=1024, depth=20, kernel_size=9, patch_size=14, **kwargs) + return _create_convmixer('convmixer_1024_20_ks9_p14', pretrained, **model_args) + +# File: pytorch-image-models-main/timm/models/convnext.py +"""""" +from functools import partial +from typing import Callable, List, Optional, Tuple, Union +import torch +import torch.nn as nn +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, OPENAI_CLIP_MEAN, OPENAI_CLIP_STD +from timm.layers import trunc_normal_, AvgPool2dSame, DropPath, Mlp, GlobalResponseNormMlp, LayerNorm2d, LayerNorm, create_conv2d, get_act_layer, make_divisible, to_ntuple +from timm.layers import NormMlpClassifierHead, ClassifierHead +from ._builder import build_model_with_cfg +from ._features import feature_take_indices +from ._manipulate import named_apply, checkpoint_seq +from ._registry import generate_default_cfgs, register_model, register_model_deprecations +__all__ = ['ConvNeXt'] + +class Downsample(nn.Module): + + def __init__(self, in_chs, out_chs, stride=1, dilation=1): + super().__init__() + avg_stride = stride if dilation == 1 else 1 + if stride > 1 or dilation > 1: + avg_pool_fn = AvgPool2dSame if avg_stride == 1 and dilation > 1 else nn.AvgPool2d + self.pool = avg_pool_fn(2, avg_stride, ceil_mode=True, count_include_pad=False) + else: + self.pool = nn.Identity() + if in_chs != out_chs: + self.conv = create_conv2d(in_chs, out_chs, 1, stride=1) + else: + self.conv = nn.Identity() + + def forward(self, x): + x = self.pool(x) + x = self.conv(x) + return x + +class ConvNeXtBlock(nn.Module): + + def __init__(self, in_chs: int, out_chs: Optional[int]=None, kernel_size: int=7, stride: int=1, dilation: Union[int, Tuple[int, int]]=(1, 1), mlp_ratio: float=4, conv_mlp: bool=False, conv_bias: bool=True, use_grn: bool=False, ls_init_value: Optional[float]=1e-06, act_layer: Union[str, Callable]='gelu', norm_layer: Optional[Callable]=None, drop_path: float=0.0): + super().__init__() + out_chs = out_chs or in_chs + dilation = to_ntuple(2)(dilation) + act_layer = get_act_layer(act_layer) + if not norm_layer: + norm_layer = LayerNorm2d if conv_mlp else LayerNorm + mlp_layer = partial(GlobalResponseNormMlp if use_grn else Mlp, use_conv=conv_mlp) + self.use_conv_mlp = conv_mlp + self.conv_dw = create_conv2d(in_chs, out_chs, kernel_size=kernel_size, stride=stride, dilation=dilation[0], depthwise=True, bias=conv_bias) + self.norm = norm_layer(out_chs) + self.mlp = mlp_layer(out_chs, int(mlp_ratio * out_chs), act_layer=act_layer) + self.gamma = nn.Parameter(ls_init_value * torch.ones(out_chs)) if ls_init_value is not None else None + if in_chs != out_chs or stride != 1 or dilation[0] != dilation[1]: + self.shortcut = Downsample(in_chs, out_chs, stride=stride, dilation=dilation[0]) + else: + self.shortcut = nn.Identity() + self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + + def forward(self, x): + shortcut = x + x = self.conv_dw(x) + if self.use_conv_mlp: + x = self.norm(x) + x = self.mlp(x) + else: + x = x.permute(0, 2, 3, 1) + x = self.norm(x) + x = self.mlp(x) + x = x.permute(0, 3, 1, 2) + if self.gamma is not None: + x = x.mul(self.gamma.reshape(1, -1, 1, 1)) + x = self.drop_path(x) + self.shortcut(shortcut) + return x + +class ConvNeXtStage(nn.Module): + + def __init__(self, in_chs, out_chs, kernel_size=7, stride=2, depth=2, dilation=(1, 1), drop_path_rates=None, ls_init_value=1.0, conv_mlp=False, conv_bias=True, use_grn=False, act_layer='gelu', norm_layer=None, norm_layer_cl=None): + super().__init__() + self.grad_checkpointing = False + if in_chs != out_chs or stride > 1 or dilation[0] != dilation[1]: + ds_ks = 2 if stride > 1 or dilation[0] != dilation[1] else 1 + pad = 'same' if dilation[1] > 1 else 0 + self.downsample = nn.Sequential(norm_layer(in_chs), create_conv2d(in_chs, out_chs, kernel_size=ds_ks, stride=stride, dilation=dilation[0], padding=pad, bias=conv_bias)) + in_chs = out_chs + else: + self.downsample = nn.Identity() + drop_path_rates = drop_path_rates or [0.0] * depth + stage_blocks = [] + for i in range(depth): + stage_blocks.append(ConvNeXtBlock(in_chs=in_chs, out_chs=out_chs, kernel_size=kernel_size, dilation=dilation[1], drop_path=drop_path_rates[i], ls_init_value=ls_init_value, conv_mlp=conv_mlp, conv_bias=conv_bias, use_grn=use_grn, act_layer=act_layer, norm_layer=norm_layer if conv_mlp else norm_layer_cl)) + in_chs = out_chs + self.blocks = nn.Sequential(*stage_blocks) + + def forward(self, x): + x = self.downsample(x) + if self.grad_checkpointing and (not torch.jit.is_scripting()): + x = checkpoint_seq(self.blocks, x) + else: + x = self.blocks(x) + return x + +class ConvNeXt(nn.Module): + + def __init__(self, in_chans: int=3, num_classes: int=1000, global_pool: str='avg', output_stride: int=32, depths: Tuple[int, ...]=(3, 3, 9, 3), dims: Tuple[int, ...]=(96, 192, 384, 768), kernel_sizes: Union[int, Tuple[int, ...]]=7, ls_init_value: Optional[float]=1e-06, stem_type: str='patch', patch_size: int=4, head_init_scale: float=1.0, head_norm_first: bool=False, head_hidden_size: Optional[int]=None, conv_mlp: bool=False, conv_bias: bool=True, use_grn: bool=False, act_layer: Union[str, Callable]='gelu', norm_layer: Optional[Union[str, Callable]]=None, norm_eps: Optional[float]=None, drop_rate: float=0.0, drop_path_rate: float=0.0): + super().__init__() + assert output_stride in (8, 16, 32) + kernel_sizes = to_ntuple(4)(kernel_sizes) + if norm_layer is None: + norm_layer = LayerNorm2d + norm_layer_cl = norm_layer if conv_mlp else LayerNorm + if norm_eps is not None: + norm_layer = partial(norm_layer, eps=norm_eps) + norm_layer_cl = partial(norm_layer_cl, eps=norm_eps) + else: + assert conv_mlp, 'If a norm_layer is specified, conv MLP must be used so all norm expect rank-4, channels-first input' + norm_layer_cl = norm_layer + if norm_eps is not None: + norm_layer_cl = partial(norm_layer_cl, eps=norm_eps) + self.num_classes = num_classes + self.drop_rate = drop_rate + self.feature_info = [] + assert stem_type in ('patch', 'overlap', 'overlap_tiered') + if stem_type == 'patch': + self.stem = nn.Sequential(nn.Conv2d(in_chans, dims[0], kernel_size=patch_size, stride=patch_size, bias=conv_bias), norm_layer(dims[0])) + stem_stride = patch_size + else: + mid_chs = make_divisible(dims[0] // 2) if 'tiered' in stem_type else dims[0] + self.stem = nn.Sequential(nn.Conv2d(in_chans, mid_chs, kernel_size=3, stride=2, padding=1, bias=conv_bias), nn.Conv2d(mid_chs, dims[0], kernel_size=3, stride=2, padding=1, bias=conv_bias), norm_layer(dims[0])) + stem_stride = 4 + self.stages = nn.Sequential() + dp_rates = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(depths)).split(depths)] + stages = [] + prev_chs = dims[0] + curr_stride = stem_stride + dilation = 1 + for i in range(4): + stride = 2 if curr_stride == 2 or i > 0 else 1 + if curr_stride >= output_stride and stride > 1: + dilation *= stride + stride = 1 + curr_stride *= stride + first_dilation = 1 if dilation in (1, 2) else 2 + out_chs = dims[i] + stages.append(ConvNeXtStage(prev_chs, out_chs, kernel_size=kernel_sizes[i], stride=stride, dilation=(first_dilation, dilation), depth=depths[i], drop_path_rates=dp_rates[i], ls_init_value=ls_init_value, conv_mlp=conv_mlp, conv_bias=conv_bias, use_grn=use_grn, act_layer=act_layer, norm_layer=norm_layer, norm_layer_cl=norm_layer_cl)) + prev_chs = out_chs + self.feature_info += [dict(num_chs=prev_chs, reduction=curr_stride, module=f'stages.{i}')] + self.stages = nn.Sequential(*stages) + self.num_features = self.head_hidden_size = prev_chs + if head_norm_first: + assert not head_hidden_size + self.norm_pre = norm_layer(self.num_features) + self.head = ClassifierHead(self.num_features, num_classes, pool_type=global_pool, drop_rate=self.drop_rate) + else: + self.norm_pre = nn.Identity() + self.head = NormMlpClassifierHead(self.num_features, num_classes, hidden_size=head_hidden_size, pool_type=global_pool, drop_rate=self.drop_rate, norm_layer=norm_layer, act_layer='gelu') + self.head_hidden_size = self.head.num_features + named_apply(partial(_init_weights, head_init_scale=head_init_scale), self) + + @torch.jit.ignore + def group_matcher(self, coarse=False): + return dict(stem='^stem', blocks='^stages\\.(\\d+)' if coarse else [('^stages\\.(\\d+)\\.downsample', (0,)), ('^stages\\.(\\d+)\\.blocks\\.(\\d+)', None), ('^norm_pre', (99999,))]) + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + for s in self.stages: + s.grad_checkpointing = enable + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.head.fc + + def reset_classifier(self, num_classes: int, global_pool: Optional[str]=None): + self.num_classes = num_classes + self.head.reset(num_classes, global_pool) + + def forward_intermediates(self, x: torch.Tensor, indices: Optional[Union[int, List[int]]]=None, norm: bool=False, stop_early: bool=False, output_fmt: str='NCHW', intermediates_only: bool=False) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]: + assert output_fmt in ('NCHW',), 'Output shape must be NCHW.' + intermediates = [] + (take_indices, max_index) = feature_take_indices(len(self.stages) + 1, indices) + feat_idx = 0 + x = self.stem(x) + if feat_idx in take_indices: + intermediates.append(x) + if torch.jit.is_scripting() or not stop_early: + stages = self.stages + else: + stages = self.stages[:max_index] + for stage in stages: + feat_idx += 1 + x = stage(x) + if feat_idx in take_indices: + intermediates.append(x) + if intermediates_only: + return intermediates + x = self.norm_pre(x) + return (x, intermediates) + + def prune_intermediate_layers(self, indices: Union[int, List[int]]=1, prune_norm: bool=False, prune_head: bool=True): + (take_indices, max_index) = feature_take_indices(len(self.stages) + 1, indices) + self.stages = self.stages[:max_index] + if prune_norm: + self.norm_pre = nn.Identity() + if prune_head: + self.reset_classifier(0, '') + return take_indices + + def forward_features(self, x): + x = self.stem(x) + x = self.stages(x) + x = self.norm_pre(x) + return x + + def forward_head(self, x, pre_logits: bool=False): + return self.head(x, pre_logits=True) if pre_logits else self.head(x) + + def forward(self, x): + x = self.forward_features(x) + x = self.forward_head(x) + return x + +def _init_weights(module, name=None, head_init_scale=1.0): + if isinstance(module, nn.Conv2d): + trunc_normal_(module.weight, std=0.02) + if module.bias is not None: + nn.init.zeros_(module.bias) + elif isinstance(module, nn.Linear): + trunc_normal_(module.weight, std=0.02) + nn.init.zeros_(module.bias) + if name and 'head.' in name: + module.weight.data.mul_(head_init_scale) + module.bias.data.mul_(head_init_scale) + +def checkpoint_filter_fn(state_dict, model): + if 'head.norm.weight' in state_dict or 'norm_pre.weight' in state_dict: + return state_dict + if 'model' in state_dict: + state_dict = state_dict['model'] + out_dict = {} + if 'visual.trunk.stem.0.weight' in state_dict: + out_dict = {k.replace('visual.trunk.', ''): v for (k, v) in state_dict.items() if k.startswith('visual.trunk.')} + if 'visual.head.proj.weight' in state_dict: + out_dict['head.fc.weight'] = state_dict['visual.head.proj.weight'] + out_dict['head.fc.bias'] = torch.zeros(state_dict['visual.head.proj.weight'].shape[0]) + elif 'visual.head.mlp.fc1.weight' in state_dict: + out_dict['head.pre_logits.fc.weight'] = state_dict['visual.head.mlp.fc1.weight'] + out_dict['head.pre_logits.fc.bias'] = state_dict['visual.head.mlp.fc1.bias'] + out_dict['head.fc.weight'] = state_dict['visual.head.mlp.fc2.weight'] + out_dict['head.fc.bias'] = torch.zeros(state_dict['visual.head.mlp.fc2.weight'].shape[0]) + return out_dict + import re + for (k, v) in state_dict.items(): + k = k.replace('downsample_layers.0.', 'stem.') + k = re.sub('stages.([0-9]+).([0-9]+)', 'stages.\\1.blocks.\\2', k) + k = re.sub('downsample_layers.([0-9]+).([0-9]+)', 'stages.\\1.downsample.\\2', k) + k = k.replace('dwconv', 'conv_dw') + k = k.replace('pwconv', 'mlp.fc') + if 'grn' in k: + k = k.replace('grn.beta', 'mlp.grn.bias') + k = k.replace('grn.gamma', 'mlp.grn.weight') + v = v.reshape(v.shape[-1]) + k = k.replace('head.', 'head.fc.') + if k.startswith('norm.'): + k = k.replace('norm', 'head.norm') + if v.ndim == 2 and 'head' not in k: + model_shape = model.state_dict()[k].shape + v = v.reshape(model_shape) + out_dict[k] = v + return out_dict + +def _create_convnext(variant, pretrained=False, **kwargs): + if kwargs.get('pretrained_cfg', '') == 'fcmae': + kwargs.setdefault('pretrained_strict', False) + model = build_model_with_cfg(ConvNeXt, variant, pretrained, pretrained_filter_fn=checkpoint_filter_fn, feature_cfg=dict(out_indices=(0, 1, 2, 3), flatten_sequential=True), **kwargs) + return model + +def _cfg(url='', **kwargs): + return {'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), 'crop_pct': 0.875, 'interpolation': 'bicubic', 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'stem.0', 'classifier': 'head.fc', **kwargs} + +def _cfgv2(url='', **kwargs): + return {'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), 'crop_pct': 0.875, 'interpolation': 'bicubic', 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'stem.0', 'classifier': 'head.fc', 'license': 'cc-by-nc-4.0', 'paper_ids': 'arXiv:2301.00808', 'paper_name': 'ConvNeXt-V2: Co-designing and Scaling ConvNets with Masked Autoencoders', 'origin_url': 'https://github.com/facebookresearch/ConvNeXt-V2', **kwargs} +default_cfgs = generate_default_cfgs({'convnext_tiny.in12k_ft_in1k': _cfg(hf_hub_id='timm/', crop_pct=0.95, test_input_size=(3, 288, 288), test_crop_pct=1.0), 'convnext_small.in12k_ft_in1k': _cfg(hf_hub_id='timm/', crop_pct=0.95, test_input_size=(3, 288, 288), test_crop_pct=1.0), 'convnext_atto.d2_in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/convnext_atto_d2-01bb0f51.pth', hf_hub_id='timm/', test_input_size=(3, 288, 288), test_crop_pct=0.95), 'convnext_atto_ols.a2_in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/convnext_atto_ols_a2-78d1c8f3.pth', hf_hub_id='timm/', test_input_size=(3, 288, 288), test_crop_pct=0.95), 'convnext_femto.d1_in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/convnext_femto_d1-d71d5b4c.pth', hf_hub_id='timm/', test_input_size=(3, 288, 288), test_crop_pct=0.95), 'convnext_femto_ols.d1_in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/convnext_femto_ols_d1-246bf2ed.pth', hf_hub_id='timm/', test_input_size=(3, 288, 288), test_crop_pct=0.95), 'convnext_pico.d1_in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/convnext_pico_d1-10ad7f0d.pth', hf_hub_id='timm/', test_input_size=(3, 288, 288), test_crop_pct=0.95), 'convnext_pico_ols.d1_in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/convnext_pico_ols_d1-611f0ca7.pth', hf_hub_id='timm/', crop_pct=0.95, test_input_size=(3, 288, 288), test_crop_pct=1.0), 'convnext_nano.in12k_ft_in1k': _cfg(hf_hub_id='timm/', crop_pct=0.95, test_input_size=(3, 288, 288), test_crop_pct=1.0), 'convnext_nano.d1h_in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/convnext_nano_d1h-7eb4bdea.pth', hf_hub_id='timm/', crop_pct=0.95, test_input_size=(3, 288, 288), test_crop_pct=1.0), 'convnext_nano_ols.d1h_in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/convnext_nano_ols_d1h-ae424a9a.pth', hf_hub_id='timm/', crop_pct=0.95, test_input_size=(3, 288, 288), test_crop_pct=1.0), 'convnext_tiny_hnf.a2h_in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/convnext_tiny_hnf_a2h-ab7e9df2.pth', hf_hub_id='timm/', crop_pct=0.95, test_input_size=(3, 288, 288), test_crop_pct=1.0), 'convnext_tiny.in12k_ft_in1k_384': _cfg(hf_hub_id='timm/', input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), 'convnext_small.in12k_ft_in1k_384': _cfg(hf_hub_id='timm/', input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), 'convnext_nano.in12k': _cfg(hf_hub_id='timm/', crop_pct=0.95, num_classes=11821), 'convnext_tiny.in12k': _cfg(hf_hub_id='timm/', crop_pct=0.95, num_classes=11821), 'convnext_small.in12k': _cfg(hf_hub_id='timm/', crop_pct=0.95, num_classes=11821), 'convnext_tiny.fb_in22k_ft_in1k': _cfg(url='https://dl.fbaipublicfiles.com/convnext/convnext_tiny_22k_1k_224.pth', hf_hub_id='timm/', test_input_size=(3, 288, 288), test_crop_pct=1.0), 'convnext_small.fb_in22k_ft_in1k': _cfg(url='https://dl.fbaipublicfiles.com/convnext/convnext_small_22k_1k_224.pth', hf_hub_id='timm/', test_input_size=(3, 288, 288), test_crop_pct=1.0), 'convnext_base.fb_in22k_ft_in1k': _cfg(url='https://dl.fbaipublicfiles.com/convnext/convnext_base_22k_1k_224.pth', hf_hub_id='timm/', test_input_size=(3, 288, 288), test_crop_pct=1.0), 'convnext_large.fb_in22k_ft_in1k': _cfg(url='https://dl.fbaipublicfiles.com/convnext/convnext_large_22k_1k_224.pth', hf_hub_id='timm/', test_input_size=(3, 288, 288), test_crop_pct=1.0), 'convnext_xlarge.fb_in22k_ft_in1k': _cfg(url='https://dl.fbaipublicfiles.com/convnext/convnext_xlarge_22k_1k_224_ema.pth', hf_hub_id='timm/', test_input_size=(3, 288, 288), test_crop_pct=1.0), 'convnext_tiny.fb_in1k': _cfg(url='https://dl.fbaipublicfiles.com/convnext/convnext_tiny_1k_224_ema.pth', hf_hub_id='timm/', test_input_size=(3, 288, 288), test_crop_pct=1.0), 'convnext_small.fb_in1k': _cfg(url='https://dl.fbaipublicfiles.com/convnext/convnext_small_1k_224_ema.pth', hf_hub_id='timm/', test_input_size=(3, 288, 288), test_crop_pct=1.0), 'convnext_base.fb_in1k': _cfg(url='https://dl.fbaipublicfiles.com/convnext/convnext_base_1k_224_ema.pth', hf_hub_id='timm/', test_input_size=(3, 288, 288), test_crop_pct=1.0), 'convnext_large.fb_in1k': _cfg(url='https://dl.fbaipublicfiles.com/convnext/convnext_large_1k_224_ema.pth', hf_hub_id='timm/', test_input_size=(3, 288, 288), test_crop_pct=1.0), 'convnext_tiny.fb_in22k_ft_in1k_384': _cfg(url='https://dl.fbaipublicfiles.com/convnext/convnext_tiny_22k_1k_384.pth', hf_hub_id='timm/', input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), 'convnext_small.fb_in22k_ft_in1k_384': _cfg(url='https://dl.fbaipublicfiles.com/convnext/convnext_small_22k_1k_384.pth', hf_hub_id='timm/', input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), 'convnext_base.fb_in22k_ft_in1k_384': _cfg(url='https://dl.fbaipublicfiles.com/convnext/convnext_base_22k_1k_384.pth', hf_hub_id='timm/', input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), 'convnext_large.fb_in22k_ft_in1k_384': _cfg(url='https://dl.fbaipublicfiles.com/convnext/convnext_large_22k_1k_384.pth', hf_hub_id='timm/', input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), 'convnext_xlarge.fb_in22k_ft_in1k_384': _cfg(url='https://dl.fbaipublicfiles.com/convnext/convnext_xlarge_22k_1k_384_ema.pth', hf_hub_id='timm/', input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), 'convnext_tiny.fb_in22k': _cfg(url='https://dl.fbaipublicfiles.com/convnext/convnext_tiny_22k_224.pth', hf_hub_id='timm/', num_classes=21841), 'convnext_small.fb_in22k': _cfg(url='https://dl.fbaipublicfiles.com/convnext/convnext_small_22k_224.pth', hf_hub_id='timm/', num_classes=21841), 'convnext_base.fb_in22k': _cfg(url='https://dl.fbaipublicfiles.com/convnext/convnext_base_22k_224.pth', hf_hub_id='timm/', num_classes=21841), 'convnext_large.fb_in22k': _cfg(url='https://dl.fbaipublicfiles.com/convnext/convnext_large_22k_224.pth', hf_hub_id='timm/', num_classes=21841), 'convnext_xlarge.fb_in22k': _cfg(url='https://dl.fbaipublicfiles.com/convnext/convnext_xlarge_22k_224.pth', hf_hub_id='timm/', num_classes=21841), 'convnextv2_nano.fcmae_ft_in22k_in1k': _cfgv2(url='https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_nano_22k_224_ema.pt', hf_hub_id='timm/', test_input_size=(3, 288, 288), test_crop_pct=1.0), 'convnextv2_nano.fcmae_ft_in22k_in1k_384': _cfgv2(url='https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_nano_22k_384_ema.pt', hf_hub_id='timm/', input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), 'convnextv2_tiny.fcmae_ft_in22k_in1k': _cfgv2(url='https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_tiny_22k_224_ema.pt', hf_hub_id='timm/', test_input_size=(3, 288, 288), test_crop_pct=1.0), 'convnextv2_tiny.fcmae_ft_in22k_in1k_384': _cfgv2(url='https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_tiny_22k_384_ema.pt', hf_hub_id='timm/', input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), 'convnextv2_base.fcmae_ft_in22k_in1k': _cfgv2(url='https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_base_22k_224_ema.pt', hf_hub_id='timm/', test_input_size=(3, 288, 288), test_crop_pct=1.0), 'convnextv2_base.fcmae_ft_in22k_in1k_384': _cfgv2(url='https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_base_22k_384_ema.pt', hf_hub_id='timm/', input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), 'convnextv2_large.fcmae_ft_in22k_in1k': _cfgv2(url='https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_large_22k_224_ema.pt', hf_hub_id='timm/', test_input_size=(3, 288, 288), test_crop_pct=1.0), 'convnextv2_large.fcmae_ft_in22k_in1k_384': _cfgv2(url='https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_large_22k_384_ema.pt', hf_hub_id='timm/', input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), 'convnextv2_huge.fcmae_ft_in22k_in1k_384': _cfgv2(url='https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_huge_22k_384_ema.pt', hf_hub_id='timm/', input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), 'convnextv2_huge.fcmae_ft_in22k_in1k_512': _cfgv2(url='https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_huge_22k_512_ema.pt', hf_hub_id='timm/', input_size=(3, 512, 512), pool_size=(15, 15), crop_pct=1.0, crop_mode='squash'), 'convnextv2_atto.fcmae_ft_in1k': _cfgv2(url='https://dl.fbaipublicfiles.com/convnext/convnextv2/im1k/convnextv2_atto_1k_224_ema.pt', hf_hub_id='timm/', test_input_size=(3, 288, 288), test_crop_pct=0.95), 'convnextv2_femto.fcmae_ft_in1k': _cfgv2(url='https://dl.fbaipublicfiles.com/convnext/convnextv2/im1k/convnextv2_femto_1k_224_ema.pt', hf_hub_id='timm/', test_input_size=(3, 288, 288), test_crop_pct=0.95), 'convnextv2_pico.fcmae_ft_in1k': _cfgv2(url='https://dl.fbaipublicfiles.com/convnext/convnextv2/im1k/convnextv2_pico_1k_224_ema.pt', hf_hub_id='timm/', test_input_size=(3, 288, 288), test_crop_pct=0.95), 'convnextv2_nano.fcmae_ft_in1k': _cfgv2(url='https://dl.fbaipublicfiles.com/convnext/convnextv2/im1k/convnextv2_nano_1k_224_ema.pt', hf_hub_id='timm/', test_input_size=(3, 288, 288), test_crop_pct=1.0), 'convnextv2_tiny.fcmae_ft_in1k': _cfgv2(url='https://dl.fbaipublicfiles.com/convnext/convnextv2/im1k/convnextv2_tiny_1k_224_ema.pt', hf_hub_id='timm/', test_input_size=(3, 288, 288), test_crop_pct=1.0), 'convnextv2_base.fcmae_ft_in1k': _cfgv2(url='https://dl.fbaipublicfiles.com/convnext/convnextv2/im1k/convnextv2_base_1k_224_ema.pt', hf_hub_id='timm/', test_input_size=(3, 288, 288), test_crop_pct=1.0), 'convnextv2_large.fcmae_ft_in1k': _cfgv2(url='https://dl.fbaipublicfiles.com/convnext/convnextv2/im1k/convnextv2_large_1k_224_ema.pt', hf_hub_id='timm/', test_input_size=(3, 288, 288), test_crop_pct=1.0), 'convnextv2_huge.fcmae_ft_in1k': _cfgv2(url='https://dl.fbaipublicfiles.com/convnext/convnextv2/im1k/convnextv2_huge_1k_224_ema.pt', hf_hub_id='timm/', test_input_size=(3, 288, 288), test_crop_pct=1.0), 'convnextv2_atto.fcmae': _cfgv2(url='https://dl.fbaipublicfiles.com/convnext/convnextv2/pt_only/convnextv2_atto_1k_224_fcmae.pt', hf_hub_id='timm/', num_classes=0), 'convnextv2_femto.fcmae': _cfgv2(url='https://dl.fbaipublicfiles.com/convnext/convnextv2/pt_only/convnextv2_femto_1k_224_fcmae.pt', hf_hub_id='timm/', num_classes=0), 'convnextv2_pico.fcmae': _cfgv2(url='https://dl.fbaipublicfiles.com/convnext/convnextv2/pt_only/convnextv2_pico_1k_224_fcmae.pt', hf_hub_id='timm/', num_classes=0), 'convnextv2_nano.fcmae': _cfgv2(url='https://dl.fbaipublicfiles.com/convnext/convnextv2/pt_only/convnextv2_nano_1k_224_fcmae.pt', hf_hub_id='timm/', num_classes=0), 'convnextv2_tiny.fcmae': _cfgv2(url='https://dl.fbaipublicfiles.com/convnext/convnextv2/pt_only/convnextv2_tiny_1k_224_fcmae.pt', hf_hub_id='timm/', num_classes=0), 'convnextv2_base.fcmae': _cfgv2(url='https://dl.fbaipublicfiles.com/convnext/convnextv2/pt_only/convnextv2_base_1k_224_fcmae.pt', hf_hub_id='timm/', num_classes=0), 'convnextv2_large.fcmae': _cfgv2(url='https://dl.fbaipublicfiles.com/convnext/convnextv2/pt_only/convnextv2_large_1k_224_fcmae.pt', hf_hub_id='timm/', num_classes=0), 'convnextv2_huge.fcmae': _cfgv2(url='https://dl.fbaipublicfiles.com/convnext/convnextv2/pt_only/convnextv2_huge_1k_224_fcmae.pt', hf_hub_id='timm/', num_classes=0), 'convnextv2_small.untrained': _cfg(), 'convnext_base.clip_laion2b_augreg_ft_in12k_in1k': _cfg(hf_hub_id='timm/', mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0), 'convnext_base.clip_laion2b_augreg_ft_in12k_in1k_384': _cfg(hf_hub_id='timm/', mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), 'convnext_large_mlp.clip_laion2b_soup_ft_in12k_in1k_320': _cfg(hf_hub_id='timm/', mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, input_size=(3, 320, 320), pool_size=(10, 10), crop_pct=1.0), 'convnext_large_mlp.clip_laion2b_soup_ft_in12k_in1k_384': _cfg(hf_hub_id='timm/', mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), 'convnext_base.clip_laion2b_augreg_ft_in1k': _cfg(hf_hub_id='timm/', mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0), 'convnext_base.clip_laiona_augreg_ft_in1k_384': _cfg(hf_hub_id='timm/', mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0), 'convnext_large_mlp.clip_laion2b_augreg_ft_in1k': _cfg(hf_hub_id='timm/', mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0), 'convnext_large_mlp.clip_laion2b_augreg_ft_in1k_384': _cfg(hf_hub_id='timm/', mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), 'convnext_xxlarge.clip_laion2b_soup_ft_in1k': _cfg(hf_hub_id='timm/', mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0), 'convnext_base.clip_laion2b_augreg_ft_in12k': _cfg(hf_hub_id='timm/', mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, num_classes=11821, input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0), 'convnext_large_mlp.clip_laion2b_soup_ft_in12k_320': _cfg(hf_hub_id='timm/', mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, num_classes=11821, input_size=(3, 320, 320), pool_size=(10, 10), crop_pct=1.0), 'convnext_large_mlp.clip_laion2b_augreg_ft_in12k_384': _cfg(hf_hub_id='timm/', mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, num_classes=11821, input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), 'convnext_large_mlp.clip_laion2b_soup_ft_in12k_384': _cfg(hf_hub_id='timm/', mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, num_classes=11821, input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), 'convnext_xxlarge.clip_laion2b_soup_ft_in12k': _cfg(hf_hub_id='timm/', mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, num_classes=11821, input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0), 'convnext_base.clip_laion2b': _cfg(hf_hub_id='laion/CLIP-convnext_base_w-laion2B-s13B-b82K', hf_hub_filename='open_clip_pytorch_model.bin', mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0, num_classes=640), 'convnext_base.clip_laion2b_augreg': _cfg(hf_hub_id='laion/CLIP-convnext_base_w-laion2B-s13B-b82K-augreg', hf_hub_filename='open_clip_pytorch_model.bin', mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0, num_classes=640), 'convnext_base.clip_laiona': _cfg(hf_hub_id='laion/CLIP-convnext_base_w-laion_aesthetic-s13B-b82K', hf_hub_filename='open_clip_pytorch_model.bin', mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0, num_classes=640), 'convnext_base.clip_laiona_320': _cfg(hf_hub_id='laion/CLIP-convnext_base_w_320-laion_aesthetic-s13B-b82K', hf_hub_filename='open_clip_pytorch_model.bin', mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, input_size=(3, 320, 320), pool_size=(10, 10), crop_pct=1.0, num_classes=640), 'convnext_base.clip_laiona_augreg_320': _cfg(hf_hub_id='laion/CLIP-convnext_base_w_320-laion_aesthetic-s13B-b82K-augreg', hf_hub_filename='open_clip_pytorch_model.bin', mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, input_size=(3, 320, 320), pool_size=(10, 10), crop_pct=1.0, num_classes=640), 'convnext_large_mlp.clip_laion2b_augreg': _cfg(hf_hub_id='laion/CLIP-convnext_large_d.laion2B-s26B-b102K-augreg', hf_hub_filename='open_clip_pytorch_model.bin', mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0, num_classes=768), 'convnext_large_mlp.clip_laion2b_ft_320': _cfg(hf_hub_id='laion/CLIP-convnext_large_d_320.laion2B-s29B-b131K-ft', hf_hub_filename='open_clip_pytorch_model.bin', mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, input_size=(3, 320, 320), pool_size=(10, 10), crop_pct=1.0, num_classes=768), 'convnext_large_mlp.clip_laion2b_ft_soup_320': _cfg(hf_hub_id='laion/CLIP-convnext_large_d_320.laion2B-s29B-b131K-ft-soup', hf_hub_filename='open_clip_pytorch_model.bin', mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, input_size=(3, 320, 320), pool_size=(10, 10), crop_pct=1.0, num_classes=768), 'convnext_xxlarge.clip_laion2b_soup': _cfg(hf_hub_id='laion/CLIP-convnext_xxlarge-laion2B-s34B-b82K-augreg-soup', hf_hub_filename='open_clip_pytorch_model.bin', mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0, num_classes=1024), 'convnext_xxlarge.clip_laion2b_rewind': _cfg(hf_hub_id='laion/CLIP-convnext_xxlarge-laion2B-s34B-b82K-augreg-rewind', hf_hub_filename='open_clip_pytorch_model.bin', mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0, num_classes=1024)}) + +@register_model +def convnext_atto(pretrained=False, **kwargs) -> ConvNeXt: + model_args = dict(depths=(2, 2, 6, 2), dims=(40, 80, 160, 320), conv_mlp=True) + model = _create_convnext('convnext_atto', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def convnext_atto_ols(pretrained=False, **kwargs) -> ConvNeXt: + model_args = dict(depths=(2, 2, 6, 2), dims=(40, 80, 160, 320), conv_mlp=True, stem_type='overlap_tiered') + model = _create_convnext('convnext_atto_ols', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def convnext_femto(pretrained=False, **kwargs) -> ConvNeXt: + model_args = dict(depths=(2, 2, 6, 2), dims=(48, 96, 192, 384), conv_mlp=True) + model = _create_convnext('convnext_femto', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def convnext_femto_ols(pretrained=False, **kwargs) -> ConvNeXt: + model_args = dict(depths=(2, 2, 6, 2), dims=(48, 96, 192, 384), conv_mlp=True, stem_type='overlap_tiered') + model = _create_convnext('convnext_femto_ols', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def convnext_pico(pretrained=False, **kwargs) -> ConvNeXt: + model_args = dict(depths=(2, 2, 6, 2), dims=(64, 128, 256, 512), conv_mlp=True) + model = _create_convnext('convnext_pico', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def convnext_pico_ols(pretrained=False, **kwargs) -> ConvNeXt: + model_args = dict(depths=(2, 2, 6, 2), dims=(64, 128, 256, 512), conv_mlp=True, stem_type='overlap_tiered') + model = _create_convnext('convnext_pico_ols', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def convnext_nano(pretrained=False, **kwargs) -> ConvNeXt: + model_args = dict(depths=(2, 2, 8, 2), dims=(80, 160, 320, 640), conv_mlp=True) + model = _create_convnext('convnext_nano', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def convnext_nano_ols(pretrained=False, **kwargs) -> ConvNeXt: + model_args = dict(depths=(2, 2, 8, 2), dims=(80, 160, 320, 640), conv_mlp=True, stem_type='overlap') + model = _create_convnext('convnext_nano_ols', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def convnext_tiny_hnf(pretrained=False, **kwargs) -> ConvNeXt: + model_args = dict(depths=(3, 3, 9, 3), dims=(96, 192, 384, 768), head_norm_first=True, conv_mlp=True) + model = _create_convnext('convnext_tiny_hnf', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def convnext_tiny(pretrained=False, **kwargs) -> ConvNeXt: + model_args = dict(depths=(3, 3, 9, 3), dims=(96, 192, 384, 768)) + model = _create_convnext('convnext_tiny', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def convnext_small(pretrained=False, **kwargs) -> ConvNeXt: + model_args = dict(depths=[3, 3, 27, 3], dims=[96, 192, 384, 768]) + model = _create_convnext('convnext_small', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def convnext_base(pretrained=False, **kwargs) -> ConvNeXt: + model_args = dict(depths=[3, 3, 27, 3], dims=[128, 256, 512, 1024]) + model = _create_convnext('convnext_base', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def convnext_large(pretrained=False, **kwargs) -> ConvNeXt: + model_args = dict(depths=[3, 3, 27, 3], dims=[192, 384, 768, 1536]) + model = _create_convnext('convnext_large', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def convnext_large_mlp(pretrained=False, **kwargs) -> ConvNeXt: + model_args = dict(depths=[3, 3, 27, 3], dims=[192, 384, 768, 1536], head_hidden_size=1536) + model = _create_convnext('convnext_large_mlp', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def convnext_xlarge(pretrained=False, **kwargs) -> ConvNeXt: + model_args = dict(depths=[3, 3, 27, 3], dims=[256, 512, 1024, 2048]) + model = _create_convnext('convnext_xlarge', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def convnext_xxlarge(pretrained=False, **kwargs) -> ConvNeXt: + model_args = dict(depths=[3, 4, 30, 3], dims=[384, 768, 1536, 3072], norm_eps=kwargs.pop('norm_eps', 1e-05)) + model = _create_convnext('convnext_xxlarge', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def convnextv2_atto(pretrained=False, **kwargs) -> ConvNeXt: + model_args = dict(depths=(2, 2, 6, 2), dims=(40, 80, 160, 320), use_grn=True, ls_init_value=None, conv_mlp=True) + model = _create_convnext('convnextv2_atto', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def convnextv2_femto(pretrained=False, **kwargs) -> ConvNeXt: + model_args = dict(depths=(2, 2, 6, 2), dims=(48, 96, 192, 384), use_grn=True, ls_init_value=None, conv_mlp=True) + model = _create_convnext('convnextv2_femto', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def convnextv2_pico(pretrained=False, **kwargs) -> ConvNeXt: + model_args = dict(depths=(2, 2, 6, 2), dims=(64, 128, 256, 512), use_grn=True, ls_init_value=None, conv_mlp=True) + model = _create_convnext('convnextv2_pico', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def convnextv2_nano(pretrained=False, **kwargs) -> ConvNeXt: + model_args = dict(depths=(2, 2, 8, 2), dims=(80, 160, 320, 640), use_grn=True, ls_init_value=None, conv_mlp=True) + model = _create_convnext('convnextv2_nano', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def convnextv2_tiny(pretrained=False, **kwargs) -> ConvNeXt: + model_args = dict(depths=(3, 3, 9, 3), dims=(96, 192, 384, 768), use_grn=True, ls_init_value=None) + model = _create_convnext('convnextv2_tiny', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def convnextv2_small(pretrained=False, **kwargs) -> ConvNeXt: + model_args = dict(depths=[3, 3, 27, 3], dims=[96, 192, 384, 768], use_grn=True, ls_init_value=None) + model = _create_convnext('convnextv2_small', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def convnextv2_base(pretrained=False, **kwargs) -> ConvNeXt: + model_args = dict(depths=[3, 3, 27, 3], dims=[128, 256, 512, 1024], use_grn=True, ls_init_value=None) + model = _create_convnext('convnextv2_base', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def convnextv2_large(pretrained=False, **kwargs) -> ConvNeXt: + model_args = dict(depths=[3, 3, 27, 3], dims=[192, 384, 768, 1536], use_grn=True, ls_init_value=None) + model = _create_convnext('convnextv2_large', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def convnextv2_huge(pretrained=False, **kwargs) -> ConvNeXt: + model_args = dict(depths=[3, 3, 27, 3], dims=[352, 704, 1408, 2816], use_grn=True, ls_init_value=None) + model = _create_convnext('convnextv2_huge', pretrained=pretrained, **dict(model_args, **kwargs)) + return model +register_model_deprecations(__name__, {'convnext_tiny_in22ft1k': 'convnext_tiny.fb_in22k_ft_in1k', 'convnext_small_in22ft1k': 'convnext_small.fb_in22k_ft_in1k', 'convnext_base_in22ft1k': 'convnext_base.fb_in22k_ft_in1k', 'convnext_large_in22ft1k': 'convnext_large.fb_in22k_ft_in1k', 'convnext_xlarge_in22ft1k': 'convnext_xlarge.fb_in22k_ft_in1k', 'convnext_tiny_384_in22ft1k': 'convnext_tiny.fb_in22k_ft_in1k_384', 'convnext_small_384_in22ft1k': 'convnext_small.fb_in22k_ft_in1k_384', 'convnext_base_384_in22ft1k': 'convnext_base.fb_in22k_ft_in1k_384', 'convnext_large_384_in22ft1k': 'convnext_large.fb_in22k_ft_in1k_384', 'convnext_xlarge_384_in22ft1k': 'convnext_xlarge.fb_in22k_ft_in1k_384', 'convnext_tiny_in22k': 'convnext_tiny.fb_in22k', 'convnext_small_in22k': 'convnext_small.fb_in22k', 'convnext_base_in22k': 'convnext_base.fb_in22k', 'convnext_large_in22k': 'convnext_large.fb_in22k', 'convnext_xlarge_in22k': 'convnext_xlarge.fb_in22k'}) + +# File: pytorch-image-models-main/timm/models/crossvit.py +"""""" +'' +from functools import partial +from typing import List, Optional, Tuple +import torch +import torch.hub +import torch.nn as nn +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from timm.layers import DropPath, to_2tuple, trunc_normal_, _assert +from ._builder import build_model_with_cfg +from ._features_fx import register_notrace_function +from ._registry import register_model, generate_default_cfgs +from .vision_transformer import Block +__all__ = ['CrossVit'] + +class PatchEmbed(nn.Module): + + def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, multi_conv=False): + super().__init__() + img_size = to_2tuple(img_size) + patch_size = to_2tuple(patch_size) + num_patches = img_size[1] // patch_size[1] * (img_size[0] // patch_size[0]) + self.img_size = img_size + self.patch_size = patch_size + self.num_patches = num_patches + if multi_conv: + if patch_size[0] == 12: + self.proj = nn.Sequential(nn.Conv2d(in_chans, embed_dim // 4, kernel_size=7, stride=4, padding=3), nn.ReLU(inplace=True), nn.Conv2d(embed_dim // 4, embed_dim // 2, kernel_size=3, stride=3, padding=0), nn.ReLU(inplace=True), nn.Conv2d(embed_dim // 2, embed_dim, kernel_size=3, stride=1, padding=1)) + elif patch_size[0] == 16: + self.proj = nn.Sequential(nn.Conv2d(in_chans, embed_dim // 4, kernel_size=7, stride=4, padding=3), nn.ReLU(inplace=True), nn.Conv2d(embed_dim // 4, embed_dim // 2, kernel_size=3, stride=2, padding=1), nn.ReLU(inplace=True), nn.Conv2d(embed_dim // 2, embed_dim, kernel_size=3, stride=2, padding=1)) + else: + self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) + + def forward(self, x): + (B, C, H, W) = x.shape + _assert(H == self.img_size[0], f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]}).") + _assert(W == self.img_size[1], f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]}).") + x = self.proj(x).flatten(2).transpose(1, 2) + return x + +class CrossAttention(nn.Module): + + def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0.0, proj_drop=0.0): + super().__init__() + self.num_heads = num_heads + head_dim = dim // num_heads + self.scale = head_dim ** (-0.5) + self.wq = nn.Linear(dim, dim, bias=qkv_bias) + self.wk = nn.Linear(dim, dim, bias=qkv_bias) + self.wv = nn.Linear(dim, dim, bias=qkv_bias) + self.attn_drop = nn.Dropout(attn_drop) + self.proj = nn.Linear(dim, dim) + self.proj_drop = nn.Dropout(proj_drop) + + def forward(self, x): + (B, N, C) = x.shape + q = self.wq(x[:, 0:1, ...]).reshape(B, 1, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) + k = self.wk(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) + v = self.wv(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) + attn = q @ k.transpose(-2, -1) * self.scale + attn = attn.softmax(dim=-1) + attn = self.attn_drop(attn) + x = (attn @ v).transpose(1, 2).reshape(B, 1, C) + x = self.proj(x) + x = self.proj_drop(x) + return x + +class CrossAttentionBlock(nn.Module): + + def __init__(self, dim, num_heads, mlp_ratio=4.0, qkv_bias=False, proj_drop=0.0, attn_drop=0.0, drop_path=0.0, act_layer=nn.GELU, norm_layer=nn.LayerNorm): + super().__init__() + self.norm1 = norm_layer(dim) + self.attn = CrossAttention(dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=proj_drop) + self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + + def forward(self, x): + x = x[:, 0:1, ...] + self.drop_path(self.attn(self.norm1(x))) + return x + +class MultiScaleBlock(nn.Module): + + def __init__(self, dim, patches, depth, num_heads, mlp_ratio, qkv_bias=False, proj_drop=0.0, attn_drop=0.0, drop_path=0.0, act_layer=nn.GELU, norm_layer=nn.LayerNorm): + super().__init__() + num_branches = len(dim) + self.num_branches = num_branches + self.blocks = nn.ModuleList() + for d in range(num_branches): + tmp = [] + for i in range(depth[d]): + tmp.append(Block(dim=dim[d], num_heads=num_heads[d], mlp_ratio=mlp_ratio[d], qkv_bias=qkv_bias, proj_drop=proj_drop, attn_drop=attn_drop, drop_path=drop_path[i], norm_layer=norm_layer)) + if len(tmp) != 0: + self.blocks.append(nn.Sequential(*tmp)) + if len(self.blocks) == 0: + self.blocks = None + self.projs = nn.ModuleList() + for d in range(num_branches): + if dim[d] == dim[(d + 1) % num_branches] and False: + tmp = [nn.Identity()] + else: + tmp = [norm_layer(dim[d]), act_layer(), nn.Linear(dim[d], dim[(d + 1) % num_branches])] + self.projs.append(nn.Sequential(*tmp)) + self.fusion = nn.ModuleList() + for d in range(num_branches): + d_ = (d + 1) % num_branches + nh = num_heads[d_] + if depth[-1] == 0: + self.fusion.append(CrossAttentionBlock(dim=dim[d_], num_heads=nh, mlp_ratio=mlp_ratio[d], qkv_bias=qkv_bias, proj_drop=proj_drop, attn_drop=attn_drop, drop_path=drop_path[-1], norm_layer=norm_layer)) + else: + tmp = [] + for _ in range(depth[-1]): + tmp.append(CrossAttentionBlock(dim=dim[d_], num_heads=nh, mlp_ratio=mlp_ratio[d], qkv_bias=qkv_bias, proj_drop=proj_drop, attn_drop=attn_drop, drop_path=drop_path[-1], norm_layer=norm_layer)) + self.fusion.append(nn.Sequential(*tmp)) + self.revert_projs = nn.ModuleList() + for d in range(num_branches): + if dim[(d + 1) % num_branches] == dim[d] and False: + tmp = [nn.Identity()] + else: + tmp = [norm_layer(dim[(d + 1) % num_branches]), act_layer(), nn.Linear(dim[(d + 1) % num_branches], dim[d])] + self.revert_projs.append(nn.Sequential(*tmp)) + + def forward(self, x: List[torch.Tensor]) -> List[torch.Tensor]: + outs_b = [] + for (i, block) in enumerate(self.blocks): + outs_b.append(block(x[i])) + proj_cls_token = torch.jit.annotate(List[torch.Tensor], []) + for (i, proj) in enumerate(self.projs): + proj_cls_token.append(proj(outs_b[i][:, 0:1, ...])) + outs = [] + for (i, (fusion, revert_proj)) in enumerate(zip(self.fusion, self.revert_projs)): + tmp = torch.cat((proj_cls_token[i], outs_b[(i + 1) % self.num_branches][:, 1:, ...]), dim=1) + tmp = fusion(tmp) + reverted_proj_cls_token = revert_proj(tmp[:, 0:1, ...]) + tmp = torch.cat((reverted_proj_cls_token, outs_b[i][:, 1:, ...]), dim=1) + outs.append(tmp) + return outs + +def _compute_num_patches(img_size, patches): + return [i[0] // p * i[1] // p for (i, p) in zip(img_size, patches)] + +@register_notrace_function +def scale_image(x, ss: Tuple[int, int], crop_scale: bool=False): + (H, W) = x.shape[-2:] + if H != ss[0] or W != ss[1]: + if crop_scale and ss[0] <= H and (ss[1] <= W): + (cu, cl) = (int(round((H - ss[0]) / 2.0)), int(round((W - ss[1]) / 2.0))) + x = x[:, :, cu:cu + ss[0], cl:cl + ss[1]] + else: + x = torch.nn.functional.interpolate(x, size=ss, mode='bicubic', align_corners=False) + return x + +class CrossVit(nn.Module): + + def __init__(self, img_size=224, img_scale=(1.0, 1.0), patch_size=(8, 16), in_chans=3, num_classes=1000, embed_dim=(192, 384), depth=((1, 3, 1), (1, 3, 1), (1, 3, 1)), num_heads=(6, 12), mlp_ratio=(2.0, 2.0, 4.0), multi_conv=False, crop_scale=False, qkv_bias=True, drop_rate=0.0, pos_drop_rate=0.0, proj_drop_rate=0.0, attn_drop_rate=0.0, drop_path_rate=0.0, norm_layer=partial(nn.LayerNorm, eps=1e-06), global_pool='token'): + super().__init__() + assert global_pool in ('token', 'avg') + self.num_classes = num_classes + self.global_pool = global_pool + self.img_size = to_2tuple(img_size) + img_scale = to_2tuple(img_scale) + self.img_size_scaled = [tuple([int(sj * si) for sj in self.img_size]) for si in img_scale] + self.crop_scale = crop_scale + num_patches = _compute_num_patches(self.img_size_scaled, patch_size) + self.num_branches = len(patch_size) + self.embed_dim = embed_dim + self.num_features = self.head_hidden_size = sum(embed_dim) + self.patch_embed = nn.ModuleList() + for i in range(self.num_branches): + setattr(self, f'pos_embed_{i}', nn.Parameter(torch.zeros(1, 1 + num_patches[i], embed_dim[i]))) + setattr(self, f'cls_token_{i}', nn.Parameter(torch.zeros(1, 1, embed_dim[i]))) + for (im_s, p, d) in zip(self.img_size_scaled, patch_size, embed_dim): + self.patch_embed.append(PatchEmbed(img_size=im_s, patch_size=p, in_chans=in_chans, embed_dim=d, multi_conv=multi_conv)) + self.pos_drop = nn.Dropout(p=pos_drop_rate) + total_depth = sum([sum(x[-2:]) for x in depth]) + dpr = [x.item() for x in torch.linspace(0, drop_path_rate, total_depth)] + dpr_ptr = 0 + self.blocks = nn.ModuleList() + for (idx, block_cfg) in enumerate(depth): + curr_depth = max(block_cfg[:-1]) + block_cfg[-1] + dpr_ = dpr[dpr_ptr:dpr_ptr + curr_depth] + blk = MultiScaleBlock(embed_dim, num_patches, block_cfg, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, proj_drop=proj_drop_rate, attn_drop=attn_drop_rate, drop_path=dpr_, norm_layer=norm_layer) + dpr_ptr += curr_depth + self.blocks.append(blk) + self.norm = nn.ModuleList([norm_layer(embed_dim[i]) for i in range(self.num_branches)]) + self.head_drop = nn.Dropout(drop_rate) + self.head = nn.ModuleList([nn.Linear(embed_dim[i], num_classes) if num_classes > 0 else nn.Identity() for i in range(self.num_branches)]) + for i in range(self.num_branches): + trunc_normal_(getattr(self, f'pos_embed_{i}'), std=0.02) + trunc_normal_(getattr(self, f'cls_token_{i}'), std=0.02) + self.apply(self._init_weights) + + def _init_weights(self, m): + if isinstance(m, nn.Linear): + trunc_normal_(m.weight, std=0.02) + if isinstance(m, nn.Linear) and m.bias is not None: + nn.init.constant_(m.bias, 0) + elif isinstance(m, nn.LayerNorm): + nn.init.constant_(m.bias, 0) + nn.init.constant_(m.weight, 1.0) + + @torch.jit.ignore + def no_weight_decay(self): + out = set() + for i in range(self.num_branches): + out.add(f'cls_token_{i}') + pe = getattr(self, f'pos_embed_{i}', None) + if pe is not None and pe.requires_grad: + out.add(f'pos_embed_{i}') + return out + + @torch.jit.ignore + def group_matcher(self, coarse=False): + return dict(stem='^cls_token|pos_embed|patch_embed', blocks=[('^blocks\\.(\\d+)', None), ('^norm', (99999,))]) + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + assert not enable, 'gradient checkpointing not supported' + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.head + + def reset_classifier(self, num_classes: int, global_pool: Optional[str]=None): + self.num_classes = num_classes + if global_pool is not None: + assert global_pool in ('token', 'avg') + self.global_pool = global_pool + self.head = nn.ModuleList([nn.Linear(self.embed_dim[i], num_classes) if num_classes > 0 else nn.Identity() for i in range(self.num_branches)]) + + def forward_features(self, x) -> List[torch.Tensor]: + B = x.shape[0] + xs = [] + for (i, patch_embed) in enumerate(self.patch_embed): + x_ = x + ss = self.img_size_scaled[i] + x_ = scale_image(x_, ss, self.crop_scale) + x_ = patch_embed(x_) + cls_tokens = self.cls_token_0 if i == 0 else self.cls_token_1 + cls_tokens = cls_tokens.expand(B, -1, -1) + x_ = torch.cat((cls_tokens, x_), dim=1) + pos_embed = self.pos_embed_0 if i == 0 else self.pos_embed_1 + x_ = x_ + pos_embed + x_ = self.pos_drop(x_) + xs.append(x_) + for (i, blk) in enumerate(self.blocks): + xs = blk(xs) + xs = [norm(xs[i]) for (i, norm) in enumerate(self.norm)] + return xs + + def forward_head(self, xs: List[torch.Tensor], pre_logits: bool=False) -> torch.Tensor: + xs = [x[:, 1:].mean(dim=1) for x in xs] if self.global_pool == 'avg' else [x[:, 0] for x in xs] + xs = [self.head_drop(x) for x in xs] + if pre_logits or isinstance(self.head[0], nn.Identity): + return torch.cat([x for x in xs], dim=1) + return torch.mean(torch.stack([head(xs[i]) for (i, head) in enumerate(self.head)], dim=0), dim=0) + + def forward(self, x): + xs = self.forward_features(x) + x = self.forward_head(xs) + return x + +def _create_crossvit(variant, pretrained=False, **kwargs): + if kwargs.get('features_only', None): + raise RuntimeError('features_only not implemented for Vision Transformer models.') + + def pretrained_filter_fn(state_dict): + new_state_dict = {} + for key in state_dict.keys(): + if 'pos_embed' in key or 'cls_token' in key: + new_key = key.replace('.', '_') + else: + new_key = key + new_state_dict[new_key] = state_dict[key] + return new_state_dict + return build_model_with_cfg(CrossVit, variant, pretrained, pretrained_filter_fn=pretrained_filter_fn, **kwargs) + +def _cfg(url='', **kwargs): + return {'url': url, 'num_classes': 1000, 'input_size': (3, 240, 240), 'pool_size': None, 'crop_pct': 0.875, 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'fixed_input_size': True, 'first_conv': ('patch_embed.0.proj', 'patch_embed.1.proj'), 'classifier': ('head.0', 'head.1'), **kwargs} +default_cfgs = generate_default_cfgs({'crossvit_15_240.in1k': _cfg(hf_hub_id='timm/'), 'crossvit_15_dagger_240.in1k': _cfg(hf_hub_id='timm/', first_conv=('patch_embed.0.proj.0', 'patch_embed.1.proj.0')), 'crossvit_15_dagger_408.in1k': _cfg(hf_hub_id='timm/', input_size=(3, 408, 408), first_conv=('patch_embed.0.proj.0', 'patch_embed.1.proj.0'), crop_pct=1.0), 'crossvit_18_240.in1k': _cfg(hf_hub_id='timm/'), 'crossvit_18_dagger_240.in1k': _cfg(hf_hub_id='timm/', first_conv=('patch_embed.0.proj.0', 'patch_embed.1.proj.0')), 'crossvit_18_dagger_408.in1k': _cfg(hf_hub_id='timm/', input_size=(3, 408, 408), first_conv=('patch_embed.0.proj.0', 'patch_embed.1.proj.0'), crop_pct=1.0), 'crossvit_9_240.in1k': _cfg(hf_hub_id='timm/'), 'crossvit_9_dagger_240.in1k': _cfg(hf_hub_id='timm/', first_conv=('patch_embed.0.proj.0', 'patch_embed.1.proj.0')), 'crossvit_base_240.in1k': _cfg(hf_hub_id='timm/'), 'crossvit_small_240.in1k': _cfg(hf_hub_id='timm/'), 'crossvit_tiny_240.in1k': _cfg(hf_hub_id='timm/')}) + +@register_model +def crossvit_tiny_240(pretrained=False, **kwargs) -> CrossVit: + model_args = dict(img_scale=(1.0, 224 / 240), patch_size=[12, 16], embed_dim=[96, 192], depth=[[1, 4, 0], [1, 4, 0], [1, 4, 0]], num_heads=[3, 3], mlp_ratio=[4, 4, 1]) + model = _create_crossvit(variant='crossvit_tiny_240', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def crossvit_small_240(pretrained=False, **kwargs) -> CrossVit: + model_args = dict(img_scale=(1.0, 224 / 240), patch_size=[12, 16], embed_dim=[192, 384], depth=[[1, 4, 0], [1, 4, 0], [1, 4, 0]], num_heads=[6, 6], mlp_ratio=[4, 4, 1]) + model = _create_crossvit(variant='crossvit_small_240', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def crossvit_base_240(pretrained=False, **kwargs) -> CrossVit: + model_args = dict(img_scale=(1.0, 224 / 240), patch_size=[12, 16], embed_dim=[384, 768], depth=[[1, 4, 0], [1, 4, 0], [1, 4, 0]], num_heads=[12, 12], mlp_ratio=[4, 4, 1]) + model = _create_crossvit(variant='crossvit_base_240', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def crossvit_9_240(pretrained=False, **kwargs) -> CrossVit: + model_args = dict(img_scale=(1.0, 224 / 240), patch_size=[12, 16], embed_dim=[128, 256], depth=[[1, 3, 0], [1, 3, 0], [1, 3, 0]], num_heads=[4, 4], mlp_ratio=[3, 3, 1]) + model = _create_crossvit(variant='crossvit_9_240', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def crossvit_15_240(pretrained=False, **kwargs) -> CrossVit: + model_args = dict(img_scale=(1.0, 224 / 240), patch_size=[12, 16], embed_dim=[192, 384], depth=[[1, 5, 0], [1, 5, 0], [1, 5, 0]], num_heads=[6, 6], mlp_ratio=[3, 3, 1]) + model = _create_crossvit(variant='crossvit_15_240', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def crossvit_18_240(pretrained=False, **kwargs) -> CrossVit: + model_args = dict(img_scale=(1.0, 224 / 240), patch_size=[12, 16], embed_dim=[224, 448], depth=[[1, 6, 0], [1, 6, 0], [1, 6, 0]], num_heads=[7, 7], mlp_ratio=[3, 3, 1], **kwargs) + model = _create_crossvit(variant='crossvit_18_240', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def crossvit_9_dagger_240(pretrained=False, **kwargs) -> CrossVit: + model_args = dict(img_scale=(1.0, 224 / 240), patch_size=[12, 16], embed_dim=[128, 256], depth=[[1, 3, 0], [1, 3, 0], [1, 3, 0]], num_heads=[4, 4], mlp_ratio=[3, 3, 1], multi_conv=True) + model = _create_crossvit(variant='crossvit_9_dagger_240', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def crossvit_15_dagger_240(pretrained=False, **kwargs) -> CrossVit: + model_args = dict(img_scale=(1.0, 224 / 240), patch_size=[12, 16], embed_dim=[192, 384], depth=[[1, 5, 0], [1, 5, 0], [1, 5, 0]], num_heads=[6, 6], mlp_ratio=[3, 3, 1], multi_conv=True) + model = _create_crossvit(variant='crossvit_15_dagger_240', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def crossvit_15_dagger_408(pretrained=False, **kwargs) -> CrossVit: + model_args = dict(img_scale=(1.0, 384 / 408), patch_size=[12, 16], embed_dim=[192, 384], depth=[[1, 5, 0], [1, 5, 0], [1, 5, 0]], num_heads=[6, 6], mlp_ratio=[3, 3, 1], multi_conv=True) + model = _create_crossvit(variant='crossvit_15_dagger_408', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def crossvit_18_dagger_240(pretrained=False, **kwargs) -> CrossVit: + model_args = dict(img_scale=(1.0, 224 / 240), patch_size=[12, 16], embed_dim=[224, 448], depth=[[1, 6, 0], [1, 6, 0], [1, 6, 0]], num_heads=[7, 7], mlp_ratio=[3, 3, 1], multi_conv=True) + model = _create_crossvit(variant='crossvit_18_dagger_240', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def crossvit_18_dagger_408(pretrained=False, **kwargs) -> CrossVit: + model_args = dict(img_scale=(1.0, 384 / 408), patch_size=[12, 16], embed_dim=[224, 448], depth=[[1, 6, 0], [1, 6, 0], [1, 6, 0]], num_heads=[7, 7], mlp_ratio=[3, 3, 1], multi_conv=True) + model = _create_crossvit(variant='crossvit_18_dagger_408', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +# File: pytorch-image-models-main/timm/models/cspnet.py +"""""" +from dataclasses import dataclass, asdict, replace +from functools import partial +from typing import Any, Dict, Optional, Tuple, Union +import torch +import torch.nn as nn +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from timm.layers import ClassifierHead, ConvNormAct, DropPath, get_attn, create_act_layer, make_divisible +from ._builder import build_model_with_cfg +from ._manipulate import named_apply, MATCH_PREV_GROUP +from ._registry import register_model, generate_default_cfgs +__all__ = ['CspNet'] + +@dataclass +class CspStemCfg: + out_chs: Union[int, Tuple[int, ...]] = 32 + stride: Union[int, Tuple[int, ...]] = 2 + kernel_size: int = 3 + padding: Union[int, str] = '' + pool: Optional[str] = '' + +def _pad_arg(x, n): + if not isinstance(x, (tuple, list)): + x = (x,) + curr_n = len(x) + pad_n = n - curr_n + if pad_n <= 0: + return x[:n] + return tuple(x + (x[-1],) * pad_n) + +@dataclass +class CspStagesCfg: + depth: Tuple[int, ...] = (3, 3, 5, 2) + out_chs: Tuple[int, ...] = (128, 256, 512, 1024) + stride: Union[int, Tuple[int, ...]] = 2 + groups: Union[int, Tuple[int, ...]] = 1 + block_ratio: Union[float, Tuple[float, ...]] = 1.0 + bottle_ratio: Union[float, Tuple[float, ...]] = 1.0 + avg_down: Union[bool, Tuple[bool, ...]] = False + attn_layer: Optional[Union[str, Tuple[str, ...]]] = None + attn_kwargs: Optional[Union[Dict, Tuple[Dict]]] = None + stage_type: Union[str, Tuple[str]] = 'csp' + block_type: Union[str, Tuple[str]] = 'bottle' + expand_ratio: Union[float, Tuple[float, ...]] = 1.0 + cross_linear: Union[bool, Tuple[bool, ...]] = False + down_growth: Union[bool, Tuple[bool, ...]] = False + + def __post_init__(self): + n = len(self.depth) + assert len(self.out_chs) == n + self.stride = _pad_arg(self.stride, n) + self.groups = _pad_arg(self.groups, n) + self.block_ratio = _pad_arg(self.block_ratio, n) + self.bottle_ratio = _pad_arg(self.bottle_ratio, n) + self.avg_down = _pad_arg(self.avg_down, n) + self.attn_layer = _pad_arg(self.attn_layer, n) + self.attn_kwargs = _pad_arg(self.attn_kwargs, n) + self.stage_type = _pad_arg(self.stage_type, n) + self.block_type = _pad_arg(self.block_type, n) + self.expand_ratio = _pad_arg(self.expand_ratio, n) + self.cross_linear = _pad_arg(self.cross_linear, n) + self.down_growth = _pad_arg(self.down_growth, n) + +@dataclass +class CspModelCfg: + stem: CspStemCfg + stages: CspStagesCfg + zero_init_last: bool = True + act_layer: str = 'leaky_relu' + norm_layer: str = 'batchnorm' + aa_layer: Optional[str] = None + +def _cs3_cfg(width_multiplier=1.0, depth_multiplier=1.0, avg_down=False, act_layer='silu', focus=False, attn_layer=None, attn_kwargs=None, bottle_ratio=1.0, block_type='dark'): + if focus: + stem_cfg = CspStemCfg(out_chs=make_divisible(64 * width_multiplier), kernel_size=6, stride=2, padding=2, pool='') + else: + stem_cfg = CspStemCfg(out_chs=tuple([make_divisible(c * width_multiplier) for c in (32, 64)]), kernel_size=3, stride=2, pool='') + return CspModelCfg(stem=stem_cfg, stages=CspStagesCfg(out_chs=tuple([make_divisible(c * width_multiplier) for c in (128, 256, 512, 1024)]), depth=tuple([int(d * depth_multiplier) for d in (3, 6, 9, 3)]), stride=2, bottle_ratio=bottle_ratio, block_ratio=0.5, avg_down=avg_down, attn_layer=attn_layer, attn_kwargs=attn_kwargs, stage_type='cs3', block_type=block_type), act_layer=act_layer) + +class BottleneckBlock(nn.Module): + + def __init__(self, in_chs, out_chs, dilation=1, bottle_ratio=0.25, groups=1, act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d, attn_last=False, attn_layer=None, drop_block=None, drop_path=0.0): + super(BottleneckBlock, self).__init__() + mid_chs = int(round(out_chs * bottle_ratio)) + ckwargs = dict(act_layer=act_layer, norm_layer=norm_layer) + attn_last = attn_layer is not None and attn_last + attn_first = attn_layer is not None and (not attn_last) + self.conv1 = ConvNormAct(in_chs, mid_chs, kernel_size=1, **ckwargs) + self.conv2 = ConvNormAct(mid_chs, mid_chs, kernel_size=3, dilation=dilation, groups=groups, drop_layer=drop_block, **ckwargs) + self.attn2 = attn_layer(mid_chs, act_layer=act_layer) if attn_first else nn.Identity() + self.conv3 = ConvNormAct(mid_chs, out_chs, kernel_size=1, apply_act=False, **ckwargs) + self.attn3 = attn_layer(out_chs, act_layer=act_layer) if attn_last else nn.Identity() + self.drop_path = DropPath(drop_path) if drop_path else nn.Identity() + self.act3 = create_act_layer(act_layer) + + def zero_init_last(self): + nn.init.zeros_(self.conv3.bn.weight) + + def forward(self, x): + shortcut = x + x = self.conv1(x) + x = self.conv2(x) + x = self.attn2(x) + x = self.conv3(x) + x = self.attn3(x) + x = self.drop_path(x) + shortcut + x = self.act3(x) + return x + +class DarkBlock(nn.Module): + + def __init__(self, in_chs, out_chs, dilation=1, bottle_ratio=0.5, groups=1, act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d, attn_layer=None, drop_block=None, drop_path=0.0): + super(DarkBlock, self).__init__() + mid_chs = int(round(out_chs * bottle_ratio)) + ckwargs = dict(act_layer=act_layer, norm_layer=norm_layer) + self.conv1 = ConvNormAct(in_chs, mid_chs, kernel_size=1, **ckwargs) + self.attn = attn_layer(mid_chs, act_layer=act_layer) if attn_layer is not None else nn.Identity() + self.conv2 = ConvNormAct(mid_chs, out_chs, kernel_size=3, dilation=dilation, groups=groups, drop_layer=drop_block, **ckwargs) + self.drop_path = DropPath(drop_path) if drop_path else nn.Identity() + + def zero_init_last(self): + nn.init.zeros_(self.conv2.bn.weight) + + def forward(self, x): + shortcut = x + x = self.conv1(x) + x = self.attn(x) + x = self.conv2(x) + x = self.drop_path(x) + shortcut + return x + +class EdgeBlock(nn.Module): + + def __init__(self, in_chs, out_chs, dilation=1, bottle_ratio=0.5, groups=1, act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d, attn_layer=None, drop_block=None, drop_path=0.0): + super(EdgeBlock, self).__init__() + mid_chs = int(round(out_chs * bottle_ratio)) + ckwargs = dict(act_layer=act_layer, norm_layer=norm_layer) + self.conv1 = ConvNormAct(in_chs, mid_chs, kernel_size=3, dilation=dilation, groups=groups, drop_layer=drop_block, **ckwargs) + self.attn = attn_layer(mid_chs, act_layer=act_layer) if attn_layer is not None else nn.Identity() + self.conv2 = ConvNormAct(mid_chs, out_chs, kernel_size=1, **ckwargs) + self.drop_path = DropPath(drop_path) if drop_path else nn.Identity() + + def zero_init_last(self): + nn.init.zeros_(self.conv2.bn.weight) + + def forward(self, x): + shortcut = x + x = self.conv1(x) + x = self.attn(x) + x = self.conv2(x) + x = self.drop_path(x) + shortcut + return x + +class CrossStage(nn.Module): + + def __init__(self, in_chs, out_chs, stride, dilation, depth, block_ratio=1.0, bottle_ratio=1.0, expand_ratio=1.0, groups=1, first_dilation=None, avg_down=False, down_growth=False, cross_linear=False, block_dpr=None, block_fn=BottleneckBlock, **block_kwargs): + super(CrossStage, self).__init__() + first_dilation = first_dilation or dilation + down_chs = out_chs if down_growth else in_chs + self.expand_chs = exp_chs = int(round(out_chs * expand_ratio)) + block_out_chs = int(round(out_chs * block_ratio)) + conv_kwargs = dict(act_layer=block_kwargs.get('act_layer'), norm_layer=block_kwargs.get('norm_layer')) + aa_layer = block_kwargs.pop('aa_layer', None) + if stride != 1 or first_dilation != dilation: + if avg_down: + self.conv_down = nn.Sequential(nn.AvgPool2d(2) if stride == 2 else nn.Identity(), ConvNormAct(in_chs, out_chs, kernel_size=1, stride=1, groups=groups, **conv_kwargs)) + else: + self.conv_down = ConvNormAct(in_chs, down_chs, kernel_size=3, stride=stride, dilation=first_dilation, groups=groups, aa_layer=aa_layer, **conv_kwargs) + prev_chs = down_chs + else: + self.conv_down = nn.Identity() + prev_chs = in_chs + self.conv_exp = ConvNormAct(prev_chs, exp_chs, kernel_size=1, apply_act=not cross_linear, **conv_kwargs) + prev_chs = exp_chs // 2 + self.blocks = nn.Sequential() + for i in range(depth): + self.blocks.add_module(str(i), block_fn(in_chs=prev_chs, out_chs=block_out_chs, dilation=dilation, bottle_ratio=bottle_ratio, groups=groups, drop_path=block_dpr[i] if block_dpr is not None else 0.0, **block_kwargs)) + prev_chs = block_out_chs + self.conv_transition_b = ConvNormAct(prev_chs, exp_chs // 2, kernel_size=1, **conv_kwargs) + self.conv_transition = ConvNormAct(exp_chs, out_chs, kernel_size=1, **conv_kwargs) + + def forward(self, x): + x = self.conv_down(x) + x = self.conv_exp(x) + (xs, xb) = x.split(self.expand_chs // 2, dim=1) + xb = self.blocks(xb) + xb = self.conv_transition_b(xb).contiguous() + out = self.conv_transition(torch.cat([xs, xb], dim=1)) + return out + +class CrossStage3(nn.Module): + + def __init__(self, in_chs, out_chs, stride, dilation, depth, block_ratio=1.0, bottle_ratio=1.0, expand_ratio=1.0, groups=1, first_dilation=None, avg_down=False, down_growth=False, cross_linear=False, block_dpr=None, block_fn=BottleneckBlock, **block_kwargs): + super(CrossStage3, self).__init__() + first_dilation = first_dilation or dilation + down_chs = out_chs if down_growth else in_chs + self.expand_chs = exp_chs = int(round(out_chs * expand_ratio)) + block_out_chs = int(round(out_chs * block_ratio)) + conv_kwargs = dict(act_layer=block_kwargs.get('act_layer'), norm_layer=block_kwargs.get('norm_layer')) + aa_layer = block_kwargs.pop('aa_layer', None) + if stride != 1 or first_dilation != dilation: + if avg_down: + self.conv_down = nn.Sequential(nn.AvgPool2d(2) if stride == 2 else nn.Identity(), ConvNormAct(in_chs, out_chs, kernel_size=1, stride=1, groups=groups, **conv_kwargs)) + else: + self.conv_down = ConvNormAct(in_chs, down_chs, kernel_size=3, stride=stride, dilation=first_dilation, groups=groups, aa_layer=aa_layer, **conv_kwargs) + prev_chs = down_chs + else: + self.conv_down = None + prev_chs = in_chs + self.conv_exp = ConvNormAct(prev_chs, exp_chs, kernel_size=1, apply_act=not cross_linear, **conv_kwargs) + prev_chs = exp_chs // 2 + self.blocks = nn.Sequential() + for i in range(depth): + self.blocks.add_module(str(i), block_fn(in_chs=prev_chs, out_chs=block_out_chs, dilation=dilation, bottle_ratio=bottle_ratio, groups=groups, drop_path=block_dpr[i] if block_dpr is not None else 0.0, **block_kwargs)) + prev_chs = block_out_chs + self.conv_transition = ConvNormAct(exp_chs, out_chs, kernel_size=1, **conv_kwargs) + + def forward(self, x): + x = self.conv_down(x) + x = self.conv_exp(x) + (x1, x2) = x.split(self.expand_chs // 2, dim=1) + x1 = self.blocks(x1) + out = self.conv_transition(torch.cat([x1, x2], dim=1)) + return out + +class DarkStage(nn.Module): + + def __init__(self, in_chs, out_chs, stride, dilation, depth, block_ratio=1.0, bottle_ratio=1.0, groups=1, first_dilation=None, avg_down=False, block_fn=BottleneckBlock, block_dpr=None, **block_kwargs): + super(DarkStage, self).__init__() + first_dilation = first_dilation or dilation + conv_kwargs = dict(act_layer=block_kwargs.get('act_layer'), norm_layer=block_kwargs.get('norm_layer')) + aa_layer = block_kwargs.pop('aa_layer', None) + if avg_down: + self.conv_down = nn.Sequential(nn.AvgPool2d(2) if stride == 2 else nn.Identity(), ConvNormAct(in_chs, out_chs, kernel_size=1, stride=1, groups=groups, **conv_kwargs)) + else: + self.conv_down = ConvNormAct(in_chs, out_chs, kernel_size=3, stride=stride, dilation=first_dilation, groups=groups, aa_layer=aa_layer, **conv_kwargs) + prev_chs = out_chs + block_out_chs = int(round(out_chs * block_ratio)) + self.blocks = nn.Sequential() + for i in range(depth): + self.blocks.add_module(str(i), block_fn(in_chs=prev_chs, out_chs=block_out_chs, dilation=dilation, bottle_ratio=bottle_ratio, groups=groups, drop_path=block_dpr[i] if block_dpr is not None else 0.0, **block_kwargs)) + prev_chs = block_out_chs + + def forward(self, x): + x = self.conv_down(x) + x = self.blocks(x) + return x + +def create_csp_stem(in_chans=3, out_chs=32, kernel_size=3, stride=2, pool='', padding='', act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d, aa_layer=None): + stem = nn.Sequential() + feature_info = [] + if not isinstance(out_chs, (tuple, list)): + out_chs = [out_chs] + stem_depth = len(out_chs) + assert stem_depth + assert stride in (1, 2, 4) + prev_feat = None + prev_chs = in_chans + last_idx = stem_depth - 1 + stem_stride = 1 + for (i, chs) in enumerate(out_chs): + conv_name = f'conv{i + 1}' + conv_stride = 2 if i == 0 and stride > 1 or (i == last_idx and stride > 2 and (not pool)) else 1 + if conv_stride > 1 and prev_feat is not None: + feature_info.append(prev_feat) + stem.add_module(conv_name, ConvNormAct(prev_chs, chs, kernel_size, stride=conv_stride, padding=padding if i == 0 else '', act_layer=act_layer, norm_layer=norm_layer)) + stem_stride *= conv_stride + prev_chs = chs + prev_feat = dict(num_chs=prev_chs, reduction=stem_stride, module='.'.join(['stem', conv_name])) + if pool: + assert stride > 2 + if prev_feat is not None: + feature_info.append(prev_feat) + if aa_layer is not None: + stem.add_module('pool', nn.MaxPool2d(kernel_size=3, stride=1, padding=1)) + stem.add_module('aa', aa_layer(channels=prev_chs, stride=2)) + pool_name = 'aa' + else: + stem.add_module('pool', nn.MaxPool2d(kernel_size=3, stride=2, padding=1)) + pool_name = 'pool' + stem_stride *= 2 + prev_feat = dict(num_chs=prev_chs, reduction=stem_stride, module='.'.join(['stem', pool_name])) + feature_info.append(prev_feat) + return (stem, feature_info) + +def _get_stage_fn(stage_args): + stage_type = stage_args.pop('stage_type') + assert stage_type in ('dark', 'csp', 'cs3') + if stage_type == 'dark': + stage_args.pop('expand_ratio', None) + stage_args.pop('cross_linear', None) + stage_args.pop('down_growth', None) + stage_fn = DarkStage + elif stage_type == 'csp': + stage_fn = CrossStage + else: + stage_fn = CrossStage3 + return (stage_fn, stage_args) + +def _get_block_fn(stage_args): + block_type = stage_args.pop('block_type') + assert block_type in ('dark', 'edge', 'bottle') + if block_type == 'dark': + return (DarkBlock, stage_args) + elif block_type == 'edge': + return (EdgeBlock, stage_args) + else: + return (BottleneckBlock, stage_args) + +def _get_attn_fn(stage_args): + attn_layer = stage_args.pop('attn_layer') + attn_kwargs = stage_args.pop('attn_kwargs', None) or {} + if attn_layer is not None: + attn_layer = get_attn(attn_layer) + if attn_kwargs: + attn_layer = partial(attn_layer, **attn_kwargs) + return (attn_layer, stage_args) + +def create_csp_stages(cfg: CspModelCfg, drop_path_rate: float, output_stride: int, stem_feat: Dict[str, Any]): + cfg_dict = asdict(cfg.stages) + num_stages = len(cfg.stages.depth) + cfg_dict['block_dpr'] = [None] * num_stages if not drop_path_rate else [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(cfg.stages.depth)).split(cfg.stages.depth)] + stage_args = [dict(zip(cfg_dict.keys(), values)) for values in zip(*cfg_dict.values())] + block_kwargs = dict(act_layer=cfg.act_layer, norm_layer=cfg.norm_layer) + dilation = 1 + net_stride = stem_feat['reduction'] + prev_chs = stem_feat['num_chs'] + prev_feat = stem_feat + feature_info = [] + stages = [] + for (stage_idx, stage_args) in enumerate(stage_args): + (stage_fn, stage_args) = _get_stage_fn(stage_args) + (block_fn, stage_args) = _get_block_fn(stage_args) + (attn_fn, stage_args) = _get_attn_fn(stage_args) + stride = stage_args.pop('stride') + if stride != 1 and prev_feat: + feature_info.append(prev_feat) + if net_stride >= output_stride and stride > 1: + dilation *= stride + stride = 1 + net_stride *= stride + first_dilation = 1 if dilation in (1, 2) else 2 + stages += [stage_fn(prev_chs, **stage_args, stride=stride, first_dilation=first_dilation, dilation=dilation, block_fn=block_fn, aa_layer=cfg.aa_layer, attn_layer=attn_fn, **block_kwargs)] + prev_chs = stage_args['out_chs'] + prev_feat = dict(num_chs=prev_chs, reduction=net_stride, module=f'stages.{stage_idx}') + feature_info.append(prev_feat) + return (nn.Sequential(*stages), feature_info) + +class CspNet(nn.Module): + + def __init__(self, cfg: CspModelCfg, in_chans=3, num_classes=1000, output_stride=32, global_pool='avg', drop_rate=0.0, drop_path_rate=0.0, zero_init_last=True, **kwargs): + super().__init__() + self.num_classes = num_classes + self.drop_rate = drop_rate + assert output_stride in (8, 16, 32) + cfg = replace(cfg, **kwargs) + layer_args = dict(act_layer=cfg.act_layer, norm_layer=cfg.norm_layer, aa_layer=cfg.aa_layer) + self.feature_info = [] + (self.stem, stem_feat_info) = create_csp_stem(in_chans, **asdict(cfg.stem), **layer_args) + self.feature_info.extend(stem_feat_info[:-1]) + (self.stages, stage_feat_info) = create_csp_stages(cfg, drop_path_rate=drop_path_rate, output_stride=output_stride, stem_feat=stem_feat_info[-1]) + prev_chs = stage_feat_info[-1]['num_chs'] + self.feature_info.extend(stage_feat_info) + self.num_features = self.head_hidden_size = prev_chs + self.head = ClassifierHead(in_features=prev_chs, num_classes=num_classes, pool_type=global_pool, drop_rate=drop_rate) + named_apply(partial(_init_weights, zero_init_last=zero_init_last), self) + + @torch.jit.ignore + def group_matcher(self, coarse=False): + matcher = dict(stem='^stem', blocks='^stages\\.(\\d+)' if coarse else [('^stages\\.(\\d+)\\.blocks\\.(\\d+)', None), ('^stages\\.(\\d+)\\..*transition', MATCH_PREV_GROUP), ('^stages\\.(\\d+)', (0,))]) + return matcher + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + assert not enable, 'gradient checkpointing not supported' + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.head.fc + + def reset_classifier(self, num_classes: int, global_pool: Optional[str]=None): + self.num_classes = num_classes + self.head.reset(num_classes, global_pool) + + def forward_features(self, x): + x = self.stem(x) + x = self.stages(x) + return x + + def forward_head(self, x, pre_logits: bool=False): + return self.head(x, pre_logits=pre_logits) if pre_logits else self.head(x) + + def forward(self, x): + x = self.forward_features(x) + x = self.forward_head(x) + return x + +def _init_weights(module, name, zero_init_last=False): + if isinstance(module, nn.Conv2d): + nn.init.kaiming_normal_(module.weight, mode='fan_out', nonlinearity='relu') + if module.bias is not None: + nn.init.zeros_(module.bias) + elif isinstance(module, nn.Linear): + nn.init.normal_(module.weight, mean=0.0, std=0.01) + if module.bias is not None: + nn.init.zeros_(module.bias) + elif zero_init_last and hasattr(module, 'zero_init_last'): + module.zero_init_last() +model_cfgs = dict(cspresnet50=CspModelCfg(stem=CspStemCfg(out_chs=64, kernel_size=7, stride=4, pool='max'), stages=CspStagesCfg(depth=(3, 3, 5, 2), out_chs=(128, 256, 512, 1024), stride=(1, 2), expand_ratio=2.0, bottle_ratio=0.5, cross_linear=True)), cspresnet50d=CspModelCfg(stem=CspStemCfg(out_chs=(32, 32, 64), kernel_size=3, stride=4, pool='max'), stages=CspStagesCfg(depth=(3, 3, 5, 2), out_chs=(128, 256, 512, 1024), stride=(1,) + (2,), expand_ratio=2.0, bottle_ratio=0.5, block_ratio=1.0, cross_linear=True)), cspresnet50w=CspModelCfg(stem=CspStemCfg(out_chs=(32, 32, 64), kernel_size=3, stride=4, pool='max'), stages=CspStagesCfg(depth=(3, 3, 5, 2), out_chs=(256, 512, 1024, 2048), stride=(1,) + (2,), expand_ratio=1.0, bottle_ratio=0.25, block_ratio=0.5, cross_linear=True)), cspresnext50=CspModelCfg(stem=CspStemCfg(out_chs=64, kernel_size=7, stride=4, pool='max'), stages=CspStagesCfg(depth=(3, 3, 5, 2), out_chs=(256, 512, 1024, 2048), stride=(1,) + (2,), groups=32, expand_ratio=1.0, bottle_ratio=1.0, block_ratio=0.5, cross_linear=True)), cspdarknet53=CspModelCfg(stem=CspStemCfg(out_chs=32, kernel_size=3, stride=1, pool=''), stages=CspStagesCfg(depth=(1, 2, 8, 8, 4), out_chs=(64, 128, 256, 512, 1024), stride=2, expand_ratio=(2.0,) + (1.0,), bottle_ratio=(0.5,) + (1.0,), block_ratio=(1.0,) + (0.5,), down_growth=True, block_type='dark')), darknet17=CspModelCfg(stem=CspStemCfg(out_chs=32, kernel_size=3, stride=1, pool=''), stages=CspStagesCfg(depth=(1,) * 5, out_chs=(64, 128, 256, 512, 1024), stride=(2,), bottle_ratio=(0.5,), block_ratio=(1.0,), stage_type='dark', block_type='dark')), darknet21=CspModelCfg(stem=CspStemCfg(out_chs=32, kernel_size=3, stride=1, pool=''), stages=CspStagesCfg(depth=(1, 1, 1, 2, 2), out_chs=(64, 128, 256, 512, 1024), stride=(2,), bottle_ratio=(0.5,), block_ratio=(1.0,), stage_type='dark', block_type='dark')), sedarknet21=CspModelCfg(stem=CspStemCfg(out_chs=32, kernel_size=3, stride=1, pool=''), stages=CspStagesCfg(depth=(1, 1, 1, 2, 2), out_chs=(64, 128, 256, 512, 1024), stride=2, bottle_ratio=0.5, block_ratio=1.0, attn_layer='se', stage_type='dark', block_type='dark')), darknet53=CspModelCfg(stem=CspStemCfg(out_chs=32, kernel_size=3, stride=1, pool=''), stages=CspStagesCfg(depth=(1, 2, 8, 8, 4), out_chs=(64, 128, 256, 512, 1024), stride=2, bottle_ratio=0.5, block_ratio=1.0, stage_type='dark', block_type='dark')), darknetaa53=CspModelCfg(stem=CspStemCfg(out_chs=32, kernel_size=3, stride=1, pool=''), stages=CspStagesCfg(depth=(1, 2, 8, 8, 4), out_chs=(64, 128, 256, 512, 1024), stride=2, bottle_ratio=0.5, block_ratio=1.0, avg_down=True, stage_type='dark', block_type='dark')), cs3darknet_s=_cs3_cfg(width_multiplier=0.5, depth_multiplier=0.5), cs3darknet_m=_cs3_cfg(width_multiplier=0.75, depth_multiplier=0.67), cs3darknet_l=_cs3_cfg(), cs3darknet_x=_cs3_cfg(width_multiplier=1.25, depth_multiplier=1.33), cs3darknet_focus_s=_cs3_cfg(width_multiplier=0.5, depth_multiplier=0.5, focus=True), cs3darknet_focus_m=_cs3_cfg(width_multiplier=0.75, depth_multiplier=0.67, focus=True), cs3darknet_focus_l=_cs3_cfg(focus=True), cs3darknet_focus_x=_cs3_cfg(width_multiplier=1.25, depth_multiplier=1.33, focus=True), cs3sedarknet_l=_cs3_cfg(attn_layer='se', attn_kwargs=dict(rd_ratio=0.25)), cs3sedarknet_x=_cs3_cfg(attn_layer='se', width_multiplier=1.25, depth_multiplier=1.33), cs3sedarknet_xdw=CspModelCfg(stem=CspStemCfg(out_chs=(32, 64), kernel_size=3, stride=2, pool=''), stages=CspStagesCfg(depth=(3, 6, 12, 4), out_chs=(256, 512, 1024, 2048), stride=2, groups=(1, 1, 256, 512), bottle_ratio=0.5, block_ratio=0.5, attn_layer='se'), act_layer='silu'), cs3edgenet_x=_cs3_cfg(width_multiplier=1.25, depth_multiplier=1.33, bottle_ratio=1.5, block_type='edge'), cs3se_edgenet_x=_cs3_cfg(width_multiplier=1.25, depth_multiplier=1.33, bottle_ratio=1.5, block_type='edge', attn_layer='se', attn_kwargs=dict(rd_ratio=0.25))) + +def _create_cspnet(variant, pretrained=False, **kwargs): + if variant.startswith('darknet') or variant.startswith('cspdarknet'): + default_out_indices = (0, 1, 2, 3, 4, 5) + else: + default_out_indices = (0, 1, 2, 3, 4) + out_indices = kwargs.pop('out_indices', default_out_indices) + return build_model_with_cfg(CspNet, variant, pretrained, model_cfg=model_cfgs[variant], feature_cfg=dict(flatten_sequential=True, out_indices=out_indices), **kwargs) + +def _cfg(url='', **kwargs): + return {'url': url, 'num_classes': 1000, 'input_size': (3, 256, 256), 'pool_size': (8, 8), 'crop_pct': 0.887, 'interpolation': 'bilinear', 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'stem.conv1.conv', 'classifier': 'head.fc', **kwargs} +default_cfgs = generate_default_cfgs({'cspresnet50.ra_in1k': _cfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/cspresnet50_ra-d3e8d487.pth'), 'cspresnet50d.untrained': _cfg(), 'cspresnet50w.untrained': _cfg(), 'cspresnext50.ra_in1k': _cfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/cspresnext50_ra_224-648b4713.pth'), 'cspdarknet53.ra_in1k': _cfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/cspdarknet53_ra_256-d05c7c21.pth'), 'darknet17.untrained': _cfg(), 'darknet21.untrained': _cfg(), 'sedarknet21.untrained': _cfg(), 'darknet53.c2ns_in1k': _cfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/darknet53_256_c2ns-3aeff817.pth', interpolation='bicubic', test_input_size=(3, 288, 288), test_crop_pct=1.0), 'darknetaa53.c2ns_in1k': _cfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/darknetaa53_c2ns-5c28ec8a.pth', test_input_size=(3, 288, 288), test_crop_pct=1.0), 'cs3darknet_s.untrained': _cfg(interpolation='bicubic'), 'cs3darknet_m.c2ns_in1k': _cfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/cs3darknet_m_c2ns-43f06604.pth', interpolation='bicubic', test_input_size=(3, 288, 288), test_crop_pct=0.95), 'cs3darknet_l.c2ns_in1k': _cfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/cs3darknet_l_c2ns-16220c5d.pth', interpolation='bicubic', test_input_size=(3, 288, 288), test_crop_pct=0.95), 'cs3darknet_x.c2ns_in1k': _cfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/cs3darknet_x_c2ns-4e4490aa.pth', interpolation='bicubic', crop_pct=0.95, test_input_size=(3, 288, 288), test_crop_pct=1.0), 'cs3darknet_focus_s.untrained': _cfg(interpolation='bicubic'), 'cs3darknet_focus_m.c2ns_in1k': _cfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/cs3darknet_focus_m_c2ns-e23bed41.pth', interpolation='bicubic', test_input_size=(3, 288, 288), test_crop_pct=0.95), 'cs3darknet_focus_l.c2ns_in1k': _cfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/cs3darknet_focus_l_c2ns-65ef8888.pth', interpolation='bicubic', test_input_size=(3, 288, 288), test_crop_pct=0.95), 'cs3darknet_focus_x.untrained': _cfg(interpolation='bicubic'), 'cs3sedarknet_l.c2ns_in1k': _cfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/cs3sedarknet_l_c2ns-e8d1dc13.pth', interpolation='bicubic', test_input_size=(3, 288, 288), test_crop_pct=0.95), 'cs3sedarknet_x.c2ns_in1k': _cfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/cs3sedarknet_x_c2ns-b4d0abc0.pth', interpolation='bicubic', test_input_size=(3, 288, 288), test_crop_pct=1.0), 'cs3sedarknet_xdw.untrained': _cfg(interpolation='bicubic'), 'cs3edgenet_x.c2_in1k': _cfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/cs3edgenet_x_c2-2e1610a9.pth', interpolation='bicubic', test_input_size=(3, 288, 288), test_crop_pct=1.0), 'cs3se_edgenet_x.c2ns_in1k': _cfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/cs3se_edgenet_x_c2ns-76f8e3ac.pth', interpolation='bicubic', crop_pct=0.95, test_input_size=(3, 320, 320), test_crop_pct=1.0)}) + +@register_model +def cspresnet50(pretrained=False, **kwargs) -> CspNet: + return _create_cspnet('cspresnet50', pretrained=pretrained, **kwargs) + +@register_model +def cspresnet50d(pretrained=False, **kwargs) -> CspNet: + return _create_cspnet('cspresnet50d', pretrained=pretrained, **kwargs) + +@register_model +def cspresnet50w(pretrained=False, **kwargs) -> CspNet: + return _create_cspnet('cspresnet50w', pretrained=pretrained, **kwargs) + +@register_model +def cspresnext50(pretrained=False, **kwargs) -> CspNet: + return _create_cspnet('cspresnext50', pretrained=pretrained, **kwargs) + +@register_model +def cspdarknet53(pretrained=False, **kwargs) -> CspNet: + return _create_cspnet('cspdarknet53', pretrained=pretrained, **kwargs) + +@register_model +def darknet17(pretrained=False, **kwargs) -> CspNet: + return _create_cspnet('darknet17', pretrained=pretrained, **kwargs) + +@register_model +def darknet21(pretrained=False, **kwargs) -> CspNet: + return _create_cspnet('darknet21', pretrained=pretrained, **kwargs) + +@register_model +def sedarknet21(pretrained=False, **kwargs) -> CspNet: + return _create_cspnet('sedarknet21', pretrained=pretrained, **kwargs) + +@register_model +def darknet53(pretrained=False, **kwargs) -> CspNet: + return _create_cspnet('darknet53', pretrained=pretrained, **kwargs) + +@register_model +def darknetaa53(pretrained=False, **kwargs) -> CspNet: + return _create_cspnet('darknetaa53', pretrained=pretrained, **kwargs) + +@register_model +def cs3darknet_s(pretrained=False, **kwargs) -> CspNet: + return _create_cspnet('cs3darknet_s', pretrained=pretrained, **kwargs) + +@register_model +def cs3darknet_m(pretrained=False, **kwargs) -> CspNet: + return _create_cspnet('cs3darknet_m', pretrained=pretrained, **kwargs) + +@register_model +def cs3darknet_l(pretrained=False, **kwargs) -> CspNet: + return _create_cspnet('cs3darknet_l', pretrained=pretrained, **kwargs) + +@register_model +def cs3darknet_x(pretrained=False, **kwargs) -> CspNet: + return _create_cspnet('cs3darknet_x', pretrained=pretrained, **kwargs) + +@register_model +def cs3darknet_focus_s(pretrained=False, **kwargs) -> CspNet: + return _create_cspnet('cs3darknet_focus_s', pretrained=pretrained, **kwargs) + +@register_model +def cs3darknet_focus_m(pretrained=False, **kwargs) -> CspNet: + return _create_cspnet('cs3darknet_focus_m', pretrained=pretrained, **kwargs) + +@register_model +def cs3darknet_focus_l(pretrained=False, **kwargs) -> CspNet: + return _create_cspnet('cs3darknet_focus_l', pretrained=pretrained, **kwargs) + +@register_model +def cs3darknet_focus_x(pretrained=False, **kwargs) -> CspNet: + return _create_cspnet('cs3darknet_focus_x', pretrained=pretrained, **kwargs) + +@register_model +def cs3sedarknet_l(pretrained=False, **kwargs) -> CspNet: + return _create_cspnet('cs3sedarknet_l', pretrained=pretrained, **kwargs) + +@register_model +def cs3sedarknet_x(pretrained=False, **kwargs) -> CspNet: + return _create_cspnet('cs3sedarknet_x', pretrained=pretrained, **kwargs) + +@register_model +def cs3sedarknet_xdw(pretrained=False, **kwargs) -> CspNet: + return _create_cspnet('cs3sedarknet_xdw', pretrained=pretrained, **kwargs) + +@register_model +def cs3edgenet_x(pretrained=False, **kwargs) -> CspNet: + return _create_cspnet('cs3edgenet_x', pretrained=pretrained, **kwargs) + +@register_model +def cs3se_edgenet_x(pretrained=False, **kwargs) -> CspNet: + return _create_cspnet('cs3se_edgenet_x', pretrained=pretrained, **kwargs) + +# File: pytorch-image-models-main/timm/models/davit.py +"""""" +from functools import partial +from typing import Optional, Tuple +import torch +import torch.nn as nn +import torch.nn.functional as F +from torch import Tensor +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from timm.layers import DropPath, to_2tuple, trunc_normal_, Mlp, LayerNorm2d, get_norm_layer, use_fused_attn +from timm.layers import NormMlpClassifierHead, ClassifierHead +from ._builder import build_model_with_cfg +from ._features_fx import register_notrace_function +from ._manipulate import checkpoint_seq +from ._registry import generate_default_cfgs, register_model +__all__ = ['DaVit'] + +class ConvPosEnc(nn.Module): + + def __init__(self, dim: int, k: int=3, act: bool=False): + super(ConvPosEnc, self).__init__() + self.proj = nn.Conv2d(dim, dim, kernel_size=k, stride=1, padding=k // 2, groups=dim) + self.act = nn.GELU() if act else nn.Identity() + + def forward(self, x: Tensor): + feat = self.proj(x) + x = x + self.act(feat) + return x + +class Stem(nn.Module): + + def __init__(self, in_chs=3, out_chs=96, stride=4, norm_layer=LayerNorm2d): + super().__init__() + stride = to_2tuple(stride) + self.stride = stride + self.in_chs = in_chs + self.out_chs = out_chs + assert stride[0] == 4 + self.conv = nn.Conv2d(in_chs, out_chs, kernel_size=7, stride=stride, padding=3) + self.norm = norm_layer(out_chs) + + def forward(self, x: Tensor): + (B, C, H, W) = x.shape + pad_r = (self.stride[1] - W % self.stride[1]) % self.stride[1] + pad_b = (self.stride[0] - H % self.stride[0]) % self.stride[0] + x = F.pad(x, (0, pad_r, 0, pad_b)) + x = self.conv(x) + x = self.norm(x) + return x + +class Downsample(nn.Module): + + def __init__(self, in_chs, out_chs, kernel_size=3, norm_layer=LayerNorm2d): + super().__init__() + self.in_chs = in_chs + self.out_chs = out_chs + self.norm = norm_layer(in_chs) + self.even_k = kernel_size % 2 == 0 + self.conv = nn.Conv2d(in_chs, out_chs, kernel_size=kernel_size, stride=2, padding=0 if self.even_k else kernel_size // 2) + + def forward(self, x: Tensor): + (B, C, H, W) = x.shape + x = self.norm(x) + if self.even_k: + (k_h, k_w) = self.conv.kernel_size + pad_r = (k_w - W % k_w) % k_w + pad_b = (k_h - H % k_h) % k_h + x = F.pad(x, (0, pad_r, 0, pad_b)) + x = self.conv(x) + return x + +class ChannelAttentionV2(nn.Module): + + def __init__(self, dim, num_heads=8, qkv_bias=True, dynamic_scale=True): + super().__init__() + self.groups = num_heads + self.head_dim = dim // num_heads + self.dynamic_scale = dynamic_scale + self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) + self.proj = nn.Linear(dim, dim) + + def forward(self, x): + (B, N, C) = x.shape + qkv = self.qkv(x).reshape(B, N, 3, self.groups, C // self.groups).permute(2, 0, 3, 1, 4) + (q, k, v) = qkv.unbind(0) + if self.dynamic_scale: + q = q * N ** (-0.5) + else: + q = q * self.head_dim ** (-0.5) + attn = q.transpose(-1, -2) @ k + attn = attn.softmax(dim=-1) + x = (attn @ v.transpose(-1, -2)).transpose(-1, -2) + x = x.transpose(1, 2).reshape(B, N, C) + x = self.proj(x) + return x + +class ChannelAttention(nn.Module): + + def __init__(self, dim, num_heads=8, qkv_bias=False): + super().__init__() + self.num_heads = num_heads + head_dim = dim // num_heads + self.scale = head_dim ** (-0.5) + self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) + self.proj = nn.Linear(dim, dim) + + def forward(self, x: Tensor): + (B, N, C) = x.shape + qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) + (q, k, v) = qkv.unbind(0) + k = k * self.scale + attn = k.transpose(-1, -2) @ v + attn = attn.softmax(dim=-1) + x = (attn @ q.transpose(-1, -2)).transpose(-1, -2) + x = x.transpose(1, 2).reshape(B, N, C) + x = self.proj(x) + return x + +class ChannelBlock(nn.Module): + + def __init__(self, dim, num_heads, mlp_ratio=4.0, qkv_bias=False, drop_path=0.0, act_layer=nn.GELU, norm_layer=nn.LayerNorm, ffn=True, cpe_act=False, v2=False): + super().__init__() + self.cpe1 = ConvPosEnc(dim=dim, k=3, act=cpe_act) + self.ffn = ffn + self.norm1 = norm_layer(dim) + attn_layer = ChannelAttentionV2 if v2 else ChannelAttention + self.attn = attn_layer(dim, num_heads=num_heads, qkv_bias=qkv_bias) + self.drop_path1 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + self.cpe2 = ConvPosEnc(dim=dim, k=3, act=cpe_act) + if self.ffn: + self.norm2 = norm_layer(dim) + self.mlp = Mlp(in_features=dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer) + self.drop_path2 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + else: + self.norm2 = None + self.mlp = None + self.drop_path2 = None + + def forward(self, x: Tensor): + (B, C, H, W) = x.shape + x = self.cpe1(x).flatten(2).transpose(1, 2) + cur = self.norm1(x) + cur = self.attn(cur) + x = x + self.drop_path1(cur) + x = self.cpe2(x.transpose(1, 2).view(B, C, H, W)) + if self.mlp is not None: + x = x.flatten(2).transpose(1, 2) + x = x + self.drop_path2(self.mlp(self.norm2(x))) + x = x.transpose(1, 2).view(B, C, H, W) + return x + +def window_partition(x: Tensor, window_size: Tuple[int, int]): + (B, H, W, C) = x.shape + x = x.view(B, H // window_size[0], window_size[0], W // window_size[1], window_size[1], C) + windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size[0], window_size[1], C) + return windows + +@register_notrace_function +def window_reverse(windows: Tensor, window_size: Tuple[int, int], H: int, W: int): + C = windows.shape[-1] + x = windows.view(-1, H // window_size[0], W // window_size[1], window_size[0], window_size[1], C) + x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, H, W, C) + return x + +class WindowAttention(nn.Module): + fused_attn: torch.jit.Final[bool] + + def __init__(self, dim, window_size, num_heads, qkv_bias=True): + super().__init__() + self.dim = dim + self.window_size = window_size + self.num_heads = num_heads + head_dim = dim // num_heads + self.scale = head_dim ** (-0.5) + self.fused_attn = use_fused_attn() + self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) + self.proj = nn.Linear(dim, dim) + self.softmax = nn.Softmax(dim=-1) + + def forward(self, x: Tensor): + (B_, N, C) = x.shape + qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) + (q, k, v) = qkv.unbind(0) + if self.fused_attn: + x = F.scaled_dot_product_attention(q, k, v) + else: + q = q * self.scale + attn = q @ k.transpose(-2, -1) + attn = self.softmax(attn) + x = attn @ v + x = x.transpose(1, 2).reshape(B_, N, C) + x = self.proj(x) + return x + +class SpatialBlock(nn.Module): + + def __init__(self, dim, num_heads, window_size=7, mlp_ratio=4.0, qkv_bias=True, drop_path=0.0, act_layer=nn.GELU, norm_layer=nn.LayerNorm, ffn=True, cpe_act=False): + super().__init__() + self.dim = dim + self.ffn = ffn + self.num_heads = num_heads + self.window_size = to_2tuple(window_size) + self.mlp_ratio = mlp_ratio + self.cpe1 = ConvPosEnc(dim=dim, k=3, act=cpe_act) + self.norm1 = norm_layer(dim) + self.attn = WindowAttention(dim, self.window_size, num_heads=num_heads, qkv_bias=qkv_bias) + self.drop_path1 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + self.cpe2 = ConvPosEnc(dim=dim, k=3, act=cpe_act) + if self.ffn: + self.norm2 = norm_layer(dim) + mlp_hidden_dim = int(dim * mlp_ratio) + self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer) + self.drop_path2 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + else: + self.norm2 = None + self.mlp = None + self.drop_path1 = None + + def forward(self, x: Tensor): + (B, C, H, W) = x.shape + shortcut = self.cpe1(x).flatten(2).transpose(1, 2) + x = self.norm1(shortcut) + x = x.view(B, H, W, C) + pad_l = pad_t = 0 + pad_r = (self.window_size[1] - W % self.window_size[1]) % self.window_size[1] + pad_b = (self.window_size[0] - H % self.window_size[0]) % self.window_size[0] + x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b)) + (_, Hp, Wp, _) = x.shape + x_windows = window_partition(x, self.window_size) + x_windows = x_windows.view(-1, self.window_size[0] * self.window_size[1], C) + attn_windows = self.attn(x_windows) + attn_windows = attn_windows.view(-1, self.window_size[0], self.window_size[1], C) + x = window_reverse(attn_windows, self.window_size, Hp, Wp) + x = x[:, :H, :W, :].contiguous() + x = x.view(B, H * W, C) + x = shortcut + self.drop_path1(x) + x = self.cpe2(x.transpose(1, 2).view(B, C, H, W)) + if self.mlp is not None: + x = x.flatten(2).transpose(1, 2) + x = x + self.drop_path2(self.mlp(self.norm2(x))) + x = x.transpose(1, 2).view(B, C, H, W) + return x + +class DaVitStage(nn.Module): + + def __init__(self, in_chs, out_chs, depth=1, downsample=True, attn_types=('spatial', 'channel'), num_heads=3, window_size=7, mlp_ratio=4.0, qkv_bias=True, drop_path_rates=(0, 0), norm_layer=LayerNorm2d, norm_layer_cl=nn.LayerNorm, ffn=True, cpe_act=False, down_kernel_size=2, named_blocks=False, channel_attn_v2=False): + super().__init__() + self.grad_checkpointing = False + if downsample: + self.downsample = Downsample(in_chs, out_chs, kernel_size=down_kernel_size, norm_layer=norm_layer) + else: + self.downsample = nn.Identity() + '' + stage_blocks = [] + for block_idx in range(depth): + from collections import OrderedDict + dual_attention_block = [] + for (attn_idx, attn_type) in enumerate(attn_types): + if attn_type == 'spatial': + dual_attention_block.append(('spatial_block', SpatialBlock(dim=out_chs, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, drop_path=drop_path_rates[block_idx], norm_layer=norm_layer_cl, ffn=ffn, cpe_act=cpe_act, window_size=window_size))) + elif attn_type == 'channel': + dual_attention_block.append(('channel_block', ChannelBlock(dim=out_chs, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, drop_path=drop_path_rates[block_idx], norm_layer=norm_layer_cl, ffn=ffn, cpe_act=cpe_act, v2=channel_attn_v2))) + if named_blocks: + stage_blocks.append(nn.Sequential(OrderedDict(dual_attention_block))) + else: + stage_blocks.append(nn.Sequential(*[b[1] for b in dual_attention_block])) + self.blocks = nn.Sequential(*stage_blocks) + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + self.grad_checkpointing = enable + + def forward(self, x: Tensor): + x = self.downsample(x) + if self.grad_checkpointing and (not torch.jit.is_scripting()): + x = checkpoint_seq(self.blocks, x) + else: + x = self.blocks(x) + return x + +class DaVit(nn.Module): + + def __init__(self, in_chans=3, depths=(1, 1, 3, 1), embed_dims=(96, 192, 384, 768), num_heads=(3, 6, 12, 24), window_size=7, mlp_ratio=4, qkv_bias=True, norm_layer='layernorm2d', norm_layer_cl='layernorm', norm_eps=1e-05, attn_types=('spatial', 'channel'), ffn=True, cpe_act=False, down_kernel_size=2, channel_attn_v2=False, named_blocks=False, drop_rate=0.0, drop_path_rate=0.0, num_classes=1000, global_pool='avg', head_norm_first=False): + super().__init__() + num_stages = len(embed_dims) + assert num_stages == len(num_heads) == len(depths) + norm_layer = partial(get_norm_layer(norm_layer), eps=norm_eps) + norm_layer_cl = partial(get_norm_layer(norm_layer_cl), eps=norm_eps) + self.num_classes = num_classes + self.num_features = self.head_hidden_size = embed_dims[-1] + self.drop_rate = drop_rate + self.grad_checkpointing = False + self.feature_info = [] + self.stem = Stem(in_chans, embed_dims[0], norm_layer=norm_layer) + in_chs = embed_dims[0] + dpr = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(depths)).split(depths)] + stages = [] + for stage_idx in range(num_stages): + out_chs = embed_dims[stage_idx] + stage = DaVitStage(in_chs, out_chs, depth=depths[stage_idx], downsample=stage_idx > 0, attn_types=attn_types, num_heads=num_heads[stage_idx], window_size=window_size, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, drop_path_rates=dpr[stage_idx], norm_layer=norm_layer, norm_layer_cl=norm_layer_cl, ffn=ffn, cpe_act=cpe_act, down_kernel_size=down_kernel_size, channel_attn_v2=channel_attn_v2, named_blocks=named_blocks) + in_chs = out_chs + stages.append(stage) + self.feature_info += [dict(num_chs=out_chs, reduction=2, module=f'stages.{stage_idx}')] + self.stages = nn.Sequential(*stages) + if head_norm_first: + self.norm_pre = norm_layer(self.num_features) + self.head = ClassifierHead(self.num_features, num_classes, pool_type=global_pool, drop_rate=self.drop_rate) + else: + self.norm_pre = nn.Identity() + self.head = NormMlpClassifierHead(self.num_features, num_classes, pool_type=global_pool, drop_rate=self.drop_rate, norm_layer=norm_layer) + self.apply(self._init_weights) + + def _init_weights(self, m): + if isinstance(m, nn.Linear): + trunc_normal_(m.weight, std=0.02) + if isinstance(m, nn.Linear) and m.bias is not None: + nn.init.constant_(m.bias, 0) + + @torch.jit.ignore + def group_matcher(self, coarse=False): + return dict(stem='^stem', blocks='^stages\\.(\\d+)' if coarse else [('^stages\\.(\\d+).downsample', (0,)), ('^stages\\.(\\d+)\\.blocks\\.(\\d+)', None), ('^norm_pre', (99999,))]) + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + self.grad_checkpointing = enable + for stage in self.stages: + stage.set_grad_checkpointing(enable=enable) + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.head.fc + + def reset_classifier(self, num_classes: int, global_pool: Optional[str]=None): + self.head.reset(num_classes, global_pool) + + def forward_features(self, x): + x = self.stem(x) + if self.grad_checkpointing and (not torch.jit.is_scripting()): + x = checkpoint_seq(self.stages, x) + else: + x = self.stages(x) + x = self.norm_pre(x) + return x + + def forward_head(self, x, pre_logits: bool=False): + return self.head(x, pre_logits=True) if pre_logits else self.head(x) + + def forward(self, x): + x = self.forward_features(x) + x = self.forward_head(x) + return x + +def _convert_florence2(state_dict, model, prefix='vision_tower.'): + import re + out_dict = {} + for (k, v) in state_dict.items(): + if k.startswith(prefix): + k = k.replace(prefix, '') + else: + continue + k = re.sub('convs.([0-9]+)', 'stages.\\1.downsample', k) + k = re.sub('blocks.([0-9]+)', 'stages.\\1.blocks', k) + k = k.replace('downsample.proj', 'downsample.conv') + k = k.replace('stages.0.downsample', 'stem') + k = k.replace('window_attn.norm.', 'norm1.') + k = k.replace('window_attn.fn.', 'attn.') + k = k.replace('channel_attn.norm.', 'norm1.') + k = k.replace('channel_attn.fn.', 'attn.') + k = k.replace('ffn.norm.', 'norm2.') + k = k.replace('ffn.fn.net.', 'mlp.') + k = k.replace('conv1.fn.dw', 'cpe1.proj') + k = k.replace('conv2.fn.dw', 'cpe2.proj') + out_dict[k] = v + return out_dict + +def checkpoint_filter_fn(state_dict, model): + if 'head.fc.weight' in state_dict: + return state_dict + if 'state_dict' in state_dict: + state_dict = state_dict['state_dict'] + if 'vision_tower.convs.0.proj.weight' in state_dict: + return _convert_florence2(state_dict, model) + import re + out_dict = {} + for (k, v) in state_dict.items(): + k = re.sub('patch_embeds.([0-9]+)', 'stages.\\1.downsample', k) + k = re.sub('main_blocks.([0-9]+)', 'stages.\\1.blocks', k) + k = k.replace('downsample.proj', 'downsample.conv') + k = k.replace('stages.0.downsample', 'stem') + k = k.replace('head.', 'head.fc.') + k = k.replace('norms.', 'head.norm.') + k = k.replace('cpe.0', 'cpe1') + k = k.replace('cpe.1', 'cpe2') + out_dict[k] = v + return out_dict + +def _create_davit(variant, pretrained=False, **kwargs): + default_out_indices = tuple((i for (i, _) in enumerate(kwargs.get('depths', (1, 1, 3, 1))))) + out_indices = kwargs.pop('out_indices', default_out_indices) + strict = True + if variant.endswith('_fl'): + strict = False + model = build_model_with_cfg(DaVit, variant, pretrained, pretrained_filter_fn=checkpoint_filter_fn, feature_cfg=dict(flatten_sequential=True, out_indices=out_indices), pretrained_strict=strict, **kwargs) + return model + +def _cfg(url='', **kwargs): + return {'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), 'crop_pct': 0.95, 'interpolation': 'bicubic', 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'stem.conv', 'classifier': 'head.fc', **kwargs} +default_cfgs = generate_default_cfgs({'davit_tiny.msft_in1k': _cfg(hf_hub_id='timm/'), 'davit_small.msft_in1k': _cfg(hf_hub_id='timm/'), 'davit_base.msft_in1k': _cfg(hf_hub_id='timm/'), 'davit_large': _cfg(), 'davit_huge': _cfg(), 'davit_giant': _cfg(), 'davit_base_fl.msft_florence2': _cfg(hf_hub_id='microsoft/Florence-2-base', num_classes=0, input_size=(3, 768, 768)), 'davit_huge_fl.msft_florence2': _cfg(hf_hub_id='microsoft/Florence-2-large', num_classes=0, input_size=(3, 768, 768))}) + +@register_model +def davit_tiny(pretrained=False, **kwargs) -> DaVit: + model_args = dict(depths=(1, 1, 3, 1), embed_dims=(96, 192, 384, 768), num_heads=(3, 6, 12, 24)) + return _create_davit('davit_tiny', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def davit_small(pretrained=False, **kwargs) -> DaVit: + model_args = dict(depths=(1, 1, 9, 1), embed_dims=(96, 192, 384, 768), num_heads=(3, 6, 12, 24)) + return _create_davit('davit_small', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def davit_base(pretrained=False, **kwargs) -> DaVit: + model_args = dict(depths=(1, 1, 9, 1), embed_dims=(128, 256, 512, 1024), num_heads=(4, 8, 16, 32)) + return _create_davit('davit_base', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def davit_large(pretrained=False, **kwargs) -> DaVit: + model_args = dict(depths=(1, 1, 9, 1), embed_dims=(192, 384, 768, 1536), num_heads=(6, 12, 24, 48)) + return _create_davit('davit_large', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def davit_huge(pretrained=False, **kwargs) -> DaVit: + model_args = dict(depths=(1, 1, 9, 1), embed_dims=(256, 512, 1024, 2048), num_heads=(8, 16, 32, 64)) + return _create_davit('davit_huge', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def davit_giant(pretrained=False, **kwargs) -> DaVit: + model_args = dict(depths=(1, 1, 12, 3), embed_dims=(384, 768, 1536, 3072), num_heads=(12, 24, 48, 96)) + return _create_davit('davit_giant', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def davit_base_fl(pretrained=False, **kwargs) -> DaVit: + model_args = dict(depths=(1, 1, 9, 1), embed_dims=(128, 256, 512, 1024), num_heads=(4, 8, 16, 32), window_size=12, down_kernel_size=3, channel_attn_v2=True, named_blocks=True) + return _create_davit('davit_base_fl', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def davit_huge_fl(pretrained=False, **kwargs) -> DaVit: + model_args = dict(depths=(1, 1, 9, 1), embed_dims=(256, 512, 1024, 2048), num_heads=(8, 16, 32, 64), window_size=12, down_kernel_size=3, channel_attn_v2=True, named_blocks=True) + return _create_davit('davit_huge_fl', pretrained=pretrained, **dict(model_args, **kwargs)) + +# File: pytorch-image-models-main/timm/models/deit.py +"""""" +from functools import partial +from typing import Optional +import torch +from torch import nn as nn +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from timm.layers import resample_abs_pos_embed +from timm.models.vision_transformer import VisionTransformer, trunc_normal_, checkpoint_filter_fn +from ._builder import build_model_with_cfg +from ._registry import generate_default_cfgs, register_model, register_model_deprecations +__all__ = ['VisionTransformerDistilled'] + +class VisionTransformerDistilled(VisionTransformer): + + def __init__(self, *args, **kwargs): + weight_init = kwargs.pop('weight_init', '') + super().__init__(*args, **kwargs, weight_init='skip') + assert self.global_pool in ('token',) + self.num_prefix_tokens = 2 + self.dist_token = nn.Parameter(torch.zeros(1, 1, self.embed_dim)) + self.pos_embed = nn.Parameter(torch.zeros(1, self.patch_embed.num_patches + self.num_prefix_tokens, self.embed_dim)) + self.head_dist = nn.Linear(self.embed_dim, self.num_classes) if self.num_classes > 0 else nn.Identity() + self.distilled_training = False + self.init_weights(weight_init) + + def init_weights(self, mode=''): + trunc_normal_(self.dist_token, std=0.02) + super().init_weights(mode=mode) + + @torch.jit.ignore + def group_matcher(self, coarse=False): + return dict(stem='^cls_token|pos_embed|patch_embed|dist_token', blocks=[('^blocks\\.(\\d+)', None), ('^norm', (99999,))]) + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return (self.head, self.head_dist) + + def reset_classifier(self, num_classes: int, global_pool: Optional[str]=None): + self.num_classes = num_classes + self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() + self.head_dist = nn.Linear(self.embed_dim, self.num_classes) if num_classes > 0 else nn.Identity() + + @torch.jit.ignore + def set_distilled_training(self, enable=True): + self.distilled_training = enable + + def _pos_embed(self, x): + if self.dynamic_img_size: + (B, H, W, C) = x.shape + pos_embed = resample_abs_pos_embed(self.pos_embed, (H, W), num_prefix_tokens=0 if self.no_embed_class else self.num_prefix_tokens) + x = x.view(B, -1, C) + else: + pos_embed = self.pos_embed + if self.no_embed_class: + x = x + pos_embed + x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), self.dist_token.expand(x.shape[0], -1, -1), x), dim=1) + else: + x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), self.dist_token.expand(x.shape[0], -1, -1), x), dim=1) + x = x + pos_embed + return self.pos_drop(x) + + def forward_head(self, x, pre_logits: bool=False) -> torch.Tensor: + (x, x_dist) = (x[:, 0], x[:, 1]) + if pre_logits: + return (x + x_dist) / 2 + x = self.head(x) + x_dist = self.head_dist(x_dist) + if self.distilled_training and self.training and (not torch.jit.is_scripting()): + return (x, x_dist) + else: + return (x + x_dist) / 2 + +def _create_deit(variant, pretrained=False, distilled=False, **kwargs): + out_indices = kwargs.pop('out_indices', 3) + model_cls = VisionTransformerDistilled if distilled else VisionTransformer + model = build_model_with_cfg(model_cls, variant, pretrained, pretrained_filter_fn=partial(checkpoint_filter_fn, adapt_layer_scale=True), feature_cfg=dict(out_indices=out_indices, feature_cls='getter'), **kwargs) + return model + +def _cfg(url='', **kwargs): + return {'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, 'crop_pct': 0.9, 'interpolation': 'bicubic', 'fixed_input_size': True, 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'patch_embed.proj', 'classifier': 'head', **kwargs} +default_cfgs = generate_default_cfgs({'deit_tiny_patch16_224.fb_in1k': _cfg(hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/deit/deit_tiny_patch16_224-a1311bcf.pth'), 'deit_small_patch16_224.fb_in1k': _cfg(hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/deit/deit_small_patch16_224-cd65a155.pth'), 'deit_base_patch16_224.fb_in1k': _cfg(hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/deit/deit_base_patch16_224-b5f2ef4d.pth'), 'deit_base_patch16_384.fb_in1k': _cfg(hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/deit/deit_base_patch16_384-8de9b5d1.pth', input_size=(3, 384, 384), crop_pct=1.0), 'deit_tiny_distilled_patch16_224.fb_in1k': _cfg(hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/deit/deit_tiny_distilled_patch16_224-b40b3cf7.pth', classifier=('head', 'head_dist')), 'deit_small_distilled_patch16_224.fb_in1k': _cfg(hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/deit/deit_small_distilled_patch16_224-649709d9.pth', classifier=('head', 'head_dist')), 'deit_base_distilled_patch16_224.fb_in1k': _cfg(hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/deit/deit_base_distilled_patch16_224-df68dfff.pth', classifier=('head', 'head_dist')), 'deit_base_distilled_patch16_384.fb_in1k': _cfg(hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/deit/deit_base_distilled_patch16_384-d0272ac0.pth', input_size=(3, 384, 384), crop_pct=1.0, classifier=('head', 'head_dist')), 'deit3_small_patch16_224.fb_in1k': _cfg(hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/deit/deit_3_small_224_1k.pth'), 'deit3_small_patch16_384.fb_in1k': _cfg(hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/deit/deit_3_small_384_1k.pth', input_size=(3, 384, 384), crop_pct=1.0), 'deit3_medium_patch16_224.fb_in1k': _cfg(hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/deit/deit_3_medium_224_1k.pth'), 'deit3_base_patch16_224.fb_in1k': _cfg(hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/deit/deit_3_base_224_1k.pth'), 'deit3_base_patch16_384.fb_in1k': _cfg(hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/deit/deit_3_base_384_1k.pth', input_size=(3, 384, 384), crop_pct=1.0), 'deit3_large_patch16_224.fb_in1k': _cfg(hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/deit/deit_3_large_224_1k.pth'), 'deit3_large_patch16_384.fb_in1k': _cfg(hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/deit/deit_3_large_384_1k.pth', input_size=(3, 384, 384), crop_pct=1.0), 'deit3_huge_patch14_224.fb_in1k': _cfg(hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/deit/deit_3_huge_224_1k.pth'), 'deit3_small_patch16_224.fb_in22k_ft_in1k': _cfg(hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/deit/deit_3_small_224_21k.pth', crop_pct=1.0), 'deit3_small_patch16_384.fb_in22k_ft_in1k': _cfg(hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/deit/deit_3_small_384_21k.pth', input_size=(3, 384, 384), crop_pct=1.0), 'deit3_medium_patch16_224.fb_in22k_ft_in1k': _cfg(hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/deit/deit_3_medium_224_21k.pth', crop_pct=1.0), 'deit3_base_patch16_224.fb_in22k_ft_in1k': _cfg(hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/deit/deit_3_base_224_21k.pth', crop_pct=1.0), 'deit3_base_patch16_384.fb_in22k_ft_in1k': _cfg(hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/deit/deit_3_base_384_21k.pth', input_size=(3, 384, 384), crop_pct=1.0), 'deit3_large_patch16_224.fb_in22k_ft_in1k': _cfg(hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/deit/deit_3_large_224_21k.pth', crop_pct=1.0), 'deit3_large_patch16_384.fb_in22k_ft_in1k': _cfg(hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/deit/deit_3_large_384_21k.pth', input_size=(3, 384, 384), crop_pct=1.0), 'deit3_huge_patch14_224.fb_in22k_ft_in1k': _cfg(hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/deit/deit_3_huge_224_21k_v1.pth', crop_pct=1.0)}) + +@register_model +def deit_tiny_patch16_224(pretrained=False, **kwargs) -> VisionTransformer: + model_args = dict(patch_size=16, embed_dim=192, depth=12, num_heads=3) + model = _create_deit('deit_tiny_patch16_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def deit_small_patch16_224(pretrained=False, **kwargs) -> VisionTransformer: + model_args = dict(patch_size=16, embed_dim=384, depth=12, num_heads=6) + model = _create_deit('deit_small_patch16_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def deit_base_patch16_224(pretrained=False, **kwargs) -> VisionTransformer: + model_args = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12) + model = _create_deit('deit_base_patch16_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def deit_base_patch16_384(pretrained=False, **kwargs) -> VisionTransformer: + model_args = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12) + model = _create_deit('deit_base_patch16_384', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def deit_tiny_distilled_patch16_224(pretrained=False, **kwargs) -> VisionTransformerDistilled: + model_args = dict(patch_size=16, embed_dim=192, depth=12, num_heads=3) + model = _create_deit('deit_tiny_distilled_patch16_224', pretrained=pretrained, distilled=True, **dict(model_args, **kwargs)) + return model + +@register_model +def deit_small_distilled_patch16_224(pretrained=False, **kwargs) -> VisionTransformerDistilled: + model_args = dict(patch_size=16, embed_dim=384, depth=12, num_heads=6) + model = _create_deit('deit_small_distilled_patch16_224', pretrained=pretrained, distilled=True, **dict(model_args, **kwargs)) + return model + +@register_model +def deit_base_distilled_patch16_224(pretrained=False, **kwargs) -> VisionTransformerDistilled: + model_args = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12) + model = _create_deit('deit_base_distilled_patch16_224', pretrained=pretrained, distilled=True, **dict(model_args, **kwargs)) + return model + +@register_model +def deit_base_distilled_patch16_384(pretrained=False, **kwargs) -> VisionTransformerDistilled: + model_args = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12) + model = _create_deit('deit_base_distilled_patch16_384', pretrained=pretrained, distilled=True, **dict(model_args, **kwargs)) + return model + +@register_model +def deit3_small_patch16_224(pretrained=False, **kwargs) -> VisionTransformer: + model_args = dict(patch_size=16, embed_dim=384, depth=12, num_heads=6, no_embed_class=True, init_values=1e-06) + model = _create_deit('deit3_small_patch16_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def deit3_small_patch16_384(pretrained=False, **kwargs) -> VisionTransformer: + model_args = dict(patch_size=16, embed_dim=384, depth=12, num_heads=6, no_embed_class=True, init_values=1e-06) + model = _create_deit('deit3_small_patch16_384', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def deit3_medium_patch16_224(pretrained=False, **kwargs) -> VisionTransformer: + model_args = dict(patch_size=16, embed_dim=512, depth=12, num_heads=8, no_embed_class=True, init_values=1e-06) + model = _create_deit('deit3_medium_patch16_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def deit3_base_patch16_224(pretrained=False, **kwargs) -> VisionTransformer: + model_args = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, no_embed_class=True, init_values=1e-06) + model = _create_deit('deit3_base_patch16_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def deit3_base_patch16_384(pretrained=False, **kwargs) -> VisionTransformer: + model_args = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, no_embed_class=True, init_values=1e-06) + model = _create_deit('deit3_base_patch16_384', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def deit3_large_patch16_224(pretrained=False, **kwargs) -> VisionTransformer: + model_args = dict(patch_size=16, embed_dim=1024, depth=24, num_heads=16, no_embed_class=True, init_values=1e-06) + model = _create_deit('deit3_large_patch16_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def deit3_large_patch16_384(pretrained=False, **kwargs) -> VisionTransformer: + model_args = dict(patch_size=16, embed_dim=1024, depth=24, num_heads=16, no_embed_class=True, init_values=1e-06) + model = _create_deit('deit3_large_patch16_384', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def deit3_huge_patch14_224(pretrained=False, **kwargs) -> VisionTransformer: + model_args = dict(patch_size=14, embed_dim=1280, depth=32, num_heads=16, no_embed_class=True, init_values=1e-06) + model = _create_deit('deit3_huge_patch14_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model +register_model_deprecations(__name__, {'deit3_small_patch16_224_in21ft1k': 'deit3_small_patch16_224.fb_in22k_ft_in1k', 'deit3_small_patch16_384_in21ft1k': 'deit3_small_patch16_384.fb_in22k_ft_in1k', 'deit3_medium_patch16_224_in21ft1k': 'deit3_medium_patch16_224.fb_in22k_ft_in1k', 'deit3_base_patch16_224_in21ft1k': 'deit3_base_patch16_224.fb_in22k_ft_in1k', 'deit3_base_patch16_384_in21ft1k': 'deit3_base_patch16_384.fb_in22k_ft_in1k', 'deit3_large_patch16_224_in21ft1k': 'deit3_large_patch16_224.fb_in22k_ft_in1k', 'deit3_large_patch16_384_in21ft1k': 'deit3_large_patch16_384.fb_in22k_ft_in1k', 'deit3_huge_patch14_224_in21ft1k': 'deit3_huge_patch14_224.fb_in22k_ft_in1k'}) + +# File: pytorch-image-models-main/timm/models/densenet.py +"""""" +import re +from collections import OrderedDict +import torch +import torch.nn as nn +import torch.nn.functional as F +import torch.utils.checkpoint as cp +from torch.jit.annotations import List +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from timm.layers import BatchNormAct2d, get_norm_act_layer, BlurPool2d, create_classifier +from ._builder import build_model_with_cfg +from ._manipulate import MATCH_PREV_GROUP +from ._registry import register_model, generate_default_cfgs, register_model_deprecations +__all__ = ['DenseNet'] + +class DenseLayer(nn.Module): + + def __init__(self, num_input_features, growth_rate, bn_size, norm_layer=BatchNormAct2d, drop_rate=0.0, grad_checkpointing=False): + super(DenseLayer, self).__init__() + (self.add_module('norm1', norm_layer(num_input_features)),) + (self.add_module('conv1', nn.Conv2d(num_input_features, bn_size * growth_rate, kernel_size=1, stride=1, bias=False)),) + (self.add_module('norm2', norm_layer(bn_size * growth_rate)),) + (self.add_module('conv2', nn.Conv2d(bn_size * growth_rate, growth_rate, kernel_size=3, stride=1, padding=1, bias=False)),) + self.drop_rate = float(drop_rate) + self.grad_checkpointing = grad_checkpointing + + def bottleneck_fn(self, xs): + concated_features = torch.cat(xs, 1) + bottleneck_output = self.conv1(self.norm1(concated_features)) + return bottleneck_output + + def any_requires_grad(self, x): + for tensor in x: + if tensor.requires_grad: + return True + return False + + @torch.jit.unused + def call_checkpoint_bottleneck(self, x): + + def closure(*xs): + return self.bottleneck_fn(xs) + return cp.checkpoint(closure, *x) + + @torch.jit._overload_method + def forward(self, x): + pass + + @torch.jit._overload_method + def forward(self, x): + pass + + def forward(self, x): + if isinstance(x, torch.Tensor): + prev_features = [x] + else: + prev_features = x + if self.grad_checkpointing and self.any_requires_grad(prev_features): + if torch.jit.is_scripting(): + raise Exception('Memory Efficient not supported in JIT') + bottleneck_output = self.call_checkpoint_bottleneck(prev_features) + else: + bottleneck_output = self.bottleneck_fn(prev_features) + new_features = self.conv2(self.norm2(bottleneck_output)) + if self.drop_rate > 0: + new_features = F.dropout(new_features, p=self.drop_rate, training=self.training) + return new_features + +class DenseBlock(nn.ModuleDict): + _version = 2 + + def __init__(self, num_layers, num_input_features, bn_size, growth_rate, norm_layer=BatchNormAct2d, drop_rate=0.0, grad_checkpointing=False): + super(DenseBlock, self).__init__() + for i in range(num_layers): + layer = DenseLayer(num_input_features + i * growth_rate, growth_rate=growth_rate, bn_size=bn_size, norm_layer=norm_layer, drop_rate=drop_rate, grad_checkpointing=grad_checkpointing) + self.add_module('denselayer%d' % (i + 1), layer) + + def forward(self, init_features): + features = [init_features] + for (name, layer) in self.items(): + new_features = layer(features) + features.append(new_features) + return torch.cat(features, 1) + +class DenseTransition(nn.Sequential): + + def __init__(self, num_input_features, num_output_features, norm_layer=BatchNormAct2d, aa_layer=None): + super(DenseTransition, self).__init__() + self.add_module('norm', norm_layer(num_input_features)) + self.add_module('conv', nn.Conv2d(num_input_features, num_output_features, kernel_size=1, stride=1, bias=False)) + if aa_layer is not None: + self.add_module('pool', aa_layer(num_output_features, stride=2)) + else: + self.add_module('pool', nn.AvgPool2d(kernel_size=2, stride=2)) + +class DenseNet(nn.Module): + + def __init__(self, growth_rate=32, block_config=(6, 12, 24, 16), num_classes=1000, in_chans=3, global_pool='avg', bn_size=4, stem_type='', act_layer='relu', norm_layer='batchnorm2d', aa_layer=None, drop_rate=0.0, proj_drop_rate=0.0, memory_efficient=False, aa_stem_only=True): + self.num_classes = num_classes + super(DenseNet, self).__init__() + norm_layer = get_norm_act_layer(norm_layer, act_layer=act_layer) + deep_stem = 'deep' in stem_type + num_init_features = growth_rate * 2 + if aa_layer is None: + stem_pool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) + else: + stem_pool = nn.Sequential(*[nn.MaxPool2d(kernel_size=3, stride=1, padding=1), aa_layer(channels=num_init_features, stride=2)]) + if deep_stem: + stem_chs_1 = stem_chs_2 = growth_rate + if 'tiered' in stem_type: + stem_chs_1 = 3 * (growth_rate // 4) + stem_chs_2 = num_init_features if 'narrow' in stem_type else 6 * (growth_rate // 4) + self.features = nn.Sequential(OrderedDict([('conv0', nn.Conv2d(in_chans, stem_chs_1, 3, stride=2, padding=1, bias=False)), ('norm0', norm_layer(stem_chs_1)), ('conv1', nn.Conv2d(stem_chs_1, stem_chs_2, 3, stride=1, padding=1, bias=False)), ('norm1', norm_layer(stem_chs_2)), ('conv2', nn.Conv2d(stem_chs_2, num_init_features, 3, stride=1, padding=1, bias=False)), ('norm2', norm_layer(num_init_features)), ('pool0', stem_pool)])) + else: + self.features = nn.Sequential(OrderedDict([('conv0', nn.Conv2d(in_chans, num_init_features, kernel_size=7, stride=2, padding=3, bias=False)), ('norm0', norm_layer(num_init_features)), ('pool0', stem_pool)])) + self.feature_info = [dict(num_chs=num_init_features, reduction=2, module=f'features.norm{(2 if deep_stem else 0)}')] + current_stride = 4 + num_features = num_init_features + for (i, num_layers) in enumerate(block_config): + block = DenseBlock(num_layers=num_layers, num_input_features=num_features, bn_size=bn_size, growth_rate=growth_rate, norm_layer=norm_layer, drop_rate=proj_drop_rate, grad_checkpointing=memory_efficient) + module_name = f'denseblock{i + 1}' + self.features.add_module(module_name, block) + num_features = num_features + num_layers * growth_rate + transition_aa_layer = None if aa_stem_only else aa_layer + if i != len(block_config) - 1: + self.feature_info += [dict(num_chs=num_features, reduction=current_stride, module='features.' + module_name)] + current_stride *= 2 + trans = DenseTransition(num_input_features=num_features, num_output_features=num_features // 2, norm_layer=norm_layer, aa_layer=transition_aa_layer) + self.features.add_module(f'transition{i + 1}', trans) + num_features = num_features // 2 + self.features.add_module('norm5', norm_layer(num_features)) + self.feature_info += [dict(num_chs=num_features, reduction=current_stride, module='features.norm5')] + self.num_features = self.head_hidden_size = num_features + (global_pool, classifier) = create_classifier(self.num_features, self.num_classes, pool_type=global_pool) + self.global_pool = global_pool + self.head_drop = nn.Dropout(drop_rate) + self.classifier = classifier + for m in self.modules(): + if isinstance(m, nn.Conv2d): + nn.init.kaiming_normal_(m.weight) + elif isinstance(m, nn.BatchNorm2d): + nn.init.constant_(m.weight, 1) + nn.init.constant_(m.bias, 0) + elif isinstance(m, nn.Linear): + nn.init.constant_(m.bias, 0) + + @torch.jit.ignore + def group_matcher(self, coarse=False): + matcher = dict(stem='^features\\.conv[012]|features\\.norm[012]|features\\.pool[012]', blocks='^features\\.(?:denseblock|transition)(\\d+)' if coarse else [('^features\\.denseblock(\\d+)\\.denselayer(\\d+)', None), ('^features\\.transition(\\d+)', MATCH_PREV_GROUP)]) + return matcher + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + for b in self.features.modules(): + if isinstance(b, DenseLayer): + b.grad_checkpointing = enable + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.classifier + + def reset_classifier(self, num_classes: int, global_pool: str='avg'): + self.num_classes = num_classes + (self.global_pool, self.classifier) = create_classifier(self.num_features, self.num_classes, pool_type=global_pool) + + def forward_features(self, x): + return self.features(x) + + def forward_head(self, x, pre_logits: bool=False): + x = self.global_pool(x) + x = self.head_drop(x) + return x if pre_logits else self.classifier(x) + + def forward(self, x): + x = self.forward_features(x) + x = self.forward_head(x) + return x + +def _filter_torchvision_pretrained(state_dict): + pattern = re.compile('^(.*denselayer\\d+\\.(?:norm|relu|conv))\\.((?:[12])\\.(?:weight|bias|running_mean|running_var))$') + for key in list(state_dict.keys()): + res = pattern.match(key) + if res: + new_key = res.group(1) + res.group(2) + state_dict[new_key] = state_dict[key] + del state_dict[key] + return state_dict + +def _create_densenet(variant, growth_rate, block_config, pretrained, **kwargs): + kwargs['growth_rate'] = growth_rate + kwargs['block_config'] = block_config + return build_model_with_cfg(DenseNet, variant, pretrained, feature_cfg=dict(flatten_sequential=True), pretrained_filter_fn=_filter_torchvision_pretrained, **kwargs) + +def _cfg(url='', **kwargs): + return {'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), 'crop_pct': 0.875, 'interpolation': 'bicubic', 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'features.conv0', 'classifier': 'classifier', **kwargs} +default_cfgs = generate_default_cfgs({'densenet121.ra_in1k': _cfg(hf_hub_id='timm/', test_input_size=(3, 288, 288), test_crop_pct=0.95), 'densenetblur121d.ra_in1k': _cfg(hf_hub_id='timm/', test_input_size=(3, 288, 288), test_crop_pct=0.95), 'densenet264d.untrained': _cfg(), 'densenet121.tv_in1k': _cfg(hf_hub_id='timm/'), 'densenet169.tv_in1k': _cfg(hf_hub_id='timm/'), 'densenet201.tv_in1k': _cfg(hf_hub_id='timm/'), 'densenet161.tv_in1k': _cfg(hf_hub_id='timm/')}) + +@register_model +def densenet121(pretrained=False, **kwargs) -> DenseNet: + model_args = dict(growth_rate=32, block_config=(6, 12, 24, 16)) + model = _create_densenet('densenet121', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def densenetblur121d(pretrained=False, **kwargs) -> DenseNet: + model_args = dict(growth_rate=32, block_config=(6, 12, 24, 16), stem_type='deep', aa_layer=BlurPool2d) + model = _create_densenet('densenetblur121d', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def densenet169(pretrained=False, **kwargs) -> DenseNet: + model_args = dict(growth_rate=32, block_config=(6, 12, 32, 32)) + model = _create_densenet('densenet169', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def densenet201(pretrained=False, **kwargs) -> DenseNet: + model_args = dict(growth_rate=32, block_config=(6, 12, 48, 32)) + model = _create_densenet('densenet201', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def densenet161(pretrained=False, **kwargs) -> DenseNet: + model_args = dict(growth_rate=48, block_config=(6, 12, 36, 24)) + model = _create_densenet('densenet161', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def densenet264d(pretrained=False, **kwargs) -> DenseNet: + model_args = dict(growth_rate=48, block_config=(6, 12, 64, 48), stem_type='deep') + model = _create_densenet('densenet264d', pretrained=pretrained, **dict(model_args, **kwargs)) + return model +register_model_deprecations(__name__, {'tv_densenet121': 'densenet121.tv_in1k'}) + +# File: pytorch-image-models-main/timm/models/dla.py +"""""" +import math +from typing import List, Optional +import torch +import torch.nn as nn +import torch.nn.functional as F +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from timm.layers import create_classifier +from ._builder import build_model_with_cfg +from ._registry import register_model, generate_default_cfgs +__all__ = ['DLA'] + +class DlaBasic(nn.Module): + + def __init__(self, inplanes, planes, stride=1, dilation=1, **_): + super(DlaBasic, self).__init__() + self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=3, stride=stride, padding=dilation, bias=False, dilation=dilation) + self.bn1 = nn.BatchNorm2d(planes) + self.relu = nn.ReLU(inplace=True) + self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=dilation, bias=False, dilation=dilation) + self.bn2 = nn.BatchNorm2d(planes) + self.stride = stride + + def forward(self, x, shortcut: Optional[torch.Tensor]=None, children: Optional[List[torch.Tensor]]=None): + if shortcut is None: + shortcut = x + out = self.conv1(x) + out = self.bn1(out) + out = self.relu(out) + out = self.conv2(out) + out = self.bn2(out) + out += shortcut + out = self.relu(out) + return out + +class DlaBottleneck(nn.Module): + expansion = 2 + + def __init__(self, inplanes, outplanes, stride=1, dilation=1, cardinality=1, base_width=64): + super(DlaBottleneck, self).__init__() + self.stride = stride + mid_planes = int(math.floor(outplanes * (base_width / 64)) * cardinality) + mid_planes = mid_planes // self.expansion + self.conv1 = nn.Conv2d(inplanes, mid_planes, kernel_size=1, bias=False) + self.bn1 = nn.BatchNorm2d(mid_planes) + self.conv2 = nn.Conv2d(mid_planes, mid_planes, kernel_size=3, stride=stride, padding=dilation, bias=False, dilation=dilation, groups=cardinality) + self.bn2 = nn.BatchNorm2d(mid_planes) + self.conv3 = nn.Conv2d(mid_planes, outplanes, kernel_size=1, bias=False) + self.bn3 = nn.BatchNorm2d(outplanes) + self.relu = nn.ReLU(inplace=True) + + def forward(self, x, shortcut: Optional[torch.Tensor]=None, children: Optional[List[torch.Tensor]]=None): + if shortcut is None: + shortcut = x + out = self.conv1(x) + out = self.bn1(out) + out = self.relu(out) + out = self.conv2(out) + out = self.bn2(out) + out = self.relu(out) + out = self.conv3(out) + out = self.bn3(out) + out += shortcut + out = self.relu(out) + return out + +class DlaBottle2neck(nn.Module): + expansion = 2 + + def __init__(self, inplanes, outplanes, stride=1, dilation=1, scale=4, cardinality=8, base_width=4): + super(DlaBottle2neck, self).__init__() + self.is_first = stride > 1 + self.scale = scale + mid_planes = int(math.floor(outplanes * (base_width / 64)) * cardinality) + mid_planes = mid_planes // self.expansion + self.width = mid_planes + self.conv1 = nn.Conv2d(inplanes, mid_planes * scale, kernel_size=1, bias=False) + self.bn1 = nn.BatchNorm2d(mid_planes * scale) + num_scale_convs = max(1, scale - 1) + convs = [] + bns = [] + for _ in range(num_scale_convs): + convs.append(nn.Conv2d(mid_planes, mid_planes, kernel_size=3, stride=stride, padding=dilation, dilation=dilation, groups=cardinality, bias=False)) + bns.append(nn.BatchNorm2d(mid_planes)) + self.convs = nn.ModuleList(convs) + self.bns = nn.ModuleList(bns) + self.pool = nn.AvgPool2d(kernel_size=3, stride=stride, padding=1) if self.is_first else None + self.conv3 = nn.Conv2d(mid_planes * scale, outplanes, kernel_size=1, bias=False) + self.bn3 = nn.BatchNorm2d(outplanes) + self.relu = nn.ReLU(inplace=True) + + def forward(self, x, shortcut: Optional[torch.Tensor]=None, children: Optional[List[torch.Tensor]]=None): + if shortcut is None: + shortcut = x + out = self.conv1(x) + out = self.bn1(out) + out = self.relu(out) + spx = torch.split(out, self.width, 1) + spo = [] + sp = spx[0] + for (i, (conv, bn)) in enumerate(zip(self.convs, self.bns)): + if i == 0 or self.is_first: + sp = spx[i] + else: + sp = sp + spx[i] + sp = conv(sp) + sp = bn(sp) + sp = self.relu(sp) + spo.append(sp) + if self.scale > 1: + if self.pool is not None: + spo.append(self.pool(spx[-1])) + else: + spo.append(spx[-1]) + out = torch.cat(spo, 1) + out = self.conv3(out) + out = self.bn3(out) + out += shortcut + out = self.relu(out) + return out + +class DlaRoot(nn.Module): + + def __init__(self, in_channels, out_channels, kernel_size, shortcut): + super(DlaRoot, self).__init__() + self.conv = nn.Conv2d(in_channels, out_channels, 1, stride=1, bias=False, padding=(kernel_size - 1) // 2) + self.bn = nn.BatchNorm2d(out_channels) + self.relu = nn.ReLU(inplace=True) + self.shortcut = shortcut + + def forward(self, x_children: List[torch.Tensor]): + x = self.conv(torch.cat(x_children, 1)) + x = self.bn(x) + if self.shortcut: + x += x_children[0] + x = self.relu(x) + return x + +class DlaTree(nn.Module): + + def __init__(self, levels, block, in_channels, out_channels, stride=1, dilation=1, cardinality=1, base_width=64, level_root=False, root_dim=0, root_kernel_size=1, root_shortcut=False): + super(DlaTree, self).__init__() + if root_dim == 0: + root_dim = 2 * out_channels + if level_root: + root_dim += in_channels + self.downsample = nn.MaxPool2d(stride, stride=stride) if stride > 1 else nn.Identity() + self.project = nn.Identity() + cargs = dict(dilation=dilation, cardinality=cardinality, base_width=base_width) + if levels == 1: + self.tree1 = block(in_channels, out_channels, stride, **cargs) + self.tree2 = block(out_channels, out_channels, 1, **cargs) + if in_channels != out_channels: + self.project = nn.Sequential(nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, bias=False), nn.BatchNorm2d(out_channels)) + self.root = DlaRoot(root_dim, out_channels, root_kernel_size, root_shortcut) + else: + cargs.update(dict(root_kernel_size=root_kernel_size, root_shortcut=root_shortcut)) + self.tree1 = DlaTree(levels - 1, block, in_channels, out_channels, stride, root_dim=0, **cargs) + self.tree2 = DlaTree(levels - 1, block, out_channels, out_channels, root_dim=root_dim + out_channels, **cargs) + self.root = None + self.level_root = level_root + self.root_dim = root_dim + self.levels = levels + + def forward(self, x, shortcut: Optional[torch.Tensor]=None, children: Optional[List[torch.Tensor]]=None): + if children is None: + children = [] + bottom = self.downsample(x) + shortcut = self.project(bottom) + if self.level_root: + children.append(bottom) + x1 = self.tree1(x, shortcut) + if self.root is not None: + x2 = self.tree2(x1) + x = self.root([x2, x1] + children) + else: + children.append(x1) + x = self.tree2(x1, None, children) + return x + +class DLA(nn.Module): + + def __init__(self, levels, channels, output_stride=32, num_classes=1000, in_chans=3, global_pool='avg', cardinality=1, base_width=64, block=DlaBottle2neck, shortcut_root=False, drop_rate=0.0): + super(DLA, self).__init__() + self.channels = channels + self.num_classes = num_classes + self.cardinality = cardinality + self.base_width = base_width + assert output_stride == 32 + self.base_layer = nn.Sequential(nn.Conv2d(in_chans, channels[0], kernel_size=7, stride=1, padding=3, bias=False), nn.BatchNorm2d(channels[0]), nn.ReLU(inplace=True)) + self.level0 = self._make_conv_level(channels[0], channels[0], levels[0]) + self.level1 = self._make_conv_level(channels[0], channels[1], levels[1], stride=2) + cargs = dict(cardinality=cardinality, base_width=base_width, root_shortcut=shortcut_root) + self.level2 = DlaTree(levels[2], block, channels[1], channels[2], 2, level_root=False, **cargs) + self.level3 = DlaTree(levels[3], block, channels[2], channels[3], 2, level_root=True, **cargs) + self.level4 = DlaTree(levels[4], block, channels[3], channels[4], 2, level_root=True, **cargs) + self.level5 = DlaTree(levels[5], block, channels[4], channels[5], 2, level_root=True, **cargs) + self.feature_info = [dict(num_chs=channels[0], reduction=1, module='level0'), dict(num_chs=channels[1], reduction=2, module='level1'), dict(num_chs=channels[2], reduction=4, module='level2'), dict(num_chs=channels[3], reduction=8, module='level3'), dict(num_chs=channels[4], reduction=16, module='level4'), dict(num_chs=channels[5], reduction=32, module='level5')] + self.num_features = self.head_hidden_size = channels[-1] + (self.global_pool, self.head_drop, self.fc) = create_classifier(self.num_features, self.num_classes, pool_type=global_pool, use_conv=True, drop_rate=drop_rate) + self.flatten = nn.Flatten(1) if global_pool else nn.Identity() + for m in self.modules(): + if isinstance(m, nn.Conv2d): + n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels + m.weight.data.normal_(0, math.sqrt(2.0 / n)) + elif isinstance(m, nn.BatchNorm2d): + m.weight.data.fill_(1) + m.bias.data.zero_() + + def _make_conv_level(self, inplanes, planes, convs, stride=1, dilation=1): + modules = [] + for i in range(convs): + modules.extend([nn.Conv2d(inplanes, planes, kernel_size=3, stride=stride if i == 0 else 1, padding=dilation, bias=False, dilation=dilation), nn.BatchNorm2d(planes), nn.ReLU(inplace=True)]) + inplanes = planes + return nn.Sequential(*modules) + + @torch.jit.ignore + def group_matcher(self, coarse=False): + matcher = dict(stem='^base_layer', blocks='^level(\\d+)' if coarse else [('^level(\\d+)\\.tree(\\d+)', None), ('^level(\\d+)\\.root', (2,)), ('^level(\\d+)', (1,))]) + return matcher + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + assert not enable, 'gradient checkpointing not supported' + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.fc + + def reset_classifier(self, num_classes: int, global_pool: str='avg'): + self.num_classes = num_classes + (self.global_pool, self.fc) = create_classifier(self.num_features, self.num_classes, pool_type=global_pool, use_conv=True) + self.flatten = nn.Flatten(1) if global_pool else nn.Identity() + + def forward_features(self, x): + x = self.base_layer(x) + x = self.level0(x) + x = self.level1(x) + x = self.level2(x) + x = self.level3(x) + x = self.level4(x) + x = self.level5(x) + return x + + def forward_head(self, x, pre_logits: bool=False): + x = self.global_pool(x) + x = self.head_drop(x) + if pre_logits: + return self.flatten(x) + x = self.fc(x) + return self.flatten(x) + + def forward(self, x): + x = self.forward_features(x) + x = self.forward_head(x) + return x + +def _create_dla(variant, pretrained=False, **kwargs): + return build_model_with_cfg(DLA, variant, pretrained, pretrained_strict=False, feature_cfg=dict(out_indices=(1, 2, 3, 4, 5)), **kwargs) + +def _cfg(url='', **kwargs): + return {'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), 'crop_pct': 0.875, 'interpolation': 'bilinear', 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'base_layer.0', 'classifier': 'fc', **kwargs} +default_cfgs = generate_default_cfgs({'dla34.in1k': _cfg(hf_hub_id='timm/'), 'dla46_c.in1k': _cfg(hf_hub_id='timm/'), 'dla46x_c.in1k': _cfg(hf_hub_id='timm/'), 'dla60x_c.in1k': _cfg(hf_hub_id='timm/'), 'dla60.in1k': _cfg(hf_hub_id='timm/'), 'dla60x.in1k': _cfg(hf_hub_id='timm/'), 'dla102.in1k': _cfg(hf_hub_id='timm/'), 'dla102x.in1k': _cfg(hf_hub_id='timm/'), 'dla102x2.in1k': _cfg(hf_hub_id='timm/'), 'dla169.in1k': _cfg(hf_hub_id='timm/'), 'dla60_res2net.in1k': _cfg(hf_hub_id='timm/'), 'dla60_res2next.in1k': _cfg(hf_hub_id='timm/')}) + +@register_model +def dla60_res2net(pretrained=False, **kwargs) -> DLA: + model_args = dict(levels=(1, 1, 1, 2, 3, 1), channels=(16, 32, 128, 256, 512, 1024), block=DlaBottle2neck, cardinality=1, base_width=28) + return _create_dla('dla60_res2net', pretrained, **dict(model_args, **kwargs)) + +@register_model +def dla60_res2next(pretrained=False, **kwargs): + model_args = dict(levels=(1, 1, 1, 2, 3, 1), channels=(16, 32, 128, 256, 512, 1024), block=DlaBottle2neck, cardinality=8, base_width=4) + return _create_dla('dla60_res2next', pretrained, **dict(model_args, **kwargs)) + +@register_model +def dla34(pretrained=False, **kwargs) -> DLA: + model_args = dict(levels=[1, 1, 1, 2, 2, 1], channels=[16, 32, 64, 128, 256, 512], block=DlaBasic) + return _create_dla('dla34', pretrained, **dict(model_args, **kwargs)) + +@register_model +def dla46_c(pretrained=False, **kwargs) -> DLA: + model_args = dict(levels=[1, 1, 1, 2, 2, 1], channels=[16, 32, 64, 64, 128, 256], block=DlaBottleneck) + return _create_dla('dla46_c', pretrained, **dict(model_args, **kwargs)) + +@register_model +def dla46x_c(pretrained=False, **kwargs) -> DLA: + model_args = dict(levels=[1, 1, 1, 2, 2, 1], channels=[16, 32, 64, 64, 128, 256], block=DlaBottleneck, cardinality=32, base_width=4) + return _create_dla('dla46x_c', pretrained, **dict(model_args, **kwargs)) + +@register_model +def dla60x_c(pretrained=False, **kwargs) -> DLA: + model_args = dict(levels=[1, 1, 1, 2, 3, 1], channels=[16, 32, 64, 64, 128, 256], block=DlaBottleneck, cardinality=32, base_width=4) + return _create_dla('dla60x_c', pretrained, **dict(model_args, **kwargs)) + +@register_model +def dla60(pretrained=False, **kwargs) -> DLA: + model_args = dict(levels=[1, 1, 1, 2, 3, 1], channels=[16, 32, 128, 256, 512, 1024], block=DlaBottleneck) + return _create_dla('dla60', pretrained, **dict(model_args, **kwargs)) + +@register_model +def dla60x(pretrained=False, **kwargs) -> DLA: + model_args = dict(levels=[1, 1, 1, 2, 3, 1], channels=[16, 32, 128, 256, 512, 1024], block=DlaBottleneck, cardinality=32, base_width=4) + return _create_dla('dla60x', pretrained, **dict(model_args, **kwargs)) + +@register_model +def dla102(pretrained=False, **kwargs) -> DLA: + model_args = dict(levels=[1, 1, 1, 3, 4, 1], channels=[16, 32, 128, 256, 512, 1024], block=DlaBottleneck, shortcut_root=True) + return _create_dla('dla102', pretrained, **dict(model_args, **kwargs)) + +@register_model +def dla102x(pretrained=False, **kwargs) -> DLA: + model_args = dict(levels=[1, 1, 1, 3, 4, 1], channels=[16, 32, 128, 256, 512, 1024], block=DlaBottleneck, cardinality=32, base_width=4, shortcut_root=True) + return _create_dla('dla102x', pretrained, **dict(model_args, **kwargs)) + +@register_model +def dla102x2(pretrained=False, **kwargs) -> DLA: + model_args = dict(levels=[1, 1, 1, 3, 4, 1], channels=[16, 32, 128, 256, 512, 1024], block=DlaBottleneck, cardinality=64, base_width=4, shortcut_root=True) + return _create_dla('dla102x2', pretrained, **dict(model_args, **kwargs)) + +@register_model +def dla169(pretrained=False, **kwargs) -> DLA: + model_args = dict(levels=[1, 1, 2, 3, 5, 1], channels=[16, 32, 128, 256, 512, 1024], block=DlaBottleneck, shortcut_root=True) + return _create_dla('dla169', pretrained, **dict(model_args, **kwargs)) + +# File: pytorch-image-models-main/timm/models/dpn.py +"""""" +from collections import OrderedDict +from functools import partial +from typing import Tuple +import torch +import torch.nn as nn +import torch.nn.functional as F +from timm.data import IMAGENET_DPN_MEAN, IMAGENET_DPN_STD, IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from timm.layers import BatchNormAct2d, ConvNormAct, create_conv2d, create_classifier, get_norm_act_layer +from ._builder import build_model_with_cfg +from ._registry import register_model, generate_default_cfgs +__all__ = ['DPN'] + +class CatBnAct(nn.Module): + + def __init__(self, in_chs, norm_layer=BatchNormAct2d): + super(CatBnAct, self).__init__() + self.bn = norm_layer(in_chs, eps=0.001) + + @torch.jit._overload_method + def forward(self, x): + pass + + @torch.jit._overload_method + def forward(self, x): + pass + + def forward(self, x): + if isinstance(x, tuple): + x = torch.cat(x, dim=1) + return self.bn(x) + +class BnActConv2d(nn.Module): + + def __init__(self, in_chs, out_chs, kernel_size, stride, groups=1, norm_layer=BatchNormAct2d): + super(BnActConv2d, self).__init__() + self.bn = norm_layer(in_chs, eps=0.001) + self.conv = create_conv2d(in_chs, out_chs, kernel_size, stride=stride, groups=groups) + + def forward(self, x): + return self.conv(self.bn(x)) + +class DualPathBlock(nn.Module): + + def __init__(self, in_chs, num_1x1_a, num_3x3_b, num_1x1_c, inc, groups, block_type='normal', b=False): + super(DualPathBlock, self).__init__() + self.num_1x1_c = num_1x1_c + self.inc = inc + self.b = b + if block_type == 'proj': + self.key_stride = 1 + self.has_proj = True + elif block_type == 'down': + self.key_stride = 2 + self.has_proj = True + else: + assert block_type == 'normal' + self.key_stride = 1 + self.has_proj = False + self.c1x1_w_s1 = None + self.c1x1_w_s2 = None + if self.has_proj: + if self.key_stride == 2: + self.c1x1_w_s2 = BnActConv2d(in_chs=in_chs, out_chs=num_1x1_c + 2 * inc, kernel_size=1, stride=2) + else: + self.c1x1_w_s1 = BnActConv2d(in_chs=in_chs, out_chs=num_1x1_c + 2 * inc, kernel_size=1, stride=1) + self.c1x1_a = BnActConv2d(in_chs=in_chs, out_chs=num_1x1_a, kernel_size=1, stride=1) + self.c3x3_b = BnActConv2d(in_chs=num_1x1_a, out_chs=num_3x3_b, kernel_size=3, stride=self.key_stride, groups=groups) + if b: + self.c1x1_c = CatBnAct(in_chs=num_3x3_b) + self.c1x1_c1 = create_conv2d(num_3x3_b, num_1x1_c, kernel_size=1) + self.c1x1_c2 = create_conv2d(num_3x3_b, inc, kernel_size=1) + else: + self.c1x1_c = BnActConv2d(in_chs=num_3x3_b, out_chs=num_1x1_c + inc, kernel_size=1, stride=1) + self.c1x1_c1 = None + self.c1x1_c2 = None + + @torch.jit._overload_method + def forward(self, x): + pass + + @torch.jit._overload_method + def forward(self, x): + pass + + def forward(self, x) -> Tuple[torch.Tensor, torch.Tensor]: + if isinstance(x, tuple): + x_in = torch.cat(x, dim=1) + else: + x_in = x + if self.c1x1_w_s1 is None and self.c1x1_w_s2 is None: + x_s1 = x[0] + x_s2 = x[1] + else: + if self.c1x1_w_s1 is not None: + x_s = self.c1x1_w_s1(x_in) + else: + x_s = self.c1x1_w_s2(x_in) + x_s1 = x_s[:, :self.num_1x1_c, :, :] + x_s2 = x_s[:, self.num_1x1_c:, :, :] + x_in = self.c1x1_a(x_in) + x_in = self.c3x3_b(x_in) + x_in = self.c1x1_c(x_in) + if self.c1x1_c1 is not None: + out1 = self.c1x1_c1(x_in) + out2 = self.c1x1_c2(x_in) + else: + out1 = x_in[:, :self.num_1x1_c, :, :] + out2 = x_in[:, self.num_1x1_c:, :, :] + resid = x_s1 + out1 + dense = torch.cat([x_s2, out2], dim=1) + return (resid, dense) + +class DPN(nn.Module): + + def __init__(self, k_sec=(3, 4, 20, 3), inc_sec=(16, 32, 24, 128), k_r=96, groups=32, num_classes=1000, in_chans=3, output_stride=32, global_pool='avg', small=False, num_init_features=64, b=False, drop_rate=0.0, norm_layer='batchnorm2d', act_layer='relu', fc_act_layer='elu'): + super(DPN, self).__init__() + self.num_classes = num_classes + self.drop_rate = drop_rate + self.b = b + assert output_stride == 32 + norm_layer = partial(get_norm_act_layer(norm_layer, act_layer=act_layer), eps=0.001) + fc_norm_layer = partial(get_norm_act_layer(norm_layer, act_layer=fc_act_layer), eps=0.001, inplace=False) + bw_factor = 1 if small else 4 + blocks = OrderedDict() + blocks['conv1_1'] = ConvNormAct(in_chans, num_init_features, kernel_size=3 if small else 7, stride=2, norm_layer=norm_layer) + blocks['conv1_pool'] = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) + self.feature_info = [dict(num_chs=num_init_features, reduction=2, module='features.conv1_1')] + bw = 64 * bw_factor + inc = inc_sec[0] + r = k_r * bw // (64 * bw_factor) + blocks['conv2_1'] = DualPathBlock(num_init_features, r, r, bw, inc, groups, 'proj', b) + in_chs = bw + 3 * inc + for i in range(2, k_sec[0] + 1): + blocks['conv2_' + str(i)] = DualPathBlock(in_chs, r, r, bw, inc, groups, 'normal', b) + in_chs += inc + self.feature_info += [dict(num_chs=in_chs, reduction=4, module=f'features.conv2_{k_sec[0]}')] + bw = 128 * bw_factor + inc = inc_sec[1] + r = k_r * bw // (64 * bw_factor) + blocks['conv3_1'] = DualPathBlock(in_chs, r, r, bw, inc, groups, 'down', b) + in_chs = bw + 3 * inc + for i in range(2, k_sec[1] + 1): + blocks['conv3_' + str(i)] = DualPathBlock(in_chs, r, r, bw, inc, groups, 'normal', b) + in_chs += inc + self.feature_info += [dict(num_chs=in_chs, reduction=8, module=f'features.conv3_{k_sec[1]}')] + bw = 256 * bw_factor + inc = inc_sec[2] + r = k_r * bw // (64 * bw_factor) + blocks['conv4_1'] = DualPathBlock(in_chs, r, r, bw, inc, groups, 'down', b) + in_chs = bw + 3 * inc + for i in range(2, k_sec[2] + 1): + blocks['conv4_' + str(i)] = DualPathBlock(in_chs, r, r, bw, inc, groups, 'normal', b) + in_chs += inc + self.feature_info += [dict(num_chs=in_chs, reduction=16, module=f'features.conv4_{k_sec[2]}')] + bw = 512 * bw_factor + inc = inc_sec[3] + r = k_r * bw // (64 * bw_factor) + blocks['conv5_1'] = DualPathBlock(in_chs, r, r, bw, inc, groups, 'down', b) + in_chs = bw + 3 * inc + for i in range(2, k_sec[3] + 1): + blocks['conv5_' + str(i)] = DualPathBlock(in_chs, r, r, bw, inc, groups, 'normal', b) + in_chs += inc + self.feature_info += [dict(num_chs=in_chs, reduction=32, module=f'features.conv5_{k_sec[3]}')] + blocks['conv5_bn_ac'] = CatBnAct(in_chs, norm_layer=fc_norm_layer) + self.num_features = self.head_hidden_size = in_chs + self.features = nn.Sequential(blocks) + (self.global_pool, self.classifier) = create_classifier(self.num_features, self.num_classes, pool_type=global_pool, use_conv=True) + self.flatten = nn.Flatten(1) if global_pool else nn.Identity() + + @torch.jit.ignore + def group_matcher(self, coarse=False): + matcher = dict(stem='^features\\.conv1', blocks=[('^features\\.conv(\\d+)' if coarse else '^features\\.conv(\\d+)_(\\d+)', None), ('^features\\.conv5_bn_ac', (99999,))]) + return matcher + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + assert not enable, 'gradient checkpointing not supported' + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.classifier + + def reset_classifier(self, num_classes: int, global_pool: str='avg'): + self.num_classes = num_classes + (self.global_pool, self.classifier) = create_classifier(self.num_features, self.num_classes, pool_type=global_pool, use_conv=True) + self.flatten = nn.Flatten(1) if global_pool else nn.Identity() + + def forward_features(self, x): + return self.features(x) + + def forward_head(self, x, pre_logits: bool=False): + x = self.global_pool(x) + if self.drop_rate > 0.0: + x = F.dropout(x, p=self.drop_rate, training=self.training) + if pre_logits: + return self.flatten(x) + x = self.classifier(x) + return self.flatten(x) + + def forward(self, x): + x = self.forward_features(x) + x = self.forward_head(x) + return x + +def _create_dpn(variant, pretrained=False, **kwargs): + return build_model_with_cfg(DPN, variant, pretrained, feature_cfg=dict(feature_concat=True, flatten_sequential=True), **kwargs) + +def _cfg(url='', **kwargs): + return {'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), 'crop_pct': 0.875, 'interpolation': 'bicubic', 'mean': IMAGENET_DPN_MEAN, 'std': IMAGENET_DPN_STD, 'first_conv': 'features.conv1_1.conv', 'classifier': 'classifier', **kwargs} +default_cfgs = generate_default_cfgs({'dpn48b.untrained': _cfg(mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD), 'dpn68.mx_in1k': _cfg(hf_hub_id='timm/'), 'dpn68b.ra_in1k': _cfg(hf_hub_id='timm/', mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, crop_pct=0.95, test_input_size=(3, 288, 288), test_crop_pct=1.0), 'dpn68b.mx_in1k': _cfg(hf_hub_id='timm/'), 'dpn92.mx_in1k': _cfg(hf_hub_id='timm/'), 'dpn98.mx_in1k': _cfg(hf_hub_id='timm/'), 'dpn131.mx_in1k': _cfg(hf_hub_id='timm/'), 'dpn107.mx_in1k': _cfg(hf_hub_id='timm/')}) + +@register_model +def dpn48b(pretrained=False, **kwargs) -> DPN: + model_args = dict(small=True, num_init_features=10, k_r=128, groups=32, b=True, k_sec=(3, 4, 6, 3), inc_sec=(16, 32, 32, 64), act_layer='silu') + return _create_dpn('dpn48b', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def dpn68(pretrained=False, **kwargs) -> DPN: + model_args = dict(small=True, num_init_features=10, k_r=128, groups=32, k_sec=(3, 4, 12, 3), inc_sec=(16, 32, 32, 64)) + return _create_dpn('dpn68', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def dpn68b(pretrained=False, **kwargs) -> DPN: + model_args = dict(small=True, num_init_features=10, k_r=128, groups=32, b=True, k_sec=(3, 4, 12, 3), inc_sec=(16, 32, 32, 64)) + return _create_dpn('dpn68b', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def dpn92(pretrained=False, **kwargs) -> DPN: + model_args = dict(num_init_features=64, k_r=96, groups=32, k_sec=(3, 4, 20, 3), inc_sec=(16, 32, 24, 128)) + return _create_dpn('dpn92', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def dpn98(pretrained=False, **kwargs) -> DPN: + model_args = dict(num_init_features=96, k_r=160, groups=40, k_sec=(3, 6, 20, 3), inc_sec=(16, 32, 32, 128)) + return _create_dpn('dpn98', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def dpn131(pretrained=False, **kwargs) -> DPN: + model_args = dict(num_init_features=128, k_r=160, groups=40, k_sec=(4, 8, 28, 3), inc_sec=(16, 32, 32, 128)) + return _create_dpn('dpn131', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def dpn107(pretrained=False, **kwargs) -> DPN: + model_args = dict(num_init_features=128, k_r=200, groups=50, k_sec=(4, 8, 20, 3), inc_sec=(20, 64, 64, 128)) + return _create_dpn('dpn107', pretrained=pretrained, **dict(model_args, **kwargs)) + +# File: pytorch-image-models-main/timm/models/edgenext.py +"""""" +import math +from functools import partial +from typing import Optional, Tuple +import torch +import torch.nn.functional as F +from torch import nn +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from timm.layers import trunc_normal_tf_, DropPath, LayerNorm2d, Mlp, create_conv2d, NormMlpClassifierHead, ClassifierHead +from ._builder import build_model_with_cfg +from ._features_fx import register_notrace_module +from ._manipulate import named_apply, checkpoint_seq +from ._registry import register_model, generate_default_cfgs +__all__ = ['EdgeNeXt'] + +@register_notrace_module +class PositionalEncodingFourier(nn.Module): + + def __init__(self, hidden_dim=32, dim=768, temperature=10000): + super().__init__() + self.token_projection = nn.Conv2d(hidden_dim * 2, dim, kernel_size=1) + self.scale = 2 * math.pi + self.temperature = temperature + self.hidden_dim = hidden_dim + self.dim = dim + + def forward(self, shape: Tuple[int, int, int]): + device = self.token_projection.weight.device + dtype = self.token_projection.weight.dtype + inv_mask = ~torch.zeros(shape).to(device=device, dtype=torch.bool) + y_embed = inv_mask.cumsum(1, dtype=torch.float32) + x_embed = inv_mask.cumsum(2, dtype=torch.float32) + eps = 1e-06 + y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale + x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale + dim_t = torch.arange(self.hidden_dim, dtype=torch.int64, device=device).to(torch.float32) + dim_t = self.temperature ** (2 * torch.div(dim_t, 2, rounding_mode='floor') / self.hidden_dim) + pos_x = x_embed[:, :, :, None] / dim_t + pos_y = y_embed[:, :, :, None] / dim_t + pos_x = torch.stack((pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4).flatten(3) + pos_y = torch.stack((pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4).flatten(3) + pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2) + pos = self.token_projection(pos.to(dtype)) + return pos + +class ConvBlock(nn.Module): + + def __init__(self, dim, dim_out=None, kernel_size=7, stride=1, conv_bias=True, expand_ratio=4, ls_init_value=1e-06, norm_layer=partial(nn.LayerNorm, eps=1e-06), act_layer=nn.GELU, drop_path=0.0): + super().__init__() + dim_out = dim_out or dim + self.shortcut_after_dw = stride > 1 or dim != dim_out + self.conv_dw = create_conv2d(dim, dim_out, kernel_size=kernel_size, stride=stride, depthwise=True, bias=conv_bias) + self.norm = norm_layer(dim_out) + self.mlp = Mlp(dim_out, int(expand_ratio * dim_out), act_layer=act_layer) + self.gamma = nn.Parameter(ls_init_value * torch.ones(dim_out)) if ls_init_value > 0 else None + self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + + def forward(self, x): + shortcut = x + x = self.conv_dw(x) + if self.shortcut_after_dw: + shortcut = x + x = x.permute(0, 2, 3, 1) + x = self.norm(x) + x = self.mlp(x) + if self.gamma is not None: + x = self.gamma * x + x = x.permute(0, 3, 1, 2) + x = shortcut + self.drop_path(x) + return x + +class CrossCovarianceAttn(nn.Module): + + def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0.0, proj_drop=0.0): + super().__init__() + self.num_heads = num_heads + self.temperature = nn.Parameter(torch.ones(num_heads, 1, 1)) + self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) + self.attn_drop = nn.Dropout(attn_drop) + self.proj = nn.Linear(dim, dim) + self.proj_drop = nn.Dropout(proj_drop) + + def forward(self, x): + (B, N, C) = x.shape + qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 4, 1) + (q, k, v) = qkv.unbind(0) + attn = F.normalize(q, dim=-1) @ F.normalize(k, dim=-1).transpose(-2, -1) * self.temperature + attn = attn.softmax(dim=-1) + attn = self.attn_drop(attn) + x = attn @ v + x = x.permute(0, 3, 1, 2).reshape(B, N, C) + x = self.proj(x) + x = self.proj_drop(x) + return x + + @torch.jit.ignore + def no_weight_decay(self): + return {'temperature'} + +class SplitTransposeBlock(nn.Module): + + def __init__(self, dim, num_scales=1, num_heads=8, expand_ratio=4, use_pos_emb=True, conv_bias=True, qkv_bias=True, ls_init_value=1e-06, norm_layer=partial(nn.LayerNorm, eps=1e-06), act_layer=nn.GELU, drop_path=0.0, attn_drop=0.0, proj_drop=0.0): + super().__init__() + width = max(int(math.ceil(dim / num_scales)), int(math.floor(dim // num_scales))) + self.width = width + self.num_scales = max(1, num_scales - 1) + convs = [] + for i in range(self.num_scales): + convs.append(create_conv2d(width, width, kernel_size=3, depthwise=True, bias=conv_bias)) + self.convs = nn.ModuleList(convs) + self.pos_embd = None + if use_pos_emb: + self.pos_embd = PositionalEncodingFourier(dim=dim) + self.norm_xca = norm_layer(dim) + self.gamma_xca = nn.Parameter(ls_init_value * torch.ones(dim)) if ls_init_value > 0 else None + self.xca = CrossCovarianceAttn(dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=proj_drop) + self.norm = norm_layer(dim, eps=1e-06) + self.mlp = Mlp(dim, int(expand_ratio * dim), act_layer=act_layer) + self.gamma = nn.Parameter(ls_init_value * torch.ones(dim)) if ls_init_value > 0 else None + self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + + def forward(self, x): + shortcut = x + spx = x.chunk(len(self.convs) + 1, dim=1) + spo = [] + sp = spx[0] + for (i, conv) in enumerate(self.convs): + if i > 0: + sp = sp + spx[i] + sp = conv(sp) + spo.append(sp) + spo.append(spx[-1]) + x = torch.cat(spo, 1) + (B, C, H, W) = x.shape + x = x.reshape(B, C, H * W).permute(0, 2, 1) + if self.pos_embd is not None: + pos_encoding = self.pos_embd((B, H, W)).reshape(B, -1, x.shape[1]).permute(0, 2, 1) + x = x + pos_encoding + x = x + self.drop_path(self.gamma_xca * self.xca(self.norm_xca(x))) + x = x.reshape(B, H, W, C) + x = self.norm(x) + x = self.mlp(x) + if self.gamma is not None: + x = self.gamma * x + x = x.permute(0, 3, 1, 2) + x = shortcut + self.drop_path(x) + return x + +class EdgeNeXtStage(nn.Module): + + def __init__(self, in_chs, out_chs, stride=2, depth=2, num_global_blocks=1, num_heads=4, scales=2, kernel_size=7, expand_ratio=4, use_pos_emb=False, downsample_block=False, conv_bias=True, ls_init_value=1.0, drop_path_rates=None, norm_layer=LayerNorm2d, norm_layer_cl=partial(nn.LayerNorm, eps=1e-06), act_layer=nn.GELU): + super().__init__() + self.grad_checkpointing = False + if downsample_block or stride == 1: + self.downsample = nn.Identity() + else: + self.downsample = nn.Sequential(norm_layer(in_chs), nn.Conv2d(in_chs, out_chs, kernel_size=2, stride=2, bias=conv_bias)) + in_chs = out_chs + stage_blocks = [] + for i in range(depth): + if i < depth - num_global_blocks: + stage_blocks.append(ConvBlock(dim=in_chs, dim_out=out_chs, stride=stride if downsample_block and i == 0 else 1, conv_bias=conv_bias, kernel_size=kernel_size, expand_ratio=expand_ratio, ls_init_value=ls_init_value, drop_path=drop_path_rates[i], norm_layer=norm_layer_cl, act_layer=act_layer)) + else: + stage_blocks.append(SplitTransposeBlock(dim=in_chs, num_scales=scales, num_heads=num_heads, expand_ratio=expand_ratio, use_pos_emb=use_pos_emb, conv_bias=conv_bias, ls_init_value=ls_init_value, drop_path=drop_path_rates[i], norm_layer=norm_layer_cl, act_layer=act_layer)) + in_chs = out_chs + self.blocks = nn.Sequential(*stage_blocks) + + def forward(self, x): + x = self.downsample(x) + if self.grad_checkpointing and (not torch.jit.is_scripting()): + x = checkpoint_seq(self.blocks, x) + else: + x = self.blocks(x) + return x + +class EdgeNeXt(nn.Module): + + def __init__(self, in_chans=3, num_classes=1000, global_pool='avg', dims=(24, 48, 88, 168), depths=(3, 3, 9, 3), global_block_counts=(0, 1, 1, 1), kernel_sizes=(3, 5, 7, 9), heads=(8, 8, 8, 8), d2_scales=(2, 2, 3, 4), use_pos_emb=(False, True, False, False), ls_init_value=1e-06, head_init_scale=1.0, expand_ratio=4, downsample_block=False, conv_bias=True, stem_type='patch', head_norm_first=False, act_layer=nn.GELU, drop_path_rate=0.0, drop_rate=0.0): + super().__init__() + self.num_classes = num_classes + self.global_pool = global_pool + self.drop_rate = drop_rate + norm_layer = partial(LayerNorm2d, eps=1e-06) + norm_layer_cl = partial(nn.LayerNorm, eps=1e-06) + self.feature_info = [] + assert stem_type in ('patch', 'overlap') + if stem_type == 'patch': + self.stem = nn.Sequential(nn.Conv2d(in_chans, dims[0], kernel_size=4, stride=4, bias=conv_bias), norm_layer(dims[0])) + else: + self.stem = nn.Sequential(nn.Conv2d(in_chans, dims[0], kernel_size=9, stride=4, padding=9 // 2, bias=conv_bias), norm_layer(dims[0])) + curr_stride = 4 + stages = [] + dp_rates = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(depths)).split(depths)] + in_chs = dims[0] + for i in range(4): + stride = 2 if curr_stride == 2 or i > 0 else 1 + curr_stride *= stride + stages.append(EdgeNeXtStage(in_chs=in_chs, out_chs=dims[i], stride=stride, depth=depths[i], num_global_blocks=global_block_counts[i], num_heads=heads[i], drop_path_rates=dp_rates[i], scales=d2_scales[i], expand_ratio=expand_ratio, kernel_size=kernel_sizes[i], use_pos_emb=use_pos_emb[i], ls_init_value=ls_init_value, downsample_block=downsample_block, conv_bias=conv_bias, norm_layer=norm_layer, norm_layer_cl=norm_layer_cl, act_layer=act_layer)) + in_chs = dims[i] + self.feature_info += [dict(num_chs=in_chs, reduction=curr_stride, module=f'stages.{i}')] + self.stages = nn.Sequential(*stages) + self.num_features = self.head_hidden_size = dims[-1] + if head_norm_first: + self.norm_pre = norm_layer(self.num_features) + self.head = ClassifierHead(self.num_features, num_classes, pool_type=global_pool, drop_rate=self.drop_rate) + else: + self.norm_pre = nn.Identity() + self.head = NormMlpClassifierHead(self.num_features, num_classes, pool_type=global_pool, drop_rate=self.drop_rate, norm_layer=norm_layer) + named_apply(partial(_init_weights, head_init_scale=head_init_scale), self) + + @torch.jit.ignore + def group_matcher(self, coarse=False): + return dict(stem='^stem', blocks='^stages\\.(\\d+)' if coarse else [('^stages\\.(\\d+)\\.downsample', (0,)), ('^stages\\.(\\d+)\\.blocks\\.(\\d+)', None), ('^norm_pre', (99999,))]) + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + for s in self.stages: + s.grad_checkpointing = enable + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.head.fc + + def reset_classifier(self, num_classes: int, global_pool: Optional[str]=None): + self.num_classes = num_classes + self.head.reset(num_classes, global_pool) + + def forward_features(self, x): + x = self.stem(x) + x = self.stages(x) + x = self.norm_pre(x) + return x + + def forward_head(self, x, pre_logits: bool=False): + return self.head(x, pre_logits=True) if pre_logits else self.head(x) + + def forward(self, x): + x = self.forward_features(x) + x = self.forward_head(x) + return x + +def _init_weights(module, name=None, head_init_scale=1.0): + if isinstance(module, nn.Conv2d): + trunc_normal_tf_(module.weight, std=0.02) + if module.bias is not None: + nn.init.zeros_(module.bias) + elif isinstance(module, nn.Linear): + trunc_normal_tf_(module.weight, std=0.02) + nn.init.zeros_(module.bias) + if name and 'head.' in name: + module.weight.data.mul_(head_init_scale) + module.bias.data.mul_(head_init_scale) + +def checkpoint_filter_fn(state_dict, model): + if 'head.norm.weight' in state_dict or 'norm_pre.weight' in state_dict: + return state_dict + if 'model_ema' in state_dict: + state_dict = state_dict['model_ema'] + elif 'model' in state_dict: + state_dict = state_dict['model'] + elif 'state_dict' in state_dict: + state_dict = state_dict['state_dict'] + out_dict = {} + import re + for (k, v) in state_dict.items(): + k = k.replace('downsample_layers.0.', 'stem.') + k = re.sub('stages.([0-9]+).([0-9]+)', 'stages.\\1.blocks.\\2', k) + k = re.sub('downsample_layers.([0-9]+).([0-9]+)', 'stages.\\1.downsample.\\2', k) + k = k.replace('dwconv', 'conv_dw') + k = k.replace('pwconv', 'mlp.fc') + k = k.replace('head.', 'head.fc.') + if k.startswith('norm.'): + k = k.replace('norm', 'head.norm') + if v.ndim == 2 and 'head' not in k: + model_shape = model.state_dict()[k].shape + v = v.reshape(model_shape) + out_dict[k] = v + return out_dict + +def _create_edgenext(variant, pretrained=False, **kwargs): + model = build_model_with_cfg(EdgeNeXt, variant, pretrained, pretrained_filter_fn=checkpoint_filter_fn, feature_cfg=dict(out_indices=(0, 1, 2, 3), flatten_sequential=True), **kwargs) + return model + +def _cfg(url='', **kwargs): + return {'url': url, 'num_classes': 1000, 'input_size': (3, 256, 256), 'pool_size': (8, 8), 'crop_pct': 0.9, 'interpolation': 'bicubic', 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'stem.0', 'classifier': 'head.fc', **kwargs} +default_cfgs = generate_default_cfgs({'edgenext_xx_small.in1k': _cfg(hf_hub_id='timm/', test_input_size=(3, 288, 288), test_crop_pct=1.0), 'edgenext_x_small.in1k': _cfg(hf_hub_id='timm/', test_input_size=(3, 288, 288), test_crop_pct=1.0), 'edgenext_small.usi_in1k': _cfg(hf_hub_id='timm/', crop_pct=0.95, test_input_size=(3, 320, 320), test_crop_pct=1.0), 'edgenext_base.usi_in1k': _cfg(hf_hub_id='timm/', crop_pct=0.95, test_input_size=(3, 320, 320), test_crop_pct=1.0), 'edgenext_base.in21k_ft_in1k': _cfg(hf_hub_id='timm/', crop_pct=0.95, test_input_size=(3, 320, 320), test_crop_pct=1.0), 'edgenext_small_rw.sw_in1k': _cfg(hf_hub_id='timm/', test_input_size=(3, 320, 320), test_crop_pct=1.0)}) + +@register_model +def edgenext_xx_small(pretrained=False, **kwargs) -> EdgeNeXt: + model_args = dict(depths=(2, 2, 6, 2), dims=(24, 48, 88, 168), heads=(4, 4, 4, 4)) + return _create_edgenext('edgenext_xx_small', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def edgenext_x_small(pretrained=False, **kwargs) -> EdgeNeXt: + model_args = dict(depths=(3, 3, 9, 3), dims=(32, 64, 100, 192), heads=(4, 4, 4, 4)) + return _create_edgenext('edgenext_x_small', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def edgenext_small(pretrained=False, **kwargs) -> EdgeNeXt: + model_args = dict(depths=(3, 3, 9, 3), dims=(48, 96, 160, 304)) + return _create_edgenext('edgenext_small', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def edgenext_base(pretrained=False, **kwargs) -> EdgeNeXt: + model_args = dict(depths=[3, 3, 9, 3], dims=[80, 160, 288, 584]) + return _create_edgenext('edgenext_base', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def edgenext_small_rw(pretrained=False, **kwargs) -> EdgeNeXt: + model_args = dict(depths=(3, 3, 9, 3), dims=(48, 96, 192, 384), downsample_block=True, conv_bias=False, stem_type='overlap') + return _create_edgenext('edgenext_small_rw', pretrained=pretrained, **dict(model_args, **kwargs)) + +# File: pytorch-image-models-main/timm/models/efficientformer.py +"""""" +from typing import Dict, List, Optional, Tuple, Union +import torch +import torch.nn as nn +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from timm.layers import DropPath, trunc_normal_, to_2tuple, Mlp, ndgrid +from ._builder import build_model_with_cfg +from ._features import feature_take_indices +from ._manipulate import checkpoint_seq +from ._registry import generate_default_cfgs, register_model +__all__ = ['EfficientFormer'] +EfficientFormer_width = {'l1': (48, 96, 224, 448), 'l3': (64, 128, 320, 512), 'l7': (96, 192, 384, 768)} +EfficientFormer_depth = {'l1': (3, 2, 6, 4), 'l3': (4, 4, 12, 6), 'l7': (6, 6, 18, 8)} + +class Attention(torch.nn.Module): + attention_bias_cache: Dict[str, torch.Tensor] + + def __init__(self, dim=384, key_dim=32, num_heads=8, attn_ratio=4, resolution=7): + super().__init__() + self.num_heads = num_heads + self.scale = key_dim ** (-0.5) + self.key_dim = key_dim + self.key_attn_dim = key_dim * num_heads + self.val_dim = int(attn_ratio * key_dim) + self.val_attn_dim = self.val_dim * num_heads + self.attn_ratio = attn_ratio + self.qkv = nn.Linear(dim, self.key_attn_dim * 2 + self.val_attn_dim) + self.proj = nn.Linear(self.val_attn_dim, dim) + resolution = to_2tuple(resolution) + pos = torch.stack(ndgrid(torch.arange(resolution[0]), torch.arange(resolution[1]))).flatten(1) + rel_pos = (pos[..., :, None] - pos[..., None, :]).abs() + rel_pos = rel_pos[0] * resolution[1] + rel_pos[1] + self.attention_biases = torch.nn.Parameter(torch.zeros(num_heads, resolution[0] * resolution[1])) + self.register_buffer('attention_bias_idxs', rel_pos) + self.attention_bias_cache = {} + + @torch.no_grad() + def train(self, mode=True): + super().train(mode) + if mode and self.attention_bias_cache: + self.attention_bias_cache = {} + + def get_attention_biases(self, device: torch.device) -> torch.Tensor: + if torch.jit.is_tracing() or self.training: + return self.attention_biases[:, self.attention_bias_idxs] + else: + device_key = str(device) + if device_key not in self.attention_bias_cache: + self.attention_bias_cache[device_key] = self.attention_biases[:, self.attention_bias_idxs] + return self.attention_bias_cache[device_key] + + def forward(self, x): + (B, N, C) = x.shape + qkv = self.qkv(x) + qkv = qkv.reshape(B, N, self.num_heads, -1).permute(0, 2, 1, 3) + (q, k, v) = qkv.split([self.key_dim, self.key_dim, self.val_dim], dim=3) + attn = q @ k.transpose(-2, -1) * self.scale + attn = attn + self.get_attention_biases(x.device) + attn = attn.softmax(dim=-1) + x = (attn @ v).transpose(1, 2).reshape(B, N, self.val_attn_dim) + x = self.proj(x) + return x + +class Stem4(nn.Sequential): + + def __init__(self, in_chs, out_chs, act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d): + super().__init__() + self.stride = 4 + self.add_module('conv1', nn.Conv2d(in_chs, out_chs // 2, kernel_size=3, stride=2, padding=1)) + self.add_module('norm1', norm_layer(out_chs // 2)) + self.add_module('act1', act_layer()) + self.add_module('conv2', nn.Conv2d(out_chs // 2, out_chs, kernel_size=3, stride=2, padding=1)) + self.add_module('norm2', norm_layer(out_chs)) + self.add_module('act2', act_layer()) + +class Downsample(nn.Module): + + def __init__(self, in_chs, out_chs, kernel_size=3, stride=2, padding=None, norm_layer=nn.BatchNorm2d): + super().__init__() + if padding is None: + padding = kernel_size // 2 + self.conv = nn.Conv2d(in_chs, out_chs, kernel_size=kernel_size, stride=stride, padding=padding) + self.norm = norm_layer(out_chs) + + def forward(self, x): + x = self.conv(x) + x = self.norm(x) + return x + +class Flat(nn.Module): + + def __init__(self): + super().__init__() + + def forward(self, x): + x = x.flatten(2).transpose(1, 2) + return x + +class Pooling(nn.Module): + + def __init__(self, pool_size=3): + super().__init__() + self.pool = nn.AvgPool2d(pool_size, stride=1, padding=pool_size // 2, count_include_pad=False) + + def forward(self, x): + return self.pool(x) - x + +class ConvMlpWithNorm(nn.Module): + + def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, norm_layer=nn.BatchNorm2d, drop=0.0): + super().__init__() + out_features = out_features or in_features + hidden_features = hidden_features or in_features + self.fc1 = nn.Conv2d(in_features, hidden_features, 1) + self.norm1 = norm_layer(hidden_features) if norm_layer is not None else nn.Identity() + self.act = act_layer() + self.fc2 = nn.Conv2d(hidden_features, out_features, 1) + self.norm2 = norm_layer(out_features) if norm_layer is not None else nn.Identity() + self.drop = nn.Dropout(drop) + + def forward(self, x): + x = self.fc1(x) + x = self.norm1(x) + x = self.act(x) + x = self.drop(x) + x = self.fc2(x) + x = self.norm2(x) + x = self.drop(x) + return x + +class LayerScale(nn.Module): + + def __init__(self, dim, init_values=1e-05, inplace=False): + super().__init__() + self.inplace = inplace + self.gamma = nn.Parameter(init_values * torch.ones(dim)) + + def forward(self, x): + return x.mul_(self.gamma) if self.inplace else x * self.gamma + +class MetaBlock1d(nn.Module): + + def __init__(self, dim, mlp_ratio=4.0, act_layer=nn.GELU, norm_layer=nn.LayerNorm, proj_drop=0.0, drop_path=0.0, layer_scale_init_value=1e-05): + super().__init__() + self.norm1 = norm_layer(dim) + self.token_mixer = Attention(dim) + self.norm2 = norm_layer(dim) + self.mlp = Mlp(in_features=dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer, drop=proj_drop) + self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + self.ls1 = LayerScale(dim, layer_scale_init_value) + self.ls2 = LayerScale(dim, layer_scale_init_value) + + def forward(self, x): + x = x + self.drop_path(self.ls1(self.token_mixer(self.norm1(x)))) + x = x + self.drop_path(self.ls2(self.mlp(self.norm2(x)))) + return x + +class LayerScale2d(nn.Module): + + def __init__(self, dim, init_values=1e-05, inplace=False): + super().__init__() + self.inplace = inplace + self.gamma = nn.Parameter(init_values * torch.ones(dim)) + + def forward(self, x): + gamma = self.gamma.view(1, -1, 1, 1) + return x.mul_(gamma) if self.inplace else x * gamma + +class MetaBlock2d(nn.Module): + + def __init__(self, dim, pool_size=3, mlp_ratio=4.0, act_layer=nn.GELU, norm_layer=nn.BatchNorm2d, proj_drop=0.0, drop_path=0.0, layer_scale_init_value=1e-05): + super().__init__() + self.token_mixer = Pooling(pool_size=pool_size) + self.ls1 = LayerScale2d(dim, layer_scale_init_value) + self.drop_path1 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + self.mlp = ConvMlpWithNorm(dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer, norm_layer=norm_layer, drop=proj_drop) + self.ls2 = LayerScale2d(dim, layer_scale_init_value) + self.drop_path2 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + + def forward(self, x): + x = x + self.drop_path1(self.ls1(self.token_mixer(x))) + x = x + self.drop_path2(self.ls2(self.mlp(x))) + return x + +class EfficientFormerStage(nn.Module): + + def __init__(self, dim, dim_out, depth, downsample=True, num_vit=1, pool_size=3, mlp_ratio=4.0, act_layer=nn.GELU, norm_layer=nn.BatchNorm2d, norm_layer_cl=nn.LayerNorm, proj_drop=0.0, drop_path=0.0, layer_scale_init_value=1e-05): + super().__init__() + self.grad_checkpointing = False + if downsample: + self.downsample = Downsample(in_chs=dim, out_chs=dim_out, norm_layer=norm_layer) + dim = dim_out + else: + assert dim == dim_out + self.downsample = nn.Identity() + blocks = [] + if num_vit and num_vit >= depth: + blocks.append(Flat()) + for block_idx in range(depth): + remain_idx = depth - block_idx - 1 + if num_vit and num_vit > remain_idx: + blocks.append(MetaBlock1d(dim, mlp_ratio=mlp_ratio, act_layer=act_layer, norm_layer=norm_layer_cl, proj_drop=proj_drop, drop_path=drop_path[block_idx], layer_scale_init_value=layer_scale_init_value)) + else: + blocks.append(MetaBlock2d(dim, pool_size=pool_size, mlp_ratio=mlp_ratio, act_layer=act_layer, norm_layer=norm_layer, proj_drop=proj_drop, drop_path=drop_path[block_idx], layer_scale_init_value=layer_scale_init_value)) + if num_vit and num_vit == remain_idx: + blocks.append(Flat()) + self.blocks = nn.Sequential(*blocks) + + def forward(self, x): + x = self.downsample(x) + if self.grad_checkpointing and (not torch.jit.is_scripting()): + x = checkpoint_seq(self.blocks, x) + else: + x = self.blocks(x) + return x + +class EfficientFormer(nn.Module): + + def __init__(self, depths, embed_dims=None, in_chans=3, num_classes=1000, global_pool='avg', downsamples=None, num_vit=0, mlp_ratios=4, pool_size=3, layer_scale_init_value=1e-05, act_layer=nn.GELU, norm_layer=nn.BatchNorm2d, norm_layer_cl=nn.LayerNorm, drop_rate=0.0, proj_drop_rate=0.0, drop_path_rate=0.0, **kwargs): + super().__init__() + self.num_classes = num_classes + self.global_pool = global_pool + self.stem = Stem4(in_chans, embed_dims[0], norm_layer=norm_layer) + prev_dim = embed_dims[0] + self.num_stages = len(depths) + last_stage = self.num_stages - 1 + dpr = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(depths)).split(depths)] + downsamples = downsamples or (False,) + (True,) * (self.num_stages - 1) + stages = [] + self.feature_info = [] + for i in range(self.num_stages): + stage = EfficientFormerStage(prev_dim, embed_dims[i], depths[i], downsample=downsamples[i], num_vit=num_vit if i == last_stage else 0, pool_size=pool_size, mlp_ratio=mlp_ratios, act_layer=act_layer, norm_layer_cl=norm_layer_cl, norm_layer=norm_layer, proj_drop=proj_drop_rate, drop_path=dpr[i], layer_scale_init_value=layer_scale_init_value) + prev_dim = embed_dims[i] + stages.append(stage) + self.feature_info += [dict(num_chs=embed_dims[i], reduction=2 ** (1 + i), module=f'stages.{i}')] + self.stages = nn.Sequential(*stages) + self.num_features = self.head_hidden_size = embed_dims[-1] + self.norm = norm_layer_cl(self.num_features) + self.head_drop = nn.Dropout(drop_rate) + self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() + self.head_dist = nn.Linear(embed_dims[-1], num_classes) if num_classes > 0 else nn.Identity() + self.distilled_training = False + self.apply(self._init_weights) + + def _init_weights(self, m): + if isinstance(m, nn.Linear): + trunc_normal_(m.weight, std=0.02) + if isinstance(m, nn.Linear) and m.bias is not None: + nn.init.constant_(m.bias, 0) + + @torch.jit.ignore + def no_weight_decay(self): + return {k for (k, _) in self.named_parameters() if 'attention_biases' in k} + + @torch.jit.ignore + def group_matcher(self, coarse=False): + matcher = dict(stem='^stem', blocks=[('^stages\\.(\\d+)', None), ('^norm', (99999,))]) + return matcher + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + for s in self.stages: + s.grad_checkpointing = enable + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return (self.head, self.head_dist) + + def reset_classifier(self, num_classes: int, global_pool: Optional[str]=None): + self.num_classes = num_classes + if global_pool is not None: + self.global_pool = global_pool + self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() + self.head_dist = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() + + @torch.jit.ignore + def set_distilled_training(self, enable=True): + self.distilled_training = enable + + def forward_intermediates(self, x: torch.Tensor, indices: Optional[Union[int, List[int]]]=None, norm: bool=False, stop_early: bool=False, output_fmt: str='NCHW', intermediates_only: bool=False) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]: + assert output_fmt in ('NCHW',), 'Output shape must be NCHW.' + intermediates = [] + (take_indices, max_index) = feature_take_indices(len(self.stages), indices) + x = self.stem(x) + (B, C, H, W) = x.shape + last_idx = self.num_stages - 1 + if torch.jit.is_scripting() or not stop_early: + stages = self.stages + else: + stages = self.stages[:max_index + 1] + feat_idx = 0 + for (feat_idx, stage) in enumerate(stages): + x = stage(x) + if feat_idx < last_idx: + (B, C, H, W) = x.shape + if feat_idx in take_indices: + if feat_idx == last_idx: + x_inter = self.norm(x) if norm else x + intermediates.append(x_inter.reshape(B, H // 2, W // 2, -1).permute(0, 3, 1, 2)) + else: + intermediates.append(x) + if intermediates_only: + return intermediates + if feat_idx == last_idx: + x = self.norm(x) + return (x, intermediates) + + def prune_intermediate_layers(self, indices: Union[int, List[int]]=1, prune_norm: bool=False, prune_head: bool=True): + (take_indices, max_index) = feature_take_indices(len(self.stages), indices) + self.stages = self.stages[:max_index + 1] + if prune_norm: + self.norm = nn.Identity() + if prune_head: + self.reset_classifier(0, '') + return take_indices + + def forward_features(self, x): + x = self.stem(x) + x = self.stages(x) + x = self.norm(x) + return x + + def forward_head(self, x, pre_logits: bool=False): + if self.global_pool == 'avg': + x = x.mean(dim=1) + x = self.head_drop(x) + if pre_logits: + return x + (x, x_dist) = (self.head(x), self.head_dist(x)) + if self.distilled_training and self.training and (not torch.jit.is_scripting()): + return (x, x_dist) + else: + return (x + x_dist) / 2 + + def forward(self, x): + x = self.forward_features(x) + x = self.forward_head(x) + return x + +def checkpoint_filter_fn(state_dict, model): + if 'stem.0.weight' in state_dict: + return state_dict + out_dict = {} + import re + stage_idx = 0 + for (k, v) in state_dict.items(): + if k.startswith('patch_embed'): + k = k.replace('patch_embed.0', 'stem.conv1') + k = k.replace('patch_embed.1', 'stem.norm1') + k = k.replace('patch_embed.3', 'stem.conv2') + k = k.replace('patch_embed.4', 'stem.norm2') + if re.match('network\\.(\\d+)\\.proj\\.weight', k): + stage_idx += 1 + k = re.sub('network.(\\d+).(\\d+)', f'stages.{stage_idx}.blocks.\\2', k) + k = re.sub('network.(\\d+).proj', f'stages.{stage_idx}.downsample.conv', k) + k = re.sub('network.(\\d+).norm', f'stages.{stage_idx}.downsample.norm', k) + k = re.sub('layer_scale_([0-9])', 'ls\\1.gamma', k) + k = k.replace('dist_head', 'head_dist') + out_dict[k] = v + return out_dict + +def _cfg(url='', **kwargs): + return {'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, 'fixed_input_size': True, 'crop_pct': 0.95, 'interpolation': 'bicubic', 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'stem.conv1', 'classifier': ('head', 'head_dist'), **kwargs} +default_cfgs = generate_default_cfgs({'efficientformer_l1.snap_dist_in1k': _cfg(hf_hub_id='timm/'), 'efficientformer_l3.snap_dist_in1k': _cfg(hf_hub_id='timm/'), 'efficientformer_l7.snap_dist_in1k': _cfg(hf_hub_id='timm/')}) + +def _create_efficientformer(variant, pretrained=False, **kwargs): + out_indices = kwargs.pop('out_indices', 4) + model = build_model_with_cfg(EfficientFormer, variant, pretrained, pretrained_filter_fn=checkpoint_filter_fn, feature_cfg=dict(out_indices=out_indices, feature_cls='getter'), **kwargs) + return model + +@register_model +def efficientformer_l1(pretrained=False, **kwargs) -> EfficientFormer: + model_args = dict(depths=EfficientFormer_depth['l1'], embed_dims=EfficientFormer_width['l1'], num_vit=1) + return _create_efficientformer('efficientformer_l1', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def efficientformer_l3(pretrained=False, **kwargs) -> EfficientFormer: + model_args = dict(depths=EfficientFormer_depth['l3'], embed_dims=EfficientFormer_width['l3'], num_vit=4) + return _create_efficientformer('efficientformer_l3', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def efficientformer_l7(pretrained=False, **kwargs) -> EfficientFormer: + model_args = dict(depths=EfficientFormer_depth['l7'], embed_dims=EfficientFormer_width['l7'], num_vit=8) + return _create_efficientformer('efficientformer_l7', pretrained=pretrained, **dict(model_args, **kwargs)) + +# File: pytorch-image-models-main/timm/models/efficientformer_v2.py +"""""" +import math +from functools import partial +from typing import Dict, Optional +import torch +import torch.nn as nn +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from timm.layers import create_conv2d, create_norm_layer, get_act_layer, get_norm_layer, ConvNormAct +from timm.layers import DropPath, trunc_normal_, to_2tuple, to_ntuple, ndgrid +from ._builder import build_model_with_cfg +from ._manipulate import checkpoint_seq +from ._registry import generate_default_cfgs, register_model +__all__ = ['EfficientFormerV2'] +EfficientFormer_width = {'L': (40, 80, 192, 384), 'S2': (32, 64, 144, 288), 'S1': (32, 48, 120, 224), 'S0': (32, 48, 96, 176)} +EfficientFormer_depth = {'L': (5, 5, 15, 10), 'S2': (4, 4, 12, 8), 'S1': (3, 3, 9, 6), 'S0': (2, 2, 6, 4)} +EfficientFormer_expansion_ratios = {'L': (4, 4, (4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4), (4, 4, 4, 3, 3, 3, 3, 4, 4, 4)), 'S2': (4, 4, (4, 4, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4), (4, 4, 3, 3, 3, 3, 4, 4)), 'S1': (4, 4, (4, 4, 3, 3, 3, 3, 4, 4, 4), (4, 4, 3, 3, 4, 4)), 'S0': (4, 4, (4, 3, 3, 3, 4, 4), (4, 3, 3, 4))} + +class ConvNorm(nn.Module): + + def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, padding='', dilation=1, groups=1, bias=True, norm_layer='batchnorm2d', norm_kwargs=None): + norm_kwargs = norm_kwargs or {} + super(ConvNorm, self).__init__() + self.conv = create_conv2d(in_channels, out_channels, kernel_size, stride=stride, padding=padding, dilation=dilation, groups=groups, bias=bias) + self.bn = create_norm_layer(norm_layer, out_channels, **norm_kwargs) + + def forward(self, x): + x = self.conv(x) + x = self.bn(x) + return x + +class Attention2d(torch.nn.Module): + attention_bias_cache: Dict[str, torch.Tensor] + + def __init__(self, dim=384, key_dim=32, num_heads=8, attn_ratio=4, resolution=7, act_layer=nn.GELU, stride=None): + super().__init__() + self.num_heads = num_heads + self.scale = key_dim ** (-0.5) + self.key_dim = key_dim + resolution = to_2tuple(resolution) + if stride is not None: + resolution = tuple([math.ceil(r / stride) for r in resolution]) + self.stride_conv = ConvNorm(dim, dim, kernel_size=3, stride=stride, groups=dim) + self.upsample = nn.Upsample(scale_factor=stride, mode='bilinear') + else: + self.stride_conv = None + self.upsample = None + self.resolution = resolution + self.N = self.resolution[0] * self.resolution[1] + self.d = int(attn_ratio * key_dim) + self.dh = int(attn_ratio * key_dim) * num_heads + self.attn_ratio = attn_ratio + kh = self.key_dim * self.num_heads + self.q = ConvNorm(dim, kh) + self.k = ConvNorm(dim, kh) + self.v = ConvNorm(dim, self.dh) + self.v_local = ConvNorm(self.dh, self.dh, kernel_size=3, groups=self.dh) + self.talking_head1 = nn.Conv2d(self.num_heads, self.num_heads, kernel_size=1) + self.talking_head2 = nn.Conv2d(self.num_heads, self.num_heads, kernel_size=1) + self.act = act_layer() + self.proj = ConvNorm(self.dh, dim, 1) + pos = torch.stack(ndgrid(torch.arange(self.resolution[0]), torch.arange(self.resolution[1]))).flatten(1) + rel_pos = (pos[..., :, None] - pos[..., None, :]).abs() + rel_pos = rel_pos[0] * self.resolution[1] + rel_pos[1] + self.attention_biases = torch.nn.Parameter(torch.zeros(num_heads, self.N)) + self.register_buffer('attention_bias_idxs', torch.LongTensor(rel_pos), persistent=False) + self.attention_bias_cache = {} + + @torch.no_grad() + def train(self, mode=True): + super().train(mode) + if mode and self.attention_bias_cache: + self.attention_bias_cache = {} + + def get_attention_biases(self, device: torch.device) -> torch.Tensor: + if torch.jit.is_tracing() or self.training: + return self.attention_biases[:, self.attention_bias_idxs] + else: + device_key = str(device) + if device_key not in self.attention_bias_cache: + self.attention_bias_cache[device_key] = self.attention_biases[:, self.attention_bias_idxs] + return self.attention_bias_cache[device_key] + + def forward(self, x): + (B, C, H, W) = x.shape + if self.stride_conv is not None: + x = self.stride_conv(x) + q = self.q(x).reshape(B, self.num_heads, -1, self.N).permute(0, 1, 3, 2) + k = self.k(x).reshape(B, self.num_heads, -1, self.N).permute(0, 1, 2, 3) + v = self.v(x) + v_local = self.v_local(v) + v = v.reshape(B, self.num_heads, -1, self.N).permute(0, 1, 3, 2) + attn = q @ k * self.scale + attn = attn + self.get_attention_biases(x.device) + attn = self.talking_head1(attn) + attn = attn.softmax(dim=-1) + attn = self.talking_head2(attn) + x = (attn @ v).transpose(2, 3) + x = x.reshape(B, self.dh, self.resolution[0], self.resolution[1]) + v_local + if self.upsample is not None: + x = self.upsample(x) + x = self.act(x) + x = self.proj(x) + return x + +class LocalGlobalQuery(torch.nn.Module): + + def __init__(self, in_dim, out_dim): + super().__init__() + self.pool = nn.AvgPool2d(1, 2, 0) + self.local = nn.Conv2d(in_dim, in_dim, kernel_size=3, stride=2, padding=1, groups=in_dim) + self.proj = ConvNorm(in_dim, out_dim, 1) + + def forward(self, x): + local_q = self.local(x) + pool_q = self.pool(x) + q = local_q + pool_q + q = self.proj(q) + return q + +class Attention2dDownsample(torch.nn.Module): + attention_bias_cache: Dict[str, torch.Tensor] + + def __init__(self, dim=384, key_dim=16, num_heads=8, attn_ratio=4, resolution=7, out_dim=None, act_layer=nn.GELU): + super().__init__() + self.num_heads = num_heads + self.scale = key_dim ** (-0.5) + self.key_dim = key_dim + self.resolution = to_2tuple(resolution) + self.resolution2 = tuple([math.ceil(r / 2) for r in self.resolution]) + self.N = self.resolution[0] * self.resolution[1] + self.N2 = self.resolution2[0] * self.resolution2[1] + self.d = int(attn_ratio * key_dim) + self.dh = int(attn_ratio * key_dim) * num_heads + self.attn_ratio = attn_ratio + self.out_dim = out_dim or dim + kh = self.key_dim * self.num_heads + self.q = LocalGlobalQuery(dim, kh) + self.k = ConvNorm(dim, kh, 1) + self.v = ConvNorm(dim, self.dh, 1) + self.v_local = ConvNorm(self.dh, self.dh, kernel_size=3, stride=2, groups=self.dh) + self.act = act_layer() + self.proj = ConvNorm(self.dh, self.out_dim, 1) + self.attention_biases = nn.Parameter(torch.zeros(num_heads, self.N)) + k_pos = torch.stack(ndgrid(torch.arange(self.resolution[0]), torch.arange(self.resolution[1]))).flatten(1) + q_pos = torch.stack(ndgrid(torch.arange(0, self.resolution[0], step=2), torch.arange(0, self.resolution[1], step=2))).flatten(1) + rel_pos = (q_pos[..., :, None] - k_pos[..., None, :]).abs() + rel_pos = rel_pos[0] * self.resolution[1] + rel_pos[1] + self.register_buffer('attention_bias_idxs', rel_pos, persistent=False) + self.attention_bias_cache = {} + + @torch.no_grad() + def train(self, mode=True): + super().train(mode) + if mode and self.attention_bias_cache: + self.attention_bias_cache = {} + + def get_attention_biases(self, device: torch.device) -> torch.Tensor: + if torch.jit.is_tracing() or self.training: + return self.attention_biases[:, self.attention_bias_idxs] + else: + device_key = str(device) + if device_key not in self.attention_bias_cache: + self.attention_bias_cache[device_key] = self.attention_biases[:, self.attention_bias_idxs] + return self.attention_bias_cache[device_key] + + def forward(self, x): + (B, C, H, W) = x.shape + q = self.q(x).reshape(B, self.num_heads, -1, self.N2).permute(0, 1, 3, 2) + k = self.k(x).reshape(B, self.num_heads, -1, self.N).permute(0, 1, 2, 3) + v = self.v(x) + v_local = self.v_local(v) + v = v.reshape(B, self.num_heads, -1, self.N).permute(0, 1, 3, 2) + attn = q @ k * self.scale + attn = attn + self.get_attention_biases(x.device) + attn = attn.softmax(dim=-1) + x = (attn @ v).transpose(2, 3) + x = x.reshape(B, self.dh, self.resolution2[0], self.resolution2[1]) + v_local + x = self.act(x) + x = self.proj(x) + return x + +class Downsample(nn.Module): + + def __init__(self, in_chs, out_chs, kernel_size=3, stride=2, padding=1, resolution=7, use_attn=False, act_layer=nn.GELU, norm_layer=nn.BatchNorm2d): + super().__init__() + kernel_size = to_2tuple(kernel_size) + stride = to_2tuple(stride) + padding = to_2tuple(padding) + norm_layer = norm_layer or nn.Identity() + self.conv = ConvNorm(in_chs, out_chs, kernel_size=kernel_size, stride=stride, padding=padding, norm_layer=norm_layer) + if use_attn: + self.attn = Attention2dDownsample(dim=in_chs, out_dim=out_chs, resolution=resolution, act_layer=act_layer) + else: + self.attn = None + + def forward(self, x): + out = self.conv(x) + if self.attn is not None: + return self.attn(x) + out + return out + +class ConvMlpWithNorm(nn.Module): + + def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, norm_layer=nn.BatchNorm2d, drop=0.0, mid_conv=False): + super().__init__() + out_features = out_features or in_features + hidden_features = hidden_features or in_features + self.fc1 = ConvNormAct(in_features, hidden_features, 1, bias=True, norm_layer=norm_layer, act_layer=act_layer) + if mid_conv: + self.mid = ConvNormAct(hidden_features, hidden_features, 3, groups=hidden_features, bias=True, norm_layer=norm_layer, act_layer=act_layer) + else: + self.mid = nn.Identity() + self.drop1 = nn.Dropout(drop) + self.fc2 = ConvNorm(hidden_features, out_features, 1, norm_layer=norm_layer) + self.drop2 = nn.Dropout(drop) + + def forward(self, x): + x = self.fc1(x) + x = self.mid(x) + x = self.drop1(x) + x = self.fc2(x) + x = self.drop2(x) + return x + +class LayerScale2d(nn.Module): + + def __init__(self, dim, init_values=1e-05, inplace=False): + super().__init__() + self.inplace = inplace + self.gamma = nn.Parameter(init_values * torch.ones(dim)) + + def forward(self, x): + gamma = self.gamma.view(1, -1, 1, 1) + return x.mul_(gamma) if self.inplace else x * gamma + +class EfficientFormerV2Block(nn.Module): + + def __init__(self, dim, mlp_ratio=4.0, act_layer=nn.GELU, norm_layer=nn.BatchNorm2d, proj_drop=0.0, drop_path=0.0, layer_scale_init_value=1e-05, resolution=7, stride=None, use_attn=True): + super().__init__() + if use_attn: + self.token_mixer = Attention2d(dim, resolution=resolution, act_layer=act_layer, stride=stride) + self.ls1 = LayerScale2d(dim, layer_scale_init_value) if layer_scale_init_value is not None else nn.Identity() + self.drop_path1 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + else: + self.token_mixer = None + self.ls1 = None + self.drop_path1 = None + self.mlp = ConvMlpWithNorm(in_features=dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer, norm_layer=norm_layer, drop=proj_drop, mid_conv=True) + self.ls2 = LayerScale2d(dim, layer_scale_init_value) if layer_scale_init_value is not None else nn.Identity() + self.drop_path2 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + + def forward(self, x): + if self.token_mixer is not None: + x = x + self.drop_path1(self.ls1(self.token_mixer(x))) + x = x + self.drop_path2(self.ls2(self.mlp(x))) + return x + +class Stem4(nn.Sequential): + + def __init__(self, in_chs, out_chs, act_layer=nn.GELU, norm_layer=nn.BatchNorm2d): + super().__init__() + self.stride = 4 + self.conv1 = ConvNormAct(in_chs, out_chs // 2, kernel_size=3, stride=2, padding=1, bias=True, norm_layer=norm_layer, act_layer=act_layer) + self.conv2 = ConvNormAct(out_chs // 2, out_chs, kernel_size=3, stride=2, padding=1, bias=True, norm_layer=norm_layer, act_layer=act_layer) + +class EfficientFormerV2Stage(nn.Module): + + def __init__(self, dim, dim_out, depth, resolution=7, downsample=True, block_stride=None, downsample_use_attn=False, block_use_attn=False, num_vit=1, mlp_ratio=4.0, proj_drop=0.0, drop_path=0.0, layer_scale_init_value=1e-05, act_layer=nn.GELU, norm_layer=nn.BatchNorm2d): + super().__init__() + self.grad_checkpointing = False + mlp_ratio = to_ntuple(depth)(mlp_ratio) + resolution = to_2tuple(resolution) + if downsample: + self.downsample = Downsample(dim, dim_out, use_attn=downsample_use_attn, resolution=resolution, norm_layer=norm_layer, act_layer=act_layer) + dim = dim_out + resolution = tuple([math.ceil(r / 2) for r in resolution]) + else: + assert dim == dim_out + self.downsample = nn.Identity() + blocks = [] + for block_idx in range(depth): + remain_idx = depth - num_vit - 1 + b = EfficientFormerV2Block(dim, resolution=resolution, stride=block_stride, mlp_ratio=mlp_ratio[block_idx], use_attn=block_use_attn and block_idx > remain_idx, proj_drop=proj_drop, drop_path=drop_path[block_idx], layer_scale_init_value=layer_scale_init_value, act_layer=act_layer, norm_layer=norm_layer) + blocks += [b] + self.blocks = nn.Sequential(*blocks) + + def forward(self, x): + x = self.downsample(x) + if self.grad_checkpointing and (not torch.jit.is_scripting()): + x = checkpoint_seq(self.blocks, x) + else: + x = self.blocks(x) + return x + +class EfficientFormerV2(nn.Module): + + def __init__(self, depths, in_chans=3, img_size=224, global_pool='avg', embed_dims=None, downsamples=None, mlp_ratios=4, norm_layer='batchnorm2d', norm_eps=1e-05, act_layer='gelu', num_classes=1000, drop_rate=0.0, proj_drop_rate=0.0, drop_path_rate=0.0, layer_scale_init_value=1e-05, num_vit=0, distillation=True): + super().__init__() + assert global_pool in ('avg', '') + self.num_classes = num_classes + self.global_pool = global_pool + self.feature_info = [] + img_size = to_2tuple(img_size) + norm_layer = partial(get_norm_layer(norm_layer), eps=norm_eps) + act_layer = get_act_layer(act_layer) + self.stem = Stem4(in_chans, embed_dims[0], act_layer=act_layer, norm_layer=norm_layer) + prev_dim = embed_dims[0] + stride = 4 + num_stages = len(depths) + dpr = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(depths)).split(depths)] + downsamples = downsamples or (False,) + (True,) * (len(depths) - 1) + mlp_ratios = to_ntuple(num_stages)(mlp_ratios) + stages = [] + for i in range(num_stages): + curr_resolution = tuple([math.ceil(s / stride) for s in img_size]) + stage = EfficientFormerV2Stage(prev_dim, embed_dims[i], depth=depths[i], resolution=curr_resolution, downsample=downsamples[i], block_stride=2 if i == 2 else None, downsample_use_attn=i >= 3, block_use_attn=i >= 2, num_vit=num_vit, mlp_ratio=mlp_ratios[i], proj_drop=proj_drop_rate, drop_path=dpr[i], layer_scale_init_value=layer_scale_init_value, act_layer=act_layer, norm_layer=norm_layer) + if downsamples[i]: + stride *= 2 + prev_dim = embed_dims[i] + self.feature_info += [dict(num_chs=prev_dim, reduction=stride, module=f'stages.{i}')] + stages.append(stage) + self.stages = nn.Sequential(*stages) + self.num_features = self.head_hidden_size = embed_dims[-1] + self.norm = norm_layer(embed_dims[-1]) + self.head_drop = nn.Dropout(drop_rate) + self.head = nn.Linear(embed_dims[-1], num_classes) if num_classes > 0 else nn.Identity() + self.dist = distillation + if self.dist: + self.head_dist = nn.Linear(embed_dims[-1], num_classes) if num_classes > 0 else nn.Identity() + else: + self.head_dist = None + self.apply(self.init_weights) + self.distilled_training = False + + def init_weights(self, m): + if isinstance(m, nn.Linear): + trunc_normal_(m.weight, std=0.02) + if m.bias is not None: + nn.init.constant_(m.bias, 0) + + @torch.jit.ignore + def no_weight_decay(self): + return {k for (k, _) in self.named_parameters() if 'attention_biases' in k} + + @torch.jit.ignore + def group_matcher(self, coarse=False): + matcher = dict(stem='^stem', blocks=[('^stages\\.(\\d+)', None), ('^norm', (99999,))]) + return matcher + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + for s in self.stages: + s.grad_checkpointing = enable + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return (self.head, self.head_dist) + + def reset_classifier(self, num_classes: int, global_pool: Optional[str]=None): + self.num_classes = num_classes + if global_pool is not None: + self.global_pool = global_pool + self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() + self.head_dist = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() + + @torch.jit.ignore + def set_distilled_training(self, enable=True): + self.distilled_training = enable + + def forward_features(self, x): + x = self.stem(x) + x = self.stages(x) + x = self.norm(x) + return x + + def forward_head(self, x, pre_logits: bool=False): + if self.global_pool == 'avg': + x = x.mean(dim=(2, 3)) + x = self.head_drop(x) + if pre_logits: + return x + (x, x_dist) = (self.head(x), self.head_dist(x)) + if self.distilled_training and self.training and (not torch.jit.is_scripting()): + return (x, x_dist) + else: + return (x + x_dist) / 2 + + def forward(self, x): + x = self.forward_features(x) + x = self.forward_head(x) + return x + +def _cfg(url='', **kwargs): + return {'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, 'fixed_input_size': True, 'crop_pct': 0.95, 'interpolation': 'bicubic', 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'classifier': ('head', 'head_dist'), 'first_conv': 'stem.conv1.conv', **kwargs} +default_cfgs = generate_default_cfgs({'efficientformerv2_s0.snap_dist_in1k': _cfg(hf_hub_id='timm/'), 'efficientformerv2_s1.snap_dist_in1k': _cfg(hf_hub_id='timm/'), 'efficientformerv2_s2.snap_dist_in1k': _cfg(hf_hub_id='timm/'), 'efficientformerv2_l.snap_dist_in1k': _cfg(hf_hub_id='timm/')}) + +def _create_efficientformerv2(variant, pretrained=False, **kwargs): + out_indices = kwargs.pop('out_indices', (0, 1, 2, 3)) + model = build_model_with_cfg(EfficientFormerV2, variant, pretrained, feature_cfg=dict(flatten_sequential=True, out_indices=out_indices), **kwargs) + return model + +@register_model +def efficientformerv2_s0(pretrained=False, **kwargs) -> EfficientFormerV2: + model_args = dict(depths=EfficientFormer_depth['S0'], embed_dims=EfficientFormer_width['S0'], num_vit=2, drop_path_rate=0.0, mlp_ratios=EfficientFormer_expansion_ratios['S0']) + return _create_efficientformerv2('efficientformerv2_s0', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def efficientformerv2_s1(pretrained=False, **kwargs) -> EfficientFormerV2: + model_args = dict(depths=EfficientFormer_depth['S1'], embed_dims=EfficientFormer_width['S1'], num_vit=2, drop_path_rate=0.0, mlp_ratios=EfficientFormer_expansion_ratios['S1']) + return _create_efficientformerv2('efficientformerv2_s1', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def efficientformerv2_s2(pretrained=False, **kwargs) -> EfficientFormerV2: + model_args = dict(depths=EfficientFormer_depth['S2'], embed_dims=EfficientFormer_width['S2'], num_vit=4, drop_path_rate=0.02, mlp_ratios=EfficientFormer_expansion_ratios['S2']) + return _create_efficientformerv2('efficientformerv2_s2', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def efficientformerv2_l(pretrained=False, **kwargs) -> EfficientFormerV2: + model_args = dict(depths=EfficientFormer_depth['L'], embed_dims=EfficientFormer_width['L'], num_vit=6, drop_path_rate=0.1, mlp_ratios=EfficientFormer_expansion_ratios['L']) + return _create_efficientformerv2('efficientformerv2_l', pretrained=pretrained, **dict(model_args, **kwargs)) + +# File: pytorch-image-models-main/timm/models/efficientnet.py +"""""" +from functools import partial +from typing import Callable, List, Optional, Tuple, Union +import torch +import torch.nn as nn +import torch.nn.functional as F +from torch.utils.checkpoint import checkpoint +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD +from timm.layers import create_conv2d, create_classifier, get_norm_act_layer, GroupNormAct, LayerType +from ._builder import build_model_with_cfg, pretrained_cfg_for_features +from ._efficientnet_blocks import SqueezeExcite +from ._efficientnet_builder import BlockArgs, EfficientNetBuilder, decode_arch_def, efficientnet_init_weights, round_channels, resolve_bn_args, resolve_act_layer, BN_EPS_TF_DEFAULT +from ._features import FeatureInfo, FeatureHooks, feature_take_indices +from ._manipulate import checkpoint_seq +from ._registry import generate_default_cfgs, register_model, register_model_deprecations +__all__ = ['EfficientNet', 'EfficientNetFeatures'] + +class EfficientNet(nn.Module): + + def __init__(self, block_args: BlockArgs, num_classes: int=1000, num_features: int=1280, in_chans: int=3, stem_size: int=32, stem_kernel_size: int=3, fix_stem: bool=False, output_stride: int=32, pad_type: str='', act_layer: Optional[LayerType]=None, norm_layer: Optional[LayerType]=None, aa_layer: Optional[LayerType]=None, se_layer: Optional[LayerType]=None, round_chs_fn: Callable=round_channels, drop_rate: float=0.0, drop_path_rate: float=0.0, global_pool: str='avg'): + super(EfficientNet, self).__init__() + act_layer = act_layer or nn.ReLU + norm_layer = norm_layer or nn.BatchNorm2d + norm_act_layer = get_norm_act_layer(norm_layer, act_layer) + se_layer = se_layer or SqueezeExcite + self.num_classes = num_classes + self.drop_rate = drop_rate + self.grad_checkpointing = False + if not fix_stem: + stem_size = round_chs_fn(stem_size) + self.conv_stem = create_conv2d(in_chans, stem_size, stem_kernel_size, stride=2, padding=pad_type) + self.bn1 = norm_act_layer(stem_size, inplace=True) + builder = EfficientNetBuilder(output_stride=output_stride, pad_type=pad_type, round_chs_fn=round_chs_fn, act_layer=act_layer, norm_layer=norm_layer, aa_layer=aa_layer, se_layer=se_layer, drop_path_rate=drop_path_rate) + self.blocks = nn.Sequential(*builder(stem_size, block_args)) + self.feature_info = builder.features + self.stage_ends = [f['stage'] for f in self.feature_info] + head_chs = builder.in_chs + if num_features > 0: + self.conv_head = create_conv2d(head_chs, num_features, 1, padding=pad_type) + self.bn2 = norm_act_layer(num_features, inplace=True) + self.num_features = self.head_hidden_size = num_features + else: + self.conv_head = nn.Identity() + self.bn2 = nn.Identity() + self.num_features = self.head_hidden_size = head_chs + (self.global_pool, self.classifier) = create_classifier(self.num_features, self.num_classes, pool_type=global_pool) + efficientnet_init_weights(self) + + def as_sequential(self): + layers = [self.conv_stem, self.bn1] + layers.extend(self.blocks) + layers.extend([self.conv_head, self.bn2, self.global_pool]) + layers.extend([nn.Dropout(self.drop_rate), self.classifier]) + return nn.Sequential(*layers) + + @torch.jit.ignore + def group_matcher(self, coarse=False): + return dict(stem='^conv_stem|bn1', blocks=[('^blocks\\.(\\d+)' if coarse else '^blocks\\.(\\d+)\\.(\\d+)', None), ('conv_head|bn2', (99999,))]) + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + self.grad_checkpointing = enable + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.classifier + + def reset_classifier(self, num_classes: int, global_pool: str='avg'): + self.num_classes = num_classes + (self.global_pool, self.classifier) = create_classifier(self.num_features, self.num_classes, pool_type=global_pool) + + def forward_intermediates(self, x: torch.Tensor, indices: Optional[Union[int, List[int]]]=None, norm: bool=False, stop_early: bool=False, output_fmt: str='NCHW', intermediates_only: bool=False, extra_blocks: bool=False) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]: + assert output_fmt in ('NCHW',), 'Output shape must be NCHW.' + intermediates = [] + if extra_blocks: + (take_indices, max_index) = feature_take_indices(len(self.blocks) + 1, indices) + else: + (take_indices, max_index) = feature_take_indices(len(self.stage_ends), indices) + take_indices = [self.stage_ends[i] for i in take_indices] + max_index = self.stage_ends[max_index] + feat_idx = 0 + x = self.conv_stem(x) + x = self.bn1(x) + if feat_idx in take_indices: + intermediates.append(x) + if torch.jit.is_scripting() or not stop_early: + blocks = self.blocks + else: + blocks = self.blocks[:max_index] + for blk in blocks: + feat_idx += 1 + x = blk(x) + if feat_idx in take_indices: + intermediates.append(x) + if intermediates_only: + return intermediates + if feat_idx == self.stage_ends[-1]: + x = self.conv_head(x) + x = self.bn2(x) + return (x, intermediates) + + def prune_intermediate_layers(self, indices: Union[int, List[int]]=1, prune_norm: bool=False, prune_head: bool=True, extra_blocks: bool=False): + if extra_blocks: + (take_indices, max_index) = feature_take_indices(len(self.blocks) + 1, indices) + else: + (take_indices, max_index) = feature_take_indices(len(self.stage_ends), indices) + max_index = self.stage_ends[max_index] + self.blocks = self.blocks[:max_index] + if prune_norm or max_index < len(self.blocks): + self.conv_head = nn.Identity() + self.bn2 = nn.Identity() + if prune_head: + self.reset_classifier(0, '') + return take_indices + + def forward_features(self, x): + x = self.conv_stem(x) + x = self.bn1(x) + if self.grad_checkpointing and (not torch.jit.is_scripting()): + x = checkpoint_seq(self.blocks, x, flatten=True) + else: + x = self.blocks(x) + x = self.conv_head(x) + x = self.bn2(x) + return x + + def forward_head(self, x, pre_logits: bool=False): + x = self.global_pool(x) + if self.drop_rate > 0.0: + x = F.dropout(x, p=self.drop_rate, training=self.training) + return x if pre_logits else self.classifier(x) + + def forward(self, x): + x = self.forward_features(x) + x = self.forward_head(x) + return x + +class EfficientNetFeatures(nn.Module): + + def __init__(self, block_args: BlockArgs, out_indices: Tuple[int, ...]=(0, 1, 2, 3, 4), feature_location: str='bottleneck', in_chans: int=3, stem_size: int=32, stem_kernel_size: int=3, fix_stem: bool=False, output_stride: int=32, pad_type: str='', act_layer: Optional[LayerType]=None, norm_layer: Optional[LayerType]=None, aa_layer: Optional[LayerType]=None, se_layer: Optional[LayerType]=None, round_chs_fn: Callable=round_channels, drop_rate: float=0.0, drop_path_rate: float=0.0): + super(EfficientNetFeatures, self).__init__() + act_layer = act_layer or nn.ReLU + norm_layer = norm_layer or nn.BatchNorm2d + norm_act_layer = get_norm_act_layer(norm_layer, act_layer) + se_layer = se_layer or SqueezeExcite + self.drop_rate = drop_rate + self.grad_checkpointing = False + if not fix_stem: + stem_size = round_chs_fn(stem_size) + self.conv_stem = create_conv2d(in_chans, stem_size, stem_kernel_size, stride=2, padding=pad_type) + self.bn1 = norm_act_layer(stem_size, inplace=True) + builder = EfficientNetBuilder(output_stride=output_stride, pad_type=pad_type, round_chs_fn=round_chs_fn, act_layer=act_layer, norm_layer=norm_layer, aa_layer=aa_layer, se_layer=se_layer, drop_path_rate=drop_path_rate, feature_location=feature_location) + self.blocks = nn.Sequential(*builder(stem_size, block_args)) + self.feature_info = FeatureInfo(builder.features, out_indices) + self._stage_out_idx = {f['stage']: f['index'] for f in self.feature_info.get_dicts()} + efficientnet_init_weights(self) + self.feature_hooks = None + if feature_location != 'bottleneck': + hooks = self.feature_info.get_dicts(keys=('module', 'hook_type')) + self.feature_hooks = FeatureHooks(hooks, self.named_modules()) + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + self.grad_checkpointing = enable + + def forward(self, x) -> List[torch.Tensor]: + x = self.conv_stem(x) + x = self.bn1(x) + if self.feature_hooks is None: + features = [] + if 0 in self._stage_out_idx: + features.append(x) + for (i, b) in enumerate(self.blocks): + if self.grad_checkpointing and (not torch.jit.is_scripting()): + x = checkpoint(b, x) + else: + x = b(x) + if i + 1 in self._stage_out_idx: + features.append(x) + return features + else: + self.blocks(x) + out = self.feature_hooks.get_output(x.device) + return list(out.values()) + +def _create_effnet(variant, pretrained=False, **kwargs): + features_mode = '' + model_cls = EfficientNet + kwargs_filter = None + if kwargs.pop('features_only', False): + if 'feature_cfg' in kwargs or 'feature_cls' in kwargs: + features_mode = 'cfg' + else: + kwargs_filter = ('num_classes', 'num_features', 'head_conv', 'global_pool') + model_cls = EfficientNetFeatures + features_mode = 'cls' + model = build_model_with_cfg(model_cls, variant, pretrained, features_only=features_mode == 'cfg', pretrained_strict=features_mode != 'cls', kwargs_filter=kwargs_filter, **kwargs) + if features_mode == 'cls': + model.pretrained_cfg = model.default_cfg = pretrained_cfg_for_features(model.pretrained_cfg) + return model + +def _gen_mnasnet_a1(variant, channel_multiplier=1.0, pretrained=False, **kwargs): + arch_def = [['ds_r1_k3_s1_e1_c16_noskip'], ['ir_r2_k3_s2_e6_c24'], ['ir_r3_k5_s2_e3_c40_se0.25'], ['ir_r4_k3_s2_e6_c80'], ['ir_r2_k3_s1_e6_c112_se0.25'], ['ir_r3_k5_s2_e6_c160_se0.25'], ['ir_r1_k3_s1_e6_c320']] + model_kwargs = dict(block_args=decode_arch_def(arch_def), stem_size=32, round_chs_fn=partial(round_channels, multiplier=channel_multiplier), norm_layer=kwargs.pop('norm_layer', None) or partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)), **kwargs) + model = _create_effnet(variant, pretrained, **model_kwargs) + return model + +def _gen_mnasnet_b1(variant, channel_multiplier=1.0, pretrained=False, **kwargs): + arch_def = [['ds_r1_k3_s1_c16_noskip'], ['ir_r3_k3_s2_e3_c24'], ['ir_r3_k5_s2_e3_c40'], ['ir_r3_k5_s2_e6_c80'], ['ir_r2_k3_s1_e6_c96'], ['ir_r4_k5_s2_e6_c192'], ['ir_r1_k3_s1_e6_c320_noskip']] + model_kwargs = dict(block_args=decode_arch_def(arch_def), stem_size=32, round_chs_fn=partial(round_channels, multiplier=channel_multiplier), norm_layer=kwargs.pop('norm_layer', None) or partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)), **kwargs) + model = _create_effnet(variant, pretrained, **model_kwargs) + return model + +def _gen_mnasnet_small(variant, channel_multiplier=1.0, pretrained=False, **kwargs): + arch_def = [['ds_r1_k3_s1_c8'], ['ir_r1_k3_s2_e3_c16'], ['ir_r2_k3_s2_e6_c16'], ['ir_r4_k5_s2_e6_c32_se0.25'], ['ir_r3_k3_s1_e6_c32_se0.25'], ['ir_r3_k5_s2_e6_c88_se0.25'], ['ir_r1_k3_s1_e6_c144']] + model_kwargs = dict(block_args=decode_arch_def(arch_def), stem_size=8, round_chs_fn=partial(round_channels, multiplier=channel_multiplier), norm_layer=kwargs.pop('norm_layer', None) or partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)), **kwargs) + model = _create_effnet(variant, pretrained, **model_kwargs) + return model + +def _gen_mobilenet_v1(variant, channel_multiplier=1.0, depth_multiplier=1.0, group_size=None, fix_stem_head=False, head_conv=False, pretrained=False, **kwargs): + arch_def = [['dsa_r1_k3_s1_c64'], ['dsa_r2_k3_s2_c128'], ['dsa_r2_k3_s2_c256'], ['dsa_r6_k3_s2_c512'], ['dsa_r2_k3_s2_c1024']] + round_chs_fn = partial(round_channels, multiplier=channel_multiplier) + head_features = (1024 if fix_stem_head else max(1024, round_chs_fn(1024))) if head_conv else 0 + model_kwargs = dict(block_args=decode_arch_def(arch_def, depth_multiplier=depth_multiplier, fix_first_last=fix_stem_head, group_size=group_size), num_features=head_features, stem_size=32, fix_stem=fix_stem_head, round_chs_fn=round_chs_fn, norm_layer=kwargs.pop('norm_layer', None) or partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)), act_layer=resolve_act_layer(kwargs, 'relu6'), **kwargs) + model = _create_effnet(variant, pretrained, **model_kwargs) + return model + +def _gen_mobilenet_v2(variant, channel_multiplier=1.0, depth_multiplier=1.0, group_size=None, fix_stem_head=False, pretrained=False, **kwargs): + arch_def = [['ds_r1_k3_s1_c16'], ['ir_r2_k3_s2_e6_c24'], ['ir_r3_k3_s2_e6_c32'], ['ir_r4_k3_s2_e6_c64'], ['ir_r3_k3_s1_e6_c96'], ['ir_r3_k3_s2_e6_c160'], ['ir_r1_k3_s1_e6_c320']] + round_chs_fn = partial(round_channels, multiplier=channel_multiplier) + model_kwargs = dict(block_args=decode_arch_def(arch_def, depth_multiplier=depth_multiplier, fix_first_last=fix_stem_head, group_size=group_size), num_features=1280 if fix_stem_head else max(1280, round_chs_fn(1280)), stem_size=32, fix_stem=fix_stem_head, round_chs_fn=round_chs_fn, norm_layer=kwargs.pop('norm_layer', None) or partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)), act_layer=resolve_act_layer(kwargs, 'relu6'), **kwargs) + model = _create_effnet(variant, pretrained, **model_kwargs) + return model + +def _gen_fbnetc(variant, channel_multiplier=1.0, pretrained=False, **kwargs): + arch_def = [['ir_r1_k3_s1_e1_c16'], ['ir_r1_k3_s2_e6_c24', 'ir_r2_k3_s1_e1_c24'], ['ir_r1_k5_s2_e6_c32', 'ir_r1_k5_s1_e3_c32', 'ir_r1_k5_s1_e6_c32', 'ir_r1_k3_s1_e6_c32'], ['ir_r1_k5_s2_e6_c64', 'ir_r1_k5_s1_e3_c64', 'ir_r2_k5_s1_e6_c64'], ['ir_r3_k5_s1_e6_c112', 'ir_r1_k5_s1_e3_c112'], ['ir_r4_k5_s2_e6_c184'], ['ir_r1_k3_s1_e6_c352']] + model_kwargs = dict(block_args=decode_arch_def(arch_def), stem_size=16, num_features=1984, round_chs_fn=partial(round_channels, multiplier=channel_multiplier), norm_layer=kwargs.pop('norm_layer', None) or partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)), **kwargs) + model = _create_effnet(variant, pretrained, **model_kwargs) + return model + +def _gen_spnasnet(variant, channel_multiplier=1.0, pretrained=False, **kwargs): + arch_def = [['ds_r1_k3_s1_c16_noskip'], ['ir_r3_k3_s2_e3_c24'], ['ir_r1_k5_s2_e6_c40', 'ir_r3_k3_s1_e3_c40'], ['ir_r1_k5_s2_e6_c80', 'ir_r3_k3_s1_e3_c80'], ['ir_r1_k5_s1_e6_c96', 'ir_r3_k5_s1_e3_c96'], ['ir_r4_k5_s2_e6_c192'], ['ir_r1_k3_s1_e6_c320_noskip']] + model_kwargs = dict(block_args=decode_arch_def(arch_def), stem_size=32, round_chs_fn=partial(round_channels, multiplier=channel_multiplier), norm_layer=kwargs.pop('norm_layer', None) or partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)), **kwargs) + model = _create_effnet(variant, pretrained, **model_kwargs) + return model + +def _gen_efficientnet(variant, channel_multiplier=1.0, depth_multiplier=1.0, channel_divisor=8, group_size=None, pretrained=False, **kwargs): + arch_def = [['ds_r1_k3_s1_e1_c16_se0.25'], ['ir_r2_k3_s2_e6_c24_se0.25'], ['ir_r2_k5_s2_e6_c40_se0.25'], ['ir_r3_k3_s2_e6_c80_se0.25'], ['ir_r3_k5_s1_e6_c112_se0.25'], ['ir_r4_k5_s2_e6_c192_se0.25'], ['ir_r1_k3_s1_e6_c320_se0.25']] + round_chs_fn = partial(round_channels, multiplier=channel_multiplier, divisor=channel_divisor) + model_kwargs = dict(block_args=decode_arch_def(arch_def, depth_multiplier, group_size=group_size), num_features=round_chs_fn(1280), stem_size=32, round_chs_fn=round_chs_fn, act_layer=resolve_act_layer(kwargs, 'swish'), norm_layer=kwargs.pop('norm_layer', None) or partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)), **kwargs) + model = _create_effnet(variant, pretrained, **model_kwargs) + return model + +def _gen_efficientnet_edge(variant, channel_multiplier=1.0, depth_multiplier=1.0, group_size=None, pretrained=False, **kwargs): + arch_def = [['er_r1_k3_s1_e4_c24_fc24_noskip'], ['er_r2_k3_s2_e8_c32'], ['er_r4_k3_s2_e8_c48'], ['ir_r5_k5_s2_e8_c96'], ['ir_r4_k5_s1_e8_c144'], ['ir_r2_k5_s2_e8_c192']] + round_chs_fn = partial(round_channels, multiplier=channel_multiplier) + model_kwargs = dict(block_args=decode_arch_def(arch_def, depth_multiplier, group_size=group_size), num_features=round_chs_fn(1280), stem_size=32, round_chs_fn=round_chs_fn, norm_layer=kwargs.pop('norm_layer', None) or partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)), act_layer=resolve_act_layer(kwargs, 'relu'), **kwargs) + model = _create_effnet(variant, pretrained, **model_kwargs) + return model + +def _gen_efficientnet_condconv(variant, channel_multiplier=1.0, depth_multiplier=1.0, experts_multiplier=1, pretrained=False, **kwargs): + arch_def = [['ds_r1_k3_s1_e1_c16_se0.25'], ['ir_r2_k3_s2_e6_c24_se0.25'], ['ir_r2_k5_s2_e6_c40_se0.25'], ['ir_r3_k3_s2_e6_c80_se0.25'], ['ir_r3_k5_s1_e6_c112_se0.25_cc4'], ['ir_r4_k5_s2_e6_c192_se0.25_cc4'], ['ir_r1_k3_s1_e6_c320_se0.25_cc4']] + round_chs_fn = partial(round_channels, multiplier=channel_multiplier) + model_kwargs = dict(block_args=decode_arch_def(arch_def, depth_multiplier, experts_multiplier=experts_multiplier), num_features=round_chs_fn(1280), stem_size=32, round_chs_fn=round_chs_fn, norm_layer=kwargs.pop('norm_layer', None) or partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)), act_layer=resolve_act_layer(kwargs, 'swish'), **kwargs) + model = _create_effnet(variant, pretrained, **model_kwargs) + return model + +def _gen_efficientnet_lite(variant, channel_multiplier=1.0, depth_multiplier=1.0, pretrained=False, **kwargs): + arch_def = [['ds_r1_k3_s1_e1_c16'], ['ir_r2_k3_s2_e6_c24'], ['ir_r2_k5_s2_e6_c40'], ['ir_r3_k3_s2_e6_c80'], ['ir_r3_k5_s1_e6_c112'], ['ir_r4_k5_s2_e6_c192'], ['ir_r1_k3_s1_e6_c320']] + model_kwargs = dict(block_args=decode_arch_def(arch_def, depth_multiplier, fix_first_last=True), num_features=1280, stem_size=32, fix_stem=True, round_chs_fn=partial(round_channels, multiplier=channel_multiplier), act_layer=resolve_act_layer(kwargs, 'relu6'), norm_layer=kwargs.pop('norm_layer', None) or partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)), **kwargs) + model = _create_effnet(variant, pretrained, **model_kwargs) + return model + +def _gen_efficientnetv2_base(variant, channel_multiplier=1.0, depth_multiplier=1.0, group_size=None, pretrained=False, **kwargs): + arch_def = [['cn_r1_k3_s1_e1_c16_skip'], ['er_r2_k3_s2_e4_c32'], ['er_r2_k3_s2_e4_c48'], ['ir_r3_k3_s2_e4_c96_se0.25'], ['ir_r5_k3_s1_e6_c112_se0.25'], ['ir_r8_k3_s2_e6_c192_se0.25']] + round_chs_fn = partial(round_channels, multiplier=channel_multiplier, round_limit=0.0) + model_kwargs = dict(block_args=decode_arch_def(arch_def, depth_multiplier, group_size=group_size), num_features=round_chs_fn(1280), stem_size=32, round_chs_fn=round_chs_fn, norm_layer=kwargs.pop('norm_layer', None) or partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)), act_layer=resolve_act_layer(kwargs, 'silu'), **kwargs) + model = _create_effnet(variant, pretrained, **model_kwargs) + return model + +def _gen_efficientnetv2_s(variant, channel_multiplier=1.0, depth_multiplier=1.0, group_size=None, rw=False, pretrained=False, **kwargs): + arch_def = [['cn_r2_k3_s1_e1_c24_skip'], ['er_r4_k3_s2_e4_c48'], ['er_r4_k3_s2_e4_c64'], ['ir_r6_k3_s2_e4_c128_se0.25'], ['ir_r9_k3_s1_e6_c160_se0.25'], ['ir_r15_k3_s2_e6_c256_se0.25']] + num_features = 1280 + if rw: + arch_def[0] = ['er_r2_k3_s1_e1_c24'] + arch_def[-1] = ['ir_r15_k3_s2_e6_c272_se0.25'] + num_features = 1792 + round_chs_fn = partial(round_channels, multiplier=channel_multiplier) + model_kwargs = dict(block_args=decode_arch_def(arch_def, depth_multiplier, group_size=group_size), num_features=round_chs_fn(num_features), stem_size=24, round_chs_fn=round_chs_fn, norm_layer=kwargs.pop('norm_layer', None) or partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)), act_layer=resolve_act_layer(kwargs, 'silu'), **kwargs) + model = _create_effnet(variant, pretrained, **model_kwargs) + return model + +def _gen_efficientnetv2_m(variant, channel_multiplier=1.0, depth_multiplier=1.0, group_size=None, pretrained=False, **kwargs): + arch_def = [['cn_r3_k3_s1_e1_c24_skip'], ['er_r5_k3_s2_e4_c48'], ['er_r5_k3_s2_e4_c80'], ['ir_r7_k3_s2_e4_c160_se0.25'], ['ir_r14_k3_s1_e6_c176_se0.25'], ['ir_r18_k3_s2_e6_c304_se0.25'], ['ir_r5_k3_s1_e6_c512_se0.25']] + model_kwargs = dict(block_args=decode_arch_def(arch_def, depth_multiplier, group_size=group_size), num_features=1280, stem_size=24, round_chs_fn=partial(round_channels, multiplier=channel_multiplier), norm_layer=kwargs.pop('norm_layer', None) or partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)), act_layer=resolve_act_layer(kwargs, 'silu'), **kwargs) + model = _create_effnet(variant, pretrained, **model_kwargs) + return model + +def _gen_efficientnetv2_l(variant, channel_multiplier=1.0, depth_multiplier=1.0, group_size=None, pretrained=False, **kwargs): + arch_def = [['cn_r4_k3_s1_e1_c32_skip'], ['er_r7_k3_s2_e4_c64'], ['er_r7_k3_s2_e4_c96'], ['ir_r10_k3_s2_e4_c192_se0.25'], ['ir_r19_k3_s1_e6_c224_se0.25'], ['ir_r25_k3_s2_e6_c384_se0.25'], ['ir_r7_k3_s1_e6_c640_se0.25']] + model_kwargs = dict(block_args=decode_arch_def(arch_def, depth_multiplier, group_size=group_size), num_features=1280, stem_size=32, round_chs_fn=partial(round_channels, multiplier=channel_multiplier), norm_layer=kwargs.pop('norm_layer', None) or partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)), act_layer=resolve_act_layer(kwargs, 'silu'), **kwargs) + model = _create_effnet(variant, pretrained, **model_kwargs) + return model + +def _gen_efficientnetv2_xl(variant, channel_multiplier=1.0, depth_multiplier=1.0, group_size=None, pretrained=False, **kwargs): + arch_def = [['cn_r4_k3_s1_e1_c32_skip'], ['er_r8_k3_s2_e4_c64'], ['er_r8_k3_s2_e4_c96'], ['ir_r16_k3_s2_e4_c192_se0.25'], ['ir_r24_k3_s1_e6_c256_se0.25'], ['ir_r32_k3_s2_e6_c512_se0.25'], ['ir_r8_k3_s1_e6_c640_se0.25']] + model_kwargs = dict(block_args=decode_arch_def(arch_def, depth_multiplier, group_size=group_size), num_features=1280, stem_size=32, round_chs_fn=partial(round_channels, multiplier=channel_multiplier), norm_layer=kwargs.pop('norm_layer', None) or partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)), act_layer=resolve_act_layer(kwargs, 'silu'), **kwargs) + model = _create_effnet(variant, pretrained, **model_kwargs) + return model + +def _gen_efficientnet_x(variant, channel_multiplier=1.0, depth_multiplier=1.0, channel_divisor=8, group_size=None, version=1, pretrained=False, **kwargs): + """""" + if version == 1: + arch_def = [['ds_r1_k3_s1_e1_c16_se0.25_d1'], ['er_r2_k3_s2_e6_c24_se0.25_nre'], ['er_r2_k5_s2_e6_c40_se0.25_nre'], ['ir_r3_k3_s2_e6_c80_se0.25'], ['ir_r3_k5_s1_e6_c112_se0.25'], ['ir_r4_k5_s2_e6_c192_se0.25'], ['ir_r1_k3_s1_e6_c320_se0.25']] + else: + arch_def = [['ds_r1_k3_s1_e1_c16_se0.25_d1'], ['er_r2_k3_s2_e4_c24_se0.25_nre'], ['er_r2_k5_s2_e4_c40_se0.25_nre'], ['ir_r3_k3_s2_e4_c80_se0.25'], ['ir_r3_k5_s1_e6_c112_se0.25'], ['ir_r4_k5_s2_e6_c192_se0.25'], ['ir_r1_k3_s1_e6_c320_se0.25']] + round_chs_fn = partial(round_channels, multiplier=channel_multiplier, divisor=channel_divisor) + model_kwargs = dict(block_args=decode_arch_def(arch_def, depth_multiplier, group_size=group_size), num_features=round_chs_fn(1280), stem_size=32, round_chs_fn=round_chs_fn, act_layer=resolve_act_layer(kwargs, 'silu'), norm_layer=kwargs.pop('norm_layer', None) or partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)), **kwargs) + model = _create_effnet(variant, pretrained, **model_kwargs) + return model + +def _gen_mixnet_s(variant, channel_multiplier=1.0, pretrained=False, **kwargs): + arch_def = [['ds_r1_k3_s1_e1_c16'], ['ir_r1_k3_a1.1_p1.1_s2_e6_c24', 'ir_r1_k3_a1.1_p1.1_s1_e3_c24'], ['ir_r1_k3.5.7_s2_e6_c40_se0.5_nsw', 'ir_r3_k3.5_a1.1_p1.1_s1_e6_c40_se0.5_nsw'], ['ir_r1_k3.5.7_p1.1_s2_e6_c80_se0.25_nsw', 'ir_r2_k3.5_p1.1_s1_e6_c80_se0.25_nsw'], ['ir_r1_k3.5.7_a1.1_p1.1_s1_e6_c120_se0.5_nsw', 'ir_r2_k3.5.7.9_a1.1_p1.1_s1_e3_c120_se0.5_nsw'], ['ir_r1_k3.5.7.9.11_s2_e6_c200_se0.5_nsw', 'ir_r2_k3.5.7.9_p1.1_s1_e6_c200_se0.5_nsw']] + model_kwargs = dict(block_args=decode_arch_def(arch_def), num_features=1536, stem_size=16, round_chs_fn=partial(round_channels, multiplier=channel_multiplier), norm_layer=kwargs.pop('norm_layer', None) or partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)), **kwargs) + model = _create_effnet(variant, pretrained, **model_kwargs) + return model + +def _gen_mixnet_m(variant, channel_multiplier=1.0, depth_multiplier=1.0, pretrained=False, **kwargs): + arch_def = [['ds_r1_k3_s1_e1_c24'], ['ir_r1_k3.5.7_a1.1_p1.1_s2_e6_c32', 'ir_r1_k3_a1.1_p1.1_s1_e3_c32'], ['ir_r1_k3.5.7.9_s2_e6_c40_se0.5_nsw', 'ir_r3_k3.5_a1.1_p1.1_s1_e6_c40_se0.5_nsw'], ['ir_r1_k3.5.7_s2_e6_c80_se0.25_nsw', 'ir_r3_k3.5.7.9_a1.1_p1.1_s1_e6_c80_se0.25_nsw'], ['ir_r1_k3_s1_e6_c120_se0.5_nsw', 'ir_r3_k3.5.7.9_a1.1_p1.1_s1_e3_c120_se0.5_nsw'], ['ir_r1_k3.5.7.9_s2_e6_c200_se0.5_nsw', 'ir_r3_k3.5.7.9_p1.1_s1_e6_c200_se0.5_nsw']] + model_kwargs = dict(block_args=decode_arch_def(arch_def, depth_multiplier, depth_trunc='round'), num_features=1536, stem_size=24, round_chs_fn=partial(round_channels, multiplier=channel_multiplier), norm_layer=kwargs.pop('norm_layer', None) or partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)), **kwargs) + model = _create_effnet(variant, pretrained, **model_kwargs) + return model + +def _gen_tinynet(variant, model_width=1.0, depth_multiplier=1.0, pretrained=False, **kwargs): + arch_def = [['ds_r1_k3_s1_e1_c16_se0.25'], ['ir_r2_k3_s2_e6_c24_se0.25'], ['ir_r2_k5_s2_e6_c40_se0.25'], ['ir_r3_k3_s2_e6_c80_se0.25'], ['ir_r3_k5_s1_e6_c112_se0.25'], ['ir_r4_k5_s2_e6_c192_se0.25'], ['ir_r1_k3_s1_e6_c320_se0.25']] + model_kwargs = dict(block_args=decode_arch_def(arch_def, depth_multiplier, depth_trunc='round'), num_features=max(1280, round_channels(1280, model_width, 8, None)), stem_size=32, fix_stem=True, round_chs_fn=partial(round_channels, multiplier=model_width), act_layer=resolve_act_layer(kwargs, 'swish'), norm_layer=kwargs.pop('norm_layer', None) or partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)), **kwargs) + model = _create_effnet(variant, pretrained, **model_kwargs) + return model + +def _gen_mobilenet_edgetpu(variant, channel_multiplier=1.0, depth_multiplier=1.0, pretrained=False, **kwargs): + if 'edgetpu_v2' in variant: + stem_size = 64 + stem_kernel_size = 5 + group_size = 64 + num_features = 1280 + act_layer = resolve_act_layer(kwargs, 'relu') + + def _arch_def(chs: List[int], group_size: int): + return [[f'cn_r1_k1_s1_c{chs[0]}'], [f'er_r1_k3_s2_e8_c{chs[1]}', f'er_r1_k3_s1_e4_gs{group_size}_c{chs[1]}'], [f'er_r1_k3_s2_e8_c{chs[2]}', f'er_r1_k3_s1_e4_gs{group_size}_c{chs[2]}', f'er_r1_k3_s1_e4_c{chs[2]}', f'er_r1_k3_s1_e4_gs{group_size}_c{chs[2]}'], [f'er_r1_k3_s2_e8_c{chs[3]}', f'ir_r3_k3_s1_e4_c{chs[3]}'], [f'ir_r1_k3_s1_e8_c{chs[4]}', f'ir_r3_k3_s1_e4_c{chs[4]}'], [f'ir_r1_k3_s2_e8_c{chs[5]}', f'ir_r3_k3_s1_e4_c{chs[5]}'], [f'ir_r1_k3_s1_e8_c{chs[6]}']] + if 'edgetpu_v2_xs' in variant: + stem_size = 32 + stem_kernel_size = 3 + channels = [16, 32, 48, 96, 144, 160, 192] + elif 'edgetpu_v2_s' in variant: + channels = [24, 48, 64, 128, 160, 192, 256] + elif 'edgetpu_v2_m' in variant: + channels = [32, 64, 80, 160, 192, 240, 320] + num_features = 1344 + elif 'edgetpu_v2_l' in variant: + stem_kernel_size = 7 + group_size = 128 + channels = [32, 64, 96, 192, 240, 256, 384] + num_features = 1408 + else: + assert False + arch_def = _arch_def(channels, group_size) + else: + stem_size = 32 + stem_kernel_size = 3 + num_features = 1280 + act_layer = resolve_act_layer(kwargs, 'relu') + arch_def = [['cn_r1_k1_s1_c16'], ['er_r1_k3_s2_e8_c32', 'er_r3_k3_s1_e4_c32'], ['er_r1_k3_s2_e8_c48', 'er_r3_k3_s1_e4_c48'], ['ir_r1_k3_s2_e8_c96', 'ir_r3_k3_s1_e4_c96'], ['ir_r1_k3_s1_e8_c96_noskip', 'ir_r3_k3_s1_e4_c96'], ['ir_r1_k5_s2_e8_c160', 'ir_r3_k5_s1_e4_c160'], ['ir_r1_k3_s1_e8_c192']] + model_kwargs = dict(block_args=decode_arch_def(arch_def, depth_multiplier), num_features=num_features, stem_size=stem_size, stem_kernel_size=stem_kernel_size, round_chs_fn=partial(round_channels, multiplier=channel_multiplier), norm_layer=kwargs.pop('norm_layer', None) or partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)), act_layer=act_layer, **kwargs) + model = _create_effnet(variant, pretrained, **model_kwargs) + return model + +def _gen_test_efficientnet(variant, channel_multiplier=1.0, depth_multiplier=1.0, pretrained=False, **kwargs): + arch_def = [['cn_r1_k3_s1_e1_c16_skip'], ['er_r1_k3_s2_e4_c24'], ['er_r1_k3_s2_e4_c32'], ['ir_r1_k3_s2_e4_c48_se0.25'], ['ir_r1_k3_s2_e4_c64_se0.25']] + round_chs_fn = partial(round_channels, multiplier=channel_multiplier, round_limit=0.0) + model_kwargs = dict(block_args=decode_arch_def(arch_def, depth_multiplier), num_features=round_chs_fn(256), stem_size=24, round_chs_fn=round_chs_fn, norm_layer=kwargs.pop('norm_layer', None) or partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)), act_layer=resolve_act_layer(kwargs, 'silu'), **kwargs) + model = _create_effnet(variant, pretrained, **model_kwargs) + return model + +def _cfg(url='', **kwargs): + return {'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), 'crop_pct': 0.875, 'interpolation': 'bicubic', 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'conv_stem', 'classifier': 'classifier', **kwargs} +default_cfgs = generate_default_cfgs({'mnasnet_050.untrained': _cfg(), 'mnasnet_075.untrained': _cfg(), 'mnasnet_100.rmsp_in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mnasnet_b1-74cb7081.pth', hf_hub_id='timm/'), 'mnasnet_140.untrained': _cfg(), 'semnasnet_050.untrained': _cfg(), 'semnasnet_075.rmsp_in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/semnasnet_075-18710866.pth', hf_hub_id='timm/'), 'semnasnet_100.rmsp_in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mnasnet_a1-d9418771.pth', hf_hub_id='timm/'), 'semnasnet_140.untrained': _cfg(), 'mnasnet_small.lamb_in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mnasnet_small_lamb-aff75073.pth', hf_hub_id='timm/'), 'mobilenetv1_100.ra4_e3600_r224_in1k': _cfg(hf_hub_id='timm/', mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD, test_input_size=(3, 256, 256), test_crop_pct=0.95), 'mobilenetv1_100h.ra4_e3600_r224_in1k': _cfg(hf_hub_id='timm/', mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD, test_input_size=(3, 256, 256), test_crop_pct=0.95), 'mobilenetv1_125.ra4_e3600_r224_in1k': _cfg(hf_hub_id='timm/', mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD, crop_pct=0.9, test_input_size=(3, 256, 256), test_crop_pct=1.0), 'mobilenetv2_035.untrained': _cfg(), 'mobilenetv2_050.lamb_in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv2_050-3d30d450.pth', hf_hub_id='timm/', interpolation='bicubic'), 'mobilenetv2_075.untrained': _cfg(), 'mobilenetv2_100.ra_in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv2_100_ra-b33bc2c4.pth', hf_hub_id='timm/'), 'mobilenetv2_110d.ra_in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv2_110d_ra-77090ade.pth', hf_hub_id='timm/'), 'mobilenetv2_120d.ra_in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv2_120d_ra-5987e2ed.pth', hf_hub_id='timm/'), 'mobilenetv2_140.ra_in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv2_140_ra-21a4e913.pth', hf_hub_id='timm/'), 'fbnetc_100.rmsp_in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/fbnetc_100-c345b898.pth', hf_hub_id='timm/', interpolation='bilinear'), 'spnasnet_100.rmsp_in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/spnasnet_100-048bc3f4.pth', hf_hub_id='timm/', interpolation='bilinear'), 'efficientnet_b0.ra_in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_b0_ra-3dd342df.pth', hf_hub_id='timm/'), 'efficientnet_b0.ra4_e3600_r224_in1k': _cfg(hf_hub_id='timm/', mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD, crop_pct=0.9, test_input_size=(3, 256, 256), test_crop_pct=1.0), 'efficientnet_b1.ra4_e3600_r240_in1k': _cfg(hf_hub_id='timm/', mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD, input_size=(3, 240, 240), crop_pct=0.9, pool_size=(8, 8), test_input_size=(3, 288, 288), test_crop_pct=1.0), 'efficientnet_b1.ft_in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_b1-533bc792.pth', hf_hub_id='timm/', test_input_size=(3, 256, 256), test_crop_pct=1.0), 'efficientnet_b2.ra_in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_b2_ra-bcdf34b7.pth', hf_hub_id='timm/', input_size=(3, 256, 256), pool_size=(8, 8), test_input_size=(3, 288, 288), test_crop_pct=1.0), 'efficientnet_b3.ra2_in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_b3_ra2-cf984f9c.pth', hf_hub_id='timm/', input_size=(3, 288, 288), pool_size=(9, 9), test_input_size=(3, 320, 320), test_crop_pct=1.0), 'efficientnet_b4.ra2_in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_b4_ra2_320-7eb33cd5.pth', hf_hub_id='timm/', input_size=(3, 320, 320), pool_size=(10, 10), test_input_size=(3, 384, 384), test_crop_pct=1.0), 'efficientnet_b5.sw_in12k_ft_in1k': _cfg(hf_hub_id='timm/', input_size=(3, 448, 448), pool_size=(14, 14), crop_pct=1.0, crop_mode='squash'), 'efficientnet_b5.sw_in12k': _cfg(hf_hub_id='timm/', input_size=(3, 416, 416), pool_size=(13, 13), crop_pct=0.95, num_classes=11821), 'efficientnet_b6.untrained': _cfg(url='', input_size=(3, 528, 528), pool_size=(17, 17), crop_pct=0.942), 'efficientnet_b7.untrained': _cfg(url='', input_size=(3, 600, 600), pool_size=(19, 19), crop_pct=0.949), 'efficientnet_b8.untrained': _cfg(url='', input_size=(3, 672, 672), pool_size=(21, 21), crop_pct=0.954), 'efficientnet_l2.untrained': _cfg(url='', input_size=(3, 800, 800), pool_size=(25, 25), crop_pct=0.961), 'efficientnet_b0_gn.untrained': _cfg(), 'efficientnet_b0_g8_gn.untrained': _cfg(), 'efficientnet_b0_g16_evos.untrained': _cfg(), 'efficientnet_b3_gn.untrained': _cfg(input_size=(3, 288, 288), pool_size=(9, 9), test_input_size=(3, 320, 320), crop_pct=1.0), 'efficientnet_b3_g8_gn.untrained': _cfg(input_size=(3, 288, 288), pool_size=(9, 9), test_input_size=(3, 320, 320), crop_pct=1.0), 'efficientnet_blur_b0.untrained': _cfg(), 'efficientnet_es.ra_in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_es_ra-f111e99c.pth', hf_hub_id='timm/'), 'efficientnet_em.ra2_in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_em_ra2-66250f76.pth', hf_hub_id='timm/', input_size=(3, 240, 240), pool_size=(8, 8), crop_pct=0.882), 'efficientnet_el.ra_in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_el-3b455510.pth', hf_hub_id='timm/', input_size=(3, 300, 300), pool_size=(10, 10), crop_pct=0.904), 'efficientnet_es_pruned.in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_es_pruned75-1b7248cf.pth', hf_hub_id='timm/'), 'efficientnet_el_pruned.in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_el_pruned70-ef2a2ccf.pth', hf_hub_id='timm/', input_size=(3, 300, 300), pool_size=(10, 10), crop_pct=0.904), 'efficientnet_cc_b0_4e.untrained': _cfg(), 'efficientnet_cc_b0_8e.untrained': _cfg(), 'efficientnet_cc_b1_8e.untrained': _cfg(input_size=(3, 240, 240), pool_size=(8, 8), crop_pct=0.882), 'efficientnet_lite0.ra_in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_lite0_ra-37913777.pth', hf_hub_id='timm/'), 'efficientnet_lite1.untrained': _cfg(input_size=(3, 240, 240), pool_size=(8, 8), crop_pct=0.882), 'efficientnet_lite2.untrained': _cfg(input_size=(3, 260, 260), pool_size=(9, 9), crop_pct=0.89), 'efficientnet_lite3.untrained': _cfg(input_size=(3, 300, 300), pool_size=(10, 10), crop_pct=0.904), 'efficientnet_lite4.untrained': _cfg(input_size=(3, 380, 380), pool_size=(12, 12), crop_pct=0.922), 'efficientnet_b1_pruned.in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tresnet/effnetb1_pruned-bea43a3a.pth', hf_hub_id='timm/', input_size=(3, 240, 240), pool_size=(8, 8), crop_pct=0.882, mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD), 'efficientnet_b2_pruned.in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tresnet/effnetb2_pruned-08c1b27c.pth', hf_hub_id='timm/', input_size=(3, 260, 260), pool_size=(9, 9), crop_pct=0.89, mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD), 'efficientnet_b3_pruned.in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tresnet/effnetb3_pruned-59ecf72d.pth', hf_hub_id='timm/', input_size=(3, 300, 300), pool_size=(10, 10), crop_pct=0.904, mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD), 'efficientnetv2_rw_t.ra2_in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnetv2_t_agc-3620981a.pth', hf_hub_id='timm/', input_size=(3, 224, 224), test_input_size=(3, 288, 288), pool_size=(7, 7), crop_pct=1.0), 'gc_efficientnetv2_rw_t.agc_in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/gc_efficientnetv2_rw_t_agc-927a0bde.pth', hf_hub_id='timm/', input_size=(3, 224, 224), test_input_size=(3, 288, 288), pool_size=(7, 7), crop_pct=1.0), 'efficientnetv2_rw_s.ra2_in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_v2s_ra2_288-a6477665.pth', hf_hub_id='timm/', input_size=(3, 288, 288), test_input_size=(3, 384, 384), pool_size=(9, 9), crop_pct=1.0), 'efficientnetv2_rw_m.agc_in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnetv2_rw_m_agc-3d90cb1e.pth', hf_hub_id='timm/', input_size=(3, 320, 320), test_input_size=(3, 416, 416), pool_size=(10, 10), crop_pct=1.0), 'efficientnetv2_s.untrained': _cfg(input_size=(3, 288, 288), test_input_size=(3, 384, 384), pool_size=(9, 9), crop_pct=1.0), 'efficientnetv2_m.untrained': _cfg(input_size=(3, 320, 320), test_input_size=(3, 416, 416), pool_size=(10, 10), crop_pct=1.0), 'efficientnetv2_l.untrained': _cfg(input_size=(3, 384, 384), test_input_size=(3, 480, 480), pool_size=(12, 12), crop_pct=1.0), 'efficientnetv2_xl.untrained': _cfg(input_size=(3, 384, 384), test_input_size=(3, 512, 512), pool_size=(12, 12), crop_pct=1.0), 'tf_efficientnet_b0.ns_jft_in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b0_ns-c0e6a31c.pth', hf_hub_id='timm/', input_size=(3, 224, 224)), 'tf_efficientnet_b1.ns_jft_in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b1_ns-99dd0c41.pth', hf_hub_id='timm/', input_size=(3, 240, 240), pool_size=(8, 8), crop_pct=0.882), 'tf_efficientnet_b2.ns_jft_in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b2_ns-00306e48.pth', hf_hub_id='timm/', input_size=(3, 260, 260), pool_size=(9, 9), crop_pct=0.89), 'tf_efficientnet_b3.ns_jft_in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b3_ns-9d44bf68.pth', hf_hub_id='timm/', input_size=(3, 300, 300), pool_size=(10, 10), crop_pct=0.904), 'tf_efficientnet_b4.ns_jft_in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b4_ns-d6313a46.pth', hf_hub_id='timm/', input_size=(3, 380, 380), pool_size=(12, 12), crop_pct=0.922), 'tf_efficientnet_b5.ns_jft_in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b5_ns-6f26d0cf.pth', hf_hub_id='timm/', input_size=(3, 456, 456), pool_size=(15, 15), crop_pct=0.934), 'tf_efficientnet_b6.ns_jft_in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b6_ns-51548356.pth', hf_hub_id='timm/', input_size=(3, 528, 528), pool_size=(17, 17), crop_pct=0.942), 'tf_efficientnet_b7.ns_jft_in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b7_ns-1dbc32de.pth', hf_hub_id='timm/', input_size=(3, 600, 600), pool_size=(19, 19), crop_pct=0.949), 'tf_efficientnet_l2.ns_jft_in1k_475': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_l2_ns_475-bebbd00a.pth', hf_hub_id='timm/', input_size=(3, 475, 475), pool_size=(15, 15), crop_pct=0.936), 'tf_efficientnet_l2.ns_jft_in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_l2_ns-df73bb44.pth', hf_hub_id='timm/', input_size=(3, 800, 800), pool_size=(25, 25), crop_pct=0.96), 'tf_efficientnet_b0.ap_in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b0_ap-f262efe1.pth', hf_hub_id='timm/', mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD, input_size=(3, 224, 224)), 'tf_efficientnet_b1.ap_in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b1_ap-44ef0a3d.pth', hf_hub_id='timm/', mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD, input_size=(3, 240, 240), pool_size=(8, 8), crop_pct=0.882), 'tf_efficientnet_b2.ap_in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b2_ap-2f8e7636.pth', hf_hub_id='timm/', mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD, input_size=(3, 260, 260), pool_size=(9, 9), crop_pct=0.89), 'tf_efficientnet_b3.ap_in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b3_ap-aad25bdd.pth', hf_hub_id='timm/', mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD, input_size=(3, 300, 300), pool_size=(10, 10), crop_pct=0.904), 'tf_efficientnet_b4.ap_in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b4_ap-dedb23e6.pth', hf_hub_id='timm/', mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD, input_size=(3, 380, 380), pool_size=(12, 12), crop_pct=0.922), 'tf_efficientnet_b5.ap_in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b5_ap-9e82fae8.pth', hf_hub_id='timm/', mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD, input_size=(3, 456, 456), pool_size=(15, 15), crop_pct=0.934), 'tf_efficientnet_b6.ap_in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b6_ap-4ffb161f.pth', hf_hub_id='timm/', mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD, input_size=(3, 528, 528), pool_size=(17, 17), crop_pct=0.942), 'tf_efficientnet_b7.ap_in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b7_ap-ddb28fec.pth', hf_hub_id='timm/', mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD, input_size=(3, 600, 600), pool_size=(19, 19), crop_pct=0.949), 'tf_efficientnet_b8.ap_in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b8_ap-00e169fa.pth', hf_hub_id='timm/', mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD, input_size=(3, 672, 672), pool_size=(21, 21), crop_pct=0.954), 'tf_efficientnet_b5.ra_in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b5_ra-9a3e5369.pth', hf_hub_id='timm/', input_size=(3, 456, 456), pool_size=(15, 15), crop_pct=0.934), 'tf_efficientnet_b7.ra_in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b7_ra-6c08e654.pth', hf_hub_id='timm/', input_size=(3, 600, 600), pool_size=(19, 19), crop_pct=0.949), 'tf_efficientnet_b8.ra_in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b8_ra-572d5dd9.pth', hf_hub_id='timm/', input_size=(3, 672, 672), pool_size=(21, 21), crop_pct=0.954), 'tf_efficientnet_b0.aa_in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b0_aa-827b6e33.pth', hf_hub_id='timm/', input_size=(3, 224, 224)), 'tf_efficientnet_b1.aa_in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b1_aa-ea7a6ee0.pth', hf_hub_id='timm/', input_size=(3, 240, 240), pool_size=(8, 8), crop_pct=0.882), 'tf_efficientnet_b2.aa_in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b2_aa-60c94f97.pth', hf_hub_id='timm/', input_size=(3, 260, 260), pool_size=(9, 9), crop_pct=0.89), 'tf_efficientnet_b3.aa_in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b3_aa-84b4657e.pth', hf_hub_id='timm/', input_size=(3, 300, 300), pool_size=(10, 10), crop_pct=0.904), 'tf_efficientnet_b4.aa_in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b4_aa-818f208c.pth', hf_hub_id='timm/', input_size=(3, 380, 380), pool_size=(12, 12), crop_pct=0.922), 'tf_efficientnet_b5.aa_in1k': _cfg(url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b5_aa-99018a74.pth', hf_hub_id='timm/', input_size=(3, 456, 456), pool_size=(15, 15), crop_pct=0.934), 'tf_efficientnet_b6.aa_in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b6_aa-80ba17e4.pth', hf_hub_id='timm/', input_size=(3, 528, 528), pool_size=(17, 17), crop_pct=0.942), 'tf_efficientnet_b7.aa_in1k': _cfg(url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b7_aa-076e3472.pth', hf_hub_id='timm/', input_size=(3, 600, 600), pool_size=(19, 19), crop_pct=0.949), 'tf_efficientnet_b0.in1k': _cfg(url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b0-0af12548.pth', hf_hub_id='timm/', input_size=(3, 224, 224)), 'tf_efficientnet_b1.in1k': _cfg(url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b1-5c1377c4.pth', hf_hub_id='timm/', input_size=(3, 240, 240), pool_size=(8, 8), crop_pct=0.882), 'tf_efficientnet_b2.in1k': _cfg(url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b2-e393ef04.pth', hf_hub_id='timm/', input_size=(3, 260, 260), pool_size=(9, 9), crop_pct=0.89), 'tf_efficientnet_b3.in1k': _cfg(url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b3-e3bd6955.pth', hf_hub_id='timm/', input_size=(3, 300, 300), pool_size=(10, 10), crop_pct=0.904), 'tf_efficientnet_b4.in1k': _cfg(url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b4-74ee3bed.pth', hf_hub_id='timm/', input_size=(3, 380, 380), pool_size=(12, 12), crop_pct=0.922), 'tf_efficientnet_b5.in1k': _cfg(url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b5-c6949ce9.pth', hf_hub_id='timm/', input_size=(3, 456, 456), pool_size=(15, 15), crop_pct=0.934), 'tf_efficientnet_es.in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_es-ca1afbfe.pth', hf_hub_id='timm/', mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), input_size=(3, 224, 224)), 'tf_efficientnet_em.in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_em-e78cfe58.pth', hf_hub_id='timm/', mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), input_size=(3, 240, 240), pool_size=(8, 8), crop_pct=0.882), 'tf_efficientnet_el.in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_el-5143854e.pth', hf_hub_id='timm/', mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), input_size=(3, 300, 300), pool_size=(10, 10), crop_pct=0.904), 'tf_efficientnet_cc_b0_4e.in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_cc_b0_4e-4362b6b2.pth', hf_hub_id='timm/', mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD), 'tf_efficientnet_cc_b0_8e.in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_cc_b0_8e-66184a25.pth', hf_hub_id='timm/', mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD), 'tf_efficientnet_cc_b1_8e.in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_cc_b1_8e-f7c79ae1.pth', hf_hub_id='timm/', mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD, input_size=(3, 240, 240), pool_size=(8, 8), crop_pct=0.882), 'tf_efficientnet_lite0.in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_lite0-0aa007d2.pth', hf_hub_id='timm/', mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), interpolation='bicubic'), 'tf_efficientnet_lite1.in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_lite1-bde8b488.pth', hf_hub_id='timm/', mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), input_size=(3, 240, 240), pool_size=(8, 8), crop_pct=0.882, interpolation='bicubic'), 'tf_efficientnet_lite2.in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_lite2-dcccb7df.pth', hf_hub_id='timm/', mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), input_size=(3, 260, 260), pool_size=(9, 9), crop_pct=0.89, interpolation='bicubic'), 'tf_efficientnet_lite3.in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_lite3-b733e338.pth', hf_hub_id='timm/', mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), input_size=(3, 300, 300), pool_size=(10, 10), crop_pct=0.904, interpolation='bilinear'), 'tf_efficientnet_lite4.in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_lite4-741542c3.pth', hf_hub_id='timm/', mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), input_size=(3, 380, 380), pool_size=(12, 12), crop_pct=0.92, interpolation='bilinear'), 'tf_efficientnetv2_s.in21k_ft_in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-effv2-weights/tf_efficientnetv2_s_21ft1k-d7dafa41.pth', hf_hub_id='timm/', mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), input_size=(3, 300, 300), test_input_size=(3, 384, 384), pool_size=(10, 10), crop_pct=1.0), 'tf_efficientnetv2_m.in21k_ft_in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-effv2-weights/tf_efficientnetv2_m_21ft1k-bf41664a.pth', hf_hub_id='timm/', mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), input_size=(3, 384, 384), test_input_size=(3, 480, 480), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), 'tf_efficientnetv2_l.in21k_ft_in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-effv2-weights/tf_efficientnetv2_l_21ft1k-60127a9d.pth', hf_hub_id='timm/', mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), input_size=(3, 384, 384), test_input_size=(3, 480, 480), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), 'tf_efficientnetv2_xl.in21k_ft_in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-effv2-weights/tf_efficientnetv2_xl_in21ft1k-06c35c48.pth', hf_hub_id='timm/', mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), input_size=(3, 384, 384), test_input_size=(3, 512, 512), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), 'tf_efficientnetv2_s.in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-effv2-weights/tf_efficientnetv2_s-eb54923e.pth', hf_hub_id='timm/', mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), input_size=(3, 300, 300), test_input_size=(3, 384, 384), pool_size=(10, 10), crop_pct=1.0), 'tf_efficientnetv2_m.in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-effv2-weights/tf_efficientnetv2_m-cc09e0cd.pth', hf_hub_id='timm/', mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), input_size=(3, 384, 384), test_input_size=(3, 480, 480), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), 'tf_efficientnetv2_l.in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-effv2-weights/tf_efficientnetv2_l-d664b728.pth', hf_hub_id='timm/', mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), input_size=(3, 384, 384), test_input_size=(3, 480, 480), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), 'tf_efficientnetv2_s.in21k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-effv2-weights/tf_efficientnetv2_s_21k-6337ad01.pth', hf_hub_id='timm/', mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), num_classes=21843, input_size=(3, 300, 300), test_input_size=(3, 384, 384), pool_size=(10, 10), crop_pct=1.0), 'tf_efficientnetv2_m.in21k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-effv2-weights/tf_efficientnetv2_m_21k-361418a2.pth', hf_hub_id='timm/', mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), num_classes=21843, input_size=(3, 384, 384), test_input_size=(3, 480, 480), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), 'tf_efficientnetv2_l.in21k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-effv2-weights/tf_efficientnetv2_l_21k-91a19ec9.pth', hf_hub_id='timm/', mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), num_classes=21843, input_size=(3, 384, 384), test_input_size=(3, 480, 480), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), 'tf_efficientnetv2_xl.in21k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-effv2-weights/tf_efficientnetv2_xl_in21k-fd7e8abf.pth', hf_hub_id='timm/', mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), num_classes=21843, input_size=(3, 384, 384), test_input_size=(3, 512, 512), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), 'tf_efficientnetv2_b0.in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-effv2-weights/tf_efficientnetv2_b0-c7cc451f.pth', hf_hub_id='timm/', input_size=(3, 192, 192), test_input_size=(3, 224, 224), pool_size=(6, 6)), 'tf_efficientnetv2_b1.in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-effv2-weights/tf_efficientnetv2_b1-be6e41b0.pth', hf_hub_id='timm/', input_size=(3, 192, 192), test_input_size=(3, 240, 240), pool_size=(6, 6), crop_pct=0.882), 'tf_efficientnetv2_b2.in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-effv2-weights/tf_efficientnetv2_b2-847de54e.pth', hf_hub_id='timm/', input_size=(3, 208, 208), test_input_size=(3, 260, 260), pool_size=(7, 7), crop_pct=0.89), 'tf_efficientnetv2_b3.in21k_ft_in1k': _cfg(hf_hub_id='timm/', mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD, input_size=(3, 240, 240), test_input_size=(3, 300, 300), pool_size=(8, 8), crop_pct=0.9, crop_mode='squash'), 'tf_efficientnetv2_b3.in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-effv2-weights/tf_efficientnetv2_b3-57773f13.pth', hf_hub_id='timm/', input_size=(3, 240, 240), test_input_size=(3, 300, 300), pool_size=(8, 8), crop_pct=0.904), 'tf_efficientnetv2_b3.in21k': _cfg(hf_hub_id='timm/', mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD, num_classes=21843, input_size=(3, 240, 240), test_input_size=(3, 300, 300), pool_size=(8, 8), crop_pct=0.904), 'mixnet_s.ft_in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mixnet_s-a907afbc.pth', hf_hub_id='timm/'), 'mixnet_m.ft_in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mixnet_m-4647fc68.pth', hf_hub_id='timm/'), 'mixnet_l.ft_in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mixnet_l-5a9a2ed8.pth', hf_hub_id='timm/'), 'mixnet_xl.ra_in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mixnet_xl_ra-aac3c00c.pth', hf_hub_id='timm/'), 'mixnet_xxl.untrained': _cfg(), 'tf_mixnet_s.in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mixnet_s-89d3354b.pth', hf_hub_id='timm/'), 'tf_mixnet_m.in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mixnet_m-0f4d8805.pth', hf_hub_id='timm/'), 'tf_mixnet_l.in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mixnet_l-6c92e0c8.pth', hf_hub_id='timm/'), 'tinynet_a.in1k': _cfg(input_size=(3, 192, 192), pool_size=(6, 6), url='https://github.com/huawei-noah/CV-Backbones/releases/download/v1.2.0/tinynet_a.pth', hf_hub_id='timm/'), 'tinynet_b.in1k': _cfg(input_size=(3, 188, 188), pool_size=(6, 6), url='https://github.com/huawei-noah/CV-Backbones/releases/download/v1.2.0/tinynet_b.pth', hf_hub_id='timm/'), 'tinynet_c.in1k': _cfg(input_size=(3, 184, 184), pool_size=(6, 6), url='https://github.com/huawei-noah/CV-Backbones/releases/download/v1.2.0/tinynet_c.pth', hf_hub_id='timm/'), 'tinynet_d.in1k': _cfg(input_size=(3, 152, 152), pool_size=(5, 5), url='https://github.com/huawei-noah/CV-Backbones/releases/download/v1.2.0/tinynet_d.pth', hf_hub_id='timm/'), 'tinynet_e.in1k': _cfg(input_size=(3, 106, 106), pool_size=(4, 4), url='https://github.com/huawei-noah/CV-Backbones/releases/download/v1.2.0/tinynet_e.pth', hf_hub_id='timm/'), 'mobilenet_edgetpu_100.untrained': _cfg(input_size=(3, 224, 224), crop_pct=0.9), 'mobilenet_edgetpu_v2_xs.untrained': _cfg(input_size=(3, 224, 224), crop_pct=0.9), 'mobilenet_edgetpu_v2_s.untrained': _cfg(input_size=(3, 224, 224), crop_pct=0.9), 'mobilenet_edgetpu_v2_m.ra4_e3600_r224_in1k': _cfg(hf_hub_id='timm/', mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD, crop_pct=0.9, test_input_size=(3, 256, 256), test_crop_pct=0.95), 'mobilenet_edgetpu_v2_l.untrained': _cfg(input_size=(3, 224, 224), crop_pct=0.9), 'test_efficientnet.r160_in1k': _cfg(hf_hub_id='timm/', input_size=(3, 160, 160), pool_size=(5, 5))}) + +@register_model +def mnasnet_050(pretrained=False, **kwargs) -> EfficientNet: + model = _gen_mnasnet_b1('mnasnet_050', 0.5, pretrained=pretrained, **kwargs) + return model + +@register_model +def mnasnet_075(pretrained=False, **kwargs) -> EfficientNet: + model = _gen_mnasnet_b1('mnasnet_075', 0.75, pretrained=pretrained, **kwargs) + return model + +@register_model +def mnasnet_100(pretrained=False, **kwargs) -> EfficientNet: + model = _gen_mnasnet_b1('mnasnet_100', 1.0, pretrained=pretrained, **kwargs) + return model + +@register_model +def mnasnet_140(pretrained=False, **kwargs) -> EfficientNet: + model = _gen_mnasnet_b1('mnasnet_140', 1.4, pretrained=pretrained, **kwargs) + return model + +@register_model +def semnasnet_050(pretrained=False, **kwargs) -> EfficientNet: + model = _gen_mnasnet_a1('semnasnet_050', 0.5, pretrained=pretrained, **kwargs) + return model + +@register_model +def semnasnet_075(pretrained=False, **kwargs) -> EfficientNet: + model = _gen_mnasnet_a1('semnasnet_075', 0.75, pretrained=pretrained, **kwargs) + return model + +@register_model +def semnasnet_100(pretrained=False, **kwargs) -> EfficientNet: + model = _gen_mnasnet_a1('semnasnet_100', 1.0, pretrained=pretrained, **kwargs) + return model + +@register_model +def semnasnet_140(pretrained=False, **kwargs) -> EfficientNet: + model = _gen_mnasnet_a1('semnasnet_140', 1.4, pretrained=pretrained, **kwargs) + return model + +@register_model +def mnasnet_small(pretrained=False, **kwargs) -> EfficientNet: + model = _gen_mnasnet_small('mnasnet_small', 1.0, pretrained=pretrained, **kwargs) + return model + +@register_model +def mobilenetv1_100(pretrained=False, **kwargs) -> EfficientNet: + model = _gen_mobilenet_v1('mobilenetv1_100', 1.0, pretrained=pretrained, **kwargs) + return model + +@register_model +def mobilenetv1_100h(pretrained=False, **kwargs) -> EfficientNet: + model = _gen_mobilenet_v1('mobilenetv1_100h', 1.0, head_conv=True, pretrained=pretrained, **kwargs) + return model + +@register_model +def mobilenetv1_125(pretrained=False, **kwargs) -> EfficientNet: + model = _gen_mobilenet_v1('mobilenetv1_125', 1.25, pretrained=pretrained, **kwargs) + return model + +@register_model +def mobilenetv2_035(pretrained=False, **kwargs) -> EfficientNet: + model = _gen_mobilenet_v2('mobilenetv2_035', 0.35, pretrained=pretrained, **kwargs) + return model + +@register_model +def mobilenetv2_050(pretrained=False, **kwargs) -> EfficientNet: + model = _gen_mobilenet_v2('mobilenetv2_050', 0.5, pretrained=pretrained, **kwargs) + return model + +@register_model +def mobilenetv2_075(pretrained=False, **kwargs) -> EfficientNet: + model = _gen_mobilenet_v2('mobilenetv2_075', 0.75, pretrained=pretrained, **kwargs) + return model + +@register_model +def mobilenetv2_100(pretrained=False, **kwargs) -> EfficientNet: + model = _gen_mobilenet_v2('mobilenetv2_100', 1.0, pretrained=pretrained, **kwargs) + return model + +@register_model +def mobilenetv2_140(pretrained=False, **kwargs) -> EfficientNet: + model = _gen_mobilenet_v2('mobilenetv2_140', 1.4, pretrained=pretrained, **kwargs) + return model + +@register_model +def mobilenetv2_110d(pretrained=False, **kwargs) -> EfficientNet: + model = _gen_mobilenet_v2('mobilenetv2_110d', 1.1, depth_multiplier=1.2, fix_stem_head=True, pretrained=pretrained, **kwargs) + return model + +@register_model +def mobilenetv2_120d(pretrained=False, **kwargs) -> EfficientNet: + model = _gen_mobilenet_v2('mobilenetv2_120d', 1.2, depth_multiplier=1.4, fix_stem_head=True, pretrained=pretrained, **kwargs) + return model + +@register_model +def fbnetc_100(pretrained=False, **kwargs) -> EfficientNet: + if pretrained: + kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) + model = _gen_fbnetc('fbnetc_100', 1.0, pretrained=pretrained, **kwargs) + return model + +@register_model +def spnasnet_100(pretrained=False, **kwargs) -> EfficientNet: + model = _gen_spnasnet('spnasnet_100', 1.0, pretrained=pretrained, **kwargs) + return model + +@register_model +def efficientnet_b0(pretrained=False, **kwargs) -> EfficientNet: + model = _gen_efficientnet('efficientnet_b0', channel_multiplier=1.0, depth_multiplier=1.0, pretrained=pretrained, **kwargs) + return model + +@register_model +def efficientnet_b1(pretrained=False, **kwargs) -> EfficientNet: + model = _gen_efficientnet('efficientnet_b1', channel_multiplier=1.0, depth_multiplier=1.1, pretrained=pretrained, **kwargs) + return model + +@register_model +def efficientnet_b2(pretrained=False, **kwargs) -> EfficientNet: + model = _gen_efficientnet('efficientnet_b2', channel_multiplier=1.1, depth_multiplier=1.2, pretrained=pretrained, **kwargs) + return model + +@register_model +def efficientnet_b3(pretrained=False, **kwargs) -> EfficientNet: + model = _gen_efficientnet('efficientnet_b3', channel_multiplier=1.2, depth_multiplier=1.4, pretrained=pretrained, **kwargs) + return model + +@register_model +def efficientnet_b4(pretrained=False, **kwargs) -> EfficientNet: + model = _gen_efficientnet('efficientnet_b4', channel_multiplier=1.4, depth_multiplier=1.8, pretrained=pretrained, **kwargs) + return model + +@register_model +def efficientnet_b5(pretrained=False, **kwargs) -> EfficientNet: + model = _gen_efficientnet('efficientnet_b5', channel_multiplier=1.6, depth_multiplier=2.2, pretrained=pretrained, **kwargs) + return model + +@register_model +def efficientnet_b6(pretrained=False, **kwargs) -> EfficientNet: + model = _gen_efficientnet('efficientnet_b6', channel_multiplier=1.8, depth_multiplier=2.6, pretrained=pretrained, **kwargs) + return model + +@register_model +def efficientnet_b7(pretrained=False, **kwargs) -> EfficientNet: + model = _gen_efficientnet('efficientnet_b7', channel_multiplier=2.0, depth_multiplier=3.1, pretrained=pretrained, **kwargs) + return model + +@register_model +def efficientnet_b8(pretrained=False, **kwargs) -> EfficientNet: + model = _gen_efficientnet('efficientnet_b8', channel_multiplier=2.2, depth_multiplier=3.6, pretrained=pretrained, **kwargs) + return model + +@register_model +def efficientnet_l2(pretrained=False, **kwargs) -> EfficientNet: + model = _gen_efficientnet('efficientnet_l2', channel_multiplier=4.3, depth_multiplier=5.3, pretrained=pretrained, **kwargs) + return model + +@register_model +def efficientnet_b0_gn(pretrained=False, **kwargs) -> EfficientNet: + model = _gen_efficientnet('efficientnet_b0_gn', norm_layer=partial(GroupNormAct, group_size=8), pretrained=pretrained, **kwargs) + return model + +@register_model +def efficientnet_b0_g8_gn(pretrained=False, **kwargs) -> EfficientNet: + model = _gen_efficientnet('efficientnet_b0_g8_gn', group_size=8, norm_layer=partial(GroupNormAct, group_size=8), pretrained=pretrained, **kwargs) + return model + +@register_model +def efficientnet_b0_g16_evos(pretrained=False, **kwargs) -> EfficientNet: + model = _gen_efficientnet('efficientnet_b0_g16_evos', group_size=16, channel_divisor=16, pretrained=pretrained, **kwargs) + return model + +@register_model +def efficientnet_b3_gn(pretrained=False, **kwargs) -> EfficientNet: + model = _gen_efficientnet('efficientnet_b3_gn', channel_multiplier=1.2, depth_multiplier=1.4, channel_divisor=16, norm_layer=partial(GroupNormAct, group_size=16), pretrained=pretrained, **kwargs) + return model + +@register_model +def efficientnet_b3_g8_gn(pretrained=False, **kwargs) -> EfficientNet: + model = _gen_efficientnet('efficientnet_b3_g8_gn', channel_multiplier=1.2, depth_multiplier=1.4, group_size=8, channel_divisor=16, norm_layer=partial(GroupNormAct, group_size=16), pretrained=pretrained, **kwargs) + return model + +@register_model +def efficientnet_blur_b0(pretrained=False, **kwargs) -> EfficientNet: + model = _gen_efficientnet('efficientnet_blur_b0', channel_multiplier=1.0, depth_multiplier=1.0, pretrained=pretrained, aa_layer='blurpc', **kwargs) + return model + +@register_model +def efficientnet_es(pretrained=False, **kwargs) -> EfficientNet: + model = _gen_efficientnet_edge('efficientnet_es', channel_multiplier=1.0, depth_multiplier=1.0, pretrained=pretrained, **kwargs) + return model + +@register_model +def efficientnet_es_pruned(pretrained=False, **kwargs) -> EfficientNet: + model = _gen_efficientnet_edge('efficientnet_es_pruned', channel_multiplier=1.0, depth_multiplier=1.0, pretrained=pretrained, **kwargs) + return model + +@register_model +def efficientnet_em(pretrained=False, **kwargs) -> EfficientNet: + model = _gen_efficientnet_edge('efficientnet_em', channel_multiplier=1.0, depth_multiplier=1.1, pretrained=pretrained, **kwargs) + return model + +@register_model +def efficientnet_el(pretrained=False, **kwargs) -> EfficientNet: + model = _gen_efficientnet_edge('efficientnet_el', channel_multiplier=1.2, depth_multiplier=1.4, pretrained=pretrained, **kwargs) + return model + +@register_model +def efficientnet_el_pruned(pretrained=False, **kwargs) -> EfficientNet: + model = _gen_efficientnet_edge('efficientnet_el_pruned', channel_multiplier=1.2, depth_multiplier=1.4, pretrained=pretrained, **kwargs) + return model + +@register_model +def efficientnet_cc_b0_4e(pretrained=False, **kwargs) -> EfficientNet: + model = _gen_efficientnet_condconv('efficientnet_cc_b0_4e', channel_multiplier=1.0, depth_multiplier=1.0, pretrained=pretrained, **kwargs) + return model + +@register_model +def efficientnet_cc_b0_8e(pretrained=False, **kwargs) -> EfficientNet: + model = _gen_efficientnet_condconv('efficientnet_cc_b0_8e', channel_multiplier=1.0, depth_multiplier=1.0, experts_multiplier=2, pretrained=pretrained, **kwargs) + return model + +@register_model +def efficientnet_cc_b1_8e(pretrained=False, **kwargs) -> EfficientNet: + model = _gen_efficientnet_condconv('efficientnet_cc_b1_8e', channel_multiplier=1.0, depth_multiplier=1.1, experts_multiplier=2, pretrained=pretrained, **kwargs) + return model + +@register_model +def efficientnet_lite0(pretrained=False, **kwargs) -> EfficientNet: + model = _gen_efficientnet_lite('efficientnet_lite0', channel_multiplier=1.0, depth_multiplier=1.0, pretrained=pretrained, **kwargs) + return model + +@register_model +def efficientnet_lite1(pretrained=False, **kwargs) -> EfficientNet: + model = _gen_efficientnet_lite('efficientnet_lite1', channel_multiplier=1.0, depth_multiplier=1.1, pretrained=pretrained, **kwargs) + return model + +@register_model +def efficientnet_lite2(pretrained=False, **kwargs) -> EfficientNet: + model = _gen_efficientnet_lite('efficientnet_lite2', channel_multiplier=1.1, depth_multiplier=1.2, pretrained=pretrained, **kwargs) + return model + +@register_model +def efficientnet_lite3(pretrained=False, **kwargs) -> EfficientNet: + model = _gen_efficientnet_lite('efficientnet_lite3', channel_multiplier=1.2, depth_multiplier=1.4, pretrained=pretrained, **kwargs) + return model + +@register_model +def efficientnet_lite4(pretrained=False, **kwargs) -> EfficientNet: + model = _gen_efficientnet_lite('efficientnet_lite4', channel_multiplier=1.4, depth_multiplier=1.8, pretrained=pretrained, **kwargs) + return model + +@register_model +def efficientnet_b1_pruned(pretrained=False, **kwargs) -> EfficientNet: + kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) + kwargs.setdefault('pad_type', 'same') + variant = 'efficientnet_b1_pruned' + model = _gen_efficientnet(variant, channel_multiplier=1.0, depth_multiplier=1.1, pruned=True, pretrained=pretrained, **kwargs) + return model + +@register_model +def efficientnet_b2_pruned(pretrained=False, **kwargs) -> EfficientNet: + kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) + kwargs.setdefault('pad_type', 'same') + model = _gen_efficientnet('efficientnet_b2_pruned', channel_multiplier=1.1, depth_multiplier=1.2, pruned=True, pretrained=pretrained, **kwargs) + return model + +@register_model +def efficientnet_b3_pruned(pretrained=False, **kwargs) -> EfficientNet: + kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) + kwargs.setdefault('pad_type', 'same') + model = _gen_efficientnet('efficientnet_b3_pruned', channel_multiplier=1.2, depth_multiplier=1.4, pruned=True, pretrained=pretrained, **kwargs) + return model + +@register_model +def efficientnetv2_rw_t(pretrained=False, **kwargs) -> EfficientNet: + model = _gen_efficientnetv2_s('efficientnetv2_rw_t', channel_multiplier=0.8, depth_multiplier=0.9, rw=False, pretrained=pretrained, **kwargs) + return model + +@register_model +def gc_efficientnetv2_rw_t(pretrained=False, **kwargs) -> EfficientNet: + model = _gen_efficientnetv2_s('gc_efficientnetv2_rw_t', channel_multiplier=0.8, depth_multiplier=0.9, rw=False, se_layer='gc', pretrained=pretrained, **kwargs) + return model + +@register_model +def efficientnetv2_rw_s(pretrained=False, **kwargs) -> EfficientNet: + model = _gen_efficientnetv2_s('efficientnetv2_rw_s', rw=True, pretrained=pretrained, **kwargs) + return model + +@register_model +def efficientnetv2_rw_m(pretrained=False, **kwargs) -> EfficientNet: + model = _gen_efficientnetv2_s('efficientnetv2_rw_m', channel_multiplier=1.2, depth_multiplier=(1.2,) * 4 + (1.6,) * 2, rw=True, pretrained=pretrained, **kwargs) + return model + +@register_model +def efficientnetv2_s(pretrained=False, **kwargs) -> EfficientNet: + model = _gen_efficientnetv2_s('efficientnetv2_s', pretrained=pretrained, **kwargs) + return model + +@register_model +def efficientnetv2_m(pretrained=False, **kwargs) -> EfficientNet: + model = _gen_efficientnetv2_m('efficientnetv2_m', pretrained=pretrained, **kwargs) + return model + +@register_model +def efficientnetv2_l(pretrained=False, **kwargs) -> EfficientNet: + model = _gen_efficientnetv2_l('efficientnetv2_l', pretrained=pretrained, **kwargs) + return model + +@register_model +def efficientnetv2_xl(pretrained=False, **kwargs) -> EfficientNet: + model = _gen_efficientnetv2_xl('efficientnetv2_xl', pretrained=pretrained, **kwargs) + return model + +@register_model +def tf_efficientnet_b0(pretrained=False, **kwargs) -> EfficientNet: + kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) + kwargs.setdefault('pad_type', 'same') + model = _gen_efficientnet('tf_efficientnet_b0', channel_multiplier=1.0, depth_multiplier=1.0, pretrained=pretrained, **kwargs) + return model + +@register_model +def tf_efficientnet_b1(pretrained=False, **kwargs) -> EfficientNet: + kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) + kwargs.setdefault('pad_type', 'same') + model = _gen_efficientnet('tf_efficientnet_b1', channel_multiplier=1.0, depth_multiplier=1.1, pretrained=pretrained, **kwargs) + return model + +@register_model +def tf_efficientnet_b2(pretrained=False, **kwargs) -> EfficientNet: + kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) + kwargs.setdefault('pad_type', 'same') + model = _gen_efficientnet('tf_efficientnet_b2', channel_multiplier=1.1, depth_multiplier=1.2, pretrained=pretrained, **kwargs) + return model + +@register_model +def tf_efficientnet_b3(pretrained=False, **kwargs) -> EfficientNet: + kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) + kwargs.setdefault('pad_type', 'same') + model = _gen_efficientnet('tf_efficientnet_b3', channel_multiplier=1.2, depth_multiplier=1.4, pretrained=pretrained, **kwargs) + return model + +@register_model +def tf_efficientnet_b4(pretrained=False, **kwargs) -> EfficientNet: + kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) + kwargs.setdefault('pad_type', 'same') + model = _gen_efficientnet('tf_efficientnet_b4', channel_multiplier=1.4, depth_multiplier=1.8, pretrained=pretrained, **kwargs) + return model + +@register_model +def tf_efficientnet_b5(pretrained=False, **kwargs) -> EfficientNet: + kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) + kwargs.setdefault('pad_type', 'same') + model = _gen_efficientnet('tf_efficientnet_b5', channel_multiplier=1.6, depth_multiplier=2.2, pretrained=pretrained, **kwargs) + return model + +@register_model +def tf_efficientnet_b6(pretrained=False, **kwargs) -> EfficientNet: + kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) + kwargs.setdefault('pad_type', 'same') + model = _gen_efficientnet('tf_efficientnet_b6', channel_multiplier=1.8, depth_multiplier=2.6, pretrained=pretrained, **kwargs) + return model + +@register_model +def tf_efficientnet_b7(pretrained=False, **kwargs) -> EfficientNet: + kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) + kwargs.setdefault('pad_type', 'same') + model = _gen_efficientnet('tf_efficientnet_b7', channel_multiplier=2.0, depth_multiplier=3.1, pretrained=pretrained, **kwargs) + return model + +@register_model +def tf_efficientnet_b8(pretrained=False, **kwargs) -> EfficientNet: + kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) + kwargs.setdefault('pad_type', 'same') + model = _gen_efficientnet('tf_efficientnet_b8', channel_multiplier=2.2, depth_multiplier=3.6, pretrained=pretrained, **kwargs) + return model + +@register_model +def tf_efficientnet_l2(pretrained=False, **kwargs) -> EfficientNet: + kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) + kwargs.setdefault('pad_type', 'same') + model = _gen_efficientnet('tf_efficientnet_l2', channel_multiplier=4.3, depth_multiplier=5.3, pretrained=pretrained, **kwargs) + return model + +@register_model +def tf_efficientnet_es(pretrained=False, **kwargs) -> EfficientNet: + kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) + kwargs.setdefault('pad_type', 'same') + model = _gen_efficientnet_edge('tf_efficientnet_es', channel_multiplier=1.0, depth_multiplier=1.0, pretrained=pretrained, **kwargs) + return model + +@register_model +def tf_efficientnet_em(pretrained=False, **kwargs) -> EfficientNet: + kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) + kwargs.setdefault('pad_type', 'same') + model = _gen_efficientnet_edge('tf_efficientnet_em', channel_multiplier=1.0, depth_multiplier=1.1, pretrained=pretrained, **kwargs) + return model + +@register_model +def tf_efficientnet_el(pretrained=False, **kwargs) -> EfficientNet: + kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) + kwargs.setdefault('pad_type', 'same') + model = _gen_efficientnet_edge('tf_efficientnet_el', channel_multiplier=1.2, depth_multiplier=1.4, pretrained=pretrained, **kwargs) + return model + +@register_model +def tf_efficientnet_cc_b0_4e(pretrained=False, **kwargs) -> EfficientNet: + kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) + kwargs.setdefault('pad_type', 'same') + model = _gen_efficientnet_condconv('tf_efficientnet_cc_b0_4e', channel_multiplier=1.0, depth_multiplier=1.0, pretrained=pretrained, **kwargs) + return model + +@register_model +def tf_efficientnet_cc_b0_8e(pretrained=False, **kwargs) -> EfficientNet: + kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) + kwargs.setdefault('pad_type', 'same') + model = _gen_efficientnet_condconv('tf_efficientnet_cc_b0_8e', channel_multiplier=1.0, depth_multiplier=1.0, experts_multiplier=2, pretrained=pretrained, **kwargs) + return model + +@register_model +def tf_efficientnet_cc_b1_8e(pretrained=False, **kwargs) -> EfficientNet: + kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) + kwargs.setdefault('pad_type', 'same') + model = _gen_efficientnet_condconv('tf_efficientnet_cc_b1_8e', channel_multiplier=1.0, depth_multiplier=1.1, experts_multiplier=2, pretrained=pretrained, **kwargs) + return model + +@register_model +def tf_efficientnet_lite0(pretrained=False, **kwargs) -> EfficientNet: + kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) + kwargs.setdefault('pad_type', 'same') + model = _gen_efficientnet_lite('tf_efficientnet_lite0', channel_multiplier=1.0, depth_multiplier=1.0, pretrained=pretrained, **kwargs) + return model + +@register_model +def tf_efficientnet_lite1(pretrained=False, **kwargs) -> EfficientNet: + kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) + kwargs.setdefault('pad_type', 'same') + model = _gen_efficientnet_lite('tf_efficientnet_lite1', channel_multiplier=1.0, depth_multiplier=1.1, pretrained=pretrained, **kwargs) + return model + +@register_model +def tf_efficientnet_lite2(pretrained=False, **kwargs) -> EfficientNet: + kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) + kwargs.setdefault('pad_type', 'same') + model = _gen_efficientnet_lite('tf_efficientnet_lite2', channel_multiplier=1.1, depth_multiplier=1.2, pretrained=pretrained, **kwargs) + return model + +@register_model +def tf_efficientnet_lite3(pretrained=False, **kwargs) -> EfficientNet: + kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) + kwargs.setdefault('pad_type', 'same') + model = _gen_efficientnet_lite('tf_efficientnet_lite3', channel_multiplier=1.2, depth_multiplier=1.4, pretrained=pretrained, **kwargs) + return model + +@register_model +def tf_efficientnet_lite4(pretrained=False, **kwargs) -> EfficientNet: + kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) + kwargs.setdefault('pad_type', 'same') + model = _gen_efficientnet_lite('tf_efficientnet_lite4', channel_multiplier=1.4, depth_multiplier=1.8, pretrained=pretrained, **kwargs) + return model + +@register_model +def tf_efficientnetv2_s(pretrained=False, **kwargs) -> EfficientNet: + kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) + kwargs.setdefault('pad_type', 'same') + model = _gen_efficientnetv2_s('tf_efficientnetv2_s', pretrained=pretrained, **kwargs) + return model + +@register_model +def tf_efficientnetv2_m(pretrained=False, **kwargs) -> EfficientNet: + kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) + kwargs.setdefault('pad_type', 'same') + model = _gen_efficientnetv2_m('tf_efficientnetv2_m', pretrained=pretrained, **kwargs) + return model + +@register_model +def tf_efficientnetv2_l(pretrained=False, **kwargs) -> EfficientNet: + kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) + kwargs.setdefault('pad_type', 'same') + model = _gen_efficientnetv2_l('tf_efficientnetv2_l', pretrained=pretrained, **kwargs) + return model + +@register_model +def tf_efficientnetv2_xl(pretrained=False, **kwargs) -> EfficientNet: + kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) + kwargs.setdefault('pad_type', 'same') + model = _gen_efficientnetv2_xl('tf_efficientnetv2_xl', pretrained=pretrained, **kwargs) + return model + +@register_model +def tf_efficientnetv2_b0(pretrained=False, **kwargs) -> EfficientNet: + kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) + kwargs.setdefault('pad_type', 'same') + model = _gen_efficientnetv2_base('tf_efficientnetv2_b0', pretrained=pretrained, **kwargs) + return model + +@register_model +def tf_efficientnetv2_b1(pretrained=False, **kwargs) -> EfficientNet: + kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) + kwargs.setdefault('pad_type', 'same') + model = _gen_efficientnetv2_base('tf_efficientnetv2_b1', channel_multiplier=1.0, depth_multiplier=1.1, pretrained=pretrained, **kwargs) + return model + +@register_model +def tf_efficientnetv2_b2(pretrained=False, **kwargs) -> EfficientNet: + kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) + kwargs.setdefault('pad_type', 'same') + model = _gen_efficientnetv2_base('tf_efficientnetv2_b2', channel_multiplier=1.1, depth_multiplier=1.2, pretrained=pretrained, **kwargs) + return model + +@register_model +def tf_efficientnetv2_b3(pretrained=False, **kwargs) -> EfficientNet: + kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) + kwargs.setdefault('pad_type', 'same') + model = _gen_efficientnetv2_base('tf_efficientnetv2_b3', channel_multiplier=1.2, depth_multiplier=1.4, pretrained=pretrained, **kwargs) + return model + +@register_model +def efficientnet_x_b3(pretrained=False, **kwargs) -> EfficientNet: + model = _gen_efficientnet_x('efficientnet_b3', channel_multiplier=1.2, depth_multiplier=1.4, pretrained=pretrained, **kwargs) + return model + +@register_model +def efficientnet_x_b5(pretrained=False, **kwargs) -> EfficientNet: + model = _gen_efficientnet_x('efficientnet_b5', channel_multiplier=1.6, depth_multiplier=2.2, pretrained=pretrained, **kwargs) + return model + +@register_model +def efficientnet_h_b5(pretrained=False, **kwargs) -> EfficientNet: + model = _gen_efficientnet_x('efficientnet_b5', channel_multiplier=1.92, depth_multiplier=2.2, version=2, pretrained=pretrained, **kwargs) + return model + +@register_model +def mixnet_s(pretrained=False, **kwargs) -> EfficientNet: + model = _gen_mixnet_s('mixnet_s', channel_multiplier=1.0, pretrained=pretrained, **kwargs) + return model + +@register_model +def mixnet_m(pretrained=False, **kwargs) -> EfficientNet: + model = _gen_mixnet_m('mixnet_m', channel_multiplier=1.0, pretrained=pretrained, **kwargs) + return model + +@register_model +def mixnet_l(pretrained=False, **kwargs) -> EfficientNet: + model = _gen_mixnet_m('mixnet_l', channel_multiplier=1.3, pretrained=pretrained, **kwargs) + return model + +@register_model +def mixnet_xl(pretrained=False, **kwargs) -> EfficientNet: + model = _gen_mixnet_m('mixnet_xl', channel_multiplier=1.6, depth_multiplier=1.2, pretrained=pretrained, **kwargs) + return model + +@register_model +def mixnet_xxl(pretrained=False, **kwargs) -> EfficientNet: + model = _gen_mixnet_m('mixnet_xxl', channel_multiplier=2.4, depth_multiplier=1.3, pretrained=pretrained, **kwargs) + return model + +@register_model +def tf_mixnet_s(pretrained=False, **kwargs) -> EfficientNet: + kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) + kwargs.setdefault('pad_type', 'same') + model = _gen_mixnet_s('tf_mixnet_s', channel_multiplier=1.0, pretrained=pretrained, **kwargs) + return model + +@register_model +def tf_mixnet_m(pretrained=False, **kwargs) -> EfficientNet: + kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) + kwargs.setdefault('pad_type', 'same') + model = _gen_mixnet_m('tf_mixnet_m', channel_multiplier=1.0, pretrained=pretrained, **kwargs) + return model + +@register_model +def tf_mixnet_l(pretrained=False, **kwargs) -> EfficientNet: + kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) + kwargs.setdefault('pad_type', 'same') + model = _gen_mixnet_m('tf_mixnet_l', channel_multiplier=1.3, pretrained=pretrained, **kwargs) + return model + +@register_model +def tinynet_a(pretrained=False, **kwargs) -> EfficientNet: + model = _gen_tinynet('tinynet_a', 1.0, 1.2, pretrained=pretrained, **kwargs) + return model + +@register_model +def tinynet_b(pretrained=False, **kwargs) -> EfficientNet: + model = _gen_tinynet('tinynet_b', 0.75, 1.1, pretrained=pretrained, **kwargs) + return model + +@register_model +def tinynet_c(pretrained=False, **kwargs) -> EfficientNet: + model = _gen_tinynet('tinynet_c', 0.54, 0.85, pretrained=pretrained, **kwargs) + return model + +@register_model +def tinynet_d(pretrained=False, **kwargs) -> EfficientNet: + model = _gen_tinynet('tinynet_d', 0.54, 0.695, pretrained=pretrained, **kwargs) + return model + +@register_model +def tinynet_e(pretrained=False, **kwargs) -> EfficientNet: + model = _gen_tinynet('tinynet_e', 0.51, 0.6, pretrained=pretrained, **kwargs) + return model + +@register_model +def mobilenet_edgetpu_100(pretrained=False, **kwargs) -> EfficientNet: + model = _gen_mobilenet_edgetpu('mobilenet_edgetpu_100', pretrained=pretrained, **kwargs) + return model + +@register_model +def mobilenet_edgetpu_v2_xs(pretrained=False, **kwargs) -> EfficientNet: + model = _gen_mobilenet_edgetpu('mobilenet_edgetpu_v2_xs', pretrained=pretrained, **kwargs) + return model + +@register_model +def mobilenet_edgetpu_v2_s(pretrained=False, **kwargs) -> EfficientNet: + model = _gen_mobilenet_edgetpu('mobilenet_edgetpu_v2_s', pretrained=pretrained, **kwargs) + return model + +@register_model +def mobilenet_edgetpu_v2_m(pretrained=False, **kwargs) -> EfficientNet: + model = _gen_mobilenet_edgetpu('mobilenet_edgetpu_v2_m', pretrained=pretrained, **kwargs) + return model + +@register_model +def mobilenet_edgetpu_v2_l(pretrained=False, **kwargs) -> EfficientNet: + model = _gen_mobilenet_edgetpu('mobilenet_edgetpu_v2_l', pretrained=pretrained, **kwargs) + return model + +@register_model +def test_efficientnet(pretrained=False, **kwargs) -> EfficientNet: + model = _gen_test_efficientnet('test_efficientnet', pretrained=pretrained, **kwargs) + return model +register_model_deprecations(__name__, {'tf_efficientnet_b0_ap': 'tf_efficientnet_b0.ap_in1k', 'tf_efficientnet_b1_ap': 'tf_efficientnet_b1.ap_in1k', 'tf_efficientnet_b2_ap': 'tf_efficientnet_b2.ap_in1k', 'tf_efficientnet_b3_ap': 'tf_efficientnet_b3.ap_in1k', 'tf_efficientnet_b4_ap': 'tf_efficientnet_b4.ap_in1k', 'tf_efficientnet_b5_ap': 'tf_efficientnet_b5.ap_in1k', 'tf_efficientnet_b6_ap': 'tf_efficientnet_b6.ap_in1k', 'tf_efficientnet_b7_ap': 'tf_efficientnet_b7.ap_in1k', 'tf_efficientnet_b8_ap': 'tf_efficientnet_b8.ap_in1k', 'tf_efficientnet_b0_ns': 'tf_efficientnet_b0.ns_jft_in1k', 'tf_efficientnet_b1_ns': 'tf_efficientnet_b1.ns_jft_in1k', 'tf_efficientnet_b2_ns': 'tf_efficientnet_b2.ns_jft_in1k', 'tf_efficientnet_b3_ns': 'tf_efficientnet_b3.ns_jft_in1k', 'tf_efficientnet_b4_ns': 'tf_efficientnet_b4.ns_jft_in1k', 'tf_efficientnet_b5_ns': 'tf_efficientnet_b5.ns_jft_in1k', 'tf_efficientnet_b6_ns': 'tf_efficientnet_b6.ns_jft_in1k', 'tf_efficientnet_b7_ns': 'tf_efficientnet_b7.ns_jft_in1k', 'tf_efficientnet_l2_ns_475': 'tf_efficientnet_l2.ns_jft_in1k_475', 'tf_efficientnet_l2_ns': 'tf_efficientnet_l2.ns_jft_in1k', 'tf_efficientnetv2_s_in21ft1k': 'tf_efficientnetv2_s.in21k_ft_in1k', 'tf_efficientnetv2_m_in21ft1k': 'tf_efficientnetv2_m.in21k_ft_in1k', 'tf_efficientnetv2_l_in21ft1k': 'tf_efficientnetv2_l.in21k_ft_in1k', 'tf_efficientnetv2_xl_in21ft1k': 'tf_efficientnetv2_xl.in21k_ft_in1k', 'tf_efficientnetv2_s_in21k': 'tf_efficientnetv2_s.in21k', 'tf_efficientnetv2_m_in21k': 'tf_efficientnetv2_m.in21k', 'tf_efficientnetv2_l_in21k': 'tf_efficientnetv2_l.in21k', 'tf_efficientnetv2_xl_in21k': 'tf_efficientnetv2_xl.in21k', 'efficientnet_b2a': 'efficientnet_b2', 'efficientnet_b3a': 'efficientnet_b3', 'mnasnet_a1': 'semnasnet_100', 'mnasnet_b1': 'mnasnet_100'}) + +# File: pytorch-image-models-main/timm/models/efficientvit_mit.py +"""""" +__all__ = ['EfficientVit', 'EfficientVitLarge'] +from typing import List, Optional +from functools import partial +import torch +import torch.nn as nn +import torch.nn.functional as F +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from timm.layers import SelectAdaptivePool2d, create_conv2d, GELUTanh +from ._builder import build_model_with_cfg +from ._features_fx import register_notrace_module +from ._manipulate import checkpoint_seq +from ._registry import register_model, generate_default_cfgs + +def val2list(x: list or tuple or any, repeat_time=1): + if isinstance(x, (list, tuple)): + return list(x) + return [x for _ in range(repeat_time)] + +def val2tuple(x: list or tuple or any, min_len: int=1, idx_repeat: int=-1): + x = val2list(x) + if len(x) > 0: + x[idx_repeat:idx_repeat] = [x[idx_repeat] for _ in range(min_len - len(x))] + return tuple(x) + +def get_same_padding(kernel_size: int or tuple[int, ...]) -> int or tuple[int, ...]: + if isinstance(kernel_size, tuple): + return tuple([get_same_padding(ks) for ks in kernel_size]) + else: + assert kernel_size % 2 > 0, 'kernel size should be odd number' + return kernel_size // 2 + +class ConvNormAct(nn.Module): + + def __init__(self, in_channels: int, out_channels: int, kernel_size=3, stride=1, dilation=1, groups=1, bias=False, dropout=0.0, norm_layer=nn.BatchNorm2d, act_layer=nn.ReLU): + super(ConvNormAct, self).__init__() + self.dropout = nn.Dropout(dropout, inplace=False) + self.conv = create_conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, dilation=dilation, groups=groups, bias=bias) + self.norm = norm_layer(num_features=out_channels) if norm_layer else nn.Identity() + self.act = act_layer(inplace=True) if act_layer is not None else nn.Identity() + + def forward(self, x): + x = self.dropout(x) + x = self.conv(x) + x = self.norm(x) + x = self.act(x) + return x + +class DSConv(nn.Module): + + def __init__(self, in_channels: int, out_channels: int, kernel_size=3, stride=1, use_bias=False, norm_layer=(nn.BatchNorm2d, nn.BatchNorm2d), act_layer=(nn.ReLU6, None)): + super(DSConv, self).__init__() + use_bias = val2tuple(use_bias, 2) + norm_layer = val2tuple(norm_layer, 2) + act_layer = val2tuple(act_layer, 2) + self.depth_conv = ConvNormAct(in_channels, in_channels, kernel_size, stride, groups=in_channels, norm_layer=norm_layer[0], act_layer=act_layer[0], bias=use_bias[0]) + self.point_conv = ConvNormAct(in_channels, out_channels, 1, norm_layer=norm_layer[1], act_layer=act_layer[1], bias=use_bias[1]) + + def forward(self, x): + x = self.depth_conv(x) + x = self.point_conv(x) + return x + +class ConvBlock(nn.Module): + + def __init__(self, in_channels: int, out_channels: int, kernel_size=3, stride=1, mid_channels=None, expand_ratio=1, use_bias=False, norm_layer=(nn.BatchNorm2d, nn.BatchNorm2d), act_layer=(nn.ReLU6, None)): + super(ConvBlock, self).__init__() + use_bias = val2tuple(use_bias, 2) + norm_layer = val2tuple(norm_layer, 2) + act_layer = val2tuple(act_layer, 2) + mid_channels = mid_channels or round(in_channels * expand_ratio) + self.conv1 = ConvNormAct(in_channels, mid_channels, kernel_size, stride, norm_layer=norm_layer[0], act_layer=act_layer[0], bias=use_bias[0]) + self.conv2 = ConvNormAct(mid_channels, out_channels, kernel_size, 1, norm_layer=norm_layer[1], act_layer=act_layer[1], bias=use_bias[1]) + + def forward(self, x): + x = self.conv1(x) + x = self.conv2(x) + return x + +class MBConv(nn.Module): + + def __init__(self, in_channels: int, out_channels: int, kernel_size=3, stride=1, mid_channels=None, expand_ratio=6, use_bias=False, norm_layer=(nn.BatchNorm2d, nn.BatchNorm2d, nn.BatchNorm2d), act_layer=(nn.ReLU6, nn.ReLU6, None)): + super(MBConv, self).__init__() + use_bias = val2tuple(use_bias, 3) + norm_layer = val2tuple(norm_layer, 3) + act_layer = val2tuple(act_layer, 3) + mid_channels = mid_channels or round(in_channels * expand_ratio) + self.inverted_conv = ConvNormAct(in_channels, mid_channels, 1, stride=1, norm_layer=norm_layer[0], act_layer=act_layer[0], bias=use_bias[0]) + self.depth_conv = ConvNormAct(mid_channels, mid_channels, kernel_size, stride=stride, groups=mid_channels, norm_layer=norm_layer[1], act_layer=act_layer[1], bias=use_bias[1]) + self.point_conv = ConvNormAct(mid_channels, out_channels, 1, norm_layer=norm_layer[2], act_layer=act_layer[2], bias=use_bias[2]) + + def forward(self, x): + x = self.inverted_conv(x) + x = self.depth_conv(x) + x = self.point_conv(x) + return x + +class FusedMBConv(nn.Module): + + def __init__(self, in_channels: int, out_channels: int, kernel_size=3, stride=1, mid_channels=None, expand_ratio=6, groups=1, use_bias=False, norm_layer=(nn.BatchNorm2d, nn.BatchNorm2d), act_layer=(nn.ReLU6, None)): + super(FusedMBConv, self).__init__() + use_bias = val2tuple(use_bias, 2) + norm_layer = val2tuple(norm_layer, 2) + act_layer = val2tuple(act_layer, 2) + mid_channels = mid_channels or round(in_channels * expand_ratio) + self.spatial_conv = ConvNormAct(in_channels, mid_channels, kernel_size, stride=stride, groups=groups, norm_layer=norm_layer[0], act_layer=act_layer[0], bias=use_bias[0]) + self.point_conv = ConvNormAct(mid_channels, out_channels, 1, norm_layer=norm_layer[1], act_layer=act_layer[1], bias=use_bias[1]) + + def forward(self, x): + x = self.spatial_conv(x) + x = self.point_conv(x) + return x + +class LiteMLA(nn.Module): + + def __init__(self, in_channels: int, out_channels: int, heads: int or None=None, heads_ratio: float=1.0, dim=8, use_bias=False, norm_layer=(None, nn.BatchNorm2d), act_layer=(None, None), kernel_func=nn.ReLU, scales=(5,), eps=1e-05): + super(LiteMLA, self).__init__() + self.eps = eps + heads = heads or int(in_channels // dim * heads_ratio) + total_dim = heads * dim + use_bias = val2tuple(use_bias, 2) + norm_layer = val2tuple(norm_layer, 2) + act_layer = val2tuple(act_layer, 2) + self.dim = dim + self.qkv = ConvNormAct(in_channels, 3 * total_dim, 1, bias=use_bias[0], norm_layer=norm_layer[0], act_layer=act_layer[0]) + self.aggreg = nn.ModuleList([nn.Sequential(nn.Conv2d(3 * total_dim, 3 * total_dim, scale, padding=get_same_padding(scale), groups=3 * total_dim, bias=use_bias[0]), nn.Conv2d(3 * total_dim, 3 * total_dim, 1, groups=3 * heads, bias=use_bias[0])) for scale in scales]) + self.kernel_func = kernel_func(inplace=False) + self.proj = ConvNormAct(total_dim * (1 + len(scales)), out_channels, 1, bias=use_bias[1], norm_layer=norm_layer[1], act_layer=act_layer[1]) + + def _attn(self, q, k, v): + dtype = v.dtype + (q, k, v) = (q.float(), k.float(), v.float()) + kv = k.transpose(-1, -2) @ v + out = q @ kv + out = out[..., :-1] / (out[..., -1:] + self.eps) + return out.to(dtype) + + def forward(self, x): + (B, _, H, W) = x.shape + qkv = self.qkv(x) + multi_scale_qkv = [qkv] + for op in self.aggreg: + multi_scale_qkv.append(op(qkv)) + multi_scale_qkv = torch.cat(multi_scale_qkv, dim=1) + multi_scale_qkv = multi_scale_qkv.reshape(B, -1, 3 * self.dim, H * W).transpose(-1, -2) + (q, k, v) = multi_scale_qkv.chunk(3, dim=-1) + q = self.kernel_func(q) + k = self.kernel_func(k) + v = F.pad(v, (0, 1), mode='constant', value=1.0) + if not torch.jit.is_scripting(): + with torch.autocast(device_type=v.device.type, enabled=False): + out = self._attn(q, k, v) + else: + out = self._attn(q, k, v) + out = out.transpose(-1, -2).reshape(B, -1, H, W) + out = self.proj(out) + return out +register_notrace_module(LiteMLA) + +class EfficientVitBlock(nn.Module): + + def __init__(self, in_channels, heads_ratio=1.0, head_dim=32, expand_ratio=4, norm_layer=nn.BatchNorm2d, act_layer=nn.Hardswish): + super(EfficientVitBlock, self).__init__() + self.context_module = ResidualBlock(LiteMLA(in_channels=in_channels, out_channels=in_channels, heads_ratio=heads_ratio, dim=head_dim, norm_layer=(None, norm_layer)), nn.Identity()) + self.local_module = ResidualBlock(MBConv(in_channels=in_channels, out_channels=in_channels, expand_ratio=expand_ratio, use_bias=(True, True, False), norm_layer=(None, None, norm_layer), act_layer=(act_layer, act_layer, None)), nn.Identity()) + + def forward(self, x): + x = self.context_module(x) + x = self.local_module(x) + return x + +class ResidualBlock(nn.Module): + + def __init__(self, main: Optional[nn.Module], shortcut: Optional[nn.Module]=None, pre_norm: Optional[nn.Module]=None): + super(ResidualBlock, self).__init__() + self.pre_norm = pre_norm if pre_norm is not None else nn.Identity() + self.main = main + self.shortcut = shortcut + + def forward(self, x): + res = self.main(self.pre_norm(x)) + if self.shortcut is not None: + res = res + self.shortcut(x) + return res + +def build_local_block(in_channels: int, out_channels: int, stride: int, expand_ratio: float, norm_layer: str, act_layer: str, fewer_norm: bool=False, block_type: str='default'): + assert block_type in ['default', 'large', 'fused'] + if expand_ratio == 1: + if block_type == 'default': + block = DSConv(in_channels=in_channels, out_channels=out_channels, stride=stride, use_bias=(True, False) if fewer_norm else False, norm_layer=(None, norm_layer) if fewer_norm else norm_layer, act_layer=(act_layer, None)) + else: + block = ConvBlock(in_channels=in_channels, out_channels=out_channels, stride=stride, use_bias=(True, False) if fewer_norm else False, norm_layer=(None, norm_layer) if fewer_norm else norm_layer, act_layer=(act_layer, None)) + elif block_type == 'default': + block = MBConv(in_channels=in_channels, out_channels=out_channels, stride=stride, expand_ratio=expand_ratio, use_bias=(True, True, False) if fewer_norm else False, norm_layer=(None, None, norm_layer) if fewer_norm else norm_layer, act_layer=(act_layer, act_layer, None)) + else: + block = FusedMBConv(in_channels=in_channels, out_channels=out_channels, stride=stride, expand_ratio=expand_ratio, use_bias=(True, False) if fewer_norm else False, norm_layer=(None, norm_layer) if fewer_norm else norm_layer, act_layer=(act_layer, None)) + return block + +class Stem(nn.Sequential): + + def __init__(self, in_chs, out_chs, depth, norm_layer, act_layer, block_type='default'): + super().__init__() + self.stride = 2 + self.add_module('in_conv', ConvNormAct(in_chs, out_chs, kernel_size=3, stride=2, norm_layer=norm_layer, act_layer=act_layer)) + stem_block = 0 + for _ in range(depth): + self.add_module(f'res{stem_block}', ResidualBlock(build_local_block(in_channels=out_chs, out_channels=out_chs, stride=1, expand_ratio=1, norm_layer=norm_layer, act_layer=act_layer, block_type=block_type), nn.Identity())) + stem_block += 1 + +class EfficientVitStage(nn.Module): + + def __init__(self, in_chs, out_chs, depth, norm_layer, act_layer, expand_ratio, head_dim, vit_stage=False): + super(EfficientVitStage, self).__init__() + blocks = [ResidualBlock(build_local_block(in_channels=in_chs, out_channels=out_chs, stride=2, expand_ratio=expand_ratio, norm_layer=norm_layer, act_layer=act_layer, fewer_norm=vit_stage), None)] + in_chs = out_chs + if vit_stage: + for _ in range(depth): + blocks.append(EfficientVitBlock(in_channels=in_chs, head_dim=head_dim, expand_ratio=expand_ratio, norm_layer=norm_layer, act_layer=act_layer)) + else: + for i in range(1, depth): + blocks.append(ResidualBlock(build_local_block(in_channels=in_chs, out_channels=out_chs, stride=1, expand_ratio=expand_ratio, norm_layer=norm_layer, act_layer=act_layer), nn.Identity())) + self.blocks = nn.Sequential(*blocks) + + def forward(self, x): + return self.blocks(x) + +class EfficientVitLargeStage(nn.Module): + + def __init__(self, in_chs, out_chs, depth, norm_layer, act_layer, head_dim, vit_stage=False, fewer_norm=False): + super(EfficientVitLargeStage, self).__init__() + blocks = [ResidualBlock(build_local_block(in_channels=in_chs, out_channels=out_chs, stride=2, expand_ratio=24 if vit_stage else 16, norm_layer=norm_layer, act_layer=act_layer, fewer_norm=vit_stage or fewer_norm, block_type='default' if fewer_norm else 'fused'), None)] + in_chs = out_chs + if vit_stage: + for _ in range(depth): + blocks.append(EfficientVitBlock(in_channels=in_chs, head_dim=head_dim, expand_ratio=6, norm_layer=norm_layer, act_layer=act_layer)) + else: + for i in range(depth): + blocks.append(ResidualBlock(build_local_block(in_channels=in_chs, out_channels=out_chs, stride=1, expand_ratio=4, norm_layer=norm_layer, act_layer=act_layer, fewer_norm=fewer_norm, block_type='default' if fewer_norm else 'fused'), nn.Identity())) + self.blocks = nn.Sequential(*blocks) + + def forward(self, x): + return self.blocks(x) + +class ClassifierHead(nn.Module): + + def __init__(self, in_channels: int, widths: List[int], num_classes: int=1000, dropout: float=0.0, norm_layer=nn.BatchNorm2d, act_layer=nn.Hardswish, pool_type: str='avg', norm_eps: float=1e-05): + super(ClassifierHead, self).__init__() + self.widths = widths + self.num_features = widths[-1] + assert pool_type, 'Cannot disable pooling' + self.in_conv = ConvNormAct(in_channels, widths[0], 1, norm_layer=norm_layer, act_layer=act_layer) + self.global_pool = SelectAdaptivePool2d(pool_type=pool_type, flatten=True) + self.classifier = nn.Sequential(nn.Linear(widths[0], widths[1], bias=False), nn.LayerNorm(widths[1], eps=norm_eps), act_layer(inplace=True) if act_layer is not None else nn.Identity(), nn.Dropout(dropout, inplace=False), nn.Linear(widths[1], num_classes, bias=True) if num_classes > 0 else nn.Identity()) + + def reset(self, num_classes: int, pool_type: Optional[str]=None): + if pool_type is not None: + assert pool_type, 'Cannot disable pooling' + self.global_pool = SelectAdaptivePool2d(pool_type=pool_type, flatten=True) + if num_classes > 0: + self.classifier[-1] = nn.Linear(self.num_features, num_classes, bias=True) + else: + self.classifier[-1] = nn.Identity() + + def forward(self, x, pre_logits: bool=False): + x = self.in_conv(x) + x = self.global_pool(x) + if pre_logits: + x = self.classifier[0](x) + x = self.classifier[1](x) + x = self.classifier[2](x) + x = self.classifier[3](x) + else: + x = self.classifier(x) + return x + +class EfficientVit(nn.Module): + + def __init__(self, in_chans=3, widths=(), depths=(), head_dim=32, expand_ratio=4, norm_layer=nn.BatchNorm2d, act_layer=nn.Hardswish, global_pool='avg', head_widths=(), drop_rate=0.0, num_classes=1000): + super(EfficientVit, self).__init__() + self.grad_checkpointing = False + self.global_pool = global_pool + self.num_classes = num_classes + self.stem = Stem(in_chans, widths[0], depths[0], norm_layer, act_layer) + stride = self.stem.stride + self.feature_info = [] + self.stages = nn.Sequential() + in_channels = widths[0] + for (i, (w, d)) in enumerate(zip(widths[1:], depths[1:])): + self.stages.append(EfficientVitStage(in_channels, w, depth=d, norm_layer=norm_layer, act_layer=act_layer, expand_ratio=expand_ratio, head_dim=head_dim, vit_stage=i >= 2)) + stride *= 2 + in_channels = w + self.feature_info += [dict(num_chs=in_channels, reduction=stride, module=f'stages.{i}')] + self.num_features = in_channels + self.head = ClassifierHead(self.num_features, widths=head_widths, num_classes=num_classes, dropout=drop_rate, pool_type=self.global_pool) + self.head_hidden_size = self.head.num_features + + @torch.jit.ignore + def group_matcher(self, coarse=False): + matcher = dict(stem='^stem', blocks='^stages\\.(\\d+)' if coarse else [('^stages\\.(\\d+).downsample', (0,)), ('^stages\\.(\\d+)\\.\\w+\\.(\\d+)', None)]) + return matcher + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + self.grad_checkpointing = enable + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.head.classifier[-1] + + def reset_classifier(self, num_classes: int, global_pool: Optional[str]=None): + self.num_classes = num_classes + self.head.reset(num_classes, global_pool) + + def forward_features(self, x): + x = self.stem(x) + if self.grad_checkpointing and (not torch.jit.is_scripting()): + x = checkpoint_seq(self.stages, x) + else: + x = self.stages(x) + return x + + def forward_head(self, x, pre_logits: bool=False): + return self.head(x, pre_logits=pre_logits) if pre_logits else self.head(x) + + def forward(self, x): + x = self.forward_features(x) + x = self.forward_head(x) + return x + +class EfficientVitLarge(nn.Module): + + def __init__(self, in_chans=3, widths=(), depths=(), head_dim=32, norm_layer=nn.BatchNorm2d, act_layer=GELUTanh, global_pool='avg', head_widths=(), drop_rate=0.0, num_classes=1000, norm_eps=1e-07): + super(EfficientVitLarge, self).__init__() + self.grad_checkpointing = False + self.global_pool = global_pool + self.num_classes = num_classes + self.norm_eps = norm_eps + norm_layer = partial(norm_layer, eps=self.norm_eps) + self.stem = Stem(in_chans, widths[0], depths[0], norm_layer, act_layer, block_type='large') + stride = self.stem.stride + self.feature_info = [] + self.stages = nn.Sequential() + in_channels = widths[0] + for (i, (w, d)) in enumerate(zip(widths[1:], depths[1:])): + self.stages.append(EfficientVitLargeStage(in_channels, w, depth=d, norm_layer=norm_layer, act_layer=act_layer, head_dim=head_dim, vit_stage=i >= 3, fewer_norm=i >= 2)) + stride *= 2 + in_channels = w + self.feature_info += [dict(num_chs=in_channels, reduction=stride, module=f'stages.{i}')] + self.num_features = in_channels + self.head = ClassifierHead(self.num_features, widths=head_widths, num_classes=num_classes, dropout=drop_rate, pool_type=self.global_pool, act_layer=act_layer, norm_eps=self.norm_eps) + self.head_hidden_size = self.head.num_features + + @torch.jit.ignore + def group_matcher(self, coarse=False): + matcher = dict(stem='^stem', blocks='^stages\\.(\\d+)' if coarse else [('^stages\\.(\\d+).downsample', (0,)), ('^stages\\.(\\d+)\\.\\w+\\.(\\d+)', None)]) + return matcher + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + self.grad_checkpointing = enable + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.head.classifier[-1] + + def reset_classifier(self, num_classes: int, global_pool: Optional[str]=None): + self.num_classes = num_classes + self.head.reset(num_classes, global_pool) + + def forward_features(self, x): + x = self.stem(x) + if self.grad_checkpointing and (not torch.jit.is_scripting()): + x = checkpoint_seq(self.stages, x) + else: + x = self.stages(x) + return x + + def forward_head(self, x, pre_logits: bool=False): + return self.head(x, pre_logits=pre_logits) if pre_logits else self.head(x) + + def forward(self, x): + x = self.forward_features(x) + x = self.forward_head(x) + return x + +def _cfg(url='', **kwargs): + return {'url': url, 'num_classes': 1000, 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'stem.in_conv.conv', 'classifier': 'head.classifier.4', 'crop_pct': 0.95, 'input_size': (3, 224, 224), 'pool_size': (7, 7), **kwargs} +default_cfgs = generate_default_cfgs({'efficientvit_b0.r224_in1k': _cfg(hf_hub_id='timm/'), 'efficientvit_b1.r224_in1k': _cfg(hf_hub_id='timm/'), 'efficientvit_b1.r256_in1k': _cfg(hf_hub_id='timm/', input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0), 'efficientvit_b1.r288_in1k': _cfg(hf_hub_id='timm/', input_size=(3, 288, 288), pool_size=(9, 9), crop_pct=1.0), 'efficientvit_b2.r224_in1k': _cfg(hf_hub_id='timm/'), 'efficientvit_b2.r256_in1k': _cfg(hf_hub_id='timm/', input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0), 'efficientvit_b2.r288_in1k': _cfg(hf_hub_id='timm/', input_size=(3, 288, 288), pool_size=(9, 9), crop_pct=1.0), 'efficientvit_b3.r224_in1k': _cfg(hf_hub_id='timm/'), 'efficientvit_b3.r256_in1k': _cfg(hf_hub_id='timm/', input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0), 'efficientvit_b3.r288_in1k': _cfg(hf_hub_id='timm/', input_size=(3, 288, 288), pool_size=(9, 9), crop_pct=1.0), 'efficientvit_l1.r224_in1k': _cfg(hf_hub_id='timm/', crop_pct=1.0), 'efficientvit_l2.r224_in1k': _cfg(hf_hub_id='timm/', crop_pct=1.0), 'efficientvit_l2.r256_in1k': _cfg(hf_hub_id='timm/', input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0), 'efficientvit_l2.r288_in1k': _cfg(hf_hub_id='timm/', input_size=(3, 288, 288), pool_size=(9, 9), crop_pct=1.0), 'efficientvit_l2.r384_in1k': _cfg(hf_hub_id='timm/', input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0), 'efficientvit_l3.r224_in1k': _cfg(hf_hub_id='timm/', crop_pct=1.0), 'efficientvit_l3.r256_in1k': _cfg(hf_hub_id='timm/', input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0), 'efficientvit_l3.r320_in1k': _cfg(hf_hub_id='timm/', input_size=(3, 320, 320), pool_size=(10, 10), crop_pct=1.0), 'efficientvit_l3.r384_in1k': _cfg(hf_hub_id='timm/', input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0)}) + +def _create_efficientvit(variant, pretrained=False, **kwargs): + out_indices = kwargs.pop('out_indices', (0, 1, 2, 3)) + model = build_model_with_cfg(EfficientVit, variant, pretrained, feature_cfg=dict(flatten_sequential=True, out_indices=out_indices), **kwargs) + return model + +def _create_efficientvit_large(variant, pretrained=False, **kwargs): + out_indices = kwargs.pop('out_indices', (0, 1, 2, 3)) + model = build_model_with_cfg(EfficientVitLarge, variant, pretrained, feature_cfg=dict(flatten_sequential=True, out_indices=out_indices), **kwargs) + return model + +@register_model +def efficientvit_b0(pretrained=False, **kwargs): + model_args = dict(widths=(8, 16, 32, 64, 128), depths=(1, 2, 2, 2, 2), head_dim=16, head_widths=(1024, 1280)) + return _create_efficientvit('efficientvit_b0', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def efficientvit_b1(pretrained=False, **kwargs): + model_args = dict(widths=(16, 32, 64, 128, 256), depths=(1, 2, 3, 3, 4), head_dim=16, head_widths=(1536, 1600)) + return _create_efficientvit('efficientvit_b1', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def efficientvit_b2(pretrained=False, **kwargs): + model_args = dict(widths=(24, 48, 96, 192, 384), depths=(1, 3, 4, 4, 6), head_dim=32, head_widths=(2304, 2560)) + return _create_efficientvit('efficientvit_b2', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def efficientvit_b3(pretrained=False, **kwargs): + model_args = dict(widths=(32, 64, 128, 256, 512), depths=(1, 4, 6, 6, 9), head_dim=32, head_widths=(2304, 2560)) + return _create_efficientvit('efficientvit_b3', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def efficientvit_l1(pretrained=False, **kwargs): + model_args = dict(widths=(32, 64, 128, 256, 512), depths=(1, 1, 1, 6, 6), head_dim=32, head_widths=(3072, 3200)) + return _create_efficientvit_large('efficientvit_l1', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def efficientvit_l2(pretrained=False, **kwargs): + model_args = dict(widths=(32, 64, 128, 256, 512), depths=(1, 2, 2, 8, 8), head_dim=32, head_widths=(3072, 3200)) + return _create_efficientvit_large('efficientvit_l2', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def efficientvit_l3(pretrained=False, **kwargs): + model_args = dict(widths=(64, 128, 256, 512, 1024), depths=(1, 2, 2, 8, 8), head_dim=32, head_widths=(6144, 6400)) + return _create_efficientvit_large('efficientvit_l3', pretrained=pretrained, **dict(model_args, **kwargs)) + +# File: pytorch-image-models-main/timm/models/efficientvit_msra.py +"""""" +__all__ = ['EfficientVitMsra'] +import itertools +from collections import OrderedDict +from typing import Dict, Optional +import torch +import torch.nn as nn +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from timm.layers import SqueezeExcite, SelectAdaptivePool2d, trunc_normal_, _assert +from ._builder import build_model_with_cfg +from ._manipulate import checkpoint_seq +from ._registry import register_model, generate_default_cfgs + +class ConvNorm(torch.nn.Sequential): + + def __init__(self, in_chs, out_chs, ks=1, stride=1, pad=0, dilation=1, groups=1, bn_weight_init=1): + super().__init__() + self.conv = nn.Conv2d(in_chs, out_chs, ks, stride, pad, dilation, groups, bias=False) + self.bn = nn.BatchNorm2d(out_chs) + torch.nn.init.constant_(self.bn.weight, bn_weight_init) + torch.nn.init.constant_(self.bn.bias, 0) + + @torch.no_grad() + def fuse(self): + (c, bn) = (self.conv, self.bn) + w = bn.weight / (bn.running_var + bn.eps) ** 0.5 + w = c.weight * w[:, None, None, None] + b = bn.bias - bn.running_mean * bn.weight / (bn.running_var + bn.eps) ** 0.5 + m = torch.nn.Conv2d(w.size(1) * self.conv.groups, w.size(0), w.shape[2:], stride=self.conv.stride, padding=self.conv.padding, dilation=self.conv.dilation, groups=self.conv.groups) + m.weight.data.copy_(w) + m.bias.data.copy_(b) + return m + +class NormLinear(torch.nn.Sequential): + + def __init__(self, in_features, out_features, bias=True, std=0.02, drop=0.0): + super().__init__() + self.bn = nn.BatchNorm1d(in_features) + self.drop = nn.Dropout(drop) + self.linear = nn.Linear(in_features, out_features, bias=bias) + trunc_normal_(self.linear.weight, std=std) + if self.linear.bias is not None: + nn.init.constant_(self.linear.bias, 0) + + @torch.no_grad() + def fuse(self): + (bn, linear) = (self.bn, self.linear) + w = bn.weight / (bn.running_var + bn.eps) ** 0.5 + b = bn.bias - self.bn.running_mean * self.bn.weight / (bn.running_var + bn.eps) ** 0.5 + w = linear.weight * w[None, :] + if linear.bias is None: + b = b @ self.linear.weight.T + else: + b = (linear.weight @ b[:, None]).view(-1) + self.linear.bias + m = torch.nn.Linear(w.size(1), w.size(0)) + m.weight.data.copy_(w) + m.bias.data.copy_(b) + return m + +class PatchMerging(torch.nn.Module): + + def __init__(self, dim, out_dim): + super().__init__() + hid_dim = int(dim * 4) + self.conv1 = ConvNorm(dim, hid_dim, 1, 1, 0) + self.act = torch.nn.ReLU() + self.conv2 = ConvNorm(hid_dim, hid_dim, 3, 2, 1, groups=hid_dim) + self.se = SqueezeExcite(hid_dim, 0.25) + self.conv3 = ConvNorm(hid_dim, out_dim, 1, 1, 0) + + def forward(self, x): + x = self.conv3(self.se(self.act(self.conv2(self.act(self.conv1(x)))))) + return x + +class ResidualDrop(torch.nn.Module): + + def __init__(self, m, drop=0.0): + super().__init__() + self.m = m + self.drop = drop + + def forward(self, x): + if self.training and self.drop > 0: + return x + self.m(x) * torch.rand(x.size(0), 1, 1, 1, device=x.device).ge_(self.drop).div(1 - self.drop).detach() + else: + return x + self.m(x) + +class ConvMlp(torch.nn.Module): + + def __init__(self, ed, h): + super().__init__() + self.pw1 = ConvNorm(ed, h) + self.act = torch.nn.ReLU() + self.pw2 = ConvNorm(h, ed, bn_weight_init=0) + + def forward(self, x): + x = self.pw2(self.act(self.pw1(x))) + return x + +class CascadedGroupAttention(torch.nn.Module): + attention_bias_cache: Dict[str, torch.Tensor] + '' + + def __init__(self, dim, key_dim, num_heads=8, attn_ratio=4, resolution=14, kernels=(5, 5, 5, 5)): + super().__init__() + self.num_heads = num_heads + self.scale = key_dim ** (-0.5) + self.key_dim = key_dim + self.val_dim = int(attn_ratio * key_dim) + self.attn_ratio = attn_ratio + qkvs = [] + dws = [] + for i in range(num_heads): + qkvs.append(ConvNorm(dim // num_heads, self.key_dim * 2 + self.val_dim)) + dws.append(ConvNorm(self.key_dim, self.key_dim, kernels[i], 1, kernels[i] // 2, groups=self.key_dim)) + self.qkvs = torch.nn.ModuleList(qkvs) + self.dws = torch.nn.ModuleList(dws) + self.proj = torch.nn.Sequential(torch.nn.ReLU(), ConvNorm(self.val_dim * num_heads, dim, bn_weight_init=0)) + points = list(itertools.product(range(resolution), range(resolution))) + N = len(points) + attention_offsets = {} + idxs = [] + for p1 in points: + for p2 in points: + offset = (abs(p1[0] - p2[0]), abs(p1[1] - p2[1])) + if offset not in attention_offsets: + attention_offsets[offset] = len(attention_offsets) + idxs.append(attention_offsets[offset]) + self.attention_biases = torch.nn.Parameter(torch.zeros(num_heads, len(attention_offsets))) + self.register_buffer('attention_bias_idxs', torch.LongTensor(idxs).view(N, N), persistent=False) + self.attention_bias_cache = {} + + @torch.no_grad() + def train(self, mode=True): + super().train(mode) + if mode and self.attention_bias_cache: + self.attention_bias_cache = {} + + def get_attention_biases(self, device: torch.device) -> torch.Tensor: + if torch.jit.is_tracing() or self.training: + return self.attention_biases[:, self.attention_bias_idxs] + else: + device_key = str(device) + if device_key not in self.attention_bias_cache: + self.attention_bias_cache[device_key] = self.attention_biases[:, self.attention_bias_idxs] + return self.attention_bias_cache[device_key] + + def forward(self, x): + (B, C, H, W) = x.shape + feats_in = x.chunk(len(self.qkvs), dim=1) + feats_out = [] + feat = feats_in[0] + attn_bias = self.get_attention_biases(x.device) + for (head_idx, (qkv, dws)) in enumerate(zip(self.qkvs, self.dws)): + if head_idx > 0: + feat = feat + feats_in[head_idx] + feat = qkv(feat) + (q, k, v) = feat.view(B, -1, H, W).split([self.key_dim, self.key_dim, self.val_dim], dim=1) + q = dws(q) + (q, k, v) = (q.flatten(2), k.flatten(2), v.flatten(2)) + q = q * self.scale + attn = q.transpose(-2, -1) @ k + attn = attn + attn_bias[head_idx] + attn = attn.softmax(dim=-1) + feat = v @ attn.transpose(-2, -1) + feat = feat.view(B, self.val_dim, H, W) + feats_out.append(feat) + x = self.proj(torch.cat(feats_out, 1)) + return x + +class LocalWindowAttention(torch.nn.Module): + + def __init__(self, dim, key_dim, num_heads=8, attn_ratio=4, resolution=14, window_resolution=7, kernels=(5, 5, 5, 5)): + super().__init__() + self.dim = dim + self.num_heads = num_heads + self.resolution = resolution + assert window_resolution > 0, 'window_size must be greater than 0' + self.window_resolution = window_resolution + window_resolution = min(window_resolution, resolution) + self.attn = CascadedGroupAttention(dim, key_dim, num_heads, attn_ratio=attn_ratio, resolution=window_resolution, kernels=kernels) + + def forward(self, x): + H = W = self.resolution + (B, C, H_, W_) = x.shape + _assert(H == H_, f'input feature has wrong size, expect {(H, W)}, got {(H_, W_)}') + _assert(W == W_, f'input feature has wrong size, expect {(H, W)}, got {(H_, W_)}') + if H <= self.window_resolution and W <= self.window_resolution: + x = self.attn(x) + else: + x = x.permute(0, 2, 3, 1) + pad_b = (self.window_resolution - H % self.window_resolution) % self.window_resolution + pad_r = (self.window_resolution - W % self.window_resolution) % self.window_resolution + x = torch.nn.functional.pad(x, (0, 0, 0, pad_r, 0, pad_b)) + (pH, pW) = (H + pad_b, W + pad_r) + nH = pH // self.window_resolution + nW = pW // self.window_resolution + x = x.view(B, nH, self.window_resolution, nW, self.window_resolution, C).transpose(2, 3) + x = x.reshape(B * nH * nW, self.window_resolution, self.window_resolution, C).permute(0, 3, 1, 2) + x = self.attn(x) + x = x.permute(0, 2, 3, 1).view(B, nH, nW, self.window_resolution, self.window_resolution, C) + x = x.transpose(2, 3).reshape(B, pH, pW, C) + x = x[:, :H, :W].contiguous() + x = x.permute(0, 3, 1, 2) + return x + +class EfficientVitBlock(torch.nn.Module): + + def __init__(self, dim, key_dim, num_heads=8, attn_ratio=4, resolution=14, window_resolution=7, kernels=[5, 5, 5, 5]): + super().__init__() + self.dw0 = ResidualDrop(ConvNorm(dim, dim, 3, 1, 1, groups=dim, bn_weight_init=0.0)) + self.ffn0 = ResidualDrop(ConvMlp(dim, int(dim * 2))) + self.mixer = ResidualDrop(LocalWindowAttention(dim, key_dim, num_heads, attn_ratio=attn_ratio, resolution=resolution, window_resolution=window_resolution, kernels=kernels)) + self.dw1 = ResidualDrop(ConvNorm(dim, dim, 3, 1, 1, groups=dim, bn_weight_init=0.0)) + self.ffn1 = ResidualDrop(ConvMlp(dim, int(dim * 2))) + + def forward(self, x): + return self.ffn1(self.dw1(self.mixer(self.ffn0(self.dw0(x))))) + +class EfficientVitStage(torch.nn.Module): + + def __init__(self, in_dim, out_dim, key_dim, downsample=('', 1), num_heads=8, attn_ratio=4, resolution=14, window_resolution=7, kernels=[5, 5, 5, 5], depth=1): + super().__init__() + if downsample[0] == 'subsample': + self.resolution = (resolution - 1) // downsample[1] + 1 + down_blocks = [] + down_blocks.append(('res1', torch.nn.Sequential(ResidualDrop(ConvNorm(in_dim, in_dim, 3, 1, 1, groups=in_dim)), ResidualDrop(ConvMlp(in_dim, int(in_dim * 2)))))) + down_blocks.append(('patchmerge', PatchMerging(in_dim, out_dim))) + down_blocks.append(('res2', torch.nn.Sequential(ResidualDrop(ConvNorm(out_dim, out_dim, 3, 1, 1, groups=out_dim)), ResidualDrop(ConvMlp(out_dim, int(out_dim * 2)))))) + self.downsample = nn.Sequential(OrderedDict(down_blocks)) + else: + assert in_dim == out_dim + self.downsample = nn.Identity() + self.resolution = resolution + blocks = [] + for d in range(depth): + blocks.append(EfficientVitBlock(out_dim, key_dim, num_heads, attn_ratio, self.resolution, window_resolution, kernels)) + self.blocks = nn.Sequential(*blocks) + + def forward(self, x): + x = self.downsample(x) + x = self.blocks(x) + return x + +class PatchEmbedding(torch.nn.Sequential): + + def __init__(self, in_chans, dim): + super().__init__() + self.add_module('conv1', ConvNorm(in_chans, dim // 8, 3, 2, 1)) + self.add_module('relu1', torch.nn.ReLU()) + self.add_module('conv2', ConvNorm(dim // 8, dim // 4, 3, 2, 1)) + self.add_module('relu2', torch.nn.ReLU()) + self.add_module('conv3', ConvNorm(dim // 4, dim // 2, 3, 2, 1)) + self.add_module('relu3', torch.nn.ReLU()) + self.add_module('conv4', ConvNorm(dim // 2, dim, 3, 2, 1)) + self.patch_size = 16 + +class EfficientVitMsra(nn.Module): + + def __init__(self, img_size=224, in_chans=3, num_classes=1000, embed_dim=(64, 128, 192), key_dim=(16, 16, 16), depth=(1, 2, 3), num_heads=(4, 4, 4), window_size=(7, 7, 7), kernels=(5, 5, 5, 5), down_ops=(('', 1), ('subsample', 2), ('subsample', 2)), global_pool='avg', drop_rate=0.0): + super(EfficientVitMsra, self).__init__() + self.grad_checkpointing = False + self.num_classes = num_classes + self.drop_rate = drop_rate + self.patch_embed = PatchEmbedding(in_chans, embed_dim[0]) + stride = self.patch_embed.patch_size + resolution = img_size // self.patch_embed.patch_size + attn_ratio = [embed_dim[i] / (key_dim[i] * num_heads[i]) for i in range(len(embed_dim))] + self.feature_info = [] + stages = [] + pre_ed = embed_dim[0] + for (i, (ed, kd, dpth, nh, ar, wd, do)) in enumerate(zip(embed_dim, key_dim, depth, num_heads, attn_ratio, window_size, down_ops)): + stage = EfficientVitStage(in_dim=pre_ed, out_dim=ed, key_dim=kd, downsample=do, num_heads=nh, attn_ratio=ar, resolution=resolution, window_resolution=wd, kernels=kernels, depth=dpth) + pre_ed = ed + if do[0] == 'subsample' and i != 0: + stride *= do[1] + resolution = stage.resolution + stages.append(stage) + self.feature_info += [dict(num_chs=ed, reduction=stride, module=f'stages.{i}')] + self.stages = nn.Sequential(*stages) + if global_pool == 'avg': + self.global_pool = SelectAdaptivePool2d(pool_type=global_pool, flatten=True) + else: + assert num_classes == 0 + self.global_pool = nn.Identity() + self.num_features = self.head_hidden_size = embed_dim[-1] + self.head = NormLinear(self.num_features, num_classes, drop=self.drop_rate) if num_classes > 0 else torch.nn.Identity() + + @torch.jit.ignore + def no_weight_decay(self): + return {x for x in self.state_dict().keys() if 'attention_biases' in x} + + @torch.jit.ignore + def group_matcher(self, coarse=False): + matcher = dict(stem='^patch_embed', blocks='^stages\\.(\\d+)' if coarse else [('^stages\\.(\\d+).downsample', (0,)), ('^stages\\.(\\d+)\\.\\w+\\.(\\d+)', None)]) + return matcher + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + self.grad_checkpointing = enable + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.head.linear + + def reset_classifier(self, num_classes: int, global_pool: Optional[str]=None): + self.num_classes = num_classes + if global_pool is not None: + if global_pool == 'avg': + self.global_pool = SelectAdaptivePool2d(pool_type=global_pool, flatten=True) + else: + assert num_classes == 0 + self.global_pool = nn.Identity() + self.head = NormLinear(self.num_features, num_classes, drop=self.drop_rate) if num_classes > 0 else torch.nn.Identity() + + def forward_features(self, x): + x = self.patch_embed(x) + if self.grad_checkpointing and (not torch.jit.is_scripting()): + x = checkpoint_seq(self.stages, x) + else: + x = self.stages(x) + return x + + def forward_head(self, x, pre_logits: bool=False): + x = self.global_pool(x) + return x if pre_logits else self.head(x) + + def forward(self, x): + x = self.forward_features(x) + x = self.forward_head(x) + return x + +def _cfg(url='', **kwargs): + return {'url': url, 'num_classes': 1000, 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'patch_embed.conv1.conv', 'classifier': 'head.linear', 'fixed_input_size': True, 'pool_size': (4, 4), **kwargs} +default_cfgs = generate_default_cfgs({'efficientvit_m0.r224_in1k': _cfg(hf_hub_id='timm/'), 'efficientvit_m1.r224_in1k': _cfg(hf_hub_id='timm/'), 'efficientvit_m2.r224_in1k': _cfg(hf_hub_id='timm/'), 'efficientvit_m3.r224_in1k': _cfg(hf_hub_id='timm/'), 'efficientvit_m4.r224_in1k': _cfg(hf_hub_id='timm/'), 'efficientvit_m5.r224_in1k': _cfg(hf_hub_id='timm/')}) + +def _create_efficientvit_msra(variant, pretrained=False, **kwargs): + out_indices = kwargs.pop('out_indices', (0, 1, 2)) + model = build_model_with_cfg(EfficientVitMsra, variant, pretrained, feature_cfg=dict(flatten_sequential=True, out_indices=out_indices), **kwargs) + return model + +@register_model +def efficientvit_m0(pretrained=False, **kwargs): + model_args = dict(img_size=224, embed_dim=[64, 128, 192], depth=[1, 2, 3], num_heads=[4, 4, 4], window_size=[7, 7, 7], kernels=[5, 5, 5, 5]) + return _create_efficientvit_msra('efficientvit_m0', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def efficientvit_m1(pretrained=False, **kwargs): + model_args = dict(img_size=224, embed_dim=[128, 144, 192], depth=[1, 2, 3], num_heads=[2, 3, 3], window_size=[7, 7, 7], kernels=[7, 5, 3, 3]) + return _create_efficientvit_msra('efficientvit_m1', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def efficientvit_m2(pretrained=False, **kwargs): + model_args = dict(img_size=224, embed_dim=[128, 192, 224], depth=[1, 2, 3], num_heads=[4, 3, 2], window_size=[7, 7, 7], kernels=[7, 5, 3, 3]) + return _create_efficientvit_msra('efficientvit_m2', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def efficientvit_m3(pretrained=False, **kwargs): + model_args = dict(img_size=224, embed_dim=[128, 240, 320], depth=[1, 2, 3], num_heads=[4, 3, 4], window_size=[7, 7, 7], kernels=[5, 5, 5, 5]) + return _create_efficientvit_msra('efficientvit_m3', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def efficientvit_m4(pretrained=False, **kwargs): + model_args = dict(img_size=224, embed_dim=[128, 256, 384], depth=[1, 2, 3], num_heads=[4, 4, 4], window_size=[7, 7, 7], kernels=[7, 5, 3, 3]) + return _create_efficientvit_msra('efficientvit_m4', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def efficientvit_m5(pretrained=False, **kwargs): + model_args = dict(img_size=224, embed_dim=[192, 288, 384], depth=[1, 3, 4], num_heads=[3, 3, 4], window_size=[7, 7, 7], kernels=[7, 5, 3, 3]) + return _create_efficientvit_msra('efficientvit_m5', pretrained=pretrained, **dict(model_args, **kwargs)) + +# File: pytorch-image-models-main/timm/models/eva.py +"""""" +import math +from typing import Callable, List, Optional, Tuple, Union +import torch +import torch.nn as nn +import torch.nn.functional as F +from torch.utils.checkpoint import checkpoint +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, OPENAI_CLIP_MEAN, OPENAI_CLIP_STD +from timm.layers import PatchEmbed, Mlp, GluMlp, SwiGLU, LayerNorm, DropPath, PatchDropout, RotaryEmbeddingCat, apply_rot_embed_cat, apply_keep_indices_nlc, trunc_normal_, resample_patch_embed, resample_abs_pos_embed, to_2tuple, use_fused_attn +from ._builder import build_model_with_cfg +from ._features import feature_take_indices +from ._registry import generate_default_cfgs, register_model +__all__ = ['Eva'] + +class EvaAttention(nn.Module): + fused_attn: torch.jit.Final[bool] + + def __init__(self, dim: int, num_heads: int=8, qkv_bias: bool=True, qkv_fused: bool=True, num_prefix_tokens: int=1, qkv_bias_separate: bool=False, attn_drop: float=0.0, proj_drop: float=0.0, attn_head_dim: Optional[int]=None, norm_layer: Optional[Callable]=None): + super().__init__() + self.num_heads = num_heads + head_dim = dim // num_heads + if attn_head_dim is not None: + head_dim = attn_head_dim + all_head_dim = head_dim * self.num_heads + self.scale = head_dim ** (-0.5) + self.num_prefix_tokens = num_prefix_tokens + self.fused_attn = use_fused_attn() + self.qkv_bias_separate = qkv_bias_separate + if qkv_fused: + self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False) + self.q_proj = self.k_proj = self.v_proj = None + if qkv_bias: + self.q_bias = nn.Parameter(torch.zeros(all_head_dim)) + self.register_buffer('k_bias', torch.zeros(all_head_dim), persistent=False) + self.v_bias = nn.Parameter(torch.zeros(all_head_dim)) + else: + self.q_bias = self.k_bias = self.v_bias = None + else: + self.q_proj = nn.Linear(dim, all_head_dim, bias=qkv_bias) + self.k_proj = nn.Linear(dim, all_head_dim, bias=False) + self.v_proj = nn.Linear(dim, all_head_dim, bias=qkv_bias) + self.qkv = None + self.q_bias = self.k_bias = self.v_bias = None + self.attn_drop = nn.Dropout(attn_drop) + self.norm = norm_layer(all_head_dim) if norm_layer is not None else nn.Identity() + self.proj = nn.Linear(all_head_dim, dim) + self.proj_drop = nn.Dropout(proj_drop) + + def forward(self, x, rope: Optional[torch.Tensor]=None, attn_mask: Optional[torch.Tensor]=None): + (B, N, C) = x.shape + if self.qkv is not None: + if self.q_bias is None: + qkv = self.qkv(x) + else: + qkv_bias = torch.cat((self.q_bias, self.k_bias, self.v_bias)) + if self.qkv_bias_separate: + qkv = self.qkv(x) + qkv += qkv_bias + else: + qkv = F.linear(x, weight=self.qkv.weight, bias=qkv_bias) + qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) + (q, k, v) = qkv.unbind(0) + else: + q = self.q_proj(x).reshape(B, N, self.num_heads, -1).transpose(1, 2) + k = self.k_proj(x).reshape(B, N, self.num_heads, -1).transpose(1, 2) + v = self.v_proj(x).reshape(B, N, self.num_heads, -1).transpose(1, 2) + if rope is not None: + npt = self.num_prefix_tokens + q = torch.cat([q[:, :, :npt, :], apply_rot_embed_cat(q[:, :, npt:, :], rope)], dim=2).type_as(v) + k = torch.cat([k[:, :, :npt, :], apply_rot_embed_cat(k[:, :, npt:, :], rope)], dim=2).type_as(v) + if self.fused_attn: + x = F.scaled_dot_product_attention(q, k, v, attn_mask=attn_mask, dropout_p=self.attn_drop.p if self.training else 0.0) + else: + q = q * self.scale + attn = q @ k.transpose(-2, -1) + if attn_mask is not None: + attn_mask = attn_mask.to(torch.bool) + attn = attn.masked_fill(~attn_mask[:, None, None, :], float('-inf')) + attn = attn.softmax(dim=-1) + attn = self.attn_drop(attn) + x = attn @ v + x = x.transpose(1, 2).reshape(B, N, C) + x = self.norm(x) + x = self.proj(x) + x = self.proj_drop(x) + return x + +class EvaBlock(nn.Module): + + def __init__(self, dim: int, num_heads: int, qkv_bias: bool=True, qkv_fused: bool=True, mlp_ratio: float=4.0, swiglu_mlp: bool=False, scale_mlp: bool=False, scale_attn_inner: bool=False, num_prefix_tokens: int=1, proj_drop: float=0.0, attn_drop: float=0.0, drop_path: float=0.0, init_values: Optional[float]=None, act_layer: Callable=nn.GELU, norm_layer: Callable=LayerNorm, attn_head_dim: Optional[int]=None): + super().__init__() + self.norm1 = norm_layer(dim) + self.attn = EvaAttention(dim, num_heads=num_heads, qkv_bias=qkv_bias, qkv_fused=qkv_fused, num_prefix_tokens=num_prefix_tokens, attn_drop=attn_drop, proj_drop=proj_drop, attn_head_dim=attn_head_dim, norm_layer=norm_layer if scale_attn_inner else None) + self.gamma_1 = nn.Parameter(init_values * torch.ones(dim)) if init_values is not None else None + self.drop_path1 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + self.norm2 = norm_layer(dim) + hidden_features = int(dim * mlp_ratio) + if swiglu_mlp: + if scale_mlp: + self.mlp = SwiGLU(in_features=dim, hidden_features=hidden_features, norm_layer=norm_layer if scale_mlp else None, drop=proj_drop) + else: + self.mlp = GluMlp(in_features=dim, hidden_features=hidden_features * 2, norm_layer=norm_layer if scale_mlp else None, act_layer=nn.SiLU, gate_last=False, drop=proj_drop) + else: + self.mlp = Mlp(in_features=dim, hidden_features=hidden_features, act_layer=act_layer, norm_layer=norm_layer if scale_mlp else None, drop=proj_drop) + self.gamma_2 = nn.Parameter(init_values * torch.ones(dim)) if init_values is not None else None + self.drop_path2 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + + def forward(self, x, rope: Optional[torch.Tensor]=None, attn_mask: Optional[torch.Tensor]=None): + if self.gamma_1 is None: + x = x + self.drop_path1(self.attn(self.norm1(x), rope=rope, attn_mask=attn_mask)) + x = x + self.drop_path2(self.mlp(self.norm2(x))) + else: + x = x + self.drop_path1(self.gamma_1 * self.attn(self.norm1(x), rope=rope, attn_mask=attn_mask)) + x = x + self.drop_path2(self.gamma_2 * self.mlp(self.norm2(x))) + return x + +class EvaBlockPostNorm(nn.Module): + + def __init__(self, dim: int, num_heads: int, qkv_bias: bool=True, qkv_fused: bool=True, mlp_ratio: float=4.0, swiglu_mlp: bool=False, scale_mlp: bool=False, scale_attn_inner: bool=False, num_prefix_tokens: int=1, proj_drop: float=0.0, attn_drop: float=0.0, drop_path: float=0.0, init_values: Optional[float]=None, act_layer: Callable=nn.GELU, norm_layer: Callable=nn.LayerNorm, attn_head_dim: Optional[int]=None): + super().__init__() + self.attn = EvaAttention(dim, num_heads=num_heads, qkv_bias=qkv_bias, qkv_fused=qkv_fused, num_prefix_tokens=num_prefix_tokens, attn_drop=attn_drop, proj_drop=proj_drop, attn_head_dim=attn_head_dim, norm_layer=norm_layer if scale_attn_inner else None) + self.norm1 = norm_layer(dim) + self.drop_path1 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + hidden_features = int(dim * mlp_ratio) + if swiglu_mlp: + if scale_mlp: + self.mlp = SwiGLU(in_features=dim, hidden_features=hidden_features, norm_layer=norm_layer if scale_mlp else None, drop=proj_drop) + else: + self.mlp = GluMlp(in_features=dim, hidden_features=hidden_features * 2, norm_layer=norm_layer if scale_mlp else None, act_layer=nn.SiLU, gate_last=False, drop=proj_drop) + else: + self.mlp = Mlp(in_features=dim, hidden_features=hidden_features, act_layer=act_layer, norm_layer=norm_layer if scale_mlp else None, drop=proj_drop) + self.norm2 = norm_layer(dim) + self.drop_path2 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + + def forward(self, x, rope: Optional[torch.Tensor]=None, attn_mask: Optional[torch.Tensor]=None): + x = x + self.drop_path1(self.norm1(self.attn(x, rope=rope, attn_mask=attn_mask))) + x = x + self.drop_path2(self.norm2(self.mlp(x))) + return x + +class Eva(nn.Module): + + def __init__(self, img_size: Union[int, Tuple[int, int]]=224, patch_size: Union[int, Tuple[int, int]]=16, in_chans: int=3, num_classes: int=1000, global_pool: str='avg', embed_dim: int=768, depth: int=12, num_heads: int=12, qkv_bias: bool=True, qkv_fused: bool=True, mlp_ratio: float=4.0, swiglu_mlp: bool=False, scale_mlp: bool=False, scale_attn_inner: bool=False, drop_rate: float=0.0, pos_drop_rate: float=0.0, patch_drop_rate: float=0.0, proj_drop_rate: float=0.0, attn_drop_rate: float=0.0, drop_path_rate: float=0.0, norm_layer: Callable=LayerNorm, init_values: Optional[float]=None, class_token: bool=True, num_reg_tokens: int=0, use_abs_pos_emb: bool=True, use_rot_pos_emb: bool=False, use_post_norm: bool=False, dynamic_img_size: bool=False, dynamic_img_pad: bool=False, ref_feat_shape: Optional[Union[Tuple[int, int], int]]=None, head_init_scale: float=0.001): + super().__init__() + self.num_classes = num_classes + self.global_pool = global_pool + self.num_features = self.head_hidden_size = self.embed_dim = embed_dim + self.num_prefix_tokens = (1 if class_token else 0) + num_reg_tokens + self.dynamic_img_size = dynamic_img_size + self.grad_checkpointing = False + embed_args = {} + if dynamic_img_size: + embed_args.update(dict(strict_img_size=False, output_fmt='NHWC')) + self.patch_embed = PatchEmbed(img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim, dynamic_img_pad=dynamic_img_pad, **embed_args) + num_patches = self.patch_embed.num_patches + r = self.patch_embed.feat_ratio() if hasattr(self.patch_embed, 'feat_ratio') else patch_size + self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) if class_token else None + self.reg_token = nn.Parameter(torch.zeros(1, num_reg_tokens, embed_dim)) if num_reg_tokens else None + self.cls_embed = class_token and self.reg_token is None + self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + self.num_prefix_tokens, embed_dim)) if use_abs_pos_emb else None + self.pos_drop = nn.Dropout(p=pos_drop_rate) + if patch_drop_rate > 0: + self.patch_drop = PatchDropout(patch_drop_rate, num_prefix_tokens=self.num_prefix_tokens, return_indices=True) + else: + self.patch_drop = None + if use_rot_pos_emb: + ref_feat_shape = to_2tuple(ref_feat_shape) if ref_feat_shape is not None else None + self.rope = RotaryEmbeddingCat(embed_dim // num_heads, in_pixels=False, feat_shape=None if dynamic_img_size else self.patch_embed.grid_size, ref_feat_shape=ref_feat_shape) + else: + self.rope = None + dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] + block_fn = EvaBlockPostNorm if use_post_norm else EvaBlock + self.blocks = nn.ModuleList([block_fn(dim=embed_dim, num_heads=num_heads, qkv_bias=qkv_bias, qkv_fused=qkv_fused, mlp_ratio=mlp_ratio, swiglu_mlp=swiglu_mlp, scale_mlp=scale_mlp, scale_attn_inner=scale_attn_inner, num_prefix_tokens=self.num_prefix_tokens, proj_drop=proj_drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, init_values=init_values) for i in range(depth)]) + self.feature_info = [dict(module=f'blocks.{i}', num_chs=embed_dim, reduction=r) for i in range(depth)] + use_fc_norm = self.global_pool == 'avg' + self.norm = nn.Identity() if use_fc_norm else norm_layer(embed_dim) + self.fc_norm = norm_layer(embed_dim) if use_fc_norm else nn.Identity() + self.head_drop = nn.Dropout(drop_rate) + self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity() + self.apply(self._init_weights) + if self.pos_embed is not None: + trunc_normal_(self.pos_embed, std=0.02) + if self.cls_token is not None: + trunc_normal_(self.cls_token, std=0.02) + if self.reg_token is not None: + trunc_normal_(self.reg_token, std=0.02) + self.fix_init_weight() + if isinstance(self.head, nn.Linear): + trunc_normal_(self.head.weight, std=0.02) + self.head.weight.data.mul_(head_init_scale) + self.head.bias.data.mul_(head_init_scale) + + def fix_init_weight(self): + + def rescale(param, layer_id): + param.div_(math.sqrt(2.0 * layer_id)) + for (layer_id, layer) in enumerate(self.blocks): + rescale(layer.attn.proj.weight.data, layer_id + 1) + rescale(layer.mlp.fc2.weight.data, layer_id + 1) + + def _init_weights(self, m): + if isinstance(m, nn.Linear): + trunc_normal_(m.weight, std=0.02) + if m.bias is not None: + nn.init.zeros_(m.bias) + + @torch.jit.ignore + def no_weight_decay(self): + nwd = {'pos_embed', 'cls_token'} + return nwd + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + self.grad_checkpointing = enable + + @torch.jit.ignore + def group_matcher(self, coarse=False): + matcher = dict(stem='^cls_token|pos_embed|patch_embed', blocks=[('^blocks\\.(\\d+)', None), ('^norm', (99999,))]) + return matcher + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.head + + def reset_classifier(self, num_classes: int, global_pool: Optional[str]=None): + self.num_classes = num_classes + if global_pool is not None: + self.global_pool = global_pool + self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() + + def _pos_embed(self, x) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: + if self.dynamic_img_size: + (B, H, W, C) = x.shape + if self.pos_embed is not None: + pos_embed = resample_abs_pos_embed(self.pos_embed, (H, W), num_prefix_tokens=self.num_prefix_tokens) + else: + pos_embed = None + x = x.view(B, -1, C) + rot_pos_embed = self.rope.get_embed(shape=(H, W)) if self.rope is not None else None + else: + pos_embed = self.pos_embed + rot_pos_embed = self.rope.get_embed() if self.rope is not None else None + if self.cls_token is not None: + x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1) + if pos_embed is not None: + x = x + pos_embed + if self.reg_token is not None: + to_cat = [] + if self.cls_token is not None: + to_cat.append(self.cls_token.expand(x.shape[0], -1, -1)) + to_cat.append(self.reg_token.expand(x.shape[0], -1, -1)) + x = torch.cat(to_cat + [x], dim=1) + x = self.pos_drop(x) + if self.patch_drop is not None: + (x, keep_indices) = self.patch_drop(x) + if rot_pos_embed is not None and keep_indices is not None: + rot_pos_embed = apply_keep_indices_nlc(x, rot_pos_embed, keep_indices) + return (x, rot_pos_embed) + + def forward_intermediates(self, x: torch.Tensor, indices: Optional[Union[int, List[int]]]=None, return_prefix_tokens: bool=False, norm: bool=False, stop_early: bool=False, output_fmt: str='NCHW', intermediates_only: bool=False) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]: + assert output_fmt in ('NCHW', 'NLC'), 'Output format for EVA-ViT features must be one of NCHW or NLC.' + reshape = output_fmt == 'NCHW' + intermediates = [] + (take_indices, max_index) = feature_take_indices(len(self.blocks), indices) + (B, _, height, width) = x.shape + x = self.patch_embed(x) + (x, rot_pos_embed) = self._pos_embed(x) + if torch.jit.is_scripting() or not stop_early: + blocks = self.blocks + else: + blocks = self.blocks[:max_index + 1] + for (i, blk) in enumerate(blocks): + x = blk(x, rope=rot_pos_embed) + if i in take_indices: + intermediates.append(self.norm(x) if norm else x) + if self.num_prefix_tokens: + prefix_tokens = [y[:, 0:self.num_prefix_tokens] for y in intermediates] + intermediates = [y[:, self.num_prefix_tokens:] for y in intermediates] + if reshape: + (H, W) = self.patch_embed.dynamic_feat_size((height, width)) + intermediates = [y.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous() for y in intermediates] + if not torch.jit.is_scripting() and return_prefix_tokens: + intermediates = list(zip(intermediates, prefix_tokens)) + if intermediates_only: + return intermediates + x = self.norm(x) + return (x, intermediates) + + def prune_intermediate_layers(self, indices: Union[int, List[int]]=1, prune_norm: bool=False, prune_head: bool=True): + (take_indices, max_index) = feature_take_indices(len(self.blocks), indices) + self.blocks = self.blocks[:max_index + 1] + if prune_norm: + self.norm = nn.Identity() + if prune_head: + self.fc_norm = nn.Identity() + self.reset_classifier(0, '') + return take_indices + + def forward_features(self, x): + x = self.patch_embed(x) + (x, rot_pos_embed) = self._pos_embed(x) + for blk in self.blocks: + if self.grad_checkpointing and (not torch.jit.is_scripting()): + x = checkpoint(blk, x, rope=rot_pos_embed) + else: + x = blk(x, rope=rot_pos_embed) + x = self.norm(x) + return x + + def forward_head(self, x, pre_logits: bool=False): + if self.global_pool: + x = x[:, self.num_prefix_tokens:].mean(dim=1) if self.global_pool == 'avg' else x[:, 0] + x = self.fc_norm(x) + x = self.head_drop(x) + return x if pre_logits else self.head(x) + + def forward(self, x): + x = self.forward_features(x) + x = self.forward_head(x) + return x + +def checkpoint_filter_fn(state_dict, model, interpolation='bicubic', antialias=True): + out_dict = {} + state_dict = state_dict.get('model_ema', state_dict) + state_dict = state_dict.get('model', state_dict) + state_dict = state_dict.get('module', state_dict) + state_dict = state_dict.get('state_dict', state_dict) + if 'visual.trunk.pos_embed' in state_dict: + prefix = 'visual.trunk.' + elif 'visual.pos_embed' in state_dict: + prefix = 'visual.' + else: + prefix = '' + mim_weights = prefix + 'mask_token' in state_dict + no_qkv = prefix + 'blocks.0.attn.q_proj.weight' in state_dict + len_prefix = len(prefix) + for (k, v) in state_dict.items(): + if prefix: + if k.startswith(prefix): + k = k[len_prefix:] + else: + continue + if 'rope' in k: + continue + if 'patch_embed.proj.weight' in k: + (_, _, H, W) = model.patch_embed.proj.weight.shape + if v.shape[-1] != W or v.shape[-2] != H: + v = resample_patch_embed(v, (H, W), interpolation=interpolation, antialias=antialias, verbose=True) + elif k == 'pos_embed' and v.shape[1] != model.pos_embed.shape[1]: + num_prefix_tokens = 0 if getattr(model, 'no_embed_class', False) else getattr(model, 'num_prefix_tokens', 1) + v = resample_abs_pos_embed(v, new_size=model.patch_embed.grid_size, num_prefix_tokens=num_prefix_tokens, interpolation=interpolation, antialias=antialias, verbose=True) + k = k.replace('mlp.ffn_ln', 'mlp.norm') + k = k.replace('attn.inner_attn_ln', 'attn.norm') + k = k.replace('mlp.w12', 'mlp.fc1') + k = k.replace('mlp.w1', 'mlp.fc1_g') + k = k.replace('mlp.w2', 'mlp.fc1_x') + k = k.replace('mlp.w3', 'mlp.fc2') + if no_qkv: + k = k.replace('q_bias', 'q_proj.bias') + k = k.replace('v_bias', 'v_proj.bias') + if mim_weights and k in ('mask_token', 'lm_head.weight', 'lm_head.bias', 'norm.weight', 'norm.bias'): + if k == 'norm.weight' or k == 'norm.bias': + k = k.replace('norm', 'fc_norm') + else: + continue + out_dict[k] = v + return out_dict + +def _create_eva(variant, pretrained=False, **kwargs): + out_indices = kwargs.pop('out_indices', 3) + model = build_model_with_cfg(Eva, variant, pretrained, pretrained_filter_fn=checkpoint_filter_fn, feature_cfg=dict(out_indices=out_indices, feature_cls='getter'), **kwargs) + return model + +def _cfg(url='', **kwargs): + return {'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, 'crop_pct': 0.9, 'interpolation': 'bicubic', 'fixed_input_size': True, 'mean': OPENAI_CLIP_MEAN, 'std': OPENAI_CLIP_STD, 'first_conv': 'patch_embed.proj', 'classifier': 'head', 'license': 'mit', **kwargs} +default_cfgs = generate_default_cfgs({'eva_giant_patch14_224.clip_ft_in1k': _cfg(hf_hub_id='timm/'), 'eva_giant_patch14_336.clip_ft_in1k': _cfg(hf_hub_id='timm/', input_size=(3, 336, 336), crop_pct=1.0, crop_mode='squash'), 'eva_giant_patch14_336.m30m_ft_in22k_in1k': _cfg(hf_hub_id='timm/', mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, input_size=(3, 336, 336), crop_pct=1.0, crop_mode='squash'), 'eva_giant_patch14_560.m30m_ft_in22k_in1k': _cfg(hf_hub_id='timm/', mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, input_size=(3, 560, 560), crop_pct=1.0, crop_mode='squash'), 'eva02_base_patch14_448.mim_in22k_ft_in22k_in1k': _cfg(hf_hub_id='timm/', input_size=(3, 448, 448), crop_pct=1.0, crop_mode='squash'), 'eva02_large_patch14_448.mim_in22k_ft_in22k_in1k': _cfg(hf_hub_id='timm/', input_size=(3, 448, 448), crop_pct=1.0, crop_mode='squash'), 'eva02_large_patch14_448.mim_m38m_ft_in22k_in1k': _cfg(hf_hub_id='timm/', input_size=(3, 448, 448), crop_pct=1.0, crop_mode='squash'), 'eva02_tiny_patch14_336.mim_in22k_ft_in1k': _cfg(hf_hub_id='timm/', input_size=(3, 336, 336), crop_pct=1.0), 'eva02_small_patch14_336.mim_in22k_ft_in1k': _cfg(hf_hub_id='timm/', input_size=(3, 336, 336), crop_pct=1.0), 'eva02_base_patch14_448.mim_in22k_ft_in1k': _cfg(hf_hub_id='timm/', input_size=(3, 448, 448), crop_pct=1.0), 'eva02_large_patch14_448.mim_in22k_ft_in1k': _cfg(hf_hub_id='timm/', input_size=(3, 448, 448), crop_pct=1.0), 'eva02_large_patch14_448.mim_m38m_ft_in1k': _cfg(hf_hub_id='timm/', input_size=(3, 448, 448), crop_pct=1.0), 'eva02_base_patch14_448.mim_in22k_ft_in22k': _cfg(hf_hub_id='timm/', input_size=(3, 448, 448), crop_pct=1.0, crop_mode='squash', num_classes=21841), 'eva02_large_patch14_448.mim_in22k_ft_in22k': _cfg(hf_hub_id='timm/', input_size=(3, 448, 448), crop_pct=1.0, crop_mode='squash', num_classes=21841), 'eva02_large_patch14_448.mim_m38m_ft_in22k': _cfg(hf_hub_id='timm/', input_size=(3, 448, 448), crop_pct=1.0, crop_mode='squash', num_classes=21841), 'eva02_tiny_patch14_224.mim_in22k': _cfg(hf_hub_id='timm/', num_classes=0), 'eva02_small_patch14_224.mim_in22k': _cfg(hf_hub_id='timm/', num_classes=0), 'eva02_base_patch14_224.mim_in22k': _cfg(hf_hub_id='timm/', num_classes=0), 'eva02_large_patch14_224.mim_in22k': _cfg(hf_hub_id='timm/', num_classes=0), 'eva02_large_patch14_224.mim_m38m': _cfg(hf_hub_id='timm/', num_classes=0), 'eva_giant_patch14_clip_224.laion400m': _cfg(hf_hub_id='timm/eva_giant_patch14_clip_224.laion400m_s11b_b41k', hf_hub_filename='open_clip_pytorch_model.bin', num_classes=1024), 'eva_giant_patch14_clip_224.merged2b': _cfg(hf_hub_id='timm/eva_giant_patch14_plus_clip_224.merged2b_s11b_b114k', hf_hub_filename='open_clip_pytorch_model.bin', num_classes=1024), 'eva02_base_patch16_clip_224.merged2b': _cfg(hf_hub_id='timm/eva02_base_patch16_clip_224.merged2b_s8b_b131k', hf_hub_filename='open_clip_pytorch_model.bin', num_classes=512), 'eva02_large_patch14_clip_224.merged2b': _cfg(hf_hub_id='timm/eva02_large_patch14_clip_224.merged2b_s4b_b131k', hf_hub_filename='open_clip_pytorch_model.bin', num_classes=768), 'eva02_large_patch14_clip_336.merged2b': _cfg(hf_hub_id='timm/eva02_large_patch14_clip_336.merged2b_s6b_b61k', hf_hub_filename='open_clip_pytorch_model.bin', input_size=(3, 336, 336), crop_pct=1.0, num_classes=768), 'eva02_enormous_patch14_clip_224.laion2b': _cfg(hf_hub_id='timm/eva02_enormous_patch14_clip_224.laion2b_s4b_b115k', hf_hub_filename='open_clip_pytorch_model.bin', num_classes=1024), 'eva02_enormous_patch14_clip_224.laion2b_plus': _cfg(hf_hub_id='timm/eva02_enormous_patch14_plus_clip_224.laion2b_s9b_b144k', hf_hub_filename='open_clip_pytorch_model.bin', num_classes=1024), 'eva02_enormous_patch14_clip_224.pretrain': _cfg(num_classes=0), 'vit_medium_patch16_rope_reg1_gap_256.sbb_in1k': _cfg(hf_hub_id='timm/', input_size=(3, 256, 256), crop_pct=0.95, mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)), 'vit_mediumd_patch16_rope_reg1_gap_256.sbb_in1k': _cfg(hf_hub_id='timm/', input_size=(3, 256, 256), crop_pct=0.95, mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)), 'vit_betwixt_patch16_rope_reg4_gap_256.sbb_in1k': _cfg(hf_hub_id='timm/', input_size=(3, 256, 256), crop_pct=0.95), 'vit_base_patch16_rope_reg1_gap_256.sbb_in1k': _cfg(hf_hub_id='timm/', input_size=(3, 256, 256), crop_pct=0.95, mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))}) + +@register_model +def eva_giant_patch14_224(pretrained=False, **kwargs) -> Eva: + model_args = dict(patch_size=14, embed_dim=1408, depth=40, num_heads=16, mlp_ratio=6144 / 1408) + model = _create_eva('eva_giant_patch14_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def eva_giant_patch14_336(pretrained=False, **kwargs) -> Eva: + model_args = dict(patch_size=14, embed_dim=1408, depth=40, num_heads=16, mlp_ratio=6144 / 1408) + model = _create_eva('eva_giant_patch14_336', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def eva_giant_patch14_560(pretrained=False, **kwargs) -> Eva: + model_args = dict(patch_size=14, embed_dim=1408, depth=40, num_heads=16, mlp_ratio=6144 / 1408) + model = _create_eva('eva_giant_patch14_560', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def eva02_tiny_patch14_224(pretrained=False, **kwargs) -> Eva: + model_args = dict(img_size=224, patch_size=14, embed_dim=192, depth=12, num_heads=3, mlp_ratio=4 * 2 / 3, swiglu_mlp=True, use_rot_pos_emb=True, ref_feat_shape=(16, 16)) + model = _create_eva('eva02_tiny_patch14_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def eva02_small_patch14_224(pretrained=False, **kwargs) -> Eva: + model_args = dict(img_size=224, patch_size=14, embed_dim=384, depth=12, num_heads=6, mlp_ratio=4 * 2 / 3, swiglu_mlp=True, use_rot_pos_emb=True, ref_feat_shape=(16, 16)) + model = _create_eva('eva02_small_patch14_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def eva02_base_patch14_224(pretrained=False, **kwargs) -> Eva: + model_args = dict(img_size=224, patch_size=14, embed_dim=768, depth=12, num_heads=12, qkv_fused=False, mlp_ratio=4 * 2 / 3, swiglu_mlp=True, scale_mlp=True, use_rot_pos_emb=True, ref_feat_shape=(16, 16)) + model = _create_eva('eva02_base_patch14_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def eva02_large_patch14_224(pretrained=False, **kwargs) -> Eva: + model_args = dict(img_size=224, patch_size=14, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4 * 2 / 3, qkv_fused=False, swiglu_mlp=True, scale_mlp=True, use_rot_pos_emb=True, ref_feat_shape=(16, 16)) + model = _create_eva('eva02_large_patch14_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def eva02_tiny_patch14_336(pretrained=False, **kwargs) -> Eva: + model_args = dict(img_size=336, patch_size=14, embed_dim=192, depth=12, num_heads=3, mlp_ratio=4 * 2 / 3, swiglu_mlp=True, use_rot_pos_emb=True, ref_feat_shape=(16, 16)) + model = _create_eva('eva02_tiny_patch14_336', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def eva02_small_patch14_336(pretrained=False, **kwargs) -> Eva: + model_args = dict(img_size=336, patch_size=14, embed_dim=384, depth=12, num_heads=6, mlp_ratio=4 * 2 / 3, swiglu_mlp=True, use_rot_pos_emb=True, ref_feat_shape=(16, 16)) + model = _create_eva('eva02_small_patch14_336', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def eva02_base_patch14_448(pretrained=False, **kwargs) -> Eva: + model_args = dict(img_size=448, patch_size=14, embed_dim=768, depth=12, num_heads=12, qkv_fused=False, mlp_ratio=4 * 2 / 3, swiglu_mlp=True, scale_mlp=True, use_rot_pos_emb=True, ref_feat_shape=(16, 16)) + model = _create_eva('eva02_base_patch14_448', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def eva02_large_patch14_448(pretrained=False, **kwargs) -> Eva: + model_args = dict(img_size=448, patch_size=14, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4 * 2 / 3, qkv_fused=False, swiglu_mlp=True, scale_mlp=True, use_rot_pos_emb=True, ref_feat_shape=(16, 16)) + model = _create_eva('eva02_large_patch14_448', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def eva_giant_patch14_clip_224(pretrained=False, **kwargs) -> Eva: + model_args = dict(patch_size=14, embed_dim=1408, depth=40, num_heads=16, mlp_ratio=6144 / 1408, global_pool=kwargs.pop('global_pool', 'token')) + model = _create_eva('eva_giant_patch14_clip_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def eva02_base_patch16_clip_224(pretrained=False, **kwargs) -> Eva: + model_args = dict(img_size=224, patch_size=16, embed_dim=768, depth=12, num_heads=12, qkv_fused=False, mlp_ratio=4 * 2 / 3, swiglu_mlp=True, scale_mlp=True, scale_attn_inner=True, use_rot_pos_emb=True, ref_feat_shape=(16, 16), global_pool=kwargs.pop('global_pool', 'token')) + model = _create_eva('eva02_base_patch16_clip_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def eva02_large_patch14_clip_224(pretrained=False, **kwargs) -> Eva: + model_args = dict(img_size=224, patch_size=14, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4 * 2 / 3, qkv_fused=False, swiglu_mlp=True, scale_mlp=True, scale_attn_inner=True, use_rot_pos_emb=True, ref_feat_shape=(16, 16), global_pool=kwargs.pop('global_pool', 'token')) + model = _create_eva('eva02_large_patch14_clip_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def eva02_large_patch14_clip_336(pretrained=False, **kwargs) -> Eva: + model_args = dict(img_size=336, patch_size=14, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4 * 2 / 3, qkv_fused=False, swiglu_mlp=True, scale_mlp=True, scale_attn_inner=True, use_rot_pos_emb=True, ref_feat_shape=(16, 16), global_pool=kwargs.pop('global_pool', 'token')) + model = _create_eva('eva02_large_patch14_clip_336', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def eva02_enormous_patch14_clip_224(pretrained=False, **kwargs) -> Eva: + model_args = dict(img_size=224, patch_size=14, embed_dim=1792, depth=64, num_heads=16, mlp_ratio=15360 / 1792, use_post_norm=True, global_pool=kwargs.pop('global_pool', 'token')) + model = _create_eva('eva02_enormous_patch14_clip_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_medium_patch16_rope_reg1_gap_256(pretrained=False, **kwargs) -> Eva: + model_args = dict(img_size=256, patch_size=16, embed_dim=512, depth=12, num_heads=8, qkv_fused=True, qkv_bias=True, init_values=1e-05, class_token=False, num_reg_tokens=1, use_rot_pos_emb=True, use_abs_pos_emb=False, ref_feat_shape=(16, 16)) + model = _create_eva('vit_medium_patch16_rope_reg1_gap_256', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_mediumd_patch16_rope_reg1_gap_256(pretrained=False, **kwargs) -> Eva: + model_args = dict(img_size=256, patch_size=16, embed_dim=512, depth=20, num_heads=8, qkv_fused=True, qkv_bias=False, init_values=1e-05, class_token=False, num_reg_tokens=1, use_rot_pos_emb=True, use_abs_pos_emb=False, ref_feat_shape=(16, 16)) + model = _create_eva('vit_mediumd_patch16_rope_reg1_gap_256', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_betwixt_patch16_rope_reg4_gap_256(pretrained=False, **kwargs) -> Eva: + model_args = dict(img_size=256, patch_size=16, embed_dim=640, depth=12, num_heads=10, qkv_fused=True, qkv_bias=True, init_values=1e-05, class_token=False, num_reg_tokens=4, use_rot_pos_emb=True, use_abs_pos_emb=False, ref_feat_shape=(16, 16)) + model = _create_eva('vit_betwixt_patch16_rope_reg4_gap_256', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_base_patch16_rope_reg1_gap_256(pretrained=False, **kwargs) -> Eva: + model_args = dict(img_size=256, patch_size=16, embed_dim=768, depth=12, num_heads=12, qkv_fused=True, qkv_bias=True, init_values=1e-05, class_token=False, num_reg_tokens=1, use_rot_pos_emb=True, use_abs_pos_emb=False, ref_feat_shape=(16, 16)) + model = _create_eva('vit_base_patch16_rope_reg1_gap_256', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +# File: pytorch-image-models-main/timm/models/fastvit.py +import os +from functools import partial +from typing import List, Optional, Tuple, Union +import torch +import torch.nn as nn +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from timm.layers import DropPath, trunc_normal_, create_conv2d, ConvNormAct, SqueezeExcite, use_fused_attn, ClassifierHead +from ._builder import build_model_with_cfg +from ._features import feature_take_indices +from ._manipulate import checkpoint_seq +from ._registry import register_model, generate_default_cfgs +__all__ = ['FastVit'] + +def num_groups(group_size, channels): + if not group_size: + return 1 + else: + assert channels % group_size == 0 + return channels // group_size + +class MobileOneBlock(nn.Module): + + def __init__(self, in_chs: int, out_chs: int, kernel_size: int, stride: int=1, dilation: int=1, group_size: int=0, inference_mode: bool=False, use_se: bool=False, use_act: bool=True, use_scale_branch: bool=True, num_conv_branches: int=1, act_layer: nn.Module=nn.GELU) -> None: + super(MobileOneBlock, self).__init__() + self.inference_mode = inference_mode + self.groups = num_groups(group_size, in_chs) + self.stride = stride + self.dilation = dilation + self.kernel_size = kernel_size + self.in_chs = in_chs + self.out_chs = out_chs + self.num_conv_branches = num_conv_branches + self.se = SqueezeExcite(out_chs, rd_divisor=1) if use_se else nn.Identity() + if inference_mode: + self.reparam_conv = create_conv2d(in_chs, out_chs, kernel_size=kernel_size, stride=stride, dilation=dilation, groups=self.groups, bias=True) + else: + self.reparam_conv = None + self.identity = nn.BatchNorm2d(num_features=in_chs) if out_chs == in_chs and stride == 1 else None + if num_conv_branches > 0: + self.conv_kxk = nn.ModuleList([ConvNormAct(self.in_chs, self.out_chs, kernel_size=kernel_size, stride=self.stride, groups=self.groups, apply_act=False) for _ in range(self.num_conv_branches)]) + else: + self.conv_kxk = None + self.conv_scale = None + if kernel_size > 1 and use_scale_branch: + self.conv_scale = ConvNormAct(self.in_chs, self.out_chs, kernel_size=1, stride=self.stride, groups=self.groups, apply_act=False) + self.act = act_layer() if use_act else nn.Identity() + + def forward(self, x: torch.Tensor) -> torch.Tensor: + if self.reparam_conv is not None: + return self.act(self.se(self.reparam_conv(x))) + identity_out = 0 + if self.identity is not None: + identity_out = self.identity(x) + scale_out = 0 + if self.conv_scale is not None: + scale_out = self.conv_scale(x) + out = scale_out + identity_out + if self.conv_kxk is not None: + for rc in self.conv_kxk: + out += rc(x) + return self.act(self.se(out)) + + def reparameterize(self): + if self.reparam_conv is not None: + return + (kernel, bias) = self._get_kernel_bias() + self.reparam_conv = create_conv2d(in_channels=self.in_chs, out_channels=self.out_chs, kernel_size=self.kernel_size, stride=self.stride, dilation=self.dilation, groups=self.groups, bias=True) + self.reparam_conv.weight.data = kernel + self.reparam_conv.bias.data = bias + for (name, para) in self.named_parameters(): + if 'reparam_conv' in name: + continue + para.detach_() + self.__delattr__('conv_kxk') + self.__delattr__('conv_scale') + if hasattr(self, 'identity'): + self.__delattr__('identity') + self.inference_mode = True + + def _get_kernel_bias(self) -> Tuple[torch.Tensor, torch.Tensor]: + kernel_scale = 0 + bias_scale = 0 + if self.conv_scale is not None: + (kernel_scale, bias_scale) = self._fuse_bn_tensor(self.conv_scale) + pad = self.kernel_size // 2 + kernel_scale = torch.nn.functional.pad(kernel_scale, [pad, pad, pad, pad]) + kernel_identity = 0 + bias_identity = 0 + if self.identity is not None: + (kernel_identity, bias_identity) = self._fuse_bn_tensor(self.identity) + kernel_conv = 0 + bias_conv = 0 + if self.conv_kxk is not None: + for ix in range(self.num_conv_branches): + (_kernel, _bias) = self._fuse_bn_tensor(self.conv_kxk[ix]) + kernel_conv += _kernel + bias_conv += _bias + kernel_final = kernel_conv + kernel_scale + kernel_identity + bias_final = bias_conv + bias_scale + bias_identity + return (kernel_final, bias_final) + + def _fuse_bn_tensor(self, branch: Union[nn.Sequential, nn.BatchNorm2d]) -> Tuple[torch.Tensor, torch.Tensor]: + if isinstance(branch, ConvNormAct): + kernel = branch.conv.weight + running_mean = branch.bn.running_mean + running_var = branch.bn.running_var + gamma = branch.bn.weight + beta = branch.bn.bias + eps = branch.bn.eps + else: + assert isinstance(branch, nn.BatchNorm2d) + if not hasattr(self, 'id_tensor'): + input_dim = self.in_chs // self.groups + kernel_value = torch.zeros((self.in_chs, input_dim, self.kernel_size, self.kernel_size), dtype=branch.weight.dtype, device=branch.weight.device) + for i in range(self.in_chs): + kernel_value[i, i % input_dim, self.kernel_size // 2, self.kernel_size // 2] = 1 + self.id_tensor = kernel_value + kernel = self.id_tensor + running_mean = branch.running_mean + running_var = branch.running_var + gamma = branch.weight + beta = branch.bias + eps = branch.eps + std = (running_var + eps).sqrt() + t = (gamma / std).reshape(-1, 1, 1, 1) + return (kernel * t, beta - running_mean * gamma / std) + +class ReparamLargeKernelConv(nn.Module): + + def __init__(self, in_chs: int, out_chs: int, kernel_size: int, stride: int, group_size: int, small_kernel: Optional[int]=None, use_se: bool=False, act_layer: Optional[nn.Module]=None, inference_mode: bool=False) -> None: + super(ReparamLargeKernelConv, self).__init__() + self.stride = stride + self.groups = num_groups(group_size, in_chs) + self.in_chs = in_chs + self.out_chs = out_chs + self.kernel_size = kernel_size + self.small_kernel = small_kernel + if inference_mode: + self.reparam_conv = create_conv2d(in_chs, out_chs, kernel_size=kernel_size, stride=stride, dilation=1, groups=self.groups, bias=True) + else: + self.reparam_conv = None + self.large_conv = ConvNormAct(in_chs, out_chs, kernel_size=kernel_size, stride=self.stride, groups=self.groups, apply_act=False) + if small_kernel is not None: + assert small_kernel <= kernel_size, 'The kernel size for re-param cannot be larger than the large kernel!' + self.small_conv = ConvNormAct(in_chs, out_chs, kernel_size=small_kernel, stride=self.stride, groups=self.groups, apply_act=False) + self.se = SqueezeExcite(out_chs, rd_ratio=0.25) if use_se else nn.Identity() + self.act = act_layer() if act_layer is not None else nn.Identity() + + def forward(self, x: torch.Tensor) -> torch.Tensor: + if self.reparam_conv is not None: + out = self.reparam_conv(x) + else: + out = self.large_conv(x) + if self.small_conv is not None: + out = out + self.small_conv(x) + out = self.se(out) + out = self.act(out) + return out + + def get_kernel_bias(self) -> Tuple[torch.Tensor, torch.Tensor]: + (eq_k, eq_b) = self._fuse_bn(self.large_conv.conv, self.large_conv.bn) + if hasattr(self, 'small_conv'): + (small_k, small_b) = self._fuse_bn(self.small_conv.conv, self.small_conv.bn) + eq_b += small_b + eq_k += nn.functional.pad(small_k, [(self.kernel_size - self.small_kernel) // 2] * 4) + return (eq_k, eq_b) + + def reparameterize(self) -> None: + (eq_k, eq_b) = self.get_kernel_bias() + self.reparam_conv = create_conv2d(self.in_chs, self.out_chs, kernel_size=self.kernel_size, stride=self.stride, groups=self.groups, bias=True) + self.reparam_conv.weight.data = eq_k + self.reparam_conv.bias.data = eq_b + self.__delattr__('large_conv') + if hasattr(self, 'small_conv'): + self.__delattr__('small_conv') + + @staticmethod + def _fuse_bn(conv: nn.Conv2d, bn: nn.BatchNorm2d) -> Tuple[torch.Tensor, torch.Tensor]: + kernel = conv.weight + running_mean = bn.running_mean + running_var = bn.running_var + gamma = bn.weight + beta = bn.bias + eps = bn.eps + std = (running_var + eps).sqrt() + t = (gamma / std).reshape(-1, 1, 1, 1) + return (kernel * t, beta - running_mean * gamma / std) + +def convolutional_stem(in_chs: int, out_chs: int, act_layer: nn.Module=nn.GELU, inference_mode: bool=False) -> nn.Sequential: + return nn.Sequential(MobileOneBlock(in_chs=in_chs, out_chs=out_chs, kernel_size=3, stride=2, act_layer=act_layer, inference_mode=inference_mode), MobileOneBlock(in_chs=out_chs, out_chs=out_chs, kernel_size=3, stride=2, group_size=1, act_layer=act_layer, inference_mode=inference_mode), MobileOneBlock(in_chs=out_chs, out_chs=out_chs, kernel_size=1, stride=1, act_layer=act_layer, inference_mode=inference_mode)) + +class Attention(nn.Module): + fused_attn: torch.jit.Final[bool] + + def __init__(self, dim: int, head_dim: int=32, qkv_bias: bool=False, attn_drop: float=0.0, proj_drop: float=0.0) -> None: + super().__init__() + assert dim % head_dim == 0, 'dim should be divisible by head_dim' + self.head_dim = head_dim + self.num_heads = dim // head_dim + self.scale = head_dim ** (-0.5) + self.fused_attn = use_fused_attn() + self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) + self.attn_drop = nn.Dropout(attn_drop) + self.proj = nn.Linear(dim, dim) + self.proj_drop = nn.Dropout(proj_drop) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + (B, C, H, W) = x.shape + N = H * W + x = x.flatten(2).transpose(-2, -1) + qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4) + (q, k, v) = qkv.unbind(0) + if self.fused_attn: + x = torch.nn.functional.scaled_dot_product_attention(q, k, v, dropout_p=self.attn_drop.p if self.training else 0.0) + else: + q = q * self.scale + attn = q @ k.transpose(-2, -1) + attn = attn.softmax(dim=-1) + attn = self.attn_drop(attn) + x = attn @ v + x = x.transpose(1, 2).reshape(B, N, C) + x = self.proj(x) + x = self.proj_drop(x) + x = x.transpose(-2, -1).reshape(B, C, H, W) + return x + +class PatchEmbed(nn.Module): + + def __init__(self, patch_size: int, stride: int, in_chs: int, embed_dim: int, act_layer: nn.Module=nn.GELU, lkc_use_act: bool=False, use_se: bool=False, inference_mode: bool=False) -> None: + super().__init__() + self.proj = nn.Sequential(ReparamLargeKernelConv(in_chs=in_chs, out_chs=embed_dim, kernel_size=patch_size, stride=stride, group_size=1, small_kernel=3, use_se=use_se, act_layer=act_layer if lkc_use_act else None, inference_mode=inference_mode), MobileOneBlock(in_chs=embed_dim, out_chs=embed_dim, kernel_size=1, stride=1, use_se=False, act_layer=act_layer, inference_mode=inference_mode)) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + x = self.proj(x) + return x + +class LayerScale2d(nn.Module): + + def __init__(self, dim, init_values=1e-05, inplace=False): + super().__init__() + self.inplace = inplace + self.gamma = nn.Parameter(init_values * torch.ones(dim, 1, 1)) + + def forward(self, x): + return x.mul_(self.gamma) if self.inplace else x * self.gamma + +class RepMixer(nn.Module): + + def __init__(self, dim, kernel_size=3, layer_scale_init_value=1e-05, inference_mode: bool=False): + super().__init__() + self.dim = dim + self.kernel_size = kernel_size + self.inference_mode = inference_mode + if inference_mode: + self.reparam_conv = nn.Conv2d(self.dim, self.dim, kernel_size=self.kernel_size, stride=1, padding=self.kernel_size // 2, groups=self.dim, bias=True) + else: + self.reparam_conv = None + self.norm = MobileOneBlock(dim, dim, kernel_size, group_size=1, use_act=False, use_scale_branch=False, num_conv_branches=0) + self.mixer = MobileOneBlock(dim, dim, kernel_size, group_size=1, use_act=False) + if layer_scale_init_value is not None: + self.layer_scale = LayerScale2d(dim, layer_scale_init_value) + else: + self.layer_scale = nn.Identity() + + def forward(self, x: torch.Tensor) -> torch.Tensor: + if self.reparam_conv is not None: + x = self.reparam_conv(x) + else: + x = x + self.layer_scale(self.mixer(x) - self.norm(x)) + return x + + def reparameterize(self) -> None: + if self.inference_mode: + return + self.mixer.reparameterize() + self.norm.reparameterize() + if isinstance(self.layer_scale, LayerScale2d): + w = self.mixer.id_tensor + self.layer_scale.gamma.unsqueeze(-1) * (self.mixer.reparam_conv.weight - self.norm.reparam_conv.weight) + b = torch.squeeze(self.layer_scale.gamma) * (self.mixer.reparam_conv.bias - self.norm.reparam_conv.bias) + else: + w = self.mixer.id_tensor + self.mixer.reparam_conv.weight - self.norm.reparam_conv.weight + b = self.mixer.reparam_conv.bias - self.norm.reparam_conv.bias + self.reparam_conv = create_conv2d(self.dim, self.dim, kernel_size=self.kernel_size, stride=1, groups=self.dim, bias=True) + self.reparam_conv.weight.data = w + self.reparam_conv.bias.data = b + for (name, para) in self.named_parameters(): + if 'reparam_conv' in name: + continue + para.detach_() + self.__delattr__('mixer') + self.__delattr__('norm') + self.__delattr__('layer_scale') + +class ConvMlp(nn.Module): + + def __init__(self, in_chs: int, hidden_channels: Optional[int]=None, out_chs: Optional[int]=None, act_layer: nn.Module=nn.GELU, drop: float=0.0) -> None: + super().__init__() + out_chs = out_chs or in_chs + hidden_channels = hidden_channels or in_chs + self.conv = ConvNormAct(in_chs, out_chs, kernel_size=7, groups=in_chs, apply_act=False) + self.fc1 = nn.Conv2d(in_chs, hidden_channels, kernel_size=1) + self.act = act_layer() + self.fc2 = nn.Conv2d(hidden_channels, out_chs, kernel_size=1) + self.drop = nn.Dropout(drop) + self.apply(self._init_weights) + + def _init_weights(self, m: nn.Module) -> None: + if isinstance(m, nn.Conv2d): + trunc_normal_(m.weight, std=0.02) + if m.bias is not None: + nn.init.constant_(m.bias, 0) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + x = self.conv(x) + x = self.fc1(x) + x = self.act(x) + x = self.drop(x) + x = self.fc2(x) + x = self.drop(x) + return x + +class RepConditionalPosEnc(nn.Module): + + def __init__(self, dim: int, dim_out: Optional[int]=None, spatial_shape: Union[int, Tuple[int, int]]=(7, 7), inference_mode=False) -> None: + super(RepConditionalPosEnc, self).__init__() + if isinstance(spatial_shape, int): + spatial_shape = tuple([spatial_shape] * 2) + assert isinstance(spatial_shape, Tuple), f'"spatial_shape" must by a sequence or int, get {type(spatial_shape)} instead.' + assert len(spatial_shape) == 2, f'Length of "spatial_shape" should be 2, got {len(spatial_shape)} instead.' + self.spatial_shape = spatial_shape + self.dim = dim + self.dim_out = dim_out or dim + self.groups = dim + if inference_mode: + self.reparam_conv = nn.Conv2d(self.dim, self.dim_out, kernel_size=self.spatial_shape, stride=1, padding=spatial_shape[0] // 2, groups=self.groups, bias=True) + else: + self.reparam_conv = None + self.pos_enc = nn.Conv2d(self.dim, self.dim_out, spatial_shape, 1, int(spatial_shape[0] // 2), groups=self.groups, bias=True) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + if self.reparam_conv is not None: + x = self.reparam_conv(x) + else: + x = self.pos_enc(x) + x + return x + + def reparameterize(self) -> None: + input_dim = self.dim // self.groups + kernel_value = torch.zeros((self.dim, input_dim, self.spatial_shape[0], self.spatial_shape[1]), dtype=self.pos_enc.weight.dtype, device=self.pos_enc.weight.device) + for i in range(self.dim): + kernel_value[i, i % input_dim, self.spatial_shape[0] // 2, self.spatial_shape[1] // 2] = 1 + id_tensor = kernel_value + w_final = id_tensor + self.pos_enc.weight + b_final = self.pos_enc.bias + self.reparam_conv = nn.Conv2d(self.dim, self.dim_out, kernel_size=self.spatial_shape, stride=1, padding=int(self.spatial_shape[0] // 2), groups=self.groups, bias=True) + self.reparam_conv.weight.data = w_final + self.reparam_conv.bias.data = b_final + for (name, para) in self.named_parameters(): + if 'reparam_conv' in name: + continue + para.detach_() + self.__delattr__('pos_enc') + +class RepMixerBlock(nn.Module): + + def __init__(self, dim: int, kernel_size: int=3, mlp_ratio: float=4.0, act_layer: nn.Module=nn.GELU, proj_drop: float=0.0, drop_path: float=0.0, layer_scale_init_value: float=1e-05, inference_mode: bool=False): + super().__init__() + self.token_mixer = RepMixer(dim, kernel_size=kernel_size, layer_scale_init_value=layer_scale_init_value, inference_mode=inference_mode) + self.mlp = ConvMlp(in_chs=dim, hidden_channels=int(dim * mlp_ratio), act_layer=act_layer, drop=proj_drop) + if layer_scale_init_value is not None: + self.layer_scale = LayerScale2d(dim, layer_scale_init_value) + else: + self.layer_scale = nn.Identity() + self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + + def forward(self, x): + x = self.token_mixer(x) + x = x + self.drop_path(self.layer_scale(self.mlp(x))) + return x + +class AttentionBlock(nn.Module): + + def __init__(self, dim: int, mlp_ratio: float=4.0, act_layer: nn.Module=nn.GELU, norm_layer: nn.Module=nn.BatchNorm2d, proj_drop: float=0.0, drop_path: float=0.0, layer_scale_init_value: float=1e-05): + super().__init__() + self.norm = norm_layer(dim) + self.token_mixer = Attention(dim=dim) + if layer_scale_init_value is not None: + self.layer_scale_1 = LayerScale2d(dim, layer_scale_init_value) + else: + self.layer_scale_1 = nn.Identity() + self.drop_path1 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + self.mlp = ConvMlp(in_chs=dim, hidden_channels=int(dim * mlp_ratio), act_layer=act_layer, drop=proj_drop) + if layer_scale_init_value is not None: + self.layer_scale_2 = LayerScale2d(dim, layer_scale_init_value) + else: + self.layer_scale_2 = nn.Identity() + self.drop_path2 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + + def forward(self, x): + x = x + self.drop_path1(self.layer_scale_1(self.token_mixer(self.norm(x)))) + x = x + self.drop_path2(self.layer_scale_2(self.mlp(x))) + return x + +class FastVitStage(nn.Module): + + def __init__(self, dim: int, dim_out: int, depth: int, token_mixer_type: str, downsample: bool=True, se_downsample: bool=False, down_patch_size: int=7, down_stride: int=2, pos_emb_layer: Optional[nn.Module]=None, kernel_size: int=3, mlp_ratio: float=4.0, act_layer: nn.Module=nn.GELU, norm_layer: nn.Module=nn.BatchNorm2d, proj_drop_rate: float=0.0, drop_path_rate: float=0.0, layer_scale_init_value: Optional[float]=1e-05, lkc_use_act=False, inference_mode=False): + super().__init__() + self.grad_checkpointing = False + if downsample: + self.downsample = PatchEmbed(patch_size=down_patch_size, stride=down_stride, in_chs=dim, embed_dim=dim_out, use_se=se_downsample, act_layer=act_layer, lkc_use_act=lkc_use_act, inference_mode=inference_mode) + else: + assert dim == dim_out + self.downsample = nn.Identity() + if pos_emb_layer is not None: + self.pos_emb = pos_emb_layer(dim_out, inference_mode=inference_mode) + else: + self.pos_emb = nn.Identity() + blocks = [] + for block_idx in range(depth): + if token_mixer_type == 'repmixer': + blocks.append(RepMixerBlock(dim_out, kernel_size=kernel_size, mlp_ratio=mlp_ratio, act_layer=act_layer, proj_drop=proj_drop_rate, drop_path=drop_path_rate[block_idx], layer_scale_init_value=layer_scale_init_value, inference_mode=inference_mode)) + elif token_mixer_type == 'attention': + blocks.append(AttentionBlock(dim_out, mlp_ratio=mlp_ratio, act_layer=act_layer, norm_layer=norm_layer, proj_drop=proj_drop_rate, drop_path=drop_path_rate[block_idx], layer_scale_init_value=layer_scale_init_value)) + else: + raise ValueError('Token mixer type: {} not supported'.format(token_mixer_type)) + self.blocks = nn.Sequential(*blocks) + + def forward(self, x): + x = self.downsample(x) + x = self.pos_emb(x) + if self.grad_checkpointing and (not torch.jit.is_scripting()): + x = checkpoint_seq(self.blocks, x) + else: + x = self.blocks(x) + return x + +class FastVit(nn.Module): + fork_feat: torch.jit.Final[bool] + '' + + def __init__(self, in_chans: int=3, layers: Tuple[int, ...]=(2, 2, 6, 2), token_mixers: Tuple[str, ...]=('repmixer', 'repmixer', 'repmixer', 'repmixer'), embed_dims: Tuple[int, ...]=(64, 128, 256, 512), mlp_ratios: Tuple[float, ...]=(4,) * 4, downsamples: Tuple[bool, ...]=(False, True, True, True), se_downsamples: Tuple[bool, ...]=(False, False, False, False), repmixer_kernel_size: int=3, num_classes: int=1000, pos_embs: Tuple[Optional[nn.Module], ...]=(None,) * 4, down_patch_size: int=7, down_stride: int=2, drop_rate: float=0.0, proj_drop_rate: float=0.0, drop_path_rate: float=0.0, layer_scale_init_value: float=1e-05, lkc_use_act: bool=False, fork_feat: bool=False, cls_ratio: float=2.0, global_pool: str='avg', norm_layer: nn.Module=nn.BatchNorm2d, act_layer: nn.Module=nn.GELU, inference_mode: bool=False) -> None: + super().__init__() + self.num_classes = 0 if fork_feat else num_classes + self.fork_feat = fork_feat + self.global_pool = global_pool + self.feature_info = [] + self.stem = convolutional_stem(in_chans, embed_dims[0], act_layer, inference_mode) + prev_dim = embed_dims[0] + scale = 1 + dpr = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(layers)).split(layers)] + stages = [] + for i in range(len(layers)): + downsample = downsamples[i] or prev_dim != embed_dims[i] + stage = FastVitStage(dim=prev_dim, dim_out=embed_dims[i], depth=layers[i], downsample=downsample, se_downsample=se_downsamples[i], down_patch_size=down_patch_size, down_stride=down_stride, pos_emb_layer=pos_embs[i], token_mixer_type=token_mixers[i], kernel_size=repmixer_kernel_size, mlp_ratio=mlp_ratios[i], act_layer=act_layer, norm_layer=norm_layer, proj_drop_rate=proj_drop_rate, drop_path_rate=dpr[i], layer_scale_init_value=layer_scale_init_value, lkc_use_act=lkc_use_act, inference_mode=inference_mode) + stages.append(stage) + prev_dim = embed_dims[i] + if downsample: + scale *= 2 + self.feature_info += [dict(num_chs=prev_dim, reduction=4 * scale, module=f'stages.{i}')] + self.stages = nn.Sequential(*stages) + self.num_stages = len(self.stages) + self.num_features = self.head_hidden_size = prev_dim + if self.fork_feat: + self.out_indices = [0, 1, 2, 3] + for (i_emb, i_layer) in enumerate(self.out_indices): + if i_emb == 0 and os.environ.get('FORK_LAST3', None): + '' + layer = nn.Identity() + else: + layer = norm_layer(embed_dims[i_emb]) + layer_name = f'norm{i_layer}' + self.add_module(layer_name, layer) + else: + self.num_features = self.head_hidden_size = final_features = int(embed_dims[-1] * cls_ratio) + self.final_conv = MobileOneBlock(in_chs=embed_dims[-1], out_chs=final_features, kernel_size=3, stride=1, group_size=1, inference_mode=inference_mode, use_se=True, act_layer=act_layer, num_conv_branches=1) + self.head = ClassifierHead(final_features, num_classes, pool_type=global_pool, drop_rate=drop_rate) + self.apply(self._init_weights) + + def _init_weights(self, m: nn.Module) -> None: + if isinstance(m, nn.Linear): + trunc_normal_(m.weight, std=0.02) + if isinstance(m, nn.Linear) and m.bias is not None: + nn.init.constant_(m.bias, 0) + + @torch.jit.ignore + def no_weight_decay(self): + return set() + + @torch.jit.ignore + def group_matcher(self, coarse=False): + return dict(stem='^stem', blocks='^stages\\.(\\d+)' if coarse else [('^stages\\.(\\d+).downsample', (0,)), ('^stages\\.(\\d+).pos_emb', (0,)), ('^stages\\.(\\d+)\\.\\w+\\.(\\d+)', None)]) + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + for s in self.stages: + s.grad_checkpointing = enable + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.head.fc + + def reset_classifier(self, num_classes: int, global_pool: Optional[str]=None): + self.num_classes = num_classes + self.head.reset(num_classes, global_pool) + + def forward_intermediates(self, x: torch.Tensor, indices: Optional[Union[int, List[int]]]=None, norm: bool=False, stop_early: bool=False, output_fmt: str='NCHW', intermediates_only: bool=False) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]: + assert output_fmt in ('NCHW',), 'Output shape must be NCHW.' + intermediates = [] + (take_indices, max_index) = feature_take_indices(len(self.stages), indices) + x = self.stem(x) + last_idx = self.num_stages - 1 + if torch.jit.is_scripting() or not stop_early: + stages = self.stages + else: + stages = self.stages[:max_index + 1] + feat_idx = 0 + for (feat_idx, stage) in enumerate(stages): + x = stage(x) + if feat_idx in take_indices: + intermediates.append(x) + if intermediates_only: + return intermediates + if feat_idx == last_idx: + x = self.final_conv(x) + return (x, intermediates) + + def prune_intermediate_layers(self, indices: Union[int, List[int]]=1, prune_norm: bool=False, prune_head: bool=True): + (take_indices, max_index) = feature_take_indices(len(self.stages), indices) + self.stages = self.stages[:max_index + 1] + if prune_head: + self.reset_classifier(0, '') + return take_indices + + def forward_features(self, x: torch.Tensor) -> torch.Tensor: + x = self.stem(x) + outs = [] + for (idx, block) in enumerate(self.stages): + x = block(x) + if self.fork_feat: + if idx in self.out_indices: + norm_layer = getattr(self, f'norm{idx}') + x_out = norm_layer(x) + outs.append(x_out) + if self.fork_feat: + return outs + x = self.final_conv(x) + return x + + def forward_head(self, x: torch.Tensor, pre_logits: bool=False): + return self.head(x, pre_logits=True) if pre_logits else self.head(x) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + x = self.forward_features(x) + if self.fork_feat: + return x + x = self.forward_head(x) + return x + +def _cfg(url='', **kwargs): + return {'url': url, 'num_classes': 1000, 'input_size': (3, 256, 256), 'pool_size': (8, 8), 'crop_pct': 0.9, 'interpolation': 'bicubic', 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': ('stem.0.conv_kxk.0.conv', 'stem.0.conv_scale.conv'), 'classifier': 'head.fc', **kwargs} +default_cfgs = generate_default_cfgs({'fastvit_t8.apple_in1k': _cfg(hf_hub_id='timm/'), 'fastvit_t12.apple_in1k': _cfg(hf_hub_id='timm/'), 'fastvit_s12.apple_in1k': _cfg(hf_hub_id='timm/'), 'fastvit_sa12.apple_in1k': _cfg(hf_hub_id='timm/'), 'fastvit_sa24.apple_in1k': _cfg(hf_hub_id='timm/'), 'fastvit_sa36.apple_in1k': _cfg(hf_hub_id='timm/'), 'fastvit_ma36.apple_in1k': _cfg(hf_hub_id='timm/', crop_pct=0.95), 'fastvit_t8.apple_dist_in1k': _cfg(hf_hub_id='timm/'), 'fastvit_t12.apple_dist_in1k': _cfg(hf_hub_id='timm/'), 'fastvit_s12.apple_dist_in1k': _cfg(hf_hub_id='timm/'), 'fastvit_sa12.apple_dist_in1k': _cfg(hf_hub_id='timm/'), 'fastvit_sa24.apple_dist_in1k': _cfg(hf_hub_id='timm/'), 'fastvit_sa36.apple_dist_in1k': _cfg(hf_hub_id='timm/'), 'fastvit_ma36.apple_dist_in1k': _cfg(hf_hub_id='timm/', crop_pct=0.95), 'fastvit_mci0.apple_mclip': _cfg(hf_hub_id='apple/mobileclip_s0_timm', url='https://docs-assets.developer.apple.com/ml-research/datasets/mobileclip/mobileclip_s0.pt', crop_pct=0.95, num_classes=512, mean=(0.0, 0.0, 0.0), std=(1.0, 1.0, 1.0)), 'fastvit_mci1.apple_mclip': _cfg(hf_hub_id='apple/mobileclip_s1_timm', url='https://docs-assets.developer.apple.com/ml-research/datasets/mobileclip/mobileclip_s1.pt', crop_pct=0.95, num_classes=512, mean=(0.0, 0.0, 0.0), std=(1.0, 1.0, 1.0)), 'fastvit_mci2.apple_mclip': _cfg(hf_hub_id='apple/mobileclip_s2_timm', url='https://docs-assets.developer.apple.com/ml-research/datasets/mobileclip/mobileclip_s2.pt', crop_pct=0.95, num_classes=512, mean=(0.0, 0.0, 0.0), std=(1.0, 1.0, 1.0))}) + +def checkpoint_filter_fn(state_dict, model): + if 'stem.0.conv_kxk.0.conv.weight' in state_dict: + return state_dict + state_dict = state_dict.get('state_dict', state_dict) + if 'image_encoder.model.patch_embed.0.rbr_conv.0.conv.weight' in state_dict: + prefix = 'image_encoder.model.' + else: + prefix = '' + import re + import bisect + stage_ends = [] + for (k, v) in state_dict.items(): + match = re.match('^(.*?)network\\.(\\d+)\\.proj.*', k) + if match: + stage_ends.append(int(match.group(2))) + stage_ends = list(sorted(set(stage_ends))) + out_dict = {} + for (k, v) in state_dict.items(): + if prefix: + if prefix not in k: + continue + k = k.replace(prefix, '') + k = k.replace('patch_embed', 'stem') + k = k.replace('rbr_conv', 'conv_kxk') + k = k.replace('rbr_scale', 'conv_scale') + k = k.replace('rbr_skip', 'identity') + k = k.replace('conv_exp', 'final_conv') + k = k.replace('lkb_origin', 'large_conv') + k = k.replace('convffn', 'mlp') + k = k.replace('se.reduce', 'se.fc1') + k = k.replace('se.expand', 'se.fc2') + k = re.sub('layer_scale_([0-9])', 'layer_scale_\\1.gamma', k) + if k.endswith('layer_scale'): + k = k.replace('layer_scale', 'layer_scale.gamma') + k = k.replace('dist_head', 'head_dist') + if k.startswith('head.'): + if k == 'head.proj' and hasattr(model.head, 'fc') and isinstance(model.head.fc, nn.Linear): + k = k.replace('head.proj', 'head.fc.weight') + v = v.T + out_dict['head.fc.bias'] = torch.zeros(v.shape[0]) + else: + k = k.replace('head.', 'head.fc.') + match = re.match('^network\\.(\\d+)', k) + (stage_idx, net_idx) = (None, None) + if match: + net_idx = int(match.group(1)) + stage_idx = bisect.bisect_right(stage_ends, net_idx) + if stage_idx is not None: + net_prefix = f'network.{net_idx}' + stage_prefix = f'stages.{stage_idx}' + if net_prefix + '.proj' in k: + k = k.replace(net_prefix + '.proj', stage_prefix + '.downsample.proj') + elif net_prefix + '.pe' in k: + k = k.replace(net_prefix + '.pe', stage_prefix + '.pos_emb.pos_enc') + else: + k = k.replace(net_prefix, stage_prefix + '.blocks') + out_dict[k] = v + return out_dict + +def _create_fastvit(variant, pretrained=False, **kwargs): + out_indices = kwargs.pop('out_indices', (0, 1, 2, 3)) + model = build_model_with_cfg(FastVit, variant, pretrained, pretrained_filter_fn=checkpoint_filter_fn, feature_cfg=dict(flatten_sequential=True, out_indices=out_indices), **kwargs) + return model + +@register_model +def fastvit_t8(pretrained=False, **kwargs): + model_args = dict(layers=(2, 2, 4, 2), embed_dims=(48, 96, 192, 384), mlp_ratios=(3, 3, 3, 3), token_mixers=('repmixer', 'repmixer', 'repmixer', 'repmixer')) + return _create_fastvit('fastvit_t8', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def fastvit_t12(pretrained=False, **kwargs): + model_args = dict(layers=(2, 2, 6, 2), embed_dims=(64, 128, 256, 512), mlp_ratios=(3, 3, 3, 3), token_mixers=('repmixer', 'repmixer', 'repmixer', 'repmixer')) + return _create_fastvit('fastvit_t12', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def fastvit_s12(pretrained=False, **kwargs): + model_args = dict(layers=(2, 2, 6, 2), embed_dims=(64, 128, 256, 512), mlp_ratios=(4, 4, 4, 4), token_mixers=('repmixer', 'repmixer', 'repmixer', 'repmixer')) + return _create_fastvit('fastvit_s12', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def fastvit_sa12(pretrained=False, **kwargs): + model_args = dict(layers=(2, 2, 6, 2), embed_dims=(64, 128, 256, 512), mlp_ratios=(4, 4, 4, 4), pos_embs=(None, None, None, partial(RepConditionalPosEnc, spatial_shape=(7, 7))), token_mixers=('repmixer', 'repmixer', 'repmixer', 'attention')) + return _create_fastvit('fastvit_sa12', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def fastvit_sa24(pretrained=False, **kwargs): + model_args = dict(layers=(4, 4, 12, 4), embed_dims=(64, 128, 256, 512), mlp_ratios=(4, 4, 4, 4), pos_embs=(None, None, None, partial(RepConditionalPosEnc, spatial_shape=(7, 7))), token_mixers=('repmixer', 'repmixer', 'repmixer', 'attention')) + return _create_fastvit('fastvit_sa24', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def fastvit_sa36(pretrained=False, **kwargs): + model_args = dict(layers=(6, 6, 18, 6), embed_dims=(64, 128, 256, 512), mlp_ratios=(4, 4, 4, 4), pos_embs=(None, None, None, partial(RepConditionalPosEnc, spatial_shape=(7, 7))), token_mixers=('repmixer', 'repmixer', 'repmixer', 'attention')) + return _create_fastvit('fastvit_sa36', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def fastvit_ma36(pretrained=False, **kwargs): + model_args = dict(layers=(6, 6, 18, 6), embed_dims=(76, 152, 304, 608), mlp_ratios=(4, 4, 4, 4), pos_embs=(None, None, None, partial(RepConditionalPosEnc, spatial_shape=(7, 7))), token_mixers=('repmixer', 'repmixer', 'repmixer', 'attention')) + return _create_fastvit('fastvit_ma36', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def fastvit_mci0(pretrained=False, **kwargs): + model_args = dict(layers=(2, 6, 10, 2), embed_dims=(64, 128, 256, 512), mlp_ratios=(3, 3, 3, 3), se_downsamples=(False, False, True, True), pos_embs=(None, None, None, partial(RepConditionalPosEnc, spatial_shape=(7, 7))), token_mixers=('repmixer', 'repmixer', 'repmixer', 'attention'), lkc_use_act=True) + return _create_fastvit('fastvit_mci0', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def fastvit_mci1(pretrained=False, **kwargs): + model_args = dict(layers=(4, 12, 20, 4), embed_dims=(64, 128, 256, 512), mlp_ratios=(3, 3, 3, 3), se_downsamples=(False, False, True, True), pos_embs=(None, None, None, partial(RepConditionalPosEnc, spatial_shape=(7, 7))), token_mixers=('repmixer', 'repmixer', 'repmixer', 'attention'), lkc_use_act=True) + return _create_fastvit('fastvit_mci1', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def fastvit_mci2(pretrained=False, **kwargs): + model_args = dict(layers=(4, 12, 24, 4), embed_dims=(80, 160, 320, 640), mlp_ratios=(3, 3, 3, 3), se_downsamples=(False, False, True, True), pos_embs=(None, None, None, partial(RepConditionalPosEnc, spatial_shape=(7, 7))), token_mixers=('repmixer', 'repmixer', 'repmixer', 'attention'), lkc_use_act=True) + return _create_fastvit('fastvit_mci2', pretrained=pretrained, **dict(model_args, **kwargs)) + +# File: pytorch-image-models-main/timm/models/focalnet.py +"""""" +from functools import partial +from typing import Callable, Optional, Tuple +import torch +import torch.nn as nn +import torch.utils.checkpoint as checkpoint +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from timm.layers import Mlp, DropPath, LayerNorm2d, trunc_normal_, ClassifierHead, NormMlpClassifierHead +from ._builder import build_model_with_cfg +from ._manipulate import named_apply +from ._registry import generate_default_cfgs, register_model +__all__ = ['FocalNet'] + +class FocalModulation(nn.Module): + + def __init__(self, dim: int, focal_window, focal_level: int, focal_factor: int=2, bias: bool=True, use_post_norm: bool=False, normalize_modulator: bool=False, proj_drop: float=0.0, norm_layer: Callable=LayerNorm2d): + super().__init__() + self.dim = dim + self.focal_window = focal_window + self.focal_level = focal_level + self.focal_factor = focal_factor + self.use_post_norm = use_post_norm + self.normalize_modulator = normalize_modulator + self.input_split = [dim, dim, self.focal_level + 1] + self.f = nn.Conv2d(dim, 2 * dim + (self.focal_level + 1), kernel_size=1, bias=bias) + self.h = nn.Conv2d(dim, dim, kernel_size=1, bias=bias) + self.act = nn.GELU() + self.proj = nn.Conv2d(dim, dim, kernel_size=1) + self.proj_drop = nn.Dropout(proj_drop) + self.focal_layers = nn.ModuleList() + self.kernel_sizes = [] + for k in range(self.focal_level): + kernel_size = self.focal_factor * k + self.focal_window + self.focal_layers.append(nn.Sequential(nn.Conv2d(dim, dim, kernel_size=kernel_size, groups=dim, padding=kernel_size // 2, bias=False), nn.GELU())) + self.kernel_sizes.append(kernel_size) + self.norm = norm_layer(dim) if self.use_post_norm else nn.Identity() + + def forward(self, x): + x = self.f(x) + (q, ctx, gates) = torch.split(x, self.input_split, 1) + ctx_all = 0 + for (l, focal_layer) in enumerate(self.focal_layers): + ctx = focal_layer(ctx) + ctx_all = ctx_all + ctx * gates[:, l:l + 1] + ctx_global = self.act(ctx.mean((2, 3), keepdim=True)) + ctx_all = ctx_all + ctx_global * gates[:, self.focal_level:] + if self.normalize_modulator: + ctx_all = ctx_all / (self.focal_level + 1) + x_out = q * self.h(ctx_all) + x_out = self.norm(x_out) + x_out = self.proj(x_out) + x_out = self.proj_drop(x_out) + return x_out + +class LayerScale2d(nn.Module): + + def __init__(self, dim, init_values=1e-05, inplace=False): + super().__init__() + self.inplace = inplace + self.gamma = nn.Parameter(init_values * torch.ones(dim)) + + def forward(self, x): + gamma = self.gamma.view(1, -1, 1, 1) + return x.mul_(gamma) if self.inplace else x * gamma + +class FocalNetBlock(nn.Module): + + def __init__(self, dim: int, mlp_ratio: float=4.0, focal_level: int=1, focal_window: int=3, use_post_norm: bool=False, use_post_norm_in_modulation: bool=False, normalize_modulator: bool=False, layerscale_value: float=0.0001, proj_drop: float=0.0, drop_path: float=0.0, act_layer: Callable=nn.GELU, norm_layer: Callable=LayerNorm2d): + super().__init__() + self.dim = dim + self.mlp_ratio = mlp_ratio + self.focal_window = focal_window + self.focal_level = focal_level + self.use_post_norm = use_post_norm + self.norm1 = norm_layer(dim) if not use_post_norm else nn.Identity() + self.modulation = FocalModulation(dim, focal_window=focal_window, focal_level=self.focal_level, use_post_norm=use_post_norm_in_modulation, normalize_modulator=normalize_modulator, proj_drop=proj_drop, norm_layer=norm_layer) + self.norm1_post = norm_layer(dim) if use_post_norm else nn.Identity() + self.ls1 = LayerScale2d(dim, layerscale_value) if layerscale_value is not None else nn.Identity() + self.drop_path1 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + self.norm2 = norm_layer(dim) if not use_post_norm else nn.Identity() + self.mlp = Mlp(in_features=dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer, drop=proj_drop, use_conv=True) + self.norm2_post = norm_layer(dim) if use_post_norm else nn.Identity() + self.ls2 = LayerScale2d(dim, layerscale_value) if layerscale_value is not None else nn.Identity() + self.drop_path2 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + + def forward(self, x): + shortcut = x + x = self.norm1(x) + x = self.modulation(x) + x = self.norm1_post(x) + x = shortcut + self.drop_path1(self.ls1(x)) + x = x + self.drop_path2(self.ls2(self.norm2_post(self.mlp(self.norm2(x))))) + return x + +class FocalNetStage(nn.Module): + + def __init__(self, dim: int, out_dim: int, depth: int, mlp_ratio: float=4.0, downsample: bool=True, focal_level: int=1, focal_window: int=1, use_overlap_down: bool=False, use_post_norm: bool=False, use_post_norm_in_modulation: bool=False, normalize_modulator: bool=False, layerscale_value: float=0.0001, proj_drop: float=0.0, drop_path: float=0.0, norm_layer: Callable=LayerNorm2d): + super().__init__() + self.dim = dim + self.depth = depth + self.grad_checkpointing = False + if downsample: + self.downsample = Downsample(in_chs=dim, out_chs=out_dim, stride=2, overlap=use_overlap_down, norm_layer=norm_layer) + else: + self.downsample = nn.Identity() + self.blocks = nn.ModuleList([FocalNetBlock(dim=out_dim, mlp_ratio=mlp_ratio, focal_level=focal_level, focal_window=focal_window, use_post_norm=use_post_norm, use_post_norm_in_modulation=use_post_norm_in_modulation, normalize_modulator=normalize_modulator, layerscale_value=layerscale_value, proj_drop=proj_drop, drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path, norm_layer=norm_layer) for i in range(depth)]) + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + self.grad_checkpointing = enable + + def forward(self, x): + x = self.downsample(x) + for blk in self.blocks: + if self.grad_checkpointing and (not torch.jit.is_scripting()): + x = checkpoint.checkpoint(blk, x) + else: + x = blk(x) + return x + +class Downsample(nn.Module): + + def __init__(self, in_chs: int, out_chs: int, stride: int=4, overlap: bool=False, norm_layer: Optional[Callable]=None): + super().__init__() + self.stride = stride + padding = 0 + kernel_size = stride + if overlap: + assert stride in (2, 4) + if stride == 4: + (kernel_size, padding) = (7, 2) + elif stride == 2: + (kernel_size, padding) = (3, 1) + self.proj = nn.Conv2d(in_chs, out_chs, kernel_size=kernel_size, stride=stride, padding=padding) + self.norm = norm_layer(out_chs) if norm_layer is not None else nn.Identity() + + def forward(self, x): + x = self.proj(x) + x = self.norm(x) + return x + +class FocalNet(nn.Module): + + def __init__(self, in_chans: int=3, num_classes: int=1000, global_pool: str='avg', embed_dim: int=96, depths: Tuple[int, ...]=(2, 2, 6, 2), mlp_ratio: float=4.0, focal_levels: Tuple[int, ...]=(2, 2, 2, 2), focal_windows: Tuple[int, ...]=(3, 3, 3, 3), use_overlap_down: bool=False, use_post_norm: bool=False, use_post_norm_in_modulation: bool=False, normalize_modulator: bool=False, head_hidden_size: Optional[int]=None, head_init_scale: float=1.0, layerscale_value: Optional[float]=None, drop_rate: bool=0.0, proj_drop_rate: bool=0.0, drop_path_rate: bool=0.1, norm_layer: Callable=partial(LayerNorm2d, eps=1e-05)): + super().__init__() + self.num_layers = len(depths) + embed_dim = [embed_dim * 2 ** i for i in range(self.num_layers)] + self.num_classes = num_classes + self.embed_dim = embed_dim + self.num_features = self.head_hidden_size = embed_dim[-1] + self.feature_info = [] + self.stem = Downsample(in_chs=in_chans, out_chs=embed_dim[0], overlap=use_overlap_down, norm_layer=norm_layer) + in_dim = embed_dim[0] + dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] + layers = [] + for i_layer in range(self.num_layers): + out_dim = embed_dim[i_layer] + layer = FocalNetStage(dim=in_dim, out_dim=out_dim, depth=depths[i_layer], mlp_ratio=mlp_ratio, downsample=i_layer > 0, focal_level=focal_levels[i_layer], focal_window=focal_windows[i_layer], use_overlap_down=use_overlap_down, use_post_norm=use_post_norm, use_post_norm_in_modulation=use_post_norm_in_modulation, normalize_modulator=normalize_modulator, layerscale_value=layerscale_value, proj_drop=proj_drop_rate, drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])], norm_layer=norm_layer) + in_dim = out_dim + layers += [layer] + self.feature_info += [dict(num_chs=out_dim, reduction=4 * 2 ** i_layer, module=f'layers.{i_layer}')] + self.layers = nn.Sequential(*layers) + if head_hidden_size: + self.norm = nn.Identity() + self.head_hidden_size = head_hidden_size + self.head = NormMlpClassifierHead(self.num_features, num_classes, hidden_size=head_hidden_size, pool_type=global_pool, drop_rate=drop_rate, norm_layer=norm_layer) + else: + self.norm = norm_layer(self.num_features) + self.head = ClassifierHead(self.num_features, num_classes, pool_type=global_pool, drop_rate=drop_rate) + named_apply(partial(_init_weights, head_init_scale=head_init_scale), self) + + @torch.jit.ignore + def no_weight_decay(self): + return {''} + + @torch.jit.ignore + def group_matcher(self, coarse=False): + return dict(stem='^stem', blocks=[('^layers\\.(\\d+)', None), ('^norm', (99999,))] if coarse else [('^layers\\.(\\d+).downsample', (0,)), ('^layers\\.(\\d+)\\.\\w+\\.(\\d+)', None), ('^norm', (99999,))]) + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + self.grad_checkpointing = enable + for l in self.layers: + l.set_grad_checkpointing(enable=enable) + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.head.fc + + def reset_classifier(self, num_classes: int, global_pool: Optional[str]=None): + self.head.reset(num_classes, pool_type=global_pool) + + def forward_features(self, x): + x = self.stem(x) + x = self.layers(x) + x = self.norm(x) + return x + + def forward_head(self, x, pre_logits: bool=False): + return self.head(x, pre_logits=pre_logits) if pre_logits else self.head(x) + + def forward(self, x): + x = self.forward_features(x) + x = self.forward_head(x) + return x + +def _init_weights(module, name=None, head_init_scale=1.0): + if isinstance(module, nn.Conv2d): + trunc_normal_(module.weight, std=0.02) + if module.bias is not None: + nn.init.zeros_(module.bias) + elif isinstance(module, nn.Linear): + trunc_normal_(module.weight, std=0.02) + if module.bias is not None: + nn.init.zeros_(module.bias) + if name and 'head.fc' in name: + module.weight.data.mul_(head_init_scale) + module.bias.data.mul_(head_init_scale) + +def _cfg(url='', **kwargs): + return {'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), 'crop_pct': 0.9, 'interpolation': 'bicubic', 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'stem.proj', 'classifier': 'head.fc', 'license': 'mit', **kwargs} +default_cfgs = generate_default_cfgs({'focalnet_tiny_srf.ms_in1k': _cfg(hf_hub_id='timm/'), 'focalnet_small_srf.ms_in1k': _cfg(hf_hub_id='timm/'), 'focalnet_base_srf.ms_in1k': _cfg(hf_hub_id='timm/'), 'focalnet_tiny_lrf.ms_in1k': _cfg(hf_hub_id='timm/'), 'focalnet_small_lrf.ms_in1k': _cfg(hf_hub_id='timm/'), 'focalnet_base_lrf.ms_in1k': _cfg(hf_hub_id='timm/'), 'focalnet_large_fl3.ms_in22k': _cfg(hf_hub_id='timm/', input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, num_classes=21842), 'focalnet_large_fl4.ms_in22k': _cfg(hf_hub_id='timm/', input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, num_classes=21842), 'focalnet_xlarge_fl3.ms_in22k': _cfg(hf_hub_id='timm/', input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, num_classes=21842), 'focalnet_xlarge_fl4.ms_in22k': _cfg(hf_hub_id='timm/', input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, num_classes=21842), 'focalnet_huge_fl3.ms_in22k': _cfg(hf_hub_id='timm/', num_classes=21842), 'focalnet_huge_fl4.ms_in22k': _cfg(hf_hub_id='timm/', num_classes=0)}) + +def checkpoint_filter_fn(state_dict, model: FocalNet): + state_dict = state_dict.get('model', state_dict) + if 'stem.proj.weight' in state_dict: + return state_dict + import re + out_dict = {} + dest_dict = model.state_dict() + for (k, v) in state_dict.items(): + k = re.sub('gamma_([0-9])', 'ls\\1.gamma', k) + k = k.replace('patch_embed', 'stem') + k = re.sub('layers.(\\d+).downsample', lambda x: f'layers.{int(x.group(1)) + 1}.downsample', k) + if 'norm' in k and k not in dest_dict: + k = re.sub('norm([0-9])', 'norm\\1_post', k) + k = k.replace('ln.', 'norm.') + k = k.replace('head', 'head.fc') + if k in dest_dict and dest_dict[k].numel() == v.numel() and (dest_dict[k].shape != v.shape): + v = v.reshape(dest_dict[k].shape) + out_dict[k] = v + return out_dict + +def _create_focalnet(variant, pretrained=False, **kwargs): + default_out_indices = tuple((i for (i, _) in enumerate(kwargs.get('depths', (1, 1, 3, 1))))) + out_indices = kwargs.pop('out_indices', default_out_indices) + model = build_model_with_cfg(FocalNet, variant, pretrained, pretrained_filter_fn=checkpoint_filter_fn, feature_cfg=dict(flatten_sequential=True, out_indices=out_indices), **kwargs) + return model + +@register_model +def focalnet_tiny_srf(pretrained=False, **kwargs) -> FocalNet: + model_kwargs = dict(depths=[2, 2, 6, 2], embed_dim=96, **kwargs) + return _create_focalnet('focalnet_tiny_srf', pretrained=pretrained, **model_kwargs) + +@register_model +def focalnet_small_srf(pretrained=False, **kwargs) -> FocalNet: + model_kwargs = dict(depths=[2, 2, 18, 2], embed_dim=96, **kwargs) + return _create_focalnet('focalnet_small_srf', pretrained=pretrained, **model_kwargs) + +@register_model +def focalnet_base_srf(pretrained=False, **kwargs) -> FocalNet: + model_kwargs = dict(depths=[2, 2, 18, 2], embed_dim=128, **kwargs) + return _create_focalnet('focalnet_base_srf', pretrained=pretrained, **model_kwargs) + +@register_model +def focalnet_tiny_lrf(pretrained=False, **kwargs) -> FocalNet: + model_kwargs = dict(depths=[2, 2, 6, 2], embed_dim=96, focal_levels=[3, 3, 3, 3], **kwargs) + return _create_focalnet('focalnet_tiny_lrf', pretrained=pretrained, **model_kwargs) + +@register_model +def focalnet_small_lrf(pretrained=False, **kwargs) -> FocalNet: + model_kwargs = dict(depths=[2, 2, 18, 2], embed_dim=96, focal_levels=[3, 3, 3, 3], **kwargs) + return _create_focalnet('focalnet_small_lrf', pretrained=pretrained, **model_kwargs) + +@register_model +def focalnet_base_lrf(pretrained=False, **kwargs) -> FocalNet: + model_kwargs = dict(depths=[2, 2, 18, 2], embed_dim=128, focal_levels=[3, 3, 3, 3], **kwargs) + return _create_focalnet('focalnet_base_lrf', pretrained=pretrained, **model_kwargs) + +@register_model +def focalnet_large_fl3(pretrained=False, **kwargs) -> FocalNet: + model_kwargs = dict(depths=[2, 2, 18, 2], embed_dim=192, focal_levels=[3, 3, 3, 3], focal_windows=[5] * 4, use_post_norm=True, use_overlap_down=True, layerscale_value=0.0001, **kwargs) + return _create_focalnet('focalnet_large_fl3', pretrained=pretrained, **model_kwargs) + +@register_model +def focalnet_large_fl4(pretrained=False, **kwargs) -> FocalNet: + model_kwargs = dict(depths=[2, 2, 18, 2], embed_dim=192, focal_levels=[4, 4, 4, 4], use_post_norm=True, use_overlap_down=True, layerscale_value=0.0001, **kwargs) + return _create_focalnet('focalnet_large_fl4', pretrained=pretrained, **model_kwargs) + +@register_model +def focalnet_xlarge_fl3(pretrained=False, **kwargs) -> FocalNet: + model_kwargs = dict(depths=[2, 2, 18, 2], embed_dim=256, focal_levels=[3, 3, 3, 3], focal_windows=[5] * 4, use_post_norm=True, use_overlap_down=True, layerscale_value=0.0001, **kwargs) + return _create_focalnet('focalnet_xlarge_fl3', pretrained=pretrained, **model_kwargs) + +@register_model +def focalnet_xlarge_fl4(pretrained=False, **kwargs) -> FocalNet: + model_kwargs = dict(depths=[2, 2, 18, 2], embed_dim=256, focal_levels=[4, 4, 4, 4], use_post_norm=True, use_overlap_down=True, layerscale_value=0.0001, **kwargs) + return _create_focalnet('focalnet_xlarge_fl4', pretrained=pretrained, **model_kwargs) + +@register_model +def focalnet_huge_fl3(pretrained=False, **kwargs) -> FocalNet: + model_kwargs = dict(depths=[2, 2, 18, 2], embed_dim=352, focal_levels=[3, 3, 3, 3], focal_windows=[3] * 4, use_post_norm=True, use_post_norm_in_modulation=True, use_overlap_down=True, layerscale_value=0.0001, **kwargs) + return _create_focalnet('focalnet_huge_fl3', pretrained=pretrained, **model_kwargs) + +@register_model +def focalnet_huge_fl4(pretrained=False, **kwargs) -> FocalNet: + model_kwargs = dict(depths=[2, 2, 18, 2], embed_dim=352, focal_levels=[4, 4, 4, 4], use_post_norm=True, use_post_norm_in_modulation=True, use_overlap_down=True, layerscale_value=0.0001, **kwargs) + return _create_focalnet('focalnet_huge_fl4', pretrained=pretrained, **model_kwargs) + +# File: pytorch-image-models-main/timm/models/gcvit.py +"""""" +import math +from functools import partial +from typing import Callable, List, Optional, Tuple, Union +import torch +import torch.nn as nn +import torch.utils.checkpoint as checkpoint +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from timm.layers import DropPath, to_2tuple, to_ntuple, Mlp, ClassifierHead, LayerNorm2d, get_attn, get_act_layer, get_norm_layer, RelPosBias, _assert +from ._builder import build_model_with_cfg +from ._features_fx import register_notrace_function +from ._manipulate import named_apply +from ._registry import register_model, generate_default_cfgs +__all__ = ['GlobalContextVit'] + +class MbConvBlock(nn.Module): + + def __init__(self, in_chs, out_chs=None, expand_ratio=1.0, attn_layer='se', bias=False, act_layer=nn.GELU): + super().__init__() + attn_kwargs = dict(act_layer=act_layer) + if isinstance(attn_layer, str) and attn_layer == 'se' or attn_layer == 'eca': + attn_kwargs['rd_ratio'] = 0.25 + attn_kwargs['bias'] = False + attn_layer = get_attn(attn_layer) + out_chs = out_chs or in_chs + mid_chs = int(expand_ratio * in_chs) + self.conv_dw = nn.Conv2d(in_chs, mid_chs, 3, 1, 1, groups=in_chs, bias=bias) + self.act = act_layer() + self.se = attn_layer(mid_chs, **attn_kwargs) + self.conv_pw = nn.Conv2d(mid_chs, out_chs, 1, 1, 0, bias=bias) + + def forward(self, x): + shortcut = x + x = self.conv_dw(x) + x = self.act(x) + x = self.se(x) + x = self.conv_pw(x) + x = x + shortcut + return x + +class Downsample2d(nn.Module): + + def __init__(self, dim, dim_out=None, reduction='conv', act_layer=nn.GELU, norm_layer=LayerNorm2d): + super().__init__() + dim_out = dim_out or dim + self.norm1 = norm_layer(dim) if norm_layer is not None else nn.Identity() + self.conv_block = MbConvBlock(dim, act_layer=act_layer) + assert reduction in ('conv', 'max', 'avg') + if reduction == 'conv': + self.reduction = nn.Conv2d(dim, dim_out, 3, 2, 1, bias=False) + elif reduction == 'max': + assert dim == dim_out + self.reduction = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) + else: + assert dim == dim_out + self.reduction = nn.AvgPool2d(kernel_size=2) + self.norm2 = norm_layer(dim_out) if norm_layer is not None else nn.Identity() + + def forward(self, x): + x = self.norm1(x) + x = self.conv_block(x) + x = self.reduction(x) + x = self.norm2(x) + return x + +class FeatureBlock(nn.Module): + + def __init__(self, dim, levels=0, reduction='max', act_layer=nn.GELU): + super().__init__() + reductions = levels + levels = max(1, levels) + if reduction == 'avg': + pool_fn = partial(nn.AvgPool2d, kernel_size=2) + else: + pool_fn = partial(nn.MaxPool2d, kernel_size=3, stride=2, padding=1) + self.blocks = nn.Sequential() + for i in range(levels): + self.blocks.add_module(f'conv{i + 1}', MbConvBlock(dim, act_layer=act_layer)) + if reductions: + self.blocks.add_module(f'pool{i + 1}', pool_fn()) + reductions -= 1 + + def forward(self, x): + return self.blocks(x) + +class Stem(nn.Module): + + def __init__(self, in_chs: int=3, out_chs: int=96, act_layer: Callable=nn.GELU, norm_layer: Callable=LayerNorm2d): + super().__init__() + self.conv1 = nn.Conv2d(in_chs, out_chs, kernel_size=3, stride=2, padding=1) + self.down = Downsample2d(out_chs, act_layer=act_layer, norm_layer=norm_layer) + + def forward(self, x): + x = self.conv1(x) + x = self.down(x) + return x + +class WindowAttentionGlobal(nn.Module): + + def __init__(self, dim: int, num_heads: int, window_size: Tuple[int, int], use_global: bool=True, qkv_bias: bool=True, attn_drop: float=0.0, proj_drop: float=0.0): + super().__init__() + window_size = to_2tuple(window_size) + self.window_size = window_size + self.num_heads = num_heads + self.head_dim = dim // num_heads + self.scale = self.head_dim ** (-0.5) + self.use_global = use_global + self.rel_pos = RelPosBias(window_size=window_size, num_heads=num_heads) + if self.use_global: + self.qkv = nn.Linear(dim, dim * 2, bias=qkv_bias) + else: + self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) + self.attn_drop = nn.Dropout(attn_drop) + self.proj = nn.Linear(dim, dim) + self.proj_drop = nn.Dropout(proj_drop) + + def forward(self, x, q_global: Optional[torch.Tensor]=None): + (B, N, C) = x.shape + if self.use_global and q_global is not None: + _assert(x.shape[-1] == q_global.shape[-1], 'x and q_global seq lengths should be equal') + kv = self.qkv(x) + kv = kv.reshape(B, N, 2, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4) + (k, v) = kv.unbind(0) + q = q_global.repeat(B // q_global.shape[0], 1, 1, 1) + q = q.reshape(B, N, self.num_heads, self.head_dim).permute(0, 2, 1, 3) + else: + qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4) + (q, k, v) = qkv.unbind(0) + q = q * self.scale + attn = q @ k.transpose(-2, -1).contiguous() + attn = self.rel_pos(attn) + attn = attn.softmax(dim=-1) + attn = self.attn_drop(attn) + x = (attn @ v).transpose(1, 2).reshape(B, N, C) + x = self.proj(x) + x = self.proj_drop(x) + return x + +def window_partition(x, window_size: Tuple[int, int]): + (B, H, W, C) = x.shape + x = x.view(B, H // window_size[0], window_size[0], W // window_size[1], window_size[1], C) + windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size[0], window_size[1], C) + return windows + +@register_notrace_function +def window_reverse(windows, window_size: Tuple[int, int], img_size: Tuple[int, int]): + (H, W) = img_size + C = windows.shape[-1] + x = windows.view(-1, H // window_size[0], W // window_size[1], window_size[0], window_size[1], C) + x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, H, W, C) + return x + +class LayerScale(nn.Module): + + def __init__(self, dim, init_values=1e-05, inplace=False): + super().__init__() + self.inplace = inplace + self.gamma = nn.Parameter(init_values * torch.ones(dim)) + + def forward(self, x): + return x.mul_(self.gamma) if self.inplace else x * self.gamma + +class GlobalContextVitBlock(nn.Module): + + def __init__(self, dim: int, feat_size: Tuple[int, int], num_heads: int, window_size: int=7, mlp_ratio: float=4.0, use_global: bool=True, qkv_bias: bool=True, layer_scale: Optional[float]=None, proj_drop: float=0.0, attn_drop: float=0.0, drop_path: float=0.0, attn_layer: Callable=WindowAttentionGlobal, act_layer: Callable=nn.GELU, norm_layer: Callable=nn.LayerNorm): + super().__init__() + feat_size = to_2tuple(feat_size) + window_size = to_2tuple(window_size) + self.window_size = window_size + self.num_windows = int(feat_size[0] // window_size[0] * (feat_size[1] // window_size[1])) + self.norm1 = norm_layer(dim) + self.attn = attn_layer(dim, num_heads=num_heads, window_size=window_size, use_global=use_global, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=proj_drop) + self.ls1 = LayerScale(dim, layer_scale) if layer_scale is not None else nn.Identity() + self.drop_path1 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + self.norm2 = norm_layer(dim) + self.mlp = Mlp(in_features=dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer, drop=proj_drop) + self.ls2 = LayerScale(dim, layer_scale) if layer_scale is not None else nn.Identity() + self.drop_path2 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + + def _window_attn(self, x, q_global: Optional[torch.Tensor]=None): + (B, H, W, C) = x.shape + x_win = window_partition(x, self.window_size) + x_win = x_win.view(-1, self.window_size[0] * self.window_size[1], C) + attn_win = self.attn(x_win, q_global) + x = window_reverse(attn_win, self.window_size, (H, W)) + return x + + def forward(self, x, q_global: Optional[torch.Tensor]=None): + x = x + self.drop_path1(self.ls1(self._window_attn(self.norm1(x), q_global))) + x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x)))) + return x + +class GlobalContextVitStage(nn.Module): + + def __init__(self, dim, depth: int, num_heads: int, feat_size: Tuple[int, int], window_size: Tuple[int, int], downsample: bool=True, global_norm: bool=False, stage_norm: bool=False, mlp_ratio: float=4.0, qkv_bias: bool=True, layer_scale: Optional[float]=None, proj_drop: float=0.0, attn_drop: float=0.0, drop_path: Union[List[float], float]=0.0, act_layer: Callable=nn.GELU, norm_layer: Callable=nn.LayerNorm, norm_layer_cl: Callable=LayerNorm2d): + super().__init__() + if downsample: + self.downsample = Downsample2d(dim=dim, dim_out=dim * 2, norm_layer=norm_layer) + dim = dim * 2 + feat_size = (feat_size[0] // 2, feat_size[1] // 2) + else: + self.downsample = nn.Identity() + self.feat_size = feat_size + window_size = to_2tuple(window_size) + feat_levels = int(math.log2(min(feat_size) / min(window_size))) + self.global_block = FeatureBlock(dim, feat_levels) + self.global_norm = norm_layer_cl(dim) if global_norm else nn.Identity() + self.blocks = nn.ModuleList([GlobalContextVitBlock(dim=dim, num_heads=num_heads, feat_size=feat_size, window_size=window_size, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, use_global=i % 2 != 0, layer_scale=layer_scale, proj_drop=proj_drop, attn_drop=attn_drop, drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path, act_layer=act_layer, norm_layer=norm_layer_cl) for i in range(depth)]) + self.norm = norm_layer_cl(dim) if stage_norm else nn.Identity() + self.dim = dim + self.feat_size = feat_size + self.grad_checkpointing = False + + def forward(self, x): + x = self.downsample(x) + global_query = self.global_block(x) + x = x.permute(0, 2, 3, 1) + global_query = self.global_norm(global_query.permute(0, 2, 3, 1)) + for blk in self.blocks: + if self.grad_checkpointing and (not torch.jit.is_scripting()): + x = checkpoint.checkpoint(blk, x) + else: + x = blk(x, global_query) + x = self.norm(x) + x = x.permute(0, 3, 1, 2).contiguous() + return x + +class GlobalContextVit(nn.Module): + + def __init__(self, in_chans: int=3, num_classes: int=1000, global_pool: str='avg', img_size: Tuple[int, int]=224, window_ratio: Tuple[int, ...]=(32, 32, 16, 32), window_size: Tuple[int, ...]=None, embed_dim: int=64, depths: Tuple[int, ...]=(3, 4, 19, 5), num_heads: Tuple[int, ...]=(2, 4, 8, 16), mlp_ratio: float=3.0, qkv_bias: bool=True, layer_scale: Optional[float]=None, drop_rate: float=0.0, proj_drop_rate: float=0.0, attn_drop_rate: float=0.0, drop_path_rate: float=0.0, weight_init='', act_layer: str='gelu', norm_layer: str='layernorm2d', norm_layer_cl: str='layernorm', norm_eps: float=1e-05): + super().__init__() + act_layer = get_act_layer(act_layer) + norm_layer = partial(get_norm_layer(norm_layer), eps=norm_eps) + norm_layer_cl = partial(get_norm_layer(norm_layer_cl), eps=norm_eps) + img_size = to_2tuple(img_size) + feat_size = tuple((d // 4 for d in img_size)) + self.global_pool = global_pool + self.num_classes = num_classes + self.drop_rate = drop_rate + num_stages = len(depths) + self.num_features = self.head_hidden_size = int(embed_dim * 2 ** (num_stages - 1)) + if window_size is not None: + window_size = to_ntuple(num_stages)(window_size) + else: + assert window_ratio is not None + window_size = tuple([(img_size[0] // r, img_size[1] // r) for r in to_ntuple(num_stages)(window_ratio)]) + self.stem = Stem(in_chs=in_chans, out_chs=embed_dim, act_layer=act_layer, norm_layer=norm_layer) + dpr = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(depths)).split(depths)] + stages = [] + for i in range(num_stages): + last_stage = i == num_stages - 1 + stage_scale = 2 ** max(i - 1, 0) + stages.append(GlobalContextVitStage(dim=embed_dim * stage_scale, depth=depths[i], num_heads=num_heads[i], feat_size=(feat_size[0] // stage_scale, feat_size[1] // stage_scale), window_size=window_size[i], downsample=i != 0, stage_norm=last_stage, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, layer_scale=layer_scale, proj_drop=proj_drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], act_layer=act_layer, norm_layer=norm_layer, norm_layer_cl=norm_layer_cl)) + self.stages = nn.Sequential(*stages) + self.head = ClassifierHead(self.num_features, num_classes, pool_type=global_pool, drop_rate=drop_rate) + if weight_init: + named_apply(partial(self._init_weights, scheme=weight_init), self) + + def _init_weights(self, module, name, scheme='vit'): + if scheme == 'vit': + if isinstance(module, nn.Linear): + nn.init.xavier_uniform_(module.weight) + if module.bias is not None: + if 'mlp' in name: + nn.init.normal_(module.bias, std=1e-06) + else: + nn.init.zeros_(module.bias) + elif isinstance(module, nn.Linear): + nn.init.normal_(module.weight, std=0.02) + if module.bias is not None: + nn.init.zeros_(module.bias) + + @torch.jit.ignore + def no_weight_decay(self): + return {k for (k, _) in self.named_parameters() if any((n in k for n in ['relative_position_bias_table', 'rel_pos.mlp']))} + + @torch.jit.ignore + def group_matcher(self, coarse=False): + matcher = dict(stem='^stem', blocks='^stages\\.(\\d+)') + return matcher + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + for s in self.stages: + s.grad_checkpointing = enable + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.head.fc + + def reset_classifier(self, num_classes: int, global_pool: Optional[str]=None): + self.num_classes = num_classes + if global_pool is None: + global_pool = self.head.global_pool.pool_type + self.head = ClassifierHead(self.num_features, num_classes, pool_type=global_pool, drop_rate=self.drop_rate) + + def forward_features(self, x: torch.Tensor) -> torch.Tensor: + x = self.stem(x) + x = self.stages(x) + return x + + def forward_head(self, x, pre_logits: bool=False): + return self.head(x, pre_logits=pre_logits) if pre_logits else self.head(x) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + x = self.forward_features(x) + x = self.forward_head(x) + return x + +def _create_gcvit(variant, pretrained=False, **kwargs): + if kwargs.get('features_only', None): + raise RuntimeError('features_only not implemented for Vision Transformer models.') + model = build_model_with_cfg(GlobalContextVit, variant, pretrained, **kwargs) + return model + +def _cfg(url='', **kwargs): + return {'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), 'crop_pct': 0.875, 'interpolation': 'bicubic', 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'stem.conv1', 'classifier': 'head.fc', 'fixed_input_size': True, **kwargs} +default_cfgs = generate_default_cfgs({'gcvit_xxtiny.in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-morevit/gcvit_xxtiny_224_nvidia-d1d86009.pth'), 'gcvit_xtiny.in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-morevit/gcvit_xtiny_224_nvidia-274b92b7.pth'), 'gcvit_tiny.in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-morevit/gcvit_tiny_224_nvidia-ac783954.pth'), 'gcvit_small.in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-morevit/gcvit_small_224_nvidia-4e98afa2.pth'), 'gcvit_base.in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-morevit/gcvit_base_224_nvidia-f009139b.pth')}) + +@register_model +def gcvit_xxtiny(pretrained=False, **kwargs) -> GlobalContextVit: + model_kwargs = dict(depths=(2, 2, 6, 2), num_heads=(2, 4, 8, 16), **kwargs) + return _create_gcvit('gcvit_xxtiny', pretrained=pretrained, **model_kwargs) + +@register_model +def gcvit_xtiny(pretrained=False, **kwargs) -> GlobalContextVit: + model_kwargs = dict(depths=(3, 4, 6, 5), num_heads=(2, 4, 8, 16), **kwargs) + return _create_gcvit('gcvit_xtiny', pretrained=pretrained, **model_kwargs) + +@register_model +def gcvit_tiny(pretrained=False, **kwargs) -> GlobalContextVit: + model_kwargs = dict(depths=(3, 4, 19, 5), num_heads=(2, 4, 8, 16), **kwargs) + return _create_gcvit('gcvit_tiny', pretrained=pretrained, **model_kwargs) + +@register_model +def gcvit_small(pretrained=False, **kwargs) -> GlobalContextVit: + model_kwargs = dict(depths=(3, 4, 19, 5), num_heads=(3, 6, 12, 24), embed_dim=96, mlp_ratio=2, layer_scale=1e-05, **kwargs) + return _create_gcvit('gcvit_small', pretrained=pretrained, **model_kwargs) + +@register_model +def gcvit_base(pretrained=False, **kwargs) -> GlobalContextVit: + model_kwargs = dict(depths=(3, 4, 19, 5), num_heads=(4, 8, 16, 32), embed_dim=128, mlp_ratio=2, layer_scale=1e-05, **kwargs) + return _create_gcvit('gcvit_base', pretrained=pretrained, **model_kwargs) + +# File: pytorch-image-models-main/timm/models/ghostnet.py +"""""" +import math +from functools import partial +from typing import Optional +import torch +import torch.nn as nn +import torch.nn.functional as F +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from timm.layers import SelectAdaptivePool2d, Linear, make_divisible +from ._builder import build_model_with_cfg +from ._efficientnet_blocks import SqueezeExcite, ConvBnAct +from ._manipulate import checkpoint_seq +from ._registry import register_model, generate_default_cfgs +__all__ = ['GhostNet'] +_SE_LAYER = partial(SqueezeExcite, gate_layer='hard_sigmoid', rd_round_fn=partial(make_divisible, divisor=4)) + +class GhostModule(nn.Module): + + def __init__(self, in_chs, out_chs, kernel_size=1, ratio=2, dw_size=3, stride=1, use_act=True, act_layer=nn.ReLU): + super(GhostModule, self).__init__() + self.out_chs = out_chs + init_chs = math.ceil(out_chs / ratio) + new_chs = init_chs * (ratio - 1) + self.primary_conv = nn.Sequential(nn.Conv2d(in_chs, init_chs, kernel_size, stride, kernel_size // 2, bias=False), nn.BatchNorm2d(init_chs), act_layer(inplace=True) if use_act else nn.Identity()) + self.cheap_operation = nn.Sequential(nn.Conv2d(init_chs, new_chs, dw_size, 1, dw_size // 2, groups=init_chs, bias=False), nn.BatchNorm2d(new_chs), act_layer(inplace=True) if use_act else nn.Identity()) + + def forward(self, x): + x1 = self.primary_conv(x) + x2 = self.cheap_operation(x1) + out = torch.cat([x1, x2], dim=1) + return out[:, :self.out_chs, :, :] + +class GhostModuleV2(nn.Module): + + def __init__(self, in_chs, out_chs, kernel_size=1, ratio=2, dw_size=3, stride=1, use_act=True, act_layer=nn.ReLU): + super().__init__() + self.gate_fn = nn.Sigmoid() + self.out_chs = out_chs + init_chs = math.ceil(out_chs / ratio) + new_chs = init_chs * (ratio - 1) + self.primary_conv = nn.Sequential(nn.Conv2d(in_chs, init_chs, kernel_size, stride, kernel_size // 2, bias=False), nn.BatchNorm2d(init_chs), act_layer(inplace=True) if use_act else nn.Identity()) + self.cheap_operation = nn.Sequential(nn.Conv2d(init_chs, new_chs, dw_size, 1, dw_size // 2, groups=init_chs, bias=False), nn.BatchNorm2d(new_chs), act_layer(inplace=True) if use_act else nn.Identity()) + self.short_conv = nn.Sequential(nn.Conv2d(in_chs, out_chs, kernel_size, stride, kernel_size // 2, bias=False), nn.BatchNorm2d(out_chs), nn.Conv2d(out_chs, out_chs, kernel_size=(1, 5), stride=1, padding=(0, 2), groups=out_chs, bias=False), nn.BatchNorm2d(out_chs), nn.Conv2d(out_chs, out_chs, kernel_size=(5, 1), stride=1, padding=(2, 0), groups=out_chs, bias=False), nn.BatchNorm2d(out_chs)) + + def forward(self, x): + res = self.short_conv(F.avg_pool2d(x, kernel_size=2, stride=2)) + x1 = self.primary_conv(x) + x2 = self.cheap_operation(x1) + out = torch.cat([x1, x2], dim=1) + return out[:, :self.out_chs, :, :] * F.interpolate(self.gate_fn(res), size=(out.shape[-2], out.shape[-1]), mode='nearest') + +class GhostBottleneck(nn.Module): + + def __init__(self, in_chs, mid_chs, out_chs, dw_kernel_size=3, stride=1, act_layer=nn.ReLU, se_ratio=0.0, mode='original'): + super(GhostBottleneck, self).__init__() + has_se = se_ratio is not None and se_ratio > 0.0 + self.stride = stride + if mode == 'original': + self.ghost1 = GhostModule(in_chs, mid_chs, use_act=True, act_layer=act_layer) + else: + self.ghost1 = GhostModuleV2(in_chs, mid_chs, use_act=True, act_layer=act_layer) + if self.stride > 1: + self.conv_dw = nn.Conv2d(mid_chs, mid_chs, dw_kernel_size, stride=stride, padding=(dw_kernel_size - 1) // 2, groups=mid_chs, bias=False) + self.bn_dw = nn.BatchNorm2d(mid_chs) + else: + self.conv_dw = None + self.bn_dw = None + self.se = _SE_LAYER(mid_chs, rd_ratio=se_ratio) if has_se else None + self.ghost2 = GhostModule(mid_chs, out_chs, use_act=False) + if in_chs == out_chs and self.stride == 1: + self.shortcut = nn.Sequential() + else: + self.shortcut = nn.Sequential(nn.Conv2d(in_chs, in_chs, dw_kernel_size, stride=stride, padding=(dw_kernel_size - 1) // 2, groups=in_chs, bias=False), nn.BatchNorm2d(in_chs), nn.Conv2d(in_chs, out_chs, 1, stride=1, padding=0, bias=False), nn.BatchNorm2d(out_chs)) + + def forward(self, x): + shortcut = x + x = self.ghost1(x) + if self.conv_dw is not None: + x = self.conv_dw(x) + x = self.bn_dw(x) + if self.se is not None: + x = self.se(x) + x = self.ghost2(x) + x += self.shortcut(shortcut) + return x + +class GhostNet(nn.Module): + + def __init__(self, cfgs, num_classes=1000, width=1.0, in_chans=3, output_stride=32, global_pool='avg', drop_rate=0.2, version='v1'): + super(GhostNet, self).__init__() + assert output_stride == 32, 'only output_stride==32 is valid, dilation not supported' + self.cfgs = cfgs + self.num_classes = num_classes + self.drop_rate = drop_rate + self.grad_checkpointing = False + self.feature_info = [] + stem_chs = make_divisible(16 * width, 4) + self.conv_stem = nn.Conv2d(in_chans, stem_chs, 3, 2, 1, bias=False) + self.feature_info.append(dict(num_chs=stem_chs, reduction=2, module=f'conv_stem')) + self.bn1 = nn.BatchNorm2d(stem_chs) + self.act1 = nn.ReLU(inplace=True) + prev_chs = stem_chs + stages = nn.ModuleList([]) + stage_idx = 0 + layer_idx = 0 + net_stride = 2 + for cfg in self.cfgs: + layers = [] + s = 1 + for (k, exp_size, c, se_ratio, s) in cfg: + out_chs = make_divisible(c * width, 4) + mid_chs = make_divisible(exp_size * width, 4) + layer_kwargs = {} + if version == 'v2' and layer_idx > 1: + layer_kwargs['mode'] = 'attn' + layers.append(GhostBottleneck(prev_chs, mid_chs, out_chs, k, s, se_ratio=se_ratio, **layer_kwargs)) + prev_chs = out_chs + layer_idx += 1 + if s > 1: + net_stride *= 2 + self.feature_info.append(dict(num_chs=prev_chs, reduction=net_stride, module=f'blocks.{stage_idx}')) + stages.append(nn.Sequential(*layers)) + stage_idx += 1 + out_chs = make_divisible(exp_size * width, 4) + stages.append(nn.Sequential(ConvBnAct(prev_chs, out_chs, 1))) + self.pool_dim = prev_chs = out_chs + self.blocks = nn.Sequential(*stages) + self.num_features = prev_chs + self.head_hidden_size = out_chs = 1280 + self.global_pool = SelectAdaptivePool2d(pool_type=global_pool) + self.conv_head = nn.Conv2d(prev_chs, out_chs, 1, 1, 0, bias=True) + self.act2 = nn.ReLU(inplace=True) + self.flatten = nn.Flatten(1) if global_pool else nn.Identity() + self.classifier = Linear(out_chs, num_classes) if num_classes > 0 else nn.Identity() + + @torch.jit.ignore + def group_matcher(self, coarse=False): + matcher = dict(stem='^conv_stem|bn1', blocks=[('^blocks\\.(\\d+)' if coarse else '^blocks\\.(\\d+)\\.(\\d+)', None), ('conv_head', (99999,))]) + return matcher + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + self.grad_checkpointing = enable + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.classifier + + def reset_classifier(self, num_classes: int, global_pool: str='avg'): + self.num_classes = num_classes + self.global_pool = SelectAdaptivePool2d(pool_type=global_pool) + self.flatten = nn.Flatten(1) if global_pool else nn.Identity() + self.classifier = Linear(self.head_hidden_size, num_classes) if num_classes > 0 else nn.Identity() + + def forward_features(self, x): + x = self.conv_stem(x) + x = self.bn1(x) + x = self.act1(x) + if self.grad_checkpointing and (not torch.jit.is_scripting()): + x = checkpoint_seq(self.blocks, x, flatten=True) + else: + x = self.blocks(x) + return x + + def forward_head(self, x, pre_logits: bool=False): + x = self.global_pool(x) + x = self.conv_head(x) + x = self.act2(x) + x = self.flatten(x) + if self.drop_rate > 0.0: + x = F.dropout(x, p=self.drop_rate, training=self.training) + return x if pre_logits else self.classifier(x) + + def forward(self, x): + x = self.forward_features(x) + x = self.forward_head(x) + return x + +def checkpoint_filter_fn(state_dict, model: nn.Module): + out_dict = {} + for (k, v) in state_dict.items(): + if 'total' in k: + continue + out_dict[k] = v + return out_dict + +def _create_ghostnet(variant, width=1.0, pretrained=False, **kwargs): + cfgs = [[[3, 16, 16, 0, 1]], [[3, 48, 24, 0, 2]], [[3, 72, 24, 0, 1]], [[5, 72, 40, 0.25, 2]], [[5, 120, 40, 0.25, 1]], [[3, 240, 80, 0, 2]], [[3, 200, 80, 0, 1], [3, 184, 80, 0, 1], [3, 184, 80, 0, 1], [3, 480, 112, 0.25, 1], [3, 672, 112, 0.25, 1]], [[5, 672, 160, 0.25, 2]], [[5, 960, 160, 0, 1], [5, 960, 160, 0.25, 1], [5, 960, 160, 0, 1], [5, 960, 160, 0.25, 1]]] + model_kwargs = dict(cfgs=cfgs, width=width, **kwargs) + return build_model_with_cfg(GhostNet, variant, pretrained, pretrained_filter_fn=checkpoint_filter_fn, feature_cfg=dict(flatten_sequential=True), **model_kwargs) + +def _cfg(url='', **kwargs): + return {'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), 'crop_pct': 0.875, 'interpolation': 'bicubic', 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'conv_stem', 'classifier': 'classifier', **kwargs} +default_cfgs = generate_default_cfgs({'ghostnet_050.untrained': _cfg(), 'ghostnet_100.in1k': _cfg(hf_hub_id='timm/'), 'ghostnet_130.untrained': _cfg(), 'ghostnetv2_100.in1k': _cfg(hf_hub_id='timm/'), 'ghostnetv2_130.in1k': _cfg(hf_hub_id='timm/'), 'ghostnetv2_160.in1k': _cfg(hf_hub_id='timm/')}) + +@register_model +def ghostnet_050(pretrained=False, **kwargs) -> GhostNet: + model = _create_ghostnet('ghostnet_050', width=0.5, pretrained=pretrained, **kwargs) + return model + +@register_model +def ghostnet_100(pretrained=False, **kwargs) -> GhostNet: + model = _create_ghostnet('ghostnet_100', width=1.0, pretrained=pretrained, **kwargs) + return model + +@register_model +def ghostnet_130(pretrained=False, **kwargs) -> GhostNet: + model = _create_ghostnet('ghostnet_130', width=1.3, pretrained=pretrained, **kwargs) + return model + +@register_model +def ghostnetv2_100(pretrained=False, **kwargs) -> GhostNet: + model = _create_ghostnet('ghostnetv2_100', width=1.0, pretrained=pretrained, version='v2', **kwargs) + return model + +@register_model +def ghostnetv2_130(pretrained=False, **kwargs) -> GhostNet: + model = _create_ghostnet('ghostnetv2_130', width=1.3, pretrained=pretrained, version='v2', **kwargs) + return model + +@register_model +def ghostnetv2_160(pretrained=False, **kwargs) -> GhostNet: + model = _create_ghostnet('ghostnetv2_160', width=1.6, pretrained=pretrained, version='v2', **kwargs) + return model + +# File: pytorch-image-models-main/timm/models/hardcorenas.py +from functools import partial +import torch.nn as nn +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from ._builder import build_model_with_cfg +from ._builder import pretrained_cfg_for_features +from ._efficientnet_blocks import SqueezeExcite +from ._efficientnet_builder import decode_arch_def, resolve_act_layer, resolve_bn_args, round_channels +from ._registry import register_model, generate_default_cfgs +from .mobilenetv3 import MobileNetV3, MobileNetV3Features +__all__ = [] + +def _gen_hardcorenas(pretrained, variant, arch_def, **kwargs): + num_features = 1280 + se_layer = partial(SqueezeExcite, gate_layer='hard_sigmoid', force_act_layer=nn.ReLU, rd_round_fn=round_channels) + model_kwargs = dict(block_args=decode_arch_def(arch_def), num_features=num_features, stem_size=32, norm_layer=partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)), act_layer=resolve_act_layer(kwargs, 'hard_swish'), se_layer=se_layer, **kwargs) + features_only = False + model_cls = MobileNetV3 + kwargs_filter = None + if model_kwargs.pop('features_only', False): + features_only = True + kwargs_filter = ('num_classes', 'num_features', 'global_pool', 'head_conv', 'head_bias', 'global_pool') + model_cls = MobileNetV3Features + model = build_model_with_cfg(model_cls, variant, pretrained, pretrained_strict=not features_only, kwargs_filter=kwargs_filter, **model_kwargs) + if features_only: + model.default_cfg = pretrained_cfg_for_features(model.default_cfg) + return model + +def _cfg(url='', **kwargs): + return {'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), 'crop_pct': 0.875, 'interpolation': 'bilinear', 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'conv_stem', 'classifier': 'classifier', **kwargs} +default_cfgs = generate_default_cfgs({'hardcorenas_a.miil_green_in1k': _cfg(hf_hub_id='timm/'), 'hardcorenas_b.miil_green_in1k': _cfg(hf_hub_id='timm/'), 'hardcorenas_c.miil_green_in1k': _cfg(hf_hub_id='timm/'), 'hardcorenas_d.miil_green_in1k': _cfg(hf_hub_id='timm/'), 'hardcorenas_e.miil_green_in1k': _cfg(hf_hub_id='timm/'), 'hardcorenas_f.miil_green_in1k': _cfg(hf_hub_id='timm/')}) + +@register_model +def hardcorenas_a(pretrained=False, **kwargs) -> MobileNetV3: + arch_def = [['ds_r1_k3_s1_e1_c16_nre'], ['ir_r1_k5_s2_e3_c24_nre', 'ir_r1_k5_s1_e3_c24_nre_se0.25'], ['ir_r1_k5_s2_e3_c40_nre', 'ir_r1_k5_s1_e6_c40_nre_se0.25'], ['ir_r1_k5_s2_e6_c80_se0.25', 'ir_r1_k5_s1_e6_c80_se0.25'], ['ir_r1_k5_s1_e6_c112_se0.25', 'ir_r1_k5_s1_e6_c112_se0.25'], ['ir_r1_k5_s2_e6_c192_se0.25', 'ir_r1_k5_s1_e6_c192_se0.25'], ['cn_r1_k1_s1_c960']] + model = _gen_hardcorenas(pretrained=pretrained, variant='hardcorenas_a', arch_def=arch_def, **kwargs) + return model + +@register_model +def hardcorenas_b(pretrained=False, **kwargs) -> MobileNetV3: + arch_def = [['ds_r1_k3_s1_e1_c16_nre'], ['ir_r1_k5_s2_e3_c24_nre', 'ir_r1_k5_s1_e3_c24_nre_se0.25', 'ir_r1_k3_s1_e3_c24_nre'], ['ir_r1_k5_s2_e3_c40_nre', 'ir_r1_k5_s1_e3_c40_nre', 'ir_r1_k5_s1_e3_c40_nre'], ['ir_r1_k5_s2_e3_c80', 'ir_r1_k5_s1_e3_c80', 'ir_r1_k3_s1_e3_c80', 'ir_r1_k3_s1_e3_c80'], ['ir_r1_k5_s1_e3_c112', 'ir_r1_k3_s1_e3_c112', 'ir_r1_k3_s1_e3_c112', 'ir_r1_k3_s1_e3_c112'], ['ir_r1_k5_s2_e6_c192_se0.25', 'ir_r1_k5_s1_e6_c192_se0.25', 'ir_r1_k3_s1_e3_c192_se0.25'], ['cn_r1_k1_s1_c960']] + model = _gen_hardcorenas(pretrained=pretrained, variant='hardcorenas_b', arch_def=arch_def, **kwargs) + return model + +@register_model +def hardcorenas_c(pretrained=False, **kwargs) -> MobileNetV3: + arch_def = [['ds_r1_k3_s1_e1_c16_nre'], ['ir_r1_k5_s2_e3_c24_nre', 'ir_r1_k5_s1_e3_c24_nre_se0.25'], ['ir_r1_k5_s2_e3_c40_nre', 'ir_r1_k5_s1_e3_c40_nre', 'ir_r1_k5_s1_e3_c40_nre', 'ir_r1_k5_s1_e3_c40_nre'], ['ir_r1_k5_s2_e4_c80', 'ir_r1_k5_s1_e6_c80_se0.25', 'ir_r1_k3_s1_e3_c80', 'ir_r1_k3_s1_e3_c80'], ['ir_r1_k5_s1_e6_c112_se0.25', 'ir_r1_k3_s1_e3_c112', 'ir_r1_k3_s1_e3_c112', 'ir_r1_k3_s1_e3_c112'], ['ir_r1_k5_s2_e6_c192_se0.25', 'ir_r1_k5_s1_e6_c192_se0.25', 'ir_r1_k3_s1_e3_c192_se0.25'], ['cn_r1_k1_s1_c960']] + model = _gen_hardcorenas(pretrained=pretrained, variant='hardcorenas_c', arch_def=arch_def, **kwargs) + return model + +@register_model +def hardcorenas_d(pretrained=False, **kwargs) -> MobileNetV3: + arch_def = [['ds_r1_k3_s1_e1_c16_nre'], ['ir_r1_k5_s2_e3_c24_nre_se0.25', 'ir_r1_k5_s1_e3_c24_nre_se0.25'], ['ir_r1_k5_s2_e3_c40_nre_se0.25', 'ir_r1_k5_s1_e4_c40_nre_se0.25', 'ir_r1_k3_s1_e3_c40_nre_se0.25'], ['ir_r1_k5_s2_e4_c80_se0.25', 'ir_r1_k3_s1_e3_c80_se0.25', 'ir_r1_k3_s1_e3_c80_se0.25', 'ir_r1_k3_s1_e3_c80_se0.25'], ['ir_r1_k3_s1_e4_c112_se0.25', 'ir_r1_k5_s1_e4_c112_se0.25', 'ir_r1_k3_s1_e3_c112_se0.25', 'ir_r1_k5_s1_e3_c112_se0.25'], ['ir_r1_k5_s2_e6_c192_se0.25', 'ir_r1_k5_s1_e6_c192_se0.25', 'ir_r1_k5_s1_e6_c192_se0.25', 'ir_r1_k3_s1_e6_c192_se0.25'], ['cn_r1_k1_s1_c960']] + model = _gen_hardcorenas(pretrained=pretrained, variant='hardcorenas_d', arch_def=arch_def, **kwargs) + return model + +@register_model +def hardcorenas_e(pretrained=False, **kwargs) -> MobileNetV3: + arch_def = [['ds_r1_k3_s1_e1_c16_nre'], ['ir_r1_k5_s2_e3_c24_nre_se0.25', 'ir_r1_k5_s1_e3_c24_nre_se0.25'], ['ir_r1_k5_s2_e6_c40_nre_se0.25', 'ir_r1_k5_s1_e4_c40_nre_se0.25', 'ir_r1_k5_s1_e4_c40_nre_se0.25', 'ir_r1_k3_s1_e3_c40_nre_se0.25'], ['ir_r1_k5_s2_e4_c80_se0.25', 'ir_r1_k3_s1_e6_c80_se0.25'], ['ir_r1_k5_s1_e6_c112_se0.25', 'ir_r1_k5_s1_e6_c112_se0.25', 'ir_r1_k5_s1_e6_c112_se0.25', 'ir_r1_k5_s1_e3_c112_se0.25'], ['ir_r1_k5_s2_e6_c192_se0.25', 'ir_r1_k5_s1_e6_c192_se0.25', 'ir_r1_k5_s1_e6_c192_se0.25', 'ir_r1_k3_s1_e6_c192_se0.25'], ['cn_r1_k1_s1_c960']] + model = _gen_hardcorenas(pretrained=pretrained, variant='hardcorenas_e', arch_def=arch_def, **kwargs) + return model + +@register_model +def hardcorenas_f(pretrained=False, **kwargs) -> MobileNetV3: + arch_def = [['ds_r1_k3_s1_e1_c16_nre'], ['ir_r1_k5_s2_e3_c24_nre_se0.25', 'ir_r1_k5_s1_e3_c24_nre_se0.25'], ['ir_r1_k5_s2_e6_c40_nre_se0.25', 'ir_r1_k5_s1_e6_c40_nre_se0.25'], ['ir_r1_k5_s2_e6_c80_se0.25', 'ir_r1_k5_s1_e6_c80_se0.25', 'ir_r1_k3_s1_e3_c80_se0.25', 'ir_r1_k3_s1_e3_c80_se0.25'], ['ir_r1_k3_s1_e6_c112_se0.25', 'ir_r1_k5_s1_e6_c112_se0.25', 'ir_r1_k5_s1_e6_c112_se0.25', 'ir_r1_k3_s1_e3_c112_se0.25'], ['ir_r1_k5_s2_e6_c192_se0.25', 'ir_r1_k5_s1_e6_c192_se0.25', 'ir_r1_k3_s1_e6_c192_se0.25', 'ir_r1_k3_s1_e6_c192_se0.25'], ['cn_r1_k1_s1_c960']] + model = _gen_hardcorenas(pretrained=pretrained, variant='hardcorenas_f', arch_def=arch_def, **kwargs) + return model + +# File: pytorch-image-models-main/timm/models/hgnet.py +"""""" +from typing import Dict, Optional +import torch +import torch.nn as nn +import torch.nn.functional as F +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from timm.layers import SelectAdaptivePool2d, DropPath, create_conv2d +from ._builder import build_model_with_cfg +from ._registry import register_model, generate_default_cfgs +from ._manipulate import checkpoint_seq +__all__ = ['HighPerfGpuNet'] + +class LearnableAffineBlock(nn.Module): + + def __init__(self, scale_value=1.0, bias_value=0.0): + super().__init__() + self.scale = nn.Parameter(torch.tensor([scale_value]), requires_grad=True) + self.bias = nn.Parameter(torch.tensor([bias_value]), requires_grad=True) + + def forward(self, x): + return self.scale * x + self.bias + +class ConvBNAct(nn.Module): + + def __init__(self, in_chs, out_chs, kernel_size, stride=1, groups=1, padding='', use_act=True, use_lab=False): + super().__init__() + self.use_act = use_act + self.use_lab = use_lab + self.conv = create_conv2d(in_chs, out_chs, kernel_size, stride=stride, padding=padding, groups=groups) + self.bn = nn.BatchNorm2d(out_chs) + if self.use_act: + self.act = nn.ReLU() + else: + self.act = nn.Identity() + if self.use_act and self.use_lab: + self.lab = LearnableAffineBlock() + else: + self.lab = nn.Identity() + + def forward(self, x): + x = self.conv(x) + x = self.bn(x) + x = self.act(x) + x = self.lab(x) + return x + +class LightConvBNAct(nn.Module): + + def __init__(self, in_chs, out_chs, kernel_size, groups=1, use_lab=False): + super().__init__() + self.conv1 = ConvBNAct(in_chs, out_chs, kernel_size=1, use_act=False, use_lab=use_lab) + self.conv2 = ConvBNAct(out_chs, out_chs, kernel_size=kernel_size, groups=out_chs, use_act=True, use_lab=use_lab) + + def forward(self, x): + x = self.conv1(x) + x = self.conv2(x) + return x + +class EseModule(nn.Module): + + def __init__(self, chs): + super().__init__() + self.conv = nn.Conv2d(chs, chs, kernel_size=1, stride=1, padding=0) + self.sigmoid = nn.Sigmoid() + + def forward(self, x): + identity = x + x = x.mean((2, 3), keepdim=True) + x = self.conv(x) + x = self.sigmoid(x) + return torch.mul(identity, x) + +class StemV1(nn.Module): + + def __init__(self, stem_chs): + super().__init__() + self.stem = nn.Sequential(*[ConvBNAct(stem_chs[i], stem_chs[i + 1], kernel_size=3, stride=2 if i == 0 else 1) for i in range(len(stem_chs) - 1)]) + self.pool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) + + def forward(self, x): + x = self.stem(x) + x = self.pool(x) + return x + +class StemV2(nn.Module): + + def __init__(self, in_chs, mid_chs, out_chs, use_lab=False): + super().__init__() + self.stem1 = ConvBNAct(in_chs, mid_chs, kernel_size=3, stride=2, use_lab=use_lab) + self.stem2a = ConvBNAct(mid_chs, mid_chs // 2, kernel_size=2, stride=1, use_lab=use_lab) + self.stem2b = ConvBNAct(mid_chs // 2, mid_chs, kernel_size=2, stride=1, use_lab=use_lab) + self.stem3 = ConvBNAct(mid_chs * 2, mid_chs, kernel_size=3, stride=2, use_lab=use_lab) + self.stem4 = ConvBNAct(mid_chs, out_chs, kernel_size=1, stride=1, use_lab=use_lab) + self.pool = nn.MaxPool2d(kernel_size=2, stride=1, ceil_mode=True) + + def forward(self, x): + x = self.stem1(x) + x = F.pad(x, (0, 1, 0, 1)) + x2 = self.stem2a(x) + x2 = F.pad(x2, (0, 1, 0, 1)) + x2 = self.stem2b(x2) + x1 = self.pool(x) + x = torch.cat([x1, x2], dim=1) + x = self.stem3(x) + x = self.stem4(x) + return x + +class HighPerfGpuBlock(nn.Module): + + def __init__(self, in_chs, mid_chs, out_chs, layer_num, kernel_size=3, residual=False, light_block=False, use_lab=False, agg='ese', drop_path=0.0): + super().__init__() + self.residual = residual + self.layers = nn.ModuleList() + for i in range(layer_num): + if light_block: + self.layers.append(LightConvBNAct(in_chs if i == 0 else mid_chs, mid_chs, kernel_size=kernel_size, use_lab=use_lab)) + else: + self.layers.append(ConvBNAct(in_chs if i == 0 else mid_chs, mid_chs, kernel_size=kernel_size, stride=1, use_lab=use_lab)) + total_chs = in_chs + layer_num * mid_chs + if agg == 'se': + aggregation_squeeze_conv = ConvBNAct(total_chs, out_chs // 2, kernel_size=1, stride=1, use_lab=use_lab) + aggregation_excitation_conv = ConvBNAct(out_chs // 2, out_chs, kernel_size=1, stride=1, use_lab=use_lab) + self.aggregation = nn.Sequential(aggregation_squeeze_conv, aggregation_excitation_conv) + else: + aggregation_conv = ConvBNAct(total_chs, out_chs, kernel_size=1, stride=1, use_lab=use_lab) + att = EseModule(out_chs) + self.aggregation = nn.Sequential(aggregation_conv, att) + self.drop_path = DropPath(drop_path) if drop_path else nn.Identity() + + def forward(self, x): + identity = x + output = [x] + for layer in self.layers: + x = layer(x) + output.append(x) + x = torch.cat(output, dim=1) + x = self.aggregation(x) + if self.residual: + x = self.drop_path(x) + identity + return x + +class HighPerfGpuStage(nn.Module): + + def __init__(self, in_chs, mid_chs, out_chs, block_num, layer_num, downsample=True, stride=2, light_block=False, kernel_size=3, use_lab=False, agg='ese', drop_path=0.0): + super().__init__() + self.downsample = downsample + if downsample: + self.downsample = ConvBNAct(in_chs, in_chs, kernel_size=3, stride=stride, groups=in_chs, use_act=False, use_lab=use_lab) + else: + self.downsample = nn.Identity() + blocks_list = [] + for i in range(block_num): + blocks_list.append(HighPerfGpuBlock(in_chs if i == 0 else out_chs, mid_chs, out_chs, layer_num, residual=False if i == 0 else True, kernel_size=kernel_size, light_block=light_block, use_lab=use_lab, agg=agg, drop_path=drop_path[i] if isinstance(drop_path, (list, tuple)) else drop_path)) + self.blocks = nn.Sequential(*blocks_list) + self.grad_checkpointing = False + + def forward(self, x): + x = self.downsample(x) + if self.grad_checkpointing and (not torch.jit.is_scripting()): + x = checkpoint_seq(self.blocks, x, flatten=False) + else: + x = self.blocks(x) + return x + +class ClassifierHead(nn.Module): + + def __init__(self, in_features: int, num_classes: int, pool_type: str='avg', drop_rate: float=0.0, hidden_size: Optional[int]=2048, use_lab: bool=False): + super(ClassifierHead, self).__init__() + self.num_features = in_features + if pool_type is not None: + if not pool_type: + assert num_classes == 0, 'Classifier head must be removed if pooling is disabled' + self.global_pool = SelectAdaptivePool2d(pool_type=pool_type) + if hidden_size is not None: + self.num_features = hidden_size + last_conv = nn.Conv2d(in_features, hidden_size, kernel_size=1, stride=1, padding=0, bias=False) + act = nn.ReLU() + if use_lab: + lab = LearnableAffineBlock() + self.last_conv = nn.Sequential(last_conv, act, lab) + else: + self.last_conv = nn.Sequential(last_conv, act) + else: + self.last_conv = nn.Identity() + self.dropout = nn.Dropout(drop_rate) + self.flatten = nn.Flatten(1) if pool_type else nn.Identity() + self.fc = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() + + def reset(self, num_classes: int, pool_type: Optional[str]=None): + if pool_type is not None: + if not pool_type: + assert num_classes == 0, 'Classifier head must be removed if pooling is disabled' + self.global_pool = SelectAdaptivePool2d(pool_type=pool_type) + self.flatten = nn.Flatten(1) if pool_type else nn.Identity() + self.fc = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() + + def forward(self, x, pre_logits: bool=False): + x = self.global_pool(x) + x = self.last_conv(x) + x = self.dropout(x) + x = self.flatten(x) + if pre_logits: + return x + x = self.fc(x) + return x + +class HighPerfGpuNet(nn.Module): + + def __init__(self, cfg: Dict, in_chans: int=3, num_classes: int=1000, global_pool: str='avg', head_hidden_size: Optional[int]=2048, drop_rate: float=0.0, drop_path_rate: float=0.0, use_lab: bool=False, **kwargs): + super(HighPerfGpuNet, self).__init__() + stem_type = cfg['stem_type'] + stem_chs = cfg['stem_chs'] + stages_cfg = [cfg['stage1'], cfg['stage2'], cfg['stage3'], cfg['stage4']] + self.num_classes = num_classes + self.drop_rate = drop_rate + self.use_lab = use_lab + assert stem_type in ['v1', 'v2'] + if stem_type == 'v2': + self.stem = StemV2(in_chs=in_chans, mid_chs=stem_chs[0], out_chs=stem_chs[1], use_lab=use_lab) + else: + self.stem = StemV1([in_chans] + stem_chs) + current_stride = 4 + stages = [] + self.feature_info = [] + block_depths = [c[3] for c in stages_cfg] + dpr = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(block_depths)).split(block_depths)] + for (i, stage_config) in enumerate(stages_cfg): + (in_chs, mid_chs, out_chs, block_num, downsample, light_block, kernel_size, layer_num) = stage_config + stages += [HighPerfGpuStage(in_chs=in_chs, mid_chs=mid_chs, out_chs=out_chs, block_num=block_num, layer_num=layer_num, downsample=downsample, light_block=light_block, kernel_size=kernel_size, use_lab=use_lab, agg='ese' if stem_type == 'v1' else 'se', drop_path=dpr[i])] + self.num_features = out_chs + if downsample: + current_stride *= 2 + self.feature_info += [dict(num_chs=self.num_features, reduction=current_stride, module=f'stages.{i}')] + self.stages = nn.Sequential(*stages) + self.head = ClassifierHead(self.num_features, num_classes=num_classes, pool_type=global_pool, drop_rate=drop_rate, hidden_size=head_hidden_size, use_lab=use_lab) + self.head_hidden_size = self.head.num_features + for (n, m) in self.named_modules(): + if isinstance(m, nn.Conv2d): + nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') + elif isinstance(m, nn.BatchNorm2d): + nn.init.ones_(m.weight) + nn.init.zeros_(m.bias) + elif isinstance(m, nn.Linear): + nn.init.zeros_(m.bias) + + @torch.jit.ignore + def group_matcher(self, coarse=False): + return dict(stem='^stem', blocks='^stages\\.(\\d+)' if coarse else '^stages\\.(\\d+).blocks\\.(\\d+)') + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + for s in self.stages: + s.grad_checkpointing = enable + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.head.fc + + def reset_classifier(self, num_classes: int, global_pool: Optional[str]=None): + self.num_classes = num_classes + self.head.reset(num_classes, global_pool) + + def forward_features(self, x): + x = self.stem(x) + return self.stages(x) + + def forward_head(self, x, pre_logits: bool=False): + return self.head(x, pre_logits=pre_logits) if pre_logits else self.head(x) + + def forward(self, x): + x = self.forward_features(x) + x = self.forward_head(x) + return x +model_cfgs = dict(hgnet_tiny={'stem_type': 'v1', 'stem_chs': [48, 48, 96], 'stage1': [96, 96, 224, 1, False, False, 3, 5], 'stage2': [224, 128, 448, 1, True, False, 3, 5], 'stage3': [448, 160, 512, 2, True, False, 3, 5], 'stage4': [512, 192, 768, 1, True, False, 3, 5]}, hgnet_small={'stem_type': 'v1', 'stem_chs': [64, 64, 128], 'stage1': [128, 128, 256, 1, False, False, 3, 6], 'stage2': [256, 160, 512, 1, True, False, 3, 6], 'stage3': [512, 192, 768, 2, True, False, 3, 6], 'stage4': [768, 224, 1024, 1, True, False, 3, 6]}, hgnet_base={'stem_type': 'v1', 'stem_chs': [96, 96, 160], 'stage1': [160, 192, 320, 1, False, False, 3, 7], 'stage2': [320, 224, 640, 2, True, False, 3, 7], 'stage3': [640, 256, 960, 3, True, False, 3, 7], 'stage4': [960, 288, 1280, 2, True, False, 3, 7]}, hgnetv2_b0={'stem_type': 'v2', 'stem_chs': [16, 16], 'stage1': [16, 16, 64, 1, False, False, 3, 3], 'stage2': [64, 32, 256, 1, True, False, 3, 3], 'stage3': [256, 64, 512, 2, True, True, 5, 3], 'stage4': [512, 128, 1024, 1, True, True, 5, 3]}, hgnetv2_b1={'stem_type': 'v2', 'stem_chs': [24, 32], 'stage1': [32, 32, 64, 1, False, False, 3, 3], 'stage2': [64, 48, 256, 1, True, False, 3, 3], 'stage3': [256, 96, 512, 2, True, True, 5, 3], 'stage4': [512, 192, 1024, 1, True, True, 5, 3]}, hgnetv2_b2={'stem_type': 'v2', 'stem_chs': [24, 32], 'stage1': [32, 32, 96, 1, False, False, 3, 4], 'stage2': [96, 64, 384, 1, True, False, 3, 4], 'stage3': [384, 128, 768, 3, True, True, 5, 4], 'stage4': [768, 256, 1536, 1, True, True, 5, 4]}, hgnetv2_b3={'stem_type': 'v2', 'stem_chs': [24, 32], 'stage1': [32, 32, 128, 1, False, False, 3, 5], 'stage2': [128, 64, 512, 1, True, False, 3, 5], 'stage3': [512, 128, 1024, 3, True, True, 5, 5], 'stage4': [1024, 256, 2048, 1, True, True, 5, 5]}, hgnetv2_b4={'stem_type': 'v2', 'stem_chs': [32, 48], 'stage1': [48, 48, 128, 1, False, False, 3, 6], 'stage2': [128, 96, 512, 1, True, False, 3, 6], 'stage3': [512, 192, 1024, 3, True, True, 5, 6], 'stage4': [1024, 384, 2048, 1, True, True, 5, 6]}, hgnetv2_b5={'stem_type': 'v2', 'stem_chs': [32, 64], 'stage1': [64, 64, 128, 1, False, False, 3, 6], 'stage2': [128, 128, 512, 2, True, False, 3, 6], 'stage3': [512, 256, 1024, 5, True, True, 5, 6], 'stage4': [1024, 512, 2048, 2, True, True, 5, 6]}, hgnetv2_b6={'stem_type': 'v2', 'stem_chs': [48, 96], 'stage1': [96, 96, 192, 2, False, False, 3, 6], 'stage2': [192, 192, 512, 3, True, False, 3, 6], 'stage3': [512, 384, 1024, 6, True, True, 5, 6], 'stage4': [1024, 768, 2048, 3, True, True, 5, 6]}) + +def _create_hgnet(variant, pretrained=False, **kwargs): + out_indices = kwargs.pop('out_indices', (0, 1, 2, 3)) + return build_model_with_cfg(HighPerfGpuNet, variant, pretrained, model_cfg=model_cfgs[variant], feature_cfg=dict(flatten_sequential=True, out_indices=out_indices), **kwargs) + +def _cfg(url='', **kwargs): + return {'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), 'crop_pct': 0.965, 'interpolation': 'bicubic', 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'classifier': 'head.fc', 'first_conv': 'stem.stem1.conv', 'test_crop_pct': 1.0, 'test_input_size': (3, 288, 288), **kwargs} +default_cfgs = generate_default_cfgs({'hgnet_tiny.paddle_in1k': _cfg(first_conv='stem.stem.0.conv', hf_hub_id='timm/'), 'hgnet_tiny.ssld_in1k': _cfg(first_conv='stem.stem.0.conv', hf_hub_id='timm/'), 'hgnet_small.paddle_in1k': _cfg(first_conv='stem.stem.0.conv', hf_hub_id='timm/'), 'hgnet_small.ssld_in1k': _cfg(first_conv='stem.stem.0.conv', hf_hub_id='timm/'), 'hgnet_base.ssld_in1k': _cfg(first_conv='stem.stem.0.conv', hf_hub_id='timm/'), 'hgnetv2_b0.ssld_stage2_ft_in1k': _cfg(hf_hub_id='timm/'), 'hgnetv2_b0.ssld_stage1_in22k_in1k': _cfg(hf_hub_id='timm/'), 'hgnetv2_b1.ssld_stage2_ft_in1k': _cfg(hf_hub_id='timm/'), 'hgnetv2_b1.ssld_stage1_in22k_in1k': _cfg(hf_hub_id='timm/'), 'hgnetv2_b2.ssld_stage2_ft_in1k': _cfg(hf_hub_id='timm/'), 'hgnetv2_b2.ssld_stage1_in22k_in1k': _cfg(hf_hub_id='timm/'), 'hgnetv2_b3.ssld_stage2_ft_in1k': _cfg(hf_hub_id='timm/'), 'hgnetv2_b3.ssld_stage1_in22k_in1k': _cfg(hf_hub_id='timm/'), 'hgnetv2_b4.ssld_stage2_ft_in1k': _cfg(hf_hub_id='timm/'), 'hgnetv2_b4.ssld_stage1_in22k_in1k': _cfg(hf_hub_id='timm/'), 'hgnetv2_b5.ssld_stage2_ft_in1k': _cfg(hf_hub_id='timm/'), 'hgnetv2_b5.ssld_stage1_in22k_in1k': _cfg(hf_hub_id='timm/'), 'hgnetv2_b6.ssld_stage2_ft_in1k': _cfg(hf_hub_id='timm/'), 'hgnetv2_b6.ssld_stage1_in22k_in1k': _cfg(hf_hub_id='timm/')}) + +@register_model +def hgnet_tiny(pretrained=False, **kwargs) -> HighPerfGpuNet: + return _create_hgnet('hgnet_tiny', pretrained=pretrained, **kwargs) + +@register_model +def hgnet_small(pretrained=False, **kwargs) -> HighPerfGpuNet: + return _create_hgnet('hgnet_small', pretrained=pretrained, **kwargs) + +@register_model +def hgnet_base(pretrained=False, **kwargs) -> HighPerfGpuNet: + return _create_hgnet('hgnet_base', pretrained=pretrained, **kwargs) + +@register_model +def hgnetv2_b0(pretrained=False, **kwargs) -> HighPerfGpuNet: + return _create_hgnet('hgnetv2_b0', pretrained=pretrained, use_lab=True, **kwargs) + +@register_model +def hgnetv2_b1(pretrained=False, **kwargs) -> HighPerfGpuNet: + return _create_hgnet('hgnetv2_b1', pretrained=pretrained, use_lab=True, **kwargs) + +@register_model +def hgnetv2_b2(pretrained=False, **kwargs) -> HighPerfGpuNet: + return _create_hgnet('hgnetv2_b2', pretrained=pretrained, use_lab=True, **kwargs) + +@register_model +def hgnetv2_b3(pretrained=False, **kwargs) -> HighPerfGpuNet: + return _create_hgnet('hgnetv2_b3', pretrained=pretrained, use_lab=True, **kwargs) + +@register_model +def hgnetv2_b4(pretrained=False, **kwargs) -> HighPerfGpuNet: + return _create_hgnet('hgnetv2_b4', pretrained=pretrained, **kwargs) + +@register_model +def hgnetv2_b5(pretrained=False, **kwargs) -> HighPerfGpuNet: + return _create_hgnet('hgnetv2_b5', pretrained=pretrained, **kwargs) + +@register_model +def hgnetv2_b6(pretrained=False, **kwargs) -> HighPerfGpuNet: + return _create_hgnet('hgnetv2_b6', pretrained=pretrained, **kwargs) + +# File: pytorch-image-models-main/timm/models/hiera.py +"""""" +import math +from functools import partial +from typing import Callable, Dict, List, Optional, Tuple, Type, Union +import torch +import torch.nn as nn +import torch.nn.functional as F +from torch.utils.checkpoint import checkpoint +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from timm.layers import DropPath, Mlp, LayerScale, ClNormMlpClassifierHead, use_fused_attn, _assert, get_norm_layer, to_2tuple, init_weight_vit, init_weight_jax +from ._registry import generate_default_cfgs, register_model +from ._builder import build_model_with_cfg +from ._features import feature_take_indices +from ._features_fx import register_notrace_function +from ._manipulate import named_apply +__all__ = ['Hiera'] + +def conv_nd(n: int) -> Type[nn.Module]: + return [nn.Identity, nn.Conv1d, nn.Conv2d, nn.Conv3d][n] + +@register_notrace_function +def get_resized_mask(target_size: List[int], mask: torch.Tensor) -> torch.Tensor: + if mask is None: + return mask + _assert(len(mask.shape[2:]) == len(target_size), 'mask spatial shape and target_size must match.') + if mask.shape[2:] != target_size: + return F.interpolate(mask.float(), size=target_size) + return mask + +def undo_windowing(x: torch.Tensor, shape: List[int], mu_shape: List[int]) -> torch.Tensor: + D = len(shape) + (B, C) = (x.shape[0], x.shape[-1]) + num_MUs = [s // mu for (s, mu) in zip(shape, mu_shape)] + x = x.view(B, *num_MUs, *mu_shape, C) + permute = [0] + sum([list(p) for p in zip(range(1, 1 + D), range(1 + D, 1 + 2 * D))], []) + [len(x.shape) - 1] + x = x.permute(permute).reshape(B, *shape, C) + return x + +class Unroll(nn.Module): + + def __init__(self, input_size: Tuple[int, ...], patch_stride: Tuple[int, ...], unroll_schedule: List[Tuple[int, ...]]): + super().__init__() + self.size = [i // s for (i, s) in zip(input_size, patch_stride)] + self.schedule = unroll_schedule + + def forward(self, x: torch.Tensor) -> torch.Tensor: + (B, _, C) = x.shape + cur_size = self.size + x = x.view(*[B] + cur_size + [C]) + for strides in self.schedule: + cur_size = [i // s for (i, s) in zip(cur_size, strides)] + new_shape = [B] + sum([[i, s] for (i, s) in zip(cur_size, strides)], []) + [C] + x = x.view(new_shape) + L = len(new_shape) + permute = [0] + list(range(2, L - 1, 2)) + list(range(1, L - 1, 2)) + [L - 1] + x = x.permute(permute) + x = x.flatten(0, len(strides)) + B *= math.prod(strides) + x = x.reshape(-1, math.prod(self.size), C) + return x + +class Reroll(nn.Module): + + def __init__(self, input_size: Tuple[int, ...], patch_stride: Tuple[int, ...], unroll_schedule: List[Tuple[int, ...]], stage_ends: List[int], q_pool: int): + super().__init__() + self.size = [i // s for (i, s) in zip(input_size, patch_stride)] + self.schedule = {} + size = self.size + for i in range(stage_ends[-1] + 1): + self.schedule[i] = (unroll_schedule, size) + if i in stage_ends[:q_pool]: + if len(unroll_schedule) > 0: + size = [n // s for (n, s) in zip(size, unroll_schedule[0])] + unroll_schedule = unroll_schedule[1:] + + def forward(self, x: torch.Tensor, block_idx: int, mask: torch.Tensor=None) -> torch.Tensor: + (schedule, size) = self.schedule[block_idx] + (B, N, C) = x.shape + D = len(size) + cur_mu_shape = [1] * D + for strides in schedule: + x = x.view(B, *strides, N // math.prod(strides), *cur_mu_shape, C) + L = len(x.shape) + permute = [0, 1 + D] + sum([list(p) for p in zip(range(1, 1 + D), range(1 + D + 1, L - 1))], []) + [L - 1] + x = x.permute(permute) + for i in range(D): + cur_mu_shape[i] *= strides[i] + x = x.reshape(B, -1, *cur_mu_shape, C) + N = x.shape[1] + x = x.view(B, N, *cur_mu_shape, C) + if mask is not None: + return x + x = undo_windowing(x, size, cur_mu_shape) + return x + +class MaskUnitAttention(nn.Module): + fused_attn: torch.jit.Final[bool] + + def __init__(self, dim: int, dim_out: int, heads: int, q_stride: int=1, window_size: int=0, use_mask_unit_attn: bool=False): + super().__init__() + self.dim = dim + self.dim_out = dim_out + self.heads = heads + self.q_stride = q_stride + self.head_dim = dim_out // heads + self.scale = self.head_dim ** (-0.5) + self.fused_attn = use_fused_attn() + self.qkv = nn.Linear(dim, 3 * dim_out) + self.proj = nn.Linear(dim_out, dim_out) + self.window_size = window_size + self.use_mask_unit_attn = use_mask_unit_attn + + def forward(self, x: torch.Tensor) -> torch.Tensor: + (B, N, _) = x.shape + num_windows = N // (self.q_stride * self.window_size) if self.use_mask_unit_attn else 1 + qkv = self.qkv(x).reshape(B, -1, num_windows, 3, self.heads, self.head_dim).permute(3, 0, 4, 2, 1, 5) + (q, k, v) = qkv.unbind(0) + if self.q_stride > 1: + q = q.view(B, self.heads, num_windows, self.q_stride, -1, self.head_dim).amax(dim=3) + if self.fused_attn: + x = F.scaled_dot_product_attention(q, k, v) + else: + attn = q * self.scale @ k.transpose(-1, -2) + attn = attn.softmax(dim=-1) + x = attn @ v + x = x.transpose(1, 3).reshape(B, -1, self.dim_out) + x = self.proj(x) + return x + +class HieraBlock(nn.Module): + + def __init__(self, dim: int, dim_out: int, heads: int, mlp_ratio: float=4.0, drop_path: float=0.0, init_values: Optional[float]=None, norm_layer: nn.Module=nn.LayerNorm, act_layer: nn.Module=nn.GELU, q_stride: int=1, window_size: int=0, use_expand_proj: bool=True, use_mask_unit_attn: bool=False): + super().__init__() + self.dim = dim + self.dim_out = dim_out + self.norm1 = norm_layer(dim) + if dim != dim_out: + self.do_expand = True + if use_expand_proj: + self.proj = nn.Linear(dim, dim_out) + else: + assert dim_out == dim * 2 + self.proj = None + else: + self.do_expand = False + self.proj = None + self.attn = MaskUnitAttention(dim, dim_out, heads, q_stride, window_size, use_mask_unit_attn) + self.ls1 = LayerScale(dim_out, init_values=init_values) if init_values is not None else nn.Identity() + self.drop_path1 = DropPath(drop_path) if drop_path > 0 else nn.Identity() + self.norm2 = norm_layer(dim_out) + self.mlp = Mlp(dim_out, int(dim_out * mlp_ratio), act_layer=act_layer) + self.ls2 = LayerScale(dim_out, init_values=init_values) if init_values is not None else nn.Identity() + self.drop_path2 = DropPath(drop_path) if drop_path > 0 else nn.Identity() + + def forward(self, x: torch.Tensor) -> torch.Tensor: + x_norm = self.norm1(x) + if self.do_expand: + if self.proj is not None: + x = self.proj(x_norm) + x = x.view(x.shape[0], self.attn.q_stride, -1, x.shape[-1]).amax(dim=1) + else: + x = torch.cat([x.view(x.shape[0], self.attn.q_stride, -1, x.shape[-1]).amax(dim=1), x.view(x.shape[0], self.attn.q_stride, -1, x.shape[-1]).mean(dim=1)], dim=-1) + x = x + self.drop_path1(self.ls1(self.attn(x_norm))) + x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x)))) + return x + +class PatchEmbed(nn.Module): + + def __init__(self, dim_in: int, dim_out: int, kernel: Tuple[int, ...], stride: Tuple[int, ...], padding: Tuple[int, ...], reshape: bool=True): + super().__init__() + self.spatial_dims = len(kernel) + self.reshape = reshape + self.proj = conv_nd(self.spatial_dims)(dim_in, dim_out, kernel_size=kernel, stride=stride, padding=padding) + + def forward(self, x: torch.Tensor, mask: Optional[torch.Tensor]=None) -> torch.Tensor: + if mask is not None: + mask = get_resized_mask(target_size=x.shape[2:], mask=mask) + x = self.proj(x * mask.to(torch.bool)) + else: + x = self.proj(x) + if self.reshape: + x = x.reshape(x.shape[0], x.shape[1], -1).transpose(2, 1) + return x + +class Hiera(nn.Module): + + def __init__(self, img_size: Tuple[int, ...]=(224, 224), in_chans: int=3, embed_dim: int=96, num_heads: int=1, num_classes: int=1000, global_pool: str='avg', stages: Tuple[int, ...]=(2, 3, 16, 3), q_pool: int=3, q_stride: Tuple[int, ...]=(2, 2), mask_unit_size: Tuple[int, ...]=(8, 8), mask_unit_attn: Tuple[bool, ...]=(True, True, False, False), use_expand_proj: bool=True, dim_mul: float=2.0, head_mul: float=2.0, patch_kernel: Tuple[int, ...]=(7, 7), patch_stride: Tuple[int, ...]=(4, 4), patch_padding: Tuple[int, ...]=(3, 3), mlp_ratio: float=4.0, drop_path_rate: float=0.0, init_values: Optional[float]=None, fix_init: bool=True, weight_init: str='', norm_layer: Union[str, nn.Module]='LayerNorm', drop_rate: float=0.0, patch_drop_rate: float=0.0, head_init_scale: float=0.001, sep_pos_embed: bool=False, abs_win_pos_embed: bool=False, global_pos_size: Tuple[int, int]=(14, 14)): + super().__init__() + self.num_classes = num_classes + self.grad_checkpointing = False + norm_layer = get_norm_layer(norm_layer) + if isinstance(img_size, int): + img_size = to_2tuple(img_size) + self.patch_stride = patch_stride + self.tokens_spatial_shape = [i // s for (i, s) in zip(img_size, patch_stride)] + num_tokens = math.prod(self.tokens_spatial_shape) + flat_mu_size = math.prod(mask_unit_size) + flat_q_stride = math.prod(q_stride) + assert q_pool < len(stages) + (self.q_pool, self.q_stride) = (q_pool, q_stride) + (self.mu_size, self.mask_unit_size) = (flat_mu_size, mask_unit_size) + self.mask_spatial_shape = [i // s for (i, s) in zip(self.tokens_spatial_shape, self.mask_unit_size)] + self.stage_ends = [sum(stages[:i]) - 1 for i in range(1, len(stages) + 1)] + self.patch_drop_rate = patch_drop_rate + self.patch_embed = PatchEmbed(in_chans, embed_dim, patch_kernel, patch_stride, patch_padding) + self.pos_embed: Optional[nn.Parameter] = None + self.pos_embed_win: Optional[nn.Parameter] = None + self.pos_embed_spatial: Optional[nn.Parameter] = None + self.pos_embed_temporal: Optional[nn.Parameter] = None + if sep_pos_embed: + self.pos_embed_spatial = nn.Parameter(torch.zeros(1, self.tokens_spatial_shape[1] * self.tokens_spatial_shape[2], embed_dim)) + self.pos_embed_temporal = nn.Parameter(torch.zeros(1, self.tokens_spatial_shape[0], embed_dim)) + elif abs_win_pos_embed: + self.pos_embed = nn.Parameter(torch.zeros(1, embed_dim, *global_pos_size)) + self.pos_embed_win = nn.Parameter(torch.zeros(1, embed_dim, *mask_unit_size)) + else: + self.pos_embed = nn.Parameter(torch.zeros(1, num_tokens, embed_dim)) + self.unroll = Unroll(img_size, patch_stride, [q_stride] * len(self.stage_ends[:-1])) + self.reroll = Reroll(img_size, patch_stride, [q_stride] * len(self.stage_ends[:-1]), self.stage_ends, q_pool) + q_pool_blocks = [x + 1 for x in self.stage_ends[:q_pool]] + cur_stage = 0 + depth = sum(stages) + dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] + self.blocks = nn.ModuleList() + self.feature_info = [] + for i in range(depth): + dim_out = embed_dim + use_mask_unit_attn = mask_unit_attn[cur_stage] + if i - 1 in self.stage_ends: + dim_out = int(embed_dim * dim_mul) + num_heads = int(num_heads * head_mul) + cur_stage += 1 + if i in q_pool_blocks: + flat_mu_size //= flat_q_stride + block = HieraBlock(dim=embed_dim, dim_out=dim_out, heads=num_heads, mlp_ratio=mlp_ratio, drop_path=dpr[i], init_values=init_values, norm_layer=norm_layer, q_stride=flat_q_stride if i in q_pool_blocks else 1, window_size=flat_mu_size, use_expand_proj=use_expand_proj, use_mask_unit_attn=use_mask_unit_attn) + embed_dim = dim_out + if i in self.stage_ends: + self.feature_info += [dict(num_chs=dim_out, reduction=2 ** (cur_stage + 2), module=f'blocks.{self.stage_ends[cur_stage]}')] + self.blocks.append(block) + self.num_features = self.head_hidden_size = embed_dim + self.head = ClNormMlpClassifierHead(embed_dim, num_classes, pool_type=global_pool, drop_rate=drop_rate, norm_layer=norm_layer, input_fmt='NLC') + if sep_pos_embed: + nn.init.trunc_normal_(self.pos_embed_spatial, std=0.02) + nn.init.trunc_normal_(self.pos_embed_temporal, std=0.02) + else: + if self.pos_embed is not None: + nn.init.trunc_normal_(self.pos_embed, std=0.02) + if self.pos_embed_win is not None: + nn.init.trunc_normal_(self.pos_embed_win, std=0.02) + if weight_init != 'skip': + init_fn = init_weight_jax if weight_init == 'jax' else init_weight_vit + init_fn = partial(init_fn, classifier_name='head.fc') + named_apply(init_fn, self) + if fix_init: + self.fix_init_weight() + if isinstance(self.head.fc, nn.Linear): + self.head.fc.weight.data.mul_(head_init_scale) + self.head.fc.bias.data.mul_(head_init_scale) + + def fix_init_weight(self): + + def rescale(param, _layer_id): + param.div_(math.sqrt(2.0 * _layer_id)) + for (layer_id, layer) in enumerate(self.blocks): + rescale(layer.attn.proj.weight.data, layer_id + 1) + rescale(layer.mlp.fc2.weight.data, layer_id + 1) + + @torch.jit.ignore + def no_weight_decay(self): + if self.pos_embed is not None: + return ['pos_embed'] + elif self.pos_embed_abs is not None: + return ['pos_embed_abs', 'pos_embed_win'] + else: + return ['pos_embed_spatial', 'pos_embed_temporal'] + + @torch.jit.ignore + def group_matcher(self, coarse: bool=False) -> Dict: + return dict(stem='^pos_embed|pos_embed_spatial|pos_embed_temporal|pos_embed_abs|pos_embed_win|patch_embed', blocks=[('^blocks\\.(\\d+)', None), ('^norm', (99999,))]) + + @torch.jit.ignore + def set_grad_checkpointing(self, enable: bool=True) -> None: + self.grad_checkpointing = enable + + @torch.jit.ignore + def get_classifier(self): + return self.head.fc + + def reset_classifier(self, num_classes: int, global_pool: Optional[str]=None, reset_other: bool=False): + self.num_classes = num_classes + self.head.reset(num_classes, global_pool, reset_other=reset_other) + + def get_random_mask(self, x: torch.Tensor, mask_ratio: float) -> torch.Tensor: + B = x.shape[0] + num_windows = math.prod(self.mask_spatial_shape) + len_keep = int(num_windows * (1 - mask_ratio)) + noise = torch.rand(B, num_windows, device=x.device) + ids_shuffle = torch.argsort(noise, dim=1) + ids_restore = torch.argsort(ids_shuffle, dim=1) + mask = torch.zeros([B, num_windows], device=x.device) + mask[:, :len_keep] = 1 + mask = torch.gather(mask, dim=1, index=ids_restore) + return mask.bool() + + def _pos_embed(self, x) -> torch.Tensor: + if self.pos_embed_win is not None: + pos_embed_win = self.pos_embed_win.tile(self.mask_spatial_shape) + pos_embed = F.interpolate(self.pos_embed, size=pos_embed_win.shape[-2:], mode='bicubic', antialias=True) + pos_embed = pos_embed + pos_embed_win + pos_embed = pos_embed.flatten(2).transpose(1, 2) + elif self.pos_embed is not None: + pos_embed = self.pos_embed + else: + pos_embed = self.pos_embed_spatial.repeat(1, self.tokens_spatial_shape[0], 1) + torch.repeat_interleave(self.pos_embed_temporal, self.tokens_spatial_shape[1] * self.tokens_spatial_shape[2], dim=1) + x = x + pos_embed + return x + + def forward_intermediates(self, x: torch.Tensor, mask: Optional[torch.Tensor]=None, indices: Optional[Union[int, List[int]]]=None, norm: bool=False, stop_early: bool=True, output_fmt: str='NCHW', intermediates_only: bool=False, coarse: bool=True) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]: + assert not norm, 'normalization of features not supported' + assert output_fmt in ('NCHW', 'NHWC'), 'Output format must be one of NCHW, NHWC.' + if coarse: + (take_indices, max_index) = feature_take_indices(len(self.stage_ends), indices) + take_indices = [self.stage_ends[i] for i in take_indices] + max_index = self.stage_ends[max_index] + else: + (take_indices, max_index) = feature_take_indices(len(self.blocks), indices) + if mask is not None: + patch_mask = mask.view(x.shape[0], 1, *self.mask_spatial_shape) + else: + patch_mask = None + x = self.patch_embed(x, mask=patch_mask) + x = self._pos_embed(x) + x = self.unroll(x) + if mask is not None: + x = x[mask[..., None].tile(1, self.mu_size, x.shape[2])].view(x.shape[0], -1, x.shape[-1]) + intermediates = [] + if torch.jit.is_scripting() or not stop_early: + blocks = self.blocks + else: + blocks = self.blocks[:max_index + 1] + for (i, blk) in enumerate(blocks): + x = blk(x) + if i in take_indices: + x_int = self.reroll(x, i, mask=mask) + intermediates.append(x_int.permute(0, 3, 1, 2) if output_fmt == 'NCHW' else x_int) + if intermediates_only: + return intermediates + return (x, intermediates) + + def prune_intermediate_layers(self, indices: Union[int, List[int]]=1, prune_norm: bool=False, prune_head: bool=True, coarse: bool=True): + if coarse: + (take_indices, max_index) = feature_take_indices(len(self.stage_ends), indices) + max_index = self.stage_ends[max_index] + else: + (take_indices, max_index) = feature_take_indices(len(self.blocks), indices) + self.blocks = self.blocks[:max_index + 1] + if prune_head: + self.head.reset(0, reset_other=True) + return take_indices + + def forward_features(self, x: torch.Tensor, mask: Optional[torch.Tensor]=None, return_intermediates: bool=False) -> torch.Tensor: + if self.training and self.patch_drop_rate > 0: + assert mask is None + mask = self.get_random_mask(x, mask_ratio=self.patch_drop_rate) + if mask is not None: + patch_mask = mask.view(x.shape[0], 1, *self.mask_spatial_shape) + else: + patch_mask = None + x = self.patch_embed(x, mask=patch_mask) + x = self._pos_embed(x) + x = self.unroll(x) + if mask is not None: + x = x[mask[..., None].tile(1, self.mu_size, x.shape[2])].view(x.shape[0], -1, x.shape[-1]) + intermediates = [] + for (i, blk) in enumerate(self.blocks): + if self.grad_checkpointing and (not torch.jit.is_scripting()): + x = checkpoint(blk, x) + else: + x = blk(x) + if return_intermediates and i in self.stage_ends: + intermediates.append(self.reroll(x, i, mask=mask)) + if return_intermediates: + return (x, intermediates) + return x + + def forward_head(self, x, pre_logits: bool=False) -> torch.Tensor: + x = self.head(x, pre_logits=pre_logits) if pre_logits else self.head(x) + return x + + def forward(self, x: torch.Tensor, mask: Optional[torch.Tensor]=None) -> torch.Tensor: + x = self.forward_features(x, mask=mask) + if mask is None: + x = self.forward_head(x) + return x + +def _cfg(url='', **kwargs): + return {'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, 'crop_pct': 0.9, 'interpolation': 'bicubic', 'fixed_input_size': True, 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'patch_embed.proj', 'classifier': 'head.fc', **kwargs} +default_cfgs = generate_default_cfgs({'hiera_tiny_224.mae_in1k_ft_in1k': _cfg(hf_hub_id='timm/', license='cc-by-nc-4.0'), 'hiera_tiny_224.mae': _cfg(hf_hub_id='timm/', license='cc-by-nc-4.0', num_classes=0), 'hiera_small_224.mae_in1k_ft_in1k': _cfg(hf_hub_id='timm/', license='cc-by-nc-4.0'), 'hiera_small_224.mae': _cfg(hf_hub_id='timm/', license='cc-by-nc-4.0', num_classes=0), 'hiera_base_224.mae_in1k_ft_in1k': _cfg(hf_hub_id='timm/', license='cc-by-nc-4.0'), 'hiera_base_224.mae': _cfg(hf_hub_id='timm/', license='cc-by-nc-4.0', num_classes=0), 'hiera_base_plus_224.mae_in1k_ft_in1k': _cfg(hf_hub_id='timm/', license='cc-by-nc-4.0'), 'hiera_base_plus_224.mae': _cfg(hf_hub_id='timm/', license='cc-by-nc-4.0', num_classes=0), 'hiera_large_224.mae_in1k_ft_in1k': _cfg(hf_hub_id='timm/', license='cc-by-nc-4.0'), 'hiera_large_224.mae': _cfg(hf_hub_id='timm/', license='cc-by-nc-4.0', num_classes=0), 'hiera_huge_224.mae_in1k_ft_in1k': _cfg(hf_hub_id='timm/', license='cc-by-nc-4.0'), 'hiera_huge_224.mae': _cfg(hf_hub_id='timm/', license='cc-by-nc-4.0', num_classes=0), 'hiera_small_abswin_256.sbb2_e200_in12k_ft_in1k': _cfg(hf_hub_id='timm/', input_size=(3, 256, 256), crop_pct=0.95), 'hiera_small_abswin_256.sbb2_pd_e200_in12k_ft_in1k': _cfg(hf_hub_id='timm/', input_size=(3, 256, 256), crop_pct=0.95), 'hiera_small_abswin_256.sbb2_e200_in12k': _cfg(hf_hub_id='timm/', num_classes=11821, input_size=(3, 256, 256), crop_pct=0.95), 'hiera_small_abswin_256.sbb2_pd_e200_in12k': _cfg(hf_hub_id='timm/', num_classes=11821, input_size=(3, 256, 256), crop_pct=0.95), 'hiera_base_abswin_256.untrained': _cfg(input_size=(3, 256, 256), crop_pct=0.95)}) + +def checkpoint_filter_fn(state_dict, model=None): + state_dict = state_dict.get('model_state', state_dict) + output = {} + for (k, v) in state_dict.items(): + if 'head.projection.' in k: + k = k.replace('head.projection.', 'head.fc.') + if k.startswith('encoder_norm.'): + k = k.replace('encoder_norm.', 'head.norm.') + elif k.startswith('norm.'): + k = k.replace('norm.', 'head.norm.') + if k == 'pos_embed_abs': + k = 'pos_embed' + output[k] = v + return output + +def _create_hiera(variant: str, pretrained: bool=False, **kwargs) -> Hiera: + out_indices = kwargs.pop('out_indices', 4) + return build_model_with_cfg(Hiera, variant, pretrained, pretrained_filter_fn=checkpoint_filter_fn, feature_cfg=dict(out_indices=out_indices, feature_cls='getter'), **kwargs) + +@register_model +def hiera_tiny_224(pretrained=False, **kwargs): + model_args = dict(embed_dim=96, num_heads=1, stages=(1, 2, 7, 2)) + return _create_hiera('hiera_tiny_224', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def hiera_small_224(pretrained=False, **kwargs): + model_args = dict(embed_dim=96, num_heads=1, stages=(1, 2, 11, 2)) + return _create_hiera('hiera_small_224', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def hiera_base_224(pretrained=False, **kwargs): + model_args = dict(embed_dim=96, num_heads=1, stages=(2, 3, 16, 3)) + return _create_hiera('hiera_base_224', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def hiera_base_plus_224(pretrained=False, **kwargs): + model_args = dict(embed_dim=112, num_heads=2, stages=(2, 3, 16, 3)) + return _create_hiera('hiera_base_plus_224', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def hiera_large_224(pretrained=False, **kwargs): + model_args = dict(embed_dim=144, num_heads=2, stages=(2, 6, 36, 4)) + return _create_hiera('hiera_large_224', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def hiera_huge_224(pretrained=False, **kwargs): + model_args = dict(embed_dim=256, num_heads=4, stages=(2, 6, 36, 4)) + return _create_hiera('hiera_huge_224', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def hiera_small_abswin_256(pretrained=False, **kwargs): + model_args = dict(embed_dim=96, num_heads=1, stages=(1, 2, 11, 2), abs_win_pos_embed=True, global_pos_size=(16, 16), init_values=1e-05, weight_init='jax', use_expand_proj=False) + return _create_hiera('hiera_small_abswin_256', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def hiera_base_abswin_256(pretrained=False, **kwargs): + model_args = dict(embed_dim=96, num_heads=1, stages=(2, 3, 16, 3), abs_win_pos_embed=True, init_values=1e-05, weight_init='jax') + return _create_hiera('hiera_base_abswin_256', pretrained=pretrained, **dict(model_args, **kwargs)) + +# File: pytorch-image-models-main/timm/models/hieradet_sam2.py +import math +from copy import deepcopy +from functools import partial +from typing import Callable, Dict, List, Optional, Tuple, Union +import torch +import torch.nn as nn +import torch.nn.functional as F +from torch.jit import Final +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from timm.layers import PatchEmbed, Mlp, DropPath, ClNormMlpClassifierHead, LayerScale, get_norm_layer, get_act_layer, init_weight_jax, init_weight_vit, to_2tuple, use_fused_attn +from ._builder import build_model_with_cfg +from ._features import feature_take_indices +from ._manipulate import named_apply, checkpoint_seq, adapt_input_conv +from ._registry import generate_default_cfgs, register_model, register_model_deprecations + +def window_partition(x, window_size: Tuple[int, int]): + (B, H, W, C) = x.shape + x = x.view(B, H // window_size[0], window_size[0], W // window_size[1], window_size[1], C) + windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size[0], window_size[1], C) + return windows + +def window_unpartition(windows: torch.Tensor, window_size: Tuple[int, int], hw: Tuple[int, int]): + (H, W) = hw + B = windows.shape[0] // (H * W // window_size[0] // window_size[1]) + x = windows.view(B, H // window_size[0], W // window_size[1], window_size[0], window_size[1], -1) + x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1) + return x + +def _calc_pad(H: int, W: int, window_size: Tuple[int, int]) -> Tuple[int, int, int, int]: + pad_h = (window_size[0] - H % window_size[0]) % window_size[0] + pad_w = (window_size[1] - W % window_size[1]) % window_size[1] + (Hp, Wp) = (H + pad_h, W + pad_w) + return (Hp, Wp, pad_h, pad_w) + +class MultiScaleAttention(nn.Module): + fused_attn: torch.jit.Final[bool] + + def __init__(self, dim: int, dim_out: int, num_heads: int, q_pool: nn.Module=None): + super().__init__() + self.dim = dim + self.dim_out = dim_out + self.num_heads = num_heads + head_dim = dim_out // num_heads + self.scale = head_dim ** (-0.5) + self.fused_attn = use_fused_attn() + self.q_pool = q_pool + self.qkv = nn.Linear(dim, dim_out * 3) + self.proj = nn.Linear(dim_out, dim_out) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + (B, H, W, _) = x.shape + qkv = self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1) + (q, k, v) = torch.unbind(qkv, 2) + if self.q_pool is not None: + q = q.reshape(B, H, W, -1).permute(0, 3, 1, 2) + q = self.q_pool(q).permute(0, 2, 3, 1) + (H, W) = q.shape[1:3] + q = q.reshape(B, H * W, self.num_heads, -1) + q = q.transpose(1, 2) + k = k.transpose(1, 2) + v = v.transpose(1, 2) + if self.fused_attn: + x = F.scaled_dot_product_attention(q, k, v) + else: + q = q * self.scale + attn = q @ k.transpose(-1, -2) + attn = attn.softmax(dim=-1) + x = attn @ v + x = x.transpose(1, 2).reshape(B, H, W, -1) + x = self.proj(x) + return x + +class MultiScaleBlock(nn.Module): + + def __init__(self, dim: int, dim_out: int, num_heads: int, mlp_ratio: float=4.0, q_stride: Optional[Tuple[int, int]]=None, norm_layer: Union[nn.Module, str]='LayerNorm', act_layer: Union[nn.Module, str]='GELU', window_size: int=0, init_values: Optional[float]=None, drop_path: float=0.0): + super().__init__() + norm_layer = get_norm_layer(norm_layer) + act_layer = get_act_layer(act_layer) + self.window_size = to_2tuple(window_size) + self.is_windowed = any(self.window_size) + self.dim = dim + self.dim_out = dim_out + self.q_stride = q_stride + if dim != dim_out: + self.proj = nn.Linear(dim, dim_out) + else: + self.proj = nn.Identity() + self.pool = None + if self.q_stride: + self.pool = nn.MaxPool2d(kernel_size=q_stride, stride=q_stride, ceil_mode=False) + self.norm1 = norm_layer(dim) + self.attn = MultiScaleAttention(dim, dim_out, num_heads=num_heads, q_pool=deepcopy(self.pool)) + self.ls1 = LayerScale(dim_out, init_values) if init_values is not None else nn.Identity() + self.drop_path1 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + self.norm2 = norm_layer(dim_out) + self.mlp = Mlp(dim_out, int(dim_out * mlp_ratio), act_layer=act_layer) + self.ls2 = LayerScale(dim_out, init_values) if init_values is not None else nn.Identity() + self.drop_path2 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + + def forward(self, x: torch.Tensor) -> torch.Tensor: + shortcut = x + x = self.norm1(x) + if self.dim != self.dim_out: + shortcut = self.proj(x) + if self.pool is not None: + shortcut = shortcut.permute(0, 3, 1, 2) + shortcut = self.pool(shortcut).permute(0, 2, 3, 1) + window_size = self.window_size + (H, W) = x.shape[1:3] + (Hp, Wp) = (H, W) + if self.is_windowed: + (Hp, Wp, pad_h, pad_w) = _calc_pad(H, W, window_size) + x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h)) + x = window_partition(x, window_size) + x = self.attn(x) + if self.q_stride is not None: + window_size = (self.window_size[0] // self.q_stride[0], self.window_size[1] // self.q_stride[1]) + (H, W) = shortcut.shape[1:3] + (Hp, Wp, pad_h, pad_w) = _calc_pad(H, W, window_size) + if self.is_windowed: + x = window_unpartition(x, window_size, (Hp, Wp)) + x = x[:, :H, :W, :].contiguous() + x = shortcut + self.drop_path1(self.ls1(x)) + x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x)))) + return x + +class HieraPatchEmbed(nn.Module): + + def __init__(self, kernel_size: Tuple[int, ...]=(7, 7), stride: Tuple[int, ...]=(4, 4), padding: Tuple[int, ...]=(3, 3), in_chans: int=3, embed_dim: int=768): + super().__init__() + self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + x = self.proj(x) + x = x.permute(0, 2, 3, 1) + return x + +class HieraDet(nn.Module): + + def __init__(self, in_chans: int=3, num_classes: int=1000, global_pool: str='avg', embed_dim: int=96, num_heads: int=1, patch_kernel: Tuple[int, ...]=(7, 7), patch_stride: Tuple[int, ...]=(4, 4), patch_padding: Tuple[int, ...]=(3, 3), patch_size: Optional[Tuple[int, ...]]=None, q_pool: int=3, q_stride: Tuple[int, int]=(2, 2), stages: Tuple[int, ...]=(2, 3, 16, 3), dim_mul: float=2.0, head_mul: float=2.0, global_pos_size: Tuple[int, int]=(7, 7), window_spec: Tuple[int, ...]=(8, 4, 14, 7), global_att_blocks: Tuple[int, ...]=(12, 16, 20), init_values: Optional[float]=None, weight_init: str='', fix_init: bool=True, head_init_scale: float=0.001, drop_rate: float=0.0, drop_path_rate: float=0.0, norm_layer: Union[nn.Module, str]='LayerNorm', act_layer: Union[nn.Module, str]='GELU'): + super().__init__() + norm_layer = get_norm_layer(norm_layer) + act_layer = get_act_layer(act_layer) + assert len(stages) == len(window_spec) + self.num_classes = num_classes + self.window_spec = window_spec + self.output_fmt = 'NHWC' + depth = sum(stages) + self.q_stride = q_stride + self.stage_ends = [sum(stages[:i]) - 1 for i in range(1, len(stages) + 1)] + assert 0 <= q_pool <= len(self.stage_ends[:-1]) + self.q_pool_blocks = [x + 1 for x in self.stage_ends[:-1]][:q_pool] + if patch_size is not None: + self.patch_embed = PatchEmbed(img_size=None, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim, output_fmt='NHWC', dynamic_img_pad=True) + else: + self.patch_embed = HieraPatchEmbed(kernel_size=patch_kernel, stride=patch_stride, padding=patch_padding, in_chans=in_chans, embed_dim=embed_dim) + self.global_att_blocks = global_att_blocks + self.global_pos_size = global_pos_size + self.pos_embed = nn.Parameter(torch.zeros(1, embed_dim, *self.global_pos_size)) + self.pos_embed_window = nn.Parameter(torch.zeros(1, embed_dim, self.window_spec[0], self.window_spec[0])) + dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] + cur_stage = 0 + self.blocks = nn.Sequential() + self.feature_info = [] + for i in range(depth): + dim_out = embed_dim + window_size = self.window_spec[cur_stage] + if self.global_att_blocks is not None: + window_size = 0 if i in self.global_att_blocks else window_size + if i - 1 in self.stage_ends: + dim_out = int(embed_dim * dim_mul) + num_heads = int(num_heads * head_mul) + cur_stage += 1 + block = MultiScaleBlock(dim=embed_dim, dim_out=dim_out, num_heads=num_heads, drop_path=dpr[i], q_stride=self.q_stride if i in self.q_pool_blocks else None, window_size=window_size, norm_layer=norm_layer, act_layer=act_layer) + embed_dim = dim_out + self.blocks.append(block) + if i in self.stage_ends: + self.feature_info += [dict(num_chs=dim_out, reduction=2 ** (cur_stage + 2), module=f'blocks.{self.stage_ends[cur_stage]}')] + self.num_features = self.head_hidden_size = embed_dim + self.head = ClNormMlpClassifierHead(embed_dim, num_classes, pool_type=global_pool, drop_rate=drop_rate, norm_layer=norm_layer) + if self.pos_embed is not None: + nn.init.trunc_normal_(self.pos_embed, std=0.02) + if self.pos_embed_window is not None: + nn.init.trunc_normal_(self.pos_embed_window, std=0.02) + if weight_init != 'skip': + init_fn = init_weight_jax if weight_init == 'jax' else init_weight_vit + init_fn = partial(init_fn, classifier_name='head.fc') + named_apply(init_fn, self) + if fix_init: + self.fix_init_weight() + if isinstance(self.head, ClNormMlpClassifierHead) and isinstance(self.head.fc, nn.Linear): + self.head.fc.weight.data.mul_(head_init_scale) + self.head.fc.bias.data.mul_(head_init_scale) + + def _pos_embed(self, x: torch.Tensor) -> torch.Tensor: + (h, w) = x.shape[1:3] + window_embed = self.pos_embed_window + pos_embed = F.interpolate(self.pos_embed, size=(h, w), mode='bicubic') + tile_h = pos_embed.shape[-2] // window_embed.shape[-2] + tile_w = pos_embed.shape[-1] // window_embed.shape[-1] + pos_embed = pos_embed + window_embed.tile((tile_h, tile_w)) + pos_embed = pos_embed.permute(0, 2, 3, 1) + return x + pos_embed + + def fix_init_weight(self): + + def rescale(param, _layer_id): + param.div_(math.sqrt(2.0 * _layer_id)) + for (layer_id, layer) in enumerate(self.blocks): + rescale(layer.attn.proj.weight.data, layer_id + 1) + rescale(layer.mlp.fc2.weight.data, layer_id + 1) + + @torch.jit.ignore + def no_weight_decay(self): + return ['pos_embed', 'pos_embed_window'] + + @torch.jit.ignore + def group_matcher(self, coarse: bool=False) -> Dict: + return dict(stem='^pos_embed|pos_embed_window|patch_embed', blocks=[('^blocks\\.(\\d+)', None)]) + + @torch.jit.ignore + def set_grad_checkpointing(self, enable: bool=True) -> None: + self.grad_checkpointing = enable + + @torch.jit.ignore + def get_classifier(self): + return self.head.fc + + def reset_classifier(self, num_classes: int, global_pool: Optional[str]=None, reset_other: bool=False): + self.num_classes = num_classes + self.head.reset(num_classes, pool_type=global_pool, reset_other=reset_other) + + def forward_intermediates(self, x: torch.Tensor, indices: Optional[Union[int, List[int]]]=None, norm: bool=False, stop_early: bool=True, output_fmt: str='NCHW', intermediates_only: bool=False, coarse: bool=True) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]: + assert not norm, 'normalization of features not supported' + assert output_fmt in ('NCHW', 'NHWC'), 'Output format must be one of NCHW, NHWC.' + if coarse: + (take_indices, max_index) = feature_take_indices(len(self.stage_ends), indices) + take_indices = [self.stage_ends[i] for i in take_indices] + max_index = self.stage_ends[max_index] + else: + (take_indices, max_index) = feature_take_indices(len(self.blocks), indices) + x = self.patch_embed(x) + x = self._pos_embed(x) + intermediates = [] + if torch.jit.is_scripting() or not stop_early: + blocks = self.blocks + else: + blocks = self.blocks[:max_index + 1] + for (i, blk) in enumerate(blocks): + x = blk(x) + if i in take_indices: + x_out = x.permute(0, 3, 1, 2) if output_fmt == 'NCHW' else x + intermediates.append(x_out) + if intermediates_only: + return intermediates + return (x, intermediates) + + def prune_intermediate_layers(self, indices: Union[int, List[int]]=1, prune_norm: bool=False, prune_head: bool=True, coarse: bool=True): + if coarse: + (take_indices, max_index) = feature_take_indices(len(self.stage_ends), indices) + max_index = self.stage_ends[max_index] + else: + (take_indices, max_index) = feature_take_indices(len(self.blocks), indices) + self.blocks = self.blocks[:max_index + 1] + if prune_head: + self.head.reset(0, reset_other=prune_norm) + return take_indices + + def forward_features(self, x: torch.Tensor) -> torch.Tensor: + x = self.patch_embed(x) + x = self._pos_embed(x) + for (i, blk) in enumerate(self.blocks): + x = blk(x) + return x + + def forward_head(self, x, pre_logits: bool=False) -> torch.Tensor: + x = self.head(x, pre_logits=pre_logits) if pre_logits else self.head(x) + return x + + def forward(self, x: torch.Tensor) -> torch.Tensor: + x = self.forward_features(x) + x = self.forward_head(x) + return x + +def _cfg(url='', **kwargs): + return {'url': url, 'num_classes': 0, 'input_size': (3, 896, 896), 'pool_size': (28, 28), 'crop_pct': 1.0, 'interpolation': 'bicubic', 'min_input_size': (3, 224, 224), 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'patch_embed.proj', 'classifier': 'head.fc', **kwargs} +default_cfgs = generate_default_cfgs({'sam2_hiera_tiny.r224': _cfg(hf_hub_id='facebook/sam2-hiera-tiny', hf_hub_filename='sam2_hiera_tiny.pt', input_size=(3, 224, 224), pool_size=(7, 7)), 'sam2_hiera_tiny.r896': _cfg(hf_hub_id='facebook/sam2-hiera-tiny', hf_hub_filename='sam2_hiera_tiny.pt'), 'sam2_hiera_small': _cfg(hf_hub_id='facebook/sam2-hiera-small', hf_hub_filename='sam2_hiera_small.pt'), 'sam2_hiera_base_plus': _cfg(hf_hub_id='facebook/sam2-hiera-base-plus', hf_hub_filename='sam2_hiera_base_plus.pt'), 'sam2_hiera_large': _cfg(hf_hub_id='facebook/sam2-hiera-large', hf_hub_filename='sam2_hiera_large.pt', min_input_size=(3, 256, 256), input_size=(3, 1024, 1024), pool_size=(32, 32)), 'hieradet_small.untrained': _cfg(num_classes=1000, input_size=(3, 256, 256), pool_size=(8, 8))}) + +def checkpoint_filter_fn(state_dict, model=None, prefix=''): + state_dict = state_dict.get('model', state_dict) + output = {} + for (k, v) in state_dict.items(): + if k.startswith(prefix): + k = k.replace(prefix, '') + else: + continue + k = k.replace('mlp.layers.0', 'mlp.fc1') + k = k.replace('mlp.layers.1', 'mlp.fc2') + output[k] = v + return output + +def _create_hiera_det(variant: str, pretrained: bool=False, **kwargs) -> HieraDet: + out_indices = kwargs.pop('out_indices', 4) + checkpoint_prefix = '' + if 'sam2' in variant: + kwargs.setdefault('pretrained_strict', False) + checkpoint_prefix = 'image_encoder.trunk.' + return build_model_with_cfg(HieraDet, variant, pretrained, pretrained_filter_fn=partial(checkpoint_filter_fn, prefix=checkpoint_prefix), feature_cfg=dict(out_indices=out_indices, feature_cls='getter'), **kwargs) + +@register_model +def sam2_hiera_tiny(pretrained=False, **kwargs): + model_args = dict(stages=(1, 2, 7, 2), global_att_blocks=(5, 7, 9)) + return _create_hiera_det('sam2_hiera_tiny', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def sam2_hiera_small(pretrained=False, **kwargs): + model_args = dict(stages=(1, 2, 11, 2), global_att_blocks=(7, 10, 13)) + return _create_hiera_det('sam2_hiera_small', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def sam2_hiera_base_plus(pretrained=False, **kwargs): + model_args = dict(embed_dim=112, num_heads=2, global_pos_size=(14, 14)) + return _create_hiera_det('sam2_hiera_base_plus', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def sam2_hiera_large(pretrained=False, **kwargs): + model_args = dict(embed_dim=144, num_heads=2, stages=(2, 6, 36, 4), global_att_blocks=(23, 33, 43), window_spec=(8, 4, 16, 8)) + return _create_hiera_det('sam2_hiera_large', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def hieradet_small(pretrained=False, **kwargs): + model_args = dict(stages=(1, 2, 11, 2), global_att_blocks=(7, 10, 13), window_spec=(8, 4, 16, 8), init_values=1e-05) + return _create_hiera_det('hieradet_small', pretrained=pretrained, **dict(model_args, **kwargs)) + +# File: pytorch-image-models-main/timm/models/hrnet.py +"""""" +import logging +from typing import List +import torch +import torch.nn as nn +import torch.nn.functional as F +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from timm.layers import create_classifier +from ._builder import build_model_with_cfg, pretrained_cfg_for_features +from ._features import FeatureInfo +from ._registry import register_model, generate_default_cfgs +from .resnet import BasicBlock, Bottleneck +__all__ = ['HighResolutionNet', 'HighResolutionNetFeatures'] +_BN_MOMENTUM = 0.1 +_logger = logging.getLogger(__name__) +cfg_cls = dict(hrnet_w18_small=dict(stem_width=64, stage1=dict(num_modules=1, num_branches=1, block_type='BOTTLENECK', num_blocks=(1,), num_channels=(32,), fuse_method='SUM'), stage2=dict(num_modules=1, num_branches=2, block_type='BASIC', num_blocks=(2, 2), num_channels=(16, 32), fuse_method='SUM'), stage3=dict(num_modules=1, num_branches=3, block_type='BASIC', num_blocks=(2, 2, 2), num_channels=(16, 32, 64), fuse_method='SUM'), stage4=dict(num_modules=1, num_branches=4, block_type='BASIC', num_blocks=(2, 2, 2, 2), num_channels=(16, 32, 64, 128), fuse_method='SUM')), hrnet_w18_small_v2=dict(stem_width=64, stage1=dict(num_modules=1, num_branches=1, block_type='BOTTLENECK', num_blocks=(2,), num_channels=(64,), fuse_method='SUM'), stage2=dict(num_modules=1, num_branches=2, block_type='BASIC', num_blocks=(2, 2), num_channels=(18, 36), fuse_method='SUM'), stage3=dict(num_modules=3, num_branches=3, block_type='BASIC', num_blocks=(2, 2, 2), num_channels=(18, 36, 72), fuse_method='SUM'), stage4=dict(num_modules=2, num_branches=4, block_type='BASIC', num_blocks=(2, 2, 2, 2), num_channels=(18, 36, 72, 144), fuse_method='SUM')), hrnet_w18=dict(stem_width=64, stage1=dict(num_modules=1, num_branches=1, block_type='BOTTLENECK', num_blocks=(4,), num_channels=(64,), fuse_method='SUM'), stage2=dict(num_modules=1, num_branches=2, block_type='BASIC', num_blocks=(4, 4), num_channels=(18, 36), fuse_method='SUM'), stage3=dict(num_modules=4, num_branches=3, block_type='BASIC', num_blocks=(4, 4, 4), num_channels=(18, 36, 72), fuse_method='SUM'), stage4=dict(num_modules=3, num_branches=4, block_type='BASIC', num_blocks=(4, 4, 4, 4), num_channels=(18, 36, 72, 144), fuse_method='SUM')), hrnet_w30=dict(stem_width=64, stage1=dict(num_modules=1, num_branches=1, block_type='BOTTLENECK', num_blocks=(4,), num_channels=(64,), fuse_method='SUM'), stage2=dict(num_modules=1, num_branches=2, block_type='BASIC', num_blocks=(4, 4), num_channels=(30, 60), fuse_method='SUM'), stage3=dict(num_modules=4, num_branches=3, block_type='BASIC', num_blocks=(4, 4, 4), num_channels=(30, 60, 120), fuse_method='SUM'), stage4=dict(num_modules=3, num_branches=4, block_type='BASIC', num_blocks=(4, 4, 4, 4), num_channels=(30, 60, 120, 240), fuse_method='SUM')), hrnet_w32=dict(stem_width=64, stage1=dict(num_modules=1, num_branches=1, block_type='BOTTLENECK', num_blocks=(4,), num_channels=(64,), fuse_method='SUM'), stage2=dict(num_modules=1, num_branches=2, block_type='BASIC', num_blocks=(4, 4), num_channels=(32, 64), fuse_method='SUM'), stage3=dict(num_modules=4, num_branches=3, block_type='BASIC', num_blocks=(4, 4, 4), num_channels=(32, 64, 128), fuse_method='SUM'), stage4=dict(num_modules=3, num_branches=4, block_type='BASIC', num_blocks=(4, 4, 4, 4), num_channels=(32, 64, 128, 256), fuse_method='SUM')), hrnet_w40=dict(stem_width=64, stage1=dict(num_modules=1, num_branches=1, block_type='BOTTLENECK', num_blocks=(4,), num_channels=(64,), fuse_method='SUM'), stage2=dict(num_modules=1, num_branches=2, block_type='BASIC', num_blocks=(4, 4), num_channels=(40, 80), fuse_method='SUM'), stage3=dict(num_modules=4, num_branches=3, block_type='BASIC', num_blocks=(4, 4, 4), num_channels=(40, 80, 160), fuse_method='SUM'), stage4=dict(num_modules=3, num_branches=4, block_type='BASIC', num_blocks=(4, 4, 4, 4), num_channels=(40, 80, 160, 320), fuse_method='SUM')), hrnet_w44=dict(stem_width=64, stage1=dict(num_modules=1, num_branches=1, block_type='BOTTLENECK', num_blocks=(4,), num_channels=(64,), fuse_method='SUM'), stage2=dict(num_modules=1, num_branches=2, block_type='BASIC', num_blocks=(4, 4), num_channels=(44, 88), fuse_method='SUM'), stage3=dict(num_modules=4, num_branches=3, block_type='BASIC', num_blocks=(4, 4, 4), num_channels=(44, 88, 176), fuse_method='SUM'), stage4=dict(num_modules=3, num_branches=4, block_type='BASIC', num_blocks=(4, 4, 4, 4), num_channels=(44, 88, 176, 352), fuse_method='SUM')), hrnet_w48=dict(stem_width=64, stage1=dict(num_modules=1, num_branches=1, block_type='BOTTLENECK', num_blocks=(4,), num_channels=(64,), fuse_method='SUM'), stage2=dict(num_modules=1, num_branches=2, block_type='BASIC', num_blocks=(4, 4), num_channels=(48, 96), fuse_method='SUM'), stage3=dict(num_modules=4, num_branches=3, block_type='BASIC', num_blocks=(4, 4, 4), num_channels=(48, 96, 192), fuse_method='SUM'), stage4=dict(num_modules=3, num_branches=4, block_type='BASIC', num_blocks=(4, 4, 4, 4), num_channels=(48, 96, 192, 384), fuse_method='SUM')), hrnet_w64=dict(stem_width=64, stage1=dict(num_modules=1, num_branches=1, block_type='BOTTLENECK', num_blocks=(4,), num_channels=(64,), fuse_method='SUM'), stage2=dict(num_modules=1, num_branches=2, block_type='BASIC', num_blocks=(4, 4), num_channels=(64, 128), fuse_method='SUM'), stage3=dict(num_modules=4, num_branches=3, block_type='BASIC', num_blocks=(4, 4, 4), num_channels=(64, 128, 256), fuse_method='SUM'), stage4=dict(num_modules=3, num_branches=4, block_type='BASIC', num_blocks=(4, 4, 4, 4), num_channels=(64, 128, 256, 512), fuse_method='SUM'))) + +class HighResolutionModule(nn.Module): + + def __init__(self, num_branches, block_types, num_blocks, num_in_chs, num_channels, fuse_method, multi_scale_output=True): + super(HighResolutionModule, self).__init__() + self._check_branches(num_branches, block_types, num_blocks, num_in_chs, num_channels) + self.num_in_chs = num_in_chs + self.fuse_method = fuse_method + self.num_branches = num_branches + self.multi_scale_output = multi_scale_output + self.branches = self._make_branches(num_branches, block_types, num_blocks, num_channels) + self.fuse_layers = self._make_fuse_layers() + self.fuse_act = nn.ReLU(False) + + def _check_branches(self, num_branches, block_types, num_blocks, num_in_chs, num_channels): + error_msg = '' + if num_branches != len(num_blocks): + error_msg = 'num_branches({}) <> num_blocks({})'.format(num_branches, len(num_blocks)) + elif num_branches != len(num_channels): + error_msg = 'num_branches({}) <> num_channels({})'.format(num_branches, len(num_channels)) + elif num_branches != len(num_in_chs): + error_msg = 'num_branches({}) <> num_in_chs({})'.format(num_branches, len(num_in_chs)) + if error_msg: + _logger.error(error_msg) + raise ValueError(error_msg) + + def _make_one_branch(self, branch_index, block_type, num_blocks, num_channels, stride=1): + downsample = None + if stride != 1 or self.num_in_chs[branch_index] != num_channels[branch_index] * block_type.expansion: + downsample = nn.Sequential(nn.Conv2d(self.num_in_chs[branch_index], num_channels[branch_index] * block_type.expansion, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(num_channels[branch_index] * block_type.expansion, momentum=_BN_MOMENTUM)) + layers = [block_type(self.num_in_chs[branch_index], num_channels[branch_index], stride, downsample)] + self.num_in_chs[branch_index] = num_channels[branch_index] * block_type.expansion + for i in range(1, num_blocks[branch_index]): + layers.append(block_type(self.num_in_chs[branch_index], num_channels[branch_index])) + return nn.Sequential(*layers) + + def _make_branches(self, num_branches, block_type, num_blocks, num_channels): + branches = [] + for i in range(num_branches): + branches.append(self._make_one_branch(i, block_type, num_blocks, num_channels)) + return nn.ModuleList(branches) + + def _make_fuse_layers(self): + if self.num_branches == 1: + return nn.Identity() + num_branches = self.num_branches + num_in_chs = self.num_in_chs + fuse_layers = [] + for i in range(num_branches if self.multi_scale_output else 1): + fuse_layer = [] + for j in range(num_branches): + if j > i: + fuse_layer.append(nn.Sequential(nn.Conv2d(num_in_chs[j], num_in_chs[i], 1, 1, 0, bias=False), nn.BatchNorm2d(num_in_chs[i], momentum=_BN_MOMENTUM), nn.Upsample(scale_factor=2 ** (j - i), mode='nearest'))) + elif j == i: + fuse_layer.append(nn.Identity()) + else: + conv3x3s = [] + for k in range(i - j): + if k == i - j - 1: + num_out_chs_conv3x3 = num_in_chs[i] + conv3x3s.append(nn.Sequential(nn.Conv2d(num_in_chs[j], num_out_chs_conv3x3, 3, 2, 1, bias=False), nn.BatchNorm2d(num_out_chs_conv3x3, momentum=_BN_MOMENTUM))) + else: + num_out_chs_conv3x3 = num_in_chs[j] + conv3x3s.append(nn.Sequential(nn.Conv2d(num_in_chs[j], num_out_chs_conv3x3, 3, 2, 1, bias=False), nn.BatchNorm2d(num_out_chs_conv3x3, momentum=_BN_MOMENTUM), nn.ReLU(False))) + fuse_layer.append(nn.Sequential(*conv3x3s)) + fuse_layers.append(nn.ModuleList(fuse_layer)) + return nn.ModuleList(fuse_layers) + + def get_num_in_chs(self): + return self.num_in_chs + + def forward(self, x: List[torch.Tensor]) -> List[torch.Tensor]: + if self.num_branches == 1: + return [self.branches[0](x[0])] + for (i, branch) in enumerate(self.branches): + x[i] = branch(x[i]) + x_fuse = [] + for (i, fuse_outer) in enumerate(self.fuse_layers): + y = None + for (j, f) in enumerate(fuse_outer): + if y is None: + y = f(x[j]) + else: + y = y + f(x[j]) + x_fuse.append(self.fuse_act(y)) + return x_fuse + +class SequentialList(nn.Sequential): + + def __init__(self, *args): + super(SequentialList, self).__init__(*args) + + @torch.jit._overload_method + def forward(self, x): + pass + + @torch.jit._overload_method + def forward(self, x): + pass + + def forward(self, x) -> List[torch.Tensor]: + for module in self: + x = module(x) + return x + +@torch.jit.interface +class ModuleInterface(torch.nn.Module): + + def forward(self, input: torch.Tensor) -> torch.Tensor: + pass +block_types_dict = {'BASIC': BasicBlock, 'BOTTLENECK': Bottleneck} + +class HighResolutionNet(nn.Module): + + def __init__(self, cfg, in_chans=3, num_classes=1000, output_stride=32, global_pool='avg', drop_rate=0.0, head='classification', **kwargs): + super(HighResolutionNet, self).__init__() + self.num_classes = num_classes + assert output_stride == 32 + cfg.update(**kwargs) + stem_width = cfg['stem_width'] + self.conv1 = nn.Conv2d(in_chans, stem_width, kernel_size=3, stride=2, padding=1, bias=False) + self.bn1 = nn.BatchNorm2d(stem_width, momentum=_BN_MOMENTUM) + self.act1 = nn.ReLU(inplace=True) + self.conv2 = nn.Conv2d(stem_width, 64, kernel_size=3, stride=2, padding=1, bias=False) + self.bn2 = nn.BatchNorm2d(64, momentum=_BN_MOMENTUM) + self.act2 = nn.ReLU(inplace=True) + self.stage1_cfg = cfg['stage1'] + num_channels = self.stage1_cfg['num_channels'][0] + block_type = block_types_dict[self.stage1_cfg['block_type']] + num_blocks = self.stage1_cfg['num_blocks'][0] + self.layer1 = self._make_layer(block_type, 64, num_channels, num_blocks) + stage1_out_channel = block_type.expansion * num_channels + self.stage2_cfg = cfg['stage2'] + num_channels = self.stage2_cfg['num_channels'] + block_type = block_types_dict[self.stage2_cfg['block_type']] + num_channels = [num_channels[i] * block_type.expansion for i in range(len(num_channels))] + self.transition1 = self._make_transition_layer([stage1_out_channel], num_channels) + (self.stage2, pre_stage_channels) = self._make_stage(self.stage2_cfg, num_channels) + self.stage3_cfg = cfg['stage3'] + num_channels = self.stage3_cfg['num_channels'] + block_type = block_types_dict[self.stage3_cfg['block_type']] + num_channels = [num_channels[i] * block_type.expansion for i in range(len(num_channels))] + self.transition2 = self._make_transition_layer(pre_stage_channels, num_channels) + (self.stage3, pre_stage_channels) = self._make_stage(self.stage3_cfg, num_channels) + self.stage4_cfg = cfg['stage4'] + num_channels = self.stage4_cfg['num_channels'] + block_type = block_types_dict[self.stage4_cfg['block_type']] + num_channels = [num_channels[i] * block_type.expansion for i in range(len(num_channels))] + self.transition3 = self._make_transition_layer(pre_stage_channels, num_channels) + (self.stage4, pre_stage_channels) = self._make_stage(self.stage4_cfg, num_channels, multi_scale_output=True) + self.head = head + self.head_channels = None + head_conv_bias = cfg.pop('head_conv_bias', True) + if head == 'classification': + self.num_features = self.head_hidden_size = 2048 + (self.incre_modules, self.downsamp_modules, self.final_layer) = self._make_head(pre_stage_channels, conv_bias=head_conv_bias) + (self.global_pool, self.head_drop, self.classifier) = create_classifier(self.num_features, self.num_classes, pool_type=global_pool, drop_rate=drop_rate) + else: + if head == 'incre': + self.num_features = self.head_hidden_size = 2048 + (self.incre_modules, _, _) = self._make_head(pre_stage_channels, incre_only=True) + else: + self.num_features = self.head_hidden_size = 256 + self.incre_modules = None + self.global_pool = nn.Identity() + self.head_drop = nn.Identity() + self.classifier = nn.Identity() + curr_stride = 2 + self.feature_info = [dict(num_chs=64, reduction=curr_stride, module='stem')] + for (i, c) in enumerate(self.head_channels if self.head_channels else num_channels): + curr_stride *= 2 + c = c * 4 if self.head_channels else c + self.feature_info += [dict(num_chs=c, reduction=curr_stride, module=f'stage{i + 1}')] + self.init_weights() + + def _make_head(self, pre_stage_channels, incre_only=False, conv_bias=True): + head_block_type = Bottleneck + self.head_channels = [32, 64, 128, 256] + incre_modules = [] + for (i, channels) in enumerate(pre_stage_channels): + incre_modules.append(self._make_layer(head_block_type, channels, self.head_channels[i], 1, stride=1)) + incre_modules = nn.ModuleList(incre_modules) + if incre_only: + return (incre_modules, None, None) + downsamp_modules = [] + for i in range(len(pre_stage_channels) - 1): + in_channels = self.head_channels[i] * head_block_type.expansion + out_channels = self.head_channels[i + 1] * head_block_type.expansion + downsamp_module = nn.Sequential(nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=3, stride=2, padding=1, bias=conv_bias), nn.BatchNorm2d(out_channels, momentum=_BN_MOMENTUM), nn.ReLU(inplace=True)) + downsamp_modules.append(downsamp_module) + downsamp_modules = nn.ModuleList(downsamp_modules) + final_layer = nn.Sequential(nn.Conv2d(in_channels=self.head_channels[3] * head_block_type.expansion, out_channels=self.num_features, kernel_size=1, stride=1, padding=0, bias=conv_bias), nn.BatchNorm2d(self.num_features, momentum=_BN_MOMENTUM), nn.ReLU(inplace=True)) + return (incre_modules, downsamp_modules, final_layer) + + def _make_transition_layer(self, num_channels_pre_layer, num_channels_cur_layer): + num_branches_cur = len(num_channels_cur_layer) + num_branches_pre = len(num_channels_pre_layer) + transition_layers = [] + for i in range(num_branches_cur): + if i < num_branches_pre: + if num_channels_cur_layer[i] != num_channels_pre_layer[i]: + transition_layers.append(nn.Sequential(nn.Conv2d(num_channels_pre_layer[i], num_channels_cur_layer[i], 3, 1, 1, bias=False), nn.BatchNorm2d(num_channels_cur_layer[i], momentum=_BN_MOMENTUM), nn.ReLU(inplace=True))) + else: + transition_layers.append(nn.Identity()) + else: + conv3x3s = [] + for j in range(i + 1 - num_branches_pre): + _in_chs = num_channels_pre_layer[-1] + _out_chs = num_channels_cur_layer[i] if j == i - num_branches_pre else _in_chs + conv3x3s.append(nn.Sequential(nn.Conv2d(_in_chs, _out_chs, 3, 2, 1, bias=False), nn.BatchNorm2d(_out_chs, momentum=_BN_MOMENTUM), nn.ReLU(inplace=True))) + transition_layers.append(nn.Sequential(*conv3x3s)) + return nn.ModuleList(transition_layers) + + def _make_layer(self, block_type, inplanes, planes, block_types, stride=1): + downsample = None + if stride != 1 or inplanes != planes * block_type.expansion: + downsample = nn.Sequential(nn.Conv2d(inplanes, planes * block_type.expansion, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(planes * block_type.expansion, momentum=_BN_MOMENTUM)) + layers = [block_type(inplanes, planes, stride, downsample)] + inplanes = planes * block_type.expansion + for i in range(1, block_types): + layers.append(block_type(inplanes, planes)) + return nn.Sequential(*layers) + + def _make_stage(self, layer_config, num_in_chs, multi_scale_output=True): + num_modules = layer_config['num_modules'] + num_branches = layer_config['num_branches'] + num_blocks = layer_config['num_blocks'] + num_channels = layer_config['num_channels'] + block_type = block_types_dict[layer_config['block_type']] + fuse_method = layer_config['fuse_method'] + modules = [] + for i in range(num_modules): + reset_multi_scale_output = multi_scale_output or i < num_modules - 1 + modules.append(HighResolutionModule(num_branches, block_type, num_blocks, num_in_chs, num_channels, fuse_method, reset_multi_scale_output)) + num_in_chs = modules[-1].get_num_in_chs() + return (SequentialList(*modules), num_in_chs) + + @torch.jit.ignore + def init_weights(self): + for m in self.modules(): + if isinstance(m, nn.Conv2d): + nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') + elif isinstance(m, nn.BatchNorm2d): + nn.init.constant_(m.weight, 1) + nn.init.constant_(m.bias, 0) + + @torch.jit.ignore + def group_matcher(self, coarse=False): + matcher = dict(stem='^conv[12]|bn[12]', block_types='^(?:layer|stage|transition)(\\d+)' if coarse else [('^layer(\\d+)\\.(\\d+)', None), ('^stage(\\d+)\\.(\\d+)', None), ('^transition(\\d+)', (99999,))]) + return matcher + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + assert not enable, 'gradient checkpointing not supported' + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.classifier + + def reset_classifier(self, num_classes: int, global_pool: str='avg'): + self.num_classes = num_classes + (self.global_pool, self.classifier) = create_classifier(self.num_features, self.num_classes, pool_type=global_pool) + + def stages(self, x) -> List[torch.Tensor]: + x = self.layer1(x) + xl = [t(x) for (i, t) in enumerate(self.transition1)] + yl = self.stage2(xl) + xl = [t(yl[-1]) if not isinstance(t, nn.Identity) else yl[i] for (i, t) in enumerate(self.transition2)] + yl = self.stage3(xl) + xl = [t(yl[-1]) if not isinstance(t, nn.Identity) else yl[i] for (i, t) in enumerate(self.transition3)] + yl = self.stage4(xl) + return yl + + def forward_features(self, x): + x = self.conv1(x) + x = self.bn1(x) + x = self.act1(x) + x = self.conv2(x) + x = self.bn2(x) + x = self.act2(x) + yl = self.stages(x) + if self.incre_modules is None or self.downsamp_modules is None: + return yl + y = None + for (i, incre) in enumerate(self.incre_modules): + if y is None: + y = incre(yl[i]) + else: + down: ModuleInterface = self.downsamp_modules[i - 1] + y = incre(yl[i]) + down.forward(y) + y = self.final_layer(y) + return y + + def forward_head(self, x, pre_logits: bool=False): + x = self.global_pool(x) + x = self.head_drop(x) + return x if pre_logits else self.classifier(x) + + def forward(self, x): + y = self.forward_features(x) + x = self.forward_head(y) + return x + +class HighResolutionNetFeatures(HighResolutionNet): + + def __init__(self, cfg, in_chans=3, num_classes=1000, output_stride=32, global_pool='avg', drop_rate=0.0, feature_location='incre', out_indices=(0, 1, 2, 3, 4), **kwargs): + assert feature_location in ('incre', '') + super(HighResolutionNetFeatures, self).__init__(cfg, in_chans=in_chans, num_classes=num_classes, output_stride=output_stride, global_pool=global_pool, drop_rate=drop_rate, head=feature_location, **kwargs) + self.feature_info = FeatureInfo(self.feature_info, out_indices) + self._out_idx = {f['index'] for f in self.feature_info.get_dicts()} + + def forward_features(self, x): + assert False, 'Not supported' + + def forward(self, x) -> List[torch.Tensor]: + out = [] + x = self.conv1(x) + x = self.bn1(x) + x = self.act1(x) + if 0 in self._out_idx: + out.append(x) + x = self.conv2(x) + x = self.bn2(x) + x = self.act2(x) + x = self.stages(x) + if self.incre_modules is not None: + x = [incre(f) for (f, incre) in zip(x, self.incre_modules)] + for (i, f) in enumerate(x): + if i + 1 in self._out_idx: + out.append(f) + return out + +def _create_hrnet(variant, pretrained=False, cfg_variant=None, **model_kwargs): + model_cls = HighResolutionNet + features_only = False + kwargs_filter = None + if model_kwargs.pop('features_only', False): + model_cls = HighResolutionNetFeatures + kwargs_filter = ('num_classes', 'global_pool') + features_only = True + cfg_variant = cfg_variant or variant + pretrained_strict = model_kwargs.pop('pretrained_strict', not features_only and model_kwargs.get('head', 'classification') == 'classification') + model = build_model_with_cfg(model_cls, variant, pretrained, model_cfg=cfg_cls[cfg_variant], pretrained_strict=pretrained_strict, kwargs_filter=kwargs_filter, **model_kwargs) + if features_only: + model.pretrained_cfg = pretrained_cfg_for_features(model.default_cfg) + model.default_cfg = model.pretrained_cfg + return model + +def _cfg(url='', **kwargs): + return {'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), 'crop_pct': 0.875, 'interpolation': 'bilinear', 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'conv1', 'classifier': 'classifier', **kwargs} +default_cfgs = generate_default_cfgs({'hrnet_w18_small.gluon_in1k': _cfg(hf_hub_id='timm/', interpolation='bicubic'), 'hrnet_w18_small.ms_in1k': _cfg(hf_hub_id='timm/'), 'hrnet_w18_small_v2.gluon_in1k': _cfg(hf_hub_id='timm/', interpolation='bicubic'), 'hrnet_w18_small_v2.ms_in1k': _cfg(hf_hub_id='timm/'), 'hrnet_w18.ms_aug_in1k': _cfg(hf_hub_id='timm/', crop_pct=0.95), 'hrnet_w18.ms_in1k': _cfg(hf_hub_id='timm/'), 'hrnet_w30.ms_in1k': _cfg(hf_hub_id='timm/'), 'hrnet_w32.ms_in1k': _cfg(hf_hub_id='timm/'), 'hrnet_w40.ms_in1k': _cfg(hf_hub_id='timm/'), 'hrnet_w44.ms_in1k': _cfg(hf_hub_id='timm/'), 'hrnet_w48.ms_in1k': _cfg(hf_hub_id='timm/'), 'hrnet_w64.ms_in1k': _cfg(hf_hub_id='timm/'), 'hrnet_w18_ssld.paddle_in1k': _cfg(hf_hub_id='timm/', crop_pct=0.95, test_crop_pct=1.0, test_input_size=(3, 288, 288)), 'hrnet_w48_ssld.paddle_in1k': _cfg(hf_hub_id='timm/', crop_pct=0.95, test_crop_pct=1.0, test_input_size=(3, 288, 288))}) + +@register_model +def hrnet_w18_small(pretrained=False, **kwargs) -> HighResolutionNet: + return _create_hrnet('hrnet_w18_small', pretrained, **kwargs) + +@register_model +def hrnet_w18_small_v2(pretrained=False, **kwargs) -> HighResolutionNet: + return _create_hrnet('hrnet_w18_small_v2', pretrained, **kwargs) + +@register_model +def hrnet_w18(pretrained=False, **kwargs) -> HighResolutionNet: + return _create_hrnet('hrnet_w18', pretrained, **kwargs) + +@register_model +def hrnet_w30(pretrained=False, **kwargs) -> HighResolutionNet: + return _create_hrnet('hrnet_w30', pretrained, **kwargs) + +@register_model +def hrnet_w32(pretrained=False, **kwargs) -> HighResolutionNet: + return _create_hrnet('hrnet_w32', pretrained, **kwargs) + +@register_model +def hrnet_w40(pretrained=False, **kwargs) -> HighResolutionNet: + return _create_hrnet('hrnet_w40', pretrained, **kwargs) + +@register_model +def hrnet_w44(pretrained=False, **kwargs) -> HighResolutionNet: + return _create_hrnet('hrnet_w44', pretrained, **kwargs) + +@register_model +def hrnet_w48(pretrained=False, **kwargs) -> HighResolutionNet: + return _create_hrnet('hrnet_w48', pretrained, **kwargs) + +@register_model +def hrnet_w64(pretrained=False, **kwargs) -> HighResolutionNet: + return _create_hrnet('hrnet_w64', pretrained, **kwargs) + +@register_model +def hrnet_w18_ssld(pretrained=False, **kwargs) -> HighResolutionNet: + kwargs.setdefault('head_conv_bias', False) + return _create_hrnet('hrnet_w18_ssld', cfg_variant='hrnet_w18', pretrained=pretrained, **kwargs) + +@register_model +def hrnet_w48_ssld(pretrained=False, **kwargs) -> HighResolutionNet: + kwargs.setdefault('head_conv_bias', False) + return _create_hrnet('hrnet_w48_ssld', cfg_variant='hrnet_w48', pretrained=pretrained, **kwargs) + +# File: pytorch-image-models-main/timm/models/inception_next.py +"""""" +from functools import partial +from typing import Optional +import torch +import torch.nn as nn +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from timm.layers import trunc_normal_, DropPath, to_2tuple, get_padding, SelectAdaptivePool2d +from ._builder import build_model_with_cfg +from ._manipulate import checkpoint_seq +from ._registry import register_model, generate_default_cfgs +__all__ = ['MetaNeXt'] + +class InceptionDWConv2d(nn.Module): + + def __init__(self, in_chs, square_kernel_size=3, band_kernel_size=11, branch_ratio=0.125, dilation=1): + super().__init__() + gc = int(in_chs * branch_ratio) + square_padding = get_padding(square_kernel_size, dilation=dilation) + band_padding = get_padding(band_kernel_size, dilation=dilation) + self.dwconv_hw = nn.Conv2d(gc, gc, square_kernel_size, padding=square_padding, dilation=dilation, groups=gc) + self.dwconv_w = nn.Conv2d(gc, gc, (1, band_kernel_size), padding=(0, band_padding), dilation=(1, dilation), groups=gc) + self.dwconv_h = nn.Conv2d(gc, gc, (band_kernel_size, 1), padding=(band_padding, 0), dilation=(dilation, 1), groups=gc) + self.split_indexes = (in_chs - 3 * gc, gc, gc, gc) + + def forward(self, x): + (x_id, x_hw, x_w, x_h) = torch.split(x, self.split_indexes, dim=1) + return torch.cat((x_id, self.dwconv_hw(x_hw), self.dwconv_w(x_w), self.dwconv_h(x_h)), dim=1) + +class ConvMlp(nn.Module): + + def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.ReLU, norm_layer=None, bias=True, drop=0.0): + super().__init__() + out_features = out_features or in_features + hidden_features = hidden_features or in_features + bias = to_2tuple(bias) + self.fc1 = nn.Conv2d(in_features, hidden_features, kernel_size=1, bias=bias[0]) + self.norm = norm_layer(hidden_features) if norm_layer else nn.Identity() + self.act = act_layer() + self.drop = nn.Dropout(drop) + self.fc2 = nn.Conv2d(hidden_features, out_features, kernel_size=1, bias=bias[1]) + + def forward(self, x): + x = self.fc1(x) + x = self.norm(x) + x = self.act(x) + x = self.drop(x) + x = self.fc2(x) + return x + +class MlpClassifierHead(nn.Module): + + def __init__(self, in_features, num_classes=1000, pool_type='avg', mlp_ratio=3, act_layer=nn.GELU, norm_layer=partial(nn.LayerNorm, eps=1e-06), drop=0.0, bias=True): + super().__init__() + self.use_conv = False + self.in_features = in_features + self.num_features = hidden_features = int(mlp_ratio * in_features) + assert pool_type, 'Cannot disable pooling' + self.global_pool = SelectAdaptivePool2d(pool_type=pool_type, flatten=True) + self.fc1 = nn.Linear(in_features * self.global_pool.feat_mult(), hidden_features, bias=bias) + self.act = act_layer() + self.norm = norm_layer(hidden_features) + self.fc2 = nn.Linear(hidden_features, num_classes, bias=bias) + self.drop = nn.Dropout(drop) + + def reset(self, num_classes: int, pool_type: Optional[str]=None): + if pool_type is not None: + assert pool_type, 'Cannot disable pooling' + self.global_pool = SelectAdaptivePool2d(pool_type=pool_type, flatten=True) + self.fc2 = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() + + def forward(self, x, pre_logits: bool=False): + x = self.global_pool(x) + x = self.fc1(x) + x = self.act(x) + x = self.norm(x) + x = self.drop(x) + return x if pre_logits else self.fc2(x) + +class MetaNeXtBlock(nn.Module): + + def __init__(self, dim, dilation=1, token_mixer=InceptionDWConv2d, norm_layer=nn.BatchNorm2d, mlp_layer=ConvMlp, mlp_ratio=4, act_layer=nn.GELU, ls_init_value=1e-06, drop_path=0.0): + super().__init__() + self.token_mixer = token_mixer(dim, dilation=dilation) + self.norm = norm_layer(dim) + self.mlp = mlp_layer(dim, int(mlp_ratio * dim), act_layer=act_layer) + self.gamma = nn.Parameter(ls_init_value * torch.ones(dim)) if ls_init_value else None + self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + + def forward(self, x): + shortcut = x + x = self.token_mixer(x) + x = self.norm(x) + x = self.mlp(x) + if self.gamma is not None: + x = x.mul(self.gamma.reshape(1, -1, 1, 1)) + x = self.drop_path(x) + shortcut + return x + +class MetaNeXtStage(nn.Module): + + def __init__(self, in_chs, out_chs, stride=2, depth=2, dilation=(1, 1), drop_path_rates=None, ls_init_value=1.0, token_mixer=InceptionDWConv2d, act_layer=nn.GELU, norm_layer=None, mlp_ratio=4): + super().__init__() + self.grad_checkpointing = False + if stride > 1 or dilation[0] != dilation[1]: + self.downsample = nn.Sequential(norm_layer(in_chs), nn.Conv2d(in_chs, out_chs, kernel_size=2, stride=stride, dilation=dilation[0])) + else: + self.downsample = nn.Identity() + drop_path_rates = drop_path_rates or [0.0] * depth + stage_blocks = [] + for i in range(depth): + stage_blocks.append(MetaNeXtBlock(dim=out_chs, dilation=dilation[1], drop_path=drop_path_rates[i], ls_init_value=ls_init_value, token_mixer=token_mixer, act_layer=act_layer, norm_layer=norm_layer, mlp_ratio=mlp_ratio)) + self.blocks = nn.Sequential(*stage_blocks) + + def forward(self, x): + x = self.downsample(x) + if self.grad_checkpointing and (not torch.jit.is_scripting()): + x = checkpoint_seq(self.blocks, x) + else: + x = self.blocks(x) + return x + +class MetaNeXt(nn.Module): + + def __init__(self, in_chans=3, num_classes=1000, global_pool='avg', output_stride=32, depths=(3, 3, 9, 3), dims=(96, 192, 384, 768), token_mixers=InceptionDWConv2d, norm_layer=nn.BatchNorm2d, act_layer=nn.GELU, mlp_ratios=(4, 4, 4, 3), drop_rate=0.0, drop_path_rate=0.0, ls_init_value=1e-06): + super().__init__() + num_stage = len(depths) + if not isinstance(token_mixers, (list, tuple)): + token_mixers = [token_mixers] * num_stage + if not isinstance(mlp_ratios, (list, tuple)): + mlp_ratios = [mlp_ratios] * num_stage + self.num_classes = num_classes + self.global_pool = global_pool + self.drop_rate = drop_rate + self.feature_info = [] + self.stem = nn.Sequential(nn.Conv2d(in_chans, dims[0], kernel_size=4, stride=4), norm_layer(dims[0])) + dp_rates = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(depths)).split(depths)] + prev_chs = dims[0] + curr_stride = 4 + dilation = 1 + self.stages = nn.Sequential() + for i in range(num_stage): + stride = 2 if curr_stride == 2 or i > 0 else 1 + if curr_stride >= output_stride and stride > 1: + dilation *= stride + stride = 1 + curr_stride *= stride + first_dilation = 1 if dilation in (1, 2) else 2 + out_chs = dims[i] + self.stages.append(MetaNeXtStage(prev_chs, out_chs, stride=stride if i > 0 else 1, dilation=(first_dilation, dilation), depth=depths[i], drop_path_rates=dp_rates[i], ls_init_value=ls_init_value, act_layer=act_layer, token_mixer=token_mixers[i], norm_layer=norm_layer, mlp_ratio=mlp_ratios[i])) + prev_chs = out_chs + self.feature_info += [dict(num_chs=prev_chs, reduction=curr_stride, module=f'stages.{i}')] + self.num_features = prev_chs + self.head = MlpClassifierHead(self.num_features, num_classes, pool_type=self.global_pool, drop=drop_rate) + self.head_hidden_size = self.head.num_features + self.apply(self._init_weights) + + def _init_weights(self, m): + if isinstance(m, (nn.Conv2d, nn.Linear)): + trunc_normal_(m.weight, std=0.02) + if m.bias is not None: + nn.init.constant_(m.bias, 0) + + @torch.jit.ignore + def group_matcher(self, coarse=False): + return dict(stem='^stem', blocks='^stages\\.(\\d+)' if coarse else [('^stages\\.(\\d+)\\.downsample', (0,)), ('^stages\\.(\\d+)\\.blocks\\.(\\d+)', None)]) + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.head.fc2 + + def reset_classifier(self, num_classes: int, global_pool: Optional[str]=None): + self.num_classes = num_classes + self.head.reset(num_classes, global_pool) + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + for s in self.stages: + s.grad_checkpointing = enable + + @torch.jit.ignore + def no_weight_decay(self): + return set() + + def forward_features(self, x): + x = self.stem(x) + x = self.stages(x) + return x + + def forward_head(self, x, pre_logits: bool=False): + return self.head(x, pre_logits=pre_logits) if pre_logits else self.head(x) + + def forward(self, x): + x = self.forward_features(x) + x = self.forward_head(x) + return x + +def _cfg(url='', **kwargs): + return {'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), 'crop_pct': 0.875, 'interpolation': 'bicubic', 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'stem.0', 'classifier': 'head.fc2', **kwargs} +default_cfgs = generate_default_cfgs({'inception_next_tiny.sail_in1k': _cfg(hf_hub_id='timm/'), 'inception_next_small.sail_in1k': _cfg(hf_hub_id='timm/'), 'inception_next_base.sail_in1k': _cfg(hf_hub_id='timm/', crop_pct=0.95), 'inception_next_base.sail_in1k_384': _cfg(hf_hub_id='timm/', input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0)}) + +def _create_inception_next(variant, pretrained=False, **kwargs): + model = build_model_with_cfg(MetaNeXt, variant, pretrained, feature_cfg=dict(out_indices=(0, 1, 2, 3), flatten_sequential=True), **kwargs) + return model + +@register_model +def inception_next_tiny(pretrained=False, **kwargs): + model_args = dict(depths=(3, 3, 9, 3), dims=(96, 192, 384, 768), token_mixers=InceptionDWConv2d) + return _create_inception_next('inception_next_tiny', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def inception_next_small(pretrained=False, **kwargs): + model_args = dict(depths=(3, 3, 27, 3), dims=(96, 192, 384, 768), token_mixers=InceptionDWConv2d) + return _create_inception_next('inception_next_small', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def inception_next_base(pretrained=False, **kwargs): + model_args = dict(depths=(3, 3, 27, 3), dims=(128, 256, 512, 1024), token_mixers=InceptionDWConv2d) + return _create_inception_next('inception_next_base', pretrained=pretrained, **dict(model_args, **kwargs)) + +# File: pytorch-image-models-main/timm/models/inception_resnet_v2.py +"""""" +from functools import partial +import torch +import torch.nn as nn +import torch.nn.functional as F +from timm.data import IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD +from timm.layers import create_classifier, ConvNormAct +from ._builder import build_model_with_cfg +from ._manipulate import flatten_modules +from ._registry import register_model, generate_default_cfgs, register_model_deprecations +__all__ = ['InceptionResnetV2'] + +class Mixed_5b(nn.Module): + + def __init__(self, conv_block=None): + super(Mixed_5b, self).__init__() + conv_block = conv_block or ConvNormAct + self.branch0 = conv_block(192, 96, kernel_size=1, stride=1) + self.branch1 = nn.Sequential(conv_block(192, 48, kernel_size=1, stride=1), conv_block(48, 64, kernel_size=5, stride=1, padding=2)) + self.branch2 = nn.Sequential(conv_block(192, 64, kernel_size=1, stride=1), conv_block(64, 96, kernel_size=3, stride=1, padding=1), conv_block(96, 96, kernel_size=3, stride=1, padding=1)) + self.branch3 = nn.Sequential(nn.AvgPool2d(3, stride=1, padding=1, count_include_pad=False), conv_block(192, 64, kernel_size=1, stride=1)) + + def forward(self, x): + x0 = self.branch0(x) + x1 = self.branch1(x) + x2 = self.branch2(x) + x3 = self.branch3(x) + out = torch.cat((x0, x1, x2, x3), 1) + return out + +class Block35(nn.Module): + + def __init__(self, scale=1.0, conv_block=None): + super(Block35, self).__init__() + self.scale = scale + conv_block = conv_block or ConvNormAct + self.branch0 = conv_block(320, 32, kernel_size=1, stride=1) + self.branch1 = nn.Sequential(conv_block(320, 32, kernel_size=1, stride=1), conv_block(32, 32, kernel_size=3, stride=1, padding=1)) + self.branch2 = nn.Sequential(conv_block(320, 32, kernel_size=1, stride=1), conv_block(32, 48, kernel_size=3, stride=1, padding=1), conv_block(48, 64, kernel_size=3, stride=1, padding=1)) + self.conv2d = nn.Conv2d(128, 320, kernel_size=1, stride=1) + self.act = nn.ReLU() + + def forward(self, x): + x0 = self.branch0(x) + x1 = self.branch1(x) + x2 = self.branch2(x) + out = torch.cat((x0, x1, x2), 1) + out = self.conv2d(out) + out = out * self.scale + x + out = self.act(out) + return out + +class Mixed_6a(nn.Module): + + def __init__(self, conv_block=None): + super(Mixed_6a, self).__init__() + conv_block = conv_block or ConvNormAct + self.branch0 = conv_block(320, 384, kernel_size=3, stride=2) + self.branch1 = nn.Sequential(conv_block(320, 256, kernel_size=1, stride=1), conv_block(256, 256, kernel_size=3, stride=1, padding=1), conv_block(256, 384, kernel_size=3, stride=2)) + self.branch2 = nn.MaxPool2d(3, stride=2) + + def forward(self, x): + x0 = self.branch0(x) + x1 = self.branch1(x) + x2 = self.branch2(x) + out = torch.cat((x0, x1, x2), 1) + return out + +class Block17(nn.Module): + + def __init__(self, scale=1.0, conv_block=None): + super(Block17, self).__init__() + self.scale = scale + conv_block = conv_block or ConvNormAct + self.branch0 = conv_block(1088, 192, kernel_size=1, stride=1) + self.branch1 = nn.Sequential(conv_block(1088, 128, kernel_size=1, stride=1), conv_block(128, 160, kernel_size=(1, 7), stride=1, padding=(0, 3)), conv_block(160, 192, kernel_size=(7, 1), stride=1, padding=(3, 0))) + self.conv2d = nn.Conv2d(384, 1088, kernel_size=1, stride=1) + self.act = nn.ReLU() + + def forward(self, x): + x0 = self.branch0(x) + x1 = self.branch1(x) + out = torch.cat((x0, x1), 1) + out = self.conv2d(out) + out = out * self.scale + x + out = self.act(out) + return out + +class Mixed_7a(nn.Module): + + def __init__(self, conv_block=None): + super(Mixed_7a, self).__init__() + conv_block = conv_block or ConvNormAct + self.branch0 = nn.Sequential(conv_block(1088, 256, kernel_size=1, stride=1), conv_block(256, 384, kernel_size=3, stride=2)) + self.branch1 = nn.Sequential(conv_block(1088, 256, kernel_size=1, stride=1), conv_block(256, 288, kernel_size=3, stride=2)) + self.branch2 = nn.Sequential(conv_block(1088, 256, kernel_size=1, stride=1), conv_block(256, 288, kernel_size=3, stride=1, padding=1), conv_block(288, 320, kernel_size=3, stride=2)) + self.branch3 = nn.MaxPool2d(3, stride=2) + + def forward(self, x): + x0 = self.branch0(x) + x1 = self.branch1(x) + x2 = self.branch2(x) + x3 = self.branch3(x) + out = torch.cat((x0, x1, x2, x3), 1) + return out + +class Block8(nn.Module): + + def __init__(self, scale=1.0, no_relu=False, conv_block=None): + super(Block8, self).__init__() + self.scale = scale + conv_block = conv_block or ConvNormAct + self.branch0 = conv_block(2080, 192, kernel_size=1, stride=1) + self.branch1 = nn.Sequential(conv_block(2080, 192, kernel_size=1, stride=1), conv_block(192, 224, kernel_size=(1, 3), stride=1, padding=(0, 1)), conv_block(224, 256, kernel_size=(3, 1), stride=1, padding=(1, 0))) + self.conv2d = nn.Conv2d(448, 2080, kernel_size=1, stride=1) + self.relu = None if no_relu else nn.ReLU() + + def forward(self, x): + x0 = self.branch0(x) + x1 = self.branch1(x) + out = torch.cat((x0, x1), 1) + out = self.conv2d(out) + out = out * self.scale + x + if self.relu is not None: + out = self.relu(out) + return out + +class InceptionResnetV2(nn.Module): + + def __init__(self, num_classes=1000, in_chans=3, drop_rate=0.0, output_stride=32, global_pool='avg', norm_layer='batchnorm2d', norm_eps=0.001, act_layer='relu'): + super(InceptionResnetV2, self).__init__() + self.num_classes = num_classes + self.num_features = self.head_hidden_size = 1536 + assert output_stride == 32 + conv_block = partial(ConvNormAct, padding=0, norm_layer=norm_layer, act_layer=act_layer, norm_kwargs=dict(eps=norm_eps), act_kwargs=dict(inplace=True)) + self.conv2d_1a = conv_block(in_chans, 32, kernel_size=3, stride=2) + self.conv2d_2a = conv_block(32, 32, kernel_size=3, stride=1) + self.conv2d_2b = conv_block(32, 64, kernel_size=3, stride=1, padding=1) + self.feature_info = [dict(num_chs=64, reduction=2, module='conv2d_2b')] + self.maxpool_3a = nn.MaxPool2d(3, stride=2) + self.conv2d_3b = conv_block(64, 80, kernel_size=1, stride=1) + self.conv2d_4a = conv_block(80, 192, kernel_size=3, stride=1) + self.feature_info += [dict(num_chs=192, reduction=4, module='conv2d_4a')] + self.maxpool_5a = nn.MaxPool2d(3, stride=2) + self.mixed_5b = Mixed_5b(conv_block=conv_block) + self.repeat = nn.Sequential(*[Block35(scale=0.17, conv_block=conv_block) for _ in range(10)]) + self.feature_info += [dict(num_chs=320, reduction=8, module='repeat')] + self.mixed_6a = Mixed_6a(conv_block=conv_block) + self.repeat_1 = nn.Sequential(*[Block17(scale=0.1, conv_block=conv_block) for _ in range(20)]) + self.feature_info += [dict(num_chs=1088, reduction=16, module='repeat_1')] + self.mixed_7a = Mixed_7a(conv_block=conv_block) + self.repeat_2 = nn.Sequential(*[Block8(scale=0.2, conv_block=conv_block) for _ in range(9)]) + self.block8 = Block8(no_relu=True, conv_block=conv_block) + self.conv2d_7b = conv_block(2080, self.num_features, kernel_size=1, stride=1) + self.feature_info += [dict(num_chs=self.num_features, reduction=32, module='conv2d_7b')] + (self.global_pool, self.head_drop, self.classif) = create_classifier(self.num_features, self.num_classes, pool_type=global_pool, drop_rate=drop_rate) + + @torch.jit.ignore + def group_matcher(self, coarse=False): + module_map = {k: i for (i, (k, _)) in enumerate(flatten_modules(self.named_children(), prefix=()))} + module_map.pop(('classif',)) + + def _matcher(name): + if any([name.startswith(n) for n in ('conv2d_1', 'conv2d_2')]): + return 0 + elif any([name.startswith(n) for n in ('conv2d_3', 'conv2d_4')]): + return 1 + elif any([name.startswith(n) for n in ('block8', 'conv2d_7')]): + return len(module_map) + 1 + else: + for k in module_map.keys(): + if k == tuple(name.split('.')[:len(k)]): + return module_map[k] + return float('inf') + return _matcher + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + assert not enable, 'checkpointing not supported' + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.classif + + def reset_classifier(self, num_classes: int, global_pool: str='avg'): + self.num_classes = num_classes + (self.global_pool, self.classif) = create_classifier(self.num_features, self.num_classes, pool_type=global_pool) + + def forward_features(self, x): + x = self.conv2d_1a(x) + x = self.conv2d_2a(x) + x = self.conv2d_2b(x) + x = self.maxpool_3a(x) + x = self.conv2d_3b(x) + x = self.conv2d_4a(x) + x = self.maxpool_5a(x) + x = self.mixed_5b(x) + x = self.repeat(x) + x = self.mixed_6a(x) + x = self.repeat_1(x) + x = self.mixed_7a(x) + x = self.repeat_2(x) + x = self.block8(x) + x = self.conv2d_7b(x) + return x + + def forward_head(self, x, pre_logits: bool=False): + x = self.global_pool(x) + x = self.head_drop(x) + return x if pre_logits else self.classif(x) + + def forward(self, x): + x = self.forward_features(x) + x = self.forward_head(x) + return x + +def _create_inception_resnet_v2(variant, pretrained=False, **kwargs): + return build_model_with_cfg(InceptionResnetV2, variant, pretrained, **kwargs) +default_cfgs = generate_default_cfgs({'inception_resnet_v2.tf_in1k': {'hf_hub_id': 'timm/', 'num_classes': 1000, 'input_size': (3, 299, 299), 'pool_size': (8, 8), 'crop_pct': 0.8975, 'interpolation': 'bicubic', 'mean': IMAGENET_INCEPTION_MEAN, 'std': IMAGENET_INCEPTION_STD, 'first_conv': 'conv2d_1a.conv', 'classifier': 'classif'}, 'inception_resnet_v2.tf_ens_adv_in1k': {'hf_hub_id': 'timm/', 'num_classes': 1000, 'input_size': (3, 299, 299), 'pool_size': (8, 8), 'crop_pct': 0.8975, 'interpolation': 'bicubic', 'mean': IMAGENET_INCEPTION_MEAN, 'std': IMAGENET_INCEPTION_STD, 'first_conv': 'conv2d_1a.conv', 'classifier': 'classif'}}) + +@register_model +def inception_resnet_v2(pretrained=False, **kwargs) -> InceptionResnetV2: + return _create_inception_resnet_v2('inception_resnet_v2', pretrained=pretrained, **kwargs) +register_model_deprecations(__name__, {'ens_adv_inception_resnet_v2': 'inception_resnet_v2.tf_ens_adv_in1k'}) + +# File: pytorch-image-models-main/timm/models/inception_v3.py +"""""" +from functools import partial +from typing import Optional +import torch +import torch.nn as nn +import torch.nn.functional as F +from timm.data import IMAGENET_DEFAULT_STD, IMAGENET_DEFAULT_MEAN, IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD +from timm.layers import trunc_normal_, create_classifier, Linear, ConvNormAct +from ._builder import build_model_with_cfg +from ._builder import resolve_pretrained_cfg +from ._manipulate import flatten_modules +from ._registry import register_model, generate_default_cfgs, register_model_deprecations +__all__ = ['InceptionV3'] + +class InceptionA(nn.Module): + + def __init__(self, in_channels, pool_features, conv_block=None): + super(InceptionA, self).__init__() + conv_block = conv_block or ConvNormAct + self.branch1x1 = conv_block(in_channels, 64, kernel_size=1) + self.branch5x5_1 = conv_block(in_channels, 48, kernel_size=1) + self.branch5x5_2 = conv_block(48, 64, kernel_size=5, padding=2) + self.branch3x3dbl_1 = conv_block(in_channels, 64, kernel_size=1) + self.branch3x3dbl_2 = conv_block(64, 96, kernel_size=3, padding=1) + self.branch3x3dbl_3 = conv_block(96, 96, kernel_size=3, padding=1) + self.branch_pool = conv_block(in_channels, pool_features, kernel_size=1) + + def _forward(self, x): + branch1x1 = self.branch1x1(x) + branch5x5 = self.branch5x5_1(x) + branch5x5 = self.branch5x5_2(branch5x5) + branch3x3dbl = self.branch3x3dbl_1(x) + branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl) + branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl) + branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1) + branch_pool = self.branch_pool(branch_pool) + outputs = [branch1x1, branch5x5, branch3x3dbl, branch_pool] + return outputs + + def forward(self, x): + outputs = self._forward(x) + return torch.cat(outputs, 1) + +class InceptionB(nn.Module): + + def __init__(self, in_channels, conv_block=None): + super(InceptionB, self).__init__() + conv_block = conv_block or ConvNormAct + self.branch3x3 = conv_block(in_channels, 384, kernel_size=3, stride=2) + self.branch3x3dbl_1 = conv_block(in_channels, 64, kernel_size=1) + self.branch3x3dbl_2 = conv_block(64, 96, kernel_size=3, padding=1) + self.branch3x3dbl_3 = conv_block(96, 96, kernel_size=3, stride=2) + + def _forward(self, x): + branch3x3 = self.branch3x3(x) + branch3x3dbl = self.branch3x3dbl_1(x) + branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl) + branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl) + branch_pool = F.max_pool2d(x, kernel_size=3, stride=2) + outputs = [branch3x3, branch3x3dbl, branch_pool] + return outputs + + def forward(self, x): + outputs = self._forward(x) + return torch.cat(outputs, 1) + +class InceptionC(nn.Module): + + def __init__(self, in_channels, channels_7x7, conv_block=None): + super(InceptionC, self).__init__() + conv_block = conv_block or ConvNormAct + self.branch1x1 = conv_block(in_channels, 192, kernel_size=1) + c7 = channels_7x7 + self.branch7x7_1 = conv_block(in_channels, c7, kernel_size=1) + self.branch7x7_2 = conv_block(c7, c7, kernel_size=(1, 7), padding=(0, 3)) + self.branch7x7_3 = conv_block(c7, 192, kernel_size=(7, 1), padding=(3, 0)) + self.branch7x7dbl_1 = conv_block(in_channels, c7, kernel_size=1) + self.branch7x7dbl_2 = conv_block(c7, c7, kernel_size=(7, 1), padding=(3, 0)) + self.branch7x7dbl_3 = conv_block(c7, c7, kernel_size=(1, 7), padding=(0, 3)) + self.branch7x7dbl_4 = conv_block(c7, c7, kernel_size=(7, 1), padding=(3, 0)) + self.branch7x7dbl_5 = conv_block(c7, 192, kernel_size=(1, 7), padding=(0, 3)) + self.branch_pool = conv_block(in_channels, 192, kernel_size=1) + + def _forward(self, x): + branch1x1 = self.branch1x1(x) + branch7x7 = self.branch7x7_1(x) + branch7x7 = self.branch7x7_2(branch7x7) + branch7x7 = self.branch7x7_3(branch7x7) + branch7x7dbl = self.branch7x7dbl_1(x) + branch7x7dbl = self.branch7x7dbl_2(branch7x7dbl) + branch7x7dbl = self.branch7x7dbl_3(branch7x7dbl) + branch7x7dbl = self.branch7x7dbl_4(branch7x7dbl) + branch7x7dbl = self.branch7x7dbl_5(branch7x7dbl) + branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1) + branch_pool = self.branch_pool(branch_pool) + outputs = [branch1x1, branch7x7, branch7x7dbl, branch_pool] + return outputs + + def forward(self, x): + outputs = self._forward(x) + return torch.cat(outputs, 1) + +class InceptionD(nn.Module): + + def __init__(self, in_channels, conv_block=None): + super(InceptionD, self).__init__() + conv_block = conv_block or ConvNormAct + self.branch3x3_1 = conv_block(in_channels, 192, kernel_size=1) + self.branch3x3_2 = conv_block(192, 320, kernel_size=3, stride=2) + self.branch7x7x3_1 = conv_block(in_channels, 192, kernel_size=1) + self.branch7x7x3_2 = conv_block(192, 192, kernel_size=(1, 7), padding=(0, 3)) + self.branch7x7x3_3 = conv_block(192, 192, kernel_size=(7, 1), padding=(3, 0)) + self.branch7x7x3_4 = conv_block(192, 192, kernel_size=3, stride=2) + + def _forward(self, x): + branch3x3 = self.branch3x3_1(x) + branch3x3 = self.branch3x3_2(branch3x3) + branch7x7x3 = self.branch7x7x3_1(x) + branch7x7x3 = self.branch7x7x3_2(branch7x7x3) + branch7x7x3 = self.branch7x7x3_3(branch7x7x3) + branch7x7x3 = self.branch7x7x3_4(branch7x7x3) + branch_pool = F.max_pool2d(x, kernel_size=3, stride=2) + outputs = [branch3x3, branch7x7x3, branch_pool] + return outputs + + def forward(self, x): + outputs = self._forward(x) + return torch.cat(outputs, 1) + +class InceptionE(nn.Module): + + def __init__(self, in_channels, conv_block=None): + super(InceptionE, self).__init__() + conv_block = conv_block or ConvNormAct + self.branch1x1 = conv_block(in_channels, 320, kernel_size=1) + self.branch3x3_1 = conv_block(in_channels, 384, kernel_size=1) + self.branch3x3_2a = conv_block(384, 384, kernel_size=(1, 3), padding=(0, 1)) + self.branch3x3_2b = conv_block(384, 384, kernel_size=(3, 1), padding=(1, 0)) + self.branch3x3dbl_1 = conv_block(in_channels, 448, kernel_size=1) + self.branch3x3dbl_2 = conv_block(448, 384, kernel_size=3, padding=1) + self.branch3x3dbl_3a = conv_block(384, 384, kernel_size=(1, 3), padding=(0, 1)) + self.branch3x3dbl_3b = conv_block(384, 384, kernel_size=(3, 1), padding=(1, 0)) + self.branch_pool = conv_block(in_channels, 192, kernel_size=1) + + def _forward(self, x): + branch1x1 = self.branch1x1(x) + branch3x3 = self.branch3x3_1(x) + branch3x3 = [self.branch3x3_2a(branch3x3), self.branch3x3_2b(branch3x3)] + branch3x3 = torch.cat(branch3x3, 1) + branch3x3dbl = self.branch3x3dbl_1(x) + branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl) + branch3x3dbl = [self.branch3x3dbl_3a(branch3x3dbl), self.branch3x3dbl_3b(branch3x3dbl)] + branch3x3dbl = torch.cat(branch3x3dbl, 1) + branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1) + branch_pool = self.branch_pool(branch_pool) + outputs = [branch1x1, branch3x3, branch3x3dbl, branch_pool] + return outputs + + def forward(self, x): + outputs = self._forward(x) + return torch.cat(outputs, 1) + +class InceptionAux(nn.Module): + + def __init__(self, in_channels, num_classes, conv_block=None): + super(InceptionAux, self).__init__() + conv_block = conv_block or ConvNormAct + self.conv0 = conv_block(in_channels, 128, kernel_size=1) + self.conv1 = conv_block(128, 768, kernel_size=5) + self.conv1.stddev = 0.01 + self.fc = Linear(768, num_classes) + self.fc.stddev = 0.001 + + def forward(self, x): + x = F.avg_pool2d(x, kernel_size=5, stride=3) + x = self.conv0(x) + x = self.conv1(x) + x = F.adaptive_avg_pool2d(x, (1, 1)) + x = torch.flatten(x, 1) + x = self.fc(x) + return x + +class InceptionV3(nn.Module): + aux_logits: torch.jit.Final[bool] + + def __init__(self, num_classes=1000, in_chans=3, drop_rate=0.0, global_pool='avg', aux_logits=False, norm_layer='batchnorm2d', norm_eps=0.001, act_layer='relu'): + super(InceptionV3, self).__init__() + self.num_classes = num_classes + self.aux_logits = aux_logits + conv_block = partial(ConvNormAct, padding=0, norm_layer=norm_layer, act_layer=act_layer, norm_kwargs=dict(eps=norm_eps), act_kwargs=dict(inplace=True)) + self.Conv2d_1a_3x3 = conv_block(in_chans, 32, kernel_size=3, stride=2) + self.Conv2d_2a_3x3 = conv_block(32, 32, kernel_size=3) + self.Conv2d_2b_3x3 = conv_block(32, 64, kernel_size=3, padding=1) + self.Pool1 = nn.MaxPool2d(kernel_size=3, stride=2) + self.Conv2d_3b_1x1 = conv_block(64, 80, kernel_size=1) + self.Conv2d_4a_3x3 = conv_block(80, 192, kernel_size=3) + self.Pool2 = nn.MaxPool2d(kernel_size=3, stride=2) + self.Mixed_5b = InceptionA(192, pool_features=32, conv_block=conv_block) + self.Mixed_5c = InceptionA(256, pool_features=64, conv_block=conv_block) + self.Mixed_5d = InceptionA(288, pool_features=64, conv_block=conv_block) + self.Mixed_6a = InceptionB(288, conv_block=conv_block) + self.Mixed_6b = InceptionC(768, channels_7x7=128, conv_block=conv_block) + self.Mixed_6c = InceptionC(768, channels_7x7=160, conv_block=conv_block) + self.Mixed_6d = InceptionC(768, channels_7x7=160, conv_block=conv_block) + self.Mixed_6e = InceptionC(768, channels_7x7=192, conv_block=conv_block) + if aux_logits: + self.AuxLogits = InceptionAux(768, num_classes, conv_block=conv_block) + else: + self.AuxLogits = None + self.Mixed_7a = InceptionD(768, conv_block=conv_block) + self.Mixed_7b = InceptionE(1280, conv_block=conv_block) + self.Mixed_7c = InceptionE(2048, conv_block=conv_block) + self.feature_info = [dict(num_chs=64, reduction=2, module='Conv2d_2b_3x3'), dict(num_chs=192, reduction=4, module='Conv2d_4a_3x3'), dict(num_chs=288, reduction=8, module='Mixed_5d'), dict(num_chs=768, reduction=16, module='Mixed_6e'), dict(num_chs=2048, reduction=32, module='Mixed_7c')] + self.num_features = self.head_hidden_size = 2048 + (self.global_pool, self.head_drop, self.fc) = create_classifier(self.num_features, self.num_classes, pool_type=global_pool, drop_rate=drop_rate) + for m in self.modules(): + if isinstance(m, nn.Conv2d) or isinstance(m, nn.Linear): + stddev = m.stddev if hasattr(m, 'stddev') else 0.1 + trunc_normal_(m.weight, std=stddev) + elif isinstance(m, nn.BatchNorm2d): + nn.init.constant_(m.weight, 1) + nn.init.constant_(m.bias, 0) + + @torch.jit.ignore + def group_matcher(self, coarse=False): + module_map = {k: i for (i, (k, _)) in enumerate(flatten_modules(self.named_children(), prefix=()))} + module_map.pop(('fc',)) + + def _matcher(name): + if any([name.startswith(n) for n in ('Conv2d_1', 'Conv2d_2')]): + return 0 + elif any([name.startswith(n) for n in ('Conv2d_3', 'Conv2d_4')]): + return 1 + else: + for k in module_map.keys(): + if k == tuple(name.split('.')[:len(k)]): + return module_map[k] + return float('inf') + return _matcher + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + assert not enable, 'gradient checkpointing not supported' + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.fc + + def reset_classifier(self, num_classes: int, global_pool: str='avg'): + self.num_classes = num_classes + (self.global_pool, self.fc) = create_classifier(self.num_features, self.num_classes, pool_type=global_pool) + + def forward_preaux(self, x): + x = self.Conv2d_1a_3x3(x) + x = self.Conv2d_2a_3x3(x) + x = self.Conv2d_2b_3x3(x) + x = self.Pool1(x) + x = self.Conv2d_3b_1x1(x) + x = self.Conv2d_4a_3x3(x) + x = self.Pool2(x) + x = self.Mixed_5b(x) + x = self.Mixed_5c(x) + x = self.Mixed_5d(x) + x = self.Mixed_6a(x) + x = self.Mixed_6b(x) + x = self.Mixed_6c(x) + x = self.Mixed_6d(x) + x = self.Mixed_6e(x) + return x + + def forward_postaux(self, x): + x = self.Mixed_7a(x) + x = self.Mixed_7b(x) + x = self.Mixed_7c(x) + return x + + def forward_features(self, x): + x = self.forward_preaux(x) + if self.aux_logits: + aux = self.AuxLogits(x) + x = self.forward_postaux(x) + return (x, aux) + x = self.forward_postaux(x) + return x + + def forward_head(self, x, pre_logits: bool=False): + x = self.global_pool(x) + x = self.head_drop(x) + if pre_logits: + return x + x = self.fc(x) + return x + + def forward(self, x): + if self.aux_logits: + (x, aux) = self.forward_features(x) + x = self.forward_head(x) + return (x, aux) + x = self.forward_features(x) + x = self.forward_head(x) + return x + +def _create_inception_v3(variant, pretrained=False, **kwargs): + pretrained_cfg = resolve_pretrained_cfg(variant, pretrained_cfg=kwargs.pop('pretrained_cfg', None)) + aux_logits = kwargs.get('aux_logits', False) + has_aux_logits = False + if pretrained_cfg: + has_aux_logits = pretrained_cfg.tag == 'tv_in1k' + if aux_logits: + assert not kwargs.pop('features_only', False) + load_strict = has_aux_logits + else: + load_strict = not has_aux_logits + return build_model_with_cfg(InceptionV3, variant, pretrained, pretrained_cfg=pretrained_cfg, pretrained_strict=load_strict, **kwargs) + +def _cfg(url='', **kwargs): + return {'url': url, 'num_classes': 1000, 'input_size': (3, 299, 299), 'pool_size': (8, 8), 'crop_pct': 0.875, 'interpolation': 'bicubic', 'mean': IMAGENET_INCEPTION_MEAN, 'std': IMAGENET_INCEPTION_STD, 'first_conv': 'Conv2d_1a_3x3.conv', 'classifier': 'fc', **kwargs} +default_cfgs = generate_default_cfgs({'inception_v3.tv_in1k': _cfg(hf_hub_id='timm/', url='https://download.pytorch.org/models/inception_v3_google-1a9a5a14.pth'), 'inception_v3.tf_in1k': _cfg(hf_hub_id='timm/'), 'inception_v3.tf_adv_in1k': _cfg(hf_hub_id='timm/'), 'inception_v3.gluon_in1k': _cfg(hf_hub_id='timm/', mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD)}) + +@register_model +def inception_v3(pretrained=False, **kwargs) -> InceptionV3: + model = _create_inception_v3('inception_v3', pretrained=pretrained, **kwargs) + return model +register_model_deprecations(__name__, {'tf_inception_v3': 'inception_v3.tf_in1k', 'adv_inception_v3': 'inception_v3.tf_adv_in1k', 'gluon_inception_v3': 'inception_v3.gluon_in1k'}) + +# File: pytorch-image-models-main/timm/models/inception_v4.py +"""""" +from functools import partial +import torch +import torch.nn as nn +from timm.data import IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD +from timm.layers import create_classifier, ConvNormAct +from ._builder import build_model_with_cfg +from ._registry import register_model, generate_default_cfgs +__all__ = ['InceptionV4'] + +class Mixed3a(nn.Module): + + def __init__(self, conv_block=ConvNormAct): + super(Mixed3a, self).__init__() + self.maxpool = nn.MaxPool2d(3, stride=2) + self.conv = conv_block(64, 96, kernel_size=3, stride=2) + + def forward(self, x): + x0 = self.maxpool(x) + x1 = self.conv(x) + out = torch.cat((x0, x1), 1) + return out + +class Mixed4a(nn.Module): + + def __init__(self, conv_block=ConvNormAct): + super(Mixed4a, self).__init__() + self.branch0 = nn.Sequential(conv_block(160, 64, kernel_size=1, stride=1), conv_block(64, 96, kernel_size=3, stride=1)) + self.branch1 = nn.Sequential(conv_block(160, 64, kernel_size=1, stride=1), conv_block(64, 64, kernel_size=(1, 7), stride=1, padding=(0, 3)), conv_block(64, 64, kernel_size=(7, 1), stride=1, padding=(3, 0)), conv_block(64, 96, kernel_size=(3, 3), stride=1)) + + def forward(self, x): + x0 = self.branch0(x) + x1 = self.branch1(x) + out = torch.cat((x0, x1), 1) + return out + +class Mixed5a(nn.Module): + + def __init__(self, conv_block=ConvNormAct): + super(Mixed5a, self).__init__() + self.conv = conv_block(192, 192, kernel_size=3, stride=2) + self.maxpool = nn.MaxPool2d(3, stride=2) + + def forward(self, x): + x0 = self.conv(x) + x1 = self.maxpool(x) + out = torch.cat((x0, x1), 1) + return out + +class InceptionA(nn.Module): + + def __init__(self, conv_block=ConvNormAct): + super(InceptionA, self).__init__() + self.branch0 = conv_block(384, 96, kernel_size=1, stride=1) + self.branch1 = nn.Sequential(conv_block(384, 64, kernel_size=1, stride=1), conv_block(64, 96, kernel_size=3, stride=1, padding=1)) + self.branch2 = nn.Sequential(conv_block(384, 64, kernel_size=1, stride=1), conv_block(64, 96, kernel_size=3, stride=1, padding=1), conv_block(96, 96, kernel_size=3, stride=1, padding=1)) + self.branch3 = nn.Sequential(nn.AvgPool2d(3, stride=1, padding=1, count_include_pad=False), conv_block(384, 96, kernel_size=1, stride=1)) + + def forward(self, x): + x0 = self.branch0(x) + x1 = self.branch1(x) + x2 = self.branch2(x) + x3 = self.branch3(x) + out = torch.cat((x0, x1, x2, x3), 1) + return out + +class ReductionA(nn.Module): + + def __init__(self, conv_block=ConvNormAct): + super(ReductionA, self).__init__() + self.branch0 = conv_block(384, 384, kernel_size=3, stride=2) + self.branch1 = nn.Sequential(conv_block(384, 192, kernel_size=1, stride=1), conv_block(192, 224, kernel_size=3, stride=1, padding=1), conv_block(224, 256, kernel_size=3, stride=2)) + self.branch2 = nn.MaxPool2d(3, stride=2) + + def forward(self, x): + x0 = self.branch0(x) + x1 = self.branch1(x) + x2 = self.branch2(x) + out = torch.cat((x0, x1, x2), 1) + return out + +class InceptionB(nn.Module): + + def __init__(self, conv_block=ConvNormAct): + super(InceptionB, self).__init__() + self.branch0 = conv_block(1024, 384, kernel_size=1, stride=1) + self.branch1 = nn.Sequential(conv_block(1024, 192, kernel_size=1, stride=1), conv_block(192, 224, kernel_size=(1, 7), stride=1, padding=(0, 3)), conv_block(224, 256, kernel_size=(7, 1), stride=1, padding=(3, 0))) + self.branch2 = nn.Sequential(conv_block(1024, 192, kernel_size=1, stride=1), conv_block(192, 192, kernel_size=(7, 1), stride=1, padding=(3, 0)), conv_block(192, 224, kernel_size=(1, 7), stride=1, padding=(0, 3)), conv_block(224, 224, kernel_size=(7, 1), stride=1, padding=(3, 0)), conv_block(224, 256, kernel_size=(1, 7), stride=1, padding=(0, 3))) + self.branch3 = nn.Sequential(nn.AvgPool2d(3, stride=1, padding=1, count_include_pad=False), conv_block(1024, 128, kernel_size=1, stride=1)) + + def forward(self, x): + x0 = self.branch0(x) + x1 = self.branch1(x) + x2 = self.branch2(x) + x3 = self.branch3(x) + out = torch.cat((x0, x1, x2, x3), 1) + return out + +class ReductionB(nn.Module): + + def __init__(self, conv_block=ConvNormAct): + super(ReductionB, self).__init__() + self.branch0 = nn.Sequential(conv_block(1024, 192, kernel_size=1, stride=1), conv_block(192, 192, kernel_size=3, stride=2)) + self.branch1 = nn.Sequential(conv_block(1024, 256, kernel_size=1, stride=1), conv_block(256, 256, kernel_size=(1, 7), stride=1, padding=(0, 3)), conv_block(256, 320, kernel_size=(7, 1), stride=1, padding=(3, 0)), conv_block(320, 320, kernel_size=3, stride=2)) + self.branch2 = nn.MaxPool2d(3, stride=2) + + def forward(self, x): + x0 = self.branch0(x) + x1 = self.branch1(x) + x2 = self.branch2(x) + out = torch.cat((x0, x1, x2), 1) + return out + +class InceptionC(nn.Module): + + def __init__(self, conv_block=ConvNormAct): + super(InceptionC, self).__init__() + self.branch0 = conv_block(1536, 256, kernel_size=1, stride=1) + self.branch1_0 = conv_block(1536, 384, kernel_size=1, stride=1) + self.branch1_1a = conv_block(384, 256, kernel_size=(1, 3), stride=1, padding=(0, 1)) + self.branch1_1b = conv_block(384, 256, kernel_size=(3, 1), stride=1, padding=(1, 0)) + self.branch2_0 = conv_block(1536, 384, kernel_size=1, stride=1) + self.branch2_1 = conv_block(384, 448, kernel_size=(3, 1), stride=1, padding=(1, 0)) + self.branch2_2 = conv_block(448, 512, kernel_size=(1, 3), stride=1, padding=(0, 1)) + self.branch2_3a = conv_block(512, 256, kernel_size=(1, 3), stride=1, padding=(0, 1)) + self.branch2_3b = conv_block(512, 256, kernel_size=(3, 1), stride=1, padding=(1, 0)) + self.branch3 = nn.Sequential(nn.AvgPool2d(3, stride=1, padding=1, count_include_pad=False), conv_block(1536, 256, kernel_size=1, stride=1)) + + def forward(self, x): + x0 = self.branch0(x) + x1_0 = self.branch1_0(x) + x1_1a = self.branch1_1a(x1_0) + x1_1b = self.branch1_1b(x1_0) + x1 = torch.cat((x1_1a, x1_1b), 1) + x2_0 = self.branch2_0(x) + x2_1 = self.branch2_1(x2_0) + x2_2 = self.branch2_2(x2_1) + x2_3a = self.branch2_3a(x2_2) + x2_3b = self.branch2_3b(x2_2) + x2 = torch.cat((x2_3a, x2_3b), 1) + x3 = self.branch3(x) + out = torch.cat((x0, x1, x2, x3), 1) + return out + +class InceptionV4(nn.Module): + + def __init__(self, num_classes=1000, in_chans=3, output_stride=32, drop_rate=0.0, global_pool='avg', norm_layer='batchnorm2d', norm_eps=0.001, act_layer='relu'): + super(InceptionV4, self).__init__() + assert output_stride == 32 + self.num_classes = num_classes + self.num_features = self.head_hidden_size = 1536 + conv_block = partial(ConvNormAct, padding=0, norm_layer=norm_layer, act_layer=act_layer, norm_kwargs=dict(eps=norm_eps), act_kwargs=dict(inplace=True)) + features = [conv_block(in_chans, 32, kernel_size=3, stride=2), conv_block(32, 32, kernel_size=3, stride=1), conv_block(32, 64, kernel_size=3, stride=1, padding=1), Mixed3a(conv_block), Mixed4a(conv_block), Mixed5a(conv_block)] + features += [InceptionA(conv_block) for _ in range(4)] + features += [ReductionA(conv_block)] + features += [InceptionB(conv_block) for _ in range(7)] + features += [ReductionB(conv_block)] + features += [InceptionC(conv_block) for _ in range(3)] + self.features = nn.Sequential(*features) + self.feature_info = [dict(num_chs=64, reduction=2, module='features.2'), dict(num_chs=160, reduction=4, module='features.3'), dict(num_chs=384, reduction=8, module='features.9'), dict(num_chs=1024, reduction=16, module='features.17'), dict(num_chs=1536, reduction=32, module='features.21')] + (self.global_pool, self.head_drop, self.last_linear) = create_classifier(self.num_features, self.num_classes, pool_type=global_pool, drop_rate=drop_rate) + + @torch.jit.ignore + def group_matcher(self, coarse=False): + return dict(stem='^features\\.[012]\\.', blocks='^features\\.(\\d+)') + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + assert not enable, 'gradient checkpointing not supported' + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.last_linear + + def reset_classifier(self, num_classes: int, global_pool: str='avg'): + self.num_classes = num_classes + (self.global_pool, self.last_linear) = create_classifier(self.num_features, self.num_classes, pool_type=global_pool) + + def forward_features(self, x): + return self.features(x) + + def forward_head(self, x, pre_logits: bool=False): + x = self.global_pool(x) + x = self.head_drop(x) + return x if pre_logits else self.last_linear(x) + + def forward(self, x): + x = self.forward_features(x) + x = self.forward_head(x) + return x + +def _create_inception_v4(variant, pretrained=False, **kwargs) -> InceptionV4: + return build_model_with_cfg(InceptionV4, variant, pretrained, feature_cfg=dict(flatten_sequential=True), **kwargs) +default_cfgs = generate_default_cfgs({'inception_v4.tf_in1k': {'hf_hub_id': 'timm/', 'num_classes': 1000, 'input_size': (3, 299, 299), 'pool_size': (8, 8), 'crop_pct': 0.875, 'interpolation': 'bicubic', 'mean': IMAGENET_INCEPTION_MEAN, 'std': IMAGENET_INCEPTION_STD, 'first_conv': 'features.0.conv', 'classifier': 'last_linear'}}) + +@register_model +def inception_v4(pretrained=False, **kwargs): + return _create_inception_v4('inception_v4', pretrained, **kwargs) + +# File: pytorch-image-models-main/timm/models/layers/__init__.py +from timm.layers.activations import * +from timm.layers.adaptive_avgmax_pool import adaptive_avgmax_pool2d, select_adaptive_pool2d, AdaptiveAvgMaxPool2d, SelectAdaptivePool2d +from timm.layers.attention_pool2d import AttentionPool2d, RotAttentionPool2d, RotaryEmbedding +from timm.layers.blur_pool import BlurPool2d +from timm.layers.classifier import ClassifierHead, create_classifier +from timm.layers.cond_conv2d import CondConv2d, get_condconv_initializer +from timm.layers.config import is_exportable, is_scriptable, is_no_jit, set_exportable, set_scriptable, set_no_jit, set_layer_config +from timm.layers.conv2d_same import Conv2dSame, conv2d_same +from timm.layers.conv_bn_act import ConvNormAct, ConvNormActAa, ConvBnAct +from timm.layers.create_act import create_act_layer, get_act_layer, get_act_fn +from timm.layers.create_attn import get_attn, create_attn +from timm.layers.create_conv2d import create_conv2d +from timm.layers.create_norm import get_norm_layer, create_norm_layer +from timm.layers.create_norm_act import get_norm_act_layer, create_norm_act_layer, get_norm_act_layer +from timm.layers.drop import DropBlock2d, DropPath, drop_block_2d, drop_path +from timm.layers.eca import EcaModule, CecaModule, EfficientChannelAttn, CircularEfficientChannelAttn +from timm.layers.evo_norm import EvoNorm2dB0, EvoNorm2dB1, EvoNorm2dB2, EvoNorm2dS0, EvoNorm2dS0a, EvoNorm2dS1, EvoNorm2dS1a, EvoNorm2dS2, EvoNorm2dS2a +from timm.layers.fast_norm import is_fast_norm, set_fast_norm, fast_group_norm, fast_layer_norm +from timm.layers.filter_response_norm import FilterResponseNormTlu2d, FilterResponseNormAct2d +from timm.layers.gather_excite import GatherExcite +from timm.layers.global_context import GlobalContext +from timm.layers.helpers import to_ntuple, to_2tuple, to_3tuple, to_4tuple, make_divisible, extend_tuple +from timm.layers.inplace_abn import InplaceAbn +from timm.layers.linear import Linear +from timm.layers.mixed_conv2d import MixedConv2d +from timm.layers.mlp import Mlp, GluMlp, GatedMlp, ConvMlp +from timm.layers.non_local_attn import NonLocalAttn, BatNonLocalAttn +from timm.layers.norm import GroupNorm, GroupNorm1, LayerNorm, LayerNorm2d +from timm.layers.norm_act import BatchNormAct2d, GroupNormAct, convert_sync_batchnorm +from timm.layers.padding import get_padding, get_same_padding, pad_same +from timm.layers.patch_embed import PatchEmbed +from timm.layers.pool2d_same import AvgPool2dSame, create_pool2d +from timm.layers.squeeze_excite import SEModule, SqueezeExcite, EffectiveSEModule, EffectiveSqueezeExcite +from timm.layers.selective_kernel import SelectiveKernel +from timm.layers.separable_conv import SeparableConv2d, SeparableConvNormAct +from timm.layers.split_attn import SplitAttn +from timm.layers.split_batchnorm import SplitBatchNorm2d, convert_splitbn_model +from timm.layers.std_conv import StdConv2d, StdConv2dSame, ScaledStdConv2d, ScaledStdConv2dSame +from timm.layers.test_time_pool import TestTimePoolHead, apply_test_time_pool +from timm.layers.trace_utils import _assert, _float_to_int +from timm.layers.weight_init import trunc_normal_, trunc_normal_tf_, variance_scaling_, lecun_normal_ +import warnings +warnings.warn(f'Importing from {__name__} is deprecated, please import via timm.layers', DeprecationWarning) + +# File: pytorch-image-models-main/timm/models/levit.py +"""""" +from collections import OrderedDict +from functools import partial +from typing import Dict, List, Optional, Tuple, Union +import torch +import torch.nn as nn +from timm.data import IMAGENET_DEFAULT_STD, IMAGENET_DEFAULT_MEAN +from timm.layers import to_ntuple, to_2tuple, get_act_layer, DropPath, trunc_normal_, ndgrid +from ._builder import build_model_with_cfg +from ._features import feature_take_indices +from ._manipulate import checkpoint_seq +from ._registry import generate_default_cfgs, register_model +__all__ = ['Levit'] + +class ConvNorm(nn.Module): + + def __init__(self, in_chs, out_chs, kernel_size=1, stride=1, padding=0, dilation=1, groups=1, bn_weight_init=1): + super().__init__() + self.linear = nn.Conv2d(in_chs, out_chs, kernel_size, stride, padding, dilation, groups, bias=False) + self.bn = nn.BatchNorm2d(out_chs) + nn.init.constant_(self.bn.weight, bn_weight_init) + + @torch.no_grad() + def fuse(self): + (c, bn) = (self.linear, self.bn) + w = bn.weight / (bn.running_var + bn.eps) ** 0.5 + w = c.weight * w[:, None, None, None] + b = bn.bias - bn.running_mean * bn.weight / (bn.running_var + bn.eps) ** 0.5 + m = nn.Conv2d(w.size(1), w.size(0), w.shape[2:], stride=self.linear.stride, padding=self.linear.padding, dilation=self.linear.dilation, groups=self.linear.groups) + m.weight.data.copy_(w) + m.bias.data.copy_(b) + return m + + def forward(self, x): + return self.bn(self.linear(x)) + +class LinearNorm(nn.Module): + + def __init__(self, in_features, out_features, bn_weight_init=1): + super().__init__() + self.linear = nn.Linear(in_features, out_features, bias=False) + self.bn = nn.BatchNorm1d(out_features) + nn.init.constant_(self.bn.weight, bn_weight_init) + + @torch.no_grad() + def fuse(self): + (l, bn) = (self.linear, self.bn) + w = bn.weight / (bn.running_var + bn.eps) ** 0.5 + w = l.weight * w[:, None] + b = bn.bias - bn.running_mean * bn.weight / (bn.running_var + bn.eps) ** 0.5 + m = nn.Linear(w.size(1), w.size(0)) + m.weight.data.copy_(w) + m.bias.data.copy_(b) + return m + + def forward(self, x): + x = self.linear(x) + return self.bn(x.flatten(0, 1)).reshape_as(x) + +class NormLinear(nn.Module): + + def __init__(self, in_features, out_features, bias=True, std=0.02, drop=0.0): + super().__init__() + self.bn = nn.BatchNorm1d(in_features) + self.drop = nn.Dropout(drop) + self.linear = nn.Linear(in_features, out_features, bias=bias) + trunc_normal_(self.linear.weight, std=std) + if self.linear.bias is not None: + nn.init.constant_(self.linear.bias, 0) + + @torch.no_grad() + def fuse(self): + (bn, l) = (self.bn, self.linear) + w = bn.weight / (bn.running_var + bn.eps) ** 0.5 + b = bn.bias - self.bn.running_mean * self.bn.weight / (bn.running_var + bn.eps) ** 0.5 + w = l.weight * w[None, :] + if l.bias is None: + b = b @ self.linear.weight.T + else: + b = (l.weight @ b[:, None]).view(-1) + self.linear.bias + m = nn.Linear(w.size(1), w.size(0)) + m.weight.data.copy_(w) + m.bias.data.copy_(b) + return m + + def forward(self, x): + return self.linear(self.drop(self.bn(x))) + +class Stem8(nn.Sequential): + + def __init__(self, in_chs, out_chs, act_layer): + super().__init__() + self.stride = 8 + self.add_module('conv1', ConvNorm(in_chs, out_chs // 4, 3, stride=2, padding=1)) + self.add_module('act1', act_layer()) + self.add_module('conv2', ConvNorm(out_chs // 4, out_chs // 2, 3, stride=2, padding=1)) + self.add_module('act2', act_layer()) + self.add_module('conv3', ConvNorm(out_chs // 2, out_chs, 3, stride=2, padding=1)) + +class Stem16(nn.Sequential): + + def __init__(self, in_chs, out_chs, act_layer): + super().__init__() + self.stride = 16 + self.add_module('conv1', ConvNorm(in_chs, out_chs // 8, 3, stride=2, padding=1)) + self.add_module('act1', act_layer()) + self.add_module('conv2', ConvNorm(out_chs // 8, out_chs // 4, 3, stride=2, padding=1)) + self.add_module('act2', act_layer()) + self.add_module('conv3', ConvNorm(out_chs // 4, out_chs // 2, 3, stride=2, padding=1)) + self.add_module('act3', act_layer()) + self.add_module('conv4', ConvNorm(out_chs // 2, out_chs, 3, stride=2, padding=1)) + +class Downsample(nn.Module): + + def __init__(self, stride, resolution, use_pool=False): + super().__init__() + self.stride = stride + self.resolution = to_2tuple(resolution) + self.pool = nn.AvgPool2d(3, stride=stride, padding=1, count_include_pad=False) if use_pool else None + + def forward(self, x): + (B, N, C) = x.shape + x = x.view(B, self.resolution[0], self.resolution[1], C) + if self.pool is not None: + x = self.pool(x.permute(0, 3, 1, 2)).permute(0, 2, 3, 1) + else: + x = x[:, ::self.stride, ::self.stride] + return x.reshape(B, -1, C) + +class Attention(nn.Module): + attention_bias_cache: Dict[str, torch.Tensor] + + def __init__(self, dim, key_dim, num_heads=8, attn_ratio=4.0, resolution=14, use_conv=False, act_layer=nn.SiLU): + super().__init__() + ln_layer = ConvNorm if use_conv else LinearNorm + resolution = to_2tuple(resolution) + self.use_conv = use_conv + self.num_heads = num_heads + self.scale = key_dim ** (-0.5) + self.key_dim = key_dim + self.key_attn_dim = key_dim * num_heads + self.val_dim = int(attn_ratio * key_dim) + self.val_attn_dim = int(attn_ratio * key_dim) * num_heads + self.qkv = ln_layer(dim, self.val_attn_dim + self.key_attn_dim * 2) + self.proj = nn.Sequential(OrderedDict([('act', act_layer()), ('ln', ln_layer(self.val_attn_dim, dim, bn_weight_init=0))])) + self.attention_biases = nn.Parameter(torch.zeros(num_heads, resolution[0] * resolution[1])) + pos = torch.stack(ndgrid(torch.arange(resolution[0]), torch.arange(resolution[1]))).flatten(1) + rel_pos = (pos[..., :, None] - pos[..., None, :]).abs() + rel_pos = rel_pos[0] * resolution[1] + rel_pos[1] + self.register_buffer('attention_bias_idxs', rel_pos, persistent=False) + self.attention_bias_cache = {} + + @torch.no_grad() + def train(self, mode=True): + super().train(mode) + if mode and self.attention_bias_cache: + self.attention_bias_cache = {} + + def get_attention_biases(self, device: torch.device) -> torch.Tensor: + if torch.jit.is_tracing() or self.training: + return self.attention_biases[:, self.attention_bias_idxs] + else: + device_key = str(device) + if device_key not in self.attention_bias_cache: + self.attention_bias_cache[device_key] = self.attention_biases[:, self.attention_bias_idxs] + return self.attention_bias_cache[device_key] + + def forward(self, x): + if self.use_conv: + (B, C, H, W) = x.shape + (q, k, v) = self.qkv(x).view(B, self.num_heads, -1, H * W).split([self.key_dim, self.key_dim, self.val_dim], dim=2) + attn = q.transpose(-2, -1) @ k * self.scale + self.get_attention_biases(x.device) + attn = attn.softmax(dim=-1) + x = (v @ attn.transpose(-2, -1)).view(B, -1, H, W) + else: + (B, N, C) = x.shape + (q, k, v) = self.qkv(x).view(B, N, self.num_heads, -1).split([self.key_dim, self.key_dim, self.val_dim], dim=3) + q = q.permute(0, 2, 1, 3) + k = k.permute(0, 2, 3, 1) + v = v.permute(0, 2, 1, 3) + attn = q @ k * self.scale + self.get_attention_biases(x.device) + attn = attn.softmax(dim=-1) + x = (attn @ v).transpose(1, 2).reshape(B, N, self.val_attn_dim) + x = self.proj(x) + return x + +class AttentionDownsample(nn.Module): + attention_bias_cache: Dict[str, torch.Tensor] + + def __init__(self, in_dim, out_dim, key_dim, num_heads=8, attn_ratio=2.0, stride=2, resolution=14, use_conv=False, use_pool=False, act_layer=nn.SiLU): + super().__init__() + resolution = to_2tuple(resolution) + self.stride = stride + self.resolution = resolution + self.num_heads = num_heads + self.key_dim = key_dim + self.key_attn_dim = key_dim * num_heads + self.val_dim = int(attn_ratio * key_dim) + self.val_attn_dim = self.val_dim * self.num_heads + self.scale = key_dim ** (-0.5) + self.use_conv = use_conv + if self.use_conv: + ln_layer = ConvNorm + sub_layer = partial(nn.AvgPool2d, kernel_size=3 if use_pool else 1, padding=1 if use_pool else 0, count_include_pad=False) + else: + ln_layer = LinearNorm + sub_layer = partial(Downsample, resolution=resolution, use_pool=use_pool) + self.kv = ln_layer(in_dim, self.val_attn_dim + self.key_attn_dim) + self.q = nn.Sequential(OrderedDict([('down', sub_layer(stride=stride)), ('ln', ln_layer(in_dim, self.key_attn_dim))])) + self.proj = nn.Sequential(OrderedDict([('act', act_layer()), ('ln', ln_layer(self.val_attn_dim, out_dim))])) + self.attention_biases = nn.Parameter(torch.zeros(num_heads, resolution[0] * resolution[1])) + k_pos = torch.stack(ndgrid(torch.arange(resolution[0]), torch.arange(resolution[1]))).flatten(1) + q_pos = torch.stack(ndgrid(torch.arange(0, resolution[0], step=stride), torch.arange(0, resolution[1], step=stride))).flatten(1) + rel_pos = (q_pos[..., :, None] - k_pos[..., None, :]).abs() + rel_pos = rel_pos[0] * resolution[1] + rel_pos[1] + self.register_buffer('attention_bias_idxs', rel_pos, persistent=False) + self.attention_bias_cache = {} + + @torch.no_grad() + def train(self, mode=True): + super().train(mode) + if mode and self.attention_bias_cache: + self.attention_bias_cache = {} + + def get_attention_biases(self, device: torch.device) -> torch.Tensor: + if torch.jit.is_tracing() or self.training: + return self.attention_biases[:, self.attention_bias_idxs] + else: + device_key = str(device) + if device_key not in self.attention_bias_cache: + self.attention_bias_cache[device_key] = self.attention_biases[:, self.attention_bias_idxs] + return self.attention_bias_cache[device_key] + + def forward(self, x): + if self.use_conv: + (B, C, H, W) = x.shape + (HH, WW) = ((H - 1) // self.stride + 1, (W - 1) // self.stride + 1) + (k, v) = self.kv(x).view(B, self.num_heads, -1, H * W).split([self.key_dim, self.val_dim], dim=2) + q = self.q(x).view(B, self.num_heads, self.key_dim, -1) + attn = q.transpose(-2, -1) @ k * self.scale + self.get_attention_biases(x.device) + attn = attn.softmax(dim=-1) + x = (v @ attn.transpose(-2, -1)).reshape(B, self.val_attn_dim, HH, WW) + else: + (B, N, C) = x.shape + (k, v) = self.kv(x).view(B, N, self.num_heads, -1).split([self.key_dim, self.val_dim], dim=3) + k = k.permute(0, 2, 3, 1) + v = v.permute(0, 2, 1, 3) + q = self.q(x).view(B, -1, self.num_heads, self.key_dim).permute(0, 2, 1, 3) + attn = q @ k * self.scale + self.get_attention_biases(x.device) + attn = attn.softmax(dim=-1) + x = (attn @ v).transpose(1, 2).reshape(B, -1, self.val_attn_dim) + x = self.proj(x) + return x + +class LevitMlp(nn.Module): + + def __init__(self, in_features, hidden_features=None, out_features=None, use_conv=False, act_layer=nn.SiLU, drop=0.0): + super().__init__() + out_features = out_features or in_features + hidden_features = hidden_features or in_features + ln_layer = ConvNorm if use_conv else LinearNorm + self.ln1 = ln_layer(in_features, hidden_features) + self.act = act_layer() + self.drop = nn.Dropout(drop) + self.ln2 = ln_layer(hidden_features, out_features, bn_weight_init=0) + + def forward(self, x): + x = self.ln1(x) + x = self.act(x) + x = self.drop(x) + x = self.ln2(x) + return x + +class LevitDownsample(nn.Module): + + def __init__(self, in_dim, out_dim, key_dim, num_heads=8, attn_ratio=4.0, mlp_ratio=2.0, act_layer=nn.SiLU, attn_act_layer=None, resolution=14, use_conv=False, use_pool=False, drop_path=0.0): + super().__init__() + attn_act_layer = attn_act_layer or act_layer + self.attn_downsample = AttentionDownsample(in_dim=in_dim, out_dim=out_dim, key_dim=key_dim, num_heads=num_heads, attn_ratio=attn_ratio, act_layer=attn_act_layer, resolution=resolution, use_conv=use_conv, use_pool=use_pool) + self.mlp = LevitMlp(out_dim, int(out_dim * mlp_ratio), use_conv=use_conv, act_layer=act_layer) + self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + + def forward(self, x): + x = self.attn_downsample(x) + x = x + self.drop_path(self.mlp(x)) + return x + +class LevitBlock(nn.Module): + + def __init__(self, dim, key_dim, num_heads=8, attn_ratio=4.0, mlp_ratio=2.0, resolution=14, use_conv=False, act_layer=nn.SiLU, attn_act_layer=None, drop_path=0.0): + super().__init__() + attn_act_layer = attn_act_layer or act_layer + self.attn = Attention(dim=dim, key_dim=key_dim, num_heads=num_heads, attn_ratio=attn_ratio, resolution=resolution, use_conv=use_conv, act_layer=attn_act_layer) + self.drop_path1 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + self.mlp = LevitMlp(dim, int(dim * mlp_ratio), use_conv=use_conv, act_layer=act_layer) + self.drop_path2 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + + def forward(self, x): + x = x + self.drop_path1(self.attn(x)) + x = x + self.drop_path2(self.mlp(x)) + return x + +class LevitStage(nn.Module): + + def __init__(self, in_dim, out_dim, key_dim, depth=4, num_heads=8, attn_ratio=4.0, mlp_ratio=4.0, act_layer=nn.SiLU, attn_act_layer=None, resolution=14, downsample='', use_conv=False, drop_path=0.0): + super().__init__() + resolution = to_2tuple(resolution) + if downsample: + self.downsample = LevitDownsample(in_dim, out_dim, key_dim=key_dim, num_heads=in_dim // key_dim, attn_ratio=4.0, mlp_ratio=2.0, act_layer=act_layer, attn_act_layer=attn_act_layer, resolution=resolution, use_conv=use_conv, drop_path=drop_path) + resolution = [(r - 1) // 2 + 1 for r in resolution] + else: + assert in_dim == out_dim + self.downsample = nn.Identity() + blocks = [] + for _ in range(depth): + blocks += [LevitBlock(out_dim, key_dim, num_heads=num_heads, attn_ratio=attn_ratio, mlp_ratio=mlp_ratio, act_layer=act_layer, attn_act_layer=attn_act_layer, resolution=resolution, use_conv=use_conv, drop_path=drop_path)] + self.blocks = nn.Sequential(*blocks) + + def forward(self, x): + x = self.downsample(x) + x = self.blocks(x) + return x + +class Levit(nn.Module): + + def __init__(self, img_size=224, in_chans=3, num_classes=1000, embed_dim=(192,), key_dim=64, depth=(12,), num_heads=(3,), attn_ratio=2.0, mlp_ratio=2.0, stem_backbone=None, stem_stride=None, stem_type='s16', down_op='subsample', act_layer='hard_swish', attn_act_layer=None, use_conv=False, global_pool='avg', drop_rate=0.0, drop_path_rate=0.0): + super().__init__() + act_layer = get_act_layer(act_layer) + attn_act_layer = get_act_layer(attn_act_layer or act_layer) + self.use_conv = use_conv + self.num_classes = num_classes + self.global_pool = global_pool + self.num_features = self.head_hidden_size = embed_dim[-1] + self.embed_dim = embed_dim + self.drop_rate = drop_rate + self.grad_checkpointing = False + self.feature_info = [] + num_stages = len(embed_dim) + assert len(depth) == num_stages + num_heads = to_ntuple(num_stages)(num_heads) + attn_ratio = to_ntuple(num_stages)(attn_ratio) + mlp_ratio = to_ntuple(num_stages)(mlp_ratio) + if stem_backbone is not None: + assert stem_stride >= 2 + self.stem = stem_backbone + stride = stem_stride + else: + assert stem_type in ('s16', 's8') + if stem_type == 's16': + self.stem = Stem16(in_chans, embed_dim[0], act_layer=act_layer) + else: + self.stem = Stem8(in_chans, embed_dim[0], act_layer=act_layer) + stride = self.stem.stride + resolution = tuple([i // p for (i, p) in zip(to_2tuple(img_size), to_2tuple(stride))]) + in_dim = embed_dim[0] + stages = [] + for i in range(num_stages): + stage_stride = 2 if i > 0 else 1 + stages += [LevitStage(in_dim, embed_dim[i], key_dim, depth=depth[i], num_heads=num_heads[i], attn_ratio=attn_ratio[i], mlp_ratio=mlp_ratio[i], act_layer=act_layer, attn_act_layer=attn_act_layer, resolution=resolution, use_conv=use_conv, downsample=down_op if stage_stride == 2 else '', drop_path=drop_path_rate)] + stride *= stage_stride + resolution = tuple([(r - 1) // stage_stride + 1 for r in resolution]) + self.feature_info += [dict(num_chs=embed_dim[i], reduction=stride, module=f'stages.{i}')] + in_dim = embed_dim[i] + self.stages = nn.Sequential(*stages) + self.head = NormLinear(embed_dim[-1], num_classes, drop=drop_rate) if num_classes > 0 else nn.Identity() + + @torch.jit.ignore + def no_weight_decay(self): + return {x for x in self.state_dict().keys() if 'attention_biases' in x} + + @torch.jit.ignore + def group_matcher(self, coarse=False): + matcher = dict(stem='^cls_token|pos_embed|patch_embed', blocks=[('^blocks\\.(\\d+)', None), ('^norm', (99999,))]) + return matcher + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + self.grad_checkpointing = enable + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.head + + def reset_classifier(self, num_classes: int, global_pool: Optional[str]=None): + self.num_classes = num_classes + if global_pool is not None: + self.global_pool = global_pool + self.head = NormLinear(self.num_features, num_classes, drop=self.drop_rate) if num_classes > 0 else nn.Identity() + + def forward_intermediates(self, x: torch.Tensor, indices: Optional[Union[int, List[int]]]=None, norm: bool=False, stop_early: bool=False, output_fmt: str='NCHW', intermediates_only: bool=False) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]: + assert output_fmt in ('NCHW',), 'Output shape must be NCHW.' + intermediates = [] + (take_indices, max_index) = feature_take_indices(len(self.stages), indices) + x = self.stem(x) + (B, C, H, W) = x.shape + if not self.use_conv: + x = x.flatten(2).transpose(1, 2) + if torch.jit.is_scripting() or not stop_early: + stages = self.stages + else: + stages = self.stages[:max_index + 1] + for (feat_idx, stage) in enumerate(stages): + x = stage(x) + if feat_idx in take_indices: + if self.use_conv: + intermediates.append(x) + else: + intermediates.append(x.reshape(B, H, W, -1).permute(0, 3, 1, 2)) + H = (H + 2 - 1) // 2 + W = (W + 2 - 1) // 2 + if intermediates_only: + return intermediates + return (x, intermediates) + + def prune_intermediate_layers(self, indices: Union[int, List[int]]=1, prune_norm: bool=False, prune_head: bool=True): + (take_indices, max_index) = feature_take_indices(len(self.stages), indices) + self.stages = self.stages[:max_index + 1] + if prune_head: + self.reset_classifier(0, '') + return take_indices + + def forward_features(self, x): + x = self.stem(x) + if not self.use_conv: + x = x.flatten(2).transpose(1, 2) + if self.grad_checkpointing and (not torch.jit.is_scripting()): + x = checkpoint_seq(self.stages, x) + else: + x = self.stages(x) + return x + + def forward_head(self, x, pre_logits: bool=False): + if self.global_pool == 'avg': + x = x.mean(dim=(-2, -1)) if self.use_conv else x.mean(dim=1) + return x if pre_logits else self.head(x) + + def forward(self, x): + x = self.forward_features(x) + x = self.forward_head(x) + return x + +class LevitDistilled(Levit): + + def __init__(self, *args, **kwargs): + super().__init__(*args, **kwargs) + self.head_dist = NormLinear(self.num_features, self.num_classes) if self.num_classes > 0 else nn.Identity() + self.distilled_training = False + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return (self.head, self.head_dist) + + def reset_classifier(self, num_classes: int, global_pool: Optional[str]=None): + self.num_classes = num_classes + if global_pool is not None: + self.global_pool = global_pool + self.head = NormLinear(self.num_features, num_classes, drop=self.drop_rate) if num_classes > 0 else nn.Identity() + self.head_dist = NormLinear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() + + @torch.jit.ignore + def set_distilled_training(self, enable=True): + self.distilled_training = enable + + def forward_head(self, x, pre_logits: bool=False): + if self.global_pool == 'avg': + x = x.mean(dim=(-2, -1)) if self.use_conv else x.mean(dim=1) + if pre_logits: + return x + (x, x_dist) = (self.head(x), self.head_dist(x)) + if self.distilled_training and self.training and (not torch.jit.is_scripting()): + return (x, x_dist) + else: + return (x + x_dist) / 2 + +def checkpoint_filter_fn(state_dict, model): + if 'model' in state_dict: + state_dict = state_dict['model'] + state_dict = {k: v for (k, v) in state_dict.items() if 'attention_bias_idxs' not in k} + D = model.state_dict() + out_dict = {} + for (ka, kb, va, vb) in zip(D.keys(), state_dict.keys(), D.values(), state_dict.values()): + if va.ndim == 4 and vb.ndim == 2: + vb = vb[:, :, None, None] + if va.shape != vb.shape: + assert 'head' in ka or 'stem.conv1.linear' in ka + out_dict[ka] = vb + return out_dict +model_cfgs = dict(levit_128s=dict(embed_dim=(128, 256, 384), key_dim=16, num_heads=(4, 6, 8), depth=(2, 3, 4)), levit_128=dict(embed_dim=(128, 256, 384), key_dim=16, num_heads=(4, 8, 12), depth=(4, 4, 4)), levit_192=dict(embed_dim=(192, 288, 384), key_dim=32, num_heads=(3, 5, 6), depth=(4, 4, 4)), levit_256=dict(embed_dim=(256, 384, 512), key_dim=32, num_heads=(4, 6, 8), depth=(4, 4, 4)), levit_384=dict(embed_dim=(384, 512, 768), key_dim=32, num_heads=(6, 9, 12), depth=(4, 4, 4)), levit_384_s8=dict(embed_dim=(384, 512, 768), key_dim=32, num_heads=(6, 9, 12), depth=(4, 4, 4), act_layer='silu', stem_type='s8'), levit_512_s8=dict(embed_dim=(512, 640, 896), key_dim=64, num_heads=(8, 10, 14), depth=(4, 4, 4), act_layer='silu', stem_type='s8'), levit_512=dict(embed_dim=(512, 768, 1024), key_dim=64, num_heads=(8, 12, 16), depth=(4, 4, 4), act_layer='silu'), levit_256d=dict(embed_dim=(256, 384, 512), key_dim=32, num_heads=(4, 6, 8), depth=(4, 8, 6), act_layer='silu'), levit_512d=dict(embed_dim=(512, 640, 768), key_dim=64, num_heads=(8, 10, 12), depth=(4, 8, 6), act_layer='silu')) + +def create_levit(variant, cfg_variant=None, pretrained=False, distilled=True, **kwargs): + is_conv = '_conv' in variant + out_indices = kwargs.pop('out_indices', (0, 1, 2)) + if kwargs.get('features_only', False) and (not is_conv): + kwargs.setdefault('feature_cls', 'getter') + if cfg_variant is None: + if variant in model_cfgs: + cfg_variant = variant + elif is_conv: + cfg_variant = variant.replace('_conv', '') + model_cfg = dict(model_cfgs[cfg_variant], **kwargs) + model = build_model_with_cfg(LevitDistilled if distilled else Levit, variant, pretrained, pretrained_filter_fn=checkpoint_filter_fn, feature_cfg=dict(flatten_sequential=True, out_indices=out_indices), **model_cfg) + return model + +def _cfg(url='', **kwargs): + return {'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, 'crop_pct': 0.9, 'interpolation': 'bicubic', 'fixed_input_size': True, 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'stem.conv1.linear', 'classifier': ('head.linear', 'head_dist.linear'), **kwargs} +default_cfgs = generate_default_cfgs({'levit_128s.fb_dist_in1k': _cfg(hf_hub_id='timm/'), 'levit_128.fb_dist_in1k': _cfg(hf_hub_id='timm/'), 'levit_192.fb_dist_in1k': _cfg(hf_hub_id='timm/'), 'levit_256.fb_dist_in1k': _cfg(hf_hub_id='timm/'), 'levit_384.fb_dist_in1k': _cfg(hf_hub_id='timm/'), 'levit_conv_128s.fb_dist_in1k': _cfg(hf_hub_id='timm/', pool_size=(4, 4)), 'levit_conv_128.fb_dist_in1k': _cfg(hf_hub_id='timm/', pool_size=(4, 4)), 'levit_conv_192.fb_dist_in1k': _cfg(hf_hub_id='timm/', pool_size=(4, 4)), 'levit_conv_256.fb_dist_in1k': _cfg(hf_hub_id='timm/', pool_size=(4, 4)), 'levit_conv_384.fb_dist_in1k': _cfg(hf_hub_id='timm/', pool_size=(4, 4)), 'levit_384_s8.untrained': _cfg(classifier='head.linear'), 'levit_512_s8.untrained': _cfg(classifier='head.linear'), 'levit_512.untrained': _cfg(classifier='head.linear'), 'levit_256d.untrained': _cfg(classifier='head.linear'), 'levit_512d.untrained': _cfg(classifier='head.linear'), 'levit_conv_384_s8.untrained': _cfg(classifier='head.linear'), 'levit_conv_512_s8.untrained': _cfg(classifier='head.linear'), 'levit_conv_512.untrained': _cfg(classifier='head.linear'), 'levit_conv_256d.untrained': _cfg(classifier='head.linear'), 'levit_conv_512d.untrained': _cfg(classifier='head.linear')}) + +@register_model +def levit_128s(pretrained=False, **kwargs) -> Levit: + return create_levit('levit_128s', pretrained=pretrained, **kwargs) + +@register_model +def levit_128(pretrained=False, **kwargs) -> Levit: + return create_levit('levit_128', pretrained=pretrained, **kwargs) + +@register_model +def levit_192(pretrained=False, **kwargs) -> Levit: + return create_levit('levit_192', pretrained=pretrained, **kwargs) + +@register_model +def levit_256(pretrained=False, **kwargs) -> Levit: + return create_levit('levit_256', pretrained=pretrained, **kwargs) + +@register_model +def levit_384(pretrained=False, **kwargs) -> Levit: + return create_levit('levit_384', pretrained=pretrained, **kwargs) + +@register_model +def levit_384_s8(pretrained=False, **kwargs) -> Levit: + return create_levit('levit_384_s8', pretrained=pretrained, **kwargs) + +@register_model +def levit_512_s8(pretrained=False, **kwargs) -> Levit: + return create_levit('levit_512_s8', pretrained=pretrained, distilled=False, **kwargs) + +@register_model +def levit_512(pretrained=False, **kwargs) -> Levit: + return create_levit('levit_512', pretrained=pretrained, distilled=False, **kwargs) + +@register_model +def levit_256d(pretrained=False, **kwargs) -> Levit: + return create_levit('levit_256d', pretrained=pretrained, distilled=False, **kwargs) + +@register_model +def levit_512d(pretrained=False, **kwargs) -> Levit: + return create_levit('levit_512d', pretrained=pretrained, distilled=False, **kwargs) + +@register_model +def levit_conv_128s(pretrained=False, **kwargs) -> Levit: + return create_levit('levit_conv_128s', pretrained=pretrained, use_conv=True, **kwargs) + +@register_model +def levit_conv_128(pretrained=False, **kwargs) -> Levit: + return create_levit('levit_conv_128', pretrained=pretrained, use_conv=True, **kwargs) + +@register_model +def levit_conv_192(pretrained=False, **kwargs) -> Levit: + return create_levit('levit_conv_192', pretrained=pretrained, use_conv=True, **kwargs) + +@register_model +def levit_conv_256(pretrained=False, **kwargs) -> Levit: + return create_levit('levit_conv_256', pretrained=pretrained, use_conv=True, **kwargs) + +@register_model +def levit_conv_384(pretrained=False, **kwargs) -> Levit: + return create_levit('levit_conv_384', pretrained=pretrained, use_conv=True, **kwargs) + +@register_model +def levit_conv_384_s8(pretrained=False, **kwargs) -> Levit: + return create_levit('levit_conv_384_s8', pretrained=pretrained, use_conv=True, **kwargs) + +@register_model +def levit_conv_512_s8(pretrained=False, **kwargs) -> Levit: + return create_levit('levit_conv_512_s8', pretrained=pretrained, use_conv=True, distilled=False, **kwargs) + +@register_model +def levit_conv_512(pretrained=False, **kwargs) -> Levit: + return create_levit('levit_conv_512', pretrained=pretrained, use_conv=True, distilled=False, **kwargs) + +@register_model +def levit_conv_256d(pretrained=False, **kwargs) -> Levit: + return create_levit('levit_conv_256d', pretrained=pretrained, use_conv=True, distilled=False, **kwargs) + +@register_model +def levit_conv_512d(pretrained=False, **kwargs) -> Levit: + return create_levit('levit_conv_512d', pretrained=pretrained, use_conv=True, distilled=False, **kwargs) + +# File: pytorch-image-models-main/timm/models/maxxvit.py +"""""" +import math +from collections import OrderedDict +from dataclasses import dataclass, replace, field +from functools import partial +from typing import Callable, Optional, Union, Tuple, List +import torch +from torch import nn +from torch.jit import Final +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from timm.layers import Mlp, ConvMlp, DropPath, LayerNorm, ClassifierHead, NormMlpClassifierHead +from timm.layers import create_attn, get_act_layer, get_norm_layer, get_norm_act_layer, create_conv2d, create_pool2d +from timm.layers import trunc_normal_tf_, to_2tuple, extend_tuple, make_divisible, _assert +from timm.layers import RelPosMlp, RelPosBias, RelPosBiasTf, use_fused_attn, resize_rel_pos_bias_table +from ._builder import build_model_with_cfg +from ._features import feature_take_indices +from ._features_fx import register_notrace_function +from ._manipulate import named_apply, checkpoint_seq +from ._registry import generate_default_cfgs, register_model +__all__ = ['MaxxVitCfg', 'MaxxVitConvCfg', 'MaxxVitTransformerCfg', 'MaxxVit'] + +@dataclass +class MaxxVitTransformerCfg: + dim_head: int = 32 + head_first: bool = True + expand_ratio: float = 4.0 + expand_first: bool = True + shortcut_bias: bool = True + attn_bias: bool = True + attn_drop: float = 0.0 + proj_drop: float = 0.0 + pool_type: str = 'avg2' + rel_pos_type: str = 'bias' + rel_pos_dim: int = 512 + partition_ratio: int = 32 + window_size: Optional[Tuple[int, int]] = None + grid_size: Optional[Tuple[int, int]] = None + no_block_attn: bool = False + use_nchw_attn: bool = False + init_values: Optional[float] = None + act_layer: str = 'gelu' + norm_layer: str = 'layernorm2d' + norm_layer_cl: str = 'layernorm' + norm_eps: float = 1e-06 + + def __post_init__(self): + if self.grid_size is not None: + self.grid_size = to_2tuple(self.grid_size) + if self.window_size is not None: + self.window_size = to_2tuple(self.window_size) + if self.grid_size is None: + self.grid_size = self.window_size + +@dataclass +class MaxxVitConvCfg: + block_type: str = 'mbconv' + expand_ratio: float = 4.0 + expand_output: bool = True + kernel_size: int = 3 + group_size: int = 1 + pre_norm_act: bool = False + output_bias: bool = True + stride_mode: str = 'dw' + pool_type: str = 'avg2' + downsample_pool_type: str = 'avg2' + padding: str = '' + attn_early: bool = False + attn_layer: str = 'se' + attn_act_layer: str = 'silu' + attn_ratio: float = 0.25 + init_values: Optional[float] = 1e-06 + act_layer: str = 'gelu' + norm_layer: str = '' + norm_layer_cl: str = '' + norm_eps: Optional[float] = None + + def __post_init__(self): + assert self.block_type in ('mbconv', 'convnext') + use_mbconv = self.block_type == 'mbconv' + if not self.norm_layer: + self.norm_layer = 'batchnorm2d' if use_mbconv else 'layernorm2d' + if not self.norm_layer_cl and (not use_mbconv): + self.norm_layer_cl = 'layernorm' + if self.norm_eps is None: + self.norm_eps = 1e-05 if use_mbconv else 1e-06 + self.downsample_pool_type = self.downsample_pool_type or self.pool_type + +@dataclass +class MaxxVitCfg: + embed_dim: Tuple[int, ...] = (96, 192, 384, 768) + depths: Tuple[int, ...] = (2, 3, 5, 2) + block_type: Tuple[Union[str, Tuple[str, ...]], ...] = ('C', 'C', 'T', 'T') + stem_width: Union[int, Tuple[int, int]] = 64 + stem_bias: bool = False + conv_cfg: MaxxVitConvCfg = field(default_factory=MaxxVitConvCfg) + transformer_cfg: MaxxVitTransformerCfg = field(default_factory=MaxxVitTransformerCfg) + head_hidden_size: int = None + weight_init: str = 'vit_eff' + +class Attention2d(nn.Module): + fused_attn: Final[bool] + '' + + def __init__(self, dim: int, dim_out: Optional[int]=None, dim_head: int=32, bias: bool=True, expand_first: bool=True, head_first: bool=True, rel_pos_cls: Callable=None, attn_drop: float=0.0, proj_drop: float=0.0): + super().__init__() + dim_out = dim_out or dim + dim_attn = dim_out if expand_first else dim + self.num_heads = dim_attn // dim_head + self.dim_head = dim_head + self.head_first = head_first + self.scale = dim_head ** (-0.5) + self.fused_attn = use_fused_attn() + self.qkv = nn.Conv2d(dim, dim_attn * 3, 1, bias=bias) + self.rel_pos = rel_pos_cls(num_heads=self.num_heads) if rel_pos_cls else None + self.attn_drop = nn.Dropout(attn_drop) + self.proj = nn.Conv2d(dim_attn, dim_out, 1, bias=bias) + self.proj_drop = nn.Dropout(proj_drop) + + def forward(self, x, shared_rel_pos: Optional[torch.Tensor]=None): + (B, C, H, W) = x.shape + if self.head_first: + (q, k, v) = self.qkv(x).view(B, self.num_heads, self.dim_head * 3, -1).chunk(3, dim=2) + else: + (q, k, v) = self.qkv(x).reshape(B, 3, self.num_heads, self.dim_head, -1).unbind(1) + if self.fused_attn: + attn_bias = None + if self.rel_pos is not None: + attn_bias = self.rel_pos.get_bias() + elif shared_rel_pos is not None: + attn_bias = shared_rel_pos + x = torch.nn.functional.scaled_dot_product_attention(q.transpose(-1, -2).contiguous(), k.transpose(-1, -2).contiguous(), v.transpose(-1, -2).contiguous(), attn_mask=attn_bias, dropout_p=self.attn_drop.p if self.training else 0.0).transpose(-1, -2).reshape(B, -1, H, W) + else: + q = q * self.scale + attn = q.transpose(-2, -1) @ k + if self.rel_pos is not None: + attn = self.rel_pos(attn) + elif shared_rel_pos is not None: + attn = attn + shared_rel_pos + attn = attn.softmax(dim=-1) + attn = self.attn_drop(attn) + x = (v @ attn.transpose(-2, -1)).view(B, -1, H, W) + x = self.proj(x) + x = self.proj_drop(x) + return x + +class AttentionCl(nn.Module): + fused_attn: Final[bool] + + def __init__(self, dim: int, dim_out: Optional[int]=None, dim_head: int=32, bias: bool=True, expand_first: bool=True, head_first: bool=True, rel_pos_cls: Callable=None, attn_drop: float=0.0, proj_drop: float=0.0): + super().__init__() + dim_out = dim_out or dim + dim_attn = dim_out if expand_first and dim_out > dim else dim + assert dim_attn % dim_head == 0, 'attn dim should be divisible by head_dim' + self.num_heads = dim_attn // dim_head + self.dim_head = dim_head + self.head_first = head_first + self.scale = dim_head ** (-0.5) + self.fused_attn = use_fused_attn() + self.qkv = nn.Linear(dim, dim_attn * 3, bias=bias) + self.rel_pos = rel_pos_cls(num_heads=self.num_heads) if rel_pos_cls else None + self.attn_drop = nn.Dropout(attn_drop) + self.proj = nn.Linear(dim_attn, dim_out, bias=bias) + self.proj_drop = nn.Dropout(proj_drop) + + def forward(self, x, shared_rel_pos: Optional[torch.Tensor]=None): + B = x.shape[0] + restore_shape = x.shape[:-1] + if self.head_first: + (q, k, v) = self.qkv(x).view(B, -1, self.num_heads, self.dim_head * 3).transpose(1, 2).chunk(3, dim=3) + else: + (q, k, v) = self.qkv(x).reshape(B, -1, 3, self.num_heads, self.dim_head).transpose(1, 3).unbind(2) + if self.fused_attn: + attn_bias = None + if self.rel_pos is not None: + attn_bias = self.rel_pos.get_bias() + elif shared_rel_pos is not None: + attn_bias = shared_rel_pos + x = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=attn_bias, dropout_p=self.attn_drop.p if self.training else 0.0) + else: + q = q * self.scale + attn = q @ k.transpose(-2, -1) + if self.rel_pos is not None: + attn = self.rel_pos(attn, shared_rel_pos=shared_rel_pos) + elif shared_rel_pos is not None: + attn = attn + shared_rel_pos + attn = attn.softmax(dim=-1) + attn = self.attn_drop(attn) + x = attn @ v + x = x.transpose(1, 2).reshape(restore_shape + (-1,)) + x = self.proj(x) + x = self.proj_drop(x) + return x + +class LayerScale(nn.Module): + + def __init__(self, dim, init_values=1e-05, inplace=False): + super().__init__() + self.inplace = inplace + self.gamma = nn.Parameter(init_values * torch.ones(dim)) + + def forward(self, x): + gamma = self.gamma + return x.mul_(gamma) if self.inplace else x * gamma + +class LayerScale2d(nn.Module): + + def __init__(self, dim, init_values=1e-05, inplace=False): + super().__init__() + self.inplace = inplace + self.gamma = nn.Parameter(init_values * torch.ones(dim)) + + def forward(self, x): + gamma = self.gamma.view(1, -1, 1, 1) + return x.mul_(gamma) if self.inplace else x * gamma + +class Downsample2d(nn.Module): + + def __init__(self, dim: int, dim_out: int, pool_type: str='avg2', padding: str='', bias: bool=True): + super().__init__() + assert pool_type in ('max', 'max2', 'avg', 'avg2') + if pool_type == 'max': + self.pool = create_pool2d('max', kernel_size=3, stride=2, padding=padding or 1) + elif pool_type == 'max2': + self.pool = create_pool2d('max', 2, padding=padding or 0) + elif pool_type == 'avg': + self.pool = create_pool2d('avg', kernel_size=3, stride=2, count_include_pad=False, padding=padding or 1) + else: + self.pool = create_pool2d('avg', 2, padding=padding or 0) + if dim != dim_out: + self.expand = nn.Conv2d(dim, dim_out, 1, bias=bias) + else: + self.expand = nn.Identity() + + def forward(self, x): + x = self.pool(x) + x = self.expand(x) + return x + +def _init_transformer(module, name, scheme=''): + if isinstance(module, (nn.Conv2d, nn.Linear)): + if scheme == 'normal': + nn.init.normal_(module.weight, std=0.02) + if module.bias is not None: + nn.init.zeros_(module.bias) + elif scheme == 'trunc_normal': + trunc_normal_tf_(module.weight, std=0.02) + if module.bias is not None: + nn.init.zeros_(module.bias) + elif scheme == 'xavier_normal': + nn.init.xavier_normal_(module.weight) + if module.bias is not None: + nn.init.zeros_(module.bias) + else: + nn.init.xavier_uniform_(module.weight) + if module.bias is not None: + if 'mlp' in name: + nn.init.normal_(module.bias, std=1e-06) + else: + nn.init.zeros_(module.bias) + +class TransformerBlock2d(nn.Module): + + def __init__(self, dim: int, dim_out: int, stride: int=1, rel_pos_cls: Callable=None, cfg: MaxxVitTransformerCfg=MaxxVitTransformerCfg(), drop_path: float=0.0): + super().__init__() + norm_layer = partial(get_norm_layer(cfg.norm_layer), eps=cfg.norm_eps) + act_layer = get_act_layer(cfg.act_layer) + if stride == 2: + self.shortcut = Downsample2d(dim, dim_out, pool_type=cfg.pool_type, bias=cfg.shortcut_bias) + self.norm1 = nn.Sequential(OrderedDict([('norm', norm_layer(dim)), ('down', Downsample2d(dim, dim, pool_type=cfg.pool_type))])) + else: + assert dim == dim_out + self.shortcut = nn.Identity() + self.norm1 = norm_layer(dim) + self.attn = Attention2d(dim, dim_out, dim_head=cfg.dim_head, expand_first=cfg.expand_first, bias=cfg.attn_bias, rel_pos_cls=rel_pos_cls, attn_drop=cfg.attn_drop, proj_drop=cfg.proj_drop) + self.ls1 = LayerScale2d(dim_out, init_values=cfg.init_values) if cfg.init_values else nn.Identity() + self.drop_path1 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + self.norm2 = norm_layer(dim_out) + self.mlp = ConvMlp(in_features=dim_out, hidden_features=int(dim_out * cfg.expand_ratio), act_layer=act_layer, drop=cfg.proj_drop) + self.ls2 = LayerScale2d(dim_out, init_values=cfg.init_values) if cfg.init_values else nn.Identity() + self.drop_path2 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + + def init_weights(self, scheme=''): + named_apply(partial(_init_transformer, scheme=scheme), self) + + def forward(self, x, shared_rel_pos: Optional[torch.Tensor]=None): + x = self.shortcut(x) + self.drop_path1(self.ls1(self.attn(self.norm1(x), shared_rel_pos=shared_rel_pos))) + x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x)))) + return x + +def _init_conv(module, name, scheme=''): + if isinstance(module, nn.Conv2d): + if scheme == 'normal': + nn.init.normal_(module.weight, std=0.02) + if module.bias is not None: + nn.init.zeros_(module.bias) + elif scheme == 'trunc_normal': + trunc_normal_tf_(module.weight, std=0.02) + if module.bias is not None: + nn.init.zeros_(module.bias) + elif scheme == 'xavier_normal': + nn.init.xavier_normal_(module.weight) + if module.bias is not None: + nn.init.zeros_(module.bias) + else: + fan_out = module.kernel_size[0] * module.kernel_size[1] * module.out_channels + fan_out //= module.groups + nn.init.normal_(module.weight, 0, math.sqrt(2.0 / fan_out)) + if module.bias is not None: + nn.init.zeros_(module.bias) + +def num_groups(group_size, channels): + if not group_size: + return 1 + else: + assert channels % group_size == 0 + return channels // group_size + +class MbConvBlock(nn.Module): + + def __init__(self, in_chs: int, out_chs: int, stride: int=1, dilation: Tuple[int, int]=(1, 1), cfg: MaxxVitConvCfg=MaxxVitConvCfg(), drop_path: float=0.0): + super(MbConvBlock, self).__init__() + norm_act_layer = partial(get_norm_act_layer(cfg.norm_layer, cfg.act_layer), eps=cfg.norm_eps) + mid_chs = make_divisible((out_chs if cfg.expand_output else in_chs) * cfg.expand_ratio) + groups = num_groups(cfg.group_size, mid_chs) + if stride == 2: + self.shortcut = Downsample2d(in_chs, out_chs, pool_type=cfg.pool_type, bias=cfg.output_bias, padding=cfg.padding) + else: + self.shortcut = nn.Identity() + assert cfg.stride_mode in ('pool', '1x1', 'dw') + (stride_pool, stride_1, stride_2) = (1, 1, 1) + if cfg.stride_mode == 'pool': + (stride_pool, dilation_2) = (stride, dilation[1]) + elif cfg.stride_mode == '1x1': + (stride_1, dilation_2) = (stride, dilation[1]) + else: + (stride_2, dilation_2) = (stride, dilation[0]) + self.pre_norm = norm_act_layer(in_chs, apply_act=cfg.pre_norm_act) + if stride_pool > 1: + self.down = Downsample2d(in_chs, in_chs, pool_type=cfg.downsample_pool_type, padding=cfg.padding) + else: + self.down = nn.Identity() + self.conv1_1x1 = create_conv2d(in_chs, mid_chs, 1, stride=stride_1) + self.norm1 = norm_act_layer(mid_chs) + self.conv2_kxk = create_conv2d(mid_chs, mid_chs, cfg.kernel_size, stride=stride_2, dilation=dilation_2, groups=groups, padding=cfg.padding) + attn_kwargs = {} + if isinstance(cfg.attn_layer, str): + if cfg.attn_layer == 'se' or cfg.attn_layer == 'eca': + attn_kwargs['act_layer'] = cfg.attn_act_layer + attn_kwargs['rd_channels'] = int(cfg.attn_ratio * (out_chs if cfg.expand_output else mid_chs)) + if cfg.attn_early: + self.se_early = create_attn(cfg.attn_layer, mid_chs, **attn_kwargs) + self.norm2 = norm_act_layer(mid_chs) + self.se = None + else: + self.se_early = None + self.norm2 = norm_act_layer(mid_chs) + self.se = create_attn(cfg.attn_layer, mid_chs, **attn_kwargs) + self.conv3_1x1 = create_conv2d(mid_chs, out_chs, 1, bias=cfg.output_bias) + self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + + def init_weights(self, scheme=''): + named_apply(partial(_init_conv, scheme=scheme), self) + + def forward(self, x): + shortcut = self.shortcut(x) + x = self.pre_norm(x) + x = self.down(x) + x = self.conv1_1x1(x) + x = self.norm1(x) + x = self.conv2_kxk(x) + if self.se_early is not None: + x = self.se_early(x) + x = self.norm2(x) + if self.se is not None: + x = self.se(x) + x = self.conv3_1x1(x) + x = self.drop_path(x) + shortcut + return x + +class ConvNeXtBlock(nn.Module): + + def __init__(self, in_chs: int, out_chs: Optional[int]=None, kernel_size: int=7, stride: int=1, dilation: Tuple[int, int]=(1, 1), cfg: MaxxVitConvCfg=MaxxVitConvCfg(), conv_mlp: bool=True, drop_path: float=0.0): + super().__init__() + out_chs = out_chs or in_chs + act_layer = get_act_layer(cfg.act_layer) + if conv_mlp: + norm_layer = partial(get_norm_layer(cfg.norm_layer), eps=cfg.norm_eps) + mlp_layer = ConvMlp + else: + assert 'layernorm' in cfg.norm_layer + norm_layer = LayerNorm + mlp_layer = Mlp + self.use_conv_mlp = conv_mlp + if stride == 2: + self.shortcut = Downsample2d(in_chs, out_chs) + elif in_chs != out_chs: + self.shortcut = nn.Conv2d(in_chs, out_chs, kernel_size=1, bias=cfg.output_bias) + else: + self.shortcut = nn.Identity() + assert cfg.stride_mode in ('pool', 'dw') + (stride_pool, stride_dw) = (1, 1) + if cfg.stride_mode == 'pool': + stride_pool = stride + else: + stride_dw = stride + if stride_pool == 2: + self.down = Downsample2d(in_chs, in_chs, pool_type=cfg.downsample_pool_type) + else: + self.down = nn.Identity() + self.conv_dw = create_conv2d(in_chs, out_chs, kernel_size=kernel_size, stride=stride_dw, dilation=dilation[1], depthwise=True, bias=cfg.output_bias) + self.norm = norm_layer(out_chs) + self.mlp = mlp_layer(out_chs, int(cfg.expand_ratio * out_chs), bias=cfg.output_bias, act_layer=act_layer) + if conv_mlp: + self.ls = LayerScale2d(out_chs, cfg.init_values) if cfg.init_values else nn.Identity() + else: + self.ls = LayerScale(out_chs, cfg.init_values) if cfg.init_values else nn.Identity() + self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + + def forward(self, x): + shortcut = self.shortcut(x) + x = self.down(x) + x = self.conv_dw(x) + if self.use_conv_mlp: + x = self.norm(x) + x = self.mlp(x) + x = self.ls(x) + else: + x = x.permute(0, 2, 3, 1) + x = self.norm(x) + x = self.mlp(x) + x = self.ls(x) + x = x.permute(0, 3, 1, 2) + x = self.drop_path(x) + shortcut + return x + +def window_partition(x, window_size: List[int]): + (B, H, W, C) = x.shape + _assert(H % window_size[0] == 0, f'height ({H}) must be divisible by window ({window_size[0]})') + _assert(W % window_size[1] == 0, f'width ({W}) must be divisible by window ({window_size[1]})') + x = x.view(B, H // window_size[0], window_size[0], W // window_size[1], window_size[1], C) + windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size[0], window_size[1], C) + return windows + +@register_notrace_function +def window_reverse(windows, window_size: List[int], img_size: List[int]): + (H, W) = img_size + C = windows.shape[-1] + x = windows.view(-1, H // window_size[0], W // window_size[1], window_size[0], window_size[1], C) + x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, H, W, C) + return x + +def grid_partition(x, grid_size: List[int]): + (B, H, W, C) = x.shape + _assert(H % grid_size[0] == 0, f'height {H} must be divisible by grid {grid_size[0]}') + _assert(W % grid_size[1] == 0, f'width {W} must be divisible by grid {grid_size[1]}') + x = x.view(B, grid_size[0], H // grid_size[0], grid_size[1], W // grid_size[1], C) + windows = x.permute(0, 2, 4, 1, 3, 5).contiguous().view(-1, grid_size[0], grid_size[1], C) + return windows + +@register_notrace_function +def grid_reverse(windows, grid_size: List[int], img_size: List[int]): + (H, W) = img_size + C = windows.shape[-1] + x = windows.view(-1, H // grid_size[0], W // grid_size[1], grid_size[0], grid_size[1], C) + x = x.permute(0, 3, 1, 4, 2, 5).contiguous().view(-1, H, W, C) + return x + +def get_rel_pos_cls(cfg: MaxxVitTransformerCfg, window_size): + rel_pos_cls = None + if cfg.rel_pos_type == 'mlp': + rel_pos_cls = partial(RelPosMlp, window_size=window_size, hidden_dim=cfg.rel_pos_dim) + elif cfg.rel_pos_type == 'bias': + rel_pos_cls = partial(RelPosBias, window_size=window_size) + elif cfg.rel_pos_type == 'bias_tf': + rel_pos_cls = partial(RelPosBiasTf, window_size=window_size) + return rel_pos_cls + +class PartitionAttentionCl(nn.Module): + + def __init__(self, dim: int, partition_type: str='block', cfg: MaxxVitTransformerCfg=MaxxVitTransformerCfg(), drop_path: float=0.0): + super().__init__() + norm_layer = partial(get_norm_layer(cfg.norm_layer_cl), eps=cfg.norm_eps) + act_layer = get_act_layer(cfg.act_layer) + self.partition_block = partition_type == 'block' + self.partition_size = to_2tuple(cfg.window_size if self.partition_block else cfg.grid_size) + rel_pos_cls = get_rel_pos_cls(cfg, self.partition_size) + self.norm1 = norm_layer(dim) + self.attn = AttentionCl(dim, dim, dim_head=cfg.dim_head, bias=cfg.attn_bias, head_first=cfg.head_first, rel_pos_cls=rel_pos_cls, attn_drop=cfg.attn_drop, proj_drop=cfg.proj_drop) + self.ls1 = LayerScale(dim, init_values=cfg.init_values) if cfg.init_values else nn.Identity() + self.drop_path1 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + self.norm2 = norm_layer(dim) + self.mlp = Mlp(in_features=dim, hidden_features=int(dim * cfg.expand_ratio), act_layer=act_layer, drop=cfg.proj_drop) + self.ls2 = LayerScale(dim, init_values=cfg.init_values) if cfg.init_values else nn.Identity() + self.drop_path2 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + + def _partition_attn(self, x): + img_size = x.shape[1:3] + if self.partition_block: + partitioned = window_partition(x, self.partition_size) + else: + partitioned = grid_partition(x, self.partition_size) + partitioned = self.attn(partitioned) + if self.partition_block: + x = window_reverse(partitioned, self.partition_size, img_size) + else: + x = grid_reverse(partitioned, self.partition_size, img_size) + return x + + def forward(self, x): + x = x + self.drop_path1(self.ls1(self._partition_attn(self.norm1(x)))) + x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x)))) + return x + +class ParallelPartitionAttention(nn.Module): + + def __init__(self, dim: int, cfg: MaxxVitTransformerCfg=MaxxVitTransformerCfg(), drop_path: float=0.0): + super().__init__() + assert dim % 2 == 0 + norm_layer = partial(get_norm_layer(cfg.norm_layer_cl), eps=cfg.norm_eps) + act_layer = get_act_layer(cfg.act_layer) + assert cfg.window_size == cfg.grid_size + self.partition_size = to_2tuple(cfg.window_size) + rel_pos_cls = get_rel_pos_cls(cfg, self.partition_size) + self.norm1 = norm_layer(dim) + self.attn_block = AttentionCl(dim, dim // 2, dim_head=cfg.dim_head, bias=cfg.attn_bias, head_first=cfg.head_first, rel_pos_cls=rel_pos_cls, attn_drop=cfg.attn_drop, proj_drop=cfg.proj_drop) + self.attn_grid = AttentionCl(dim, dim // 2, dim_head=cfg.dim_head, bias=cfg.attn_bias, head_first=cfg.head_first, rel_pos_cls=rel_pos_cls, attn_drop=cfg.attn_drop, proj_drop=cfg.proj_drop) + self.ls1 = LayerScale(dim, init_values=cfg.init_values) if cfg.init_values else nn.Identity() + self.drop_path1 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + self.norm2 = norm_layer(dim) + self.mlp = Mlp(in_features=dim, hidden_features=int(dim * cfg.expand_ratio), out_features=dim, act_layer=act_layer, drop=cfg.proj_drop) + self.ls2 = LayerScale(dim, init_values=cfg.init_values) if cfg.init_values else nn.Identity() + self.drop_path2 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + + def _partition_attn(self, x): + img_size = x.shape[1:3] + partitioned_block = window_partition(x, self.partition_size) + partitioned_block = self.attn_block(partitioned_block) + x_window = window_reverse(partitioned_block, self.partition_size, img_size) + partitioned_grid = grid_partition(x, self.partition_size) + partitioned_grid = self.attn_grid(partitioned_grid) + x_grid = grid_reverse(partitioned_grid, self.partition_size, img_size) + return torch.cat([x_window, x_grid], dim=-1) + + def forward(self, x): + x = x + self.drop_path1(self.ls1(self._partition_attn(self.norm1(x)))) + x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x)))) + return x + +def window_partition_nchw(x, window_size: List[int]): + (B, C, H, W) = x.shape + _assert(H % window_size[0] == 0, f'height ({H}) must be divisible by window ({window_size[0]})') + _assert(W % window_size[1] == 0, f'width ({W}) must be divisible by window ({window_size[1]})') + x = x.view(B, C, H // window_size[0], window_size[0], W // window_size[1], window_size[1]) + windows = x.permute(0, 2, 4, 1, 3, 5).contiguous().view(-1, C, window_size[0], window_size[1]) + return windows + +@register_notrace_function +def window_reverse_nchw(windows, window_size: List[int], img_size: List[int]): + (H, W) = img_size + C = windows.shape[1] + x = windows.view(-1, H // window_size[0], W // window_size[1], C, window_size[0], window_size[1]) + x = x.permute(0, 3, 1, 4, 2, 5).contiguous().view(-1, C, H, W) + return x + +def grid_partition_nchw(x, grid_size: List[int]): + (B, C, H, W) = x.shape + _assert(H % grid_size[0] == 0, f'height {H} must be divisible by grid {grid_size[0]}') + _assert(W % grid_size[1] == 0, f'width {W} must be divisible by grid {grid_size[1]}') + x = x.view(B, C, grid_size[0], H // grid_size[0], grid_size[1], W // grid_size[1]) + windows = x.permute(0, 3, 5, 1, 2, 4).contiguous().view(-1, C, grid_size[0], grid_size[1]) + return windows + +@register_notrace_function +def grid_reverse_nchw(windows, grid_size: List[int], img_size: List[int]): + (H, W) = img_size + C = windows.shape[1] + x = windows.view(-1, H // grid_size[0], W // grid_size[1], C, grid_size[0], grid_size[1]) + x = x.permute(0, 3, 4, 1, 5, 2).contiguous().view(-1, C, H, W) + return x + +class PartitionAttention2d(nn.Module): + + def __init__(self, dim: int, partition_type: str='block', cfg: MaxxVitTransformerCfg=MaxxVitTransformerCfg(), drop_path: float=0.0): + super().__init__() + norm_layer = partial(get_norm_layer(cfg.norm_layer), eps=cfg.norm_eps) + act_layer = get_act_layer(cfg.act_layer) + self.partition_block = partition_type == 'block' + self.partition_size = to_2tuple(cfg.window_size if self.partition_block else cfg.grid_size) + rel_pos_cls = get_rel_pos_cls(cfg, self.partition_size) + self.norm1 = norm_layer(dim) + self.attn = Attention2d(dim, dim, dim_head=cfg.dim_head, bias=cfg.attn_bias, head_first=cfg.head_first, rel_pos_cls=rel_pos_cls, attn_drop=cfg.attn_drop, proj_drop=cfg.proj_drop) + self.ls1 = LayerScale2d(dim, init_values=cfg.init_values) if cfg.init_values else nn.Identity() + self.drop_path1 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + self.norm2 = norm_layer(dim) + self.mlp = ConvMlp(in_features=dim, hidden_features=int(dim * cfg.expand_ratio), act_layer=act_layer, drop=cfg.proj_drop) + self.ls2 = LayerScale2d(dim, init_values=cfg.init_values) if cfg.init_values else nn.Identity() + self.drop_path2 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + + def _partition_attn(self, x): + img_size = x.shape[-2:] + if self.partition_block: + partitioned = window_partition_nchw(x, self.partition_size) + else: + partitioned = grid_partition_nchw(x, self.partition_size) + partitioned = self.attn(partitioned) + if self.partition_block: + x = window_reverse_nchw(partitioned, self.partition_size, img_size) + else: + x = grid_reverse_nchw(partitioned, self.partition_size, img_size) + return x + + def forward(self, x): + x = x + self.drop_path1(self.ls1(self._partition_attn(self.norm1(x)))) + x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x)))) + return x + +class MaxxVitBlock(nn.Module): + + def __init__(self, dim: int, dim_out: int, stride: int=1, conv_cfg: MaxxVitConvCfg=MaxxVitConvCfg(), transformer_cfg: MaxxVitTransformerCfg=MaxxVitTransformerCfg(), drop_path: float=0.0): + super().__init__() + self.nchw_attn = transformer_cfg.use_nchw_attn + conv_cls = ConvNeXtBlock if conv_cfg.block_type == 'convnext' else MbConvBlock + self.conv = conv_cls(dim, dim_out, stride=stride, cfg=conv_cfg, drop_path=drop_path) + attn_kwargs = dict(dim=dim_out, cfg=transformer_cfg, drop_path=drop_path) + partition_layer = PartitionAttention2d if self.nchw_attn else PartitionAttentionCl + self.attn_block = None if transformer_cfg.no_block_attn else partition_layer(**attn_kwargs) + self.attn_grid = partition_layer(partition_type='grid', **attn_kwargs) + + def init_weights(self, scheme=''): + if self.attn_block is not None: + named_apply(partial(_init_transformer, scheme=scheme), self.attn_block) + named_apply(partial(_init_transformer, scheme=scheme), self.attn_grid) + named_apply(partial(_init_conv, scheme=scheme), self.conv) + + def forward(self, x): + x = self.conv(x) + if not self.nchw_attn: + x = x.permute(0, 2, 3, 1) + if self.attn_block is not None: + x = self.attn_block(x) + x = self.attn_grid(x) + if not self.nchw_attn: + x = x.permute(0, 3, 1, 2) + return x + +class ParallelMaxxVitBlock(nn.Module): + + def __init__(self, dim, dim_out, stride=1, num_conv=2, conv_cfg: MaxxVitConvCfg=MaxxVitConvCfg(), transformer_cfg: MaxxVitTransformerCfg=MaxxVitTransformerCfg(), drop_path=0.0): + super().__init__() + conv_cls = ConvNeXtBlock if conv_cfg.block_type == 'convnext' else MbConvBlock + if num_conv > 1: + convs = [conv_cls(dim, dim_out, stride=stride, cfg=conv_cfg, drop_path=drop_path)] + convs += [conv_cls(dim_out, dim_out, cfg=conv_cfg, drop_path=drop_path)] * (num_conv - 1) + self.conv = nn.Sequential(*convs) + else: + self.conv = conv_cls(dim, dim_out, stride=stride, cfg=conv_cfg, drop_path=drop_path) + self.attn = ParallelPartitionAttention(dim=dim_out, cfg=transformer_cfg, drop_path=drop_path) + + def init_weights(self, scheme=''): + named_apply(partial(_init_transformer, scheme=scheme), self.attn) + named_apply(partial(_init_conv, scheme=scheme), self.conv) + + def forward(self, x): + x = self.conv(x) + x = x.permute(0, 2, 3, 1) + x = self.attn(x) + x = x.permute(0, 3, 1, 2) + return x + +class MaxxVitStage(nn.Module): + + def __init__(self, in_chs: int, out_chs: int, stride: int=2, depth: int=4, feat_size: Tuple[int, int]=(14, 14), block_types: Union[str, Tuple[str]]='C', transformer_cfg: MaxxVitTransformerCfg=MaxxVitTransformerCfg(), conv_cfg: MaxxVitConvCfg=MaxxVitConvCfg(), drop_path: Union[float, List[float]]=0.0): + super().__init__() + self.grad_checkpointing = False + block_types = extend_tuple(block_types, depth) + blocks = [] + for (i, t) in enumerate(block_types): + block_stride = stride if i == 0 else 1 + assert t in ('C', 'T', 'M', 'PM') + if t == 'C': + conv_cls = ConvNeXtBlock if conv_cfg.block_type == 'convnext' else MbConvBlock + blocks += [conv_cls(in_chs, out_chs, stride=block_stride, cfg=conv_cfg, drop_path=drop_path[i])] + elif t == 'T': + rel_pos_cls = get_rel_pos_cls(transformer_cfg, feat_size) + blocks += [TransformerBlock2d(in_chs, out_chs, stride=block_stride, rel_pos_cls=rel_pos_cls, cfg=transformer_cfg, drop_path=drop_path[i])] + elif t == 'M': + blocks += [MaxxVitBlock(in_chs, out_chs, stride=block_stride, conv_cfg=conv_cfg, transformer_cfg=transformer_cfg, drop_path=drop_path[i])] + elif t == 'PM': + blocks += [ParallelMaxxVitBlock(in_chs, out_chs, stride=block_stride, conv_cfg=conv_cfg, transformer_cfg=transformer_cfg, drop_path=drop_path[i])] + in_chs = out_chs + self.blocks = nn.Sequential(*blocks) + + def forward(self, x): + if self.grad_checkpointing and (not torch.jit.is_scripting()): + x = checkpoint_seq(self.blocks, x) + else: + x = self.blocks(x) + return x + +class Stem(nn.Module): + + def __init__(self, in_chs: int, out_chs: int, kernel_size: int=3, padding: str='', bias: bool=False, act_layer: str='gelu', norm_layer: str='batchnorm2d', norm_eps: float=1e-05): + super().__init__() + if not isinstance(out_chs, (list, tuple)): + out_chs = to_2tuple(out_chs) + norm_act_layer = partial(get_norm_act_layer(norm_layer, act_layer), eps=norm_eps) + self.out_chs = out_chs[-1] + self.stride = 2 + self.conv1 = create_conv2d(in_chs, out_chs[0], kernel_size, stride=2, padding=padding, bias=bias) + self.norm1 = norm_act_layer(out_chs[0]) + self.conv2 = create_conv2d(out_chs[0], out_chs[1], kernel_size, stride=1, padding=padding, bias=bias) + + def init_weights(self, scheme=''): + named_apply(partial(_init_conv, scheme=scheme), self) + + def forward(self, x): + x = self.conv1(x) + x = self.norm1(x) + x = self.conv2(x) + return x + +def cfg_window_size(cfg: MaxxVitTransformerCfg, img_size: Tuple[int, int]): + if cfg.window_size is not None: + assert cfg.grid_size + return cfg + partition_size = (img_size[0] // cfg.partition_ratio, img_size[1] // cfg.partition_ratio) + cfg = replace(cfg, window_size=partition_size, grid_size=partition_size) + return cfg + +def _overlay_kwargs(cfg: MaxxVitCfg, **kwargs): + transformer_kwargs = {} + conv_kwargs = {} + base_kwargs = {} + for (k, v) in kwargs.items(): + if k.startswith('transformer_'): + transformer_kwargs[k.replace('transformer_', '')] = v + elif k.startswith('conv_'): + conv_kwargs[k.replace('conv_', '')] = v + else: + base_kwargs[k] = v + cfg = replace(cfg, transformer_cfg=replace(cfg.transformer_cfg, **transformer_kwargs), conv_cfg=replace(cfg.conv_cfg, **conv_kwargs), **base_kwargs) + return cfg + +class MaxxVit(nn.Module): + + def __init__(self, cfg: MaxxVitCfg, img_size: Union[int, Tuple[int, int]]=224, in_chans: int=3, num_classes: int=1000, global_pool: str='avg', drop_rate: float=0.0, drop_path_rate: float=0.0, **kwargs): + super().__init__() + img_size = to_2tuple(img_size) + if kwargs: + cfg = _overlay_kwargs(cfg, **kwargs) + transformer_cfg = cfg_window_size(cfg.transformer_cfg, img_size) + self.num_classes = num_classes + self.global_pool = global_pool + self.num_features = self.embed_dim = cfg.embed_dim[-1] + self.drop_rate = drop_rate + self.grad_checkpointing = False + self.feature_info = [] + self.stem = Stem(in_chs=in_chans, out_chs=cfg.stem_width, padding=cfg.conv_cfg.padding, bias=cfg.stem_bias, act_layer=cfg.conv_cfg.act_layer, norm_layer=cfg.conv_cfg.norm_layer, norm_eps=cfg.conv_cfg.norm_eps) + stride = self.stem.stride + self.feature_info += [dict(num_chs=self.stem.out_chs, reduction=2, module='stem')] + feat_size = tuple([i // s for (i, s) in zip(img_size, to_2tuple(stride))]) + num_stages = len(cfg.embed_dim) + assert len(cfg.depths) == num_stages + dpr = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(cfg.depths)).split(cfg.depths)] + in_chs = self.stem.out_chs + stages = [] + for i in range(num_stages): + stage_stride = 2 + out_chs = cfg.embed_dim[i] + feat_size = tuple([(r - 1) // stage_stride + 1 for r in feat_size]) + stages += [MaxxVitStage(in_chs, out_chs, depth=cfg.depths[i], block_types=cfg.block_type[i], conv_cfg=cfg.conv_cfg, transformer_cfg=transformer_cfg, feat_size=feat_size, drop_path=dpr[i])] + stride *= stage_stride + in_chs = out_chs + self.feature_info += [dict(num_chs=out_chs, reduction=stride, module=f'stages.{i}')] + self.stages = nn.Sequential(*stages) + final_norm_layer = partial(get_norm_layer(cfg.transformer_cfg.norm_layer), eps=cfg.transformer_cfg.norm_eps) + if cfg.head_hidden_size: + self.norm = nn.Identity() + self.head_hidden_size = cfg.head_hidden_size + self.head = NormMlpClassifierHead(self.num_features, num_classes, hidden_size=self.head_hidden_size, pool_type=global_pool, drop_rate=drop_rate, norm_layer=final_norm_layer) + else: + self.head_hidden_size = self.num_features + self.norm = final_norm_layer(self.num_features) + self.head = ClassifierHead(self.num_features, num_classes, pool_type=global_pool, drop_rate=drop_rate) + assert cfg.weight_init in ('', 'normal', 'trunc_normal', 'xavier_normal', 'vit_eff') + if cfg.weight_init: + named_apply(partial(self._init_weights, scheme=cfg.weight_init), self) + + def _init_weights(self, module, name, scheme=''): + if hasattr(module, 'init_weights'): + try: + module.init_weights(scheme=scheme) + except TypeError: + module.init_weights() + + @torch.jit.ignore + def no_weight_decay(self): + return {k for (k, _) in self.named_parameters() if any((n in k for n in ['relative_position_bias_table', 'rel_pos.mlp']))} + + @torch.jit.ignore + def group_matcher(self, coarse=False): + matcher = dict(stem='^stem', blocks=[('^stages\\.(\\d+)', None), ('^norm', (99999,))]) + return matcher + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + for s in self.stages: + s.grad_checkpointing = enable + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.head.fc + + def reset_classifier(self, num_classes: int, global_pool: Optional[str]=None): + self.num_classes = num_classes + self.head.reset(num_classes, global_pool) + + def forward_intermediates(self, x: torch.Tensor, indices: Optional[Union[int, List[int]]]=None, norm: bool=False, stop_early: bool=False, output_fmt: str='NCHW', intermediates_only: bool=False) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]: + assert output_fmt in ('NCHW',), 'Output shape must be NCHW.' + intermediates = [] + (take_indices, max_index) = feature_take_indices(len(self.stages) + 1, indices) + feat_idx = 0 + x = self.stem(x) + if feat_idx in take_indices: + intermediates.append(x) + last_idx = len(self.stages) + if torch.jit.is_scripting() or not stop_early: + stages = self.stages + else: + stages = self.stages[:max_index] + for stage in stages: + feat_idx += 1 + x = stage(x) + if feat_idx in take_indices: + if norm and feat_idx == last_idx: + x_inter = self.norm(x) + else: + x_inter = x + intermediates.append(x_inter) + if intermediates_only: + return intermediates + x = self.norm(x) + return (x, intermediates) + + def prune_intermediate_layers(self, indices: Union[int, List[int]]=1, prune_norm: bool=False, prune_head: bool=True): + (take_indices, max_index) = feature_take_indices(len(self.stages) + 1, indices) + self.stages = self.stages[:max_index] + if prune_norm: + self.norm = nn.Identity() + if prune_head: + self.head = self.reset_classifier(0, '') + return take_indices + + def forward_features(self, x): + x = self.stem(x) + x = self.stages(x) + x = self.norm(x) + return x + + def forward_head(self, x, pre_logits: bool=False): + return self.head(x, pre_logits=pre_logits) if pre_logits else self.head(x) + + def forward(self, x): + x = self.forward_features(x) + x = self.forward_head(x) + return x + +def _rw_coat_cfg(stride_mode='pool', pool_type='avg2', conv_output_bias=False, conv_attn_early=False, conv_attn_act_layer='relu', conv_norm_layer='', transformer_shortcut_bias=True, transformer_norm_layer='layernorm2d', transformer_norm_layer_cl='layernorm', init_values=None, rel_pos_type='bias', rel_pos_dim=512): + return dict(conv_cfg=MaxxVitConvCfg(stride_mode=stride_mode, pool_type=pool_type, pre_norm_act=True, expand_output=False, output_bias=conv_output_bias, attn_early=conv_attn_early, attn_act_layer=conv_attn_act_layer, act_layer='silu', norm_layer=conv_norm_layer), transformer_cfg=MaxxVitTransformerCfg(expand_first=False, shortcut_bias=transformer_shortcut_bias, pool_type=pool_type, init_values=init_values, norm_layer=transformer_norm_layer, norm_layer_cl=transformer_norm_layer_cl, rel_pos_type=rel_pos_type, rel_pos_dim=rel_pos_dim)) + +def _rw_max_cfg(stride_mode='dw', pool_type='avg2', conv_output_bias=False, conv_attn_ratio=1 / 16, conv_norm_layer='', transformer_norm_layer='layernorm2d', transformer_norm_layer_cl='layernorm', window_size=None, dim_head=32, init_values=None, rel_pos_type='bias', rel_pos_dim=512): + return dict(conv_cfg=MaxxVitConvCfg(stride_mode=stride_mode, pool_type=pool_type, expand_output=False, output_bias=conv_output_bias, attn_ratio=conv_attn_ratio, act_layer='silu', norm_layer=conv_norm_layer), transformer_cfg=MaxxVitTransformerCfg(expand_first=False, pool_type=pool_type, dim_head=dim_head, window_size=window_size, init_values=init_values, norm_layer=transformer_norm_layer, norm_layer_cl=transformer_norm_layer_cl, rel_pos_type=rel_pos_type, rel_pos_dim=rel_pos_dim)) + +def _next_cfg(stride_mode='dw', pool_type='avg2', conv_norm_layer='layernorm2d', conv_norm_layer_cl='layernorm', transformer_norm_layer='layernorm2d', transformer_norm_layer_cl='layernorm', window_size=None, no_block_attn=False, init_values=1e-06, rel_pos_type='mlp', rel_pos_dim=512): + init_values = to_2tuple(init_values) + return dict(conv_cfg=MaxxVitConvCfg(block_type='convnext', stride_mode=stride_mode, pool_type=pool_type, expand_output=False, init_values=init_values[0], norm_layer=conv_norm_layer, norm_layer_cl=conv_norm_layer_cl), transformer_cfg=MaxxVitTransformerCfg(expand_first=False, pool_type=pool_type, window_size=window_size, no_block_attn=no_block_attn, init_values=init_values[1], norm_layer=transformer_norm_layer, norm_layer_cl=transformer_norm_layer_cl, rel_pos_type=rel_pos_type, rel_pos_dim=rel_pos_dim)) + +def _tf_cfg(): + return dict(conv_cfg=MaxxVitConvCfg(norm_eps=0.001, act_layer='gelu_tanh', padding='same'), transformer_cfg=MaxxVitTransformerCfg(norm_eps=1e-05, act_layer='gelu_tanh', head_first=False, rel_pos_type='bias_tf')) +model_cfgs = dict(coatnet_pico_rw=MaxxVitCfg(embed_dim=(64, 128, 256, 512), depths=(2, 3, 5, 2), stem_width=(32, 64), **_rw_max_cfg(conv_output_bias=True, conv_attn_ratio=0.25)), coatnet_nano_rw=MaxxVitCfg(embed_dim=(64, 128, 256, 512), depths=(3, 4, 6, 3), stem_width=(32, 64), **_rw_max_cfg(stride_mode='pool', conv_output_bias=True, conv_attn_ratio=0.25)), coatnet_0_rw=MaxxVitCfg(embed_dim=(96, 192, 384, 768), depths=(2, 3, 7, 2), stem_width=(32, 64), **_rw_coat_cfg(conv_attn_early=True, transformer_shortcut_bias=False)), coatnet_1_rw=MaxxVitCfg(embed_dim=(96, 192, 384, 768), depths=(2, 6, 14, 2), stem_width=(32, 64), **_rw_coat_cfg(stride_mode='dw', conv_attn_early=True, transformer_shortcut_bias=False)), coatnet_2_rw=MaxxVitCfg(embed_dim=(128, 256, 512, 1024), depths=(2, 6, 14, 2), stem_width=(64, 128), **_rw_coat_cfg(stride_mode='dw', conv_attn_act_layer='silu')), coatnet_3_rw=MaxxVitCfg(embed_dim=(192, 384, 768, 1536), depths=(2, 6, 14, 2), stem_width=(96, 192), **_rw_coat_cfg(stride_mode='dw', conv_attn_act_layer='silu', init_values=1e-06)), coatnet_bn_0_rw=MaxxVitCfg(embed_dim=(96, 192, 384, 768), depths=(2, 3, 7, 2), stem_width=(32, 64), **_rw_coat_cfg(stride_mode='dw', conv_attn_early=True, transformer_shortcut_bias=False, transformer_norm_layer='batchnorm2d')), coatnet_rmlp_nano_rw=MaxxVitCfg(embed_dim=(64, 128, 256, 512), depths=(3, 4, 6, 3), stem_width=(32, 64), **_rw_max_cfg(conv_output_bias=True, conv_attn_ratio=0.25, rel_pos_type='mlp', rel_pos_dim=384)), coatnet_rmlp_0_rw=MaxxVitCfg(embed_dim=(96, 192, 384, 768), depths=(2, 3, 7, 2), stem_width=(32, 64), **_rw_coat_cfg(stride_mode='dw', rel_pos_type='mlp')), coatnet_rmlp_1_rw=MaxxVitCfg(embed_dim=(96, 192, 384, 768), depths=(2, 6, 14, 2), stem_width=(32, 64), **_rw_coat_cfg(pool_type='max', conv_attn_early=True, transformer_shortcut_bias=False, rel_pos_type='mlp', rel_pos_dim=384)), coatnet_rmlp_1_rw2=MaxxVitCfg(embed_dim=(96, 192, 384, 768), depths=(2, 6, 14, 2), stem_width=(32, 64), **_rw_coat_cfg(stride_mode='dw', rel_pos_type='mlp', rel_pos_dim=512)), coatnet_rmlp_2_rw=MaxxVitCfg(embed_dim=(128, 256, 512, 1024), depths=(2, 6, 14, 2), stem_width=(64, 128), **_rw_coat_cfg(stride_mode='dw', conv_attn_act_layer='silu', init_values=1e-06, rel_pos_type='mlp')), coatnet_rmlp_3_rw=MaxxVitCfg(embed_dim=(192, 384, 768, 1536), depths=(2, 6, 14, 2), stem_width=(96, 192), **_rw_coat_cfg(stride_mode='dw', conv_attn_act_layer='silu', init_values=1e-06, rel_pos_type='mlp')), coatnet_nano_cc=MaxxVitCfg(embed_dim=(64, 128, 256, 512), depths=(3, 4, 6, 3), stem_width=(32, 64), block_type=('C', 'C', ('C', 'T'), ('C', 'T')), **_rw_coat_cfg()), coatnext_nano_rw=MaxxVitCfg(embed_dim=(64, 128, 256, 512), depths=(3, 4, 6, 3), stem_width=(32, 64), weight_init='normal', **_next_cfg(rel_pos_type='bias', init_values=(1e-05, None))), coatnet_0=MaxxVitCfg(embed_dim=(96, 192, 384, 768), depths=(2, 3, 5, 2), stem_width=64, head_hidden_size=768), coatnet_1=MaxxVitCfg(embed_dim=(96, 192, 384, 768), depths=(2, 6, 14, 2), stem_width=64, head_hidden_size=768), coatnet_2=MaxxVitCfg(embed_dim=(128, 256, 512, 1024), depths=(2, 6, 14, 2), stem_width=128, head_hidden_size=1024), coatnet_3=MaxxVitCfg(embed_dim=(192, 384, 768, 1536), depths=(2, 6, 14, 2), stem_width=192, head_hidden_size=1536), coatnet_4=MaxxVitCfg(embed_dim=(192, 384, 768, 1536), depths=(2, 12, 28, 2), stem_width=192, head_hidden_size=1536), coatnet_5=MaxxVitCfg(embed_dim=(256, 512, 1280, 2048), depths=(2, 12, 28, 2), stem_width=192, head_hidden_size=2048), maxvit_pico_rw=MaxxVitCfg(embed_dim=(32, 64, 128, 256), depths=(2, 2, 5, 2), block_type=('M',) * 4, stem_width=(24, 32), **_rw_max_cfg()), maxvit_nano_rw=MaxxVitCfg(embed_dim=(64, 128, 256, 512), depths=(1, 2, 3, 1), block_type=('M',) * 4, stem_width=(32, 64), **_rw_max_cfg()), maxvit_tiny_rw=MaxxVitCfg(embed_dim=(64, 128, 256, 512), depths=(2, 2, 5, 2), block_type=('M',) * 4, stem_width=(32, 64), **_rw_max_cfg()), maxvit_tiny_pm=MaxxVitCfg(embed_dim=(64, 128, 256, 512), depths=(2, 2, 5, 2), block_type=('PM',) * 4, stem_width=(32, 64), **_rw_max_cfg()), maxvit_rmlp_pico_rw=MaxxVitCfg(embed_dim=(32, 64, 128, 256), depths=(2, 2, 5, 2), block_type=('M',) * 4, stem_width=(24, 32), **_rw_max_cfg(rel_pos_type='mlp')), maxvit_rmlp_nano_rw=MaxxVitCfg(embed_dim=(64, 128, 256, 512), depths=(1, 2, 3, 1), block_type=('M',) * 4, stem_width=(32, 64), **_rw_max_cfg(rel_pos_type='mlp')), maxvit_rmlp_tiny_rw=MaxxVitCfg(embed_dim=(64, 128, 256, 512), depths=(2, 2, 5, 2), block_type=('M',) * 4, stem_width=(32, 64), **_rw_max_cfg(rel_pos_type='mlp')), maxvit_rmlp_small_rw=MaxxVitCfg(embed_dim=(96, 192, 384, 768), depths=(2, 2, 5, 2), block_type=('M',) * 4, stem_width=(32, 64), **_rw_max_cfg(rel_pos_type='mlp', init_values=1e-06)), maxvit_rmlp_base_rw=MaxxVitCfg(embed_dim=(96, 192, 384, 768), depths=(2, 6, 14, 2), block_type=('M',) * 4, stem_width=(32, 64), head_hidden_size=768, **_rw_max_cfg(rel_pos_type='mlp')), maxxvit_rmlp_nano_rw=MaxxVitCfg(embed_dim=(64, 128, 256, 512), depths=(1, 2, 3, 1), block_type=('M',) * 4, stem_width=(32, 64), weight_init='normal', **_next_cfg()), maxxvit_rmlp_tiny_rw=MaxxVitCfg(embed_dim=(64, 128, 256, 512), depths=(2, 2, 5, 2), block_type=('M',) * 4, stem_width=(32, 64), **_next_cfg()), maxxvit_rmlp_small_rw=MaxxVitCfg(embed_dim=(96, 192, 384, 768), depths=(2, 2, 5, 2), block_type=('M',) * 4, stem_width=(48, 96), **_next_cfg()), maxxvitv2_nano_rw=MaxxVitCfg(embed_dim=(96, 192, 384, 768), depths=(1, 2, 3, 1), block_type=('M',) * 4, stem_width=(48, 96), weight_init='normal', **_next_cfg(no_block_attn=True, rel_pos_type='bias')), maxxvitv2_rmlp_base_rw=MaxxVitCfg(embed_dim=(128, 256, 512, 1024), depths=(2, 6, 12, 2), block_type=('M',) * 4, stem_width=(64, 128), **_next_cfg(no_block_attn=True)), maxxvitv2_rmlp_large_rw=MaxxVitCfg(embed_dim=(160, 320, 640, 1280), depths=(2, 6, 16, 2), block_type=('M',) * 4, stem_width=(80, 160), head_hidden_size=1280, **_next_cfg(no_block_attn=True)), maxvit_tiny_tf=MaxxVitCfg(embed_dim=(64, 128, 256, 512), depths=(2, 2, 5, 2), block_type=('M',) * 4, stem_width=64, stem_bias=True, head_hidden_size=512, **_tf_cfg()), maxvit_small_tf=MaxxVitCfg(embed_dim=(96, 192, 384, 768), depths=(2, 2, 5, 2), block_type=('M',) * 4, stem_width=64, stem_bias=True, head_hidden_size=768, **_tf_cfg()), maxvit_base_tf=MaxxVitCfg(embed_dim=(96, 192, 384, 768), depths=(2, 6, 14, 2), block_type=('M',) * 4, stem_width=64, stem_bias=True, head_hidden_size=768, **_tf_cfg()), maxvit_large_tf=MaxxVitCfg(embed_dim=(128, 256, 512, 1024), depths=(2, 6, 14, 2), block_type=('M',) * 4, stem_width=128, stem_bias=True, head_hidden_size=1024, **_tf_cfg()), maxvit_xlarge_tf=MaxxVitCfg(embed_dim=(192, 384, 768, 1536), depths=(2, 6, 14, 2), block_type=('M',) * 4, stem_width=192, stem_bias=True, head_hidden_size=1536, **_tf_cfg())) + +def checkpoint_filter_fn(state_dict, model: nn.Module): + model_state_dict = model.state_dict() + out_dict = {} + for (k, v) in state_dict.items(): + if k.endswith('relative_position_bias_table'): + m = model.get_submodule(k[:-29]) + if v.shape != m.relative_position_bias_table.shape or m.window_size[0] != m.window_size[1]: + v = resize_rel_pos_bias_table(v, new_window_size=m.window_size, new_bias_shape=m.relative_position_bias_table.shape) + if k in model_state_dict and v.ndim != model_state_dict[k].ndim and (v.numel() == model_state_dict[k].numel()): + assert v.ndim in (2, 4) + v = v.reshape(model_state_dict[k].shape) + out_dict[k] = v + return out_dict + +def _create_maxxvit(variant, cfg_variant=None, pretrained=False, **kwargs): + if cfg_variant is None: + if variant in model_cfgs: + cfg_variant = variant + else: + cfg_variant = '_'.join(variant.split('_')[:-1]) + return build_model_with_cfg(MaxxVit, variant, pretrained, model_cfg=model_cfgs[cfg_variant], feature_cfg=dict(flatten_sequential=True), pretrained_filter_fn=checkpoint_filter_fn, **kwargs) + +def _cfg(url='', **kwargs): + return {'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), 'crop_pct': 0.95, 'interpolation': 'bicubic', 'mean': (0.5, 0.5, 0.5), 'std': (0.5, 0.5, 0.5), 'first_conv': 'stem.conv1', 'classifier': 'head.fc', 'fixed_input_size': True, **kwargs} +default_cfgs = generate_default_cfgs({'coatnet_pico_rw_224.untrained': _cfg(url=''), 'coatnet_nano_rw_224.sw_in1k': _cfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-maxx/coatnet_nano_rw_224_sw-f53093b4.pth', crop_pct=0.9), 'coatnet_0_rw_224.sw_in1k': _cfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-maxx/coatnet_0_rw_224_sw-a6439706.pth'), 'coatnet_1_rw_224.sw_in1k': _cfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-maxx/coatnet_1_rw_224_sw-5cae1ea8.pth'), 'coatnet_2_rw_224.sw_in12k_ft_in1k': _cfg(hf_hub_id='timm/'), 'coatnet_rmlp_1_rw2_224.sw_in12k_ft_in1k': _cfg(hf_hub_id='timm/'), 'coatnet_rmlp_2_rw_224.sw_in12k_ft_in1k': _cfg(hf_hub_id='timm/'), 'coatnet_rmlp_2_rw_384.sw_in12k_ft_in1k': _cfg(hf_hub_id='timm/', input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), 'coatnet_bn_0_rw_224.sw_in1k': _cfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-maxx/coatnet_bn_0_rw_224_sw-c228e218.pth', mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, crop_pct=0.95), 'coatnet_rmlp_nano_rw_224.sw_in1k': _cfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-maxx/coatnet_rmlp_nano_rw_224_sw-bd1d51b3.pth', crop_pct=0.9), 'coatnet_rmlp_0_rw_224.untrained': _cfg(url=''), 'coatnet_rmlp_1_rw_224.sw_in1k': _cfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-maxx/coatnet_rmlp_1_rw_224_sw-9051e6c3.pth'), 'coatnet_rmlp_2_rw_224.sw_in1k': _cfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-maxx/coatnet_rmlp_2_rw_224_sw-5ccfac55.pth'), 'coatnet_rmlp_3_rw_224.untrained': _cfg(url=''), 'coatnet_nano_cc_224.untrained': _cfg(url=''), 'coatnext_nano_rw_224.sw_in1k': _cfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-maxx/coatnext_nano_rw_224_ad-22cb71c2.pth', crop_pct=0.9), 'coatnet_2_rw_224.sw_in12k': _cfg(hf_hub_id='timm/', num_classes=11821), 'coatnet_3_rw_224.sw_in12k': _cfg(hf_hub_id='timm/', num_classes=11821), 'coatnet_rmlp_1_rw2_224.sw_in12k': _cfg(hf_hub_id='timm/', num_classes=11821), 'coatnet_rmlp_2_rw_224.sw_in12k': _cfg(hf_hub_id='timm/', num_classes=11821), 'coatnet_0_224.untrained': _cfg(url=''), 'coatnet_1_224.untrained': _cfg(url=''), 'coatnet_2_224.untrained': _cfg(url=''), 'coatnet_3_224.untrained': _cfg(url=''), 'coatnet_4_224.untrained': _cfg(url=''), 'coatnet_5_224.untrained': _cfg(url=''), 'maxvit_pico_rw_256.untrained': _cfg(url='', input_size=(3, 256, 256), pool_size=(8, 8)), 'maxvit_nano_rw_256.sw_in1k': _cfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-maxx/maxvit_nano_rw_256_sw-fb127241.pth', input_size=(3, 256, 256), pool_size=(8, 8)), 'maxvit_tiny_rw_224.sw_in1k': _cfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-maxx/maxvit_tiny_rw_224_sw-7d0dffeb.pth'), 'maxvit_tiny_rw_256.untrained': _cfg(url='', input_size=(3, 256, 256), pool_size=(8, 8)), 'maxvit_tiny_pm_256.untrained': _cfg(url='', input_size=(3, 256, 256), pool_size=(8, 8)), 'maxvit_rmlp_pico_rw_256.sw_in1k': _cfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-maxx/maxvit_rmlp_pico_rw_256_sw-8d82f2c6.pth', input_size=(3, 256, 256), pool_size=(8, 8)), 'maxvit_rmlp_nano_rw_256.sw_in1k': _cfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-maxx/maxvit_rmlp_nano_rw_256_sw-c17bb0d6.pth', input_size=(3, 256, 256), pool_size=(8, 8)), 'maxvit_rmlp_tiny_rw_256.sw_in1k': _cfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-maxx/maxvit_rmlp_tiny_rw_256_sw-bbef0ff5.pth', input_size=(3, 256, 256), pool_size=(8, 8)), 'maxvit_rmlp_small_rw_224.sw_in1k': _cfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-maxx/maxvit_rmlp_small_rw_224_sw-6ef0ae4f.pth', crop_pct=0.9), 'maxvit_rmlp_small_rw_256.untrained': _cfg(url='', input_size=(3, 256, 256), pool_size=(8, 8)), 'maxvit_rmlp_base_rw_224.sw_in12k_ft_in1k': _cfg(hf_hub_id='timm/'), 'maxvit_rmlp_base_rw_384.sw_in12k_ft_in1k': _cfg(hf_hub_id='timm/', input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), 'maxvit_rmlp_base_rw_224.sw_in12k': _cfg(hf_hub_id='timm/', num_classes=11821), 'maxxvit_rmlp_nano_rw_256.sw_in1k': _cfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-maxx/maxxvit_rmlp_nano_rw_256_sw-0325d459.pth', input_size=(3, 256, 256), pool_size=(8, 8)), 'maxxvit_rmlp_tiny_rw_256.untrained': _cfg(url='', input_size=(3, 256, 256), pool_size=(8, 8)), 'maxxvit_rmlp_small_rw_256.sw_in1k': _cfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-maxx/maxxvit_rmlp_small_rw_256_sw-37e217ff.pth', input_size=(3, 256, 256), pool_size=(8, 8)), 'maxxvitv2_nano_rw_256.sw_in1k': _cfg(hf_hub_id='timm/', input_size=(3, 256, 256), pool_size=(8, 8)), 'maxxvitv2_rmlp_base_rw_224.sw_in12k_ft_in1k': _cfg(hf_hub_id='timm/'), 'maxxvitv2_rmlp_base_rw_384.sw_in12k_ft_in1k': _cfg(hf_hub_id='timm/', input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), 'maxxvitv2_rmlp_large_rw_224.untrained': _cfg(url=''), 'maxxvitv2_rmlp_base_rw_224.sw_in12k': _cfg(hf_hub_id='timm/', num_classes=11821), 'maxvit_tiny_tf_224.in1k': _cfg(hf_hub_id='timm/', mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD), 'maxvit_tiny_tf_384.in1k': _cfg(hf_hub_id='timm/', input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), 'maxvit_tiny_tf_512.in1k': _cfg(hf_hub_id='timm/', input_size=(3, 512, 512), pool_size=(16, 16), crop_pct=1.0, crop_mode='squash'), 'maxvit_small_tf_224.in1k': _cfg(hf_hub_id='timm/', mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD), 'maxvit_small_tf_384.in1k': _cfg(hf_hub_id='timm/', input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), 'maxvit_small_tf_512.in1k': _cfg(hf_hub_id='timm/', input_size=(3, 512, 512), pool_size=(16, 16), crop_pct=1.0, crop_mode='squash'), 'maxvit_base_tf_224.in1k': _cfg(hf_hub_id='timm/', mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD), 'maxvit_base_tf_384.in1k': _cfg(hf_hub_id='timm/', input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), 'maxvit_base_tf_512.in1k': _cfg(hf_hub_id='timm/', input_size=(3, 512, 512), pool_size=(16, 16), crop_pct=1.0, crop_mode='squash'), 'maxvit_large_tf_224.in1k': _cfg(hf_hub_id='timm/', mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD), 'maxvit_large_tf_384.in1k': _cfg(hf_hub_id='timm/', input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), 'maxvit_large_tf_512.in1k': _cfg(hf_hub_id='timm/', input_size=(3, 512, 512), pool_size=(16, 16), crop_pct=1.0, crop_mode='squash'), 'maxvit_base_tf_224.in21k': _cfg(hf_hub_id='timm/', num_classes=21843), 'maxvit_base_tf_384.in21k_ft_in1k': _cfg(hf_hub_id='timm/', input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), 'maxvit_base_tf_512.in21k_ft_in1k': _cfg(hf_hub_id='timm/', input_size=(3, 512, 512), pool_size=(16, 16), crop_pct=1.0, crop_mode='squash'), 'maxvit_large_tf_224.in21k': _cfg(hf_hub_id='timm/', num_classes=21843), 'maxvit_large_tf_384.in21k_ft_in1k': _cfg(hf_hub_id='timm/', input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), 'maxvit_large_tf_512.in21k_ft_in1k': _cfg(hf_hub_id='timm/', input_size=(3, 512, 512), crop_pct=1.0, crop_mode='squash'), 'maxvit_xlarge_tf_224.in21k': _cfg(hf_hub_id='timm/', num_classes=21843), 'maxvit_xlarge_tf_384.in21k_ft_in1k': _cfg(hf_hub_id='timm/', input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), 'maxvit_xlarge_tf_512.in21k_ft_in1k': _cfg(hf_hub_id='timm/', input_size=(3, 512, 512), pool_size=(16, 16), crop_pct=1.0, crop_mode='squash')}) + +@register_model +def coatnet_pico_rw_224(pretrained=False, **kwargs) -> MaxxVit: + return _create_maxxvit('coatnet_pico_rw_224', pretrained=pretrained, **kwargs) + +@register_model +def coatnet_nano_rw_224(pretrained=False, **kwargs) -> MaxxVit: + return _create_maxxvit('coatnet_nano_rw_224', pretrained=pretrained, **kwargs) + +@register_model +def coatnet_0_rw_224(pretrained=False, **kwargs) -> MaxxVit: + return _create_maxxvit('coatnet_0_rw_224', pretrained=pretrained, **kwargs) + +@register_model +def coatnet_1_rw_224(pretrained=False, **kwargs) -> MaxxVit: + return _create_maxxvit('coatnet_1_rw_224', pretrained=pretrained, **kwargs) + +@register_model +def coatnet_2_rw_224(pretrained=False, **kwargs) -> MaxxVit: + return _create_maxxvit('coatnet_2_rw_224', pretrained=pretrained, **kwargs) + +@register_model +def coatnet_3_rw_224(pretrained=False, **kwargs) -> MaxxVit: + return _create_maxxvit('coatnet_3_rw_224', pretrained=pretrained, **kwargs) + +@register_model +def coatnet_bn_0_rw_224(pretrained=False, **kwargs) -> MaxxVit: + return _create_maxxvit('coatnet_bn_0_rw_224', pretrained=pretrained, **kwargs) + +@register_model +def coatnet_rmlp_nano_rw_224(pretrained=False, **kwargs) -> MaxxVit: + return _create_maxxvit('coatnet_rmlp_nano_rw_224', pretrained=pretrained, **kwargs) + +@register_model +def coatnet_rmlp_0_rw_224(pretrained=False, **kwargs) -> MaxxVit: + return _create_maxxvit('coatnet_rmlp_0_rw_224', pretrained=pretrained, **kwargs) + +@register_model +def coatnet_rmlp_1_rw_224(pretrained=False, **kwargs) -> MaxxVit: + return _create_maxxvit('coatnet_rmlp_1_rw_224', pretrained=pretrained, **kwargs) + +@register_model +def coatnet_rmlp_1_rw2_224(pretrained=False, **kwargs) -> MaxxVit: + return _create_maxxvit('coatnet_rmlp_1_rw2_224', pretrained=pretrained, **kwargs) + +@register_model +def coatnet_rmlp_2_rw_224(pretrained=False, **kwargs) -> MaxxVit: + return _create_maxxvit('coatnet_rmlp_2_rw_224', pretrained=pretrained, **kwargs) + +@register_model +def coatnet_rmlp_2_rw_384(pretrained=False, **kwargs) -> MaxxVit: + return _create_maxxvit('coatnet_rmlp_2_rw_384', pretrained=pretrained, **kwargs) + +@register_model +def coatnet_rmlp_3_rw_224(pretrained=False, **kwargs) -> MaxxVit: + return _create_maxxvit('coatnet_rmlp_3_rw_224', pretrained=pretrained, **kwargs) + +@register_model +def coatnet_nano_cc_224(pretrained=False, **kwargs) -> MaxxVit: + return _create_maxxvit('coatnet_nano_cc_224', pretrained=pretrained, **kwargs) + +@register_model +def coatnext_nano_rw_224(pretrained=False, **kwargs) -> MaxxVit: + return _create_maxxvit('coatnext_nano_rw_224', pretrained=pretrained, **kwargs) + +@register_model +def coatnet_0_224(pretrained=False, **kwargs) -> MaxxVit: + return _create_maxxvit('coatnet_0_224', pretrained=pretrained, **kwargs) + +@register_model +def coatnet_1_224(pretrained=False, **kwargs) -> MaxxVit: + return _create_maxxvit('coatnet_1_224', pretrained=pretrained, **kwargs) + +@register_model +def coatnet_2_224(pretrained=False, **kwargs) -> MaxxVit: + return _create_maxxvit('coatnet_2_224', pretrained=pretrained, **kwargs) + +@register_model +def coatnet_3_224(pretrained=False, **kwargs) -> MaxxVit: + return _create_maxxvit('coatnet_3_224', pretrained=pretrained, **kwargs) + +@register_model +def coatnet_4_224(pretrained=False, **kwargs) -> MaxxVit: + return _create_maxxvit('coatnet_4_224', pretrained=pretrained, **kwargs) + +@register_model +def coatnet_5_224(pretrained=False, **kwargs) -> MaxxVit: + return _create_maxxvit('coatnet_5_224', pretrained=pretrained, **kwargs) + +@register_model +def maxvit_pico_rw_256(pretrained=False, **kwargs) -> MaxxVit: + return _create_maxxvit('maxvit_pico_rw_256', pretrained=pretrained, **kwargs) + +@register_model +def maxvit_nano_rw_256(pretrained=False, **kwargs) -> MaxxVit: + return _create_maxxvit('maxvit_nano_rw_256', pretrained=pretrained, **kwargs) + +@register_model +def maxvit_tiny_rw_224(pretrained=False, **kwargs) -> MaxxVit: + return _create_maxxvit('maxvit_tiny_rw_224', pretrained=pretrained, **kwargs) + +@register_model +def maxvit_tiny_rw_256(pretrained=False, **kwargs) -> MaxxVit: + return _create_maxxvit('maxvit_tiny_rw_256', pretrained=pretrained, **kwargs) + +@register_model +def maxvit_rmlp_pico_rw_256(pretrained=False, **kwargs) -> MaxxVit: + return _create_maxxvit('maxvit_rmlp_pico_rw_256', pretrained=pretrained, **kwargs) + +@register_model +def maxvit_rmlp_nano_rw_256(pretrained=False, **kwargs) -> MaxxVit: + return _create_maxxvit('maxvit_rmlp_nano_rw_256', pretrained=pretrained, **kwargs) + +@register_model +def maxvit_rmlp_tiny_rw_256(pretrained=False, **kwargs) -> MaxxVit: + return _create_maxxvit('maxvit_rmlp_tiny_rw_256', pretrained=pretrained, **kwargs) + +@register_model +def maxvit_rmlp_small_rw_224(pretrained=False, **kwargs) -> MaxxVit: + return _create_maxxvit('maxvit_rmlp_small_rw_224', pretrained=pretrained, **kwargs) + +@register_model +def maxvit_rmlp_small_rw_256(pretrained=False, **kwargs) -> MaxxVit: + return _create_maxxvit('maxvit_rmlp_small_rw_256', pretrained=pretrained, **kwargs) + +@register_model +def maxvit_rmlp_base_rw_224(pretrained=False, **kwargs) -> MaxxVit: + return _create_maxxvit('maxvit_rmlp_base_rw_224', pretrained=pretrained, **kwargs) + +@register_model +def maxvit_rmlp_base_rw_384(pretrained=False, **kwargs) -> MaxxVit: + return _create_maxxvit('maxvit_rmlp_base_rw_384', pretrained=pretrained, **kwargs) + +@register_model +def maxvit_tiny_pm_256(pretrained=False, **kwargs) -> MaxxVit: + return _create_maxxvit('maxvit_tiny_pm_256', pretrained=pretrained, **kwargs) + +@register_model +def maxxvit_rmlp_nano_rw_256(pretrained=False, **kwargs) -> MaxxVit: + return _create_maxxvit('maxxvit_rmlp_nano_rw_256', pretrained=pretrained, **kwargs) + +@register_model +def maxxvit_rmlp_tiny_rw_256(pretrained=False, **kwargs) -> MaxxVit: + return _create_maxxvit('maxxvit_rmlp_tiny_rw_256', pretrained=pretrained, **kwargs) + +@register_model +def maxxvit_rmlp_small_rw_256(pretrained=False, **kwargs) -> MaxxVit: + return _create_maxxvit('maxxvit_rmlp_small_rw_256', pretrained=pretrained, **kwargs) + +@register_model +def maxxvitv2_nano_rw_256(pretrained=False, **kwargs) -> MaxxVit: + return _create_maxxvit('maxxvitv2_nano_rw_256', pretrained=pretrained, **kwargs) + +@register_model +def maxxvitv2_rmlp_base_rw_224(pretrained=False, **kwargs) -> MaxxVit: + return _create_maxxvit('maxxvitv2_rmlp_base_rw_224', pretrained=pretrained, **kwargs) + +@register_model +def maxxvitv2_rmlp_base_rw_384(pretrained=False, **kwargs) -> MaxxVit: + return _create_maxxvit('maxxvitv2_rmlp_base_rw_384', pretrained=pretrained, **kwargs) + +@register_model +def maxxvitv2_rmlp_large_rw_224(pretrained=False, **kwargs) -> MaxxVit: + return _create_maxxvit('maxxvitv2_rmlp_large_rw_224', pretrained=pretrained, **kwargs) + +@register_model +def maxvit_tiny_tf_224(pretrained=False, **kwargs) -> MaxxVit: + return _create_maxxvit('maxvit_tiny_tf_224', 'maxvit_tiny_tf', pretrained=pretrained, **kwargs) + +@register_model +def maxvit_tiny_tf_384(pretrained=False, **kwargs) -> MaxxVit: + return _create_maxxvit('maxvit_tiny_tf_384', 'maxvit_tiny_tf', pretrained=pretrained, **kwargs) + +@register_model +def maxvit_tiny_tf_512(pretrained=False, **kwargs) -> MaxxVit: + return _create_maxxvit('maxvit_tiny_tf_512', 'maxvit_tiny_tf', pretrained=pretrained, **kwargs) + +@register_model +def maxvit_small_tf_224(pretrained=False, **kwargs) -> MaxxVit: + return _create_maxxvit('maxvit_small_tf_224', 'maxvit_small_tf', pretrained=pretrained, **kwargs) + +@register_model +def maxvit_small_tf_384(pretrained=False, **kwargs) -> MaxxVit: + return _create_maxxvit('maxvit_small_tf_384', 'maxvit_small_tf', pretrained=pretrained, **kwargs) + +@register_model +def maxvit_small_tf_512(pretrained=False, **kwargs) -> MaxxVit: + return _create_maxxvit('maxvit_small_tf_512', 'maxvit_small_tf', pretrained=pretrained, **kwargs) + +@register_model +def maxvit_base_tf_224(pretrained=False, **kwargs) -> MaxxVit: + return _create_maxxvit('maxvit_base_tf_224', 'maxvit_base_tf', pretrained=pretrained, **kwargs) + +@register_model +def maxvit_base_tf_384(pretrained=False, **kwargs) -> MaxxVit: + return _create_maxxvit('maxvit_base_tf_384', 'maxvit_base_tf', pretrained=pretrained, **kwargs) + +@register_model +def maxvit_base_tf_512(pretrained=False, **kwargs) -> MaxxVit: + return _create_maxxvit('maxvit_base_tf_512', 'maxvit_base_tf', pretrained=pretrained, **kwargs) + +@register_model +def maxvit_large_tf_224(pretrained=False, **kwargs) -> MaxxVit: + return _create_maxxvit('maxvit_large_tf_224', 'maxvit_large_tf', pretrained=pretrained, **kwargs) + +@register_model +def maxvit_large_tf_384(pretrained=False, **kwargs) -> MaxxVit: + return _create_maxxvit('maxvit_large_tf_384', 'maxvit_large_tf', pretrained=pretrained, **kwargs) + +@register_model +def maxvit_large_tf_512(pretrained=False, **kwargs) -> MaxxVit: + return _create_maxxvit('maxvit_large_tf_512', 'maxvit_large_tf', pretrained=pretrained, **kwargs) + +@register_model +def maxvit_xlarge_tf_224(pretrained=False, **kwargs) -> MaxxVit: + return _create_maxxvit('maxvit_xlarge_tf_224', 'maxvit_xlarge_tf', pretrained=pretrained, **kwargs) + +@register_model +def maxvit_xlarge_tf_384(pretrained=False, **kwargs) -> MaxxVit: + return _create_maxxvit('maxvit_xlarge_tf_384', 'maxvit_xlarge_tf', pretrained=pretrained, **kwargs) + +@register_model +def maxvit_xlarge_tf_512(pretrained=False, **kwargs) -> MaxxVit: + return _create_maxxvit('maxvit_xlarge_tf_512', 'maxvit_xlarge_tf', pretrained=pretrained, **kwargs) + +# File: pytorch-image-models-main/timm/models/metaformer.py +"""""" +from collections import OrderedDict +from functools import partial +from typing import Optional +import torch +import torch.nn as nn +import torch.nn.functional as F +from torch import Tensor +from torch.jit import Final +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from timm.layers import trunc_normal_, DropPath, SelectAdaptivePool2d, GroupNorm1, LayerNorm, LayerNorm2d, Mlp, use_fused_attn +from ._builder import build_model_with_cfg +from ._manipulate import checkpoint_seq +from ._registry import generate_default_cfgs, register_model +__all__ = ['MetaFormer'] + +class Stem(nn.Module): + + def __init__(self, in_channels, out_channels, norm_layer=None): + super().__init__() + self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=7, stride=4, padding=2) + self.norm = norm_layer(out_channels) if norm_layer else nn.Identity() + + def forward(self, x): + x = self.conv(x) + x = self.norm(x) + return x + +class Downsampling(nn.Module): + + def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, norm_layer=None): + super().__init__() + self.norm = norm_layer(in_channels) if norm_layer else nn.Identity() + self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding) + + def forward(self, x): + x = self.norm(x) + x = self.conv(x) + return x + +class Scale(nn.Module): + + def __init__(self, dim, init_value=1.0, trainable=True, use_nchw=True): + super().__init__() + self.shape = (dim, 1, 1) if use_nchw else (dim,) + self.scale = nn.Parameter(init_value * torch.ones(dim), requires_grad=trainable) + + def forward(self, x): + return x * self.scale.view(self.shape) + +class SquaredReLU(nn.Module): + + def __init__(self, inplace=False): + super().__init__() + self.relu = nn.ReLU(inplace=inplace) + + def forward(self, x): + return torch.square(self.relu(x)) + +class StarReLU(nn.Module): + + def __init__(self, scale_value=1.0, bias_value=0.0, scale_learnable=True, bias_learnable=True, mode=None, inplace=False): + super().__init__() + self.inplace = inplace + self.relu = nn.ReLU(inplace=inplace) + self.scale = nn.Parameter(scale_value * torch.ones(1), requires_grad=scale_learnable) + self.bias = nn.Parameter(bias_value * torch.ones(1), requires_grad=bias_learnable) + + def forward(self, x): + return self.scale * self.relu(x) ** 2 + self.bias + +class Attention(nn.Module): + fused_attn: Final[bool] + + def __init__(self, dim, head_dim=32, num_heads=None, qkv_bias=False, attn_drop=0.0, proj_drop=0.0, proj_bias=False, **kwargs): + super().__init__() + self.head_dim = head_dim + self.scale = head_dim ** (-0.5) + self.fused_attn = use_fused_attn() + self.num_heads = num_heads if num_heads else dim // head_dim + if self.num_heads == 0: + self.num_heads = 1 + self.attention_dim = self.num_heads * self.head_dim + self.qkv = nn.Linear(dim, self.attention_dim * 3, bias=qkv_bias) + self.attn_drop = nn.Dropout(attn_drop) + self.proj = nn.Linear(self.attention_dim, dim, bias=proj_bias) + self.proj_drop = nn.Dropout(proj_drop) + + def forward(self, x): + (B, N, C) = x.shape + qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4) + (q, k, v) = qkv.unbind(0) + if self.fused_attn: + x = F.scaled_dot_product_attention(q, k, v, dropout_p=self.attn_drop.p if self.training else 0.0) + else: + attn = q @ k.transpose(-2, -1) * self.scale + attn = attn.softmax(dim=-1) + attn = self.attn_drop(attn) + x = attn @ v + x = x.transpose(1, 2).reshape(B, N, C) + x = self.proj(x) + x = self.proj_drop(x) + return x + +class GroupNorm1NoBias(GroupNorm1): + + def __init__(self, num_channels, **kwargs): + super().__init__(num_channels, **kwargs) + self.eps = kwargs.get('eps', 1e-06) + self.bias = None + +class LayerNorm2dNoBias(LayerNorm2d): + + def __init__(self, num_channels, **kwargs): + super().__init__(num_channels, **kwargs) + self.eps = kwargs.get('eps', 1e-06) + self.bias = None + +class LayerNormNoBias(nn.LayerNorm): + + def __init__(self, num_channels, **kwargs): + super().__init__(num_channels, **kwargs) + self.eps = kwargs.get('eps', 1e-06) + self.bias = None + +class SepConv(nn.Module): + + def __init__(self, dim, expansion_ratio=2, act1_layer=StarReLU, act2_layer=nn.Identity, bias=False, kernel_size=7, padding=3, **kwargs): + super().__init__() + mid_channels = int(expansion_ratio * dim) + self.pwconv1 = nn.Conv2d(dim, mid_channels, kernel_size=1, bias=bias) + self.act1 = act1_layer() + self.dwconv = nn.Conv2d(mid_channels, mid_channels, kernel_size=kernel_size, padding=padding, groups=mid_channels, bias=bias) + self.act2 = act2_layer() + self.pwconv2 = nn.Conv2d(mid_channels, dim, kernel_size=1, bias=bias) + + def forward(self, x): + x = self.pwconv1(x) + x = self.act1(x) + x = self.dwconv(x) + x = self.act2(x) + x = self.pwconv2(x) + return x + +class Pooling(nn.Module): + + def __init__(self, pool_size=3, **kwargs): + super().__init__() + self.pool = nn.AvgPool2d(pool_size, stride=1, padding=pool_size // 2, count_include_pad=False) + + def forward(self, x): + y = self.pool(x) + return y - x + +class MlpHead(nn.Module): + + def __init__(self, dim, num_classes=1000, mlp_ratio=4, act_layer=SquaredReLU, norm_layer=LayerNorm, drop_rate=0.0, bias=True): + super().__init__() + hidden_features = int(mlp_ratio * dim) + self.fc1 = nn.Linear(dim, hidden_features, bias=bias) + self.act = act_layer() + self.norm = norm_layer(hidden_features) + self.fc2 = nn.Linear(hidden_features, num_classes, bias=bias) + self.head_drop = nn.Dropout(drop_rate) + + def forward(self, x): + x = self.fc1(x) + x = self.act(x) + x = self.norm(x) + x = self.head_drop(x) + x = self.fc2(x) + return x + +class MetaFormerBlock(nn.Module): + + def __init__(self, dim, token_mixer=Pooling, mlp_act=StarReLU, mlp_bias=False, norm_layer=LayerNorm2d, proj_drop=0.0, drop_path=0.0, use_nchw=True, layer_scale_init_value=None, res_scale_init_value=None, **kwargs): + super().__init__() + ls_layer = partial(Scale, dim=dim, init_value=layer_scale_init_value, use_nchw=use_nchw) + rs_layer = partial(Scale, dim=dim, init_value=res_scale_init_value, use_nchw=use_nchw) + self.norm1 = norm_layer(dim) + self.token_mixer = token_mixer(dim=dim, proj_drop=proj_drop, **kwargs) + self.drop_path1 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + self.layer_scale1 = ls_layer() if layer_scale_init_value is not None else nn.Identity() + self.res_scale1 = rs_layer() if res_scale_init_value is not None else nn.Identity() + self.norm2 = norm_layer(dim) + self.mlp = Mlp(dim, int(4 * dim), act_layer=mlp_act, bias=mlp_bias, drop=proj_drop, use_conv=use_nchw) + self.drop_path2 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + self.layer_scale2 = ls_layer() if layer_scale_init_value is not None else nn.Identity() + self.res_scale2 = rs_layer() if res_scale_init_value is not None else nn.Identity() + + def forward(self, x): + x = self.res_scale1(x) + self.layer_scale1(self.drop_path1(self.token_mixer(self.norm1(x)))) + x = self.res_scale2(x) + self.layer_scale2(self.drop_path2(self.mlp(self.norm2(x)))) + return x + +class MetaFormerStage(nn.Module): + + def __init__(self, in_chs, out_chs, depth=2, token_mixer=nn.Identity, mlp_act=StarReLU, mlp_bias=False, downsample_norm=LayerNorm2d, norm_layer=LayerNorm2d, proj_drop=0.0, dp_rates=[0.0] * 2, layer_scale_init_value=None, res_scale_init_value=None, **kwargs): + super().__init__() + self.grad_checkpointing = False + self.use_nchw = not issubclass(token_mixer, Attention) + self.downsample = nn.Identity() if in_chs == out_chs else Downsampling(in_chs, out_chs, kernel_size=3, stride=2, padding=1, norm_layer=downsample_norm) + self.blocks = nn.Sequential(*[MetaFormerBlock(dim=out_chs, token_mixer=token_mixer, mlp_act=mlp_act, mlp_bias=mlp_bias, norm_layer=norm_layer, proj_drop=proj_drop, drop_path=dp_rates[i], layer_scale_init_value=layer_scale_init_value, res_scale_init_value=res_scale_init_value, use_nchw=self.use_nchw, **kwargs) for i in range(depth)]) + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + self.grad_checkpointing = enable + + def forward(self, x: Tensor): + x = self.downsample(x) + (B, C, H, W) = x.shape + if not self.use_nchw: + x = x.reshape(B, C, -1).transpose(1, 2) + if self.grad_checkpointing and (not torch.jit.is_scripting()): + x = checkpoint_seq(self.blocks, x) + else: + x = self.blocks(x) + if not self.use_nchw: + x = x.transpose(1, 2).reshape(B, C, H, W) + return x + +class MetaFormer(nn.Module): + + def __init__(self, in_chans=3, num_classes=1000, global_pool='avg', depths=(2, 2, 6, 2), dims=(64, 128, 320, 512), token_mixers=Pooling, mlp_act=StarReLU, mlp_bias=False, drop_path_rate=0.0, proj_drop_rate=0.0, drop_rate=0.0, layer_scale_init_values=None, res_scale_init_values=(None, None, 1.0, 1.0), downsample_norm=LayerNorm2dNoBias, norm_layers=LayerNorm2dNoBias, output_norm=LayerNorm2d, use_mlp_head=True, **kwargs): + super().__init__() + self.num_classes = num_classes + self.num_features = dims[-1] + self.drop_rate = drop_rate + self.use_mlp_head = use_mlp_head + self.num_stages = len(depths) + if not isinstance(depths, (list, tuple)): + depths = [depths] + if not isinstance(dims, (list, tuple)): + dims = [dims] + if not isinstance(token_mixers, (list, tuple)): + token_mixers = [token_mixers] * self.num_stages + if not isinstance(norm_layers, (list, tuple)): + norm_layers = [norm_layers] * self.num_stages + if not isinstance(layer_scale_init_values, (list, tuple)): + layer_scale_init_values = [layer_scale_init_values] * self.num_stages + if not isinstance(res_scale_init_values, (list, tuple)): + res_scale_init_values = [res_scale_init_values] * self.num_stages + self.grad_checkpointing = False + self.feature_info = [] + self.stem = Stem(in_chans, dims[0], norm_layer=downsample_norm) + stages = [] + prev_dim = dims[0] + dp_rates = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(depths)).split(depths)] + for i in range(self.num_stages): + stages += [MetaFormerStage(prev_dim, dims[i], depth=depths[i], token_mixer=token_mixers[i], mlp_act=mlp_act, mlp_bias=mlp_bias, proj_drop=proj_drop_rate, dp_rates=dp_rates[i], layer_scale_init_value=layer_scale_init_values[i], res_scale_init_value=res_scale_init_values[i], downsample_norm=downsample_norm, norm_layer=norm_layers[i], **kwargs)] + prev_dim = dims[i] + self.feature_info += [dict(num_chs=dims[i], reduction=2, module=f'stages.{i}')] + self.stages = nn.Sequential(*stages) + if num_classes > 0: + if self.use_mlp_head: + final = MlpHead(self.num_features, num_classes, drop_rate=self.drop_rate) + self.head_hidden_size = self.num_features + else: + final = nn.Linear(self.num_features, num_classes) + self.head_hidden_size = self.num_features + else: + final = nn.Identity() + self.head = nn.Sequential(OrderedDict([('global_pool', SelectAdaptivePool2d(pool_type=global_pool)), ('norm', output_norm(self.num_features)), ('flatten', nn.Flatten(1) if global_pool else nn.Identity()), ('drop', nn.Dropout(drop_rate) if self.use_mlp_head else nn.Identity()), ('fc', final)])) + self.apply(self._init_weights) + + def _init_weights(self, m): + if isinstance(m, (nn.Conv2d, nn.Linear)): + trunc_normal_(m.weight, std=0.02) + if m.bias is not None: + nn.init.constant_(m.bias, 0) + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + self.grad_checkpointing = enable + for stage in self.stages: + stage.set_grad_checkpointing(enable=enable) + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.head.fc + + def reset_classifier(self, num_classes: int, global_pool: Optional[str]=None): + if global_pool is not None: + self.head.global_pool = SelectAdaptivePool2d(pool_type=global_pool) + self.head.flatten = nn.Flatten(1) if global_pool else nn.Identity() + if num_classes > 0: + if self.use_mlp_head: + final = MlpHead(self.num_features, num_classes, drop_rate=self.drop_rate) + else: + final = nn.Linear(self.num_features, num_classes) + else: + final = nn.Identity() + self.head.fc = final + + def forward_head(self, x: Tensor, pre_logits: bool=False): + x = self.head.global_pool(x) + x = self.head.norm(x) + x = self.head.flatten(x) + x = self.head.drop(x) + return x if pre_logits else self.head.fc(x) + + def forward_features(self, x: Tensor): + x = self.stem(x) + if self.grad_checkpointing and (not torch.jit.is_scripting()): + x = checkpoint_seq(self.stages, x) + else: + x = self.stages(x) + return x + + def forward(self, x: Tensor): + x = self.forward_features(x) + x = self.forward_head(x) + return x + +def checkpoint_filter_fn(state_dict, model): + if 'stem.conv.weight' in state_dict: + return state_dict + import re + out_dict = {} + is_poolformerv1 = 'network.0.0.mlp.fc1.weight' in state_dict + model_state_dict = model.state_dict() + for (k, v) in state_dict.items(): + if is_poolformerv1: + k = re.sub('layer_scale_([0-9]+)', 'layer_scale\\1.scale', k) + k = k.replace('network.1', 'downsample_layers.1') + k = k.replace('network.3', 'downsample_layers.2') + k = k.replace('network.5', 'downsample_layers.3') + k = k.replace('network.2', 'network.1') + k = k.replace('network.4', 'network.2') + k = k.replace('network.6', 'network.3') + k = k.replace('network', 'stages') + k = re.sub('downsample_layers.([0-9]+)', 'stages.\\1.downsample', k) + k = k.replace('downsample.proj', 'downsample.conv') + k = k.replace('patch_embed.proj', 'patch_embed.conv') + k = re.sub('([0-9]+).([0-9]+)', '\\1.blocks.\\2', k) + k = k.replace('stages.0.downsample', 'patch_embed') + k = k.replace('patch_embed', 'stem') + k = k.replace('post_norm', 'norm') + k = k.replace('pre_norm', 'norm') + k = re.sub('^head', 'head.fc', k) + k = re.sub('^norm', 'head.norm', k) + if v.shape != model_state_dict[k] and v.numel() == model_state_dict[k].numel(): + v = v.reshape(model_state_dict[k].shape) + out_dict[k] = v + return out_dict + +def _create_metaformer(variant, pretrained=False, **kwargs): + default_out_indices = tuple((i for (i, _) in enumerate(kwargs.get('depths', (2, 2, 6, 2))))) + out_indices = kwargs.pop('out_indices', default_out_indices) + model = build_model_with_cfg(MetaFormer, variant, pretrained, pretrained_filter_fn=checkpoint_filter_fn, feature_cfg=dict(flatten_sequential=True, out_indices=out_indices), **kwargs) + return model + +def _cfg(url='', **kwargs): + return {'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), 'crop_pct': 1.0, 'interpolation': 'bicubic', 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'classifier': 'head.fc', 'first_conv': 'stem.conv', **kwargs} +default_cfgs = generate_default_cfgs({'poolformer_s12.sail_in1k': _cfg(hf_hub_id='timm/', crop_pct=0.9), 'poolformer_s24.sail_in1k': _cfg(hf_hub_id='timm/', crop_pct=0.9), 'poolformer_s36.sail_in1k': _cfg(hf_hub_id='timm/', crop_pct=0.9), 'poolformer_m36.sail_in1k': _cfg(hf_hub_id='timm/', crop_pct=0.95), 'poolformer_m48.sail_in1k': _cfg(hf_hub_id='timm/', crop_pct=0.95), 'poolformerv2_s12.sail_in1k': _cfg(hf_hub_id='timm/'), 'poolformerv2_s24.sail_in1k': _cfg(hf_hub_id='timm/'), 'poolformerv2_s36.sail_in1k': _cfg(hf_hub_id='timm/'), 'poolformerv2_m36.sail_in1k': _cfg(hf_hub_id='timm/'), 'poolformerv2_m48.sail_in1k': _cfg(hf_hub_id='timm/'), 'convformer_s18.sail_in1k': _cfg(hf_hub_id='timm/', classifier='head.fc.fc2'), 'convformer_s18.sail_in1k_384': _cfg(hf_hub_id='timm/', classifier='head.fc.fc2', input_size=(3, 384, 384), pool_size=(12, 12)), 'convformer_s18.sail_in22k_ft_in1k': _cfg(hf_hub_id='timm/', classifier='head.fc.fc2'), 'convformer_s18.sail_in22k_ft_in1k_384': _cfg(hf_hub_id='timm/', classifier='head.fc.fc2', input_size=(3, 384, 384), pool_size=(12, 12)), 'convformer_s18.sail_in22k': _cfg(hf_hub_id='timm/', classifier='head.fc.fc2', num_classes=21841), 'convformer_s36.sail_in1k': _cfg(hf_hub_id='timm/', classifier='head.fc.fc2'), 'convformer_s36.sail_in1k_384': _cfg(hf_hub_id='timm/', classifier='head.fc.fc2', input_size=(3, 384, 384), pool_size=(12, 12)), 'convformer_s36.sail_in22k_ft_in1k': _cfg(hf_hub_id='timm/', classifier='head.fc.fc2'), 'convformer_s36.sail_in22k_ft_in1k_384': _cfg(hf_hub_id='timm/', classifier='head.fc.fc2', input_size=(3, 384, 384), pool_size=(12, 12)), 'convformer_s36.sail_in22k': _cfg(hf_hub_id='timm/', classifier='head.fc.fc2', num_classes=21841), 'convformer_m36.sail_in1k': _cfg(hf_hub_id='timm/', classifier='head.fc.fc2'), 'convformer_m36.sail_in1k_384': _cfg(hf_hub_id='timm/', classifier='head.fc.fc2', input_size=(3, 384, 384), pool_size=(12, 12)), 'convformer_m36.sail_in22k_ft_in1k': _cfg(hf_hub_id='timm/', classifier='head.fc.fc2'), 'convformer_m36.sail_in22k_ft_in1k_384': _cfg(hf_hub_id='timm/', classifier='head.fc.fc2', input_size=(3, 384, 384), pool_size=(12, 12)), 'convformer_m36.sail_in22k': _cfg(hf_hub_id='timm/', classifier='head.fc.fc2', num_classes=21841), 'convformer_b36.sail_in1k': _cfg(hf_hub_id='timm/', classifier='head.fc.fc2'), 'convformer_b36.sail_in1k_384': _cfg(hf_hub_id='timm/', classifier='head.fc.fc2', input_size=(3, 384, 384), pool_size=(12, 12)), 'convformer_b36.sail_in22k_ft_in1k': _cfg(hf_hub_id='timm/', classifier='head.fc.fc2'), 'convformer_b36.sail_in22k_ft_in1k_384': _cfg(hf_hub_id='timm/', classifier='head.fc.fc2', input_size=(3, 384, 384), pool_size=(12, 12)), 'convformer_b36.sail_in22k': _cfg(hf_hub_id='timm/', classifier='head.fc.fc2', num_classes=21841), 'caformer_s18.sail_in1k': _cfg(hf_hub_id='timm/', classifier='head.fc.fc2'), 'caformer_s18.sail_in1k_384': _cfg(hf_hub_id='timm/', classifier='head.fc.fc2', input_size=(3, 384, 384), pool_size=(12, 12)), 'caformer_s18.sail_in22k_ft_in1k': _cfg(hf_hub_id='timm/', classifier='head.fc.fc2'), 'caformer_s18.sail_in22k_ft_in1k_384': _cfg(hf_hub_id='timm/', classifier='head.fc.fc2', input_size=(3, 384, 384), pool_size=(12, 12)), 'caformer_s18.sail_in22k': _cfg(hf_hub_id='timm/', classifier='head.fc.fc2', num_classes=21841), 'caformer_s36.sail_in1k': _cfg(hf_hub_id='timm/', classifier='head.fc.fc2'), 'caformer_s36.sail_in1k_384': _cfg(hf_hub_id='timm/', classifier='head.fc.fc2', input_size=(3, 384, 384), pool_size=(12, 12)), 'caformer_s36.sail_in22k_ft_in1k': _cfg(hf_hub_id='timm/', classifier='head.fc.fc2'), 'caformer_s36.sail_in22k_ft_in1k_384': _cfg(hf_hub_id='timm/', classifier='head.fc.fc2', input_size=(3, 384, 384), pool_size=(12, 12)), 'caformer_s36.sail_in22k': _cfg(hf_hub_id='timm/', classifier='head.fc.fc2', num_classes=21841), 'caformer_m36.sail_in1k': _cfg(hf_hub_id='timm/', classifier='head.fc.fc2'), 'caformer_m36.sail_in1k_384': _cfg(hf_hub_id='timm/', classifier='head.fc.fc2', input_size=(3, 384, 384), pool_size=(12, 12)), 'caformer_m36.sail_in22k_ft_in1k': _cfg(hf_hub_id='timm/', classifier='head.fc.fc2'), 'caformer_m36.sail_in22k_ft_in1k_384': _cfg(hf_hub_id='timm/', classifier='head.fc.fc2', input_size=(3, 384, 384), pool_size=(12, 12)), 'caformer_m36.sail_in22k': _cfg(hf_hub_id='timm/', classifier='head.fc.fc2', num_classes=21841), 'caformer_b36.sail_in1k': _cfg(hf_hub_id='timm/', classifier='head.fc.fc2'), 'caformer_b36.sail_in1k_384': _cfg(hf_hub_id='timm/', classifier='head.fc.fc2', input_size=(3, 384, 384), pool_size=(12, 12)), 'caformer_b36.sail_in22k_ft_in1k': _cfg(hf_hub_id='timm/', classifier='head.fc.fc2'), 'caformer_b36.sail_in22k_ft_in1k_384': _cfg(hf_hub_id='timm/', classifier='head.fc.fc2', input_size=(3, 384, 384), pool_size=(12, 12)), 'caformer_b36.sail_in22k': _cfg(hf_hub_id='timm/', classifier='head.fc.fc2', num_classes=21841)}) + +@register_model +def poolformer_s12(pretrained=False, **kwargs) -> MetaFormer: + model_kwargs = dict(depths=[2, 2, 6, 2], dims=[64, 128, 320, 512], downsample_norm=None, mlp_act=nn.GELU, mlp_bias=True, norm_layers=GroupNorm1, layer_scale_init_values=1e-05, res_scale_init_values=None, use_mlp_head=False, **kwargs) + return _create_metaformer('poolformer_s12', pretrained=pretrained, **model_kwargs) + +@register_model +def poolformer_s24(pretrained=False, **kwargs) -> MetaFormer: + model_kwargs = dict(depths=[4, 4, 12, 4], dims=[64, 128, 320, 512], downsample_norm=None, mlp_act=nn.GELU, mlp_bias=True, norm_layers=GroupNorm1, layer_scale_init_values=1e-05, res_scale_init_values=None, use_mlp_head=False, **kwargs) + return _create_metaformer('poolformer_s24', pretrained=pretrained, **model_kwargs) + +@register_model +def poolformer_s36(pretrained=False, **kwargs) -> MetaFormer: + model_kwargs = dict(depths=[6, 6, 18, 6], dims=[64, 128, 320, 512], downsample_norm=None, mlp_act=nn.GELU, mlp_bias=True, norm_layers=GroupNorm1, layer_scale_init_values=1e-06, res_scale_init_values=None, use_mlp_head=False, **kwargs) + return _create_metaformer('poolformer_s36', pretrained=pretrained, **model_kwargs) + +@register_model +def poolformer_m36(pretrained=False, **kwargs) -> MetaFormer: + model_kwargs = dict(depths=[6, 6, 18, 6], dims=[96, 192, 384, 768], downsample_norm=None, mlp_act=nn.GELU, mlp_bias=True, norm_layers=GroupNorm1, layer_scale_init_values=1e-06, res_scale_init_values=None, use_mlp_head=False, **kwargs) + return _create_metaformer('poolformer_m36', pretrained=pretrained, **model_kwargs) + +@register_model +def poolformer_m48(pretrained=False, **kwargs) -> MetaFormer: + model_kwargs = dict(depths=[8, 8, 24, 8], dims=[96, 192, 384, 768], downsample_norm=None, mlp_act=nn.GELU, mlp_bias=True, norm_layers=GroupNorm1, layer_scale_init_values=1e-06, res_scale_init_values=None, use_mlp_head=False, **kwargs) + return _create_metaformer('poolformer_m48', pretrained=pretrained, **model_kwargs) + +@register_model +def poolformerv2_s12(pretrained=False, **kwargs) -> MetaFormer: + model_kwargs = dict(depths=[2, 2, 6, 2], dims=[64, 128, 320, 512], norm_layers=GroupNorm1NoBias, use_mlp_head=False, **kwargs) + return _create_metaformer('poolformerv2_s12', pretrained=pretrained, **model_kwargs) + +@register_model +def poolformerv2_s24(pretrained=False, **kwargs) -> MetaFormer: + model_kwargs = dict(depths=[4, 4, 12, 4], dims=[64, 128, 320, 512], norm_layers=GroupNorm1NoBias, use_mlp_head=False, **kwargs) + return _create_metaformer('poolformerv2_s24', pretrained=pretrained, **model_kwargs) + +@register_model +def poolformerv2_s36(pretrained=False, **kwargs) -> MetaFormer: + model_kwargs = dict(depths=[6, 6, 18, 6], dims=[64, 128, 320, 512], norm_layers=GroupNorm1NoBias, use_mlp_head=False, **kwargs) + return _create_metaformer('poolformerv2_s36', pretrained=pretrained, **model_kwargs) + +@register_model +def poolformerv2_m36(pretrained=False, **kwargs) -> MetaFormer: + model_kwargs = dict(depths=[6, 6, 18, 6], dims=[96, 192, 384, 768], norm_layers=GroupNorm1NoBias, use_mlp_head=False, **kwargs) + return _create_metaformer('poolformerv2_m36', pretrained=pretrained, **model_kwargs) + +@register_model +def poolformerv2_m48(pretrained=False, **kwargs) -> MetaFormer: + model_kwargs = dict(depths=[8, 8, 24, 8], dims=[96, 192, 384, 768], norm_layers=GroupNorm1NoBias, use_mlp_head=False, **kwargs) + return _create_metaformer('poolformerv2_m48', pretrained=pretrained, **model_kwargs) + +@register_model +def convformer_s18(pretrained=False, **kwargs) -> MetaFormer: + model_kwargs = dict(depths=[3, 3, 9, 3], dims=[64, 128, 320, 512], token_mixers=SepConv, norm_layers=LayerNorm2dNoBias, **kwargs) + return _create_metaformer('convformer_s18', pretrained=pretrained, **model_kwargs) + +@register_model +def convformer_s36(pretrained=False, **kwargs) -> MetaFormer: + model_kwargs = dict(depths=[3, 12, 18, 3], dims=[64, 128, 320, 512], token_mixers=SepConv, norm_layers=LayerNorm2dNoBias, **kwargs) + return _create_metaformer('convformer_s36', pretrained=pretrained, **model_kwargs) + +@register_model +def convformer_m36(pretrained=False, **kwargs) -> MetaFormer: + model_kwargs = dict(depths=[3, 12, 18, 3], dims=[96, 192, 384, 576], token_mixers=SepConv, norm_layers=LayerNorm2dNoBias, **kwargs) + return _create_metaformer('convformer_m36', pretrained=pretrained, **model_kwargs) + +@register_model +def convformer_b36(pretrained=False, **kwargs) -> MetaFormer: + model_kwargs = dict(depths=[3, 12, 18, 3], dims=[128, 256, 512, 768], token_mixers=SepConv, norm_layers=LayerNorm2dNoBias, **kwargs) + return _create_metaformer('convformer_b36', pretrained=pretrained, **model_kwargs) + +@register_model +def caformer_s18(pretrained=False, **kwargs) -> MetaFormer: + model_kwargs = dict(depths=[3, 3, 9, 3], dims=[64, 128, 320, 512], token_mixers=[SepConv, SepConv, Attention, Attention], norm_layers=[LayerNorm2dNoBias] * 2 + [LayerNormNoBias] * 2, **kwargs) + return _create_metaformer('caformer_s18', pretrained=pretrained, **model_kwargs) + +@register_model +def caformer_s36(pretrained=False, **kwargs) -> MetaFormer: + model_kwargs = dict(depths=[3, 12, 18, 3], dims=[64, 128, 320, 512], token_mixers=[SepConv, SepConv, Attention, Attention], norm_layers=[LayerNorm2dNoBias] * 2 + [LayerNormNoBias] * 2, **kwargs) + return _create_metaformer('caformer_s36', pretrained=pretrained, **model_kwargs) + +@register_model +def caformer_m36(pretrained=False, **kwargs) -> MetaFormer: + model_kwargs = dict(depths=[3, 12, 18, 3], dims=[96, 192, 384, 576], token_mixers=[SepConv, SepConv, Attention, Attention], norm_layers=[LayerNorm2dNoBias] * 2 + [LayerNormNoBias] * 2, **kwargs) + return _create_metaformer('caformer_m36', pretrained=pretrained, **model_kwargs) + +@register_model +def caformer_b36(pretrained=False, **kwargs) -> MetaFormer: + model_kwargs = dict(depths=[3, 12, 18, 3], dims=[128, 256, 512, 768], token_mixers=[SepConv, SepConv, Attention, Attention], norm_layers=[LayerNorm2dNoBias] * 2 + [LayerNormNoBias] * 2, **kwargs) + return _create_metaformer('caformer_b36', pretrained=pretrained, **model_kwargs) + +# File: pytorch-image-models-main/timm/models/mlp_mixer.py +"""""" +import math +from functools import partial +from typing import List, Optional, Union, Tuple +import torch +import torch.nn as nn +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from timm.layers import PatchEmbed, Mlp, GluMlp, GatedMlp, DropPath, lecun_normal_, to_2tuple +from ._builder import build_model_with_cfg +from ._features import feature_take_indices +from ._manipulate import named_apply, checkpoint_seq +from ._registry import generate_default_cfgs, register_model, register_model_deprecations +__all__ = ['MixerBlock', 'MlpMixer'] + +class MixerBlock(nn.Module): + + def __init__(self, dim, seq_len, mlp_ratio=(0.5, 4.0), mlp_layer=Mlp, norm_layer=partial(nn.LayerNorm, eps=1e-06), act_layer=nn.GELU, drop=0.0, drop_path=0.0): + super().__init__() + (tokens_dim, channels_dim) = [int(x * dim) for x in to_2tuple(mlp_ratio)] + self.norm1 = norm_layer(dim) + self.mlp_tokens = mlp_layer(seq_len, tokens_dim, act_layer=act_layer, drop=drop) + self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + self.norm2 = norm_layer(dim) + self.mlp_channels = mlp_layer(dim, channels_dim, act_layer=act_layer, drop=drop) + + def forward(self, x): + x = x + self.drop_path(self.mlp_tokens(self.norm1(x).transpose(1, 2)).transpose(1, 2)) + x = x + self.drop_path(self.mlp_channels(self.norm2(x))) + return x + +class Affine(nn.Module): + + def __init__(self, dim): + super().__init__() + self.alpha = nn.Parameter(torch.ones((1, 1, dim))) + self.beta = nn.Parameter(torch.zeros((1, 1, dim))) + + def forward(self, x): + return torch.addcmul(self.beta, self.alpha, x) + +class ResBlock(nn.Module): + + def __init__(self, dim, seq_len, mlp_ratio=4, mlp_layer=Mlp, norm_layer=Affine, act_layer=nn.GELU, init_values=0.0001, drop=0.0, drop_path=0.0): + super().__init__() + channel_dim = int(dim * mlp_ratio) + self.norm1 = norm_layer(dim) + self.linear_tokens = nn.Linear(seq_len, seq_len) + self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + self.norm2 = norm_layer(dim) + self.mlp_channels = mlp_layer(dim, channel_dim, act_layer=act_layer, drop=drop) + self.ls1 = nn.Parameter(init_values * torch.ones(dim)) + self.ls2 = nn.Parameter(init_values * torch.ones(dim)) + + def forward(self, x): + x = x + self.drop_path(self.ls1 * self.linear_tokens(self.norm1(x).transpose(1, 2)).transpose(1, 2)) + x = x + self.drop_path(self.ls2 * self.mlp_channels(self.norm2(x))) + return x + +class SpatialGatingUnit(nn.Module): + + def __init__(self, dim, seq_len, norm_layer=nn.LayerNorm): + super().__init__() + gate_dim = dim // 2 + self.norm = norm_layer(gate_dim) + self.proj = nn.Linear(seq_len, seq_len) + + def init_weights(self): + nn.init.normal_(self.proj.weight, std=1e-06) + nn.init.ones_(self.proj.bias) + + def forward(self, x): + (u, v) = x.chunk(2, dim=-1) + v = self.norm(v) + v = self.proj(v.transpose(-1, -2)) + return u * v.transpose(-1, -2) + +class SpatialGatingBlock(nn.Module): + + def __init__(self, dim, seq_len, mlp_ratio=4, mlp_layer=GatedMlp, norm_layer=partial(nn.LayerNorm, eps=1e-06), act_layer=nn.GELU, drop=0.0, drop_path=0.0): + super().__init__() + channel_dim = int(dim * mlp_ratio) + self.norm = norm_layer(dim) + sgu = partial(SpatialGatingUnit, seq_len=seq_len) + self.mlp_channels = mlp_layer(dim, channel_dim, act_layer=act_layer, gate_layer=sgu, drop=drop) + self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + + def forward(self, x): + x = x + self.drop_path(self.mlp_channels(self.norm(x))) + return x + +class MlpMixer(nn.Module): + + def __init__(self, num_classes=1000, img_size=224, in_chans=3, patch_size=16, num_blocks=8, embed_dim=512, mlp_ratio=(0.5, 4.0), block_layer=MixerBlock, mlp_layer=Mlp, norm_layer=partial(nn.LayerNorm, eps=1e-06), act_layer=nn.GELU, drop_rate=0.0, proj_drop_rate=0.0, drop_path_rate=0.0, nlhb=False, stem_norm=False, global_pool='avg'): + super().__init__() + self.num_classes = num_classes + self.global_pool = global_pool + self.num_features = self.head_hidden_size = self.embed_dim = embed_dim + self.grad_checkpointing = False + self.stem = PatchEmbed(img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim, norm_layer=norm_layer if stem_norm else None) + reduction = self.stem.feat_ratio() if hasattr(self.stem, 'feat_ratio') else patch_size + self.blocks = nn.Sequential(*[block_layer(embed_dim, self.stem.num_patches, mlp_ratio, mlp_layer=mlp_layer, norm_layer=norm_layer, act_layer=act_layer, drop=proj_drop_rate, drop_path=drop_path_rate) for _ in range(num_blocks)]) + self.feature_info = [dict(module=f'blocks.{i}', num_chs=embed_dim, reduction=reduction) for i in range(num_blocks)] + self.norm = norm_layer(embed_dim) + self.head_drop = nn.Dropout(drop_rate) + self.head = nn.Linear(embed_dim, self.num_classes) if num_classes > 0 else nn.Identity() + self.init_weights(nlhb=nlhb) + + @torch.jit.ignore + def init_weights(self, nlhb=False): + head_bias = -math.log(self.num_classes) if nlhb else 0.0 + named_apply(partial(_init_weights, head_bias=head_bias), module=self) + + @torch.jit.ignore + def group_matcher(self, coarse=False): + return dict(stem='^stem', blocks=[('^blocks\\.(\\d+)', None), ('^norm', (99999,))]) + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + self.grad_checkpointing = enable + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.head + + def reset_classifier(self, num_classes: int, global_pool: Optional[str]=None): + self.num_classes = num_classes + if global_pool is not None: + assert global_pool in ('', 'avg') + self.global_pool = global_pool + self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() + + def forward_intermediates(self, x: torch.Tensor, indices: Optional[Union[int, List[int]]]=None, norm: bool=False, stop_early: bool=False, output_fmt: str='NCHW', intermediates_only: bool=False) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]: + assert output_fmt in ('NCHW', 'NLC'), 'Output format must be one of NCHW or NLC.' + reshape = output_fmt == 'NCHW' + intermediates = [] + (take_indices, max_index) = feature_take_indices(len(self.blocks), indices) + (B, _, height, width) = x.shape + x = self.stem(x) + if torch.jit.is_scripting() or not stop_early: + blocks = self.blocks + else: + blocks = self.blocks[:max_index + 1] + for (i, blk) in enumerate(blocks): + x = blk(x) + if i in take_indices: + intermediates.append(self.norm(x) if norm else x) + if reshape: + (H, W) = self.stem.dynamic_feat_size((height, width)) + intermediates = [y.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous() for y in intermediates] + if intermediates_only: + return intermediates + x = self.norm(x) + return (x, intermediates) + + def prune_intermediate_layers(self, indices: Union[int, List[int]]=1, prune_norm: bool=False, prune_head: bool=True): + (take_indices, max_index) = feature_take_indices(len(self.blocks), indices) + self.blocks = self.blocks[:max_index + 1] + if prune_norm: + self.norm = nn.Identity() + if prune_head: + self.reset_classifier(0, '') + return take_indices + + def forward_features(self, x): + x = self.stem(x) + if self.grad_checkpointing and (not torch.jit.is_scripting()): + x = checkpoint_seq(self.blocks, x) + else: + x = self.blocks(x) + x = self.norm(x) + return x + + def forward_head(self, x, pre_logits: bool=False): + if self.global_pool == 'avg': + x = x.mean(dim=1) + x = self.head_drop(x) + return x if pre_logits else self.head(x) + + def forward(self, x): + x = self.forward_features(x) + x = self.forward_head(x) + return x + +def _init_weights(module: nn.Module, name: str, head_bias: float=0.0, flax=False): + if isinstance(module, nn.Linear): + if name.startswith('head'): + nn.init.zeros_(module.weight) + nn.init.constant_(module.bias, head_bias) + elif flax: + lecun_normal_(module.weight) + if module.bias is not None: + nn.init.zeros_(module.bias) + else: + nn.init.xavier_uniform_(module.weight) + if module.bias is not None: + if 'mlp' in name: + nn.init.normal_(module.bias, std=1e-06) + else: + nn.init.zeros_(module.bias) + elif isinstance(module, nn.Conv2d): + lecun_normal_(module.weight) + if module.bias is not None: + nn.init.zeros_(module.bias) + elif isinstance(module, (nn.LayerNorm, nn.BatchNorm2d, nn.GroupNorm)): + nn.init.ones_(module.weight) + nn.init.zeros_(module.bias) + elif hasattr(module, 'init_weights'): + module.init_weights() + +def checkpoint_filter_fn(state_dict, model): + if 'patch_embed.proj.weight' in state_dict: + out_dict = {} + for (k, v) in state_dict.items(): + k = k.replace('patch_embed.', 'stem.') + k = k.replace('attn.', 'linear_tokens.') + k = k.replace('mlp.', 'mlp_channels.') + k = k.replace('gamma_', 'ls') + if k.endswith('.alpha') or k.endswith('.beta'): + v = v.reshape(1, 1, -1) + out_dict[k] = v + return out_dict + return state_dict + +def _create_mixer(variant, pretrained=False, **kwargs): + out_indices = kwargs.pop('out_indices', 3) + model = build_model_with_cfg(MlpMixer, variant, pretrained, pretrained_filter_fn=checkpoint_filter_fn, feature_cfg=dict(out_indices=out_indices, feature_cls='getter'), **kwargs) + return model + +def _cfg(url='', **kwargs): + return {'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, 'crop_pct': 0.875, 'interpolation': 'bicubic', 'fixed_input_size': True, 'mean': (0.5, 0.5, 0.5), 'std': (0.5, 0.5, 0.5), 'first_conv': 'stem.proj', 'classifier': 'head', **kwargs} +default_cfgs = generate_default_cfgs({'mixer_s32_224.untrained': _cfg(), 'mixer_s16_224.untrained': _cfg(), 'mixer_b32_224.untrained': _cfg(), 'mixer_b16_224.goog_in21k_ft_in1k': _cfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_mixer_b16_224-76587d61.pth'), 'mixer_b16_224.goog_in21k': _cfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_mixer_b16_224_in21k-617b3de2.pth', num_classes=21843), 'mixer_l32_224.untrained': _cfg(), 'mixer_l16_224.goog_in21k_ft_in1k': _cfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_mixer_l16_224-92f9adc4.pth'), 'mixer_l16_224.goog_in21k': _cfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_mixer_l16_224_in21k-846aa33c.pth', num_classes=21843), 'mixer_b16_224.miil_in21k': _cfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tresnet/mixer_b16_224_miil_in21k-2a558a71.pth', mean=(0.0, 0.0, 0.0), std=(1.0, 1.0, 1.0), crop_pct=0.875, interpolation='bilinear', num_classes=11221), 'mixer_b16_224.miil_in21k_ft_in1k': _cfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tresnet/mixer_b16_224_miil-9229a591.pth', mean=(0.0, 0.0, 0.0), std=(1.0, 1.0, 1.0), crop_pct=0.875, interpolation='bilinear'), 'gmixer_12_224.untrained': _cfg(mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD), 'gmixer_24_224.ra3_in1k': _cfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/gmixer_24_224_raa-7daf7ae6.pth', mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD), 'resmlp_12_224.fb_in1k': _cfg(hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/deit/resmlp_12_no_dist.pth', mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD), 'resmlp_24_224.fb_in1k': _cfg(hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/deit/resmlp_24_no_dist.pth', mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD), 'resmlp_36_224.fb_in1k': _cfg(hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/deit/resmlp_36_no_dist.pth', mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD), 'resmlp_big_24_224.fb_in1k': _cfg(hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/deit/resmlpB_24_no_dist.pth', mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD), 'resmlp_12_224.fb_distilled_in1k': _cfg(hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/deit/resmlp_12_dist.pth', mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD), 'resmlp_24_224.fb_distilled_in1k': _cfg(hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/deit/resmlp_24_dist.pth', mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD), 'resmlp_36_224.fb_distilled_in1k': _cfg(hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/deit/resmlp_36_dist.pth', mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD), 'resmlp_big_24_224.fb_distilled_in1k': _cfg(hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/deit/resmlpB_24_dist.pth', mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD), 'resmlp_big_24_224.fb_in22k_ft_in1k': _cfg(hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/deit/resmlpB_24_22k.pth', mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD), 'resmlp_12_224.fb_dino': _cfg(hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/deit/resmlp_12_dino.pth', mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD), 'resmlp_24_224.fb_dino': _cfg(hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/deit/resmlp_24_dino.pth', mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD), 'gmlp_ti16_224.untrained': _cfg(), 'gmlp_s16_224.ra3_in1k': _cfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/gmlp_s16_224_raa-10536d42.pth'), 'gmlp_b16_224.untrained': _cfg()}) + +@register_model +def mixer_s32_224(pretrained=False, **kwargs) -> MlpMixer: + model_args = dict(patch_size=32, num_blocks=8, embed_dim=512, **kwargs) + model = _create_mixer('mixer_s32_224', pretrained=pretrained, **model_args) + return model + +@register_model +def mixer_s16_224(pretrained=False, **kwargs) -> MlpMixer: + model_args = dict(patch_size=16, num_blocks=8, embed_dim=512, **kwargs) + model = _create_mixer('mixer_s16_224', pretrained=pretrained, **model_args) + return model + +@register_model +def mixer_b32_224(pretrained=False, **kwargs) -> MlpMixer: + model_args = dict(patch_size=32, num_blocks=12, embed_dim=768, **kwargs) + model = _create_mixer('mixer_b32_224', pretrained=pretrained, **model_args) + return model + +@register_model +def mixer_b16_224(pretrained=False, **kwargs) -> MlpMixer: + model_args = dict(patch_size=16, num_blocks=12, embed_dim=768, **kwargs) + model = _create_mixer('mixer_b16_224', pretrained=pretrained, **model_args) + return model + +@register_model +def mixer_l32_224(pretrained=False, **kwargs) -> MlpMixer: + model_args = dict(patch_size=32, num_blocks=24, embed_dim=1024, **kwargs) + model = _create_mixer('mixer_l32_224', pretrained=pretrained, **model_args) + return model + +@register_model +def mixer_l16_224(pretrained=False, **kwargs) -> MlpMixer: + model_args = dict(patch_size=16, num_blocks=24, embed_dim=1024, **kwargs) + model = _create_mixer('mixer_l16_224', pretrained=pretrained, **model_args) + return model + +@register_model +def gmixer_12_224(pretrained=False, **kwargs) -> MlpMixer: + model_args = dict(patch_size=16, num_blocks=12, embed_dim=384, mlp_ratio=(1.0, 4.0), mlp_layer=GluMlp, act_layer=nn.SiLU, **kwargs) + model = _create_mixer('gmixer_12_224', pretrained=pretrained, **model_args) + return model + +@register_model +def gmixer_24_224(pretrained=False, **kwargs) -> MlpMixer: + model_args = dict(patch_size=16, num_blocks=24, embed_dim=384, mlp_ratio=(1.0, 4.0), mlp_layer=GluMlp, act_layer=nn.SiLU, **kwargs) + model = _create_mixer('gmixer_24_224', pretrained=pretrained, **model_args) + return model + +@register_model +def resmlp_12_224(pretrained=False, **kwargs) -> MlpMixer: + model_args = dict(patch_size=16, num_blocks=12, embed_dim=384, mlp_ratio=4, block_layer=ResBlock, norm_layer=Affine, **kwargs) + model = _create_mixer('resmlp_12_224', pretrained=pretrained, **model_args) + return model + +@register_model +def resmlp_24_224(pretrained=False, **kwargs) -> MlpMixer: + model_args = dict(patch_size=16, num_blocks=24, embed_dim=384, mlp_ratio=4, block_layer=partial(ResBlock, init_values=1e-05), norm_layer=Affine, **kwargs) + model = _create_mixer('resmlp_24_224', pretrained=pretrained, **model_args) + return model + +@register_model +def resmlp_36_224(pretrained=False, **kwargs) -> MlpMixer: + model_args = dict(patch_size=16, num_blocks=36, embed_dim=384, mlp_ratio=4, block_layer=partial(ResBlock, init_values=1e-06), norm_layer=Affine, **kwargs) + model = _create_mixer('resmlp_36_224', pretrained=pretrained, **model_args) + return model + +@register_model +def resmlp_big_24_224(pretrained=False, **kwargs) -> MlpMixer: + model_args = dict(patch_size=8, num_blocks=24, embed_dim=768, mlp_ratio=4, block_layer=partial(ResBlock, init_values=1e-06), norm_layer=Affine, **kwargs) + model = _create_mixer('resmlp_big_24_224', pretrained=pretrained, **model_args) + return model + +@register_model +def gmlp_ti16_224(pretrained=False, **kwargs) -> MlpMixer: + model_args = dict(patch_size=16, num_blocks=30, embed_dim=128, mlp_ratio=6, block_layer=SpatialGatingBlock, mlp_layer=GatedMlp, **kwargs) + model = _create_mixer('gmlp_ti16_224', pretrained=pretrained, **model_args) + return model + +@register_model +def gmlp_s16_224(pretrained=False, **kwargs) -> MlpMixer: + model_args = dict(patch_size=16, num_blocks=30, embed_dim=256, mlp_ratio=6, block_layer=SpatialGatingBlock, mlp_layer=GatedMlp, **kwargs) + model = _create_mixer('gmlp_s16_224', pretrained=pretrained, **model_args) + return model + +@register_model +def gmlp_b16_224(pretrained=False, **kwargs) -> MlpMixer: + model_args = dict(patch_size=16, num_blocks=30, embed_dim=512, mlp_ratio=6, block_layer=SpatialGatingBlock, mlp_layer=GatedMlp, **kwargs) + model = _create_mixer('gmlp_b16_224', pretrained=pretrained, **model_args) + return model +register_model_deprecations(__name__, {'mixer_b16_224_in21k': 'mixer_b16_224.goog_in21k_ft_in1k', 'mixer_l16_224_in21k': 'mixer_l16_224.goog_in21k_ft_in1k', 'mixer_b16_224_miil': 'mixer_b16_224.miil_in21k_ft_in1k', 'mixer_b16_224_miil_in21k': 'mixer_b16_224.miil_in21k', 'resmlp_12_distilled_224': 'resmlp_12_224.fb_distilled_in1k', 'resmlp_24_distilled_224': 'resmlp_24_224.fb_distilled_in1k', 'resmlp_36_distilled_224': 'resmlp_36_224.fb_distilled_in1k', 'resmlp_big_24_distilled_224': 'resmlp_big_24_224.fb_distilled_in1k', 'resmlp_big_24_224_in22ft1k': 'resmlp_big_24_224.fb_in22k_ft_in1k', 'resmlp_12_224_dino': 'resmlp_12_224', 'resmlp_24_224_dino': 'resmlp_24_224'}) + +# File: pytorch-image-models-main/timm/models/mobilenetv3.py +"""""" +from functools import partial +from typing import Callable, List, Optional, Tuple, Union +import torch +import torch.nn as nn +import torch.nn.functional as F +from torch.utils.checkpoint import checkpoint +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD +from timm.layers import SelectAdaptivePool2d, Linear, LayerType, PadType, create_conv2d, get_norm_act_layer +from ._builder import build_model_with_cfg, pretrained_cfg_for_features +from ._efficientnet_blocks import SqueezeExcite +from ._efficientnet_builder import BlockArgs, EfficientNetBuilder, decode_arch_def, efficientnet_init_weights, round_channels, resolve_bn_args, resolve_act_layer, BN_EPS_TF_DEFAULT +from ._features import FeatureInfo, FeatureHooks, feature_take_indices +from ._manipulate import checkpoint_seq +from ._registry import generate_default_cfgs, register_model, register_model_deprecations +__all__ = ['MobileNetV3', 'MobileNetV3Features'] + +class MobileNetV3(nn.Module): + + def __init__(self, block_args: BlockArgs, num_classes: int=1000, in_chans: int=3, stem_size: int=16, fix_stem: bool=False, num_features: int=1280, head_bias: bool=True, head_norm: bool=False, pad_type: str='', act_layer: Optional[LayerType]=None, norm_layer: Optional[LayerType]=None, aa_layer: Optional[LayerType]=None, se_layer: Optional[LayerType]=None, se_from_exp: bool=True, round_chs_fn: Callable=round_channels, drop_rate: float=0.0, drop_path_rate: float=0.0, layer_scale_init_value: Optional[float]=None, global_pool: str='avg'): + super(MobileNetV3, self).__init__() + act_layer = act_layer or nn.ReLU + norm_layer = norm_layer or nn.BatchNorm2d + norm_act_layer = get_norm_act_layer(norm_layer, act_layer) + se_layer = se_layer or SqueezeExcite + self.num_classes = num_classes + self.drop_rate = drop_rate + self.grad_checkpointing = False + if not fix_stem: + stem_size = round_chs_fn(stem_size) + self.conv_stem = create_conv2d(in_chans, stem_size, 3, stride=2, padding=pad_type) + self.bn1 = norm_act_layer(stem_size, inplace=True) + builder = EfficientNetBuilder(output_stride=32, pad_type=pad_type, round_chs_fn=round_chs_fn, se_from_exp=se_from_exp, act_layer=act_layer, norm_layer=norm_layer, aa_layer=aa_layer, se_layer=se_layer, drop_path_rate=drop_path_rate, layer_scale_init_value=layer_scale_init_value) + self.blocks = nn.Sequential(*builder(stem_size, block_args)) + self.feature_info = builder.features + self.stage_ends = [f['stage'] for f in self.feature_info] + self.num_features = builder.in_chs + self.head_hidden_size = num_features + self.global_pool = SelectAdaptivePool2d(pool_type=global_pool) + num_pooled_chs = self.num_features * self.global_pool.feat_mult() + if head_norm: + self.conv_head = create_conv2d(num_pooled_chs, self.head_hidden_size, 1, padding=pad_type) + self.norm_head = norm_act_layer(self.head_hidden_size) + self.act2 = nn.Identity() + else: + self.conv_head = create_conv2d(num_pooled_chs, self.head_hidden_size, 1, padding=pad_type, bias=head_bias) + self.norm_head = nn.Identity() + self.act2 = act_layer(inplace=True) + self.flatten = nn.Flatten(1) if global_pool else nn.Identity() + self.classifier = Linear(self.head_hidden_size, num_classes) if num_classes > 0 else nn.Identity() + efficientnet_init_weights(self) + + def as_sequential(self): + layers = [self.conv_stem, self.bn1] + layers.extend(self.blocks) + layers.extend([self.global_pool, self.conv_head, self.norm_head, self.act2]) + layers.extend([nn.Flatten(), nn.Dropout(self.drop_rate), self.classifier]) + return nn.Sequential(*layers) + + @torch.jit.ignore + def group_matcher(self, coarse: bool=False): + return dict(stem='^conv_stem|bn1', blocks='^blocks\\.(\\d+)' if coarse else '^blocks\\.(\\d+)\\.(\\d+)') + + @torch.jit.ignore + def set_grad_checkpointing(self, enable: bool=True): + self.grad_checkpointing = enable + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.classifier + + def reset_classifier(self, num_classes: int, global_pool: str='avg'): + self.num_classes = num_classes + self.global_pool = SelectAdaptivePool2d(pool_type=global_pool) + self.flatten = nn.Flatten(1) if global_pool else nn.Identity() + self.classifier = Linear(self.head_hidden_size, num_classes) if num_classes > 0 else nn.Identity() + + def forward_intermediates(self, x: torch.Tensor, indices: Optional[Union[int, List[int]]]=None, norm: bool=False, stop_early: bool=False, output_fmt: str='NCHW', intermediates_only: bool=False, extra_blocks: bool=False) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]: + assert output_fmt in ('NCHW',), 'Output shape must be NCHW.' + if stop_early: + assert intermediates_only, 'Must use intermediates_only for early stopping.' + intermediates = [] + if extra_blocks: + (take_indices, max_index) = feature_take_indices(len(self.blocks) + 1, indices) + else: + (take_indices, max_index) = feature_take_indices(len(self.stage_ends), indices) + take_indices = [self.stage_ends[i] for i in take_indices] + max_index = self.stage_ends[max_index] + feat_idx = 0 + x = self.conv_stem(x) + x = self.bn1(x) + if feat_idx in take_indices: + intermediates.append(x) + if torch.jit.is_scripting() or not stop_early: + blocks = self.blocks + else: + blocks = self.blocks[:max_index] + for blk in blocks: + feat_idx += 1 + x = blk(x) + if feat_idx in take_indices: + intermediates.append(x) + if intermediates_only: + return intermediates + return (x, intermediates) + + def prune_intermediate_layers(self, indices: Union[int, List[int]]=1, prune_norm: bool=False, prune_head: bool=True, extra_blocks: bool=False): + if extra_blocks: + (take_indices, max_index) = feature_take_indices(len(self.blocks) + 1, indices) + else: + (take_indices, max_index) = feature_take_indices(len(self.stage_ends), indices) + max_index = self.stage_ends[max_index] + self.blocks = self.blocks[:max_index] + if max_index < len(self.blocks): + self.conv_head = nn.Identity() + self.norm_head = nn.Identity() + if prune_head: + self.conv_head = nn.Identity() + self.norm_head = nn.Identity() + self.reset_classifier(0, '') + return take_indices + + def forward_features(self, x: torch.Tensor) -> torch.Tensor: + x = self.conv_stem(x) + x = self.bn1(x) + if self.grad_checkpointing and (not torch.jit.is_scripting()): + x = checkpoint_seq(self.blocks, x, flatten=True) + else: + x = self.blocks(x) + return x + + def forward_head(self, x: torch.Tensor, pre_logits: bool=False) -> torch.Tensor: + x = self.global_pool(x) + x = self.conv_head(x) + x = self.norm_head(x) + x = self.act2(x) + x = self.flatten(x) + if self.drop_rate > 0.0: + x = F.dropout(x, p=self.drop_rate, training=self.training) + if pre_logits: + return x + return self.classifier(x) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + x = self.forward_features(x) + x = self.forward_head(x) + return x + +class MobileNetV3Features(nn.Module): + + def __init__(self, block_args: BlockArgs, out_indices: Tuple[int, ...]=(0, 1, 2, 3, 4), feature_location: str='bottleneck', in_chans: int=3, stem_size: int=16, fix_stem: bool=False, output_stride: int=32, pad_type: PadType='', round_chs_fn: Callable=round_channels, se_from_exp: bool=True, act_layer: Optional[LayerType]=None, norm_layer: Optional[LayerType]=None, aa_layer: Optional[LayerType]=None, se_layer: Optional[LayerType]=None, drop_rate: float=0.0, drop_path_rate: float=0.0, layer_scale_init_value: Optional[float]=None): + super(MobileNetV3Features, self).__init__() + act_layer = act_layer or nn.ReLU + norm_layer = norm_layer or nn.BatchNorm2d + se_layer = se_layer or SqueezeExcite + self.drop_rate = drop_rate + self.grad_checkpointing = False + if not fix_stem: + stem_size = round_chs_fn(stem_size) + self.conv_stem = create_conv2d(in_chans, stem_size, 3, stride=2, padding=pad_type) + self.bn1 = norm_layer(stem_size) + self.act1 = act_layer(inplace=True) + builder = EfficientNetBuilder(output_stride=output_stride, pad_type=pad_type, round_chs_fn=round_chs_fn, se_from_exp=se_from_exp, act_layer=act_layer, norm_layer=norm_layer, aa_layer=aa_layer, se_layer=se_layer, drop_path_rate=drop_path_rate, layer_scale_init_value=layer_scale_init_value, feature_location=feature_location) + self.blocks = nn.Sequential(*builder(stem_size, block_args)) + self.feature_info = FeatureInfo(builder.features, out_indices) + self._stage_out_idx = {f['stage']: f['index'] for f in self.feature_info.get_dicts()} + efficientnet_init_weights(self) + self.feature_hooks = None + if feature_location != 'bottleneck': + hooks = self.feature_info.get_dicts(keys=('module', 'hook_type')) + self.feature_hooks = FeatureHooks(hooks, self.named_modules()) + + @torch.jit.ignore + def set_grad_checkpointing(self, enable: bool=True): + self.grad_checkpointing = enable + + def forward(self, x: torch.Tensor) -> List[torch.Tensor]: + x = self.conv_stem(x) + x = self.bn1(x) + x = self.act1(x) + if self.feature_hooks is None: + features = [] + if 0 in self._stage_out_idx: + features.append(x) + for (i, b) in enumerate(self.blocks): + if self.grad_checkpointing and (not torch.jit.is_scripting()): + x = checkpoint(b, x) + else: + x = b(x) + if i + 1 in self._stage_out_idx: + features.append(x) + return features + else: + self.blocks(x) + out = self.feature_hooks.get_output(x.device) + return list(out.values()) + +def _create_mnv3(variant: str, pretrained: bool=False, **kwargs) -> MobileNetV3: + features_mode = '' + model_cls = MobileNetV3 + kwargs_filter = None + if kwargs.pop('features_only', False): + if 'feature_cfg' in kwargs or 'feature_cls' in kwargs: + features_mode = 'cfg' + else: + kwargs_filter = ('num_classes', 'num_features', 'head_conv', 'head_bias', 'head_norm', 'global_pool') + model_cls = MobileNetV3Features + features_mode = 'cls' + model = build_model_with_cfg(model_cls, variant, pretrained, features_only=features_mode == 'cfg', pretrained_strict=features_mode != 'cls', kwargs_filter=kwargs_filter, **kwargs) + if features_mode == 'cls': + model.default_cfg = pretrained_cfg_for_features(model.default_cfg) + return model + +def _gen_mobilenet_v3_rw(variant: str, channel_multiplier: float=1.0, pretrained: bool=False, **kwargs) -> MobileNetV3: + arch_def = [['ds_r1_k3_s1_e1_c16_nre_noskip'], ['ir_r1_k3_s2_e4_c24_nre', 'ir_r1_k3_s1_e3_c24_nre'], ['ir_r3_k5_s2_e3_c40_se0.25_nre'], ['ir_r1_k3_s2_e6_c80', 'ir_r1_k3_s1_e2.5_c80', 'ir_r2_k3_s1_e2.3_c80'], ['ir_r2_k3_s1_e6_c112_se0.25'], ['ir_r3_k5_s2_e6_c160_se0.25'], ['cn_r1_k1_s1_c960']] + model_kwargs = dict(block_args=decode_arch_def(arch_def), head_bias=False, round_chs_fn=partial(round_channels, multiplier=channel_multiplier), norm_layer=partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)), act_layer=resolve_act_layer(kwargs, 'hard_swish'), se_layer=partial(SqueezeExcite, gate_layer='hard_sigmoid'), **kwargs) + model = _create_mnv3(variant, pretrained, **model_kwargs) + return model + +def _gen_mobilenet_v3(variant: str, channel_multiplier: float=1.0, depth_multiplier: float=1.0, group_size=None, pretrained: bool=False, **kwargs) -> MobileNetV3: + if 'small' in variant: + num_features = 1024 + if 'minimal' in variant: + act_layer = resolve_act_layer(kwargs, 'relu') + arch_def = [['ds_r1_k3_s2_e1_c16'], ['ir_r1_k3_s2_e4.5_c24', 'ir_r1_k3_s1_e3.67_c24'], ['ir_r1_k3_s2_e4_c40', 'ir_r2_k3_s1_e6_c40'], ['ir_r2_k3_s1_e3_c48'], ['ir_r3_k3_s2_e6_c96'], ['cn_r1_k1_s1_c576']] + else: + act_layer = resolve_act_layer(kwargs, 'hard_swish') + arch_def = [['ds_r1_k3_s2_e1_c16_se0.25_nre'], ['ir_r1_k3_s2_e4.5_c24_nre', 'ir_r1_k3_s1_e3.67_c24_nre'], ['ir_r1_k5_s2_e4_c40_se0.25', 'ir_r2_k5_s1_e6_c40_se0.25'], ['ir_r2_k5_s1_e3_c48_se0.25'], ['ir_r3_k5_s2_e6_c96_se0.25'], ['cn_r1_k1_s1_c576']] + else: + num_features = 1280 + if 'minimal' in variant: + act_layer = resolve_act_layer(kwargs, 'relu') + arch_def = [['ds_r1_k3_s1_e1_c16'], ['ir_r1_k3_s2_e4_c24', 'ir_r1_k3_s1_e3_c24'], ['ir_r3_k3_s2_e3_c40'], ['ir_r1_k3_s2_e6_c80', 'ir_r1_k3_s1_e2.5_c80', 'ir_r2_k3_s1_e2.3_c80'], ['ir_r2_k3_s1_e6_c112'], ['ir_r3_k3_s2_e6_c160'], ['cn_r1_k1_s1_c960']] + else: + act_layer = resolve_act_layer(kwargs, 'hard_swish') + arch_def = [['ds_r1_k3_s1_e1_c16_nre'], ['ir_r1_k3_s2_e4_c24_nre', 'ir_r1_k3_s1_e3_c24_nre'], ['ir_r3_k5_s2_e3_c40_se0.25_nre'], ['ir_r1_k3_s2_e6_c80', 'ir_r1_k3_s1_e2.5_c80', 'ir_r2_k3_s1_e2.3_c80'], ['ir_r2_k3_s1_e6_c112_se0.25'], ['ir_r3_k5_s2_e6_c160_se0.25'], ['cn_r1_k1_s1_c960']] + se_layer = partial(SqueezeExcite, gate_layer='hard_sigmoid', force_act_layer=nn.ReLU, rd_round_fn=round_channels) + model_kwargs = dict(block_args=decode_arch_def(arch_def, depth_multiplier=depth_multiplier, group_size=group_size), num_features=num_features, stem_size=16, fix_stem=channel_multiplier < 0.75, round_chs_fn=partial(round_channels, multiplier=channel_multiplier), norm_layer=partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)), act_layer=act_layer, se_layer=se_layer, **kwargs) + model = _create_mnv3(variant, pretrained, **model_kwargs) + return model + +def _gen_fbnetv3(variant: str, channel_multiplier: float=1.0, pretrained: bool=False, **kwargs): + vl = variant.split('_')[-1] + if vl in ('a', 'b'): + stem_size = 16 + arch_def = [['ds_r2_k3_s1_e1_c16'], ['ir_r1_k5_s2_e4_c24', 'ir_r3_k5_s1_e2_c24'], ['ir_r1_k5_s2_e5_c40_se0.25', 'ir_r4_k5_s1_e3_c40_se0.25'], ['ir_r1_k5_s2_e5_c72', 'ir_r4_k3_s1_e3_c72'], ['ir_r1_k3_s1_e5_c120_se0.25', 'ir_r5_k5_s1_e3_c120_se0.25'], ['ir_r1_k3_s2_e6_c184_se0.25', 'ir_r5_k5_s1_e4_c184_se0.25', 'ir_r1_k5_s1_e6_c224_se0.25'], ['cn_r1_k1_s1_c1344']] + elif vl == 'd': + stem_size = 24 + arch_def = [['ds_r2_k3_s1_e1_c16'], ['ir_r1_k3_s2_e5_c24', 'ir_r5_k3_s1_e2_c24'], ['ir_r1_k5_s2_e4_c40_se0.25', 'ir_r4_k3_s1_e3_c40_se0.25'], ['ir_r1_k3_s2_e5_c72', 'ir_r4_k3_s1_e3_c72'], ['ir_r1_k3_s1_e5_c128_se0.25', 'ir_r6_k5_s1_e3_c128_se0.25'], ['ir_r1_k3_s2_e6_c208_se0.25', 'ir_r5_k5_s1_e5_c208_se0.25', 'ir_r1_k5_s1_e6_c240_se0.25'], ['cn_r1_k1_s1_c1440']] + elif vl == 'g': + stem_size = 32 + arch_def = [['ds_r3_k3_s1_e1_c24'], ['ir_r1_k5_s2_e4_c40', 'ir_r4_k5_s1_e2_c40'], ['ir_r1_k5_s2_e4_c56_se0.25', 'ir_r4_k5_s1_e3_c56_se0.25'], ['ir_r1_k5_s2_e5_c104', 'ir_r4_k3_s1_e3_c104'], ['ir_r1_k3_s1_e5_c160_se0.25', 'ir_r8_k5_s1_e3_c160_se0.25'], ['ir_r1_k3_s2_e6_c264_se0.25', 'ir_r6_k5_s1_e5_c264_se0.25', 'ir_r2_k5_s1_e6_c288_se0.25'], ['cn_r1_k1_s1_c1728']] + else: + raise NotImplemented + round_chs_fn = partial(round_channels, multiplier=channel_multiplier, round_limit=0.95) + se_layer = partial(SqueezeExcite, gate_layer='hard_sigmoid', rd_round_fn=round_chs_fn) + act_layer = resolve_act_layer(kwargs, 'hard_swish') + model_kwargs = dict(block_args=decode_arch_def(arch_def), num_features=1984, head_bias=False, stem_size=stem_size, round_chs_fn=round_chs_fn, se_from_exp=False, norm_layer=partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)), act_layer=act_layer, se_layer=se_layer, **kwargs) + model = _create_mnv3(variant, pretrained, **model_kwargs) + return model + +def _gen_lcnet(variant: str, channel_multiplier: float=1.0, pretrained: bool=False, **kwargs): + arch_def = [['dsa_r1_k3_s1_c32'], ['dsa_r2_k3_s2_c64'], ['dsa_r2_k3_s2_c128'], ['dsa_r1_k3_s2_c256', 'dsa_r1_k5_s1_c256'], ['dsa_r4_k5_s1_c256'], ['dsa_r2_k5_s2_c512_se0.25']] + model_kwargs = dict(block_args=decode_arch_def(arch_def), stem_size=16, round_chs_fn=partial(round_channels, multiplier=channel_multiplier), norm_layer=partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)), act_layer=resolve_act_layer(kwargs, 'hard_swish'), se_layer=partial(SqueezeExcite, gate_layer='hard_sigmoid', force_act_layer=nn.ReLU), num_features=1280, **kwargs) + model = _create_mnv3(variant, pretrained, **model_kwargs) + return model + +def _gen_mobilenet_v4(variant: str, channel_multiplier: float=1.0, group_size=None, pretrained: bool=False, **kwargs) -> MobileNetV3: + num_features = 1280 + if 'hybrid' in variant: + layer_scale_init_value = 1e-05 + if 'medium' in variant: + stem_size = 32 + act_layer = resolve_act_layer(kwargs, 'relu') + arch_def = [['er_r1_k3_s2_e4_c48'], ['uir_r1_a3_k5_s2_e4_c80', 'uir_r1_a3_k3_s1_e2_c80'], ['uir_r1_a3_k5_s2_e6_c160', 'uir_r1_a0_k0_s1_e2_c160', 'uir_r1_a3_k3_s1_e4_c160', 'uir_r1_a3_k5_s1_e4_c160', 'mqa_r1_k3_h4_s1_v2_d64_c160', 'uir_r1_a3_k3_s1_e4_c160', 'mqa_r1_k3_h4_s1_v2_d64_c160', 'uir_r1_a3_k0_s1_e4_c160', 'mqa_r1_k3_h4_s1_v2_d64_c160', 'uir_r1_a3_k3_s1_e4_c160', 'mqa_r1_k3_h4_s1_v2_d64_c160', 'uir_r1_a3_k0_s1_e4_c160'], ['uir_r1_a5_k5_s2_e6_c256', 'uir_r1_a5_k5_s1_e4_c256', 'uir_r2_a3_k5_s1_e4_c256', 'uir_r1_a0_k0_s1_e2_c256', 'uir_r1_a3_k5_s1_e2_c256', 'uir_r1_a0_k0_s1_e2_c256', 'uir_r1_a0_k0_s1_e4_c256', 'mqa_r1_k3_h4_s1_d64_c256', 'uir_r1_a3_k0_s1_e4_c256', 'mqa_r1_k3_h4_s1_d64_c256', 'uir_r1_a5_k5_s1_e4_c256', 'mqa_r1_k3_h4_s1_d64_c256', 'uir_r1_a5_k0_s1_e4_c256', 'mqa_r1_k3_h4_s1_d64_c256', 'uir_r1_a5_k0_s1_e4_c256'], ['cn_r1_k1_s1_c960']] + elif 'large' in variant: + stem_size = 24 + act_layer = resolve_act_layer(kwargs, 'gelu') + arch_def = [['er_r1_k3_s2_e4_c48'], ['uir_r1_a3_k5_s2_e4_c96', 'uir_r1_a3_k3_s1_e4_c96'], ['uir_r1_a3_k5_s2_e4_c192', 'uir_r3_a3_k3_s1_e4_c192', 'uir_r1_a3_k5_s1_e4_c192', 'uir_r2_a5_k3_s1_e4_c192', 'mqa_r1_k3_h8_s1_v2_d48_c192', 'uir_r1_a5_k3_s1_e4_c192', 'mqa_r1_k3_h8_s1_v2_d48_c192', 'uir_r1_a5_k3_s1_e4_c192', 'mqa_r1_k3_h8_s1_v2_d48_c192', 'uir_r1_a5_k3_s1_e4_c192', 'mqa_r1_k3_h8_s1_v2_d48_c192', 'uir_r1_a3_k0_s1_e4_c192'], ['uir_r4_a5_k5_s2_e4_c512', 'uir_r1_a5_k0_s1_e4_c512', 'uir_r1_a5_k3_s1_e4_c512', 'uir_r2_a5_k0_s1_e4_c512', 'uir_r1_a5_k3_s1_e4_c512', 'uir_r1_a5_k5_s1_e4_c512', 'mqa_r1_k3_h8_s1_d64_c512', 'uir_r1_a5_k0_s1_e4_c512', 'mqa_r1_k3_h8_s1_d64_c512', 'uir_r1_a5_k0_s1_e4_c512', 'mqa_r1_k3_h8_s1_d64_c512', 'uir_r1_a5_k0_s1_e4_c512', 'mqa_r1_k3_h8_s1_d64_c512', 'uir_r1_a5_k0_s1_e4_c512'], ['cn_r1_k1_s1_c960']] + else: + assert False, f'Unknown variant {variant}.' + else: + layer_scale_init_value = None + if 'small' in variant: + stem_size = 32 + act_layer = resolve_act_layer(kwargs, 'relu') + arch_def = [['cn_r1_k3_s2_e1_c32', 'cn_r1_k1_s1_e1_c32'], ['cn_r1_k3_s2_e1_c96', 'cn_r1_k1_s1_e1_c64'], ['uir_r1_a5_k5_s2_e3_c96', 'uir_r4_a0_k3_s1_e2_c96', 'uir_r1_a3_k0_s1_e4_c96'], ['uir_r1_a3_k3_s2_e6_c128', 'uir_r1_a5_k5_s1_e4_c128', 'uir_r1_a0_k5_s1_e4_c128', 'uir_r1_a0_k5_s1_e3_c128', 'uir_r2_a0_k3_s1_e4_c128'], ['cn_r1_k1_s1_c960']] + elif 'medium' in variant: + stem_size = 32 + act_layer = resolve_act_layer(kwargs, 'relu') + arch_def = [['er_r1_k3_s2_e4_c48'], ['uir_r1_a3_k5_s2_e4_c80', 'uir_r1_a3_k3_s1_e2_c80'], ['uir_r1_a3_k5_s2_e6_c160', 'uir_r2_a3_k3_s1_e4_c160', 'uir_r1_a3_k5_s1_e4_c160', 'uir_r1_a3_k3_s1_e4_c160', 'uir_r1_a3_k0_s1_e4_c160', 'uir_r1_a0_k0_s1_e2_c160', 'uir_r1_a3_k0_s1_e4_c160'], ['uir_r1_a5_k5_s2_e6_c256', 'uir_r1_a5_k5_s1_e4_c256', 'uir_r2_a3_k5_s1_e4_c256', 'uir_r1_a0_k0_s1_e4_c256', 'uir_r1_a3_k0_s1_e4_c256', 'uir_r1_a3_k5_s1_e2_c256', 'uir_r1_a5_k5_s1_e4_c256', 'uir_r2_a0_k0_s1_e4_c256', 'uir_r1_a5_k0_s1_e2_c256'], ['cn_r1_k1_s1_c960']] + elif 'large' in variant: + stem_size = 24 + act_layer = resolve_act_layer(kwargs, 'relu') + arch_def = [['er_r1_k3_s2_e4_c48'], ['uir_r1_a3_k5_s2_e4_c96', 'uir_r1_a3_k3_s1_e4_c96'], ['uir_r1_a3_k5_s2_e4_c192', 'uir_r3_a3_k3_s1_e4_c192', 'uir_r1_a3_k5_s1_e4_c192', 'uir_r5_a5_k3_s1_e4_c192', 'uir_r1_a3_k0_s1_e4_c192'], ['uir_r4_a5_k5_s2_e4_c512', 'uir_r1_a5_k0_s1_e4_c512', 'uir_r1_a5_k3_s1_e4_c512', 'uir_r2_a5_k0_s1_e4_c512', 'uir_r1_a5_k3_s1_e4_c512', 'uir_r1_a5_k5_s1_e4_c512', 'uir_r3_a5_k0_s1_e4_c512'], ['cn_r1_k1_s1_c960']] + else: + assert False, f'Unknown variant {variant}.' + model_kwargs = dict(block_args=decode_arch_def(arch_def, group_size=group_size), head_bias=False, head_norm=True, num_features=num_features, stem_size=stem_size, fix_stem=channel_multiplier < 1.0, round_chs_fn=partial(round_channels, multiplier=channel_multiplier), norm_layer=partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)), act_layer=act_layer, layer_scale_init_value=layer_scale_init_value, **kwargs) + model = _create_mnv3(variant, pretrained, **model_kwargs) + return model + +def _cfg(url: str='', **kwargs): + return {'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), 'crop_pct': 0.875, 'interpolation': 'bilinear', 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'conv_stem', 'classifier': 'classifier', **kwargs} +default_cfgs = generate_default_cfgs({'mobilenetv3_large_075.untrained': _cfg(url=''), 'mobilenetv3_large_100.ra_in1k': _cfg(interpolation='bicubic', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv3_large_100_ra-f55367f5.pth', hf_hub_id='timm/'), 'mobilenetv3_large_100.ra4_e3600_r224_in1k': _cfg(hf_hub_id='timm/', interpolation='bicubic', mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD, crop_pct=0.95, test_input_size=(3, 256, 256), test_crop_pct=1.0), 'mobilenetv3_large_100.miil_in21k_ft_in1k': _cfg(interpolation='bilinear', mean=(0.0, 0.0, 0.0), std=(1.0, 1.0, 1.0), origin_url='https://github.com/Alibaba-MIIL/ImageNet21K', paper_ids='arXiv:2104.10972v4', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tresnet/mobilenetv3_large_100_1k_miil_78_0-66471c13.pth', hf_hub_id='timm/'), 'mobilenetv3_large_100.miil_in21k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tresnet/mobilenetv3_large_100_in21k_miil-d71cc17b.pth', hf_hub_id='timm/', origin_url='https://github.com/Alibaba-MIIL/ImageNet21K', paper_ids='arXiv:2104.10972v4', interpolation='bilinear', mean=(0.0, 0.0, 0.0), std=(1.0, 1.0, 1.0), num_classes=11221), 'mobilenetv3_large_150d.ra4_e3600_r256_in1k': _cfg(hf_hub_id='timm/', mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD, input_size=(3, 256, 256), crop_pct=0.95, pool_size=(8, 8), test_input_size=(3, 320, 320), test_crop_pct=1.0), 'mobilenetv3_small_050.lamb_in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv3_small_050_lambc-4b7bbe87.pth', hf_hub_id='timm/', interpolation='bicubic'), 'mobilenetv3_small_075.lamb_in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv3_small_075_lambc-384766db.pth', hf_hub_id='timm/', interpolation='bicubic'), 'mobilenetv3_small_100.lamb_in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv3_small_100_lamb-266a294c.pth', hf_hub_id='timm/', interpolation='bicubic'), 'mobilenetv3_rw.rmsp_in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv3_100-35495452.pth', hf_hub_id='timm/', interpolation='bicubic'), 'tf_mobilenetv3_large_075.in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_large_075-150ee8b0.pth', hf_hub_id='timm/', mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD), 'tf_mobilenetv3_large_100.in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_large_100-427764d5.pth', hf_hub_id='timm/', mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD), 'tf_mobilenetv3_large_minimal_100.in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_large_minimal_100-8596ae28.pth', hf_hub_id='timm/', mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD), 'tf_mobilenetv3_small_075.in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_small_075-da427f52.pth', hf_hub_id='timm/', mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD), 'tf_mobilenetv3_small_100.in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_small_100-37f49e2b.pth', hf_hub_id='timm/', mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD), 'tf_mobilenetv3_small_minimal_100.in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_small_minimal_100-922a7843.pth', hf_hub_id='timm/', mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD), 'fbnetv3_b.ra2_in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/fbnetv3_b_224-ead5d2a1.pth', hf_hub_id='timm/', test_input_size=(3, 256, 256), crop_pct=0.95), 'fbnetv3_d.ra2_in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/fbnetv3_d_224-c98bce42.pth', hf_hub_id='timm/', test_input_size=(3, 256, 256), crop_pct=0.95), 'fbnetv3_g.ra2_in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/fbnetv3_g_240-0b1df83b.pth', hf_hub_id='timm/', input_size=(3, 240, 240), test_input_size=(3, 288, 288), crop_pct=0.95, pool_size=(8, 8)), 'lcnet_035.untrained': _cfg(), 'lcnet_050.ra2_in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/lcnet_050-f447553b.pth', hf_hub_id='timm/', interpolation='bicubic'), 'lcnet_075.ra2_in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/lcnet_075-318cad2c.pth', hf_hub_id='timm/', interpolation='bicubic'), 'lcnet_100.ra2_in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/lcnet_100-a929038c.pth', hf_hub_id='timm/', interpolation='bicubic'), 'lcnet_150.untrained': _cfg(), 'mobilenetv4_conv_small.e2400_r224_in1k': _cfg(hf_hub_id='timm/', test_input_size=(3, 256, 256), test_crop_pct=0.95, interpolation='bicubic'), 'mobilenetv4_conv_small.e1200_r224_in1k': _cfg(hf_hub_id='timm/', test_input_size=(3, 256, 256), test_crop_pct=0.95, interpolation='bicubic'), 'mobilenetv4_conv_medium.e500_r256_in1k': _cfg(hf_hub_id='timm/', input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=0.95, test_input_size=(3, 320, 320), test_crop_pct=1.0, interpolation='bicubic'), 'mobilenetv4_conv_medium.e500_r224_in1k': _cfg(hf_hub_id='timm/', crop_pct=0.95, test_input_size=(3, 256, 256), test_crop_pct=1.0, interpolation='bicubic'), 'mobilenetv4_conv_large.e600_r384_in1k': _cfg(hf_hub_id='timm/', input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=0.95, test_input_size=(3, 448, 448), test_crop_pct=1.0, interpolation='bicubic'), 'mobilenetv4_conv_large.e500_r256_in1k': _cfg(hf_hub_id='timm/', input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=0.95, test_input_size=(3, 320, 320), test_crop_pct=1.0, interpolation='bicubic'), 'mobilenetv4_hybrid_medium.e200_r256_in12k_ft_in1k': _cfg(hf_hub_id='timm/', input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=0.95, test_input_size=(3, 320, 320), test_crop_pct=1.0, interpolation='bicubic'), 'mobilenetv4_hybrid_medium.ix_e550_r256_in1k': _cfg(hf_hub_id='timm/', input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=0.95, test_input_size=(3, 320, 320), test_crop_pct=1.0, interpolation='bicubic'), 'mobilenetv4_hybrid_medium.ix_e550_r384_in1k': _cfg(hf_hub_id='timm/', input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=0.95, test_input_size=(3, 448, 448), test_crop_pct=1.0, interpolation='bicubic'), 'mobilenetv4_hybrid_medium.e500_r224_in1k': _cfg(hf_hub_id='timm/', crop_pct=0.95, test_input_size=(3, 256, 256), test_crop_pct=1.0, interpolation='bicubic'), 'mobilenetv4_hybrid_medium.e200_r256_in12k': _cfg(hf_hub_id='timm/', num_classes=11821, input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=0.95, test_input_size=(3, 320, 320), test_crop_pct=1.0, interpolation='bicubic'), 'mobilenetv4_hybrid_large.ix_e600_r384_in1k': _cfg(hf_hub_id='timm/', input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=0.95, test_input_size=(3, 448, 448), test_crop_pct=1.0, interpolation='bicubic'), 'mobilenetv4_hybrid_large.e600_r384_in1k': _cfg(hf_hub_id='timm/', input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=0.95, test_input_size=(3, 448, 448), test_crop_pct=1.0, interpolation='bicubic'), 'mobilenetv4_conv_aa_medium.untrained': _cfg(input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=0.95, interpolation='bicubic'), 'mobilenetv4_conv_blur_medium.e500_r224_in1k': _cfg(hf_hub_id='timm/', crop_pct=0.95, test_input_size=(3, 256, 256), test_crop_pct=1.0, interpolation='bicubic'), 'mobilenetv4_conv_aa_large.e230_r448_in12k_ft_in1k': _cfg(hf_hub_id='timm/', input_size=(3, 448, 448), pool_size=(14, 14), crop_pct=0.95, test_input_size=(3, 544, 544), test_crop_pct=1.0, interpolation='bicubic'), 'mobilenetv4_conv_aa_large.e230_r384_in12k_ft_in1k': _cfg(hf_hub_id='timm/', input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=0.95, test_input_size=(3, 480, 480), test_crop_pct=1.0, interpolation='bicubic'), 'mobilenetv4_conv_aa_large.e600_r384_in1k': _cfg(hf_hub_id='timm/', input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=0.95, test_input_size=(3, 480, 480), test_crop_pct=1.0, interpolation='bicubic'), 'mobilenetv4_conv_aa_large.e230_r384_in12k': _cfg(hf_hub_id='timm/', num_classes=11821, input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=0.95, test_input_size=(3, 448, 448), test_crop_pct=1.0, interpolation='bicubic'), 'mobilenetv4_hybrid_medium_075.untrained': _cfg(crop_pct=0.95, interpolation='bicubic'), 'mobilenetv4_hybrid_large_075.untrained': _cfg(input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=0.95, interpolation='bicubic')}) + +@register_model +def mobilenetv3_large_075(pretrained: bool=False, **kwargs) -> MobileNetV3: + model = _gen_mobilenet_v3('mobilenetv3_large_075', 0.75, pretrained=pretrained, **kwargs) + return model + +@register_model +def mobilenetv3_large_100(pretrained: bool=False, **kwargs) -> MobileNetV3: + model = _gen_mobilenet_v3('mobilenetv3_large_100', 1.0, pretrained=pretrained, **kwargs) + return model + +@register_model +def mobilenetv3_large_150d(pretrained: bool=False, **kwargs) -> MobileNetV3: + model = _gen_mobilenet_v3('mobilenetv3_large_150d', 1.5, depth_multiplier=1.2, pretrained=pretrained, **kwargs) + return model + +@register_model +def mobilenetv3_small_050(pretrained: bool=False, **kwargs) -> MobileNetV3: + model = _gen_mobilenet_v3('mobilenetv3_small_050', 0.5, pretrained=pretrained, **kwargs) + return model + +@register_model +def mobilenetv3_small_075(pretrained: bool=False, **kwargs) -> MobileNetV3: + model = _gen_mobilenet_v3('mobilenetv3_small_075', 0.75, pretrained=pretrained, **kwargs) + return model + +@register_model +def mobilenetv3_small_100(pretrained: bool=False, **kwargs) -> MobileNetV3: + model = _gen_mobilenet_v3('mobilenetv3_small_100', 1.0, pretrained=pretrained, **kwargs) + return model + +@register_model +def mobilenetv3_rw(pretrained: bool=False, **kwargs) -> MobileNetV3: + kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) + model = _gen_mobilenet_v3_rw('mobilenetv3_rw', 1.0, pretrained=pretrained, **kwargs) + return model + +@register_model +def tf_mobilenetv3_large_075(pretrained: bool=False, **kwargs) -> MobileNetV3: + kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) + kwargs.setdefault('pad_type', 'same') + model = _gen_mobilenet_v3('tf_mobilenetv3_large_075', 0.75, pretrained=pretrained, **kwargs) + return model + +@register_model +def tf_mobilenetv3_large_100(pretrained: bool=False, **kwargs) -> MobileNetV3: + kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) + kwargs.setdefault('pad_type', 'same') + model = _gen_mobilenet_v3('tf_mobilenetv3_large_100', 1.0, pretrained=pretrained, **kwargs) + return model + +@register_model +def tf_mobilenetv3_large_minimal_100(pretrained: bool=False, **kwargs) -> MobileNetV3: + kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) + kwargs.setdefault('pad_type', 'same') + model = _gen_mobilenet_v3('tf_mobilenetv3_large_minimal_100', 1.0, pretrained=pretrained, **kwargs) + return model + +@register_model +def tf_mobilenetv3_small_075(pretrained: bool=False, **kwargs) -> MobileNetV3: + kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) + kwargs.setdefault('pad_type', 'same') + model = _gen_mobilenet_v3('tf_mobilenetv3_small_075', 0.75, pretrained=pretrained, **kwargs) + return model + +@register_model +def tf_mobilenetv3_small_100(pretrained: bool=False, **kwargs) -> MobileNetV3: + kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) + kwargs.setdefault('pad_type', 'same') + model = _gen_mobilenet_v3('tf_mobilenetv3_small_100', 1.0, pretrained=pretrained, **kwargs) + return model + +@register_model +def tf_mobilenetv3_small_minimal_100(pretrained: bool=False, **kwargs) -> MobileNetV3: + kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) + kwargs.setdefault('pad_type', 'same') + model = _gen_mobilenet_v3('tf_mobilenetv3_small_minimal_100', 1.0, pretrained=pretrained, **kwargs) + return model + +@register_model +def fbnetv3_b(pretrained: bool=False, **kwargs) -> MobileNetV3: + model = _gen_fbnetv3('fbnetv3_b', pretrained=pretrained, **kwargs) + return model + +@register_model +def fbnetv3_d(pretrained: bool=False, **kwargs) -> MobileNetV3: + model = _gen_fbnetv3('fbnetv3_d', pretrained=pretrained, **kwargs) + return model + +@register_model +def fbnetv3_g(pretrained: bool=False, **kwargs) -> MobileNetV3: + model = _gen_fbnetv3('fbnetv3_g', pretrained=pretrained, **kwargs) + return model + +@register_model +def lcnet_035(pretrained: bool=False, **kwargs) -> MobileNetV3: + model = _gen_lcnet('lcnet_035', 0.35, pretrained=pretrained, **kwargs) + return model + +@register_model +def lcnet_050(pretrained: bool=False, **kwargs) -> MobileNetV3: + model = _gen_lcnet('lcnet_050', 0.5, pretrained=pretrained, **kwargs) + return model + +@register_model +def lcnet_075(pretrained: bool=False, **kwargs) -> MobileNetV3: + model = _gen_lcnet('lcnet_075', 0.75, pretrained=pretrained, **kwargs) + return model + +@register_model +def lcnet_100(pretrained: bool=False, **kwargs) -> MobileNetV3: + model = _gen_lcnet('lcnet_100', 1.0, pretrained=pretrained, **kwargs) + return model + +@register_model +def lcnet_150(pretrained: bool=False, **kwargs) -> MobileNetV3: + model = _gen_lcnet('lcnet_150', 1.5, pretrained=pretrained, **kwargs) + return model + +@register_model +def mobilenetv4_conv_small(pretrained: bool=False, **kwargs) -> MobileNetV3: + model = _gen_mobilenet_v4('mobilenetv4_conv_small', 1.0, pretrained=pretrained, **kwargs) + return model + +@register_model +def mobilenetv4_conv_medium(pretrained: bool=False, **kwargs) -> MobileNetV3: + model = _gen_mobilenet_v4('mobilenetv4_conv_medium', 1.0, pretrained=pretrained, **kwargs) + return model + +@register_model +def mobilenetv4_conv_large(pretrained: bool=False, **kwargs) -> MobileNetV3: + model = _gen_mobilenet_v4('mobilenetv4_conv_large', 1.0, pretrained=pretrained, **kwargs) + return model + +@register_model +def mobilenetv4_hybrid_medium(pretrained: bool=False, **kwargs) -> MobileNetV3: + model = _gen_mobilenet_v4('mobilenetv4_hybrid_medium', 1.0, pretrained=pretrained, **kwargs) + return model + +@register_model +def mobilenetv4_hybrid_large(pretrained: bool=False, **kwargs) -> MobileNetV3: + model = _gen_mobilenet_v4('mobilenetv4_hybrid_large', 1.0, pretrained=pretrained, **kwargs) + return model + +@register_model +def mobilenetv4_conv_aa_medium(pretrained: bool=False, **kwargs) -> MobileNetV3: + model = _gen_mobilenet_v4('mobilenetv4_conv_aa_medium', 1.0, pretrained=pretrained, aa_layer='avg', **kwargs) + return model + +@register_model +def mobilenetv4_conv_blur_medium(pretrained: bool=False, **kwargs) -> MobileNetV3: + model = _gen_mobilenet_v4('mobilenetv4_conv_blur_medium', 1.0, pretrained=pretrained, aa_layer='blurpc', **kwargs) + return model + +@register_model +def mobilenetv4_conv_aa_large(pretrained: bool=False, **kwargs) -> MobileNetV3: + model = _gen_mobilenet_v4('mobilenetv4_conv_aa_large', 1.0, pretrained=pretrained, aa_layer='avg', **kwargs) + return model + +@register_model +def mobilenetv4_hybrid_medium_075(pretrained: bool=False, **kwargs) -> MobileNetV3: + model = _gen_mobilenet_v4('mobilenetv4_hybrid_medium_075', 0.75, pretrained=pretrained, **kwargs) + return model + +@register_model +def mobilenetv4_hybrid_large_075(pretrained: bool=False, **kwargs) -> MobileNetV3: + model = _gen_mobilenet_v4('mobilenetv4_hybrid_large_075', 0.75, pretrained=pretrained, **kwargs) + return model +register_model_deprecations(__name__, {'mobilenetv3_large_100_miil': 'mobilenetv3_large_100.miil_in21k_ft_in1k', 'mobilenetv3_large_100_miil_in21k': 'mobilenetv3_large_100.miil_in21k'}) + +# File: pytorch-image-models-main/timm/models/mobilevit.py +"""""" +import math +from typing import Callable, Tuple, Optional +import torch +import torch.nn.functional as F +from torch import nn +from timm.layers import to_2tuple, make_divisible, GroupNorm1, ConvMlp, DropPath, is_exportable +from ._builder import build_model_with_cfg +from ._features_fx import register_notrace_module +from ._registry import register_model, generate_default_cfgs, register_model_deprecations +from .byobnet import register_block, ByoBlockCfg, ByoModelCfg, ByobNet, LayerFn, num_groups +from .vision_transformer import Block as TransformerBlock +__all__ = [] + +def _inverted_residual_block(d, c, s, br=4.0): + return ByoBlockCfg(type='bottle', d=d, c=c, s=s, gs=1, br=br, block_kwargs=dict(bottle_in=True, linear_out=True)) + +def _mobilevit_block(d, c, s, transformer_dim, transformer_depth, patch_size=4, br=4.0): + return (_inverted_residual_block(d=d, c=c, s=s, br=br), ByoBlockCfg(type='mobilevit', d=1, c=c, s=1, block_kwargs=dict(transformer_dim=transformer_dim, transformer_depth=transformer_depth, patch_size=patch_size))) + +def _mobilevitv2_block(d, c, s, transformer_depth, patch_size=2, br=2.0, transformer_br=0.5): + return (_inverted_residual_block(d=d, c=c, s=s, br=br), ByoBlockCfg(type='mobilevit2', d=1, c=c, s=1, br=transformer_br, gs=1, block_kwargs=dict(transformer_depth=transformer_depth, patch_size=patch_size))) + +def _mobilevitv2_cfg(multiplier=1.0): + chs = (64, 128, 256, 384, 512) + if multiplier != 1.0: + chs = tuple([int(c * multiplier) for c in chs]) + cfg = ByoModelCfg(blocks=(_inverted_residual_block(d=1, c=chs[0], s=1, br=2.0), _inverted_residual_block(d=2, c=chs[1], s=2, br=2.0), _mobilevitv2_block(d=1, c=chs[2], s=2, transformer_depth=2), _mobilevitv2_block(d=1, c=chs[3], s=2, transformer_depth=4), _mobilevitv2_block(d=1, c=chs[4], s=2, transformer_depth=3)), stem_chs=int(32 * multiplier), stem_type='3x3', stem_pool='', downsample='', act_layer='silu') + return cfg +model_cfgs = dict(mobilevit_xxs=ByoModelCfg(blocks=(_inverted_residual_block(d=1, c=16, s=1, br=2.0), _inverted_residual_block(d=3, c=24, s=2, br=2.0), _mobilevit_block(d=1, c=48, s=2, transformer_dim=64, transformer_depth=2, patch_size=2, br=2.0), _mobilevit_block(d=1, c=64, s=2, transformer_dim=80, transformer_depth=4, patch_size=2, br=2.0), _mobilevit_block(d=1, c=80, s=2, transformer_dim=96, transformer_depth=3, patch_size=2, br=2.0)), stem_chs=16, stem_type='3x3', stem_pool='', downsample='', act_layer='silu', num_features=320), mobilevit_xs=ByoModelCfg(blocks=(_inverted_residual_block(d=1, c=32, s=1), _inverted_residual_block(d=3, c=48, s=2), _mobilevit_block(d=1, c=64, s=2, transformer_dim=96, transformer_depth=2, patch_size=2), _mobilevit_block(d=1, c=80, s=2, transformer_dim=120, transformer_depth=4, patch_size=2), _mobilevit_block(d=1, c=96, s=2, transformer_dim=144, transformer_depth=3, patch_size=2)), stem_chs=16, stem_type='3x3', stem_pool='', downsample='', act_layer='silu', num_features=384), mobilevit_s=ByoModelCfg(blocks=(_inverted_residual_block(d=1, c=32, s=1), _inverted_residual_block(d=3, c=64, s=2), _mobilevit_block(d=1, c=96, s=2, transformer_dim=144, transformer_depth=2, patch_size=2), _mobilevit_block(d=1, c=128, s=2, transformer_dim=192, transformer_depth=4, patch_size=2), _mobilevit_block(d=1, c=160, s=2, transformer_dim=240, transformer_depth=3, patch_size=2)), stem_chs=16, stem_type='3x3', stem_pool='', downsample='', act_layer='silu', num_features=640), semobilevit_s=ByoModelCfg(blocks=(_inverted_residual_block(d=1, c=32, s=1), _inverted_residual_block(d=3, c=64, s=2), _mobilevit_block(d=1, c=96, s=2, transformer_dim=144, transformer_depth=2, patch_size=2), _mobilevit_block(d=1, c=128, s=2, transformer_dim=192, transformer_depth=4, patch_size=2), _mobilevit_block(d=1, c=160, s=2, transformer_dim=240, transformer_depth=3, patch_size=2)), stem_chs=16, stem_type='3x3', stem_pool='', downsample='', attn_layer='se', attn_kwargs=dict(rd_ratio=1 / 8), num_features=640), mobilevitv2_050=_mobilevitv2_cfg(0.5), mobilevitv2_075=_mobilevitv2_cfg(0.75), mobilevitv2_125=_mobilevitv2_cfg(1.25), mobilevitv2_100=_mobilevitv2_cfg(1.0), mobilevitv2_150=_mobilevitv2_cfg(1.5), mobilevitv2_175=_mobilevitv2_cfg(1.75), mobilevitv2_200=_mobilevitv2_cfg(2.0)) + +@register_notrace_module +class MobileVitBlock(nn.Module): + + def __init__(self, in_chs: int, out_chs: Optional[int]=None, kernel_size: int=3, stride: int=1, bottle_ratio: float=1.0, group_size: Optional[int]=None, dilation: Tuple[int, int]=(1, 1), mlp_ratio: float=2.0, transformer_dim: Optional[int]=None, transformer_depth: int=2, patch_size: int=8, num_heads: int=4, attn_drop: float=0.0, drop: int=0.0, no_fusion: bool=False, drop_path_rate: float=0.0, layers: LayerFn=None, transformer_norm_layer: Callable=nn.LayerNorm, **kwargs): + super(MobileVitBlock, self).__init__() + layers = layers or LayerFn() + groups = num_groups(group_size, in_chs) + out_chs = out_chs or in_chs + transformer_dim = transformer_dim or make_divisible(bottle_ratio * in_chs) + self.conv_kxk = layers.conv_norm_act(in_chs, in_chs, kernel_size=kernel_size, stride=stride, groups=groups, dilation=dilation[0]) + self.conv_1x1 = nn.Conv2d(in_chs, transformer_dim, kernel_size=1, bias=False) + self.transformer = nn.Sequential(*[TransformerBlock(transformer_dim, mlp_ratio=mlp_ratio, num_heads=num_heads, qkv_bias=True, attn_drop=attn_drop, proj_drop=drop, drop_path=drop_path_rate, act_layer=layers.act, norm_layer=transformer_norm_layer) for _ in range(transformer_depth)]) + self.norm = transformer_norm_layer(transformer_dim) + self.conv_proj = layers.conv_norm_act(transformer_dim, out_chs, kernel_size=1, stride=1) + if no_fusion: + self.conv_fusion = None + else: + self.conv_fusion = layers.conv_norm_act(in_chs + out_chs, out_chs, kernel_size=kernel_size, stride=1) + self.patch_size = to_2tuple(patch_size) + self.patch_area = self.patch_size[0] * self.patch_size[1] + + def forward(self, x: torch.Tensor) -> torch.Tensor: + shortcut = x + x = self.conv_kxk(x) + x = self.conv_1x1(x) + (patch_h, patch_w) = self.patch_size + (B, C, H, W) = x.shape + (new_h, new_w) = (math.ceil(H / patch_h) * patch_h, math.ceil(W / patch_w) * patch_w) + (num_patch_h, num_patch_w) = (new_h // patch_h, new_w // patch_w) + num_patches = num_patch_h * num_patch_w + interpolate = False + if new_h != H or new_w != W: + x = F.interpolate(x, size=(new_h, new_w), mode='bilinear', align_corners=False) + interpolate = True + x = x.reshape(B * C * num_patch_h, patch_h, num_patch_w, patch_w).transpose(1, 2) + x = x.reshape(B, C, num_patches, self.patch_area).transpose(1, 3).reshape(B * self.patch_area, num_patches, -1) + x = self.transformer(x) + x = self.norm(x) + x = x.contiguous().view(B, self.patch_area, num_patches, -1) + x = x.transpose(1, 3).reshape(B * C * num_patch_h, num_patch_w, patch_h, patch_w) + x = x.transpose(1, 2).reshape(B, C, num_patch_h * patch_h, num_patch_w * patch_w) + if interpolate: + x = F.interpolate(x, size=(H, W), mode='bilinear', align_corners=False) + x = self.conv_proj(x) + if self.conv_fusion is not None: + x = self.conv_fusion(torch.cat((shortcut, x), dim=1)) + return x + +class LinearSelfAttention(nn.Module): + + def __init__(self, embed_dim: int, attn_drop: float=0.0, proj_drop: float=0.0, bias: bool=True) -> None: + super().__init__() + self.embed_dim = embed_dim + self.qkv_proj = nn.Conv2d(in_channels=embed_dim, out_channels=1 + 2 * embed_dim, bias=bias, kernel_size=1) + self.attn_drop = nn.Dropout(attn_drop) + self.out_proj = nn.Conv2d(in_channels=embed_dim, out_channels=embed_dim, bias=bias, kernel_size=1) + self.out_drop = nn.Dropout(proj_drop) + + def _forward_self_attn(self, x: torch.Tensor) -> torch.Tensor: + qkv = self.qkv_proj(x) + (query, key, value) = qkv.split([1, self.embed_dim, self.embed_dim], dim=1) + context_scores = F.softmax(query, dim=-1) + context_scores = self.attn_drop(context_scores) + context_vector = (key * context_scores).sum(dim=-1, keepdim=True) + out = F.relu(value) * context_vector.expand_as(value) + out = self.out_proj(out) + out = self.out_drop(out) + return out + + @torch.jit.ignore() + def _forward_cross_attn(self, x: torch.Tensor, x_prev: Optional[torch.Tensor]=None) -> torch.Tensor: + (batch_size, in_dim, kv_patch_area, kv_num_patches) = x.shape + (q_patch_area, q_num_patches) = x.shape[-2:] + assert kv_patch_area == q_patch_area, 'The number of pixels in a patch for query and key_value should be the same' + qk = F.conv2d(x_prev, weight=self.qkv_proj.weight[:self.embed_dim + 1], bias=self.qkv_proj.bias[:self.embed_dim + 1]) + (query, key) = qk.split([1, self.embed_dim], dim=1) + value = F.conv2d(x, weight=self.qkv_proj.weight[self.embed_dim + 1], bias=self.qkv_proj.bias[self.embed_dim + 1] if self.qkv_proj.bias is not None else None) + context_scores = F.softmax(query, dim=-1) + context_scores = self.attn_drop(context_scores) + context_vector = (key * context_scores).sum(dim=-1, keepdim=True) + out = F.relu(value) * context_vector.expand_as(value) + out = self.out_proj(out) + out = self.out_drop(out) + return out + + def forward(self, x: torch.Tensor, x_prev: Optional[torch.Tensor]=None) -> torch.Tensor: + if x_prev is None: + return self._forward_self_attn(x) + else: + return self._forward_cross_attn(x, x_prev=x_prev) + +class LinearTransformerBlock(nn.Module): + + def __init__(self, embed_dim: int, mlp_ratio: float=2.0, drop: float=0.0, attn_drop: float=0.0, drop_path: float=0.0, act_layer=None, norm_layer=None) -> None: + super().__init__() + act_layer = act_layer or nn.SiLU + norm_layer = norm_layer or GroupNorm1 + self.norm1 = norm_layer(embed_dim) + self.attn = LinearSelfAttention(embed_dim=embed_dim, attn_drop=attn_drop, proj_drop=drop) + self.drop_path1 = DropPath(drop_path) + self.norm2 = norm_layer(embed_dim) + self.mlp = ConvMlp(in_features=embed_dim, hidden_features=int(embed_dim * mlp_ratio), act_layer=act_layer, drop=drop) + self.drop_path2 = DropPath(drop_path) + + def forward(self, x: torch.Tensor, x_prev: Optional[torch.Tensor]=None) -> torch.Tensor: + if x_prev is None: + x = x + self.drop_path1(self.attn(self.norm1(x))) + else: + res = x + x = self.norm1(x) + x = self.attn(x, x_prev) + x = self.drop_path1(x) + res + x = x + self.drop_path2(self.mlp(self.norm2(x))) + return x + +@register_notrace_module +class MobileVitV2Block(nn.Module): + + def __init__(self, in_chs: int, out_chs: Optional[int]=None, kernel_size: int=3, bottle_ratio: float=1.0, group_size: Optional[int]=1, dilation: Tuple[int, int]=(1, 1), mlp_ratio: float=2.0, transformer_dim: Optional[int]=None, transformer_depth: int=2, patch_size: int=8, attn_drop: float=0.0, drop: int=0.0, drop_path_rate: float=0.0, layers: LayerFn=None, transformer_norm_layer: Callable=GroupNorm1, **kwargs): + super(MobileVitV2Block, self).__init__() + layers = layers or LayerFn() + groups = num_groups(group_size, in_chs) + out_chs = out_chs or in_chs + transformer_dim = transformer_dim or make_divisible(bottle_ratio * in_chs) + self.conv_kxk = layers.conv_norm_act(in_chs, in_chs, kernel_size=kernel_size, stride=1, groups=groups, dilation=dilation[0]) + self.conv_1x1 = nn.Conv2d(in_chs, transformer_dim, kernel_size=1, bias=False) + self.transformer = nn.Sequential(*[LinearTransformerBlock(transformer_dim, mlp_ratio=mlp_ratio, attn_drop=attn_drop, drop=drop, drop_path=drop_path_rate, act_layer=layers.act, norm_layer=transformer_norm_layer) for _ in range(transformer_depth)]) + self.norm = transformer_norm_layer(transformer_dim) + self.conv_proj = layers.conv_norm_act(transformer_dim, out_chs, kernel_size=1, stride=1, apply_act=False) + self.patch_size = to_2tuple(patch_size) + self.patch_area = self.patch_size[0] * self.patch_size[1] + self.coreml_exportable = is_exportable() + + def forward(self, x: torch.Tensor) -> torch.Tensor: + (B, C, H, W) = x.shape + (patch_h, patch_w) = self.patch_size + (new_h, new_w) = (math.ceil(H / patch_h) * patch_h, math.ceil(W / patch_w) * patch_w) + (num_patch_h, num_patch_w) = (new_h // patch_h, new_w // patch_w) + num_patches = num_patch_h * num_patch_w + if new_h != H or new_w != W: + x = F.interpolate(x, size=(new_h, new_w), mode='bilinear', align_corners=True) + x = self.conv_kxk(x) + x = self.conv_1x1(x) + C = x.shape[1] + if self.coreml_exportable: + x = F.unfold(x, kernel_size=(patch_h, patch_w), stride=(patch_h, patch_w)) + else: + x = x.reshape(B, C, num_patch_h, patch_h, num_patch_w, patch_w).permute(0, 1, 3, 5, 2, 4) + x = x.reshape(B, C, -1, num_patches) + x = self.transformer(x) + x = self.norm(x) + if self.coreml_exportable: + x = x.reshape(B, C * patch_h * patch_w, num_patch_h, num_patch_w) + x = F.pixel_shuffle(x, upscale_factor=patch_h) + else: + x = x.reshape(B, C, patch_h, patch_w, num_patch_h, num_patch_w).permute(0, 1, 4, 2, 5, 3) + x = x.reshape(B, C, num_patch_h * patch_h, num_patch_w * patch_w) + x = self.conv_proj(x) + return x +register_block('mobilevit', MobileVitBlock) +register_block('mobilevit2', MobileVitV2Block) + +def _create_mobilevit(variant, cfg_variant=None, pretrained=False, **kwargs): + return build_model_with_cfg(ByobNet, variant, pretrained, model_cfg=model_cfgs[variant] if not cfg_variant else model_cfgs[cfg_variant], feature_cfg=dict(flatten_sequential=True), **kwargs) + +def _create_mobilevit2(variant, cfg_variant=None, pretrained=False, **kwargs): + return build_model_with_cfg(ByobNet, variant, pretrained, model_cfg=model_cfgs[variant] if not cfg_variant else model_cfgs[cfg_variant], feature_cfg=dict(flatten_sequential=True), **kwargs) + +def _cfg(url='', **kwargs): + return {'url': url, 'num_classes': 1000, 'input_size': (3, 256, 256), 'pool_size': (8, 8), 'crop_pct': 0.9, 'interpolation': 'bicubic', 'mean': (0.0, 0.0, 0.0), 'std': (1.0, 1.0, 1.0), 'first_conv': 'stem.conv', 'classifier': 'head.fc', 'fixed_input_size': False, **kwargs} +default_cfgs = generate_default_cfgs({'mobilevit_xxs.cvnets_in1k': _cfg(hf_hub_id='timm/'), 'mobilevit_xs.cvnets_in1k': _cfg(hf_hub_id='timm/'), 'mobilevit_s.cvnets_in1k': _cfg(hf_hub_id='timm/'), 'mobilevitv2_050.cvnets_in1k': _cfg(hf_hub_id='timm/', crop_pct=0.888), 'mobilevitv2_075.cvnets_in1k': _cfg(hf_hub_id='timm/', crop_pct=0.888), 'mobilevitv2_100.cvnets_in1k': _cfg(hf_hub_id='timm/', crop_pct=0.888), 'mobilevitv2_125.cvnets_in1k': _cfg(hf_hub_id='timm/', crop_pct=0.888), 'mobilevitv2_150.cvnets_in1k': _cfg(hf_hub_id='timm/', crop_pct=0.888), 'mobilevitv2_175.cvnets_in1k': _cfg(hf_hub_id='timm/', crop_pct=0.888), 'mobilevitv2_200.cvnets_in1k': _cfg(hf_hub_id='timm/', crop_pct=0.888), 'mobilevitv2_150.cvnets_in22k_ft_in1k': _cfg(hf_hub_id='timm/', crop_pct=0.888), 'mobilevitv2_175.cvnets_in22k_ft_in1k': _cfg(hf_hub_id='timm/', crop_pct=0.888), 'mobilevitv2_200.cvnets_in22k_ft_in1k': _cfg(hf_hub_id='timm/', crop_pct=0.888), 'mobilevitv2_150.cvnets_in22k_ft_in1k_384': _cfg(hf_hub_id='timm/', input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0), 'mobilevitv2_175.cvnets_in22k_ft_in1k_384': _cfg(hf_hub_id='timm/', input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0), 'mobilevitv2_200.cvnets_in22k_ft_in1k_384': _cfg(hf_hub_id='timm/', input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0)}) + +@register_model +def mobilevit_xxs(pretrained=False, **kwargs) -> ByobNet: + return _create_mobilevit('mobilevit_xxs', pretrained=pretrained, **kwargs) + +@register_model +def mobilevit_xs(pretrained=False, **kwargs) -> ByobNet: + return _create_mobilevit('mobilevit_xs', pretrained=pretrained, **kwargs) + +@register_model +def mobilevit_s(pretrained=False, **kwargs) -> ByobNet: + return _create_mobilevit('mobilevit_s', pretrained=pretrained, **kwargs) + +@register_model +def mobilevitv2_050(pretrained=False, **kwargs) -> ByobNet: + return _create_mobilevit('mobilevitv2_050', pretrained=pretrained, **kwargs) + +@register_model +def mobilevitv2_075(pretrained=False, **kwargs) -> ByobNet: + return _create_mobilevit('mobilevitv2_075', pretrained=pretrained, **kwargs) + +@register_model +def mobilevitv2_100(pretrained=False, **kwargs) -> ByobNet: + return _create_mobilevit('mobilevitv2_100', pretrained=pretrained, **kwargs) + +@register_model +def mobilevitv2_125(pretrained=False, **kwargs) -> ByobNet: + return _create_mobilevit('mobilevitv2_125', pretrained=pretrained, **kwargs) + +@register_model +def mobilevitv2_150(pretrained=False, **kwargs) -> ByobNet: + return _create_mobilevit('mobilevitv2_150', pretrained=pretrained, **kwargs) + +@register_model +def mobilevitv2_175(pretrained=False, **kwargs) -> ByobNet: + return _create_mobilevit('mobilevitv2_175', pretrained=pretrained, **kwargs) + +@register_model +def mobilevitv2_200(pretrained=False, **kwargs) -> ByobNet: + return _create_mobilevit('mobilevitv2_200', pretrained=pretrained, **kwargs) +register_model_deprecations(__name__, {'mobilevitv2_150_in22ft1k': 'mobilevitv2_150.cvnets_in22k_ft_in1k', 'mobilevitv2_175_in22ft1k': 'mobilevitv2_175.cvnets_in22k_ft_in1k', 'mobilevitv2_200_in22ft1k': 'mobilevitv2_200.cvnets_in22k_ft_in1k', 'mobilevitv2_150_384_in22ft1k': 'mobilevitv2_150.cvnets_in22k_ft_in1k_384', 'mobilevitv2_175_384_in22ft1k': 'mobilevitv2_175.cvnets_in22k_ft_in1k_384', 'mobilevitv2_200_384_in22ft1k': 'mobilevitv2_200.cvnets_in22k_ft_in1k_384'}) + +# File: pytorch-image-models-main/timm/models/mvitv2.py +"""""" +import operator +from collections import OrderedDict +from dataclasses import dataclass +from functools import partial, reduce +from typing import Union, List, Tuple, Optional +import torch +import torch.utils.checkpoint as checkpoint +from torch import nn +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from timm.layers import Mlp, DropPath, trunc_normal_tf_, get_norm_layer, to_2tuple +from ._builder import build_model_with_cfg +from ._features import feature_take_indices +from ._features_fx import register_notrace_function +from ._registry import register_model, register_model_deprecations, generate_default_cfgs +__all__ = ['MultiScaleVit', 'MultiScaleVitCfg'] + +@dataclass +class MultiScaleVitCfg: + depths: Tuple[int, ...] = (2, 3, 16, 3) + embed_dim: Union[int, Tuple[int, ...]] = 96 + num_heads: Union[int, Tuple[int, ...]] = 1 + mlp_ratio: float = 4.0 + pool_first: bool = False + expand_attn: bool = True + qkv_bias: bool = True + use_cls_token: bool = False + use_abs_pos: bool = False + residual_pooling: bool = True + mode: str = 'conv' + kernel_qkv: Tuple[int, int] = (3, 3) + stride_q: Optional[Tuple[Tuple[int, int]]] = ((1, 1), (2, 2), (2, 2), (2, 2)) + stride_kv: Optional[Tuple[Tuple[int, int]]] = None + stride_kv_adaptive: Optional[Tuple[int, int]] = (4, 4) + patch_kernel: Tuple[int, int] = (7, 7) + patch_stride: Tuple[int, int] = (4, 4) + patch_padding: Tuple[int, int] = (3, 3) + pool_type: str = 'max' + rel_pos_type: str = 'spatial' + act_layer: Union[str, Tuple[str, str]] = 'gelu' + norm_layer: Union[str, Tuple[str, str]] = 'layernorm' + norm_eps: float = 1e-06 + + def __post_init__(self): + num_stages = len(self.depths) + if not isinstance(self.embed_dim, (tuple, list)): + self.embed_dim = tuple((self.embed_dim * 2 ** i for i in range(num_stages))) + assert len(self.embed_dim) == num_stages + if not isinstance(self.num_heads, (tuple, list)): + self.num_heads = tuple((self.num_heads * 2 ** i for i in range(num_stages))) + assert len(self.num_heads) == num_stages + if self.stride_kv_adaptive is not None and self.stride_kv is None: + _stride_kv = self.stride_kv_adaptive + pool_kv_stride = [] + for i in range(num_stages): + if min(self.stride_q[i]) > 1: + _stride_kv = [max(_stride_kv[d] // self.stride_q[i][d], 1) for d in range(len(_stride_kv))] + pool_kv_stride.append(tuple(_stride_kv)) + self.stride_kv = tuple(pool_kv_stride) + +def prod(iterable): + return reduce(operator.mul, iterable, 1) + +class PatchEmbed(nn.Module): + + def __init__(self, dim_in=3, dim_out=768, kernel=(7, 7), stride=(4, 4), padding=(3, 3)): + super().__init__() + self.proj = nn.Conv2d(dim_in, dim_out, kernel_size=kernel, stride=stride, padding=padding) + + def forward(self, x) -> Tuple[torch.Tensor, List[int]]: + x = self.proj(x) + return (x.flatten(2).transpose(1, 2), x.shape[-2:]) + +@register_notrace_function +def reshape_pre_pool(x, feat_size: List[int], has_cls_token: bool=True) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: + (H, W) = feat_size + if has_cls_token: + (cls_tok, x) = (x[:, :, :1, :], x[:, :, 1:, :]) + else: + cls_tok = None + x = x.reshape(-1, H, W, x.shape[-1]).permute(0, 3, 1, 2).contiguous() + return (x, cls_tok) + +@register_notrace_function +def reshape_post_pool(x, num_heads: int, cls_tok: Optional[torch.Tensor]=None) -> Tuple[torch.Tensor, List[int]]: + feat_size = [x.shape[2], x.shape[3]] + L_pooled = x.shape[2] * x.shape[3] + x = x.reshape(-1, num_heads, x.shape[1], L_pooled).transpose(2, 3) + if cls_tok is not None: + x = torch.cat((cls_tok, x), dim=2) + return (x, feat_size) + +@register_notrace_function +def cal_rel_pos_type(attn: torch.Tensor, q: torch.Tensor, has_cls_token: bool, q_size: List[int], k_size: List[int], rel_pos_h: torch.Tensor, rel_pos_w: torch.Tensor): + sp_idx = 1 if has_cls_token else 0 + (q_h, q_w) = q_size + (k_h, k_w) = k_size + q_h_ratio = max(k_h / q_h, 1.0) + k_h_ratio = max(q_h / k_h, 1.0) + dist_h = torch.arange(q_h, device=q.device).unsqueeze(-1) * q_h_ratio - torch.arange(k_h, device=q.device).unsqueeze(0) * k_h_ratio + dist_h += (k_h - 1) * k_h_ratio + q_w_ratio = max(k_w / q_w, 1.0) + k_w_ratio = max(q_w / k_w, 1.0) + dist_w = torch.arange(q_w, device=q.device).unsqueeze(-1) * q_w_ratio - torch.arange(k_w, device=q.device).unsqueeze(0) * k_w_ratio + dist_w += (k_w - 1) * k_w_ratio + rel_h = rel_pos_h[dist_h.long()] + rel_w = rel_pos_w[dist_w.long()] + (B, n_head, q_N, dim) = q.shape + r_q = q[:, :, sp_idx:].reshape(B, n_head, q_h, q_w, dim) + rel_h = torch.einsum('byhwc,hkc->byhwk', r_q, rel_h) + rel_w = torch.einsum('byhwc,wkc->byhwk', r_q, rel_w) + attn[:, :, sp_idx:, sp_idx:] = (attn[:, :, sp_idx:, sp_idx:].view(B, -1, q_h, q_w, k_h, k_w) + rel_h.unsqueeze(-1) + rel_w.unsqueeze(-2)).view(B, -1, q_h * q_w, k_h * k_w) + return attn + +class MultiScaleAttentionPoolFirst(nn.Module): + + def __init__(self, dim, dim_out, feat_size, num_heads=8, qkv_bias=True, mode='conv', kernel_q=(1, 1), kernel_kv=(1, 1), stride_q=(1, 1), stride_kv=(1, 1), has_cls_token=True, rel_pos_type='spatial', residual_pooling=True, norm_layer=nn.LayerNorm): + super().__init__() + self.num_heads = num_heads + self.dim_out = dim_out + self.head_dim = dim_out // num_heads + self.scale = self.head_dim ** (-0.5) + self.has_cls_token = has_cls_token + padding_q = tuple([int(q // 2) for q in kernel_q]) + padding_kv = tuple([int(kv // 2) for kv in kernel_kv]) + self.q = nn.Linear(dim, dim_out, bias=qkv_bias) + self.k = nn.Linear(dim, dim_out, bias=qkv_bias) + self.v = nn.Linear(dim, dim_out, bias=qkv_bias) + self.proj = nn.Linear(dim_out, dim_out) + if prod(kernel_q) == 1 and prod(stride_q) == 1: + kernel_q = None + if prod(kernel_kv) == 1 and prod(stride_kv) == 1: + kernel_kv = None + self.mode = mode + self.unshared = mode == 'conv_unshared' + (self.pool_q, self.pool_k, self.pool_v) = (None, None, None) + (self.norm_q, self.norm_k, self.norm_v) = (None, None, None) + if mode in ('avg', 'max'): + pool_op = nn.MaxPool2d if mode == 'max' else nn.AvgPool2d + if kernel_q: + self.pool_q = pool_op(kernel_q, stride_q, padding_q) + if kernel_kv: + self.pool_k = pool_op(kernel_kv, stride_kv, padding_kv) + self.pool_v = pool_op(kernel_kv, stride_kv, padding_kv) + elif mode == 'conv' or mode == 'conv_unshared': + dim_conv = dim // num_heads if mode == 'conv' else dim + if kernel_q: + self.pool_q = nn.Conv2d(dim_conv, dim_conv, kernel_q, stride=stride_q, padding=padding_q, groups=dim_conv, bias=False) + self.norm_q = norm_layer(dim_conv) + if kernel_kv: + self.pool_k = nn.Conv2d(dim_conv, dim_conv, kernel_kv, stride=stride_kv, padding=padding_kv, groups=dim_conv, bias=False) + self.norm_k = norm_layer(dim_conv) + self.pool_v = nn.Conv2d(dim_conv, dim_conv, kernel_kv, stride=stride_kv, padding=padding_kv, groups=dim_conv, bias=False) + self.norm_v = norm_layer(dim_conv) + else: + raise NotImplementedError(f'Unsupported model {mode}') + self.rel_pos_type = rel_pos_type + if self.rel_pos_type == 'spatial': + assert feat_size[0] == feat_size[1] + size = feat_size[0] + q_size = size // stride_q[1] if len(stride_q) > 0 else size + kv_size = size // stride_kv[1] if len(stride_kv) > 0 else size + rel_sp_dim = 2 * max(q_size, kv_size) - 1 + self.rel_pos_h = nn.Parameter(torch.zeros(rel_sp_dim, self.head_dim)) + self.rel_pos_w = nn.Parameter(torch.zeros(rel_sp_dim, self.head_dim)) + trunc_normal_tf_(self.rel_pos_h, std=0.02) + trunc_normal_tf_(self.rel_pos_w, std=0.02) + self.residual_pooling = residual_pooling + + def forward(self, x, feat_size: List[int]): + (B, N, _) = x.shape + fold_dim = 1 if self.unshared else self.num_heads + x = x.reshape(B, N, fold_dim, -1).permute(0, 2, 1, 3) + q = k = v = x + if self.pool_q is not None: + (q, q_tok) = reshape_pre_pool(q, feat_size, self.has_cls_token) + q = self.pool_q(q) + (q, q_size) = reshape_post_pool(q, self.num_heads, q_tok) + else: + q_size = feat_size + if self.norm_q is not None: + q = self.norm_q(q) + if self.pool_k is not None: + (k, k_tok) = reshape_pre_pool(k, feat_size, self.has_cls_token) + k = self.pool_k(k) + (k, k_size) = reshape_post_pool(k, self.num_heads, k_tok) + else: + k_size = feat_size + if self.norm_k is not None: + k = self.norm_k(k) + if self.pool_v is not None: + (v, v_tok) = reshape_pre_pool(v, feat_size, self.has_cls_token) + v = self.pool_v(v) + (v, v_size) = reshape_post_pool(v, self.num_heads, v_tok) + else: + v_size = feat_size + if self.norm_v is not None: + v = self.norm_v(v) + q_N = q_size[0] * q_size[1] + int(self.has_cls_token) + q = q.transpose(1, 2).reshape(B, q_N, -1) + q = self.q(q).reshape(B, q_N, self.num_heads, -1).transpose(1, 2) + k_N = k_size[0] * k_size[1] + int(self.has_cls_token) + k = k.transpose(1, 2).reshape(B, k_N, -1) + k = self.k(k).reshape(B, k_N, self.num_heads, -1) + v_N = v_size[0] * v_size[1] + int(self.has_cls_token) + v = v.transpose(1, 2).reshape(B, v_N, -1) + v = self.v(v).reshape(B, v_N, self.num_heads, -1).transpose(1, 2) + attn = q * self.scale @ k + if self.rel_pos_type == 'spatial': + attn = cal_rel_pos_type(attn, q, self.has_cls_token, q_size, k_size, self.rel_pos_h, self.rel_pos_w) + attn = attn.softmax(dim=-1) + x = attn @ v + if self.residual_pooling: + x = x + q + x = x.transpose(1, 2).reshape(B, -1, self.dim_out) + x = self.proj(x) + return (x, q_size) + +class MultiScaleAttention(nn.Module): + + def __init__(self, dim, dim_out, feat_size, num_heads=8, qkv_bias=True, mode='conv', kernel_q=(1, 1), kernel_kv=(1, 1), stride_q=(1, 1), stride_kv=(1, 1), has_cls_token=True, rel_pos_type='spatial', residual_pooling=True, norm_layer=nn.LayerNorm): + super().__init__() + self.num_heads = num_heads + self.dim_out = dim_out + self.head_dim = dim_out // num_heads + self.scale = self.head_dim ** (-0.5) + self.has_cls_token = has_cls_token + padding_q = tuple([int(q // 2) for q in kernel_q]) + padding_kv = tuple([int(kv // 2) for kv in kernel_kv]) + self.qkv = nn.Linear(dim, dim_out * 3, bias=qkv_bias) + self.proj = nn.Linear(dim_out, dim_out) + if prod(kernel_q) == 1 and prod(stride_q) == 1: + kernel_q = None + if prod(kernel_kv) == 1 and prod(stride_kv) == 1: + kernel_kv = None + self.mode = mode + self.unshared = mode == 'conv_unshared' + (self.norm_q, self.norm_k, self.norm_v) = (None, None, None) + (self.pool_q, self.pool_k, self.pool_v) = (None, None, None) + if mode in ('avg', 'max'): + pool_op = nn.MaxPool2d if mode == 'max' else nn.AvgPool2d + if kernel_q: + self.pool_q = pool_op(kernel_q, stride_q, padding_q) + if kernel_kv: + self.pool_k = pool_op(kernel_kv, stride_kv, padding_kv) + self.pool_v = pool_op(kernel_kv, stride_kv, padding_kv) + elif mode == 'conv' or mode == 'conv_unshared': + dim_conv = dim_out // num_heads if mode == 'conv' else dim_out + if kernel_q: + self.pool_q = nn.Conv2d(dim_conv, dim_conv, kernel_q, stride=stride_q, padding=padding_q, groups=dim_conv, bias=False) + self.norm_q = norm_layer(dim_conv) + if kernel_kv: + self.pool_k = nn.Conv2d(dim_conv, dim_conv, kernel_kv, stride=stride_kv, padding=padding_kv, groups=dim_conv, bias=False) + self.norm_k = norm_layer(dim_conv) + self.pool_v = nn.Conv2d(dim_conv, dim_conv, kernel_kv, stride=stride_kv, padding=padding_kv, groups=dim_conv, bias=False) + self.norm_v = norm_layer(dim_conv) + else: + raise NotImplementedError(f'Unsupported model {mode}') + self.rel_pos_type = rel_pos_type + if self.rel_pos_type == 'spatial': + assert feat_size[0] == feat_size[1] + size = feat_size[0] + q_size = size // stride_q[1] if len(stride_q) > 0 else size + kv_size = size // stride_kv[1] if len(stride_kv) > 0 else size + rel_sp_dim = 2 * max(q_size, kv_size) - 1 + self.rel_pos_h = nn.Parameter(torch.zeros(rel_sp_dim, self.head_dim)) + self.rel_pos_w = nn.Parameter(torch.zeros(rel_sp_dim, self.head_dim)) + trunc_normal_tf_(self.rel_pos_h, std=0.02) + trunc_normal_tf_(self.rel_pos_w, std=0.02) + self.residual_pooling = residual_pooling + + def forward(self, x, feat_size: List[int]): + (B, N, _) = x.shape + qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) + (q, k, v) = qkv.unbind(dim=0) + if self.pool_q is not None: + (q, q_tok) = reshape_pre_pool(q, feat_size, self.has_cls_token) + q = self.pool_q(q) + (q, q_size) = reshape_post_pool(q, self.num_heads, q_tok) + else: + q_size = feat_size + if self.norm_q is not None: + q = self.norm_q(q) + if self.pool_k is not None: + (k, k_tok) = reshape_pre_pool(k, feat_size, self.has_cls_token) + k = self.pool_k(k) + (k, k_size) = reshape_post_pool(k, self.num_heads, k_tok) + else: + k_size = feat_size + if self.norm_k is not None: + k = self.norm_k(k) + if self.pool_v is not None: + (v, v_tok) = reshape_pre_pool(v, feat_size, self.has_cls_token) + v = self.pool_v(v) + (v, _) = reshape_post_pool(v, self.num_heads, v_tok) + if self.norm_v is not None: + v = self.norm_v(v) + attn = q * self.scale @ k.transpose(-2, -1) + if self.rel_pos_type == 'spatial': + attn = cal_rel_pos_type(attn, q, self.has_cls_token, q_size, k_size, self.rel_pos_h, self.rel_pos_w) + attn = attn.softmax(dim=-1) + x = attn @ v + if self.residual_pooling: + x = x + q + x = x.transpose(1, 2).reshape(B, -1, self.dim_out) + x = self.proj(x) + return (x, q_size) + +class MultiScaleBlock(nn.Module): + + def __init__(self, dim, dim_out, num_heads, feat_size, mlp_ratio=4.0, qkv_bias=True, drop_path=0.0, norm_layer=nn.LayerNorm, kernel_q=(1, 1), kernel_kv=(1, 1), stride_q=(1, 1), stride_kv=(1, 1), mode='conv', has_cls_token=True, expand_attn=False, pool_first=False, rel_pos_type='spatial', residual_pooling=True): + super().__init__() + proj_needed = dim != dim_out + self.dim = dim + self.dim_out = dim_out + self.has_cls_token = has_cls_token + self.norm1 = norm_layer(dim) + self.shortcut_proj_attn = nn.Linear(dim, dim_out) if proj_needed and expand_attn else None + if stride_q and prod(stride_q) > 1: + kernel_skip = [s + 1 if s > 1 else s for s in stride_q] + stride_skip = stride_q + padding_skip = [int(skip // 2) for skip in kernel_skip] + self.shortcut_pool_attn = nn.MaxPool2d(kernel_skip, stride_skip, padding_skip) + else: + self.shortcut_pool_attn = None + att_dim = dim_out if expand_attn else dim + attn_layer = MultiScaleAttentionPoolFirst if pool_first else MultiScaleAttention + self.attn = attn_layer(dim, att_dim, num_heads=num_heads, feat_size=feat_size, qkv_bias=qkv_bias, kernel_q=kernel_q, kernel_kv=kernel_kv, stride_q=stride_q, stride_kv=stride_kv, norm_layer=norm_layer, has_cls_token=has_cls_token, mode=mode, rel_pos_type=rel_pos_type, residual_pooling=residual_pooling) + self.drop_path1 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + self.norm2 = norm_layer(att_dim) + mlp_dim_out = dim_out + self.shortcut_proj_mlp = nn.Linear(dim, dim_out) if proj_needed and (not expand_attn) else None + self.mlp = Mlp(in_features=att_dim, hidden_features=int(att_dim * mlp_ratio), out_features=mlp_dim_out) + self.drop_path2 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + + def _shortcut_pool(self, x, feat_size: List[int]): + if self.shortcut_pool_attn is None: + return x + if self.has_cls_token: + (cls_tok, x) = (x[:, :1, :], x[:, 1:, :]) + else: + cls_tok = None + (B, L, C) = x.shape + (H, W) = feat_size + x = x.reshape(B, H, W, C).permute(0, 3, 1, 2).contiguous() + x = self.shortcut_pool_attn(x) + x = x.reshape(B, C, -1).transpose(1, 2) + if cls_tok is not None: + x = torch.cat((cls_tok, x), dim=1) + return x + + def forward(self, x, feat_size: List[int]): + x_norm = self.norm1(x) + x_shortcut = x if self.shortcut_proj_attn is None else self.shortcut_proj_attn(x_norm) + x_shortcut = self._shortcut_pool(x_shortcut, feat_size) + (x, feat_size_new) = self.attn(x_norm, feat_size) + x = x_shortcut + self.drop_path1(x) + x_norm = self.norm2(x) + x_shortcut = x if self.shortcut_proj_mlp is None else self.shortcut_proj_mlp(x_norm) + x = x_shortcut + self.drop_path2(self.mlp(x_norm)) + return (x, feat_size_new) + +class MultiScaleVitStage(nn.Module): + + def __init__(self, dim, dim_out, depth, num_heads, feat_size, mlp_ratio=4.0, qkv_bias=True, mode='conv', kernel_q=(1, 1), kernel_kv=(1, 1), stride_q=(1, 1), stride_kv=(1, 1), has_cls_token=True, expand_attn=False, pool_first=False, rel_pos_type='spatial', residual_pooling=True, norm_layer=nn.LayerNorm, drop_path=0.0): + super().__init__() + self.grad_checkpointing = False + self.blocks = nn.ModuleList() + if expand_attn: + out_dims = (dim_out,) * depth + else: + out_dims = (dim,) * (depth - 1) + (dim_out,) + for i in range(depth): + attention_block = MultiScaleBlock(dim=dim, dim_out=out_dims[i], num_heads=num_heads, feat_size=feat_size, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, kernel_q=kernel_q, kernel_kv=kernel_kv, stride_q=stride_q if i == 0 else (1, 1), stride_kv=stride_kv, mode=mode, has_cls_token=has_cls_token, pool_first=pool_first, rel_pos_type=rel_pos_type, residual_pooling=residual_pooling, expand_attn=expand_attn, norm_layer=norm_layer, drop_path=drop_path[i] if isinstance(drop_path, (list, tuple)) else drop_path) + dim = out_dims[i] + self.blocks.append(attention_block) + if i == 0: + feat_size = tuple([size // stride for (size, stride) in zip(feat_size, stride_q)]) + self.feat_size = feat_size + + def forward(self, x, feat_size: List[int]): + for blk in self.blocks: + if self.grad_checkpointing and (not torch.jit.is_scripting()): + (x, feat_size) = checkpoint.checkpoint(blk, x, feat_size) + else: + (x, feat_size) = blk(x, feat_size) + return (x, feat_size) + +class MultiScaleVit(nn.Module): + + def __init__(self, cfg: MultiScaleVitCfg, img_size: Tuple[int, int]=(224, 224), in_chans: int=3, global_pool: Optional[str]=None, num_classes: int=1000, drop_path_rate: float=0.0, drop_rate: float=0.0): + super().__init__() + img_size = to_2tuple(img_size) + norm_layer = partial(get_norm_layer(cfg.norm_layer), eps=cfg.norm_eps) + self.num_classes = num_classes + self.drop_rate = drop_rate + if global_pool is None: + global_pool = 'token' if cfg.use_cls_token else 'avg' + self.global_pool = global_pool + self.depths = tuple(cfg.depths) + self.expand_attn = cfg.expand_attn + embed_dim = cfg.embed_dim[0] + self.patch_embed = PatchEmbed(dim_in=in_chans, dim_out=embed_dim, kernel=cfg.patch_kernel, stride=cfg.patch_stride, padding=cfg.patch_padding) + patch_dims = (img_size[0] // cfg.patch_stride[0], img_size[1] // cfg.patch_stride[1]) + num_patches = prod(patch_dims) + if cfg.use_cls_token: + self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) + self.num_prefix_tokens = 1 + pos_embed_dim = num_patches + 1 + else: + self.num_prefix_tokens = 0 + self.cls_token = None + pos_embed_dim = num_patches + if cfg.use_abs_pos: + self.pos_embed = nn.Parameter(torch.zeros(1, pos_embed_dim, embed_dim)) + else: + self.pos_embed = None + num_stages = len(cfg.embed_dim) + feat_size = patch_dims + curr_stride = max(cfg.patch_stride) + dpr = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(cfg.depths)).split(cfg.depths)] + self.stages = nn.ModuleList() + self.feature_info = [] + for i in range(num_stages): + if cfg.expand_attn: + dim_out = cfg.embed_dim[i] + else: + dim_out = cfg.embed_dim[min(i + 1, num_stages - 1)] + stage = MultiScaleVitStage(dim=embed_dim, dim_out=dim_out, depth=cfg.depths[i], num_heads=cfg.num_heads[i], feat_size=feat_size, mlp_ratio=cfg.mlp_ratio, qkv_bias=cfg.qkv_bias, mode=cfg.mode, pool_first=cfg.pool_first, expand_attn=cfg.expand_attn, kernel_q=cfg.kernel_qkv, kernel_kv=cfg.kernel_qkv, stride_q=cfg.stride_q[i], stride_kv=cfg.stride_kv[i], has_cls_token=cfg.use_cls_token, rel_pos_type=cfg.rel_pos_type, residual_pooling=cfg.residual_pooling, norm_layer=norm_layer, drop_path=dpr[i]) + curr_stride *= max(cfg.stride_q[i]) + self.feature_info += [dict(module=f'block.{i}', num_chs=dim_out, reduction=curr_stride)] + embed_dim = dim_out + feat_size = stage.feat_size + self.stages.append(stage) + self.num_features = self.head_hidden_size = embed_dim + self.norm = norm_layer(embed_dim) + self.head = nn.Sequential(OrderedDict([('drop', nn.Dropout(self.drop_rate)), ('fc', nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity())])) + if self.pos_embed is not None: + trunc_normal_tf_(self.pos_embed, std=0.02) + if self.cls_token is not None: + trunc_normal_tf_(self.cls_token, std=0.02) + self.apply(self._init_weights) + + def _init_weights(self, m): + if isinstance(m, nn.Linear): + trunc_normal_tf_(m.weight, std=0.02) + if isinstance(m, nn.Linear) and m.bias is not None: + nn.init.constant_(m.bias, 0.0) + + @torch.jit.ignore + def no_weight_decay(self): + return {k for (k, _) in self.named_parameters() if any((n in k for n in ['pos_embed', 'rel_pos_h', 'rel_pos_w', 'cls_token']))} + + @torch.jit.ignore + def group_matcher(self, coarse=False): + matcher = dict(stem='^patch_embed', blocks=[('^stages\\.(\\d+)', None), ('^norm', (99999,))]) + return matcher + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + for s in self.stages: + s.grad_checkpointing = enable + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.head.fc + + def reset_classifier(self, num_classes: int, global_pool: Optional[str]=None): + self.num_classes = num_classes + if global_pool is not None: + self.global_pool = global_pool + self.head = nn.Sequential(OrderedDict([('drop', nn.Dropout(self.drop_rate)), ('fc', nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity())])) + + def forward_intermediates(self, x: torch.Tensor, indices: Optional[Union[int, List[int]]]=None, norm: bool=False, stop_early: bool=False, output_fmt: str='NCHW', intermediates_only: bool=False) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]: + assert output_fmt in ('NCHW', 'NLC'), 'Output shape must be NCHW or NLC.' + reshape = output_fmt == 'NCHW' + intermediates = [] + (take_indices, max_index) = feature_take_indices(len(self.stages), indices) + (x, feat_size) = self.patch_embed(x) + B = x.shape[0] + if self.cls_token is not None: + cls_tokens = self.cls_token.expand(B, -1, -1) + x = torch.cat((cls_tokens, x), dim=1) + if self.pos_embed is not None: + x = x + self.pos_embed + for (i, stage) in enumerate(self.stages): + (x, feat_size) = stage(x, feat_size) + if i in take_indices: + if norm and i == len(self.stages) - 1: + x_inter = self.norm(x) + else: + x_inter = x + if reshape: + if self.cls_token is not None: + x_inter = x_inter[:, 1:] + x_inter = x_inter.reshape(B, feat_size[0], feat_size[1], -1).permute(0, 3, 1, 2) + intermediates.append(x_inter) + if intermediates_only: + return intermediates + x = self.norm(x) + return (x, intermediates) + + def prune_intermediate_layers(self, indices: Union[int, List[int]]=1, prune_norm: bool=False, prune_head: bool=True): + (take_indices, max_index) = feature_take_indices(len(self.stages), indices) + if prune_norm: + self.norm = nn.Identity() + if prune_head: + self.reset_classifier(0, '') + return take_indices + + def forward_features(self, x): + (x, feat_size) = self.patch_embed(x) + (B, N, C) = x.shape + if self.cls_token is not None: + cls_tokens = self.cls_token.expand(B, -1, -1) + x = torch.cat((cls_tokens, x), dim=1) + if self.pos_embed is not None: + x = x + self.pos_embed + for stage in self.stages: + (x, feat_size) = stage(x, feat_size) + x = self.norm(x) + return x + + def forward_head(self, x, pre_logits: bool=False): + if self.global_pool: + if self.global_pool == 'avg': + x = x[:, self.num_prefix_tokens:].mean(1) + else: + x = x[:, 0] + return x if pre_logits else self.head(x) + + def forward(self, x): + x = self.forward_features(x) + x = self.forward_head(x) + return x + +def checkpoint_filter_fn(state_dict, model): + if 'stages.0.blocks.0.norm1.weight' in state_dict: + for k in state_dict.keys(): + if 'rel_pos' in k: + rel_pos = state_dict[k] + dest_rel_pos_shape = model.state_dict()[k].shape + if rel_pos.shape[0] != dest_rel_pos_shape[0]: + rel_pos_resized = torch.nn.functional.interpolate(rel_pos.reshape(1, rel_pos.shape[0], -1).permute(0, 2, 1), size=dest_rel_pos_shape[0], mode='linear') + state_dict[k] = rel_pos_resized.reshape(-1, dest_rel_pos_shape[0]).permute(1, 0) + return state_dict + import re + if 'model_state' in state_dict: + state_dict = state_dict['model_state'] + depths = getattr(model, 'depths', None) + expand_attn = getattr(model, 'expand_attn', True) + assert depths is not None, 'model requires depth attribute to remap checkpoints' + depth_map = {} + block_idx = 0 + for (stage_idx, d) in enumerate(depths): + depth_map.update({i: (stage_idx, i - block_idx) for i in range(block_idx, block_idx + d)}) + block_idx += d + out_dict = {} + for (k, v) in state_dict.items(): + k = re.sub('blocks\\.(\\d+)', lambda x: f'stages.{depth_map[int(x.group(1))][0]}.blocks.{depth_map[int(x.group(1))][1]}', k) + if expand_attn: + k = re.sub('stages\\.(\\d+).blocks\\.(\\d+).proj', f'stages.\\1.blocks.\\2.shortcut_proj_attn', k) + else: + k = re.sub('stages\\.(\\d+).blocks\\.(\\d+).proj', f'stages.\\1.blocks.\\2.shortcut_proj_mlp', k) + if 'head' in k: + k = k.replace('head.projection', 'head.fc') + out_dict[k] = v + return out_dict +model_cfgs = dict(mvitv2_tiny=MultiScaleVitCfg(depths=(1, 2, 5, 2)), mvitv2_small=MultiScaleVitCfg(depths=(1, 2, 11, 2)), mvitv2_base=MultiScaleVitCfg(depths=(2, 3, 16, 3)), mvitv2_large=MultiScaleVitCfg(depths=(2, 6, 36, 4), embed_dim=144, num_heads=2, expand_attn=False), mvitv2_small_cls=MultiScaleVitCfg(depths=(1, 2, 11, 2), use_cls_token=True), mvitv2_base_cls=MultiScaleVitCfg(depths=(2, 3, 16, 3), use_cls_token=True), mvitv2_large_cls=MultiScaleVitCfg(depths=(2, 6, 36, 4), embed_dim=144, num_heads=2, use_cls_token=True, expand_attn=True), mvitv2_huge_cls=MultiScaleVitCfg(depths=(4, 8, 60, 8), embed_dim=192, num_heads=3, use_cls_token=True, expand_attn=True)) + +def _create_mvitv2(variant, cfg_variant=None, pretrained=False, **kwargs): + out_indices = kwargs.pop('out_indices', 4) + return build_model_with_cfg(MultiScaleVit, variant, pretrained, model_cfg=model_cfgs[variant] if not cfg_variant else model_cfgs[cfg_variant], pretrained_filter_fn=checkpoint_filter_fn, feature_cfg=dict(out_indices=out_indices, feature_cls='getter'), **kwargs) + +def _cfg(url='', **kwargs): + return {'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, 'crop_pct': 0.9, 'interpolation': 'bicubic', 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'patch_embed.proj', 'classifier': 'head.fc', 'fixed_input_size': True, **kwargs} +default_cfgs = generate_default_cfgs({'mvitv2_tiny.fb_in1k': _cfg(url='https://dl.fbaipublicfiles.com/mvit/mvitv2_models/MViTv2_T_in1k.pyth', hf_hub_id='timm/'), 'mvitv2_small.fb_in1k': _cfg(url='https://dl.fbaipublicfiles.com/mvit/mvitv2_models/MViTv2_S_in1k.pyth', hf_hub_id='timm/'), 'mvitv2_base.fb_in1k': _cfg(url='https://dl.fbaipublicfiles.com/mvit/mvitv2_models/MViTv2_B_in1k.pyth', hf_hub_id='timm/'), 'mvitv2_large.fb_in1k': _cfg(url='https://dl.fbaipublicfiles.com/mvit/mvitv2_models/MViTv2_L_in1k.pyth', hf_hub_id='timm/'), 'mvitv2_small_cls': _cfg(url=''), 'mvitv2_base_cls.fb_inw21k': _cfg(url='https://dl.fbaipublicfiles.com/mvit/mvitv2_models/MViTv2_B_in21k.pyth', hf_hub_id='timm/', num_classes=19168), 'mvitv2_large_cls.fb_inw21k': _cfg(url='https://dl.fbaipublicfiles.com/mvit/mvitv2_models/MViTv2_L_in21k.pyth', hf_hub_id='timm/', num_classes=19168), 'mvitv2_huge_cls.fb_inw21k': _cfg(url='https://dl.fbaipublicfiles.com/mvit/mvitv2_models/MViTv2_H_in21k.pyth', hf_hub_id='timm/', num_classes=19168)}) + +@register_model +def mvitv2_tiny(pretrained=False, **kwargs) -> MultiScaleVit: + return _create_mvitv2('mvitv2_tiny', pretrained=pretrained, **kwargs) + +@register_model +def mvitv2_small(pretrained=False, **kwargs) -> MultiScaleVit: + return _create_mvitv2('mvitv2_small', pretrained=pretrained, **kwargs) + +@register_model +def mvitv2_base(pretrained=False, **kwargs) -> MultiScaleVit: + return _create_mvitv2('mvitv2_base', pretrained=pretrained, **kwargs) + +@register_model +def mvitv2_large(pretrained=False, **kwargs) -> MultiScaleVit: + return _create_mvitv2('mvitv2_large', pretrained=pretrained, **kwargs) + +@register_model +def mvitv2_small_cls(pretrained=False, **kwargs) -> MultiScaleVit: + return _create_mvitv2('mvitv2_small_cls', pretrained=pretrained, **kwargs) + +@register_model +def mvitv2_base_cls(pretrained=False, **kwargs) -> MultiScaleVit: + return _create_mvitv2('mvitv2_base_cls', pretrained=pretrained, **kwargs) + +@register_model +def mvitv2_large_cls(pretrained=False, **kwargs) -> MultiScaleVit: + return _create_mvitv2('mvitv2_large_cls', pretrained=pretrained, **kwargs) + +@register_model +def mvitv2_huge_cls(pretrained=False, **kwargs) -> MultiScaleVit: + return _create_mvitv2('mvitv2_huge_cls', pretrained=pretrained, **kwargs) + +# File: pytorch-image-models-main/timm/models/nasnet.py +"""""" +from functools import partial +from typing import Optional +import torch +import torch.nn as nn +import torch.nn.functional as F +from timm.layers import ConvNormAct, create_conv2d, create_pool2d, create_classifier +from ._builder import build_model_with_cfg +from ._registry import register_model, generate_default_cfgs +__all__ = ['NASNetALarge'] + +class ActConvBn(nn.Module): + + def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=''): + super(ActConvBn, self).__init__() + self.act = nn.ReLU() + self.conv = create_conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding) + self.bn = nn.BatchNorm2d(out_channels, eps=0.001, momentum=0.1) + + def forward(self, x): + x = self.act(x) + x = self.conv(x) + x = self.bn(x) + return x + +class SeparableConv2d(nn.Module): + + def __init__(self, in_channels, out_channels, kernel_size, stride, padding=''): + super(SeparableConv2d, self).__init__() + self.depthwise_conv2d = create_conv2d(in_channels, in_channels, kernel_size=kernel_size, stride=stride, padding=padding, groups=in_channels) + self.pointwise_conv2d = create_conv2d(in_channels, out_channels, kernel_size=1, padding=0) + + def forward(self, x): + x = self.depthwise_conv2d(x) + x = self.pointwise_conv2d(x) + return x + +class BranchSeparables(nn.Module): + + def __init__(self, in_channels, out_channels, kernel_size, stride=1, pad_type='', stem_cell=False): + super(BranchSeparables, self).__init__() + middle_channels = out_channels if stem_cell else in_channels + self.act_1 = nn.ReLU() + self.separable_1 = SeparableConv2d(in_channels, middle_channels, kernel_size, stride=stride, padding=pad_type) + self.bn_sep_1 = nn.BatchNorm2d(middle_channels, eps=0.001, momentum=0.1) + self.act_2 = nn.ReLU(inplace=True) + self.separable_2 = SeparableConv2d(middle_channels, out_channels, kernel_size, stride=1, padding=pad_type) + self.bn_sep_2 = nn.BatchNorm2d(out_channels, eps=0.001, momentum=0.1) + + def forward(self, x): + x = self.act_1(x) + x = self.separable_1(x) + x = self.bn_sep_1(x) + x = self.act_2(x) + x = self.separable_2(x) + x = self.bn_sep_2(x) + return x + +class CellStem0(nn.Module): + + def __init__(self, stem_size, num_channels=42, pad_type=''): + super(CellStem0, self).__init__() + self.num_channels = num_channels + self.stem_size = stem_size + self.conv_1x1 = ActConvBn(self.stem_size, self.num_channels, 1, stride=1) + self.comb_iter_0_left = BranchSeparables(self.num_channels, self.num_channels, 5, 2, pad_type) + self.comb_iter_0_right = BranchSeparables(self.stem_size, self.num_channels, 7, 2, pad_type, stem_cell=True) + self.comb_iter_1_left = create_pool2d('max', 3, 2, padding=pad_type) + self.comb_iter_1_right = BranchSeparables(self.stem_size, self.num_channels, 7, 2, pad_type, stem_cell=True) + self.comb_iter_2_left = create_pool2d('avg', 3, 2, count_include_pad=False, padding=pad_type) + self.comb_iter_2_right = BranchSeparables(self.stem_size, self.num_channels, 5, 2, pad_type, stem_cell=True) + self.comb_iter_3_right = create_pool2d('avg', 3, 1, count_include_pad=False, padding=pad_type) + self.comb_iter_4_left = BranchSeparables(self.num_channels, self.num_channels, 3, 1, pad_type) + self.comb_iter_4_right = create_pool2d('max', 3, 2, padding=pad_type) + + def forward(self, x): + x1 = self.conv_1x1(x) + x_comb_iter_0_left = self.comb_iter_0_left(x1) + x_comb_iter_0_right = self.comb_iter_0_right(x) + x_comb_iter_0 = x_comb_iter_0_left + x_comb_iter_0_right + x_comb_iter_1_left = self.comb_iter_1_left(x1) + x_comb_iter_1_right = self.comb_iter_1_right(x) + x_comb_iter_1 = x_comb_iter_1_left + x_comb_iter_1_right + x_comb_iter_2_left = self.comb_iter_2_left(x1) + x_comb_iter_2_right = self.comb_iter_2_right(x) + x_comb_iter_2 = x_comb_iter_2_left + x_comb_iter_2_right + x_comb_iter_3_right = self.comb_iter_3_right(x_comb_iter_0) + x_comb_iter_3 = x_comb_iter_3_right + x_comb_iter_1 + x_comb_iter_4_left = self.comb_iter_4_left(x_comb_iter_0) + x_comb_iter_4_right = self.comb_iter_4_right(x1) + x_comb_iter_4 = x_comb_iter_4_left + x_comb_iter_4_right + x_out = torch.cat([x_comb_iter_1, x_comb_iter_2, x_comb_iter_3, x_comb_iter_4], 1) + return x_out + +class CellStem1(nn.Module): + + def __init__(self, stem_size, num_channels, pad_type=''): + super(CellStem1, self).__init__() + self.num_channels = num_channels + self.stem_size = stem_size + self.conv_1x1 = ActConvBn(2 * self.num_channels, self.num_channels, 1, stride=1) + self.act = nn.ReLU() + self.path_1 = nn.Sequential() + self.path_1.add_module('avgpool', nn.AvgPool2d(1, stride=2, count_include_pad=False)) + self.path_1.add_module('conv', nn.Conv2d(self.stem_size, self.num_channels // 2, 1, stride=1, bias=False)) + self.path_2 = nn.Sequential() + self.path_2.add_module('pad', nn.ZeroPad2d((-1, 1, -1, 1))) + self.path_2.add_module('avgpool', nn.AvgPool2d(1, stride=2, count_include_pad=False)) + self.path_2.add_module('conv', nn.Conv2d(self.stem_size, self.num_channels // 2, 1, stride=1, bias=False)) + self.final_path_bn = nn.BatchNorm2d(self.num_channels, eps=0.001, momentum=0.1) + self.comb_iter_0_left = BranchSeparables(self.num_channels, self.num_channels, 5, 2, pad_type) + self.comb_iter_0_right = BranchSeparables(self.num_channels, self.num_channels, 7, 2, pad_type) + self.comb_iter_1_left = create_pool2d('max', 3, 2, padding=pad_type) + self.comb_iter_1_right = BranchSeparables(self.num_channels, self.num_channels, 7, 2, pad_type) + self.comb_iter_2_left = create_pool2d('avg', 3, 2, count_include_pad=False, padding=pad_type) + self.comb_iter_2_right = BranchSeparables(self.num_channels, self.num_channels, 5, 2, pad_type) + self.comb_iter_3_right = create_pool2d('avg', 3, 1, count_include_pad=False, padding=pad_type) + self.comb_iter_4_left = BranchSeparables(self.num_channels, self.num_channels, 3, 1, pad_type) + self.comb_iter_4_right = create_pool2d('max', 3, 2, padding=pad_type) + + def forward(self, x_conv0, x_stem_0): + x_left = self.conv_1x1(x_stem_0) + x_relu = self.act(x_conv0) + x_path1 = self.path_1(x_relu) + x_path2 = self.path_2(x_relu) + x_right = self.final_path_bn(torch.cat([x_path1, x_path2], 1)) + x_comb_iter_0_left = self.comb_iter_0_left(x_left) + x_comb_iter_0_right = self.comb_iter_0_right(x_right) + x_comb_iter_0 = x_comb_iter_0_left + x_comb_iter_0_right + x_comb_iter_1_left = self.comb_iter_1_left(x_left) + x_comb_iter_1_right = self.comb_iter_1_right(x_right) + x_comb_iter_1 = x_comb_iter_1_left + x_comb_iter_1_right + x_comb_iter_2_left = self.comb_iter_2_left(x_left) + x_comb_iter_2_right = self.comb_iter_2_right(x_right) + x_comb_iter_2 = x_comb_iter_2_left + x_comb_iter_2_right + x_comb_iter_3_right = self.comb_iter_3_right(x_comb_iter_0) + x_comb_iter_3 = x_comb_iter_3_right + x_comb_iter_1 + x_comb_iter_4_left = self.comb_iter_4_left(x_comb_iter_0) + x_comb_iter_4_right = self.comb_iter_4_right(x_left) + x_comb_iter_4 = x_comb_iter_4_left + x_comb_iter_4_right + x_out = torch.cat([x_comb_iter_1, x_comb_iter_2, x_comb_iter_3, x_comb_iter_4], 1) + return x_out + +class FirstCell(nn.Module): + + def __init__(self, in_chs_left, out_chs_left, in_chs_right, out_chs_right, pad_type=''): + super(FirstCell, self).__init__() + self.conv_1x1 = ActConvBn(in_chs_right, out_chs_right, 1, stride=1) + self.act = nn.ReLU() + self.path_1 = nn.Sequential() + self.path_1.add_module('avgpool', nn.AvgPool2d(1, stride=2, count_include_pad=False)) + self.path_1.add_module('conv', nn.Conv2d(in_chs_left, out_chs_left, 1, stride=1, bias=False)) + self.path_2 = nn.Sequential() + self.path_2.add_module('pad', nn.ZeroPad2d((-1, 1, -1, 1))) + self.path_2.add_module('avgpool', nn.AvgPool2d(1, stride=2, count_include_pad=False)) + self.path_2.add_module('conv', nn.Conv2d(in_chs_left, out_chs_left, 1, stride=1, bias=False)) + self.final_path_bn = nn.BatchNorm2d(out_chs_left * 2, eps=0.001, momentum=0.1) + self.comb_iter_0_left = BranchSeparables(out_chs_right, out_chs_right, 5, 1, pad_type) + self.comb_iter_0_right = BranchSeparables(out_chs_right, out_chs_right, 3, 1, pad_type) + self.comb_iter_1_left = BranchSeparables(out_chs_right, out_chs_right, 5, 1, pad_type) + self.comb_iter_1_right = BranchSeparables(out_chs_right, out_chs_right, 3, 1, pad_type) + self.comb_iter_2_left = create_pool2d('avg', 3, 1, count_include_pad=False, padding=pad_type) + self.comb_iter_3_left = create_pool2d('avg', 3, 1, count_include_pad=False, padding=pad_type) + self.comb_iter_3_right = create_pool2d('avg', 3, 1, count_include_pad=False, padding=pad_type) + self.comb_iter_4_left = BranchSeparables(out_chs_right, out_chs_right, 3, 1, pad_type) + + def forward(self, x, x_prev): + x_relu = self.act(x_prev) + x_path1 = self.path_1(x_relu) + x_path2 = self.path_2(x_relu) + x_left = self.final_path_bn(torch.cat([x_path1, x_path2], 1)) + x_right = self.conv_1x1(x) + x_comb_iter_0_left = self.comb_iter_0_left(x_right) + x_comb_iter_0_right = self.comb_iter_0_right(x_left) + x_comb_iter_0 = x_comb_iter_0_left + x_comb_iter_0_right + x_comb_iter_1_left = self.comb_iter_1_left(x_left) + x_comb_iter_1_right = self.comb_iter_1_right(x_left) + x_comb_iter_1 = x_comb_iter_1_left + x_comb_iter_1_right + x_comb_iter_2_left = self.comb_iter_2_left(x_right) + x_comb_iter_2 = x_comb_iter_2_left + x_left + x_comb_iter_3_left = self.comb_iter_3_left(x_left) + x_comb_iter_3_right = self.comb_iter_3_right(x_left) + x_comb_iter_3 = x_comb_iter_3_left + x_comb_iter_3_right + x_comb_iter_4_left = self.comb_iter_4_left(x_right) + x_comb_iter_4 = x_comb_iter_4_left + x_right + x_out = torch.cat([x_left, x_comb_iter_0, x_comb_iter_1, x_comb_iter_2, x_comb_iter_3, x_comb_iter_4], 1) + return x_out + +class NormalCell(nn.Module): + + def __init__(self, in_chs_left, out_chs_left, in_chs_right, out_chs_right, pad_type=''): + super(NormalCell, self).__init__() + self.conv_prev_1x1 = ActConvBn(in_chs_left, out_chs_left, 1, stride=1, padding=pad_type) + self.conv_1x1 = ActConvBn(in_chs_right, out_chs_right, 1, stride=1, padding=pad_type) + self.comb_iter_0_left = BranchSeparables(out_chs_right, out_chs_right, 5, 1, pad_type) + self.comb_iter_0_right = BranchSeparables(out_chs_left, out_chs_left, 3, 1, pad_type) + self.comb_iter_1_left = BranchSeparables(out_chs_left, out_chs_left, 5, 1, pad_type) + self.comb_iter_1_right = BranchSeparables(out_chs_left, out_chs_left, 3, 1, pad_type) + self.comb_iter_2_left = create_pool2d('avg', 3, 1, count_include_pad=False, padding=pad_type) + self.comb_iter_3_left = create_pool2d('avg', 3, 1, count_include_pad=False, padding=pad_type) + self.comb_iter_3_right = create_pool2d('avg', 3, 1, count_include_pad=False, padding=pad_type) + self.comb_iter_4_left = BranchSeparables(out_chs_right, out_chs_right, 3, 1, pad_type) + + def forward(self, x, x_prev): + x_left = self.conv_prev_1x1(x_prev) + x_right = self.conv_1x1(x) + x_comb_iter_0_left = self.comb_iter_0_left(x_right) + x_comb_iter_0_right = self.comb_iter_0_right(x_left) + x_comb_iter_0 = x_comb_iter_0_left + x_comb_iter_0_right + x_comb_iter_1_left = self.comb_iter_1_left(x_left) + x_comb_iter_1_right = self.comb_iter_1_right(x_left) + x_comb_iter_1 = x_comb_iter_1_left + x_comb_iter_1_right + x_comb_iter_2_left = self.comb_iter_2_left(x_right) + x_comb_iter_2 = x_comb_iter_2_left + x_left + x_comb_iter_3_left = self.comb_iter_3_left(x_left) + x_comb_iter_3_right = self.comb_iter_3_right(x_left) + x_comb_iter_3 = x_comb_iter_3_left + x_comb_iter_3_right + x_comb_iter_4_left = self.comb_iter_4_left(x_right) + x_comb_iter_4 = x_comb_iter_4_left + x_right + x_out = torch.cat([x_left, x_comb_iter_0, x_comb_iter_1, x_comb_iter_2, x_comb_iter_3, x_comb_iter_4], 1) + return x_out + +class ReductionCell0(nn.Module): + + def __init__(self, in_chs_left, out_chs_left, in_chs_right, out_chs_right, pad_type=''): + super(ReductionCell0, self).__init__() + self.conv_prev_1x1 = ActConvBn(in_chs_left, out_chs_left, 1, stride=1, padding=pad_type) + self.conv_1x1 = ActConvBn(in_chs_right, out_chs_right, 1, stride=1, padding=pad_type) + self.comb_iter_0_left = BranchSeparables(out_chs_right, out_chs_right, 5, 2, pad_type) + self.comb_iter_0_right = BranchSeparables(out_chs_right, out_chs_right, 7, 2, pad_type) + self.comb_iter_1_left = create_pool2d('max', 3, 2, padding=pad_type) + self.comb_iter_1_right = BranchSeparables(out_chs_right, out_chs_right, 7, 2, pad_type) + self.comb_iter_2_left = create_pool2d('avg', 3, 2, count_include_pad=False, padding=pad_type) + self.comb_iter_2_right = BranchSeparables(out_chs_right, out_chs_right, 5, 2, pad_type) + self.comb_iter_3_right = create_pool2d('avg', 3, 1, count_include_pad=False, padding=pad_type) + self.comb_iter_4_left = BranchSeparables(out_chs_right, out_chs_right, 3, 1, pad_type) + self.comb_iter_4_right = create_pool2d('max', 3, 2, padding=pad_type) + + def forward(self, x, x_prev): + x_left = self.conv_prev_1x1(x_prev) + x_right = self.conv_1x1(x) + x_comb_iter_0_left = self.comb_iter_0_left(x_right) + x_comb_iter_0_right = self.comb_iter_0_right(x_left) + x_comb_iter_0 = x_comb_iter_0_left + x_comb_iter_0_right + x_comb_iter_1_left = self.comb_iter_1_left(x_right) + x_comb_iter_1_right = self.comb_iter_1_right(x_left) + x_comb_iter_1 = x_comb_iter_1_left + x_comb_iter_1_right + x_comb_iter_2_left = self.comb_iter_2_left(x_right) + x_comb_iter_2_right = self.comb_iter_2_right(x_left) + x_comb_iter_2 = x_comb_iter_2_left + x_comb_iter_2_right + x_comb_iter_3_right = self.comb_iter_3_right(x_comb_iter_0) + x_comb_iter_3 = x_comb_iter_3_right + x_comb_iter_1 + x_comb_iter_4_left = self.comb_iter_4_left(x_comb_iter_0) + x_comb_iter_4_right = self.comb_iter_4_right(x_right) + x_comb_iter_4 = x_comb_iter_4_left + x_comb_iter_4_right + x_out = torch.cat([x_comb_iter_1, x_comb_iter_2, x_comb_iter_3, x_comb_iter_4], 1) + return x_out + +class ReductionCell1(nn.Module): + + def __init__(self, in_chs_left, out_chs_left, in_chs_right, out_chs_right, pad_type=''): + super(ReductionCell1, self).__init__() + self.conv_prev_1x1 = ActConvBn(in_chs_left, out_chs_left, 1, stride=1, padding=pad_type) + self.conv_1x1 = ActConvBn(in_chs_right, out_chs_right, 1, stride=1, padding=pad_type) + self.comb_iter_0_left = BranchSeparables(out_chs_right, out_chs_right, 5, 2, pad_type) + self.comb_iter_0_right = BranchSeparables(out_chs_right, out_chs_right, 7, 2, pad_type) + self.comb_iter_1_left = create_pool2d('max', 3, 2, padding=pad_type) + self.comb_iter_1_right = BranchSeparables(out_chs_right, out_chs_right, 7, 2, pad_type) + self.comb_iter_2_left = create_pool2d('avg', 3, 2, count_include_pad=False, padding=pad_type) + self.comb_iter_2_right = BranchSeparables(out_chs_right, out_chs_right, 5, 2, pad_type) + self.comb_iter_3_right = create_pool2d('avg', 3, 1, count_include_pad=False, padding=pad_type) + self.comb_iter_4_left = BranchSeparables(out_chs_right, out_chs_right, 3, 1, pad_type) + self.comb_iter_4_right = create_pool2d('max', 3, 2, padding=pad_type) + + def forward(self, x, x_prev): + x_left = self.conv_prev_1x1(x_prev) + x_right = self.conv_1x1(x) + x_comb_iter_0_left = self.comb_iter_0_left(x_right) + x_comb_iter_0_right = self.comb_iter_0_right(x_left) + x_comb_iter_0 = x_comb_iter_0_left + x_comb_iter_0_right + x_comb_iter_1_left = self.comb_iter_1_left(x_right) + x_comb_iter_1_right = self.comb_iter_1_right(x_left) + x_comb_iter_1 = x_comb_iter_1_left + x_comb_iter_1_right + x_comb_iter_2_left = self.comb_iter_2_left(x_right) + x_comb_iter_2_right = self.comb_iter_2_right(x_left) + x_comb_iter_2 = x_comb_iter_2_left + x_comb_iter_2_right + x_comb_iter_3_right = self.comb_iter_3_right(x_comb_iter_0) + x_comb_iter_3 = x_comb_iter_3_right + x_comb_iter_1 + x_comb_iter_4_left = self.comb_iter_4_left(x_comb_iter_0) + x_comb_iter_4_right = self.comb_iter_4_right(x_right) + x_comb_iter_4 = x_comb_iter_4_left + x_comb_iter_4_right + x_out = torch.cat([x_comb_iter_1, x_comb_iter_2, x_comb_iter_3, x_comb_iter_4], 1) + return x_out + +class NASNetALarge(nn.Module): + + def __init__(self, num_classes=1000, in_chans=3, stem_size=96, channel_multiplier=2, num_features=4032, output_stride=32, drop_rate=0.0, global_pool='avg', pad_type='same'): + super(NASNetALarge, self).__init__() + self.num_classes = num_classes + self.stem_size = stem_size + self.num_features = self.head_hidden_size = num_features + self.channel_multiplier = channel_multiplier + assert output_stride == 32 + channels = self.num_features // 24 + self.conv0 = ConvNormAct(in_channels=in_chans, out_channels=self.stem_size, kernel_size=3, padding=0, stride=2, norm_layer=partial(nn.BatchNorm2d, eps=0.001, momentum=0.1), apply_act=False) + self.cell_stem_0 = CellStem0(self.stem_size, num_channels=channels // channel_multiplier ** 2, pad_type=pad_type) + self.cell_stem_1 = CellStem1(self.stem_size, num_channels=channels // channel_multiplier, pad_type=pad_type) + self.cell_0 = FirstCell(in_chs_left=channels, out_chs_left=channels // 2, in_chs_right=2 * channels, out_chs_right=channels, pad_type=pad_type) + self.cell_1 = NormalCell(in_chs_left=2 * channels, out_chs_left=channels, in_chs_right=6 * channels, out_chs_right=channels, pad_type=pad_type) + self.cell_2 = NormalCell(in_chs_left=6 * channels, out_chs_left=channels, in_chs_right=6 * channels, out_chs_right=channels, pad_type=pad_type) + self.cell_3 = NormalCell(in_chs_left=6 * channels, out_chs_left=channels, in_chs_right=6 * channels, out_chs_right=channels, pad_type=pad_type) + self.cell_4 = NormalCell(in_chs_left=6 * channels, out_chs_left=channels, in_chs_right=6 * channels, out_chs_right=channels, pad_type=pad_type) + self.cell_5 = NormalCell(in_chs_left=6 * channels, out_chs_left=channels, in_chs_right=6 * channels, out_chs_right=channels, pad_type=pad_type) + self.reduction_cell_0 = ReductionCell0(in_chs_left=6 * channels, out_chs_left=2 * channels, in_chs_right=6 * channels, out_chs_right=2 * channels, pad_type=pad_type) + self.cell_6 = FirstCell(in_chs_left=6 * channels, out_chs_left=channels, in_chs_right=8 * channels, out_chs_right=2 * channels, pad_type=pad_type) + self.cell_7 = NormalCell(in_chs_left=8 * channels, out_chs_left=2 * channels, in_chs_right=12 * channels, out_chs_right=2 * channels, pad_type=pad_type) + self.cell_8 = NormalCell(in_chs_left=12 * channels, out_chs_left=2 * channels, in_chs_right=12 * channels, out_chs_right=2 * channels, pad_type=pad_type) + self.cell_9 = NormalCell(in_chs_left=12 * channels, out_chs_left=2 * channels, in_chs_right=12 * channels, out_chs_right=2 * channels, pad_type=pad_type) + self.cell_10 = NormalCell(in_chs_left=12 * channels, out_chs_left=2 * channels, in_chs_right=12 * channels, out_chs_right=2 * channels, pad_type=pad_type) + self.cell_11 = NormalCell(in_chs_left=12 * channels, out_chs_left=2 * channels, in_chs_right=12 * channels, out_chs_right=2 * channels, pad_type=pad_type) + self.reduction_cell_1 = ReductionCell1(in_chs_left=12 * channels, out_chs_left=4 * channels, in_chs_right=12 * channels, out_chs_right=4 * channels, pad_type=pad_type) + self.cell_12 = FirstCell(in_chs_left=12 * channels, out_chs_left=2 * channels, in_chs_right=16 * channels, out_chs_right=4 * channels, pad_type=pad_type) + self.cell_13 = NormalCell(in_chs_left=16 * channels, out_chs_left=4 * channels, in_chs_right=24 * channels, out_chs_right=4 * channels, pad_type=pad_type) + self.cell_14 = NormalCell(in_chs_left=24 * channels, out_chs_left=4 * channels, in_chs_right=24 * channels, out_chs_right=4 * channels, pad_type=pad_type) + self.cell_15 = NormalCell(in_chs_left=24 * channels, out_chs_left=4 * channels, in_chs_right=24 * channels, out_chs_right=4 * channels, pad_type=pad_type) + self.cell_16 = NormalCell(in_chs_left=24 * channels, out_chs_left=4 * channels, in_chs_right=24 * channels, out_chs_right=4 * channels, pad_type=pad_type) + self.cell_17 = NormalCell(in_chs_left=24 * channels, out_chs_left=4 * channels, in_chs_right=24 * channels, out_chs_right=4 * channels, pad_type=pad_type) + self.act = nn.ReLU(inplace=True) + self.feature_info = [dict(num_chs=96, reduction=2, module='conv0'), dict(num_chs=168, reduction=4, module='cell_stem_1.conv_1x1.act'), dict(num_chs=1008, reduction=8, module='reduction_cell_0.conv_1x1.act'), dict(num_chs=2016, reduction=16, module='reduction_cell_1.conv_1x1.act'), dict(num_chs=4032, reduction=32, module='act')] + (self.global_pool, self.head_drop, self.last_linear) = create_classifier(self.num_features, self.num_classes, pool_type=global_pool, drop_rate=drop_rate) + + @torch.jit.ignore + def group_matcher(self, coarse=False): + matcher = dict(stem='^conv0|cell_stem_[01]', blocks=[('^cell_(\\d+)', None), ('^reduction_cell_0', (6,)), ('^reduction_cell_1', (12,))]) + return matcher + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + assert not enable, 'gradient checkpointing not supported' + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.last_linear + + def reset_classifier(self, num_classes: int, global_pool: str='avg'): + self.num_classes = num_classes + (self.global_pool, self.last_linear) = create_classifier(self.num_features, self.num_classes, pool_type=global_pool) + + def forward_features(self, x): + x_conv0 = self.conv0(x) + x_stem_0 = self.cell_stem_0(x_conv0) + x_stem_1 = self.cell_stem_1(x_conv0, x_stem_0) + x_cell_0 = self.cell_0(x_stem_1, x_stem_0) + x_cell_1 = self.cell_1(x_cell_0, x_stem_1) + x_cell_2 = self.cell_2(x_cell_1, x_cell_0) + x_cell_3 = self.cell_3(x_cell_2, x_cell_1) + x_cell_4 = self.cell_4(x_cell_3, x_cell_2) + x_cell_5 = self.cell_5(x_cell_4, x_cell_3) + x_reduction_cell_0 = self.reduction_cell_0(x_cell_5, x_cell_4) + x_cell_6 = self.cell_6(x_reduction_cell_0, x_cell_4) + x_cell_7 = self.cell_7(x_cell_6, x_reduction_cell_0) + x_cell_8 = self.cell_8(x_cell_7, x_cell_6) + x_cell_9 = self.cell_9(x_cell_8, x_cell_7) + x_cell_10 = self.cell_10(x_cell_9, x_cell_8) + x_cell_11 = self.cell_11(x_cell_10, x_cell_9) + x_reduction_cell_1 = self.reduction_cell_1(x_cell_11, x_cell_10) + x_cell_12 = self.cell_12(x_reduction_cell_1, x_cell_10) + x_cell_13 = self.cell_13(x_cell_12, x_reduction_cell_1) + x_cell_14 = self.cell_14(x_cell_13, x_cell_12) + x_cell_15 = self.cell_15(x_cell_14, x_cell_13) + x_cell_16 = self.cell_16(x_cell_15, x_cell_14) + x_cell_17 = self.cell_17(x_cell_16, x_cell_15) + x = self.act(x_cell_17) + return x + + def forward_head(self, x, pre_logits: bool=False): + x = self.global_pool(x) + x = self.head_drop(x) + return x if pre_logits else self.last_linear(x) + + def forward(self, x): + x = self.forward_features(x) + x = self.forward_head(x) + return x + +def _create_nasnet(variant, pretrained=False, **kwargs): + return build_model_with_cfg(NASNetALarge, variant, pretrained, feature_cfg=dict(feature_cls='hook', no_rewrite=True), **kwargs) +default_cfgs = generate_default_cfgs({'nasnetalarge.tf_in1k': {'hf_hub_id': 'timm/', 'url': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/nasnetalarge-dc4a7b8b.pth', 'input_size': (3, 331, 331), 'pool_size': (11, 11), 'crop_pct': 0.911, 'interpolation': 'bicubic', 'mean': (0.5, 0.5, 0.5), 'std': (0.5, 0.5, 0.5), 'num_classes': 1000, 'first_conv': 'conv0.conv', 'classifier': 'last_linear'}}) + +@register_model +def nasnetalarge(pretrained=False, **kwargs) -> NASNetALarge: + model_kwargs = dict(pad_type='same', **kwargs) + return _create_nasnet('nasnetalarge', pretrained, **model_kwargs) + +# File: pytorch-image-models-main/timm/models/nest.py +"""""" +import collections.abc +import logging +import math +from functools import partial +import torch +import torch.nn.functional as F +from torch import nn +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from timm.layers import PatchEmbed, Mlp, DropPath, create_classifier, trunc_normal_, _assert +from timm.layers import create_conv2d, create_pool2d, to_ntuple, use_fused_attn, LayerNorm +from ._builder import build_model_with_cfg +from ._features_fx import register_notrace_function +from ._manipulate import checkpoint_seq, named_apply +from ._registry import register_model, generate_default_cfgs, register_model_deprecations +__all__ = ['Nest'] +_logger = logging.getLogger(__name__) + +class Attention(nn.Module): + fused_attn: torch.jit.Final[bool] + + def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0.0, proj_drop=0.0): + super().__init__() + self.num_heads = num_heads + head_dim = dim // num_heads + self.scale = head_dim ** (-0.5) + self.fused_attn = use_fused_attn() + self.qkv = nn.Linear(dim, 3 * dim, bias=qkv_bias) + self.attn_drop = nn.Dropout(attn_drop) + self.proj = nn.Linear(dim, dim) + self.proj_drop = nn.Dropout(proj_drop) + + def forward(self, x): + (B, T, N, C) = x.shape + qkv = self.qkv(x).reshape(B, T, N, 3, self.num_heads, C // self.num_heads).permute(3, 0, 4, 1, 2, 5) + (q, k, v) = qkv.unbind(0) + if self.fused_attn: + x = F.scaled_dot_product_attention(q, k, v, dropout_p=self.attn_drop.p if self.training else 0.0) + else: + q = q * self.scale + attn = q @ k.transpose(-2, -1) + attn = attn.softmax(dim=-1) + attn = self.attn_drop(attn) + x = attn @ v + x = x.permute(0, 2, 3, 4, 1).reshape(B, T, N, C) + x = self.proj(x) + x = self.proj_drop(x) + return x + +class TransformerLayer(nn.Module): + + def __init__(self, dim, num_heads, mlp_ratio=4.0, qkv_bias=False, proj_drop=0.0, attn_drop=0.0, drop_path=0.0, act_layer=nn.GELU, norm_layer=nn.LayerNorm): + super().__init__() + self.norm1 = norm_layer(dim) + self.attn = Attention(dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=proj_drop) + self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + self.norm2 = norm_layer(dim) + mlp_hidden_dim = int(dim * mlp_ratio) + self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=proj_drop) + + def forward(self, x): + y = self.norm1(x) + x = x + self.drop_path(self.attn(y)) + x = x + self.drop_path(self.mlp(self.norm2(x))) + return x + +class ConvPool(nn.Module): + + def __init__(self, in_channels, out_channels, norm_layer, pad_type=''): + super().__init__() + self.conv = create_conv2d(in_channels, out_channels, kernel_size=3, padding=pad_type, bias=True) + self.norm = norm_layer(out_channels) + self.pool = create_pool2d('max', kernel_size=3, stride=2, padding=pad_type) + + def forward(self, x): + _assert(x.shape[-2] % 2 == 0, 'BlockAggregation requires even input spatial dims') + _assert(x.shape[-1] % 2 == 0, 'BlockAggregation requires even input spatial dims') + x = self.conv(x) + x = self.norm(x.permute(0, 2, 3, 1)).permute(0, 3, 1, 2) + x = self.pool(x) + return x + +def blockify(x, block_size: int): + (B, H, W, C) = x.shape + _assert(H % block_size == 0, '`block_size` must divide input height evenly') + _assert(W % block_size == 0, '`block_size` must divide input width evenly') + grid_height = H // block_size + grid_width = W // block_size + x = x.reshape(B, grid_height, block_size, grid_width, block_size, C) + x = x.transpose(2, 3).reshape(B, grid_height * grid_width, -1, C) + return x + +@register_notrace_function +def deblockify(x, block_size: int): + (B, T, _, C) = x.shape + grid_size = int(math.sqrt(T)) + height = width = grid_size * block_size + x = x.reshape(B, grid_size, grid_size, block_size, block_size, C) + x = x.transpose(2, 3).reshape(B, height, width, C) + return x + +class NestLevel(nn.Module): + + def __init__(self, num_blocks, block_size, seq_length, num_heads, depth, embed_dim, prev_embed_dim=None, mlp_ratio=4.0, qkv_bias=True, proj_drop=0.0, attn_drop=0.0, drop_path=[], norm_layer=None, act_layer=None, pad_type=''): + super().__init__() + self.block_size = block_size + self.grad_checkpointing = False + self.pos_embed = nn.Parameter(torch.zeros(1, num_blocks, seq_length, embed_dim)) + if prev_embed_dim is not None: + self.pool = ConvPool(prev_embed_dim, embed_dim, norm_layer=norm_layer, pad_type=pad_type) + else: + self.pool = nn.Identity() + if len(drop_path): + assert len(drop_path) == depth, 'Must provide as many drop path rates as there are transformer layers' + self.transformer_encoder = nn.Sequential(*[TransformerLayer(dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, proj_drop=proj_drop, attn_drop=attn_drop, drop_path=drop_path[i], norm_layer=norm_layer, act_layer=act_layer) for i in range(depth)]) + + def forward(self, x): + x = self.pool(x) + x = x.permute(0, 2, 3, 1) + x = blockify(x, self.block_size) + x = x + self.pos_embed + if self.grad_checkpointing and (not torch.jit.is_scripting()): + x = checkpoint_seq(self.transformer_encoder, x) + else: + x = self.transformer_encoder(x) + x = deblockify(x, self.block_size) + return x.permute(0, 3, 1, 2) + +class Nest(nn.Module): + + def __init__(self, img_size=224, in_chans=3, patch_size=4, num_levels=3, embed_dims=(128, 256, 512), num_heads=(4, 8, 16), depths=(2, 2, 20), num_classes=1000, mlp_ratio=4.0, qkv_bias=True, drop_rate=0.0, proj_drop_rate=0.0, attn_drop_rate=0.0, drop_path_rate=0.5, norm_layer=None, act_layer=None, pad_type='', weight_init='', global_pool='avg'): + super().__init__() + for param_name in ['embed_dims', 'num_heads', 'depths']: + param_value = locals()[param_name] + if isinstance(param_value, collections.abc.Sequence): + assert len(param_value) == num_levels, f'Require `len({param_name}) == num_levels`' + embed_dims = to_ntuple(num_levels)(embed_dims) + num_heads = to_ntuple(num_levels)(num_heads) + depths = to_ntuple(num_levels)(depths) + self.num_classes = num_classes + self.num_features = self.head_hidden_size = embed_dims[-1] + self.feature_info = [] + norm_layer = norm_layer or LayerNorm + act_layer = act_layer or nn.GELU + self.drop_rate = drop_rate + self.num_levels = num_levels + if isinstance(img_size, collections.abc.Sequence): + assert img_size[0] == img_size[1], 'Model only handles square inputs' + img_size = img_size[0] + assert img_size % patch_size == 0, '`patch_size` must divide `img_size` evenly' + self.patch_size = patch_size + self.num_blocks = (4 ** torch.arange(num_levels)).flip(0).tolist() + assert img_size // patch_size % math.sqrt(self.num_blocks[0]) == 0, "First level blocks don't fit evenly. Check `img_size`, `patch_size`, and `num_levels`" + self.block_size = int(img_size // patch_size // math.sqrt(self.num_blocks[0])) + self.patch_embed = PatchEmbed(img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dims[0], flatten=False) + self.num_patches = self.patch_embed.num_patches + self.seq_length = self.num_patches // self.num_blocks[0] + levels = [] + dp_rates = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(depths)).split(depths)] + prev_dim = None + curr_stride = 4 + for i in range(len(self.num_blocks)): + dim = embed_dims[i] + levels.append(NestLevel(self.num_blocks[i], self.block_size, self.seq_length, num_heads[i], depths[i], dim, prev_dim, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, proj_drop=proj_drop_rate, attn_drop=attn_drop_rate, drop_path=dp_rates[i], norm_layer=norm_layer, act_layer=act_layer, pad_type=pad_type)) + self.feature_info += [dict(num_chs=dim, reduction=curr_stride, module=f'levels.{i}')] + prev_dim = dim + curr_stride *= 2 + self.levels = nn.Sequential(*levels) + self.norm = norm_layer(embed_dims[-1]) + (global_pool, head) = create_classifier(self.num_features, self.num_classes, pool_type=global_pool) + self.global_pool = global_pool + self.head_drop = nn.Dropout(drop_rate) + self.head = head + self.init_weights(weight_init) + + @torch.jit.ignore + def init_weights(self, mode=''): + assert mode in ('nlhb', '') + head_bias = -math.log(self.num_classes) if 'nlhb' in mode else 0.0 + for level in self.levels: + trunc_normal_(level.pos_embed, std=0.02, a=-2, b=2) + named_apply(partial(_init_nest_weights, head_bias=head_bias), self) + + @torch.jit.ignore + def no_weight_decay(self): + return {f'level.{i}.pos_embed' for i in range(len(self.levels))} + + @torch.jit.ignore + def group_matcher(self, coarse=False): + matcher = dict(stem='^patch_embed', blocks=[('^levels\\.(\\d+)' if coarse else '^levels\\.(\\d+)\\.transformer_encoder\\.(\\d+)', None), ('^levels\\.(\\d+)\\.(?:pool|pos_embed)', (0,)), ('^norm', (99999,))]) + return matcher + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + for l in self.levels: + l.grad_checkpointing = enable + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.head + + def reset_classifier(self, num_classes: int, global_pool: str='avg'): + self.num_classes = num_classes + (self.global_pool, self.head) = create_classifier(self.num_features, self.num_classes, pool_type=global_pool) + + def forward_features(self, x): + x = self.patch_embed(x) + x = self.levels(x) + x = self.norm(x.permute(0, 2, 3, 1)).permute(0, 3, 1, 2) + return x + + def forward_head(self, x, pre_logits: bool=False): + x = self.global_pool(x) + x = self.head_drop(x) + return x if pre_logits else self.head(x) + + def forward(self, x): + x = self.forward_features(x) + x = self.forward_head(x) + return x + +def _init_nest_weights(module: nn.Module, name: str='', head_bias: float=0.0): + if isinstance(module, nn.Linear): + if name.startswith('head'): + trunc_normal_(module.weight, std=0.02, a=-2, b=2) + nn.init.constant_(module.bias, head_bias) + else: + trunc_normal_(module.weight, std=0.02, a=-2, b=2) + if module.bias is not None: + nn.init.zeros_(module.bias) + elif isinstance(module, nn.Conv2d): + trunc_normal_(module.weight, std=0.02, a=-2, b=2) + if module.bias is not None: + nn.init.zeros_(module.bias) + +def resize_pos_embed(posemb, posemb_new): + _logger.info('Resized position embedding: %s to %s', posemb.shape, posemb_new.shape) + seq_length_old = posemb.shape[2] + (num_blocks_new, seq_length_new) = posemb_new.shape[1:3] + size_new = int(math.sqrt(num_blocks_new * seq_length_new)) + posemb = deblockify(posemb, int(math.sqrt(seq_length_old))).permute(0, 3, 1, 2) + posemb = F.interpolate(posemb, size=[size_new, size_new], mode='bicubic', align_corners=False) + posemb = blockify(posemb.permute(0, 2, 3, 1), int(math.sqrt(seq_length_new))) + return posemb + +def checkpoint_filter_fn(state_dict, model): + pos_embed_keys = [k for k in state_dict.keys() if k.startswith('pos_embed_')] + for k in pos_embed_keys: + if state_dict[k].shape != getattr(model, k).shape: + state_dict[k] = resize_pos_embed(state_dict[k], getattr(model, k)) + return state_dict + +def _create_nest(variant, pretrained=False, **kwargs): + model = build_model_with_cfg(Nest, variant, pretrained, feature_cfg=dict(out_indices=(0, 1, 2), flatten_sequential=True), pretrained_filter_fn=checkpoint_filter_fn, **kwargs) + return model + +def _cfg(url='', **kwargs): + return {'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': [14, 14], 'crop_pct': 0.875, 'interpolation': 'bicubic', 'fixed_input_size': True, 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'patch_embed.proj', 'classifier': 'head', **kwargs} +default_cfgs = generate_default_cfgs({'nest_base.untrained': _cfg(), 'nest_small.untrained': _cfg(), 'nest_tiny.untrained': _cfg(), 'nest_base_jx.goog_in1k': _cfg(hf_hub_id='timm/'), 'nest_small_jx.goog_in1k': _cfg(hf_hub_id='timm/'), 'nest_tiny_jx.goog_in1k': _cfg(hf_hub_id='timm/')}) + +@register_model +def nest_base(pretrained=False, **kwargs) -> Nest: + model_kwargs = dict(embed_dims=(128, 256, 512), num_heads=(4, 8, 16), depths=(2, 2, 20), **kwargs) + model = _create_nest('nest_base', pretrained=pretrained, **model_kwargs) + return model + +@register_model +def nest_small(pretrained=False, **kwargs) -> Nest: + model_kwargs = dict(embed_dims=(96, 192, 384), num_heads=(3, 6, 12), depths=(2, 2, 20), **kwargs) + model = _create_nest('nest_small', pretrained=pretrained, **model_kwargs) + return model + +@register_model +def nest_tiny(pretrained=False, **kwargs) -> Nest: + model_kwargs = dict(embed_dims=(96, 192, 384), num_heads=(3, 6, 12), depths=(2, 2, 8), **kwargs) + model = _create_nest('nest_tiny', pretrained=pretrained, **model_kwargs) + return model + +@register_model +def nest_base_jx(pretrained=False, **kwargs) -> Nest: + kwargs.setdefault('pad_type', 'same') + model_kwargs = dict(embed_dims=(128, 256, 512), num_heads=(4, 8, 16), depths=(2, 2, 20), **kwargs) + model = _create_nest('nest_base_jx', pretrained=pretrained, **model_kwargs) + return model + +@register_model +def nest_small_jx(pretrained=False, **kwargs) -> Nest: + kwargs.setdefault('pad_type', 'same') + model_kwargs = dict(embed_dims=(96, 192, 384), num_heads=(3, 6, 12), depths=(2, 2, 20), **kwargs) + model = _create_nest('nest_small_jx', pretrained=pretrained, **model_kwargs) + return model + +@register_model +def nest_tiny_jx(pretrained=False, **kwargs) -> Nest: + kwargs.setdefault('pad_type', 'same') + model_kwargs = dict(embed_dims=(96, 192, 384), num_heads=(3, 6, 12), depths=(2, 2, 8), **kwargs) + model = _create_nest('nest_tiny_jx', pretrained=pretrained, **model_kwargs) + return model +register_model_deprecations(__name__, {'jx_nest_base': 'nest_base_jx', 'jx_nest_small': 'nest_small_jx', 'jx_nest_tiny': 'nest_tiny_jx'}) + +# File: pytorch-image-models-main/timm/models/nextvit.py +"""""" +from functools import partial +from typing import Optional +import torch +import torch.nn.functional as F +from torch import nn +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from timm.layers import DropPath, trunc_normal_, ConvMlp, get_norm_layer, get_act_layer, use_fused_attn +from timm.layers import ClassifierHead +from ._builder import build_model_with_cfg +from ._features_fx import register_notrace_function +from ._manipulate import checkpoint_seq +from ._registry import generate_default_cfgs, register_model +__all__ = ['NextViT'] + +def merge_pre_bn(module, pre_bn_1, pre_bn_2=None): + weight = module.weight.data + if module.bias is None: + zeros = torch.zeros(module.out_chs, device=weight.device).type(weight.type()) + module.bias = nn.Parameter(zeros) + bias = module.bias.data + if pre_bn_2 is None: + assert pre_bn_1.track_running_stats is True, 'Unsupported bn_module.track_running_stats is False' + assert pre_bn_1.affine is True, 'Unsupported bn_module.affine is False' + scale_invstd = pre_bn_1.running_var.add(pre_bn_1.eps).pow(-0.5) + extra_weight = scale_invstd * pre_bn_1.weight + extra_bias = pre_bn_1.bias - pre_bn_1.weight * pre_bn_1.running_mean * scale_invstd + else: + assert pre_bn_1.track_running_stats is True, 'Unsupported bn_module.track_running_stats is False' + assert pre_bn_1.affine is True, 'Unsupported bn_module.affine is False' + assert pre_bn_2.track_running_stats is True, 'Unsupported bn_module.track_running_stats is False' + assert pre_bn_2.affine is True, 'Unsupported bn_module.affine is False' + scale_invstd_1 = pre_bn_1.running_var.add(pre_bn_1.eps).pow(-0.5) + scale_invstd_2 = pre_bn_2.running_var.add(pre_bn_2.eps).pow(-0.5) + extra_weight = scale_invstd_1 * pre_bn_1.weight * scale_invstd_2 * pre_bn_2.weight + extra_bias = scale_invstd_2 * pre_bn_2.weight * (pre_bn_1.bias - pre_bn_1.weight * pre_bn_1.running_mean * scale_invstd_1 - pre_bn_2.running_mean) + pre_bn_2.bias + if isinstance(module, nn.Linear): + extra_bias = weight @ extra_bias + weight.mul_(extra_weight.view(1, weight.size(1)).expand_as(weight)) + elif isinstance(module, nn.Conv2d): + assert weight.shape[2] == 1 and weight.shape[3] == 1 + weight = weight.reshape(weight.shape[0], weight.shape[1]) + extra_bias = weight @ extra_bias + weight.mul_(extra_weight.view(1, weight.size(1)).expand_as(weight)) + weight = weight.reshape(weight.shape[0], weight.shape[1], 1, 1) + bias.add_(extra_bias) + module.weight.data = weight + module.bias.data = bias + +class ConvNormAct(nn.Module): + + def __init__(self, in_chs, out_chs, kernel_size=3, stride=1, groups=1, norm_layer=nn.BatchNorm2d, act_layer=nn.ReLU): + super(ConvNormAct, self).__init__() + self.conv = nn.Conv2d(in_chs, out_chs, kernel_size=kernel_size, stride=stride, padding=1, groups=groups, bias=False) + self.norm = norm_layer(out_chs) + self.act = act_layer() + + def forward(self, x): + x = self.conv(x) + x = self.norm(x) + x = self.act(x) + return x + +def _make_divisible(v, divisor, min_value=None): + if min_value is None: + min_value = divisor + new_v = max(min_value, int(v + divisor / 2) // divisor * divisor) + if new_v < 0.9 * v: + new_v += divisor + return new_v + +class PatchEmbed(nn.Module): + + def __init__(self, in_chs, out_chs, stride=1, norm_layer=nn.BatchNorm2d): + super(PatchEmbed, self).__init__() + if stride == 2: + self.pool = nn.AvgPool2d((2, 2), stride=2, ceil_mode=True, count_include_pad=False) + self.conv = nn.Conv2d(in_chs, out_chs, kernel_size=1, stride=1, bias=False) + self.norm = norm_layer(out_chs) + elif in_chs != out_chs: + self.pool = nn.Identity() + self.conv = nn.Conv2d(in_chs, out_chs, kernel_size=1, stride=1, bias=False) + self.norm = norm_layer(out_chs) + else: + self.pool = nn.Identity() + self.conv = nn.Identity() + self.norm = nn.Identity() + + def forward(self, x): + return self.norm(self.conv(self.pool(x))) + +class ConvAttention(nn.Module): + + def __init__(self, out_chs, head_dim, norm_layer=nn.BatchNorm2d, act_layer=nn.ReLU): + super(ConvAttention, self).__init__() + self.group_conv3x3 = nn.Conv2d(out_chs, out_chs, kernel_size=3, stride=1, padding=1, groups=out_chs // head_dim, bias=False) + self.norm = norm_layer(out_chs) + self.act = act_layer() + self.projection = nn.Conv2d(out_chs, out_chs, kernel_size=1, bias=False) + + def forward(self, x): + out = self.group_conv3x3(x) + out = self.norm(out) + out = self.act(out) + out = self.projection(out) + return out + +class NextConvBlock(nn.Module): + + def __init__(self, in_chs, out_chs, stride=1, drop_path=0.0, drop=0.0, head_dim=32, mlp_ratio=3.0, norm_layer=nn.BatchNorm2d, act_layer=nn.ReLU): + super(NextConvBlock, self).__init__() + self.in_chs = in_chs + self.out_chs = out_chs + assert out_chs % head_dim == 0 + self.patch_embed = PatchEmbed(in_chs, out_chs, stride, norm_layer=norm_layer) + self.mhca = ConvAttention(out_chs, head_dim, norm_layer=norm_layer, act_layer=act_layer) + self.attn_drop_path = DropPath(drop_path) + self.norm = norm_layer(out_chs) + self.mlp = ConvMlp(out_chs, hidden_features=int(out_chs * mlp_ratio), drop=drop, bias=True, act_layer=act_layer) + self.mlp_drop_path = DropPath(drop_path) + self.is_fused = False + + @torch.no_grad() + def reparameterize(self): + if not self.is_fused: + merge_pre_bn(self.mlp.fc1, self.norm) + self.norm = nn.Identity() + self.is_fused = True + + def forward(self, x): + x = self.patch_embed(x) + x = x + self.attn_drop_path(self.mhca(x)) + out = self.norm(x) + x = x + self.mlp_drop_path(self.mlp(out)) + return x + +class EfficientAttention(nn.Module): + fused_attn: torch.jit.Final[bool] + + def __init__(self, dim, out_dim=None, head_dim=32, qkv_bias=True, attn_drop=0.0, proj_drop=0.0, sr_ratio=1, norm_layer=nn.BatchNorm1d): + super().__init__() + self.dim = dim + self.out_dim = out_dim if out_dim is not None else dim + self.num_heads = self.dim // head_dim + self.head_dim = head_dim + self.scale = head_dim ** (-0.5) + self.fused_attn = use_fused_attn() + self.q = nn.Linear(dim, self.dim, bias=qkv_bias) + self.k = nn.Linear(dim, self.dim, bias=qkv_bias) + self.v = nn.Linear(dim, self.dim, bias=qkv_bias) + self.proj = nn.Linear(self.dim, self.out_dim) + self.attn_drop = nn.Dropout(attn_drop) + self.proj_drop = nn.Dropout(proj_drop) + self.sr_ratio = sr_ratio + self.N_ratio = sr_ratio ** 2 + if sr_ratio > 1: + self.sr = nn.AvgPool1d(kernel_size=self.N_ratio, stride=self.N_ratio) + self.norm = norm_layer(dim) + else: + self.sr = None + self.norm = None + + def forward(self, x): + (B, N, C) = x.shape + q = self.q(x).reshape(B, N, self.num_heads, self.head_dim).permute(0, 2, 1, 3) + if self.sr is not None: + x = self.sr(x.transpose(1, 2)) + x = self.norm(x).transpose(1, 2) + k = self.k(x).reshape(B, -1, self.num_heads, self.head_dim).transpose(1, 2) + v = self.v(x).reshape(B, -1, self.num_heads, self.head_dim).transpose(1, 2) + if self.fused_attn: + x = F.scaled_dot_product_attention(q, k, v, dropout_p=self.attn_drop.p if self.training else 0.0) + else: + q = q * self.scale + attn = q @ k.transpose(-1, -2) + attn = attn.softmax(dim=-1) + attn = self.attn_drop(attn) + x = attn @ v + x = x.transpose(1, 2).reshape(B, N, C) + x = self.proj(x) + x = self.proj_drop(x) + return x + +class NextTransformerBlock(nn.Module): + + def __init__(self, in_chs, out_chs, drop_path, stride=1, sr_ratio=1, mlp_ratio=2, head_dim=32, mix_block_ratio=0.75, attn_drop=0.0, drop=0.0, norm_layer=nn.BatchNorm2d, act_layer=nn.ReLU): + super(NextTransformerBlock, self).__init__() + self.in_chs = in_chs + self.out_chs = out_chs + self.mix_block_ratio = mix_block_ratio + self.mhsa_out_chs = _make_divisible(int(out_chs * mix_block_ratio), 32) + self.mhca_out_chs = out_chs - self.mhsa_out_chs + self.patch_embed = PatchEmbed(in_chs, self.mhsa_out_chs, stride) + self.norm1 = norm_layer(self.mhsa_out_chs) + self.e_mhsa = EfficientAttention(self.mhsa_out_chs, head_dim=head_dim, sr_ratio=sr_ratio, attn_drop=attn_drop, proj_drop=drop) + self.mhsa_drop_path = DropPath(drop_path * mix_block_ratio) + self.projection = PatchEmbed(self.mhsa_out_chs, self.mhca_out_chs, stride=1, norm_layer=norm_layer) + self.mhca = ConvAttention(self.mhca_out_chs, head_dim=head_dim, norm_layer=norm_layer, act_layer=act_layer) + self.mhca_drop_path = DropPath(drop_path * (1 - mix_block_ratio)) + self.norm2 = norm_layer(out_chs) + self.mlp = ConvMlp(out_chs, hidden_features=int(out_chs * mlp_ratio), act_layer=act_layer, drop=drop) + self.mlp_drop_path = DropPath(drop_path) + self.is_fused = False + + @torch.no_grad() + def reparameterize(self): + if not self.is_fused: + merge_pre_bn(self.e_mhsa.q, self.norm1) + if self.e_mhsa.norm is not None: + merge_pre_bn(self.e_mhsa.k, self.norm1, self.e_mhsa.norm) + merge_pre_bn(self.e_mhsa.v, self.norm1, self.e_mhsa.norm) + self.e_mhsa.norm = nn.Identity() + else: + merge_pre_bn(self.e_mhsa.k, self.norm1) + merge_pre_bn(self.e_mhsa.v, self.norm1) + self.norm1 = nn.Identity() + merge_pre_bn(self.mlp.fc1, self.norm2) + self.norm2 = nn.Identity() + self.is_fused = True + + def forward(self, x): + x = self.patch_embed(x) + (B, C, H, W) = x.shape + out = self.norm1(x) + out = out.reshape(B, C, -1).transpose(-1, -2) + out = self.mhsa_drop_path(self.e_mhsa(out)) + x = x + out.transpose(-1, -2).reshape(B, C, H, W) + out = self.projection(x) + out = out + self.mhca_drop_path(self.mhca(out)) + x = torch.cat([x, out], dim=1) + out = self.norm2(x) + x = x + self.mlp_drop_path(self.mlp(out)) + return x + +class NextStage(nn.Module): + + def __init__(self, in_chs, block_chs, block_types, stride=2, sr_ratio=1, mix_block_ratio=1.0, drop=0.0, attn_drop=0.0, drop_path=0.0, head_dim=32, norm_layer=nn.BatchNorm2d, act_layer=nn.ReLU): + super().__init__() + self.grad_checkpointing = False + blocks = [] + for (block_idx, block_type) in enumerate(block_types): + stride = stride if block_idx == 0 else 1 + out_chs = block_chs[block_idx] + block_type = block_types[block_idx] + dpr = drop_path[block_idx] if isinstance(drop_path, (list, tuple)) else drop_path + if block_type is NextConvBlock: + layer = NextConvBlock(in_chs, out_chs, stride=stride, drop_path=dpr, drop=drop, head_dim=head_dim, norm_layer=norm_layer, act_layer=act_layer) + blocks.append(layer) + elif block_type is NextTransformerBlock: + layer = NextTransformerBlock(in_chs, out_chs, drop_path=dpr, stride=stride, sr_ratio=sr_ratio, head_dim=head_dim, mix_block_ratio=mix_block_ratio, attn_drop=attn_drop, drop=drop, norm_layer=norm_layer, act_layer=act_layer) + blocks.append(layer) + in_chs = out_chs + self.blocks = nn.Sequential(*blocks) + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + self.grad_checkpointing = enable + + def forward(self, x): + if self.grad_checkpointing and (not torch.jit.is_scripting()): + x = checkpoint_seq(self.blocks, x) + else: + x = self.blocks(x) + return x + +class NextViT(nn.Module): + + def __init__(self, in_chans, num_classes=1000, global_pool='avg', stem_chs=(64, 32, 64), depths=(3, 4, 10, 3), strides=(1, 2, 2, 2), sr_ratios=(8, 4, 2, 1), drop_path_rate=0.1, attn_drop_rate=0.0, drop_rate=0.0, head_dim=32, mix_block_ratio=0.75, norm_layer=nn.BatchNorm2d, act_layer=None): + super(NextViT, self).__init__() + self.grad_checkpointing = False + self.num_classes = num_classes + norm_layer = get_norm_layer(norm_layer) + if act_layer is None: + act_layer = partial(nn.ReLU, inplace=True) + else: + act_layer = get_act_layer(act_layer) + self.stage_out_chs = [[96] * depths[0], [192] * (depths[1] - 1) + [256], [384, 384, 384, 384, 512] * (depths[2] // 5), [768] * (depths[3] - 1) + [1024]] + self.feature_info = [dict(num_chs=sc[-1], reduction=2 ** (i + 2), module=f'stages.{i}') for (i, sc) in enumerate(self.stage_out_chs)] + self.stage_block_types = [[NextConvBlock] * depths[0], [NextConvBlock] * (depths[1] - 1) + [NextTransformerBlock], [NextConvBlock, NextConvBlock, NextConvBlock, NextConvBlock, NextTransformerBlock] * (depths[2] // 5), [NextConvBlock] * (depths[3] - 1) + [NextTransformerBlock]] + self.stem = nn.Sequential(ConvNormAct(in_chans, stem_chs[0], kernel_size=3, stride=2, norm_layer=norm_layer, act_layer=act_layer), ConvNormAct(stem_chs[0], stem_chs[1], kernel_size=3, stride=1, norm_layer=norm_layer, act_layer=act_layer), ConvNormAct(stem_chs[1], stem_chs[2], kernel_size=3, stride=1, norm_layer=norm_layer, act_layer=act_layer), ConvNormAct(stem_chs[2], stem_chs[2], kernel_size=3, stride=2, norm_layer=norm_layer, act_layer=act_layer)) + in_chs = out_chs = stem_chs[-1] + stages = [] + idx = 0 + dpr = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(depths)).split(depths)] + for stage_idx in range(len(depths)): + stage = NextStage(in_chs=in_chs, block_chs=self.stage_out_chs[stage_idx], block_types=self.stage_block_types[stage_idx], stride=strides[stage_idx], sr_ratio=sr_ratios[stage_idx], mix_block_ratio=mix_block_ratio, head_dim=head_dim, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[stage_idx], norm_layer=norm_layer, act_layer=act_layer) + in_chs = out_chs = self.stage_out_chs[stage_idx][-1] + stages += [stage] + idx += depths[stage_idx] + self.num_features = self.head_hidden_size = out_chs + self.stages = nn.Sequential(*stages) + self.norm = norm_layer(out_chs) + self.head = ClassifierHead(pool_type=global_pool, in_features=out_chs, num_classes=num_classes) + self.stage_out_idx = [sum(depths[:idx + 1]) - 1 for idx in range(len(depths))] + self._initialize_weights() + + def _initialize_weights(self): + for (n, m) in self.named_modules(): + if isinstance(m, nn.Linear): + trunc_normal_(m.weight, std=0.02) + if hasattr(m, 'bias') and m.bias is not None: + nn.init.constant_(m.bias, 0) + elif isinstance(m, nn.Conv2d): + trunc_normal_(m.weight, std=0.02) + if hasattr(m, 'bias') and m.bias is not None: + nn.init.constant_(m.bias, 0) + + @torch.jit.ignore + def group_matcher(self, coarse=False): + return dict(stem='^stem', blocks='^stages\\.(\\d+)' if coarse else [('^stages\\.(\\d+)\\.blocks\\.(\\d+)', None), ('^norm', (99999,))]) + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + self.grad_checkpointing = enable + for stage in self.stages: + stage.set_grad_checkpointing(enable=enable) + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.head.fc + + def reset_classifier(self, num_classes: int, global_pool: Optional[str]=None): + self.head.reset(num_classes, pool_type=global_pool) + + def forward_features(self, x): + x = self.stem(x) + if self.grad_checkpointing and (not torch.jit.is_scripting()): + x = checkpoint_seq(self.stages, x) + else: + x = self.stages(x) + x = self.norm(x) + return x + + def forward_head(self, x, pre_logits: bool=False): + return self.head(x, pre_logits=pre_logits) if pre_logits else self.head(x) + + def forward(self, x): + x = self.forward_features(x) + x = self.forward_head(x) + return x + +def checkpoint_filter_fn(state_dict, model): + if 'head.fc.weight' in state_dict: + return state_dict + D = model.state_dict() + out_dict = {} + for (ka, kb, va, vb) in zip(D.keys(), state_dict.keys(), D.values(), state_dict.values()): + out_dict[ka] = vb + return out_dict + +def _create_nextvit(variant, pretrained=False, **kwargs): + default_out_indices = tuple((i for (i, _) in enumerate(kwargs.get('depths', (1, 1, 3, 1))))) + out_indices = kwargs.pop('out_indices', default_out_indices) + model = build_model_with_cfg(NextViT, variant, pretrained, pretrained_filter_fn=checkpoint_filter_fn, feature_cfg=dict(flatten_sequential=True, out_indices=out_indices), **kwargs) + return model + +def _cfg(url='', **kwargs): + return {'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), 'crop_pct': 0.95, 'interpolation': 'bicubic', 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'stem.0.conv', 'classifier': 'head.fc', **kwargs} +default_cfgs = generate_default_cfgs({'nextvit_small.bd_in1k': _cfg(hf_hub_id='timm/'), 'nextvit_base.bd_in1k': _cfg(hf_hub_id='timm/'), 'nextvit_large.bd_in1k': _cfg(hf_hub_id='timm/'), 'nextvit_small.bd_in1k_384': _cfg(hf_hub_id='timm/', input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0), 'nextvit_base.bd_in1k_384': _cfg(hf_hub_id='timm/', input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0), 'nextvit_large.bd_in1k_384': _cfg(hf_hub_id='timm/', input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0), 'nextvit_small.bd_ssld_6m_in1k': _cfg(hf_hub_id='timm/'), 'nextvit_base.bd_ssld_6m_in1k': _cfg(hf_hub_id='timm/'), 'nextvit_large.bd_ssld_6m_in1k': _cfg(hf_hub_id='timm/'), 'nextvit_small.bd_ssld_6m_in1k_384': _cfg(hf_hub_id='timm/', input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0), 'nextvit_base.bd_ssld_6m_in1k_384': _cfg(hf_hub_id='timm/', input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0), 'nextvit_large.bd_ssld_6m_in1k_384': _cfg(hf_hub_id='timm/', input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0)}) + +@register_model +def nextvit_small(pretrained=False, **kwargs): + model_args = dict(depths=(3, 4, 10, 3), drop_path_rate=0.1) + model = _create_nextvit('nextvit_small', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def nextvit_base(pretrained=False, **kwargs): + model_args = dict(depths=(3, 4, 20, 3), drop_path_rate=0.2) + model = _create_nextvit('nextvit_base', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def nextvit_large(pretrained=False, **kwargs): + model_args = dict(depths=(3, 4, 30, 3), drop_path_rate=0.2) + model = _create_nextvit('nextvit_large', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +# File: pytorch-image-models-main/timm/models/nfnet.py +"""""" +from collections import OrderedDict +from dataclasses import dataclass, replace +from functools import partial +from typing import Callable, Tuple, Optional +import torch +import torch.nn as nn +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from timm.layers import ClassifierHead, DropPath, AvgPool2dSame, ScaledStdConv2d, ScaledStdConv2dSame, get_act_layer, get_act_fn, get_attn, make_divisible +from ._builder import build_model_with_cfg +from ._features_fx import register_notrace_module +from ._manipulate import checkpoint_seq +from ._registry import generate_default_cfgs, register_model +__all__ = ['NormFreeNet', 'NfCfg'] + +@dataclass +class NfCfg: + depths: Tuple[int, int, int, int] + channels: Tuple[int, int, int, int] + alpha: float = 0.2 + stem_type: str = '3x3' + stem_chs: Optional[int] = None + group_size: Optional[int] = None + attn_layer: Optional[str] = None + attn_kwargs: dict = None + attn_gain: float = 2.0 + width_factor: float = 1.0 + bottle_ratio: float = 0.5 + num_features: int = 0 + ch_div: int = 8 + reg: bool = False + extra_conv: bool = False + gamma_in_act: bool = False + same_padding: bool = False + std_conv_eps: float = 1e-05 + skipinit: bool = False + zero_init_fc: bool = False + act_layer: str = 'silu' + +class GammaAct(nn.Module): + + def __init__(self, act_type='relu', gamma: float=1.0, inplace=False): + super().__init__() + self.act_fn = get_act_fn(act_type) + self.gamma = gamma + self.inplace = inplace + + def forward(self, x): + return self.act_fn(x, inplace=self.inplace).mul_(self.gamma) + +def act_with_gamma(act_type, gamma: float=1.0): + + def _create(inplace=False): + return GammaAct(act_type, gamma=gamma, inplace=inplace) + return _create + +class DownsampleAvg(nn.Module): + + def __init__(self, in_chs: int, out_chs: int, stride: int=1, dilation: int=1, first_dilation: Optional[int]=None, conv_layer: Callable=ScaledStdConv2d): + super(DownsampleAvg, self).__init__() + avg_stride = stride if dilation == 1 else 1 + if stride > 1 or dilation > 1: + avg_pool_fn = AvgPool2dSame if avg_stride == 1 and dilation > 1 else nn.AvgPool2d + self.pool = avg_pool_fn(2, avg_stride, ceil_mode=True, count_include_pad=False) + else: + self.pool = nn.Identity() + self.conv = conv_layer(in_chs, out_chs, 1, stride=1) + + def forward(self, x): + return self.conv(self.pool(x)) + +@register_notrace_module +class NormFreeBlock(nn.Module): + + def __init__(self, in_chs: int, out_chs: Optional[int]=None, stride: int=1, dilation: int=1, first_dilation: Optional[int]=None, alpha: float=1.0, beta: float=1.0, bottle_ratio: float=0.25, group_size: Optional[int]=None, ch_div: int=1, reg: bool=True, extra_conv: bool=False, skipinit: bool=False, attn_layer: Optional[Callable]=None, attn_gain: bool=2.0, act_layer: Optional[Callable]=None, conv_layer: Callable=ScaledStdConv2d, drop_path_rate: float=0.0): + super().__init__() + first_dilation = first_dilation or dilation + out_chs = out_chs or in_chs + mid_chs = make_divisible(in_chs * bottle_ratio if reg else out_chs * bottle_ratio, ch_div) + groups = 1 if not group_size else mid_chs // group_size + if group_size and group_size % ch_div == 0: + mid_chs = group_size * groups + self.alpha = alpha + self.beta = beta + self.attn_gain = attn_gain + if in_chs != out_chs or stride != 1 or dilation != first_dilation: + self.downsample = DownsampleAvg(in_chs, out_chs, stride=stride, dilation=dilation, first_dilation=first_dilation, conv_layer=conv_layer) + else: + self.downsample = None + self.act1 = act_layer() + self.conv1 = conv_layer(in_chs, mid_chs, 1) + self.act2 = act_layer(inplace=True) + self.conv2 = conv_layer(mid_chs, mid_chs, 3, stride=stride, dilation=first_dilation, groups=groups) + if extra_conv: + self.act2b = act_layer(inplace=True) + self.conv2b = conv_layer(mid_chs, mid_chs, 3, stride=1, dilation=dilation, groups=groups) + else: + self.act2b = None + self.conv2b = None + if reg and attn_layer is not None: + self.attn = attn_layer(mid_chs) + else: + self.attn = None + self.act3 = act_layer() + self.conv3 = conv_layer(mid_chs, out_chs, 1, gain_init=1.0 if skipinit else 0.0) + if not reg and attn_layer is not None: + self.attn_last = attn_layer(out_chs) + else: + self.attn_last = None + self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0 else nn.Identity() + self.skipinit_gain = nn.Parameter(torch.tensor(0.0)) if skipinit else None + + def forward(self, x): + out = self.act1(x) * self.beta + shortcut = x + if self.downsample is not None: + shortcut = self.downsample(out) + out = self.conv1(out) + out = self.conv2(self.act2(out)) + if self.conv2b is not None: + out = self.conv2b(self.act2b(out)) + if self.attn is not None: + out = self.attn_gain * self.attn(out) + out = self.conv3(self.act3(out)) + if self.attn_last is not None: + out = self.attn_gain * self.attn_last(out) + out = self.drop_path(out) + if self.skipinit_gain is not None: + out.mul_(self.skipinit_gain) + out = out * self.alpha + shortcut + return out + +def create_stem(in_chs: int, out_chs: int, stem_type: str='', conv_layer: Optional[Callable]=None, act_layer: Optional[Callable]=None, preact_feature: bool=True): + stem_stride = 2 + stem_feature = dict(num_chs=out_chs, reduction=2, module='stem.conv') + stem = OrderedDict() + assert stem_type in ('', 'deep', 'deep_tiered', 'deep_quad', '3x3', '7x7', 'deep_pool', '3x3_pool', '7x7_pool') + if 'deep' in stem_type: + if 'quad' in stem_type: + assert not 'pool' in stem_type + stem_chs = (out_chs // 8, out_chs // 4, out_chs // 2, out_chs) + strides = (2, 1, 1, 2) + stem_stride = 4 + stem_feature = dict(num_chs=out_chs // 2, reduction=2, module='stem.conv3') + else: + if 'tiered' in stem_type: + stem_chs = (3 * out_chs // 8, out_chs // 2, out_chs) + else: + stem_chs = (out_chs // 2, out_chs // 2, out_chs) + strides = (2, 1, 1) + stem_feature = dict(num_chs=out_chs // 2, reduction=2, module='stem.conv2') + last_idx = len(stem_chs) - 1 + for (i, (c, s)) in enumerate(zip(stem_chs, strides)): + stem[f'conv{i + 1}'] = conv_layer(in_chs, c, kernel_size=3, stride=s) + if i != last_idx: + stem[f'act{i + 2}'] = act_layer(inplace=True) + in_chs = c + elif '3x3' in stem_type: + stem['conv'] = conv_layer(in_chs, out_chs, kernel_size=3, stride=2) + else: + stem['conv'] = conv_layer(in_chs, out_chs, kernel_size=7, stride=2) + if 'pool' in stem_type: + stem['pool'] = nn.MaxPool2d(3, stride=2, padding=1) + stem_stride = 4 + return (nn.Sequential(stem), stem_stride, stem_feature) +_nonlin_gamma = dict(identity=1.0, celu=1.270926833152771, elu=1.2716004848480225, gelu=1.7015043497085571, leaky_relu=1.70590341091156, log_sigmoid=1.9193484783172607, log_softmax=1.0002083778381348, relu=1.7139588594436646, relu6=1.7131484746932983, selu=1.0008515119552612, sigmoid=4.803835391998291, silu=1.7881293296813965, softsign=2.338853120803833, softplus=1.9203323125839233, tanh=1.5939117670059204) + +class NormFreeNet(nn.Module): + + def __init__(self, cfg: NfCfg, num_classes: int=1000, in_chans: int=3, global_pool: str='avg', output_stride: int=32, drop_rate: float=0.0, drop_path_rate: float=0.0, **kwargs): + super().__init__() + self.num_classes = num_classes + self.drop_rate = drop_rate + self.grad_checkpointing = False + cfg = replace(cfg, **kwargs) + assert cfg.act_layer in _nonlin_gamma, f'Please add non-linearity constants for activation ({cfg.act_layer}).' + conv_layer = ScaledStdConv2dSame if cfg.same_padding else ScaledStdConv2d + if cfg.gamma_in_act: + act_layer = act_with_gamma(cfg.act_layer, gamma=_nonlin_gamma[cfg.act_layer]) + conv_layer = partial(conv_layer, eps=cfg.std_conv_eps) + else: + act_layer = get_act_layer(cfg.act_layer) + conv_layer = partial(conv_layer, gamma=_nonlin_gamma[cfg.act_layer], eps=cfg.std_conv_eps) + attn_layer = partial(get_attn(cfg.attn_layer), **cfg.attn_kwargs) if cfg.attn_layer else None + stem_chs = make_divisible((cfg.stem_chs or cfg.channels[0]) * cfg.width_factor, cfg.ch_div) + (self.stem, stem_stride, stem_feat) = create_stem(in_chans, stem_chs, cfg.stem_type, conv_layer=conv_layer, act_layer=act_layer) + self.feature_info = [stem_feat] + drop_path_rates = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(cfg.depths)).split(cfg.depths)] + prev_chs = stem_chs + net_stride = stem_stride + dilation = 1 + expected_var = 1.0 + stages = [] + for (stage_idx, stage_depth) in enumerate(cfg.depths): + stride = 1 if stage_idx == 0 and stem_stride > 2 else 2 + if net_stride >= output_stride and stride > 1: + dilation *= stride + stride = 1 + net_stride *= stride + first_dilation = 1 if dilation in (1, 2) else 2 + blocks = [] + for block_idx in range(cfg.depths[stage_idx]): + first_block = block_idx == 0 and stage_idx == 0 + out_chs = make_divisible(cfg.channels[stage_idx] * cfg.width_factor, cfg.ch_div) + blocks += [NormFreeBlock(in_chs=prev_chs, out_chs=out_chs, alpha=cfg.alpha, beta=1.0 / expected_var ** 0.5, stride=stride if block_idx == 0 else 1, dilation=dilation, first_dilation=first_dilation, group_size=cfg.group_size, bottle_ratio=1.0 if cfg.reg and first_block else cfg.bottle_ratio, ch_div=cfg.ch_div, reg=cfg.reg, extra_conv=cfg.extra_conv, skipinit=cfg.skipinit, attn_layer=attn_layer, attn_gain=cfg.attn_gain, act_layer=act_layer, conv_layer=conv_layer, drop_path_rate=drop_path_rates[stage_idx][block_idx])] + if block_idx == 0: + expected_var = 1.0 + expected_var += cfg.alpha ** 2 + first_dilation = dilation + prev_chs = out_chs + self.feature_info += [dict(num_chs=prev_chs, reduction=net_stride, module=f'stages.{stage_idx}')] + stages += [nn.Sequential(*blocks)] + self.stages = nn.Sequential(*stages) + if cfg.num_features: + self.num_features = make_divisible(cfg.width_factor * cfg.num_features, cfg.ch_div) + self.final_conv = conv_layer(prev_chs, self.num_features, 1) + self.feature_info[-1] = dict(num_chs=self.num_features, reduction=net_stride, module=f'final_conv') + else: + self.num_features = prev_chs + self.final_conv = nn.Identity() + self.final_act = act_layer(inplace=cfg.num_features > 0) + self.head_hidden_size = self.num_features + self.head = ClassifierHead(self.num_features, num_classes, pool_type=global_pool, drop_rate=self.drop_rate) + for (n, m) in self.named_modules(): + if 'fc' in n and isinstance(m, nn.Linear): + if cfg.zero_init_fc: + nn.init.zeros_(m.weight) + else: + nn.init.normal_(m.weight, 0.0, 0.01) + if m.bias is not None: + nn.init.zeros_(m.bias) + elif isinstance(m, nn.Conv2d): + nn.init.kaiming_normal_(m.weight, mode='fan_in', nonlinearity='linear') + if m.bias is not None: + nn.init.zeros_(m.bias) + + @torch.jit.ignore + def group_matcher(self, coarse=False): + matcher = dict(stem='^stem', blocks=[('^stages\\.(\\d+)' if coarse else '^stages\\.(\\d+)\\.(\\d+)', None), ('^final_conv', (99999,))]) + return matcher + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + self.grad_checkpointing = enable + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.head.fc + + def reset_classifier(self, num_classes: int, global_pool: Optional[str]=None): + self.head.reset(num_classes, global_pool) + + def forward_features(self, x): + x = self.stem(x) + if self.grad_checkpointing and (not torch.jit.is_scripting()): + x = checkpoint_seq(self.stages, x) + else: + x = self.stages(x) + x = self.final_conv(x) + x = self.final_act(x) + return x + + def forward_head(self, x, pre_logits: bool=False): + return self.head(x, pre_logits=pre_logits) if pre_logits else self.head(x) + + def forward(self, x): + x = self.forward_features(x) + x = self.forward_head(x) + return x + +def _nfres_cfg(depths, channels=(256, 512, 1024, 2048), group_size=None, act_layer='relu', attn_layer=None, attn_kwargs=None): + attn_kwargs = attn_kwargs or {} + cfg = NfCfg(depths=depths, channels=channels, stem_type='7x7_pool', stem_chs=64, bottle_ratio=0.25, group_size=group_size, act_layer=act_layer, attn_layer=attn_layer, attn_kwargs=attn_kwargs) + return cfg + +def _nfreg_cfg(depths, channels=(48, 104, 208, 440)): + num_features = 1280 * channels[-1] // 440 + attn_kwargs = dict(rd_ratio=0.5) + cfg = NfCfg(depths=depths, channels=channels, stem_type='3x3', group_size=8, width_factor=0.75, bottle_ratio=2.25, num_features=num_features, reg=True, attn_layer='se', attn_kwargs=attn_kwargs) + return cfg + +def _nfnet_cfg(depths, channels=(256, 512, 1536, 1536), group_size=128, bottle_ratio=0.5, feat_mult=2.0, act_layer='gelu', attn_layer='se', attn_kwargs=None): + num_features = int(channels[-1] * feat_mult) + attn_kwargs = attn_kwargs if attn_kwargs is not None else dict(rd_ratio=0.5) + cfg = NfCfg(depths=depths, channels=channels, stem_type='deep_quad', stem_chs=128, group_size=group_size, bottle_ratio=bottle_ratio, extra_conv=True, num_features=num_features, act_layer=act_layer, attn_layer=attn_layer, attn_kwargs=attn_kwargs) + return cfg + +def _dm_nfnet_cfg(depths, channels=(256, 512, 1536, 1536), act_layer='gelu', skipinit=True): + cfg = NfCfg(depths=depths, channels=channels, stem_type='deep_quad', stem_chs=128, group_size=128, bottle_ratio=0.5, extra_conv=True, gamma_in_act=True, same_padding=True, skipinit=skipinit, num_features=int(channels[-1] * 2.0), act_layer=act_layer, attn_layer='se', attn_kwargs=dict(rd_ratio=0.5)) + return cfg +model_cfgs = dict(dm_nfnet_f0=_dm_nfnet_cfg(depths=(1, 2, 6, 3)), dm_nfnet_f1=_dm_nfnet_cfg(depths=(2, 4, 12, 6)), dm_nfnet_f2=_dm_nfnet_cfg(depths=(3, 6, 18, 9)), dm_nfnet_f3=_dm_nfnet_cfg(depths=(4, 8, 24, 12)), dm_nfnet_f4=_dm_nfnet_cfg(depths=(5, 10, 30, 15)), dm_nfnet_f5=_dm_nfnet_cfg(depths=(6, 12, 36, 18)), dm_nfnet_f6=_dm_nfnet_cfg(depths=(7, 14, 42, 21)), nfnet_f0=_nfnet_cfg(depths=(1, 2, 6, 3)), nfnet_f1=_nfnet_cfg(depths=(2, 4, 12, 6)), nfnet_f2=_nfnet_cfg(depths=(3, 6, 18, 9)), nfnet_f3=_nfnet_cfg(depths=(4, 8, 24, 12)), nfnet_f4=_nfnet_cfg(depths=(5, 10, 30, 15)), nfnet_f5=_nfnet_cfg(depths=(6, 12, 36, 18)), nfnet_f6=_nfnet_cfg(depths=(7, 14, 42, 21)), nfnet_f7=_nfnet_cfg(depths=(8, 16, 48, 24)), nfnet_l0=_nfnet_cfg(depths=(1, 2, 6, 3), feat_mult=1.5, group_size=64, bottle_ratio=0.25, attn_kwargs=dict(rd_ratio=0.25, rd_divisor=8), act_layer='silu'), eca_nfnet_l0=_nfnet_cfg(depths=(1, 2, 6, 3), feat_mult=1.5, group_size=64, bottle_ratio=0.25, attn_layer='eca', attn_kwargs=dict(), act_layer='silu'), eca_nfnet_l1=_nfnet_cfg(depths=(2, 4, 12, 6), feat_mult=2, group_size=64, bottle_ratio=0.25, attn_layer='eca', attn_kwargs=dict(), act_layer='silu'), eca_nfnet_l2=_nfnet_cfg(depths=(3, 6, 18, 9), feat_mult=2, group_size=64, bottle_ratio=0.25, attn_layer='eca', attn_kwargs=dict(), act_layer='silu'), eca_nfnet_l3=_nfnet_cfg(depths=(4, 8, 24, 12), feat_mult=2, group_size=64, bottle_ratio=0.25, attn_layer='eca', attn_kwargs=dict(), act_layer='silu'), nf_regnet_b0=_nfreg_cfg(depths=(1, 3, 6, 6)), nf_regnet_b1=_nfreg_cfg(depths=(2, 4, 7, 7)), nf_regnet_b2=_nfreg_cfg(depths=(2, 4, 8, 8), channels=(56, 112, 232, 488)), nf_regnet_b3=_nfreg_cfg(depths=(2, 5, 9, 9), channels=(56, 128, 248, 528)), nf_regnet_b4=_nfreg_cfg(depths=(2, 6, 11, 11), channels=(64, 144, 288, 616)), nf_regnet_b5=_nfreg_cfg(depths=(3, 7, 14, 14), channels=(80, 168, 336, 704)), nf_resnet26=_nfres_cfg(depths=(2, 2, 2, 2)), nf_resnet50=_nfres_cfg(depths=(3, 4, 6, 3)), nf_resnet101=_nfres_cfg(depths=(3, 4, 23, 3)), nf_seresnet26=_nfres_cfg(depths=(2, 2, 2, 2), attn_layer='se', attn_kwargs=dict(rd_ratio=1 / 16)), nf_seresnet50=_nfres_cfg(depths=(3, 4, 6, 3), attn_layer='se', attn_kwargs=dict(rd_ratio=1 / 16)), nf_seresnet101=_nfres_cfg(depths=(3, 4, 23, 3), attn_layer='se', attn_kwargs=dict(rd_ratio=1 / 16)), nf_ecaresnet26=_nfres_cfg(depths=(2, 2, 2, 2), attn_layer='eca', attn_kwargs=dict()), nf_ecaresnet50=_nfres_cfg(depths=(3, 4, 6, 3), attn_layer='eca', attn_kwargs=dict()), nf_ecaresnet101=_nfres_cfg(depths=(3, 4, 23, 3), attn_layer='eca', attn_kwargs=dict())) + +def _create_normfreenet(variant, pretrained=False, **kwargs): + model_cfg = model_cfgs[variant] + feature_cfg = dict(flatten_sequential=True) + return build_model_with_cfg(NormFreeNet, variant, pretrained, model_cfg=model_cfg, feature_cfg=feature_cfg, **kwargs) + +def _dcfg(url='', **kwargs): + return {'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), 'crop_pct': 0.9, 'interpolation': 'bicubic', 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'stem.conv1', 'classifier': 'head.fc', **kwargs} +default_cfgs = generate_default_cfgs({'dm_nfnet_f0.dm_in1k': _dcfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-dnf-weights/dm_nfnet_f0-604f9c3a.pth', pool_size=(6, 6), input_size=(3, 192, 192), test_input_size=(3, 256, 256), crop_pct=0.9, crop_mode='squash'), 'dm_nfnet_f1.dm_in1k': _dcfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-dnf-weights/dm_nfnet_f1-fc540f82.pth', pool_size=(7, 7), input_size=(3, 224, 224), test_input_size=(3, 320, 320), crop_pct=0.91, crop_mode='squash'), 'dm_nfnet_f2.dm_in1k': _dcfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-dnf-weights/dm_nfnet_f2-89875923.pth', pool_size=(8, 8), input_size=(3, 256, 256), test_input_size=(3, 352, 352), crop_pct=0.92, crop_mode='squash'), 'dm_nfnet_f3.dm_in1k': _dcfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-dnf-weights/dm_nfnet_f3-d74ab3aa.pth', pool_size=(10, 10), input_size=(3, 320, 320), test_input_size=(3, 416, 416), crop_pct=0.94, crop_mode='squash'), 'dm_nfnet_f4.dm_in1k': _dcfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-dnf-weights/dm_nfnet_f4-0ac5b10b.pth', pool_size=(12, 12), input_size=(3, 384, 384), test_input_size=(3, 512, 512), crop_pct=0.951, crop_mode='squash'), 'dm_nfnet_f5.dm_in1k': _dcfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-dnf-weights/dm_nfnet_f5-ecb20ab1.pth', pool_size=(13, 13), input_size=(3, 416, 416), test_input_size=(3, 544, 544), crop_pct=0.954, crop_mode='squash'), 'dm_nfnet_f6.dm_in1k': _dcfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-dnf-weights/dm_nfnet_f6-e0f12116.pth', pool_size=(14, 14), input_size=(3, 448, 448), test_input_size=(3, 576, 576), crop_pct=0.956, crop_mode='squash'), 'nfnet_f0': _dcfg(url='', pool_size=(6, 6), input_size=(3, 192, 192), test_input_size=(3, 256, 256)), 'nfnet_f1': _dcfg(url='', pool_size=(7, 7), input_size=(3, 224, 224), test_input_size=(3, 320, 320)), 'nfnet_f2': _dcfg(url='', pool_size=(8, 8), input_size=(3, 256, 256), test_input_size=(3, 352, 352)), 'nfnet_f3': _dcfg(url='', pool_size=(10, 10), input_size=(3, 320, 320), test_input_size=(3, 416, 416)), 'nfnet_f4': _dcfg(url='', pool_size=(12, 12), input_size=(3, 384, 384), test_input_size=(3, 512, 512)), 'nfnet_f5': _dcfg(url='', pool_size=(13, 13), input_size=(3, 416, 416), test_input_size=(3, 544, 544)), 'nfnet_f6': _dcfg(url='', pool_size=(14, 14), input_size=(3, 448, 448), test_input_size=(3, 576, 576)), 'nfnet_f7': _dcfg(url='', pool_size=(15, 15), input_size=(3, 480, 480), test_input_size=(3, 608, 608)), 'nfnet_l0.ra2_in1k': _dcfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/nfnet_l0_ra2-45c6688d.pth', pool_size=(7, 7), input_size=(3, 224, 224), test_input_size=(3, 288, 288), test_crop_pct=1.0), 'eca_nfnet_l0.ra2_in1k': _dcfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/ecanfnet_l0_ra2-e3e9ac50.pth', pool_size=(7, 7), input_size=(3, 224, 224), test_input_size=(3, 288, 288), test_crop_pct=1.0), 'eca_nfnet_l1.ra2_in1k': _dcfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/ecanfnet_l1_ra2-7dce93cd.pth', pool_size=(8, 8), input_size=(3, 256, 256), test_input_size=(3, 320, 320), test_crop_pct=1.0), 'eca_nfnet_l2.ra3_in1k': _dcfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/ecanfnet_l2_ra3-da781a61.pth', pool_size=(10, 10), input_size=(3, 320, 320), test_input_size=(3, 384, 384), test_crop_pct=1.0), 'eca_nfnet_l3': _dcfg(url='', pool_size=(11, 11), input_size=(3, 352, 352), test_input_size=(3, 448, 448), test_crop_pct=1.0), 'nf_regnet_b0': _dcfg(url='', pool_size=(6, 6), input_size=(3, 192, 192), test_input_size=(3, 256, 256), first_conv='stem.conv'), 'nf_regnet_b1.ra2_in1k': _dcfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/nf_regnet_b1_256_ra2-ad85cfef.pth', pool_size=(8, 8), input_size=(3, 256, 256), test_input_size=(3, 288, 288), first_conv='stem.conv'), 'nf_regnet_b2': _dcfg(url='', pool_size=(8, 8), input_size=(3, 240, 240), test_input_size=(3, 272, 272), first_conv='stem.conv'), 'nf_regnet_b3': _dcfg(url='', pool_size=(9, 9), input_size=(3, 288, 288), test_input_size=(3, 320, 320), first_conv='stem.conv'), 'nf_regnet_b4': _dcfg(url='', pool_size=(10, 10), input_size=(3, 320, 320), test_input_size=(3, 384, 384), first_conv='stem.conv'), 'nf_regnet_b5': _dcfg(url='', pool_size=(12, 12), input_size=(3, 384, 384), test_input_size=(3, 456, 456), first_conv='stem.conv'), 'nf_resnet26': _dcfg(url='', first_conv='stem.conv'), 'nf_resnet50.ra2_in1k': _dcfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/nf_resnet50_ra2-9f236009.pth', pool_size=(8, 8), input_size=(3, 256, 256), test_input_size=(3, 288, 288), crop_pct=0.94, first_conv='stem.conv'), 'nf_resnet101': _dcfg(url='', first_conv='stem.conv'), 'nf_seresnet26': _dcfg(url='', first_conv='stem.conv'), 'nf_seresnet50': _dcfg(url='', first_conv='stem.conv'), 'nf_seresnet101': _dcfg(url='', first_conv='stem.conv'), 'nf_ecaresnet26': _dcfg(url='', first_conv='stem.conv'), 'nf_ecaresnet50': _dcfg(url='', first_conv='stem.conv'), 'nf_ecaresnet101': _dcfg(url='', first_conv='stem.conv')}) + +@register_model +def dm_nfnet_f0(pretrained=False, **kwargs) -> NormFreeNet: + return _create_normfreenet('dm_nfnet_f0', pretrained=pretrained, **kwargs) + +@register_model +def dm_nfnet_f1(pretrained=False, **kwargs) -> NormFreeNet: + return _create_normfreenet('dm_nfnet_f1', pretrained=pretrained, **kwargs) + +@register_model +def dm_nfnet_f2(pretrained=False, **kwargs) -> NormFreeNet: + return _create_normfreenet('dm_nfnet_f2', pretrained=pretrained, **kwargs) + +@register_model +def dm_nfnet_f3(pretrained=False, **kwargs) -> NormFreeNet: + return _create_normfreenet('dm_nfnet_f3', pretrained=pretrained, **kwargs) + +@register_model +def dm_nfnet_f4(pretrained=False, **kwargs) -> NormFreeNet: + return _create_normfreenet('dm_nfnet_f4', pretrained=pretrained, **kwargs) + +@register_model +def dm_nfnet_f5(pretrained=False, **kwargs) -> NormFreeNet: + return _create_normfreenet('dm_nfnet_f5', pretrained=pretrained, **kwargs) + +@register_model +def dm_nfnet_f6(pretrained=False, **kwargs) -> NormFreeNet: + return _create_normfreenet('dm_nfnet_f6', pretrained=pretrained, **kwargs) + +@register_model +def nfnet_f0(pretrained=False, **kwargs) -> NormFreeNet: + return _create_normfreenet('nfnet_f0', pretrained=pretrained, **kwargs) + +@register_model +def nfnet_f1(pretrained=False, **kwargs) -> NormFreeNet: + return _create_normfreenet('nfnet_f1', pretrained=pretrained, **kwargs) + +@register_model +def nfnet_f2(pretrained=False, **kwargs) -> NormFreeNet: + return _create_normfreenet('nfnet_f2', pretrained=pretrained, **kwargs) + +@register_model +def nfnet_f3(pretrained=False, **kwargs) -> NormFreeNet: + return _create_normfreenet('nfnet_f3', pretrained=pretrained, **kwargs) + +@register_model +def nfnet_f4(pretrained=False, **kwargs) -> NormFreeNet: + return _create_normfreenet('nfnet_f4', pretrained=pretrained, **kwargs) + +@register_model +def nfnet_f5(pretrained=False, **kwargs) -> NormFreeNet: + return _create_normfreenet('nfnet_f5', pretrained=pretrained, **kwargs) + +@register_model +def nfnet_f6(pretrained=False, **kwargs) -> NormFreeNet: + return _create_normfreenet('nfnet_f6', pretrained=pretrained, **kwargs) + +@register_model +def nfnet_f7(pretrained=False, **kwargs) -> NormFreeNet: + return _create_normfreenet('nfnet_f7', pretrained=pretrained, **kwargs) + +@register_model +def nfnet_l0(pretrained=False, **kwargs) -> NormFreeNet: + return _create_normfreenet('nfnet_l0', pretrained=pretrained, **kwargs) + +@register_model +def eca_nfnet_l0(pretrained=False, **kwargs) -> NormFreeNet: + return _create_normfreenet('eca_nfnet_l0', pretrained=pretrained, **kwargs) + +@register_model +def eca_nfnet_l1(pretrained=False, **kwargs) -> NormFreeNet: + return _create_normfreenet('eca_nfnet_l1', pretrained=pretrained, **kwargs) + +@register_model +def eca_nfnet_l2(pretrained=False, **kwargs) -> NormFreeNet: + return _create_normfreenet('eca_nfnet_l2', pretrained=pretrained, **kwargs) + +@register_model +def eca_nfnet_l3(pretrained=False, **kwargs) -> NormFreeNet: + return _create_normfreenet('eca_nfnet_l3', pretrained=pretrained, **kwargs) + +@register_model +def nf_regnet_b0(pretrained=False, **kwargs) -> NormFreeNet: + return _create_normfreenet('nf_regnet_b0', pretrained=pretrained, **kwargs) + +@register_model +def nf_regnet_b1(pretrained=False, **kwargs) -> NormFreeNet: + return _create_normfreenet('nf_regnet_b1', pretrained=pretrained, **kwargs) + +@register_model +def nf_regnet_b2(pretrained=False, **kwargs) -> NormFreeNet: + return _create_normfreenet('nf_regnet_b2', pretrained=pretrained, **kwargs) + +@register_model +def nf_regnet_b3(pretrained=False, **kwargs) -> NormFreeNet: + return _create_normfreenet('nf_regnet_b3', pretrained=pretrained, **kwargs) + +@register_model +def nf_regnet_b4(pretrained=False, **kwargs) -> NormFreeNet: + return _create_normfreenet('nf_regnet_b4', pretrained=pretrained, **kwargs) + +@register_model +def nf_regnet_b5(pretrained=False, **kwargs) -> NormFreeNet: + return _create_normfreenet('nf_regnet_b5', pretrained=pretrained, **kwargs) + +@register_model +def nf_resnet26(pretrained=False, **kwargs) -> NormFreeNet: + return _create_normfreenet('nf_resnet26', pretrained=pretrained, **kwargs) + +@register_model +def nf_resnet50(pretrained=False, **kwargs) -> NormFreeNet: + return _create_normfreenet('nf_resnet50', pretrained=pretrained, **kwargs) + +@register_model +def nf_resnet101(pretrained=False, **kwargs) -> NormFreeNet: + return _create_normfreenet('nf_resnet101', pretrained=pretrained, **kwargs) + +@register_model +def nf_seresnet26(pretrained=False, **kwargs) -> NormFreeNet: + return _create_normfreenet('nf_seresnet26', pretrained=pretrained, **kwargs) + +@register_model +def nf_seresnet50(pretrained=False, **kwargs) -> NormFreeNet: + return _create_normfreenet('nf_seresnet50', pretrained=pretrained, **kwargs) + +@register_model +def nf_seresnet101(pretrained=False, **kwargs) -> NormFreeNet: + return _create_normfreenet('nf_seresnet101', pretrained=pretrained, **kwargs) + +@register_model +def nf_ecaresnet26(pretrained=False, **kwargs) -> NormFreeNet: + return _create_normfreenet('nf_ecaresnet26', pretrained=pretrained, **kwargs) + +@register_model +def nf_ecaresnet50(pretrained=False, **kwargs) -> NormFreeNet: + return _create_normfreenet('nf_ecaresnet50', pretrained=pretrained, **kwargs) + +@register_model +def nf_ecaresnet101(pretrained=False, **kwargs) -> NormFreeNet: + return _create_normfreenet('nf_ecaresnet101', pretrained=pretrained, **kwargs) + +# File: pytorch-image-models-main/timm/models/pit.py +"""""" +import math +import re +from functools import partial +from typing import Optional, Sequence, Tuple +import torch +from torch import nn +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from timm.layers import trunc_normal_, to_2tuple +from ._builder import build_model_with_cfg +from ._registry import register_model, generate_default_cfgs +from .vision_transformer import Block +__all__ = ['PoolingVisionTransformer'] + +class SequentialTuple(nn.Sequential): + + def __init__(self, *args): + super(SequentialTuple, self).__init__(*args) + + def forward(self, x: Tuple[torch.Tensor, torch.Tensor]) -> Tuple[torch.Tensor, torch.Tensor]: + for module in self: + x = module(x) + return x + +class Transformer(nn.Module): + + def __init__(self, base_dim, depth, heads, mlp_ratio, pool=None, proj_drop=0.0, attn_drop=0.0, drop_path_prob=None, norm_layer=None): + super(Transformer, self).__init__() + embed_dim = base_dim * heads + self.pool = pool + self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity() + self.blocks = nn.Sequential(*[Block(dim=embed_dim, num_heads=heads, mlp_ratio=mlp_ratio, qkv_bias=True, proj_drop=proj_drop, attn_drop=attn_drop, drop_path=drop_path_prob[i], norm_layer=partial(nn.LayerNorm, eps=1e-06)) for i in range(depth)]) + + def forward(self, x: Tuple[torch.Tensor, torch.Tensor]) -> Tuple[torch.Tensor, torch.Tensor]: + (x, cls_tokens) = x + token_length = cls_tokens.shape[1] + if self.pool is not None: + (x, cls_tokens) = self.pool(x, cls_tokens) + (B, C, H, W) = x.shape + x = x.flatten(2).transpose(1, 2) + x = torch.cat((cls_tokens, x), dim=1) + x = self.norm(x) + x = self.blocks(x) + cls_tokens = x[:, :token_length] + x = x[:, token_length:] + x = x.transpose(1, 2).reshape(B, C, H, W) + return (x, cls_tokens) + +class Pooling(nn.Module): + + def __init__(self, in_feature, out_feature, stride, padding_mode='zeros'): + super(Pooling, self).__init__() + self.conv = nn.Conv2d(in_feature, out_feature, kernel_size=stride + 1, padding=stride // 2, stride=stride, padding_mode=padding_mode, groups=in_feature) + self.fc = nn.Linear(in_feature, out_feature) + + def forward(self, x, cls_token) -> Tuple[torch.Tensor, torch.Tensor]: + x = self.conv(x) + cls_token = self.fc(cls_token) + return (x, cls_token) + +class ConvEmbedding(nn.Module): + + def __init__(self, in_channels, out_channels, img_size: int=224, patch_size: int=16, stride: int=8, padding: int=0): + super(ConvEmbedding, self).__init__() + padding = padding + self.img_size = to_2tuple(img_size) + self.patch_size = to_2tuple(patch_size) + self.height = math.floor((self.img_size[0] + 2 * padding - self.patch_size[0]) / stride + 1) + self.width = math.floor((self.img_size[1] + 2 * padding - self.patch_size[1]) / stride + 1) + self.grid_size = (self.height, self.width) + self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=patch_size, stride=stride, padding=padding, bias=True) + + def forward(self, x): + x = self.conv(x) + return x + +class PoolingVisionTransformer(nn.Module): + + def __init__(self, img_size: int=224, patch_size: int=16, stride: int=8, stem_type: str='overlap', base_dims: Sequence[int]=(48, 48, 48), depth: Sequence[int]=(2, 6, 4), heads: Sequence[int]=(2, 4, 8), mlp_ratio: float=4, num_classes=1000, in_chans=3, global_pool='token', distilled=False, drop_rate=0.0, pos_drop_drate=0.0, proj_drop_rate=0.0, attn_drop_rate=0.0, drop_path_rate=0.0): + super(PoolingVisionTransformer, self).__init__() + assert global_pool in ('token',) + self.base_dims = base_dims + self.heads = heads + embed_dim = base_dims[0] * heads[0] + self.num_classes = num_classes + self.global_pool = global_pool + self.num_tokens = 2 if distilled else 1 + self.feature_info = [] + self.patch_embed = ConvEmbedding(in_chans, embed_dim, img_size, patch_size, stride) + self.pos_embed = nn.Parameter(torch.randn(1, embed_dim, self.patch_embed.height, self.patch_embed.width)) + self.cls_token = nn.Parameter(torch.randn(1, self.num_tokens, embed_dim)) + self.pos_drop = nn.Dropout(p=pos_drop_drate) + transformers = [] + dpr = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(depth)).split(depth)] + prev_dim = embed_dim + for i in range(len(depth)): + pool = None + embed_dim = base_dims[i] * heads[i] + if i > 0: + pool = Pooling(prev_dim, embed_dim, stride=2) + transformers += [Transformer(base_dims[i], depth[i], heads[i], mlp_ratio, pool=pool, proj_drop=proj_drop_rate, attn_drop=attn_drop_rate, drop_path_prob=dpr[i])] + prev_dim = embed_dim + self.feature_info += [dict(num_chs=prev_dim, reduction=(stride - 1) * 2 ** i, module=f'transformers.{i}')] + self.transformers = SequentialTuple(*transformers) + self.norm = nn.LayerNorm(base_dims[-1] * heads[-1], eps=1e-06) + self.num_features = self.head_hidden_size = self.embed_dim = embed_dim + self.head_drop = nn.Dropout(drop_rate) + self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() + self.head_dist = None + if distilled: + self.head_dist = nn.Linear(self.embed_dim, self.num_classes) if num_classes > 0 else nn.Identity() + self.distilled_training = False + trunc_normal_(self.pos_embed, std=0.02) + trunc_normal_(self.cls_token, std=0.02) + self.apply(self._init_weights) + + def _init_weights(self, m): + if isinstance(m, nn.LayerNorm): + nn.init.constant_(m.bias, 0) + nn.init.constant_(m.weight, 1.0) + + @torch.jit.ignore + def no_weight_decay(self): + return {'pos_embed', 'cls_token'} + + @torch.jit.ignore + def set_distilled_training(self, enable=True): + self.distilled_training = enable + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + assert not enable, 'gradient checkpointing not supported' + + def get_classifier(self) -> nn.Module: + if self.head_dist is not None: + return (self.head, self.head_dist) + else: + return self.head + + def reset_classifier(self, num_classes: int, global_pool: Optional[str]=None): + self.num_classes = num_classes + if global_pool is not None: + self.global_pool = global_pool + self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() + if self.head_dist is not None: + self.head_dist = nn.Linear(self.embed_dim, self.num_classes) if num_classes > 0 else nn.Identity() + + def forward_features(self, x): + x = self.patch_embed(x) + x = self.pos_drop(x + self.pos_embed) + cls_tokens = self.cls_token.expand(x.shape[0], -1, -1) + (x, cls_tokens) = self.transformers((x, cls_tokens)) + cls_tokens = self.norm(cls_tokens) + return cls_tokens + + def forward_head(self, x, pre_logits: bool=False) -> torch.Tensor: + if self.head_dist is not None: + assert self.global_pool == 'token' + (x, x_dist) = (x[:, 0], x[:, 1]) + x = self.head_drop(x) + x_dist = self.head_drop(x) + if not pre_logits: + x = self.head(x) + x_dist = self.head_dist(x_dist) + if self.distilled_training and self.training and (not torch.jit.is_scripting()): + return (x, x_dist) + else: + return (x + x_dist) / 2 + else: + if self.global_pool == 'token': + x = x[:, 0] + x = self.head_drop(x) + if not pre_logits: + x = self.head(x) + return x + + def forward(self, x): + x = self.forward_features(x) + x = self.forward_head(x) + return x + +def checkpoint_filter_fn(state_dict, model): + out_dict = {} + p_blocks = re.compile('pools\\.(\\d)\\.') + for (k, v) in state_dict.items(): + k = p_blocks.sub(lambda exp: f'transformers.{int(exp.group(1)) + 1}.pool.', k) + out_dict[k] = v + return out_dict + +def _create_pit(variant, pretrained=False, **kwargs): + default_out_indices = tuple(range(3)) + out_indices = kwargs.pop('out_indices', default_out_indices) + model = build_model_with_cfg(PoolingVisionTransformer, variant, pretrained, pretrained_filter_fn=checkpoint_filter_fn, feature_cfg=dict(feature_cls='hook', no_rewrite=True, out_indices=out_indices), **kwargs) + return model + +def _cfg(url='', **kwargs): + return {'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, 'crop_pct': 0.9, 'interpolation': 'bicubic', 'fixed_input_size': True, 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'patch_embed.conv', 'classifier': 'head', **kwargs} +default_cfgs = generate_default_cfgs({'pit_ti_224.in1k': _cfg(hf_hub_id='timm/'), 'pit_xs_224.in1k': _cfg(hf_hub_id='timm/'), 'pit_s_224.in1k': _cfg(hf_hub_id='timm/'), 'pit_b_224.in1k': _cfg(hf_hub_id='timm/'), 'pit_ti_distilled_224.in1k': _cfg(hf_hub_id='timm/', classifier=('head', 'head_dist')), 'pit_xs_distilled_224.in1k': _cfg(hf_hub_id='timm/', classifier=('head', 'head_dist')), 'pit_s_distilled_224.in1k': _cfg(hf_hub_id='timm/', classifier=('head', 'head_dist')), 'pit_b_distilled_224.in1k': _cfg(hf_hub_id='timm/', classifier=('head', 'head_dist'))}) + +@register_model +def pit_b_224(pretrained=False, **kwargs) -> PoolingVisionTransformer: + model_args = dict(patch_size=14, stride=7, base_dims=[64, 64, 64], depth=[3, 6, 4], heads=[4, 8, 16], mlp_ratio=4) + return _create_pit('pit_b_224', pretrained, **dict(model_args, **kwargs)) + +@register_model +def pit_s_224(pretrained=False, **kwargs) -> PoolingVisionTransformer: + model_args = dict(patch_size=16, stride=8, base_dims=[48, 48, 48], depth=[2, 6, 4], heads=[3, 6, 12], mlp_ratio=4) + return _create_pit('pit_s_224', pretrained, **dict(model_args, **kwargs)) + +@register_model +def pit_xs_224(pretrained=False, **kwargs) -> PoolingVisionTransformer: + model_args = dict(patch_size=16, stride=8, base_dims=[48, 48, 48], depth=[2, 6, 4], heads=[2, 4, 8], mlp_ratio=4) + return _create_pit('pit_xs_224', pretrained, **dict(model_args, **kwargs)) + +@register_model +def pit_ti_224(pretrained=False, **kwargs) -> PoolingVisionTransformer: + model_args = dict(patch_size=16, stride=8, base_dims=[32, 32, 32], depth=[2, 6, 4], heads=[2, 4, 8], mlp_ratio=4) + return _create_pit('pit_ti_224', pretrained, **dict(model_args, **kwargs)) + +@register_model +def pit_b_distilled_224(pretrained=False, **kwargs) -> PoolingVisionTransformer: + model_args = dict(patch_size=14, stride=7, base_dims=[64, 64, 64], depth=[3, 6, 4], heads=[4, 8, 16], mlp_ratio=4, distilled=True) + return _create_pit('pit_b_distilled_224', pretrained, **dict(model_args, **kwargs)) + +@register_model +def pit_s_distilled_224(pretrained=False, **kwargs) -> PoolingVisionTransformer: + model_args = dict(patch_size=16, stride=8, base_dims=[48, 48, 48], depth=[2, 6, 4], heads=[3, 6, 12], mlp_ratio=4, distilled=True) + return _create_pit('pit_s_distilled_224', pretrained, **dict(model_args, **kwargs)) + +@register_model +def pit_xs_distilled_224(pretrained=False, **kwargs) -> PoolingVisionTransformer: + model_args = dict(patch_size=16, stride=8, base_dims=[48, 48, 48], depth=[2, 6, 4], heads=[2, 4, 8], mlp_ratio=4, distilled=True) + return _create_pit('pit_xs_distilled_224', pretrained, **dict(model_args, **kwargs)) + +@register_model +def pit_ti_distilled_224(pretrained=False, **kwargs) -> PoolingVisionTransformer: + model_args = dict(patch_size=16, stride=8, base_dims=[32, 32, 32], depth=[2, 6, 4], heads=[2, 4, 8], mlp_ratio=4, distilled=True) + return _create_pit('pit_ti_distilled_224', pretrained, **dict(model_args, **kwargs)) + +# File: pytorch-image-models-main/timm/models/pnasnet.py +"""""" +from collections import OrderedDict +from functools import partial +import torch +import torch.nn as nn +import torch.nn.functional as F +from timm.layers import ConvNormAct, create_conv2d, create_pool2d, create_classifier +from ._builder import build_model_with_cfg +from ._registry import register_model, generate_default_cfgs +__all__ = ['PNASNet5Large'] + +class SeparableConv2d(nn.Module): + + def __init__(self, in_channels, out_channels, kernel_size, stride, padding=''): + super(SeparableConv2d, self).__init__() + self.depthwise_conv2d = create_conv2d(in_channels, in_channels, kernel_size=kernel_size, stride=stride, padding=padding, groups=in_channels) + self.pointwise_conv2d = create_conv2d(in_channels, out_channels, kernel_size=1, padding=padding) + + def forward(self, x): + x = self.depthwise_conv2d(x) + x = self.pointwise_conv2d(x) + return x + +class BranchSeparables(nn.Module): + + def __init__(self, in_channels, out_channels, kernel_size, stride=1, stem_cell=False, padding=''): + super(BranchSeparables, self).__init__() + middle_channels = out_channels if stem_cell else in_channels + self.act_1 = nn.ReLU() + self.separable_1 = SeparableConv2d(in_channels, middle_channels, kernel_size, stride=stride, padding=padding) + self.bn_sep_1 = nn.BatchNorm2d(middle_channels, eps=0.001) + self.act_2 = nn.ReLU() + self.separable_2 = SeparableConv2d(middle_channels, out_channels, kernel_size, stride=1, padding=padding) + self.bn_sep_2 = nn.BatchNorm2d(out_channels, eps=0.001) + + def forward(self, x): + x = self.act_1(x) + x = self.separable_1(x) + x = self.bn_sep_1(x) + x = self.act_2(x) + x = self.separable_2(x) + x = self.bn_sep_2(x) + return x + +class ActConvBn(nn.Module): + + def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=''): + super(ActConvBn, self).__init__() + self.act = nn.ReLU() + self.conv = create_conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding) + self.bn = nn.BatchNorm2d(out_channels, eps=0.001) + + def forward(self, x): + x = self.act(x) + x = self.conv(x) + x = self.bn(x) + return x + +class FactorizedReduction(nn.Module): + + def __init__(self, in_channels, out_channels, padding=''): + super(FactorizedReduction, self).__init__() + self.act = nn.ReLU() + self.path_1 = nn.Sequential(OrderedDict([('avgpool', nn.AvgPool2d(1, stride=2, count_include_pad=False)), ('conv', create_conv2d(in_channels, out_channels // 2, kernel_size=1, padding=padding))])) + self.path_2 = nn.Sequential(OrderedDict([('pad', nn.ZeroPad2d((-1, 1, -1, 1))), ('avgpool', nn.AvgPool2d(1, stride=2, count_include_pad=False)), ('conv', create_conv2d(in_channels, out_channels // 2, kernel_size=1, padding=padding))])) + self.final_path_bn = nn.BatchNorm2d(out_channels, eps=0.001) + + def forward(self, x): + x = self.act(x) + x_path1 = self.path_1(x) + x_path2 = self.path_2(x) + out = self.final_path_bn(torch.cat([x_path1, x_path2], 1)) + return out + +class CellBase(nn.Module): + + def cell_forward(self, x_left, x_right): + x_comb_iter_0_left = self.comb_iter_0_left(x_left) + x_comb_iter_0_right = self.comb_iter_0_right(x_left) + x_comb_iter_0 = x_comb_iter_0_left + x_comb_iter_0_right + x_comb_iter_1_left = self.comb_iter_1_left(x_right) + x_comb_iter_1_right = self.comb_iter_1_right(x_right) + x_comb_iter_1 = x_comb_iter_1_left + x_comb_iter_1_right + x_comb_iter_2_left = self.comb_iter_2_left(x_right) + x_comb_iter_2_right = self.comb_iter_2_right(x_right) + x_comb_iter_2 = x_comb_iter_2_left + x_comb_iter_2_right + x_comb_iter_3_left = self.comb_iter_3_left(x_comb_iter_2) + x_comb_iter_3_right = self.comb_iter_3_right(x_right) + x_comb_iter_3 = x_comb_iter_3_left + x_comb_iter_3_right + x_comb_iter_4_left = self.comb_iter_4_left(x_left) + if self.comb_iter_4_right is not None: + x_comb_iter_4_right = self.comb_iter_4_right(x_right) + else: + x_comb_iter_4_right = x_right + x_comb_iter_4 = x_comb_iter_4_left + x_comb_iter_4_right + x_out = torch.cat([x_comb_iter_0, x_comb_iter_1, x_comb_iter_2, x_comb_iter_3, x_comb_iter_4], 1) + return x_out + +class CellStem0(CellBase): + + def __init__(self, in_chs_left, out_chs_left, in_chs_right, out_chs_right, pad_type=''): + super(CellStem0, self).__init__() + self.conv_1x1 = ActConvBn(in_chs_right, out_chs_right, kernel_size=1, padding=pad_type) + self.comb_iter_0_left = BranchSeparables(in_chs_left, out_chs_left, kernel_size=5, stride=2, stem_cell=True, padding=pad_type) + self.comb_iter_0_right = nn.Sequential(OrderedDict([('max_pool', create_pool2d('max', 3, stride=2, padding=pad_type)), ('conv', create_conv2d(in_chs_left, out_chs_left, kernel_size=1, padding=pad_type)), ('bn', nn.BatchNorm2d(out_chs_left, eps=0.001))])) + self.comb_iter_1_left = BranchSeparables(out_chs_right, out_chs_right, kernel_size=7, stride=2, padding=pad_type) + self.comb_iter_1_right = create_pool2d('max', 3, stride=2, padding=pad_type) + self.comb_iter_2_left = BranchSeparables(out_chs_right, out_chs_right, kernel_size=5, stride=2, padding=pad_type) + self.comb_iter_2_right = BranchSeparables(out_chs_right, out_chs_right, kernel_size=3, stride=2, padding=pad_type) + self.comb_iter_3_left = BranchSeparables(out_chs_right, out_chs_right, kernel_size=3, padding=pad_type) + self.comb_iter_3_right = create_pool2d('max', 3, stride=2, padding=pad_type) + self.comb_iter_4_left = BranchSeparables(in_chs_right, out_chs_right, kernel_size=3, stride=2, stem_cell=True, padding=pad_type) + self.comb_iter_4_right = ActConvBn(out_chs_right, out_chs_right, kernel_size=1, stride=2, padding=pad_type) + + def forward(self, x_left): + x_right = self.conv_1x1(x_left) + x_out = self.cell_forward(x_left, x_right) + return x_out + +class Cell(CellBase): + + def __init__(self, in_chs_left, out_chs_left, in_chs_right, out_chs_right, pad_type='', is_reduction=False, match_prev_layer_dims=False): + super(Cell, self).__init__() + stride = 2 if is_reduction else 1 + self.match_prev_layer_dimensions = match_prev_layer_dims + if match_prev_layer_dims: + self.conv_prev_1x1 = FactorizedReduction(in_chs_left, out_chs_left, padding=pad_type) + else: + self.conv_prev_1x1 = ActConvBn(in_chs_left, out_chs_left, kernel_size=1, padding=pad_type) + self.conv_1x1 = ActConvBn(in_chs_right, out_chs_right, kernel_size=1, padding=pad_type) + self.comb_iter_0_left = BranchSeparables(out_chs_left, out_chs_left, kernel_size=5, stride=stride, padding=pad_type) + self.comb_iter_0_right = create_pool2d('max', 3, stride=stride, padding=pad_type) + self.comb_iter_1_left = BranchSeparables(out_chs_right, out_chs_right, kernel_size=7, stride=stride, padding=pad_type) + self.comb_iter_1_right = create_pool2d('max', 3, stride=stride, padding=pad_type) + self.comb_iter_2_left = BranchSeparables(out_chs_right, out_chs_right, kernel_size=5, stride=stride, padding=pad_type) + self.comb_iter_2_right = BranchSeparables(out_chs_right, out_chs_right, kernel_size=3, stride=stride, padding=pad_type) + self.comb_iter_3_left = BranchSeparables(out_chs_right, out_chs_right, kernel_size=3) + self.comb_iter_3_right = create_pool2d('max', 3, stride=stride, padding=pad_type) + self.comb_iter_4_left = BranchSeparables(out_chs_left, out_chs_left, kernel_size=3, stride=stride, padding=pad_type) + if is_reduction: + self.comb_iter_4_right = ActConvBn(out_chs_right, out_chs_right, kernel_size=1, stride=stride, padding=pad_type) + else: + self.comb_iter_4_right = None + + def forward(self, x_left, x_right): + x_left = self.conv_prev_1x1(x_left) + x_right = self.conv_1x1(x_right) + x_out = self.cell_forward(x_left, x_right) + return x_out + +class PNASNet5Large(nn.Module): + + def __init__(self, num_classes=1000, in_chans=3, output_stride=32, drop_rate=0.0, global_pool='avg', pad_type=''): + super(PNASNet5Large, self).__init__() + self.num_classes = num_classes + self.num_features = self.head_hidden_size = 4320 + assert output_stride == 32 + self.conv_0 = ConvNormAct(in_chans, 96, kernel_size=3, stride=2, padding=0, norm_layer=partial(nn.BatchNorm2d, eps=0.001, momentum=0.1), apply_act=False) + self.cell_stem_0 = CellStem0(in_chs_left=96, out_chs_left=54, in_chs_right=96, out_chs_right=54, pad_type=pad_type) + self.cell_stem_1 = Cell(in_chs_left=96, out_chs_left=108, in_chs_right=270, out_chs_right=108, pad_type=pad_type, match_prev_layer_dims=True, is_reduction=True) + self.cell_0 = Cell(in_chs_left=270, out_chs_left=216, in_chs_right=540, out_chs_right=216, pad_type=pad_type, match_prev_layer_dims=True) + self.cell_1 = Cell(in_chs_left=540, out_chs_left=216, in_chs_right=1080, out_chs_right=216, pad_type=pad_type) + self.cell_2 = Cell(in_chs_left=1080, out_chs_left=216, in_chs_right=1080, out_chs_right=216, pad_type=pad_type) + self.cell_3 = Cell(in_chs_left=1080, out_chs_left=216, in_chs_right=1080, out_chs_right=216, pad_type=pad_type) + self.cell_4 = Cell(in_chs_left=1080, out_chs_left=432, in_chs_right=1080, out_chs_right=432, pad_type=pad_type, is_reduction=True) + self.cell_5 = Cell(in_chs_left=1080, out_chs_left=432, in_chs_right=2160, out_chs_right=432, pad_type=pad_type, match_prev_layer_dims=True) + self.cell_6 = Cell(in_chs_left=2160, out_chs_left=432, in_chs_right=2160, out_chs_right=432, pad_type=pad_type) + self.cell_7 = Cell(in_chs_left=2160, out_chs_left=432, in_chs_right=2160, out_chs_right=432, pad_type=pad_type) + self.cell_8 = Cell(in_chs_left=2160, out_chs_left=864, in_chs_right=2160, out_chs_right=864, pad_type=pad_type, is_reduction=True) + self.cell_9 = Cell(in_chs_left=2160, out_chs_left=864, in_chs_right=4320, out_chs_right=864, pad_type=pad_type, match_prev_layer_dims=True) + self.cell_10 = Cell(in_chs_left=4320, out_chs_left=864, in_chs_right=4320, out_chs_right=864, pad_type=pad_type) + self.cell_11 = Cell(in_chs_left=4320, out_chs_left=864, in_chs_right=4320, out_chs_right=864, pad_type=pad_type) + self.act = nn.ReLU() + self.feature_info = [dict(num_chs=96, reduction=2, module='conv_0'), dict(num_chs=270, reduction=4, module='cell_stem_1.conv_1x1.act'), dict(num_chs=1080, reduction=8, module='cell_4.conv_1x1.act'), dict(num_chs=2160, reduction=16, module='cell_8.conv_1x1.act'), dict(num_chs=4320, reduction=32, module='act')] + (self.global_pool, self.head_drop, self.last_linear) = create_classifier(self.num_features, self.num_classes, pool_type=global_pool, drop_rate=drop_rate) + + @torch.jit.ignore + def group_matcher(self, coarse=False): + return dict(stem='^conv_0|cell_stem_[01]', blocks='^cell_(\\d+)') + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + assert not enable, 'gradient checkpointing not supported' + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.last_linear + + def reset_classifier(self, num_classes: int, global_pool: str='avg'): + self.num_classes = num_classes + (self.global_pool, self.last_linear) = create_classifier(self.num_features, self.num_classes, pool_type=global_pool) + + def forward_features(self, x): + x_conv_0 = self.conv_0(x) + x_stem_0 = self.cell_stem_0(x_conv_0) + x_stem_1 = self.cell_stem_1(x_conv_0, x_stem_0) + x_cell_0 = self.cell_0(x_stem_0, x_stem_1) + x_cell_1 = self.cell_1(x_stem_1, x_cell_0) + x_cell_2 = self.cell_2(x_cell_0, x_cell_1) + x_cell_3 = self.cell_3(x_cell_1, x_cell_2) + x_cell_4 = self.cell_4(x_cell_2, x_cell_3) + x_cell_5 = self.cell_5(x_cell_3, x_cell_4) + x_cell_6 = self.cell_6(x_cell_4, x_cell_5) + x_cell_7 = self.cell_7(x_cell_5, x_cell_6) + x_cell_8 = self.cell_8(x_cell_6, x_cell_7) + x_cell_9 = self.cell_9(x_cell_7, x_cell_8) + x_cell_10 = self.cell_10(x_cell_8, x_cell_9) + x_cell_11 = self.cell_11(x_cell_9, x_cell_10) + x = self.act(x_cell_11) + return x + + def forward_head(self, x, pre_logits: bool=False): + x = self.global_pool(x) + x = self.head_drop(x) + return x if pre_logits else self.last_linear(x) + + def forward(self, x): + x = self.forward_features(x) + x = self.forward_head(x) + return x + +def _create_pnasnet(variant, pretrained=False, **kwargs): + return build_model_with_cfg(PNASNet5Large, variant, pretrained, feature_cfg=dict(feature_cls='hook', no_rewrite=True), **kwargs) +default_cfgs = generate_default_cfgs({'pnasnet5large.tf_in1k': {'hf_hub_id': 'timm/', 'input_size': (3, 331, 331), 'pool_size': (11, 11), 'crop_pct': 0.911, 'interpolation': 'bicubic', 'mean': (0.5, 0.5, 0.5), 'std': (0.5, 0.5, 0.5), 'num_classes': 1000, 'first_conv': 'conv_0.conv', 'classifier': 'last_linear'}}) + +@register_model +def pnasnet5large(pretrained=False, **kwargs) -> PNASNet5Large: + model_kwargs = dict(pad_type='same', **kwargs) + return _create_pnasnet('pnasnet5large', pretrained, **model_kwargs) + +# File: pytorch-image-models-main/timm/models/pvt_v2.py +"""""" +import math +from typing import Callable, List, Optional, Union +import torch +import torch.nn as nn +import torch.nn.functional as F +import torch.utils.checkpoint as checkpoint +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from timm.layers import DropPath, to_2tuple, to_ntuple, trunc_normal_, LayerNorm, use_fused_attn +from ._builder import build_model_with_cfg +from ._registry import register_model, generate_default_cfgs +__all__ = ['PyramidVisionTransformerV2'] + +class MlpWithDepthwiseConv(nn.Module): + + def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.0, extra_relu=False): + super().__init__() + out_features = out_features or in_features + hidden_features = hidden_features or in_features + self.fc1 = nn.Linear(in_features, hidden_features) + self.relu = nn.ReLU() if extra_relu else nn.Identity() + self.dwconv = nn.Conv2d(hidden_features, hidden_features, 3, 1, 1, bias=True, groups=hidden_features) + self.act = act_layer() + self.fc2 = nn.Linear(hidden_features, out_features) + self.drop = nn.Dropout(drop) + + def forward(self, x, feat_size: List[int]): + x = self.fc1(x) + (B, N, C) = x.shape + x = x.transpose(1, 2).view(B, C, feat_size[0], feat_size[1]) + x = self.relu(x) + x = self.dwconv(x) + x = x.flatten(2).transpose(1, 2) + x = self.act(x) + x = self.drop(x) + x = self.fc2(x) + x = self.drop(x) + return x + +class Attention(nn.Module): + fused_attn: torch.jit.Final[bool] + + def __init__(self, dim, num_heads=8, sr_ratio=1, linear_attn=False, qkv_bias=True, attn_drop=0.0, proj_drop=0.0): + super().__init__() + assert dim % num_heads == 0, f'dim {dim} should be divided by num_heads {num_heads}.' + self.dim = dim + self.num_heads = num_heads + self.head_dim = dim // num_heads + self.scale = self.head_dim ** (-0.5) + self.fused_attn = use_fused_attn() + self.q = nn.Linear(dim, dim, bias=qkv_bias) + self.kv = nn.Linear(dim, dim * 2, bias=qkv_bias) + self.attn_drop = nn.Dropout(attn_drop) + self.proj = nn.Linear(dim, dim) + self.proj_drop = nn.Dropout(proj_drop) + if not linear_attn: + self.pool = None + if sr_ratio > 1: + self.sr = nn.Conv2d(dim, dim, kernel_size=sr_ratio, stride=sr_ratio) + self.norm = nn.LayerNorm(dim) + else: + self.sr = None + self.norm = None + self.act = None + else: + self.pool = nn.AdaptiveAvgPool2d(7) + self.sr = nn.Conv2d(dim, dim, kernel_size=1, stride=1) + self.norm = nn.LayerNorm(dim) + self.act = nn.GELU() + + def forward(self, x, feat_size: List[int]): + (B, N, C) = x.shape + (H, W) = feat_size + q = self.q(x).reshape(B, N, self.num_heads, -1).permute(0, 2, 1, 3) + if self.pool is not None: + x = x.permute(0, 2, 1).reshape(B, C, H, W) + x = self.sr(self.pool(x)).reshape(B, C, -1).permute(0, 2, 1) + x = self.norm(x) + x = self.act(x) + kv = self.kv(x).reshape(B, -1, 2, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4) + elif self.sr is not None: + x = x.permute(0, 2, 1).reshape(B, C, H, W) + x = self.sr(x).reshape(B, C, -1).permute(0, 2, 1) + x = self.norm(x) + kv = self.kv(x).reshape(B, -1, 2, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4) + else: + kv = self.kv(x).reshape(B, -1, 2, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4) + (k, v) = kv.unbind(0) + if self.fused_attn: + x = F.scaled_dot_product_attention(q, k, v, dropout_p=self.attn_drop.p if self.training else 0.0) + else: + q = q * self.scale + attn = q @ k.transpose(-2, -1) + attn = attn.softmax(dim=-1) + attn = self.attn_drop(attn) + x = attn @ v + x = x.transpose(1, 2).reshape(B, N, C) + x = self.proj(x) + x = self.proj_drop(x) + return x + +class Block(nn.Module): + + def __init__(self, dim, num_heads, mlp_ratio=4.0, sr_ratio=1, linear_attn=False, qkv_bias=False, proj_drop=0.0, attn_drop=0.0, drop_path=0.0, act_layer=nn.GELU, norm_layer=LayerNorm): + super().__init__() + self.norm1 = norm_layer(dim) + self.attn = Attention(dim, num_heads=num_heads, sr_ratio=sr_ratio, linear_attn=linear_attn, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=proj_drop) + self.drop_path1 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + self.norm2 = norm_layer(dim) + self.mlp = MlpWithDepthwiseConv(in_features=dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer, drop=proj_drop, extra_relu=linear_attn) + self.drop_path2 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + + def forward(self, x, feat_size: List[int]): + x = x + self.drop_path1(self.attn(self.norm1(x), feat_size)) + x = x + self.drop_path2(self.mlp(self.norm2(x), feat_size)) + return x + +class OverlapPatchEmbed(nn.Module): + + def __init__(self, patch_size=7, stride=4, in_chans=3, embed_dim=768): + super().__init__() + patch_size = to_2tuple(patch_size) + assert max(patch_size) > stride, 'Set larger patch_size than stride' + self.patch_size = patch_size + self.proj = nn.Conv2d(in_chans, embed_dim, patch_size, stride=stride, padding=(patch_size[0] // 2, patch_size[1] // 2)) + self.norm = nn.LayerNorm(embed_dim) + + def forward(self, x): + x = self.proj(x) + x = x.permute(0, 2, 3, 1) + x = self.norm(x) + return x + +class PyramidVisionTransformerStage(nn.Module): + + def __init__(self, dim: int, dim_out: int, depth: int, downsample: bool=True, num_heads: int=8, sr_ratio: int=1, linear_attn: bool=False, mlp_ratio: float=4.0, qkv_bias: bool=True, proj_drop: float=0.0, attn_drop: float=0.0, drop_path: Union[List[float], float]=0.0, norm_layer: Callable=LayerNorm): + super().__init__() + self.grad_checkpointing = False + if downsample: + self.downsample = OverlapPatchEmbed(patch_size=3, stride=2, in_chans=dim, embed_dim=dim_out) + else: + assert dim == dim_out + self.downsample = None + self.blocks = nn.ModuleList([Block(dim=dim_out, num_heads=num_heads, sr_ratio=sr_ratio, linear_attn=linear_attn, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, proj_drop=proj_drop, attn_drop=attn_drop, drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path, norm_layer=norm_layer) for i in range(depth)]) + self.norm = norm_layer(dim_out) + + def forward(self, x): + if self.downsample is not None: + x = self.downsample(x) + (B, H, W, C) = x.shape + feat_size = (H, W) + x = x.reshape(B, -1, C) + for blk in self.blocks: + if self.grad_checkpointing and (not torch.jit.is_scripting()): + x = checkpoint.checkpoint(blk, x, feat_size) + else: + x = blk(x, feat_size) + x = self.norm(x) + x = x.reshape(B, feat_size[0], feat_size[1], -1).permute(0, 3, 1, 2).contiguous() + return x + +class PyramidVisionTransformerV2(nn.Module): + + def __init__(self, in_chans=3, num_classes=1000, global_pool='avg', depths=(3, 4, 6, 3), embed_dims=(64, 128, 256, 512), num_heads=(1, 2, 4, 8), sr_ratios=(8, 4, 2, 1), mlp_ratios=(8.0, 8.0, 4.0, 4.0), qkv_bias=True, linear=False, drop_rate=0.0, proj_drop_rate=0.0, attn_drop_rate=0.0, drop_path_rate=0.0, norm_layer=LayerNorm): + super().__init__() + self.num_classes = num_classes + assert global_pool in ('avg', '') + self.global_pool = global_pool + self.depths = depths + num_stages = len(depths) + mlp_ratios = to_ntuple(num_stages)(mlp_ratios) + num_heads = to_ntuple(num_stages)(num_heads) + sr_ratios = to_ntuple(num_stages)(sr_ratios) + assert len(embed_dims) == num_stages + self.feature_info = [] + self.patch_embed = OverlapPatchEmbed(patch_size=7, stride=4, in_chans=in_chans, embed_dim=embed_dims[0]) + dpr = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(depths)).split(depths)] + cur = 0 + prev_dim = embed_dims[0] + stages = [] + for i in range(num_stages): + stages += [PyramidVisionTransformerStage(dim=prev_dim, dim_out=embed_dims[i], depth=depths[i], downsample=i > 0, num_heads=num_heads[i], sr_ratio=sr_ratios[i], mlp_ratio=mlp_ratios[i], linear_attn=linear, qkv_bias=qkv_bias, proj_drop=proj_drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer)] + prev_dim = embed_dims[i] + cur += depths[i] + self.feature_info += [dict(num_chs=prev_dim, reduction=4 * 2 ** i, module=f'stages.{i}')] + self.stages = nn.Sequential(*stages) + self.num_features = self.head_hidden_size = embed_dims[-1] + self.head_drop = nn.Dropout(drop_rate) + self.head = nn.Linear(embed_dims[-1], num_classes) if num_classes > 0 else nn.Identity() + self.apply(self._init_weights) + + def _init_weights(self, m): + if isinstance(m, nn.Linear): + trunc_normal_(m.weight, std=0.02) + if isinstance(m, nn.Linear) and m.bias is not None: + nn.init.constant_(m.bias, 0) + elif isinstance(m, nn.Conv2d): + fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels + fan_out //= m.groups + m.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) + if m.bias is not None: + m.bias.data.zero_() + + def freeze_patch_emb(self): + self.patch_embed.requires_grad = False + + @torch.jit.ignore + def no_weight_decay(self): + return {} + + @torch.jit.ignore + def group_matcher(self, coarse=False): + matcher = dict(stem='^patch_embed', blocks='^stages\\.(\\d+)') + return matcher + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + for s in self.stages: + s.grad_checkpointing = enable + + def get_classifier(self) -> nn.Module: + return self.head + + def reset_classifier(self, num_classes: int, global_pool: Optional[str]=None): + self.num_classes = num_classes + if global_pool is not None: + assert global_pool in ('avg', '') + self.global_pool = global_pool + self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() + + def forward_features(self, x): + x = self.patch_embed(x) + x = self.stages(x) + return x + + def forward_head(self, x, pre_logits: bool=False): + if self.global_pool: + x = x.mean(dim=(-1, -2)) + x = self.head_drop(x) + return x if pre_logits else self.head(x) + + def forward(self, x): + x = self.forward_features(x) + x = self.forward_head(x) + return x + +def checkpoint_filter_fn(state_dict, model): + if 'patch_embed.proj.weight' in state_dict: + return state_dict + out_dict = {} + import re + for (k, v) in state_dict.items(): + if k.startswith('patch_embed'): + k = k.replace('patch_embed1', 'patch_embed') + k = k.replace('patch_embed2', 'stages.1.downsample') + k = k.replace('patch_embed3', 'stages.2.downsample') + k = k.replace('patch_embed4', 'stages.3.downsample') + k = k.replace('dwconv.dwconv', 'dwconv') + k = re.sub('block(\\d+).(\\d+)', lambda x: f'stages.{int(x.group(1)) - 1}.blocks.{x.group(2)}', k) + k = re.sub('^norm(\\d+)', lambda x: f'stages.{int(x.group(1)) - 1}.norm', k) + out_dict[k] = v + return out_dict + +def _create_pvt2(variant, pretrained=False, **kwargs): + default_out_indices = tuple(range(4)) + out_indices = kwargs.pop('out_indices', default_out_indices) + model = build_model_with_cfg(PyramidVisionTransformerV2, variant, pretrained, pretrained_filter_fn=checkpoint_filter_fn, feature_cfg=dict(flatten_sequential=True, out_indices=out_indices), **kwargs) + return model + +def _cfg(url='', **kwargs): + return {'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), 'crop_pct': 0.9, 'interpolation': 'bicubic', 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'patch_embed.proj', 'classifier': 'head', 'fixed_input_size': False, **kwargs} +default_cfgs = generate_default_cfgs({'pvt_v2_b0.in1k': _cfg(hf_hub_id='timm/'), 'pvt_v2_b1.in1k': _cfg(hf_hub_id='timm/'), 'pvt_v2_b2.in1k': _cfg(hf_hub_id='timm/'), 'pvt_v2_b3.in1k': _cfg(hf_hub_id='timm/'), 'pvt_v2_b4.in1k': _cfg(hf_hub_id='timm/'), 'pvt_v2_b5.in1k': _cfg(hf_hub_id='timm/'), 'pvt_v2_b2_li.in1k': _cfg(hf_hub_id='timm/')}) + +@register_model +def pvt_v2_b0(pretrained=False, **kwargs) -> PyramidVisionTransformerV2: + model_args = dict(depths=(2, 2, 2, 2), embed_dims=(32, 64, 160, 256), num_heads=(1, 2, 5, 8)) + return _create_pvt2('pvt_v2_b0', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def pvt_v2_b1(pretrained=False, **kwargs) -> PyramidVisionTransformerV2: + model_args = dict(depths=(2, 2, 2, 2), embed_dims=(64, 128, 320, 512), num_heads=(1, 2, 5, 8)) + return _create_pvt2('pvt_v2_b1', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def pvt_v2_b2(pretrained=False, **kwargs) -> PyramidVisionTransformerV2: + model_args = dict(depths=(3, 4, 6, 3), embed_dims=(64, 128, 320, 512), num_heads=(1, 2, 5, 8)) + return _create_pvt2('pvt_v2_b2', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def pvt_v2_b3(pretrained=False, **kwargs) -> PyramidVisionTransformerV2: + model_args = dict(depths=(3, 4, 18, 3), embed_dims=(64, 128, 320, 512), num_heads=(1, 2, 5, 8)) + return _create_pvt2('pvt_v2_b3', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def pvt_v2_b4(pretrained=False, **kwargs) -> PyramidVisionTransformerV2: + model_args = dict(depths=(3, 8, 27, 3), embed_dims=(64, 128, 320, 512), num_heads=(1, 2, 5, 8)) + return _create_pvt2('pvt_v2_b4', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def pvt_v2_b5(pretrained=False, **kwargs) -> PyramidVisionTransformerV2: + model_args = dict(depths=(3, 6, 40, 3), embed_dims=(64, 128, 320, 512), num_heads=(1, 2, 5, 8), mlp_ratios=(4, 4, 4, 4)) + return _create_pvt2('pvt_v2_b5', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def pvt_v2_b2_li(pretrained=False, **kwargs) -> PyramidVisionTransformerV2: + model_args = dict(depths=(3, 4, 6, 3), embed_dims=(64, 128, 320, 512), num_heads=(1, 2, 5, 8), linear=True) + return _create_pvt2('pvt_v2_b2_li', pretrained=pretrained, **dict(model_args, **kwargs)) + +# File: pytorch-image-models-main/timm/models/rdnet.py +"""""" +from functools import partial +from typing import List, Optional, Tuple, Union, Callable +import torch +import torch.nn as nn +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from timm.layers import DropPath, NormMlpClassifierHead, ClassifierHead, EffectiveSEModule, make_divisible, get_act_layer, get_norm_layer +from ._builder import build_model_with_cfg +from ._features import feature_take_indices +from ._manipulate import named_apply +from ._registry import register_model, generate_default_cfgs +__all__ = ['RDNet'] + +class Block(nn.Module): + + def __init__(self, in_chs, inter_chs, out_chs, norm_layer, act_layer): + super().__init__() + self.layers = nn.Sequential(nn.Conv2d(in_chs, in_chs, groups=in_chs, kernel_size=7, stride=1, padding=3), norm_layer(in_chs), nn.Conv2d(in_chs, inter_chs, kernel_size=1, stride=1, padding=0), act_layer(), nn.Conv2d(inter_chs, out_chs, kernel_size=1, stride=1, padding=0)) + + def forward(self, x): + return self.layers(x) + +class BlockESE(nn.Module): + + def __init__(self, in_chs, inter_chs, out_chs, norm_layer, act_layer): + super().__init__() + self.layers = nn.Sequential(nn.Conv2d(in_chs, in_chs, groups=in_chs, kernel_size=7, stride=1, padding=3), norm_layer(in_chs), nn.Conv2d(in_chs, inter_chs, kernel_size=1, stride=1, padding=0), act_layer(), nn.Conv2d(inter_chs, out_chs, kernel_size=1, stride=1, padding=0), EffectiveSEModule(out_chs)) + + def forward(self, x): + return self.layers(x) + +def _get_block_type(block: str): + block = block.lower().strip() + if block == 'block': + return Block + elif block == 'blockese': + return BlockESE + else: + assert False, f'Unknown block type ({block}).' + +class DenseBlock(nn.Module): + + def __init__(self, num_input_features: int=64, growth_rate: int=64, bottleneck_width_ratio: float=4.0, drop_path_rate: float=0.0, drop_rate: float=0.0, rand_gather_step_prob: float=0.0, block_idx: int=0, block_type: str='Block', ls_init_value: float=1e-06, norm_layer: str='layernorm2d', act_layer: str='gelu'): + super().__init__() + self.drop_rate = drop_rate + self.drop_path_rate = drop_path_rate + self.rand_gather_step_prob = rand_gather_step_prob + self.block_idx = block_idx + self.growth_rate = growth_rate + self.gamma = nn.Parameter(ls_init_value * torch.ones(growth_rate)) if ls_init_value > 0 else None + growth_rate = int(growth_rate) + inter_chs = int(num_input_features * bottleneck_width_ratio / 8) * 8 + self.drop_path = DropPath(drop_path_rate) + self.layers = _get_block_type(block_type)(in_chs=num_input_features, inter_chs=inter_chs, out_chs=growth_rate, norm_layer=norm_layer, act_layer=act_layer) + + def forward(self, x: List[torch.Tensor]) -> torch.Tensor: + x = torch.cat(x, 1) + x = self.layers(x) + if self.gamma is not None: + x = x.mul(self.gamma.reshape(1, -1, 1, 1)) + x = self.drop_path(x) + return x + +class DenseStage(nn.Sequential): + + def __init__(self, num_block, num_input_features, drop_path_rates, growth_rate, **kwargs): + super().__init__() + for i in range(num_block): + layer = DenseBlock(num_input_features=num_input_features, growth_rate=growth_rate, drop_path_rate=drop_path_rates[i], block_idx=i, **kwargs) + num_input_features += growth_rate + self.add_module(f'dense_block{i}', layer) + self.num_out_features = num_input_features + + def forward(self, init_feature: torch.Tensor) -> torch.Tensor: + features = [init_feature] + for module in self: + new_feature = module(features) + features.append(new_feature) + return torch.cat(features, 1) + +class RDNet(nn.Module): + + def __init__(self, in_chans: int=3, num_classes: int=1000, global_pool: str='avg', growth_rates: Union[List[int], Tuple[int]]=(64, 104, 128, 128, 128, 128, 224), num_blocks_list: Union[List[int], Tuple[int]]=(3, 3, 3, 3, 3, 3, 3), block_type: Union[List[int], Tuple[int]]=('Block',) * 2 + ('BlockESE',) * 5, is_downsample_block: Union[List[bool], Tuple[bool]]=(None, True, True, False, False, False, True), bottleneck_width_ratio: float=4.0, transition_compression_ratio: float=0.5, ls_init_value: float=1e-06, stem_type: str='patch', patch_size: int=4, num_init_features: int=64, head_init_scale: float=1.0, head_norm_first: bool=False, conv_bias: bool=True, act_layer: Union[str, Callable]='gelu', norm_layer: str='layernorm2d', norm_eps: Optional[float]=None, drop_rate: float=0.0, drop_path_rate: float=0.0): + super().__init__() + assert len(growth_rates) == len(num_blocks_list) == len(is_downsample_block) + act_layer = get_act_layer(act_layer) + norm_layer = get_norm_layer(norm_layer) + if norm_eps is not None: + norm_layer = partial(norm_layer, eps=norm_eps) + self.num_classes = num_classes + self.drop_rate = drop_rate + assert stem_type in ('patch', 'overlap', 'overlap_tiered') + if stem_type == 'patch': + self.stem = nn.Sequential(nn.Conv2d(in_chans, num_init_features, kernel_size=patch_size, stride=patch_size, bias=conv_bias), norm_layer(num_init_features)) + stem_stride = patch_size + else: + mid_chs = make_divisible(num_init_features // 2) if 'tiered' in stem_type else num_init_features + self.stem = nn.Sequential(nn.Conv2d(in_chans, mid_chs, kernel_size=3, stride=2, padding=1, bias=conv_bias), nn.Conv2d(mid_chs, num_init_features, kernel_size=3, stride=2, padding=1, bias=conv_bias), norm_layer(num_init_features)) + stem_stride = 4 + self.feature_info = [] + self.num_stages = len(growth_rates) + curr_stride = stem_stride + num_features = num_init_features + dp_rates = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(num_blocks_list)).split(num_blocks_list)] + dense_stages = [] + for i in range(self.num_stages): + dense_stage_layers = [] + if i != 0: + compressed_num_features = int(num_features * transition_compression_ratio / 8) * 8 + k_size = stride = 1 + if is_downsample_block[i]: + curr_stride *= 2 + k_size = stride = 2 + dense_stage_layers.append(norm_layer(num_features)) + dense_stage_layers.append(nn.Conv2d(num_features, compressed_num_features, kernel_size=k_size, stride=stride, padding=0)) + num_features = compressed_num_features + stage = DenseStage(num_block=num_blocks_list[i], num_input_features=num_features, growth_rate=growth_rates[i], bottleneck_width_ratio=bottleneck_width_ratio, drop_rate=drop_rate, drop_path_rates=dp_rates[i], ls_init_value=ls_init_value, block_type=block_type[i], norm_layer=norm_layer, act_layer=act_layer) + dense_stage_layers.append(stage) + num_features += num_blocks_list[i] * growth_rates[i] + if i + 1 == self.num_stages or (i + 1 != self.num_stages and is_downsample_block[i + 1]): + self.feature_info += [dict(num_chs=num_features, reduction=curr_stride, module=f'dense_stages.{i}', growth_rate=growth_rates[i])] + dense_stages.append(nn.Sequential(*dense_stage_layers)) + self.dense_stages = nn.Sequential(*dense_stages) + self.num_features = self.head_hidden_size = num_features + if head_norm_first: + self.norm_pre = norm_layer(self.num_features) + self.head = ClassifierHead(self.num_features, num_classes, pool_type=global_pool, drop_rate=self.drop_rate) + else: + self.norm_pre = nn.Identity() + self.head = NormMlpClassifierHead(self.num_features, num_classes, pool_type=global_pool, drop_rate=self.drop_rate, norm_layer=norm_layer) + named_apply(partial(_init_weights, head_init_scale=head_init_scale), self) + + def forward_intermediates(self, x: torch.Tensor, indices: Optional[Union[int, List[int]]]=None, norm: bool=False, stop_early: bool=False, output_fmt: str='NCHW', intermediates_only: bool=False) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]: + assert output_fmt in ('NCHW',), 'Output shape must be NCHW.' + intermediates = [] + (take_indices, max_index) = feature_take_indices(len(self.dense_stages) + 1, indices) + feat_idx = 0 + x = self.stem(x) + if feat_idx in take_indices: + intermediates.append(x) + if torch.jit.is_scripting() or not stop_early: + dense_stages = self.dense_stages + else: + dense_stages = self.dense_stages[:max_index] + for stage in dense_stages: + feat_idx += 1 + x = stage(x) + if feat_idx in take_indices: + intermediates.append(x) + if intermediates_only: + return intermediates + x = self.norm_pre(x) + return (x, intermediates) + + def prune_intermediate_layers(self, indices: Union[int, List[int]]=1, prune_norm: bool=False, prune_head: bool=True): + (take_indices, max_index) = feature_take_indices(len(self.dense_stages) + 1, indices) + self.dense_stages = self.dense_stages[:max_index] + if prune_norm: + self.norm_pre = nn.Identity() + if prune_head: + self.reset_classifier(0, '') + return take_indices + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.head.fc + + def reset_classifier(self, num_classes: int, global_pool: Optional[str]=None): + self.head.reset(num_classes, global_pool) + + def forward_features(self, x): + x = self.stem(x) + x = self.dense_stages(x) + return x + + def forward_head(self, x, pre_logits: bool=False): + return self.head(x, pre_logits=True) if pre_logits else self.head(x) + + def forward(self, x): + x = self.forward_features(x) + x = self.head(x) + return x + + @torch.jit.ignore + def group_matcher(self, coarse=False): + assert not coarse, 'coarse grouping is not implemented for RDNet' + return dict(stem='^stem', blocks='^dense_stages\\.(\\d+)') + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + for s in self.dense_stages: + s.grad_checkpointing = enable + +def _init_weights(module, name=None, head_init_scale=1.0): + if isinstance(module, nn.Conv2d): + nn.init.kaiming_normal_(module.weight) + elif isinstance(module, nn.BatchNorm2d): + nn.init.constant_(module.weight, 1) + nn.init.constant_(module.bias, 0) + elif isinstance(module, nn.Linear): + nn.init.constant_(module.bias, 0) + if name and 'head.' in name: + module.weight.data.mul_(head_init_scale) + module.bias.data.mul_(head_init_scale) + +def checkpoint_filter_fn(state_dict, model): + if 'stem.0.weight' in state_dict: + return state_dict + if 'model' in state_dict: + state_dict = state_dict['model'] + out_dict = {} + for (k, v) in state_dict.items(): + k = k.replace('stem.stem.', 'stem.') + out_dict[k] = v + return out_dict + +def _create_rdnet(variant, pretrained=False, **kwargs): + model = build_model_with_cfg(RDNet, variant, pretrained, pretrained_filter_fn=checkpoint_filter_fn, feature_cfg=dict(out_indices=(0, 1, 2, 3), flatten_sequential=True), **kwargs) + return model + +def _cfg(url='', **kwargs): + return {'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), 'crop_pct': 0.9, 'interpolation': 'bicubic', 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'stem.0', 'classifier': 'head.fc', 'paper_ids': 'arXiv:2403.19588', 'paper_name': 'DenseNets Reloaded: Paradigm Shift Beyond ResNets and ViTs', 'origin_url': 'https://github.com/naver-ai/rdnet', **kwargs} +default_cfgs = generate_default_cfgs({'rdnet_tiny.nv_in1k': _cfg(hf_hub_id='naver-ai/rdnet_tiny.nv_in1k'), 'rdnet_small.nv_in1k': _cfg(hf_hub_id='naver-ai/rdnet_small.nv_in1k'), 'rdnet_base.nv_in1k': _cfg(hf_hub_id='naver-ai/rdnet_base.nv_in1k'), 'rdnet_large.nv_in1k': _cfg(hf_hub_id='naver-ai/rdnet_large.nv_in1k'), 'rdnet_large.nv_in1k_ft_in1k_384': _cfg(hf_hub_id='naver-ai/rdnet_large.nv_in1k_ft_in1k_384', input_size=(3, 384, 384), crop_pct=1.0, pool_size=(12, 12))}) + +@register_model +def rdnet_tiny(pretrained=False, **kwargs): + n_layer = 7 + model_args = {'num_init_features': 64, 'growth_rates': [64] + [104] + [128] * 4 + [224], 'num_blocks_list': [3] * n_layer, 'is_downsample_block': (None, True, True, False, False, False, True), 'transition_compression_ratio': 0.5, 'block_type': ['Block'] + ['Block'] + ['BlockESE'] * 4 + ['BlockESE']} + model = _create_rdnet('rdnet_tiny', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def rdnet_small(pretrained=False, **kwargs): + n_layer = 11 + model_args = {'num_init_features': 72, 'growth_rates': [64] + [128] + [128] * (n_layer - 4) + [240] * 2, 'num_blocks_list': [3] * n_layer, 'is_downsample_block': (None, True, True, False, False, False, False, False, False, True, False), 'transition_compression_ratio': 0.5, 'block_type': ['Block'] + ['Block'] + ['BlockESE'] * (n_layer - 4) + ['BlockESE'] * 2} + model = _create_rdnet('rdnet_small', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def rdnet_base(pretrained=False, **kwargs): + n_layer = 11 + model_args = {'num_init_features': 120, 'growth_rates': [96] + [128] + [168] * (n_layer - 4) + [336] * 2, 'num_blocks_list': [3] * n_layer, 'is_downsample_block': (None, True, True, False, False, False, False, False, False, True, False), 'transition_compression_ratio': 0.5, 'block_type': ['Block'] + ['Block'] + ['BlockESE'] * (n_layer - 4) + ['BlockESE'] * 2} + model = _create_rdnet('rdnet_base', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def rdnet_large(pretrained=False, **kwargs): + n_layer = 12 + model_args = {'num_init_features': 144, 'growth_rates': [128] + [192] + [256] * (n_layer - 4) + [360] * 2, 'num_blocks_list': [3] * n_layer, 'is_downsample_block': (None, True, True, False, False, False, False, False, False, False, True, False), 'transition_compression_ratio': 0.5, 'block_type': ['Block'] + ['Block'] + ['BlockESE'] * (n_layer - 4) + ['BlockESE'] * 2} + model = _create_rdnet('rdnet_large', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +# File: pytorch-image-models-main/timm/models/regnet.py +"""""" +import math +from dataclasses import dataclass, replace +from functools import partial +from typing import Callable, List, Optional, Union, Tuple +import numpy as np +import torch +import torch.nn as nn +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from timm.layers import ClassifierHead, AvgPool2dSame, ConvNormAct, SEModule, DropPath, GroupNormAct +from timm.layers import get_act_layer, get_norm_act_layer, create_conv2d, make_divisible +from ._builder import build_model_with_cfg +from ._features import feature_take_indices +from ._manipulate import checkpoint_seq, named_apply +from ._registry import generate_default_cfgs, register_model, register_model_deprecations +__all__ = ['RegNet', 'RegNetCfg'] + +@dataclass +class RegNetCfg: + depth: int = 21 + w0: int = 80 + wa: float = 42.63 + wm: float = 2.66 + group_size: int = 24 + bottle_ratio: float = 1.0 + se_ratio: float = 0.0 + group_min_ratio: float = 0.0 + stem_width: int = 32 + downsample: Optional[str] = 'conv1x1' + linear_out: bool = False + preact: bool = False + num_features: int = 0 + act_layer: Union[str, Callable] = 'relu' + norm_layer: Union[str, Callable] = 'batchnorm' + +def quantize_float(f, q): + return int(round(f / q) * q) + +def adjust_widths_groups_comp(widths, bottle_ratios, groups, min_ratio=0.0): + bottleneck_widths = [int(w * b) for (w, b) in zip(widths, bottle_ratios)] + groups = [min(g, w_bot) for (g, w_bot) in zip(groups, bottleneck_widths)] + if min_ratio: + bottleneck_widths = [make_divisible(w_bot, g, min_ratio) for (w_bot, g) in zip(bottleneck_widths, groups)] + else: + bottleneck_widths = [quantize_float(w_bot, g) for (w_bot, g) in zip(bottleneck_widths, groups)] + widths = [int(w_bot / b) for (w_bot, b) in zip(bottleneck_widths, bottle_ratios)] + return (widths, groups) + +def generate_regnet(width_slope, width_initial, width_mult, depth, group_size, quant=8): + assert width_slope >= 0 and width_initial > 0 and (width_mult > 1) and (width_initial % quant == 0) + widths_cont = np.arange(depth) * width_slope + width_initial + width_exps = np.round(np.log(widths_cont / width_initial) / np.log(width_mult)) + widths = np.round(np.divide(width_initial * np.power(width_mult, width_exps), quant)) * quant + (num_stages, max_stage) = (len(np.unique(widths)), width_exps.max() + 1) + groups = np.array([group_size for _ in range(num_stages)]) + return (widths.astype(int).tolist(), num_stages, groups.astype(int).tolist()) + +def downsample_conv(in_chs, out_chs, kernel_size=1, stride=1, dilation=1, norm_layer=None, preact=False): + norm_layer = norm_layer or nn.BatchNorm2d + kernel_size = 1 if stride == 1 and dilation == 1 else kernel_size + dilation = dilation if kernel_size > 1 else 1 + if preact: + return create_conv2d(in_chs, out_chs, kernel_size, stride=stride, dilation=dilation) + else: + return ConvNormAct(in_chs, out_chs, kernel_size, stride=stride, dilation=dilation, norm_layer=norm_layer, apply_act=False) + +def downsample_avg(in_chs, out_chs, kernel_size=1, stride=1, dilation=1, norm_layer=None, preact=False): + norm_layer = norm_layer or nn.BatchNorm2d + avg_stride = stride if dilation == 1 else 1 + pool = nn.Identity() + if stride > 1 or dilation > 1: + avg_pool_fn = AvgPool2dSame if avg_stride == 1 and dilation > 1 else nn.AvgPool2d + pool = avg_pool_fn(2, avg_stride, ceil_mode=True, count_include_pad=False) + if preact: + conv = create_conv2d(in_chs, out_chs, 1, stride=1) + else: + conv = ConvNormAct(in_chs, out_chs, 1, stride=1, norm_layer=norm_layer, apply_act=False) + return nn.Sequential(*[pool, conv]) + +def create_shortcut(downsample_type, in_chs, out_chs, kernel_size, stride, dilation=(1, 1), norm_layer=None, preact=False): + assert downsample_type in ('avg', 'conv1x1', '', None) + if in_chs != out_chs or stride != 1 or dilation[0] != dilation[1]: + dargs = dict(stride=stride, dilation=dilation[0], norm_layer=norm_layer, preact=preact) + if not downsample_type: + return None + elif downsample_type == 'avg': + return downsample_avg(in_chs, out_chs, **dargs) + else: + return downsample_conv(in_chs, out_chs, kernel_size=kernel_size, **dargs) + else: + return nn.Identity() + +class Bottleneck(nn.Module): + + def __init__(self, in_chs, out_chs, stride=1, dilation=(1, 1), bottle_ratio=1, group_size=1, se_ratio=0.25, downsample='conv1x1', linear_out=False, act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d, drop_block=None, drop_path_rate=0.0): + super(Bottleneck, self).__init__() + act_layer = get_act_layer(act_layer) + bottleneck_chs = int(round(out_chs * bottle_ratio)) + groups = bottleneck_chs // group_size + cargs = dict(act_layer=act_layer, norm_layer=norm_layer) + self.conv1 = ConvNormAct(in_chs, bottleneck_chs, kernel_size=1, **cargs) + self.conv2 = ConvNormAct(bottleneck_chs, bottleneck_chs, kernel_size=3, stride=stride, dilation=dilation[0], groups=groups, drop_layer=drop_block, **cargs) + if se_ratio: + se_channels = int(round(in_chs * se_ratio)) + self.se = SEModule(bottleneck_chs, rd_channels=se_channels, act_layer=act_layer) + else: + self.se = nn.Identity() + self.conv3 = ConvNormAct(bottleneck_chs, out_chs, kernel_size=1, apply_act=False, **cargs) + self.act3 = nn.Identity() if linear_out else act_layer() + self.downsample = create_shortcut(downsample, in_chs, out_chs, kernel_size=1, stride=stride, dilation=dilation, norm_layer=norm_layer) + self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0 else nn.Identity() + + def zero_init_last(self): + nn.init.zeros_(self.conv3.bn.weight) + + def forward(self, x): + shortcut = x + x = self.conv1(x) + x = self.conv2(x) + x = self.se(x) + x = self.conv3(x) + if self.downsample is not None: + x = self.drop_path(x) + self.downsample(shortcut) + x = self.act3(x) + return x + +class PreBottleneck(nn.Module): + + def __init__(self, in_chs, out_chs, stride=1, dilation=(1, 1), bottle_ratio=1, group_size=1, se_ratio=0.25, downsample='conv1x1', linear_out=False, act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d, drop_block=None, drop_path_rate=0.0): + super(PreBottleneck, self).__init__() + norm_act_layer = get_norm_act_layer(norm_layer, act_layer) + bottleneck_chs = int(round(out_chs * bottle_ratio)) + groups = bottleneck_chs // group_size + self.norm1 = norm_act_layer(in_chs) + self.conv1 = create_conv2d(in_chs, bottleneck_chs, kernel_size=1) + self.norm2 = norm_act_layer(bottleneck_chs) + self.conv2 = create_conv2d(bottleneck_chs, bottleneck_chs, kernel_size=3, stride=stride, dilation=dilation[0], groups=groups) + if se_ratio: + se_channels = int(round(in_chs * se_ratio)) + self.se = SEModule(bottleneck_chs, rd_channels=se_channels, act_layer=act_layer) + else: + self.se = nn.Identity() + self.norm3 = norm_act_layer(bottleneck_chs) + self.conv3 = create_conv2d(bottleneck_chs, out_chs, kernel_size=1) + self.downsample = create_shortcut(downsample, in_chs, out_chs, kernel_size=1, stride=stride, dilation=dilation, preact=True) + self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0 else nn.Identity() + + def zero_init_last(self): + pass + + def forward(self, x): + x = self.norm1(x) + shortcut = x + x = self.conv1(x) + x = self.norm2(x) + x = self.conv2(x) + x = self.se(x) + x = self.norm3(x) + x = self.conv3(x) + if self.downsample is not None: + x = self.drop_path(x) + self.downsample(shortcut) + return x + +class RegStage(nn.Module): + + def __init__(self, depth, in_chs, out_chs, stride, dilation, drop_path_rates=None, block_fn=Bottleneck, **block_kwargs): + super(RegStage, self).__init__() + self.grad_checkpointing = False + first_dilation = 1 if dilation in (1, 2) else 2 + for i in range(depth): + block_stride = stride if i == 0 else 1 + block_in_chs = in_chs if i == 0 else out_chs + block_dilation = (first_dilation, dilation) + dpr = drop_path_rates[i] if drop_path_rates is not None else 0.0 + name = 'b{}'.format(i + 1) + self.add_module(name, block_fn(block_in_chs, out_chs, stride=block_stride, dilation=block_dilation, drop_path_rate=dpr, **block_kwargs)) + first_dilation = dilation + + def forward(self, x): + if self.grad_checkpointing and (not torch.jit.is_scripting()): + x = checkpoint_seq(self.children(), x) + else: + for block in self.children(): + x = block(x) + return x + +class RegNet(nn.Module): + + def __init__(self, cfg: RegNetCfg, in_chans=3, num_classes=1000, output_stride=32, global_pool='avg', drop_rate=0.0, drop_path_rate=0.0, zero_init_last=True, **kwargs): + super().__init__() + self.num_classes = num_classes + self.drop_rate = drop_rate + assert output_stride in (8, 16, 32) + cfg = replace(cfg, **kwargs) + stem_width = cfg.stem_width + na_args = dict(act_layer=cfg.act_layer, norm_layer=cfg.norm_layer) + if cfg.preact: + self.stem = create_conv2d(in_chans, stem_width, 3, stride=2) + else: + self.stem = ConvNormAct(in_chans, stem_width, 3, stride=2, **na_args) + self.feature_info = [dict(num_chs=stem_width, reduction=2, module='stem')] + prev_width = stem_width + curr_stride = 2 + (per_stage_args, common_args) = self._get_stage_args(cfg, output_stride=output_stride, drop_path_rate=drop_path_rate) + assert len(per_stage_args) == 4 + block_fn = PreBottleneck if cfg.preact else Bottleneck + for (i, stage_args) in enumerate(per_stage_args): + stage_name = 's{}'.format(i + 1) + self.add_module(stage_name, RegStage(in_chs=prev_width, block_fn=block_fn, **stage_args, **common_args)) + prev_width = stage_args['out_chs'] + curr_stride *= stage_args['stride'] + self.feature_info += [dict(num_chs=prev_width, reduction=curr_stride, module=stage_name)] + if cfg.num_features: + self.final_conv = ConvNormAct(prev_width, cfg.num_features, kernel_size=1, **na_args) + self.num_features = cfg.num_features + else: + final_act = cfg.linear_out or cfg.preact + self.final_conv = get_act_layer(cfg.act_layer)() if final_act else nn.Identity() + self.num_features = prev_width + self.head_hidden_size = self.num_features + self.head = ClassifierHead(in_features=self.num_features, num_classes=num_classes, pool_type=global_pool, drop_rate=drop_rate) + named_apply(partial(_init_weights, zero_init_last=zero_init_last), self) + + def _get_stage_args(self, cfg: RegNetCfg, default_stride=2, output_stride=32, drop_path_rate=0.0): + (widths, num_stages, stage_gs) = generate_regnet(cfg.wa, cfg.w0, cfg.wm, cfg.depth, cfg.group_size) + (stage_widths, stage_depths) = np.unique(widths, return_counts=True) + stage_br = [cfg.bottle_ratio for _ in range(num_stages)] + stage_strides = [] + stage_dilations = [] + net_stride = 2 + dilation = 1 + for _ in range(num_stages): + if net_stride >= output_stride: + dilation *= default_stride + stride = 1 + else: + stride = default_stride + net_stride *= stride + stage_strides.append(stride) + stage_dilations.append(dilation) + stage_dpr = np.split(np.linspace(0, drop_path_rate, sum(stage_depths)), np.cumsum(stage_depths[:-1])) + (stage_widths, stage_gs) = adjust_widths_groups_comp(stage_widths, stage_br, stage_gs, min_ratio=cfg.group_min_ratio) + arg_names = ['out_chs', 'stride', 'dilation', 'depth', 'bottle_ratio', 'group_size', 'drop_path_rates'] + per_stage_args = [dict(zip(arg_names, params)) for params in zip(stage_widths, stage_strides, stage_dilations, stage_depths, stage_br, stage_gs, stage_dpr)] + common_args = dict(downsample=cfg.downsample, se_ratio=cfg.se_ratio, linear_out=cfg.linear_out, act_layer=cfg.act_layer, norm_layer=cfg.norm_layer) + return (per_stage_args, common_args) + + @torch.jit.ignore + def group_matcher(self, coarse=False): + return dict(stem='^stem', blocks='^s(\\d+)' if coarse else '^s(\\d+)\\.b(\\d+)') + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + for s in list(self.children())[1:-1]: + s.grad_checkpointing = enable + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.head.fc + + def reset_classifier(self, num_classes: int, global_pool: Optional[str]=None): + self.head.reset(num_classes, pool_type=global_pool) + + def forward_intermediates(self, x: torch.Tensor, indices: Optional[Union[int, List[int]]]=None, norm: bool=False, stop_early: bool=False, output_fmt: str='NCHW', intermediates_only: bool=False) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]: + assert output_fmt in ('NCHW',), 'Output shape must be NCHW.' + intermediates = [] + (take_indices, max_index) = feature_take_indices(5, indices) + feat_idx = 0 + x = self.stem(x) + if feat_idx in take_indices: + intermediates.append(x) + layer_names = ('s1', 's2', 's3', 's4') + if stop_early: + layer_names = layer_names[:max_index] + for n in layer_names: + feat_idx += 1 + x = getattr(self, n)(x) + if feat_idx in take_indices: + intermediates.append(x) + if intermediates_only: + return intermediates + if feat_idx == 4: + x = self.final_conv(x) + return (x, intermediates) + + def prune_intermediate_layers(self, indices: Union[int, List[int]]=1, prune_norm: bool=False, prune_head: bool=True): + (take_indices, max_index) = feature_take_indices(5, indices) + layer_names = ('s1', 's2', 's3', 's4') + layer_names = layer_names[max_index:] + for n in layer_names: + setattr(self, n, nn.Identity()) + if max_index < 4: + self.final_conv = nn.Identity() + if prune_head: + self.reset_classifier(0, '') + return take_indices + + def forward_features(self, x): + x = self.stem(x) + x = self.s1(x) + x = self.s2(x) + x = self.s3(x) + x = self.s4(x) + x = self.final_conv(x) + return x + + def forward_head(self, x, pre_logits: bool=False): + return self.head(x, pre_logits=pre_logits) if pre_logits else self.head(x) + + def forward(self, x): + x = self.forward_features(x) + x = self.forward_head(x) + return x + +def _init_weights(module, name='', zero_init_last=False): + if isinstance(module, nn.Conv2d): + fan_out = module.kernel_size[0] * module.kernel_size[1] * module.out_channels + fan_out //= module.groups + module.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.Linear): + nn.init.normal_(module.weight, mean=0.0, std=0.01) + if module.bias is not None: + nn.init.zeros_(module.bias) + elif zero_init_last and hasattr(module, 'zero_init_last'): + module.zero_init_last() + +def _filter_fn(state_dict): + state_dict = state_dict.get('model', state_dict) + replaces = [('f.a.0', 'conv1.conv'), ('f.a.1', 'conv1.bn'), ('f.b.0', 'conv2.conv'), ('f.b.1', 'conv2.bn'), ('f.final_bn', 'conv3.bn'), ('f.se.excitation.0', 'se.fc1'), ('f.se.excitation.2', 'se.fc2'), ('f.se', 'se'), ('f.c.0', 'conv3.conv'), ('f.c.1', 'conv3.bn'), ('f.c', 'conv3.conv'), ('proj.0', 'downsample.conv'), ('proj.1', 'downsample.bn'), ('proj', 'downsample.conv')] + if 'classy_state_dict' in state_dict: + import re + state_dict = state_dict['classy_state_dict']['base_model']['model'] + out = {} + for (k, v) in state_dict['trunk'].items(): + k = k.replace('_feature_blocks.conv1.stem.0', 'stem.conv') + k = k.replace('_feature_blocks.conv1.stem.1', 'stem.bn') + k = re.sub('^_feature_blocks.res\\d.block(\\d)-(\\d+)', lambda x: f's{int(x.group(1))}.b{int(x.group(2)) + 1}', k) + k = re.sub('s(\\d)\\.b(\\d+)\\.bn', 's\\1.b\\2.downsample.bn', k) + for (s, r) in replaces: + k = k.replace(s, r) + out[k] = v + for (k, v) in state_dict['heads'].items(): + if 'projection_head' in k or 'prototypes' in k: + continue + k = k.replace('0.clf.0', 'head.fc') + out[k] = v + return out + if 'stem.0.weight' in state_dict: + import re + out = {} + for (k, v) in state_dict.items(): + k = k.replace('stem.0', 'stem.conv') + k = k.replace('stem.1', 'stem.bn') + k = re.sub('trunk_output.block(\\d)\\.block(\\d+)\\-(\\d+)', lambda x: f's{int(x.group(1))}.b{int(x.group(3)) + 1}', k) + for (s, r) in replaces: + k = k.replace(s, r) + k = k.replace('fc.', 'head.fc.') + out[k] = v + return out + return state_dict +model_cfgs = dict(regnetx_002=RegNetCfg(w0=24, wa=36.44, wm=2.49, group_size=8, depth=13), regnetx_004=RegNetCfg(w0=24, wa=24.48, wm=2.54, group_size=16, depth=22), regnetx_004_tv=RegNetCfg(w0=24, wa=24.48, wm=2.54, group_size=16, depth=22, group_min_ratio=0.9), regnetx_006=RegNetCfg(w0=48, wa=36.97, wm=2.24, group_size=24, depth=16), regnetx_008=RegNetCfg(w0=56, wa=35.73, wm=2.28, group_size=16, depth=16), regnetx_016=RegNetCfg(w0=80, wa=34.01, wm=2.25, group_size=24, depth=18), regnetx_032=RegNetCfg(w0=88, wa=26.31, wm=2.25, group_size=48, depth=25), regnetx_040=RegNetCfg(w0=96, wa=38.65, wm=2.43, group_size=40, depth=23), regnetx_064=RegNetCfg(w0=184, wa=60.83, wm=2.07, group_size=56, depth=17), regnetx_080=RegNetCfg(w0=80, wa=49.56, wm=2.88, group_size=120, depth=23), regnetx_120=RegNetCfg(w0=168, wa=73.36, wm=2.37, group_size=112, depth=19), regnetx_160=RegNetCfg(w0=216, wa=55.59, wm=2.1, group_size=128, depth=22), regnetx_320=RegNetCfg(w0=320, wa=69.86, wm=2.0, group_size=168, depth=23), regnety_002=RegNetCfg(w0=24, wa=36.44, wm=2.49, group_size=8, depth=13, se_ratio=0.25), regnety_004=RegNetCfg(w0=48, wa=27.89, wm=2.09, group_size=8, depth=16, se_ratio=0.25), regnety_006=RegNetCfg(w0=48, wa=32.54, wm=2.32, group_size=16, depth=15, se_ratio=0.25), regnety_008=RegNetCfg(w0=56, wa=38.84, wm=2.4, group_size=16, depth=14, se_ratio=0.25), regnety_008_tv=RegNetCfg(w0=56, wa=38.84, wm=2.4, group_size=16, depth=14, se_ratio=0.25, group_min_ratio=0.9), regnety_016=RegNetCfg(w0=48, wa=20.71, wm=2.65, group_size=24, depth=27, se_ratio=0.25), regnety_032=RegNetCfg(w0=80, wa=42.63, wm=2.66, group_size=24, depth=21, se_ratio=0.25), regnety_040=RegNetCfg(w0=96, wa=31.41, wm=2.24, group_size=64, depth=22, se_ratio=0.25), regnety_064=RegNetCfg(w0=112, wa=33.22, wm=2.27, group_size=72, depth=25, se_ratio=0.25), regnety_080=RegNetCfg(w0=192, wa=76.82, wm=2.19, group_size=56, depth=17, se_ratio=0.25), regnety_080_tv=RegNetCfg(w0=192, wa=76.82, wm=2.19, group_size=56, depth=17, se_ratio=0.25, group_min_ratio=0.9), regnety_120=RegNetCfg(w0=168, wa=73.36, wm=2.37, group_size=112, depth=19, se_ratio=0.25), regnety_160=RegNetCfg(w0=200, wa=106.23, wm=2.48, group_size=112, depth=18, se_ratio=0.25), regnety_320=RegNetCfg(w0=232, wa=115.89, wm=2.53, group_size=232, depth=20, se_ratio=0.25), regnety_640=RegNetCfg(w0=352, wa=147.48, wm=2.4, group_size=328, depth=20, se_ratio=0.25), regnety_1280=RegNetCfg(w0=456, wa=160.83, wm=2.52, group_size=264, depth=27, se_ratio=0.25), regnety_2560=RegNetCfg(w0=640, wa=230.83, wm=2.53, group_size=373, depth=27, se_ratio=0.25), regnety_040_sgn=RegNetCfg(w0=96, wa=31.41, wm=2.24, group_size=64, depth=22, se_ratio=0.25, act_layer='silu', norm_layer=partial(GroupNormAct, group_size=16)), regnetv_040=RegNetCfg(depth=22, w0=96, wa=31.41, wm=2.24, group_size=64, se_ratio=0.25, preact=True, act_layer='silu'), regnetv_064=RegNetCfg(depth=25, w0=112, wa=33.22, wm=2.27, group_size=72, se_ratio=0.25, preact=True, act_layer='silu', downsample='avg'), regnetz_005=RegNetCfg(depth=21, w0=16, wa=10.7, wm=2.51, group_size=4, bottle_ratio=4.0, se_ratio=0.25, downsample=None, linear_out=True, num_features=1024, act_layer='silu'), regnetz_040=RegNetCfg(depth=28, w0=48, wa=14.5, wm=2.226, group_size=8, bottle_ratio=4.0, se_ratio=0.25, downsample=None, linear_out=True, num_features=0, act_layer='silu'), regnetz_040_h=RegNetCfg(depth=28, w0=48, wa=14.5, wm=2.226, group_size=8, bottle_ratio=4.0, se_ratio=0.25, downsample=None, linear_out=True, num_features=1536, act_layer='silu')) + +def _create_regnet(variant, pretrained, **kwargs): + return build_model_with_cfg(RegNet, variant, pretrained, model_cfg=model_cfgs[variant], pretrained_filter_fn=_filter_fn, **kwargs) + +def _cfg(url='', **kwargs): + return {'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), 'test_input_size': (3, 288, 288), 'crop_pct': 0.95, 'test_crop_pct': 1.0, 'interpolation': 'bicubic', 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'stem.conv', 'classifier': 'head.fc', **kwargs} + +def _cfgpyc(url='', **kwargs): + return {'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), 'crop_pct': 0.875, 'interpolation': 'bicubic', 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'stem.conv', 'classifier': 'head.fc', 'license': 'mit', 'origin_url': 'https://github.com/facebookresearch/pycls', **kwargs} + +def _cfgtv2(url='', **kwargs): + return {'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), 'crop_pct': 0.965, 'interpolation': 'bicubic', 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'stem.conv', 'classifier': 'head.fc', 'license': 'bsd-3-clause', 'origin_url': 'https://github.com/pytorch/vision', **kwargs} +default_cfgs = generate_default_cfgs({'regnety_032.ra_in1k': _cfg(hf_hub_id='timm/', url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-weights/regnety_032_ra-7f2439f9.pth'), 'regnety_040.ra3_in1k': _cfg(hf_hub_id='timm/', url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-tpu-weights/regnety_040_ra3-670e1166.pth'), 'regnety_064.ra3_in1k': _cfg(hf_hub_id='timm/', url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-tpu-weights/regnety_064_ra3-aa26dc7d.pth'), 'regnety_080.ra3_in1k': _cfg(hf_hub_id='timm/', url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-tpu-weights/regnety_080_ra3-1fdc4344.pth'), 'regnety_120.sw_in12k_ft_in1k': _cfg(hf_hub_id='timm/'), 'regnety_160.sw_in12k_ft_in1k': _cfg(hf_hub_id='timm/'), 'regnety_160.lion_in12k_ft_in1k': _cfg(hf_hub_id='timm/'), 'regnety_120.sw_in12k': _cfg(hf_hub_id='timm/', num_classes=11821), 'regnety_160.sw_in12k': _cfg(hf_hub_id='timm/', num_classes=11821), 'regnety_040_sgn.untrained': _cfg(url=''), 'regnetv_040.ra3_in1k': _cfg(hf_hub_id='timm/', url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-tpu-weights/regnetv_040_ra3-c248f51f.pth', first_conv='stem'), 'regnetv_064.ra3_in1k': _cfg(hf_hub_id='timm/', url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-tpu-weights/regnetv_064_ra3-530616c2.pth', first_conv='stem'), 'regnetz_005.untrained': _cfg(url=''), 'regnetz_040.ra3_in1k': _cfg(hf_hub_id='timm/', url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-tpu-weights/regnetz_040_ra3-9007edf5.pth', input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0, test_input_size=(3, 320, 320)), 'regnetz_040_h.ra3_in1k': _cfg(hf_hub_id='timm/', url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-tpu-weights/regnetz_040h_ra3-f594343b.pth', input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0, test_input_size=(3, 320, 320)), 'regnety_160.deit_in1k': _cfg(hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/deit/regnety_160-a5fe301d.pth'), 'regnetx_004_tv.tv2_in1k': _cfgtv2(hf_hub_id='timm/', url='https://download.pytorch.org/models/regnet_x_400mf-62229a5f.pth'), 'regnetx_008.tv2_in1k': _cfgtv2(hf_hub_id='timm/', url='https://download.pytorch.org/models/regnet_x_800mf-94a99ebd.pth'), 'regnetx_016.tv2_in1k': _cfgtv2(hf_hub_id='timm/', url='https://download.pytorch.org/models/regnet_x_1_6gf-a12f2b72.pth'), 'regnetx_032.tv2_in1k': _cfgtv2(hf_hub_id='timm/', url='https://download.pytorch.org/models/regnet_x_3_2gf-7071aa85.pth'), 'regnetx_080.tv2_in1k': _cfgtv2(hf_hub_id='timm/', url='https://download.pytorch.org/models/regnet_x_8gf-2b70d774.pth'), 'regnetx_160.tv2_in1k': _cfgtv2(hf_hub_id='timm/', url='https://download.pytorch.org/models/regnet_x_16gf-ba3796d7.pth'), 'regnetx_320.tv2_in1k': _cfgtv2(hf_hub_id='timm/', url='https://download.pytorch.org/models/regnet_x_32gf-6eb8fdc6.pth'), 'regnety_004.tv2_in1k': _cfgtv2(hf_hub_id='timm/', url='https://download.pytorch.org/models/regnet_y_400mf-e6988f5f.pth'), 'regnety_008_tv.tv2_in1k': _cfgtv2(hf_hub_id='timm/', url='https://download.pytorch.org/models/regnet_y_800mf-58fc7688.pth'), 'regnety_016.tv2_in1k': _cfgtv2(hf_hub_id='timm/', url='https://download.pytorch.org/models/regnet_y_1_6gf-0d7bc02a.pth'), 'regnety_032.tv2_in1k': _cfgtv2(hf_hub_id='timm/', url='https://download.pytorch.org/models/regnet_y_3_2gf-9180c971.pth'), 'regnety_080_tv.tv2_in1k': _cfgtv2(hf_hub_id='timm/', url='https://download.pytorch.org/models/regnet_y_8gf-dc2b1b54.pth'), 'regnety_160.tv2_in1k': _cfgtv2(hf_hub_id='timm/', url='https://download.pytorch.org/models/regnet_y_16gf-3e4a00f9.pth'), 'regnety_320.tv2_in1k': _cfgtv2(hf_hub_id='timm/', url='https://download.pytorch.org/models/regnet_y_32gf-8db6d4b5.pth'), 'regnety_160.swag_ft_in1k': _cfgtv2(hf_hub_id='timm/', url='https://download.pytorch.org/models/regnet_y_16gf_swag-43afe44d.pth', license='cc-by-nc-4.0', input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0), 'regnety_320.swag_ft_in1k': _cfgtv2(hf_hub_id='timm/', url='https://download.pytorch.org/models/regnet_y_32gf_swag-04fdfa75.pth', license='cc-by-nc-4.0', input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0), 'regnety_1280.swag_ft_in1k': _cfgtv2(hf_hub_id='timm/', url='https://download.pytorch.org/models/regnet_y_128gf_swag-c8ce3e52.pth', license='cc-by-nc-4.0', input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0), 'regnety_160.swag_lc_in1k': _cfgtv2(hf_hub_id='timm/', url='https://download.pytorch.org/models/regnet_y_16gf_lc_swag-f3ec0043.pth', license='cc-by-nc-4.0'), 'regnety_320.swag_lc_in1k': _cfgtv2(hf_hub_id='timm/', url='https://download.pytorch.org/models/regnet_y_32gf_lc_swag-e1583746.pth', license='cc-by-nc-4.0'), 'regnety_1280.swag_lc_in1k': _cfgtv2(hf_hub_id='timm/', url='https://download.pytorch.org/models/regnet_y_128gf_lc_swag-cbe8ce12.pth', license='cc-by-nc-4.0'), 'regnety_320.seer_ft_in1k': _cfgtv2(hf_hub_id='timm/', license='other', origin_url='https://github.com/facebookresearch/vissl', url='https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch', input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0), 'regnety_640.seer_ft_in1k': _cfgtv2(hf_hub_id='timm/', license='other', origin_url='https://github.com/facebookresearch/vissl', url='https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch', input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0), 'regnety_1280.seer_ft_in1k': _cfgtv2(hf_hub_id='timm/', license='other', origin_url='https://github.com/facebookresearch/vissl', url='https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch', input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0), 'regnety_2560.seer_ft_in1k': _cfgtv2(hf_hub_id='timm/', license='other', origin_url='https://github.com/facebookresearch/vissl', url='https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet256_finetuned_in1k_model_final_checkpoint_phase38.torch', input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0), 'regnety_320.seer': _cfgtv2(hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch', num_classes=0, license='other', origin_url='https://github.com/facebookresearch/vissl'), 'regnety_640.seer': _cfgtv2(hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch', num_classes=0, license='other', origin_url='https://github.com/facebookresearch/vissl'), 'regnety_1280.seer': _cfgtv2(hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch', num_classes=0, license='other', origin_url='https://github.com/facebookresearch/vissl'), 'regnetx_002.pycls_in1k': _cfgpyc(hf_hub_id='timm/'), 'regnetx_004.pycls_in1k': _cfgpyc(hf_hub_id='timm/'), 'regnetx_006.pycls_in1k': _cfgpyc(hf_hub_id='timm/'), 'regnetx_008.pycls_in1k': _cfgpyc(hf_hub_id='timm/'), 'regnetx_016.pycls_in1k': _cfgpyc(hf_hub_id='timm/'), 'regnetx_032.pycls_in1k': _cfgpyc(hf_hub_id='timm/'), 'regnetx_040.pycls_in1k': _cfgpyc(hf_hub_id='timm/'), 'regnetx_064.pycls_in1k': _cfgpyc(hf_hub_id='timm/'), 'regnetx_080.pycls_in1k': _cfgpyc(hf_hub_id='timm/'), 'regnetx_120.pycls_in1k': _cfgpyc(hf_hub_id='timm/'), 'regnetx_160.pycls_in1k': _cfgpyc(hf_hub_id='timm/'), 'regnetx_320.pycls_in1k': _cfgpyc(hf_hub_id='timm/'), 'regnety_002.pycls_in1k': _cfgpyc(hf_hub_id='timm/'), 'regnety_004.pycls_in1k': _cfgpyc(hf_hub_id='timm/'), 'regnety_006.pycls_in1k': _cfgpyc(hf_hub_id='timm/'), 'regnety_008.pycls_in1k': _cfgpyc(hf_hub_id='timm/'), 'regnety_016.pycls_in1k': _cfgpyc(hf_hub_id='timm/'), 'regnety_032.pycls_in1k': _cfgpyc(hf_hub_id='timm/'), 'regnety_040.pycls_in1k': _cfgpyc(hf_hub_id='timm/'), 'regnety_064.pycls_in1k': _cfgpyc(hf_hub_id='timm/'), 'regnety_080.pycls_in1k': _cfgpyc(hf_hub_id='timm/'), 'regnety_120.pycls_in1k': _cfgpyc(hf_hub_id='timm/'), 'regnety_160.pycls_in1k': _cfgpyc(hf_hub_id='timm/'), 'regnety_320.pycls_in1k': _cfgpyc(hf_hub_id='timm/')}) + +@register_model +def regnetx_002(pretrained=False, **kwargs) -> RegNet: + return _create_regnet('regnetx_002', pretrained, **kwargs) + +@register_model +def regnetx_004(pretrained=False, **kwargs) -> RegNet: + return _create_regnet('regnetx_004', pretrained, **kwargs) + +@register_model +def regnetx_004_tv(pretrained=False, **kwargs) -> RegNet: + return _create_regnet('regnetx_004_tv', pretrained, **kwargs) + +@register_model +def regnetx_006(pretrained=False, **kwargs) -> RegNet: + return _create_regnet('regnetx_006', pretrained, **kwargs) + +@register_model +def regnetx_008(pretrained=False, **kwargs) -> RegNet: + return _create_regnet('regnetx_008', pretrained, **kwargs) + +@register_model +def regnetx_016(pretrained=False, **kwargs) -> RegNet: + return _create_regnet('regnetx_016', pretrained, **kwargs) + +@register_model +def regnetx_032(pretrained=False, **kwargs) -> RegNet: + return _create_regnet('regnetx_032', pretrained, **kwargs) + +@register_model +def regnetx_040(pretrained=False, **kwargs) -> RegNet: + return _create_regnet('regnetx_040', pretrained, **kwargs) + +@register_model +def regnetx_064(pretrained=False, **kwargs) -> RegNet: + return _create_regnet('regnetx_064', pretrained, **kwargs) + +@register_model +def regnetx_080(pretrained=False, **kwargs) -> RegNet: + return _create_regnet('regnetx_080', pretrained, **kwargs) + +@register_model +def regnetx_120(pretrained=False, **kwargs) -> RegNet: + return _create_regnet('regnetx_120', pretrained, **kwargs) + +@register_model +def regnetx_160(pretrained=False, **kwargs) -> RegNet: + return _create_regnet('regnetx_160', pretrained, **kwargs) + +@register_model +def regnetx_320(pretrained=False, **kwargs) -> RegNet: + return _create_regnet('regnetx_320', pretrained, **kwargs) + +@register_model +def regnety_002(pretrained=False, **kwargs) -> RegNet: + return _create_regnet('regnety_002', pretrained, **kwargs) + +@register_model +def regnety_004(pretrained=False, **kwargs) -> RegNet: + return _create_regnet('regnety_004', pretrained, **kwargs) + +@register_model +def regnety_006(pretrained=False, **kwargs) -> RegNet: + return _create_regnet('regnety_006', pretrained, **kwargs) + +@register_model +def regnety_008(pretrained=False, **kwargs) -> RegNet: + return _create_regnet('regnety_008', pretrained, **kwargs) + +@register_model +def regnety_008_tv(pretrained=False, **kwargs) -> RegNet: + return _create_regnet('regnety_008_tv', pretrained, **kwargs) + +@register_model +def regnety_016(pretrained=False, **kwargs) -> RegNet: + return _create_regnet('regnety_016', pretrained, **kwargs) + +@register_model +def regnety_032(pretrained=False, **kwargs) -> RegNet: + return _create_regnet('regnety_032', pretrained, **kwargs) + +@register_model +def regnety_040(pretrained=False, **kwargs) -> RegNet: + return _create_regnet('regnety_040', pretrained, **kwargs) + +@register_model +def regnety_064(pretrained=False, **kwargs) -> RegNet: + return _create_regnet('regnety_064', pretrained, **kwargs) + +@register_model +def regnety_080(pretrained=False, **kwargs) -> RegNet: + return _create_regnet('regnety_080', pretrained, **kwargs) + +@register_model +def regnety_080_tv(pretrained=False, **kwargs) -> RegNet: + return _create_regnet('regnety_080_tv', pretrained, **kwargs) + +@register_model +def regnety_120(pretrained=False, **kwargs) -> RegNet: + return _create_regnet('regnety_120', pretrained, **kwargs) + +@register_model +def regnety_160(pretrained=False, **kwargs) -> RegNet: + return _create_regnet('regnety_160', pretrained, **kwargs) + +@register_model +def regnety_320(pretrained=False, **kwargs) -> RegNet: + return _create_regnet('regnety_320', pretrained, **kwargs) + +@register_model +def regnety_640(pretrained=False, **kwargs) -> RegNet: + return _create_regnet('regnety_640', pretrained, **kwargs) + +@register_model +def regnety_1280(pretrained=False, **kwargs) -> RegNet: + return _create_regnet('regnety_1280', pretrained, **kwargs) + +@register_model +def regnety_2560(pretrained=False, **kwargs) -> RegNet: + return _create_regnet('regnety_2560', pretrained, **kwargs) + +@register_model +def regnety_040_sgn(pretrained=False, **kwargs) -> RegNet: + return _create_regnet('regnety_040_sgn', pretrained, **kwargs) + +@register_model +def regnetv_040(pretrained=False, **kwargs) -> RegNet: + return _create_regnet('regnetv_040', pretrained, **kwargs) + +@register_model +def regnetv_064(pretrained=False, **kwargs) -> RegNet: + return _create_regnet('regnetv_064', pretrained, **kwargs) + +@register_model +def regnetz_005(pretrained=False, **kwargs) -> RegNet: + return _create_regnet('regnetz_005', pretrained, zero_init_last=False, **kwargs) + +@register_model +def regnetz_040(pretrained=False, **kwargs) -> RegNet: + return _create_regnet('regnetz_040', pretrained, zero_init_last=False, **kwargs) + +@register_model +def regnetz_040_h(pretrained=False, **kwargs) -> RegNet: + return _create_regnet('regnetz_040_h', pretrained, zero_init_last=False, **kwargs) +register_model_deprecations(__name__, {'regnetz_040h': 'regnetz_040_h'}) + +# File: pytorch-image-models-main/timm/models/repghost.py +"""""" +import copy +from functools import partial +from typing import Optional +import torch +import torch.nn as nn +import torch.nn.functional as F +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from timm.layers import SelectAdaptivePool2d, Linear, make_divisible +from ._builder import build_model_with_cfg +from ._efficientnet_blocks import SqueezeExcite, ConvBnAct +from ._manipulate import checkpoint_seq +from ._registry import register_model, generate_default_cfgs +__all__ = ['RepGhostNet'] +_SE_LAYER = partial(SqueezeExcite, gate_layer='hard_sigmoid', rd_round_fn=partial(make_divisible, divisor=4)) + +class RepGhostModule(nn.Module): + + def __init__(self, in_chs, out_chs, kernel_size=1, dw_size=3, stride=1, relu=True, reparam=True): + super(RepGhostModule, self).__init__() + self.out_chs = out_chs + init_chs = out_chs + new_chs = out_chs + self.primary_conv = nn.Sequential(nn.Conv2d(in_chs, init_chs, kernel_size, stride, kernel_size // 2, bias=False), nn.BatchNorm2d(init_chs), nn.ReLU(inplace=True) if relu else nn.Identity()) + fusion_conv = [] + fusion_bn = [] + if reparam: + fusion_conv.append(nn.Identity()) + fusion_bn.append(nn.BatchNorm2d(init_chs)) + self.fusion_conv = nn.Sequential(*fusion_conv) + self.fusion_bn = nn.Sequential(*fusion_bn) + self.cheap_operation = nn.Sequential(nn.Conv2d(init_chs, new_chs, dw_size, 1, dw_size // 2, groups=init_chs, bias=False), nn.BatchNorm2d(new_chs)) + self.relu = nn.ReLU(inplace=False) if relu else nn.Identity() + + def forward(self, x): + x1 = self.primary_conv(x) + x2 = self.cheap_operation(x1) + for (conv, bn) in zip(self.fusion_conv, self.fusion_bn): + x2 = x2 + bn(conv(x1)) + return self.relu(x2) + + def get_equivalent_kernel_bias(self): + (kernel3x3, bias3x3) = self._fuse_bn_tensor(self.cheap_operation[0], self.cheap_operation[1]) + for (conv, bn) in zip(self.fusion_conv, self.fusion_bn): + (kernel, bias) = self._fuse_bn_tensor(conv, bn, kernel3x3.shape[0], kernel3x3.device) + kernel3x3 += self._pad_1x1_to_3x3_tensor(kernel) + bias3x3 += bias + return (kernel3x3, bias3x3) + + @staticmethod + def _pad_1x1_to_3x3_tensor(kernel1x1): + if kernel1x1 is None: + return 0 + else: + return torch.nn.functional.pad(kernel1x1, [1, 1, 1, 1]) + + @staticmethod + def _fuse_bn_tensor(conv, bn, in_channels=None, device=None): + in_channels = in_channels if in_channels else bn.running_mean.shape[0] + device = device if device else bn.weight.device + if isinstance(conv, nn.Conv2d): + kernel = conv.weight + assert conv.bias is None + else: + assert isinstance(conv, nn.Identity) + kernel = torch.ones(in_channels, 1, 1, 1, device=device) + if isinstance(bn, nn.BatchNorm2d): + running_mean = bn.running_mean + running_var = bn.running_var + gamma = bn.weight + beta = bn.bias + eps = bn.eps + std = (running_var + eps).sqrt() + t = (gamma / std).reshape(-1, 1, 1, 1) + return (kernel * t, beta - running_mean * gamma / std) + assert isinstance(bn, nn.Identity) + return (kernel, torch.zeros(in_channels).to(kernel.device)) + + def switch_to_deploy(self): + if len(self.fusion_conv) == 0 and len(self.fusion_bn) == 0: + return + (kernel, bias) = self.get_equivalent_kernel_bias() + self.cheap_operation = nn.Conv2d(in_channels=self.cheap_operation[0].in_channels, out_channels=self.cheap_operation[0].out_channels, kernel_size=self.cheap_operation[0].kernel_size, padding=self.cheap_operation[0].padding, dilation=self.cheap_operation[0].dilation, groups=self.cheap_operation[0].groups, bias=True) + self.cheap_operation.weight.data = kernel + self.cheap_operation.bias.data = bias + self.__delattr__('fusion_conv') + self.__delattr__('fusion_bn') + self.fusion_conv = [] + self.fusion_bn = [] + + def reparameterize(self): + self.switch_to_deploy() + +class RepGhostBottleneck(nn.Module): + + def __init__(self, in_chs, mid_chs, out_chs, dw_kernel_size=3, stride=1, act_layer=nn.ReLU, se_ratio=0.0, reparam=True): + super(RepGhostBottleneck, self).__init__() + has_se = se_ratio is not None and se_ratio > 0.0 + self.stride = stride + self.ghost1 = RepGhostModule(in_chs, mid_chs, relu=True, reparam=reparam) + if self.stride > 1: + self.conv_dw = nn.Conv2d(mid_chs, mid_chs, dw_kernel_size, stride=stride, padding=(dw_kernel_size - 1) // 2, groups=mid_chs, bias=False) + self.bn_dw = nn.BatchNorm2d(mid_chs) + else: + self.conv_dw = None + self.bn_dw = None + self.se = _SE_LAYER(mid_chs, rd_ratio=se_ratio) if has_se else None + self.ghost2 = RepGhostModule(mid_chs, out_chs, relu=False, reparam=reparam) + if in_chs == out_chs and self.stride == 1: + self.shortcut = nn.Sequential() + else: + self.shortcut = nn.Sequential(nn.Conv2d(in_chs, in_chs, dw_kernel_size, stride=stride, padding=(dw_kernel_size - 1) // 2, groups=in_chs, bias=False), nn.BatchNorm2d(in_chs), nn.Conv2d(in_chs, out_chs, 1, stride=1, padding=0, bias=False), nn.BatchNorm2d(out_chs)) + + def forward(self, x): + shortcut = x + x = self.ghost1(x) + if self.conv_dw is not None: + x = self.conv_dw(x) + x = self.bn_dw(x) + if self.se is not None: + x = self.se(x) + x = self.ghost2(x) + x += self.shortcut(shortcut) + return x + +class RepGhostNet(nn.Module): + + def __init__(self, cfgs, num_classes=1000, width=1.0, in_chans=3, output_stride=32, global_pool='avg', drop_rate=0.2, reparam=True): + super(RepGhostNet, self).__init__() + assert output_stride == 32, 'only output_stride==32 is valid, dilation not supported' + self.cfgs = cfgs + self.num_classes = num_classes + self.drop_rate = drop_rate + self.grad_checkpointing = False + self.feature_info = [] + stem_chs = make_divisible(16 * width, 4) + self.conv_stem = nn.Conv2d(in_chans, stem_chs, 3, 2, 1, bias=False) + self.feature_info.append(dict(num_chs=stem_chs, reduction=2, module=f'conv_stem')) + self.bn1 = nn.BatchNorm2d(stem_chs) + self.act1 = nn.ReLU(inplace=True) + prev_chs = stem_chs + stages = nn.ModuleList([]) + block = RepGhostBottleneck + stage_idx = 0 + net_stride = 2 + for cfg in self.cfgs: + layers = [] + s = 1 + for (k, exp_size, c, se_ratio, s) in cfg: + out_chs = make_divisible(c * width, 4) + mid_chs = make_divisible(exp_size * width, 4) + layers.append(block(prev_chs, mid_chs, out_chs, k, s, se_ratio=se_ratio, reparam=reparam)) + prev_chs = out_chs + if s > 1: + net_stride *= 2 + self.feature_info.append(dict(num_chs=prev_chs, reduction=net_stride, module=f'blocks.{stage_idx}')) + stages.append(nn.Sequential(*layers)) + stage_idx += 1 + out_chs = make_divisible(exp_size * width * 2, 4) + stages.append(nn.Sequential(ConvBnAct(prev_chs, out_chs, 1))) + self.pool_dim = prev_chs = out_chs + self.blocks = nn.Sequential(*stages) + self.num_features = prev_chs + self.head_hidden_size = out_chs = 1280 + self.global_pool = SelectAdaptivePool2d(pool_type=global_pool) + self.conv_head = nn.Conv2d(prev_chs, out_chs, 1, 1, 0, bias=True) + self.act2 = nn.ReLU(inplace=True) + self.flatten = nn.Flatten(1) if global_pool else nn.Identity() + self.classifier = Linear(out_chs, num_classes) if num_classes > 0 else nn.Identity() + + @torch.jit.ignore + def group_matcher(self, coarse=False): + matcher = dict(stem='^conv_stem|bn1', blocks=[('^blocks\\.(\\d+)' if coarse else '^blocks\\.(\\d+)\\.(\\d+)', None), ('conv_head', (99999,))]) + return matcher + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + self.grad_checkpointing = enable + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.classifier + + def reset_classifier(self, num_classes: int, global_pool: Optional[str]=None): + self.num_classes = num_classes + if global_pool is not None: + self.global_pool = SelectAdaptivePool2d(pool_type=global_pool) + self.flatten = nn.Flatten(1) if global_pool else nn.Identity() + self.classifier = Linear(self.head_hidden_size, num_classes) if num_classes > 0 else nn.Identity() + + def forward_features(self, x): + x = self.conv_stem(x) + x = self.bn1(x) + x = self.act1(x) + if self.grad_checkpointing and (not torch.jit.is_scripting()): + x = checkpoint_seq(self.blocks, x, flatten=True) + else: + x = self.blocks(x) + return x + + def forward_head(self, x, pre_logits: bool=False): + x = self.global_pool(x) + x = self.conv_head(x) + x = self.act2(x) + x = self.flatten(x) + if self.drop_rate > 0.0: + x = F.dropout(x, p=self.drop_rate, training=self.training) + return x if pre_logits else self.classifier(x) + + def forward(self, x): + x = self.forward_features(x) + x = self.forward_head(x) + return x + + def convert_to_deploy(self): + repghost_model_convert(self, do_copy=False) + +def repghost_model_convert(model: torch.nn.Module, save_path=None, do_copy=True): + if do_copy: + model = copy.deepcopy(model) + for module in model.modules(): + if hasattr(module, 'switch_to_deploy'): + module.switch_to_deploy() + if save_path is not None: + torch.save(model.state_dict(), save_path) + return model + +def _create_repghostnet(variant, width=1.0, pretrained=False, **kwargs): + cfgs = [[[3, 8, 16, 0, 1]], [[3, 24, 24, 0, 2]], [[3, 36, 24, 0, 1]], [[5, 36, 40, 0.25, 2]], [[5, 60, 40, 0.25, 1]], [[3, 120, 80, 0, 2]], [[3, 100, 80, 0, 1], [3, 120, 80, 0, 1], [3, 120, 80, 0, 1], [3, 240, 112, 0.25, 1], [3, 336, 112, 0.25, 1]], [[5, 336, 160, 0.25, 2]], [[5, 480, 160, 0, 1], [5, 480, 160, 0.25, 1], [5, 480, 160, 0, 1], [5, 480, 160, 0.25, 1]]] + model_kwargs = dict(cfgs=cfgs, width=width, **kwargs) + return build_model_with_cfg(RepGhostNet, variant, pretrained, feature_cfg=dict(flatten_sequential=True), **model_kwargs) + +def _cfg(url='', **kwargs): + return {'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), 'crop_pct': 0.875, 'interpolation': 'bicubic', 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'conv_stem', 'classifier': 'classifier', **kwargs} +default_cfgs = generate_default_cfgs({'repghostnet_050.in1k': _cfg(hf_hub_id='timm/'), 'repghostnet_058.in1k': _cfg(hf_hub_id='timm/'), 'repghostnet_080.in1k': _cfg(hf_hub_id='timm/'), 'repghostnet_100.in1k': _cfg(hf_hub_id='timm/'), 'repghostnet_111.in1k': _cfg(hf_hub_id='timm/'), 'repghostnet_130.in1k': _cfg(hf_hub_id='timm/'), 'repghostnet_150.in1k': _cfg(hf_hub_id='timm/'), 'repghostnet_200.in1k': _cfg(hf_hub_id='timm/')}) + +@register_model +def repghostnet_050(pretrained=False, **kwargs) -> RepGhostNet: + model = _create_repghostnet('repghostnet_050', width=0.5, pretrained=pretrained, **kwargs) + return model + +@register_model +def repghostnet_058(pretrained=False, **kwargs) -> RepGhostNet: + model = _create_repghostnet('repghostnet_058', width=0.58, pretrained=pretrained, **kwargs) + return model + +@register_model +def repghostnet_080(pretrained=False, **kwargs) -> RepGhostNet: + model = _create_repghostnet('repghostnet_080', width=0.8, pretrained=pretrained, **kwargs) + return model + +@register_model +def repghostnet_100(pretrained=False, **kwargs) -> RepGhostNet: + model = _create_repghostnet('repghostnet_100', width=1.0, pretrained=pretrained, **kwargs) + return model + +@register_model +def repghostnet_111(pretrained=False, **kwargs) -> RepGhostNet: + model = _create_repghostnet('repghostnet_111', width=1.11, pretrained=pretrained, **kwargs) + return model + +@register_model +def repghostnet_130(pretrained=False, **kwargs) -> RepGhostNet: + model = _create_repghostnet('repghostnet_130', width=1.3, pretrained=pretrained, **kwargs) + return model + +@register_model +def repghostnet_150(pretrained=False, **kwargs) -> RepGhostNet: + model = _create_repghostnet('repghostnet_150', width=1.5, pretrained=pretrained, **kwargs) + return model + +@register_model +def repghostnet_200(pretrained=False, **kwargs) -> RepGhostNet: + model = _create_repghostnet('repghostnet_200', width=2.0, pretrained=pretrained, **kwargs) + return model + +# File: pytorch-image-models-main/timm/models/repvit.py +"""""" +__all__ = ['RepVit'] +from typing import Optional +import torch +import torch.nn as nn +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from timm.layers import SqueezeExcite, trunc_normal_, to_ntuple, to_2tuple +from ._builder import build_model_with_cfg +from ._manipulate import checkpoint_seq +from ._registry import register_model, generate_default_cfgs + +class ConvNorm(nn.Sequential): + + def __init__(self, in_dim, out_dim, ks=1, stride=1, pad=0, dilation=1, groups=1, bn_weight_init=1): + super().__init__() + self.add_module('c', nn.Conv2d(in_dim, out_dim, ks, stride, pad, dilation, groups, bias=False)) + self.add_module('bn', nn.BatchNorm2d(out_dim)) + nn.init.constant_(self.bn.weight, bn_weight_init) + nn.init.constant_(self.bn.bias, 0) + + @torch.no_grad() + def fuse(self): + (c, bn) = self._modules.values() + w = bn.weight / (bn.running_var + bn.eps) ** 0.5 + w = c.weight * w[:, None, None, None] + b = bn.bias - bn.running_mean * bn.weight / (bn.running_var + bn.eps) ** 0.5 + m = nn.Conv2d(w.size(1) * self.c.groups, w.size(0), w.shape[2:], stride=self.c.stride, padding=self.c.padding, dilation=self.c.dilation, groups=self.c.groups, device=c.weight.device) + m.weight.data.copy_(w) + m.bias.data.copy_(b) + return m + +class NormLinear(nn.Sequential): + + def __init__(self, in_dim, out_dim, bias=True, std=0.02): + super().__init__() + self.add_module('bn', nn.BatchNorm1d(in_dim)) + self.add_module('l', nn.Linear(in_dim, out_dim, bias=bias)) + trunc_normal_(self.l.weight, std=std) + if bias: + nn.init.constant_(self.l.bias, 0) + + @torch.no_grad() + def fuse(self): + (bn, l) = self._modules.values() + w = bn.weight / (bn.running_var + bn.eps) ** 0.5 + b = bn.bias - self.bn.running_mean * self.bn.weight / (bn.running_var + bn.eps) ** 0.5 + w = l.weight * w[None, :] + if l.bias is None: + b = b @ self.l.weight.T + else: + b = (l.weight @ b[:, None]).view(-1) + self.l.bias + m = nn.Linear(w.size(1), w.size(0), device=l.weight.device) + m.weight.data.copy_(w) + m.bias.data.copy_(b) + return m + +class RepVggDw(nn.Module): + + def __init__(self, ed, kernel_size, legacy=False): + super().__init__() + self.conv = ConvNorm(ed, ed, kernel_size, 1, (kernel_size - 1) // 2, groups=ed) + if legacy: + self.conv1 = ConvNorm(ed, ed, 1, 1, 0, groups=ed) + self.bn = nn.Identity() + else: + self.conv1 = nn.Conv2d(ed, ed, 1, 1, 0, groups=ed) + self.bn = nn.BatchNorm2d(ed) + self.dim = ed + self.legacy = legacy + + def forward(self, x): + return self.bn(self.conv(x) + self.conv1(x) + x) + + @torch.no_grad() + def fuse(self): + conv = self.conv.fuse() + if self.legacy: + conv1 = self.conv1.fuse() + else: + conv1 = self.conv1 + conv_w = conv.weight + conv_b = conv.bias + conv1_w = conv1.weight + conv1_b = conv1.bias + conv1_w = nn.functional.pad(conv1_w, [1, 1, 1, 1]) + identity = nn.functional.pad(torch.ones(conv1_w.shape[0], conv1_w.shape[1], 1, 1, device=conv1_w.device), [1, 1, 1, 1]) + final_conv_w = conv_w + conv1_w + identity + final_conv_b = conv_b + conv1_b + conv.weight.data.copy_(final_conv_w) + conv.bias.data.copy_(final_conv_b) + if not self.legacy: + bn = self.bn + w = bn.weight / (bn.running_var + bn.eps) ** 0.5 + w = conv.weight * w[:, None, None, None] + b = bn.bias + (conv.bias - bn.running_mean) * bn.weight / (bn.running_var + bn.eps) ** 0.5 + conv.weight.data.copy_(w) + conv.bias.data.copy_(b) + return conv + +class RepVitMlp(nn.Module): + + def __init__(self, in_dim, hidden_dim, act_layer): + super().__init__() + self.conv1 = ConvNorm(in_dim, hidden_dim, 1, 1, 0) + self.act = act_layer() + self.conv2 = ConvNorm(hidden_dim, in_dim, 1, 1, 0, bn_weight_init=0) + + def forward(self, x): + return self.conv2(self.act(self.conv1(x))) + +class RepViTBlock(nn.Module): + + def __init__(self, in_dim, mlp_ratio, kernel_size, use_se, act_layer, legacy=False): + super(RepViTBlock, self).__init__() + self.token_mixer = RepVggDw(in_dim, kernel_size, legacy) + self.se = SqueezeExcite(in_dim, 0.25) if use_se else nn.Identity() + self.channel_mixer = RepVitMlp(in_dim, in_dim * mlp_ratio, act_layer) + + def forward(self, x): + x = self.token_mixer(x) + x = self.se(x) + identity = x + x = self.channel_mixer(x) + return identity + x + +class RepVitStem(nn.Module): + + def __init__(self, in_chs, out_chs, act_layer): + super().__init__() + self.conv1 = ConvNorm(in_chs, out_chs // 2, 3, 2, 1) + self.act1 = act_layer() + self.conv2 = ConvNorm(out_chs // 2, out_chs, 3, 2, 1) + self.stride = 4 + + def forward(self, x): + return self.conv2(self.act1(self.conv1(x))) + +class RepVitDownsample(nn.Module): + + def __init__(self, in_dim, mlp_ratio, out_dim, kernel_size, act_layer, legacy=False): + super().__init__() + self.pre_block = RepViTBlock(in_dim, mlp_ratio, kernel_size, use_se=False, act_layer=act_layer, legacy=legacy) + self.spatial_downsample = ConvNorm(in_dim, in_dim, kernel_size, 2, (kernel_size - 1) // 2, groups=in_dim) + self.channel_downsample = ConvNorm(in_dim, out_dim, 1, 1) + self.ffn = RepVitMlp(out_dim, out_dim * mlp_ratio, act_layer) + + def forward(self, x): + x = self.pre_block(x) + x = self.spatial_downsample(x) + x = self.channel_downsample(x) + identity = x + x = self.ffn(x) + return x + identity + +class RepVitClassifier(nn.Module): + + def __init__(self, dim, num_classes, distillation=False, drop=0.0): + super().__init__() + self.head_drop = nn.Dropout(drop) + self.head = NormLinear(dim, num_classes) if num_classes > 0 else nn.Identity() + self.distillation = distillation + self.distilled_training = False + self.num_classes = num_classes + if distillation: + self.head_dist = NormLinear(dim, num_classes) if num_classes > 0 else nn.Identity() + + def forward(self, x): + x = self.head_drop(x) + if self.distillation: + (x1, x2) = (self.head(x), self.head_dist(x)) + if self.training and self.distilled_training and (not torch.jit.is_scripting()): + return (x1, x2) + else: + return (x1 + x2) / 2 + else: + x = self.head(x) + return x + + @torch.no_grad() + def fuse(self): + if not self.num_classes > 0: + return nn.Identity() + head = self.head.fuse() + if self.distillation: + head_dist = self.head_dist.fuse() + head.weight += head_dist.weight + head.bias += head_dist.bias + head.weight /= 2 + head.bias /= 2 + return head + else: + return head + +class RepVitStage(nn.Module): + + def __init__(self, in_dim, out_dim, depth, mlp_ratio, act_layer, kernel_size=3, downsample=True, legacy=False): + super().__init__() + if downsample: + self.downsample = RepVitDownsample(in_dim, mlp_ratio, out_dim, kernel_size, act_layer, legacy) + else: + assert in_dim == out_dim + self.downsample = nn.Identity() + blocks = [] + use_se = True + for _ in range(depth): + blocks.append(RepViTBlock(out_dim, mlp_ratio, kernel_size, use_se, act_layer, legacy)) + use_se = not use_se + self.blocks = nn.Sequential(*blocks) + + def forward(self, x): + x = self.downsample(x) + x = self.blocks(x) + return x + +class RepVit(nn.Module): + + def __init__(self, in_chans=3, img_size=224, embed_dim=(48,), depth=(2,), mlp_ratio=2, global_pool='avg', kernel_size=3, num_classes=1000, act_layer=nn.GELU, distillation=True, drop_rate=0.0, legacy=False): + super(RepVit, self).__init__() + self.grad_checkpointing = False + self.global_pool = global_pool + self.embed_dim = embed_dim + self.num_classes = num_classes + in_dim = embed_dim[0] + self.stem = RepVitStem(in_chans, in_dim, act_layer) + stride = self.stem.stride + resolution = tuple([i // p for (i, p) in zip(to_2tuple(img_size), to_2tuple(stride))]) + num_stages = len(embed_dim) + mlp_ratios = to_ntuple(num_stages)(mlp_ratio) + self.feature_info = [] + stages = [] + for i in range(num_stages): + downsample = True if i != 0 else False + stages.append(RepVitStage(in_dim, embed_dim[i], depth[i], mlp_ratio=mlp_ratios[i], act_layer=act_layer, kernel_size=kernel_size, downsample=downsample, legacy=legacy)) + stage_stride = 2 if downsample else 1 + stride *= stage_stride + resolution = tuple([(r - 1) // stage_stride + 1 for r in resolution]) + self.feature_info += [dict(num_chs=embed_dim[i], reduction=stride, module=f'stages.{i}')] + in_dim = embed_dim[i] + self.stages = nn.Sequential(*stages) + self.num_features = self.head_hidden_size = embed_dim[-1] + self.head_drop = nn.Dropout(drop_rate) + self.head = RepVitClassifier(embed_dim[-1], num_classes, distillation) + + @torch.jit.ignore + def group_matcher(self, coarse=False): + matcher = dict(stem='^stem', blocks=[('^blocks\\.(\\d+)', None), ('^norm', (99999,))]) + return matcher + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + self.grad_checkpointing = enable + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.head + + def reset_classifier(self, num_classes: int, global_pool: Optional[str]=None, distillation: bool=False): + self.num_classes = num_classes + if global_pool is not None: + self.global_pool = global_pool + self.head = RepVitClassifier(self.embed_dim[-1], num_classes, distillation) + + @torch.jit.ignore + def set_distilled_training(self, enable=True): + self.head.distilled_training = enable + + def forward_features(self, x): + x = self.stem(x) + if self.grad_checkpointing and (not torch.jit.is_scripting()): + x = checkpoint_seq(self.stages, x) + else: + x = self.stages(x) + return x + + def forward_head(self, x, pre_logits: bool=False): + if self.global_pool == 'avg': + x = x.mean((2, 3), keepdim=False) + x = self.head_drop(x) + if pre_logits: + return x + return self.head(x) + + def forward(self, x): + x = self.forward_features(x) + x = self.forward_head(x) + return x + + @torch.no_grad() + def fuse(self): + + def fuse_children(net): + for (child_name, child) in net.named_children(): + if hasattr(child, 'fuse'): + fused = child.fuse() + setattr(net, child_name, fused) + fuse_children(fused) + else: + fuse_children(child) + fuse_children(self) + +def _cfg(url='', **kwargs): + return {'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), 'crop_pct': 0.95, 'interpolation': 'bicubic', 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'stem.conv1.c', 'classifier': ('head.head.l', 'head.head_dist.l'), **kwargs} +default_cfgs = generate_default_cfgs({'repvit_m1.dist_in1k': _cfg(hf_hub_id='timm/'), 'repvit_m2.dist_in1k': _cfg(hf_hub_id='timm/'), 'repvit_m3.dist_in1k': _cfg(hf_hub_id='timm/'), 'repvit_m0_9.dist_300e_in1k': _cfg(hf_hub_id='timm/'), 'repvit_m0_9.dist_450e_in1k': _cfg(hf_hub_id='timm/'), 'repvit_m1_0.dist_300e_in1k': _cfg(hf_hub_id='timm/'), 'repvit_m1_0.dist_450e_in1k': _cfg(hf_hub_id='timm/'), 'repvit_m1_1.dist_300e_in1k': _cfg(hf_hub_id='timm/'), 'repvit_m1_1.dist_450e_in1k': _cfg(hf_hub_id='timm/'), 'repvit_m1_5.dist_300e_in1k': _cfg(hf_hub_id='timm/'), 'repvit_m1_5.dist_450e_in1k': _cfg(hf_hub_id='timm/'), 'repvit_m2_3.dist_300e_in1k': _cfg(hf_hub_id='timm/'), 'repvit_m2_3.dist_450e_in1k': _cfg(hf_hub_id='timm/')}) + +def _create_repvit(variant, pretrained=False, **kwargs): + out_indices = kwargs.pop('out_indices', (0, 1, 2, 3)) + model = build_model_with_cfg(RepVit, variant, pretrained, feature_cfg=dict(flatten_sequential=True, out_indices=out_indices), **kwargs) + return model + +@register_model +def repvit_m1(pretrained=False, **kwargs): + model_args = dict(embed_dim=(48, 96, 192, 384), depth=(2, 2, 14, 2), legacy=True) + return _create_repvit('repvit_m1', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def repvit_m2(pretrained=False, **kwargs): + model_args = dict(embed_dim=(64, 128, 256, 512), depth=(2, 2, 12, 2), legacy=True) + return _create_repvit('repvit_m2', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def repvit_m3(pretrained=False, **kwargs): + model_args = dict(embed_dim=(64, 128, 256, 512), depth=(4, 4, 18, 2), legacy=True) + return _create_repvit('repvit_m3', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def repvit_m0_9(pretrained=False, **kwargs): + model_args = dict(embed_dim=(48, 96, 192, 384), depth=(2, 2, 14, 2)) + return _create_repvit('repvit_m0_9', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def repvit_m1_0(pretrained=False, **kwargs): + model_args = dict(embed_dim=(56, 112, 224, 448), depth=(2, 2, 14, 2)) + return _create_repvit('repvit_m1_0', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def repvit_m1_1(pretrained=False, **kwargs): + model_args = dict(embed_dim=(64, 128, 256, 512), depth=(2, 2, 12, 2)) + return _create_repvit('repvit_m1_1', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def repvit_m1_5(pretrained=False, **kwargs): + model_args = dict(embed_dim=(64, 128, 256, 512), depth=(4, 4, 24, 4)) + return _create_repvit('repvit_m1_5', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def repvit_m2_3(pretrained=False, **kwargs): + model_args = dict(embed_dim=(80, 160, 320, 640), depth=(6, 6, 34, 2)) + return _create_repvit('repvit_m2_3', pretrained=pretrained, **dict(model_args, **kwargs)) + +# File: pytorch-image-models-main/timm/models/res2net.py +"""""" +import math +import torch +import torch.nn as nn +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from ._builder import build_model_with_cfg +from ._registry import register_model, generate_default_cfgs +from .resnet import ResNet +__all__ = [] + +class Bottle2neck(nn.Module): + expansion = 4 + + def __init__(self, inplanes, planes, stride=1, downsample=None, cardinality=1, base_width=26, scale=4, dilation=1, first_dilation=None, act_layer=nn.ReLU, norm_layer=None, attn_layer=None, **_): + super(Bottle2neck, self).__init__() + self.scale = scale + self.is_first = stride > 1 or downsample is not None + self.num_scales = max(1, scale - 1) + width = int(math.floor(planes * (base_width / 64.0))) * cardinality + self.width = width + outplanes = planes * self.expansion + first_dilation = first_dilation or dilation + self.conv1 = nn.Conv2d(inplanes, width * scale, kernel_size=1, bias=False) + self.bn1 = norm_layer(width * scale) + convs = [] + bns = [] + for i in range(self.num_scales): + convs.append(nn.Conv2d(width, width, kernel_size=3, stride=stride, padding=first_dilation, dilation=first_dilation, groups=cardinality, bias=False)) + bns.append(norm_layer(width)) + self.convs = nn.ModuleList(convs) + self.bns = nn.ModuleList(bns) + if self.is_first: + self.pool = nn.AvgPool2d(kernel_size=3, stride=stride, padding=1) + else: + self.pool = None + self.conv3 = nn.Conv2d(width * scale, outplanes, kernel_size=1, bias=False) + self.bn3 = norm_layer(outplanes) + self.se = attn_layer(outplanes) if attn_layer is not None else None + self.relu = act_layer(inplace=True) + self.downsample = downsample + + def zero_init_last(self): + if getattr(self.bn3, 'weight', None) is not None: + nn.init.zeros_(self.bn3.weight) + + def forward(self, x): + shortcut = x + out = self.conv1(x) + out = self.bn1(out) + out = self.relu(out) + spx = torch.split(out, self.width, 1) + spo = [] + sp = spx[0] + for (i, (conv, bn)) in enumerate(zip(self.convs, self.bns)): + if i == 0 or self.is_first: + sp = spx[i] + else: + sp = sp + spx[i] + sp = conv(sp) + sp = bn(sp) + sp = self.relu(sp) + spo.append(sp) + if self.scale > 1: + if self.pool is not None: + spo.append(self.pool(spx[-1])) + else: + spo.append(spx[-1]) + out = torch.cat(spo, 1) + out = self.conv3(out) + out = self.bn3(out) + if self.se is not None: + out = self.se(out) + if self.downsample is not None: + shortcut = self.downsample(x) + out += shortcut + out = self.relu(out) + return out + +def _create_res2net(variant, pretrained=False, **kwargs): + return build_model_with_cfg(ResNet, variant, pretrained, **kwargs) + +def _cfg(url='', **kwargs): + return {'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), 'crop_pct': 0.875, 'interpolation': 'bilinear', 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'conv1', 'classifier': 'fc', **kwargs} +default_cfgs = generate_default_cfgs({'res2net50_26w_4s.in1k': _cfg(hf_hub_id='timm/'), 'res2net50_48w_2s.in1k': _cfg(hf_hub_id='timm/'), 'res2net50_14w_8s.in1k': _cfg(hf_hub_id='timm/'), 'res2net50_26w_6s.in1k': _cfg(hf_hub_id='timm/'), 'res2net50_26w_8s.in1k': _cfg(hf_hub_id='timm/'), 'res2net101_26w_4s.in1k': _cfg(hf_hub_id='timm/'), 'res2next50.in1k': _cfg(hf_hub_id='timm/'), 'res2net50d.in1k': _cfg(hf_hub_id='timm/', first_conv='conv1.0'), 'res2net101d.in1k': _cfg(hf_hub_id='timm/', first_conv='conv1.0')}) + +@register_model +def res2net50_26w_4s(pretrained=False, **kwargs) -> ResNet: + model_args = dict(block=Bottle2neck, layers=[3, 4, 6, 3], base_width=26, block_args=dict(scale=4)) + return _create_res2net('res2net50_26w_4s', pretrained, **dict(model_args, **kwargs)) + +@register_model +def res2net101_26w_4s(pretrained=False, **kwargs) -> ResNet: + model_args = dict(block=Bottle2neck, layers=[3, 4, 23, 3], base_width=26, block_args=dict(scale=4)) + return _create_res2net('res2net101_26w_4s', pretrained, **dict(model_args, **kwargs)) + +@register_model +def res2net50_26w_6s(pretrained=False, **kwargs) -> ResNet: + model_args = dict(block=Bottle2neck, layers=[3, 4, 6, 3], base_width=26, block_args=dict(scale=6)) + return _create_res2net('res2net50_26w_6s', pretrained, **dict(model_args, **kwargs)) + +@register_model +def res2net50_26w_8s(pretrained=False, **kwargs) -> ResNet: + model_args = dict(block=Bottle2neck, layers=[3, 4, 6, 3], base_width=26, block_args=dict(scale=8)) + return _create_res2net('res2net50_26w_8s', pretrained, **dict(model_args, **kwargs)) + +@register_model +def res2net50_48w_2s(pretrained=False, **kwargs) -> ResNet: + model_args = dict(block=Bottle2neck, layers=[3, 4, 6, 3], base_width=48, block_args=dict(scale=2)) + return _create_res2net('res2net50_48w_2s', pretrained, **dict(model_args, **kwargs)) + +@register_model +def res2net50_14w_8s(pretrained=False, **kwargs) -> ResNet: + model_args = dict(block=Bottle2neck, layers=[3, 4, 6, 3], base_width=14, block_args=dict(scale=8)) + return _create_res2net('res2net50_14w_8s', pretrained, **dict(model_args, **kwargs)) + +@register_model +def res2next50(pretrained=False, **kwargs) -> ResNet: + model_args = dict(block=Bottle2neck, layers=[3, 4, 6, 3], base_width=4, cardinality=8, block_args=dict(scale=4)) + return _create_res2net('res2next50', pretrained, **dict(model_args, **kwargs)) + +@register_model +def res2net50d(pretrained=False, **kwargs) -> ResNet: + model_args = dict(block=Bottle2neck, layers=[3, 4, 6, 3], base_width=26, stem_type='deep', avg_down=True, stem_width=32, block_args=dict(scale=4)) + return _create_res2net('res2net50d', pretrained, **dict(model_args, **kwargs)) + +@register_model +def res2net101d(pretrained=False, **kwargs) -> ResNet: + model_args = dict(block=Bottle2neck, layers=[3, 4, 23, 3], base_width=26, stem_type='deep', avg_down=True, stem_width=32, block_args=dict(scale=4)) + return _create_res2net('res2net101d', pretrained, **dict(model_args, **kwargs)) + +# File: pytorch-image-models-main/timm/models/resnest.py +"""""" +from torch import nn +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from timm.layers import SplitAttn +from ._builder import build_model_with_cfg +from ._registry import register_model, generate_default_cfgs +from .resnet import ResNet + +class ResNestBottleneck(nn.Module): + expansion = 4 + + def __init__(self, inplanes, planes, stride=1, downsample=None, radix=1, cardinality=1, base_width=64, avd=False, avd_first=False, is_first=False, reduce_first=1, dilation=1, first_dilation=None, act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d, attn_layer=None, aa_layer=None, drop_block=None, drop_path=None): + super(ResNestBottleneck, self).__init__() + assert reduce_first == 1 + assert attn_layer is None + assert aa_layer is None + assert drop_path is None + group_width = int(planes * (base_width / 64.0)) * cardinality + first_dilation = first_dilation or dilation + if avd and (stride > 1 or is_first): + avd_stride = stride + stride = 1 + else: + avd_stride = 0 + self.radix = radix + self.conv1 = nn.Conv2d(inplanes, group_width, kernel_size=1, bias=False) + self.bn1 = norm_layer(group_width) + self.act1 = act_layer(inplace=True) + self.avd_first = nn.AvgPool2d(3, avd_stride, padding=1) if avd_stride > 0 and avd_first else None + if self.radix >= 1: + self.conv2 = SplitAttn(group_width, group_width, kernel_size=3, stride=stride, padding=first_dilation, dilation=first_dilation, groups=cardinality, radix=radix, norm_layer=norm_layer, drop_layer=drop_block) + self.bn2 = nn.Identity() + self.drop_block = nn.Identity() + self.act2 = nn.Identity() + else: + self.conv2 = nn.Conv2d(group_width, group_width, kernel_size=3, stride=stride, padding=first_dilation, dilation=first_dilation, groups=cardinality, bias=False) + self.bn2 = norm_layer(group_width) + self.drop_block = drop_block() if drop_block is not None else nn.Identity() + self.act2 = act_layer(inplace=True) + self.avd_last = nn.AvgPool2d(3, avd_stride, padding=1) if avd_stride > 0 and (not avd_first) else None + self.conv3 = nn.Conv2d(group_width, planes * 4, kernel_size=1, bias=False) + self.bn3 = norm_layer(planes * 4) + self.act3 = act_layer(inplace=True) + self.downsample = downsample + + def zero_init_last(self): + if getattr(self.bn3, 'weight', None) is not None: + nn.init.zeros_(self.bn3.weight) + + def forward(self, x): + shortcut = x + out = self.conv1(x) + out = self.bn1(out) + out = self.act1(out) + if self.avd_first is not None: + out = self.avd_first(out) + out = self.conv2(out) + out = self.bn2(out) + out = self.drop_block(out) + out = self.act2(out) + if self.avd_last is not None: + out = self.avd_last(out) + out = self.conv3(out) + out = self.bn3(out) + if self.downsample is not None: + shortcut = self.downsample(x) + out += shortcut + out = self.act3(out) + return out + +def _create_resnest(variant, pretrained=False, **kwargs): + return build_model_with_cfg(ResNet, variant, pretrained, **kwargs) + +def _cfg(url='', **kwargs): + return {'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), 'crop_pct': 0.875, 'interpolation': 'bilinear', 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'conv1.0', 'classifier': 'fc', **kwargs} +default_cfgs = generate_default_cfgs({'resnest14d.gluon_in1k': _cfg(hf_hub_id='timm/'), 'resnest26d.gluon_in1k': _cfg(hf_hub_id='timm/'), 'resnest50d.in1k': _cfg(hf_hub_id='timm/'), 'resnest101e.in1k': _cfg(hf_hub_id='timm/', input_size=(3, 256, 256), pool_size=(8, 8)), 'resnest200e.in1k': _cfg(hf_hub_id='timm/', input_size=(3, 320, 320), pool_size=(10, 10), crop_pct=0.909, interpolation='bicubic'), 'resnest269e.in1k': _cfg(hf_hub_id='timm/', input_size=(3, 416, 416), pool_size=(13, 13), crop_pct=0.928, interpolation='bicubic'), 'resnest50d_4s2x40d.in1k': _cfg(hf_hub_id='timm/', interpolation='bicubic'), 'resnest50d_1s4x24d.in1k': _cfg(hf_hub_id='timm/', interpolation='bicubic')}) + +@register_model +def resnest14d(pretrained=False, **kwargs) -> ResNet: + model_kwargs = dict(block=ResNestBottleneck, layers=[1, 1, 1, 1], stem_type='deep', stem_width=32, avg_down=True, base_width=64, cardinality=1, block_args=dict(radix=2, avd=True, avd_first=False)) + return _create_resnest('resnest14d', pretrained=pretrained, **dict(model_kwargs, **kwargs)) + +@register_model +def resnest26d(pretrained=False, **kwargs) -> ResNet: + model_kwargs = dict(block=ResNestBottleneck, layers=[2, 2, 2, 2], stem_type='deep', stem_width=32, avg_down=True, base_width=64, cardinality=1, block_args=dict(radix=2, avd=True, avd_first=False)) + return _create_resnest('resnest26d', pretrained=pretrained, **dict(model_kwargs, **kwargs)) + +@register_model +def resnest50d(pretrained=False, **kwargs) -> ResNet: + model_kwargs = dict(block=ResNestBottleneck, layers=[3, 4, 6, 3], stem_type='deep', stem_width=32, avg_down=True, base_width=64, cardinality=1, block_args=dict(radix=2, avd=True, avd_first=False)) + return _create_resnest('resnest50d', pretrained=pretrained, **dict(model_kwargs, **kwargs)) + +@register_model +def resnest101e(pretrained=False, **kwargs) -> ResNet: + model_kwargs = dict(block=ResNestBottleneck, layers=[3, 4, 23, 3], stem_type='deep', stem_width=64, avg_down=True, base_width=64, cardinality=1, block_args=dict(radix=2, avd=True, avd_first=False)) + return _create_resnest('resnest101e', pretrained=pretrained, **dict(model_kwargs, **kwargs)) + +@register_model +def resnest200e(pretrained=False, **kwargs) -> ResNet: + model_kwargs = dict(block=ResNestBottleneck, layers=[3, 24, 36, 3], stem_type='deep', stem_width=64, avg_down=True, base_width=64, cardinality=1, block_args=dict(radix=2, avd=True, avd_first=False)) + return _create_resnest('resnest200e', pretrained=pretrained, **dict(model_kwargs, **kwargs)) + +@register_model +def resnest269e(pretrained=False, **kwargs) -> ResNet: + model_kwargs = dict(block=ResNestBottleneck, layers=[3, 30, 48, 8], stem_type='deep', stem_width=64, avg_down=True, base_width=64, cardinality=1, block_args=dict(radix=2, avd=True, avd_first=False)) + return _create_resnest('resnest269e', pretrained=pretrained, **dict(model_kwargs, **kwargs)) + +@register_model +def resnest50d_4s2x40d(pretrained=False, **kwargs) -> ResNet: + model_kwargs = dict(block=ResNestBottleneck, layers=[3, 4, 6, 3], stem_type='deep', stem_width=32, avg_down=True, base_width=40, cardinality=2, block_args=dict(radix=4, avd=True, avd_first=True)) + return _create_resnest('resnest50d_4s2x40d', pretrained=pretrained, **dict(model_kwargs, **kwargs)) + +@register_model +def resnest50d_1s4x24d(pretrained=False, **kwargs) -> ResNet: + model_kwargs = dict(block=ResNestBottleneck, layers=[3, 4, 6, 3], stem_type='deep', stem_width=32, avg_down=True, base_width=24, cardinality=4, block_args=dict(radix=1, avd=True, avd_first=True)) + return _create_resnest('resnest50d_1s4x24d', pretrained=pretrained, **dict(model_kwargs, **kwargs)) + +# File: pytorch-image-models-main/timm/models/resnet.py +"""""" +import math +from functools import partial +from typing import Any, Dict, List, Optional, Tuple, Type, Union +import torch +import torch.nn as nn +import torch.nn.functional as F +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from timm.layers import DropBlock2d, DropPath, AvgPool2dSame, BlurPool2d, GroupNorm, LayerType, create_attn, get_attn, get_act_layer, get_norm_layer, create_classifier, create_aa +from ._builder import build_model_with_cfg +from ._features import feature_take_indices +from ._manipulate import checkpoint_seq +from ._registry import register_model, generate_default_cfgs, register_model_deprecations +__all__ = ['ResNet', 'BasicBlock', 'Bottleneck'] + +def get_padding(kernel_size: int, stride: int, dilation: int=1) -> int: + padding = (stride - 1 + dilation * (kernel_size - 1)) // 2 + return padding + +class BasicBlock(nn.Module): + expansion = 1 + + def __init__(self, inplanes: int, planes: int, stride: int=1, downsample: Optional[nn.Module]=None, cardinality: int=1, base_width: int=64, reduce_first: int=1, dilation: int=1, first_dilation: Optional[int]=None, act_layer: Type[nn.Module]=nn.ReLU, norm_layer: Type[nn.Module]=nn.BatchNorm2d, attn_layer: Optional[Type[nn.Module]]=None, aa_layer: Optional[Type[nn.Module]]=None, drop_block: Optional[Type[nn.Module]]=None, drop_path: Optional[nn.Module]=None): + super(BasicBlock, self).__init__() + assert cardinality == 1, 'BasicBlock only supports cardinality of 1' + assert base_width == 64, 'BasicBlock does not support changing base width' + first_planes = planes // reduce_first + outplanes = planes * self.expansion + first_dilation = first_dilation or dilation + use_aa = aa_layer is not None and (stride == 2 or first_dilation != dilation) + self.conv1 = nn.Conv2d(inplanes, first_planes, kernel_size=3, stride=1 if use_aa else stride, padding=first_dilation, dilation=first_dilation, bias=False) + self.bn1 = norm_layer(first_planes) + self.drop_block = drop_block() if drop_block is not None else nn.Identity() + self.act1 = act_layer(inplace=True) + self.aa = create_aa(aa_layer, channels=first_planes, stride=stride, enable=use_aa) + self.conv2 = nn.Conv2d(first_planes, outplanes, kernel_size=3, padding=dilation, dilation=dilation, bias=False) + self.bn2 = norm_layer(outplanes) + self.se = create_attn(attn_layer, outplanes) + self.act2 = act_layer(inplace=True) + self.downsample = downsample + self.stride = stride + self.dilation = dilation + self.drop_path = drop_path + + def zero_init_last(self): + if getattr(self.bn2, 'weight', None) is not None: + nn.init.zeros_(self.bn2.weight) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + shortcut = x + x = self.conv1(x) + x = self.bn1(x) + x = self.drop_block(x) + x = self.act1(x) + x = self.aa(x) + x = self.conv2(x) + x = self.bn2(x) + if self.se is not None: + x = self.se(x) + if self.drop_path is not None: + x = self.drop_path(x) + if self.downsample is not None: + shortcut = self.downsample(shortcut) + x += shortcut + x = self.act2(x) + return x + +class Bottleneck(nn.Module): + expansion = 4 + + def __init__(self, inplanes: int, planes: int, stride: int=1, downsample: Optional[nn.Module]=None, cardinality: int=1, base_width: int=64, reduce_first: int=1, dilation: int=1, first_dilation: Optional[int]=None, act_layer: Type[nn.Module]=nn.ReLU, norm_layer: Type[nn.Module]=nn.BatchNorm2d, attn_layer: Optional[Type[nn.Module]]=None, aa_layer: Optional[Type[nn.Module]]=None, drop_block: Optional[Type[nn.Module]]=None, drop_path: Optional[nn.Module]=None): + super(Bottleneck, self).__init__() + width = int(math.floor(planes * (base_width / 64)) * cardinality) + first_planes = width // reduce_first + outplanes = planes * self.expansion + first_dilation = first_dilation or dilation + use_aa = aa_layer is not None and (stride == 2 or first_dilation != dilation) + self.conv1 = nn.Conv2d(inplanes, first_planes, kernel_size=1, bias=False) + self.bn1 = norm_layer(first_planes) + self.act1 = act_layer(inplace=True) + self.conv2 = nn.Conv2d(first_planes, width, kernel_size=3, stride=1 if use_aa else stride, padding=first_dilation, dilation=first_dilation, groups=cardinality, bias=False) + self.bn2 = norm_layer(width) + self.drop_block = drop_block() if drop_block is not None else nn.Identity() + self.act2 = act_layer(inplace=True) + self.aa = create_aa(aa_layer, channels=width, stride=stride, enable=use_aa) + self.conv3 = nn.Conv2d(width, outplanes, kernel_size=1, bias=False) + self.bn3 = norm_layer(outplanes) + self.se = create_attn(attn_layer, outplanes) + self.act3 = act_layer(inplace=True) + self.downsample = downsample + self.stride = stride + self.dilation = dilation + self.drop_path = drop_path + + def zero_init_last(self): + if getattr(self.bn3, 'weight', None) is not None: + nn.init.zeros_(self.bn3.weight) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + shortcut = x + x = self.conv1(x) + x = self.bn1(x) + x = self.act1(x) + x = self.conv2(x) + x = self.bn2(x) + x = self.drop_block(x) + x = self.act2(x) + x = self.aa(x) + x = self.conv3(x) + x = self.bn3(x) + if self.se is not None: + x = self.se(x) + if self.drop_path is not None: + x = self.drop_path(x) + if self.downsample is not None: + shortcut = self.downsample(shortcut) + x += shortcut + x = self.act3(x) + return x + +def downsample_conv(in_channels: int, out_channels: int, kernel_size: int, stride: int=1, dilation: int=1, first_dilation: Optional[int]=None, norm_layer: Optional[Type[nn.Module]]=None) -> nn.Module: + norm_layer = norm_layer or nn.BatchNorm2d + kernel_size = 1 if stride == 1 and dilation == 1 else kernel_size + first_dilation = first_dilation or dilation if kernel_size > 1 else 1 + p = get_padding(kernel_size, stride, first_dilation) + return nn.Sequential(*[nn.Conv2d(in_channels, out_channels, kernel_size, stride=stride, padding=p, dilation=first_dilation, bias=False), norm_layer(out_channels)]) + +def downsample_avg(in_channels: int, out_channels: int, kernel_size: int, stride: int=1, dilation: int=1, first_dilation: Optional[int]=None, norm_layer: Optional[Type[nn.Module]]=None) -> nn.Module: + norm_layer = norm_layer or nn.BatchNorm2d + avg_stride = stride if dilation == 1 else 1 + if stride == 1 and dilation == 1: + pool = nn.Identity() + else: + avg_pool_fn = AvgPool2dSame if avg_stride == 1 and dilation > 1 else nn.AvgPool2d + pool = avg_pool_fn(2, avg_stride, ceil_mode=True, count_include_pad=False) + return nn.Sequential(*[pool, nn.Conv2d(in_channels, out_channels, 1, stride=1, padding=0, bias=False), norm_layer(out_channels)]) + +def drop_blocks(drop_prob: float=0.0): + return [None, None, partial(DropBlock2d, drop_prob=drop_prob, block_size=5, gamma_scale=0.25) if drop_prob else None, partial(DropBlock2d, drop_prob=drop_prob, block_size=3, gamma_scale=1.0) if drop_prob else None] + +def make_blocks(block_fn: Union[BasicBlock, Bottleneck], channels: Tuple[int, ...], block_repeats: Tuple[int, ...], inplanes: int, reduce_first: int=1, output_stride: int=32, down_kernel_size: int=1, avg_down: bool=False, drop_block_rate: float=0.0, drop_path_rate: float=0.0, **kwargs) -> Tuple[List[Tuple[str, nn.Module]], List[Dict[str, Any]]]: + stages = [] + feature_info = [] + net_num_blocks = sum(block_repeats) + net_block_idx = 0 + net_stride = 4 + dilation = prev_dilation = 1 + for (stage_idx, (planes, num_blocks, db)) in enumerate(zip(channels, block_repeats, drop_blocks(drop_block_rate))): + stage_name = f'layer{stage_idx + 1}' + stride = 1 if stage_idx == 0 else 2 + if net_stride >= output_stride: + dilation *= stride + stride = 1 + else: + net_stride *= stride + downsample = None + if stride != 1 or inplanes != planes * block_fn.expansion: + down_kwargs = dict(in_channels=inplanes, out_channels=planes * block_fn.expansion, kernel_size=down_kernel_size, stride=stride, dilation=dilation, first_dilation=prev_dilation, norm_layer=kwargs.get('norm_layer')) + downsample = downsample_avg(**down_kwargs) if avg_down else downsample_conv(**down_kwargs) + block_kwargs = dict(reduce_first=reduce_first, dilation=dilation, drop_block=db, **kwargs) + blocks = [] + for block_idx in range(num_blocks): + downsample = downsample if block_idx == 0 else None + stride = stride if block_idx == 0 else 1 + block_dpr = drop_path_rate * net_block_idx / (net_num_blocks - 1) + blocks.append(block_fn(inplanes, planes, stride, downsample, first_dilation=prev_dilation, drop_path=DropPath(block_dpr) if block_dpr > 0.0 else None, **block_kwargs)) + prev_dilation = dilation + inplanes = planes * block_fn.expansion + net_block_idx += 1 + stages.append((stage_name, nn.Sequential(*blocks))) + feature_info.append(dict(num_chs=inplanes, reduction=net_stride, module=stage_name)) + return (stages, feature_info) + +class ResNet(nn.Module): + + def __init__(self, block: Union[BasicBlock, Bottleneck], layers: Tuple[int, ...], num_classes: int=1000, in_chans: int=3, output_stride: int=32, global_pool: str='avg', cardinality: int=1, base_width: int=64, stem_width: int=64, stem_type: str='', replace_stem_pool: bool=False, block_reduce_first: int=1, down_kernel_size: int=1, avg_down: bool=False, channels: Optional[Tuple[int, ...]]=(64, 128, 256, 512), act_layer: LayerType=nn.ReLU, norm_layer: LayerType=nn.BatchNorm2d, aa_layer: Optional[Type[nn.Module]]=None, drop_rate: float=0.0, drop_path_rate: float=0.0, drop_block_rate: float=0.0, zero_init_last: bool=True, block_args: Optional[Dict[str, Any]]=None): + super(ResNet, self).__init__() + block_args = block_args or dict() + assert output_stride in (8, 16, 32) + self.num_classes = num_classes + self.drop_rate = drop_rate + self.grad_checkpointing = False + act_layer = get_act_layer(act_layer) + norm_layer = get_norm_layer(norm_layer) + deep_stem = 'deep' in stem_type + inplanes = stem_width * 2 if deep_stem else 64 + if deep_stem: + stem_chs = (stem_width, stem_width) + if 'tiered' in stem_type: + stem_chs = (3 * (stem_width // 4), stem_width) + self.conv1 = nn.Sequential(*[nn.Conv2d(in_chans, stem_chs[0], 3, stride=2, padding=1, bias=False), norm_layer(stem_chs[0]), act_layer(inplace=True), nn.Conv2d(stem_chs[0], stem_chs[1], 3, stride=1, padding=1, bias=False), norm_layer(stem_chs[1]), act_layer(inplace=True), nn.Conv2d(stem_chs[1], inplanes, 3, stride=1, padding=1, bias=False)]) + else: + self.conv1 = nn.Conv2d(in_chans, inplanes, kernel_size=7, stride=2, padding=3, bias=False) + self.bn1 = norm_layer(inplanes) + self.act1 = act_layer(inplace=True) + self.feature_info = [dict(num_chs=inplanes, reduction=2, module='act1')] + if replace_stem_pool: + self.maxpool = nn.Sequential(*filter(None, [nn.Conv2d(inplanes, inplanes, 3, stride=1 if aa_layer else 2, padding=1, bias=False), create_aa(aa_layer, channels=inplanes, stride=2) if aa_layer is not None else None, norm_layer(inplanes), act_layer(inplace=True)])) + elif aa_layer is not None: + if issubclass(aa_layer, nn.AvgPool2d): + self.maxpool = aa_layer(2) + else: + self.maxpool = nn.Sequential(*[nn.MaxPool2d(kernel_size=3, stride=1, padding=1), aa_layer(channels=inplanes, stride=2)]) + else: + self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) + (stage_modules, stage_feature_info) = make_blocks(block, channels, layers, inplanes, cardinality=cardinality, base_width=base_width, output_stride=output_stride, reduce_first=block_reduce_first, avg_down=avg_down, down_kernel_size=down_kernel_size, act_layer=act_layer, norm_layer=norm_layer, aa_layer=aa_layer, drop_block_rate=drop_block_rate, drop_path_rate=drop_path_rate, **block_args) + for stage in stage_modules: + self.add_module(*stage) + self.feature_info.extend(stage_feature_info) + self.num_features = self.head_hidden_size = channels[-1] * block.expansion + (self.global_pool, self.fc) = create_classifier(self.num_features, self.num_classes, pool_type=global_pool) + self.init_weights(zero_init_last=zero_init_last) + + @torch.jit.ignore + def init_weights(self, zero_init_last: bool=True): + for (n, m) in self.named_modules(): + if isinstance(m, nn.Conv2d): + nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') + if zero_init_last: + for m in self.modules(): + if hasattr(m, 'zero_init_last'): + m.zero_init_last() + + @torch.jit.ignore + def group_matcher(self, coarse: bool=False): + matcher = dict(stem='^conv1|bn1|maxpool', blocks='^layer(\\d+)' if coarse else '^layer(\\d+)\\.(\\d+)') + return matcher + + @torch.jit.ignore + def set_grad_checkpointing(self, enable: bool=True): + self.grad_checkpointing = enable + + @torch.jit.ignore + def get_classifier(self, name_only: bool=False): + return 'fc' if name_only else self.fc + + def reset_classifier(self, num_classes: int, global_pool: str='avg'): + self.num_classes = num_classes + (self.global_pool, self.fc) = create_classifier(self.num_features, self.num_classes, pool_type=global_pool) + + def forward_intermediates(self, x: torch.Tensor, indices: Optional[Union[int, List[int]]]=None, norm: bool=False, stop_early: bool=False, output_fmt: str='NCHW', intermediates_only: bool=False) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]: + assert output_fmt in ('NCHW',), 'Output shape must be NCHW.' + intermediates = [] + (take_indices, max_index) = feature_take_indices(5, indices) + feat_idx = 0 + x = self.conv1(x) + x = self.bn1(x) + x = self.act1(x) + if feat_idx in take_indices: + intermediates.append(x) + x = self.maxpool(x) + layer_names = ('layer1', 'layer2', 'layer3', 'layer4') + if stop_early: + layer_names = layer_names[:max_index] + for n in layer_names: + feat_idx += 1 + x = getattr(self, n)(x) + if feat_idx in take_indices: + intermediates.append(x) + if intermediates_only: + return intermediates + return (x, intermediates) + + def prune_intermediate_layers(self, indices: Union[int, List[int]]=1, prune_norm: bool=False, prune_head: bool=True): + (take_indices, max_index) = feature_take_indices(5, indices) + layer_names = ('layer1', 'layer2', 'layer3', 'layer4') + layer_names = layer_names[max_index:] + for n in layer_names: + setattr(self, n, nn.Identity()) + if prune_head: + self.reset_classifier(0, '') + return take_indices + + def forward_features(self, x: torch.Tensor) -> torch.Tensor: + x = self.conv1(x) + x = self.bn1(x) + x = self.act1(x) + x = self.maxpool(x) + if self.grad_checkpointing and (not torch.jit.is_scripting()): + x = checkpoint_seq([self.layer1, self.layer2, self.layer3, self.layer4], x, flatten=True) + else: + x = self.layer1(x) + x = self.layer2(x) + x = self.layer3(x) + x = self.layer4(x) + return x + + def forward_head(self, x: torch.Tensor, pre_logits: bool=False) -> torch.Tensor: + x = self.global_pool(x) + if self.drop_rate: + x = F.dropout(x, p=float(self.drop_rate), training=self.training) + return x if pre_logits else self.fc(x) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + x = self.forward_features(x) + x = self.forward_head(x) + return x + +def _create_resnet(variant, pretrained: bool=False, **kwargs) -> ResNet: + return build_model_with_cfg(ResNet, variant, pretrained, **kwargs) + +def _cfg(url='', **kwargs): + return {'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), 'crop_pct': 0.875, 'interpolation': 'bilinear', 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'conv1', 'classifier': 'fc', **kwargs} + +def _tcfg(url='', **kwargs): + return _cfg(url=url, **dict({'interpolation': 'bicubic'}, **kwargs)) + +def _ttcfg(url='', **kwargs): + return _cfg(url=url, **dict({'interpolation': 'bicubic', 'test_input_size': (3, 288, 288), 'test_crop_pct': 0.95, 'origin_url': 'https://github.com/huggingface/pytorch-image-models'}, **kwargs)) + +def _rcfg(url='', **kwargs): + return _cfg(url=url, **dict({'interpolation': 'bicubic', 'crop_pct': 0.95, 'test_input_size': (3, 288, 288), 'test_crop_pct': 1.0, 'origin_url': 'https://github.com/huggingface/pytorch-image-models', 'paper_ids': 'arXiv:2110.00476'}, **kwargs)) + +def _r3cfg(url='', **kwargs): + return _cfg(url=url, **dict({'interpolation': 'bicubic', 'input_size': (3, 160, 160), 'pool_size': (5, 5), 'crop_pct': 0.95, 'test_input_size': (3, 224, 224), 'test_crop_pct': 0.95, 'origin_url': 'https://github.com/huggingface/pytorch-image-models', 'paper_ids': 'arXiv:2110.00476'}, **kwargs)) + +def _gcfg(url='', **kwargs): + return _cfg(url=url, **dict({'interpolation': 'bicubic', 'origin_url': 'https://cv.gluon.ai/model_zoo/classification.html'}, **kwargs)) +default_cfgs = generate_default_cfgs({'resnet10t.c3_in1k': _ttcfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/resnet10t_176_c3-f3215ab1.pth', input_size=(3, 176, 176), pool_size=(6, 6), test_crop_pct=0.95, test_input_size=(3, 224, 224), first_conv='conv1.0'), 'resnet14t.c3_in1k': _ttcfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/resnet14t_176_c3-c4ed2c37.pth', input_size=(3, 176, 176), pool_size=(6, 6), test_crop_pct=0.95, test_input_size=(3, 224, 224), first_conv='conv1.0'), 'resnet18.a1_in1k': _rcfg(hf_hub_id='timm/', url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-rsb-weights/resnet18_a1_0-d63eafa0.pth'), 'resnet18.a2_in1k': _rcfg(hf_hub_id='timm/', url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-rsb-weights/resnet18_a2_0-b61bd467.pth'), 'resnet18.a3_in1k': _r3cfg(hf_hub_id='timm/', url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-rsb-weights/resnet18_a3_0-40c531c8.pth'), 'resnet18d.ra2_in1k': _ttcfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet18d_ra2-48a79e06.pth', first_conv='conv1.0'), 'resnet34.a1_in1k': _rcfg(hf_hub_id='timm/', url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-rsb-weights/resnet34_a1_0-46f8f793.pth'), 'resnet34.a2_in1k': _rcfg(hf_hub_id='timm/', url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-rsb-weights/resnet34_a2_0-82d47d71.pth'), 'resnet34.a3_in1k': _r3cfg(hf_hub_id='timm/', url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-rsb-weights/resnet34_a3_0-a20cabb6.pth', crop_pct=0.95), 'resnet34.bt_in1k': _ttcfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet34-43635321.pth'), 'resnet34d.ra2_in1k': _ttcfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet34d_ra2-f8dcfcaf.pth', first_conv='conv1.0'), 'resnet26.bt_in1k': _ttcfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet26-9aa10e23.pth'), 'resnet26d.bt_in1k': _ttcfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet26d-69e92c46.pth', first_conv='conv1.0'), 'resnet26t.ra2_in1k': _ttcfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/resnet26t_256_ra2-6f6fa748.pth', first_conv='conv1.0', input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=0.94, test_input_size=(3, 320, 320), test_crop_pct=1.0), 'resnet50.a1_in1k': _rcfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/resnet50_a1_0-14fe96d1.pth'), 'resnet50.a1h_in1k': _rcfg(hf_hub_id='timm/', url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-rsb-weights/resnet50_a1h2_176-001a1197.pth', input_size=(3, 176, 176), pool_size=(6, 6), crop_pct=0.9, test_input_size=(3, 224, 224), test_crop_pct=1.0), 'resnet50.a2_in1k': _rcfg(hf_hub_id='timm/', url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-rsb-weights/resnet50_a2_0-a2746f79.pth'), 'resnet50.a3_in1k': _r3cfg(hf_hub_id='timm/', url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-rsb-weights/resnet50_a3_0-59cae1ef.pth'), 'resnet50.b1k_in1k': _rcfg(hf_hub_id='timm/', url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-rsb-weights/resnet50_b1k-532a802a.pth'), 'resnet50.b2k_in1k': _rcfg(hf_hub_id='timm/', url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-rsb-weights/resnet50_b2k-1ba180c1.pth'), 'resnet50.c1_in1k': _rcfg(hf_hub_id='timm/', url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-rsb-weights/resnet50_c1-5ba5e060.pth'), 'resnet50.c2_in1k': _rcfg(hf_hub_id='timm/', url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-rsb-weights/resnet50_c2-d01e05b2.pth'), 'resnet50.d_in1k': _rcfg(hf_hub_id='timm/', url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-rsb-weights/resnet50_d-f39db8af.pth'), 'resnet50.ram_in1k': _ttcfg(hf_hub_id='timm/', url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-weights/resnet50_ram-a26f946b.pth'), 'resnet50.am_in1k': _tcfg(hf_hub_id='timm/', url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-weights/resnet50_am-6c502b37.pth'), 'resnet50.ra_in1k': _ttcfg(hf_hub_id='timm/', url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-weights/resnet50_ra-85ebb6e5.pth'), 'resnet50.bt_in1k': _ttcfg(hf_hub_id='timm/', url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-weights/rw_resnet50-86acaeed.pth'), 'resnet50d.ra2_in1k': _ttcfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet50d_ra2-464e36ba.pth', first_conv='conv1.0'), 'resnet50d.ra4_e3600_r224_in1k': _rcfg(hf_hub_id='timm/', mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=0.95, test_input_size=(3, 288, 288), test_crop_pct=1.0, first_conv='conv1.0'), 'resnet50d.a1_in1k': _rcfg(hf_hub_id='timm/', url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-rsb-weights/resnet50d_a1_0-e20cff14.pth', first_conv='conv1.0'), 'resnet50d.a2_in1k': _rcfg(hf_hub_id='timm/', url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-rsb-weights/resnet50d_a2_0-a3adc64d.pth', first_conv='conv1.0'), 'resnet50d.a3_in1k': _r3cfg(hf_hub_id='timm/', url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-rsb-weights/resnet50d_a3_0-403fdfad.pth', first_conv='conv1.0'), 'resnet50t.untrained': _ttcfg(first_conv='conv1.0'), 'resnet101.a1h_in1k': _rcfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/resnet101_a1h-36d3f2aa.pth'), 'resnet101.a1_in1k': _rcfg(hf_hub_id='timm/', url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-rsb-weights/resnet101_a1_0-cdcb52a9.pth'), 'resnet101.a2_in1k': _rcfg(hf_hub_id='timm/', url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-rsb-weights/resnet101_a2_0-6edb36c7.pth'), 'resnet101.a3_in1k': _r3cfg(hf_hub_id='timm/', url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-rsb-weights/resnet101_a3_0-1db14157.pth'), 'resnet101d.ra2_in1k': _ttcfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet101d_ra2-2803ffab.pth', first_conv='conv1.0', input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=0.95, test_crop_pct=1.0, test_input_size=(3, 320, 320)), 'resnet152.a1h_in1k': _rcfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/resnet152_a1h-dc400468.pth'), 'resnet152.a1_in1k': _rcfg(hf_hub_id='timm/', url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-rsb-weights/resnet152_a1_0-2eee8a7a.pth'), 'resnet152.a2_in1k': _rcfg(hf_hub_id='timm/', url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-rsb-weights/resnet152_a2_0-b4c6978f.pth'), 'resnet152.a3_in1k': _r3cfg(hf_hub_id='timm/', url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-rsb-weights/resnet152_a3_0-134d4688.pth'), 'resnet152d.ra2_in1k': _ttcfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet152d_ra2-5cac0439.pth', first_conv='conv1.0', input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=0.95, test_crop_pct=1.0, test_input_size=(3, 320, 320)), 'resnet200.untrained': _ttcfg(), 'resnet200d.ra2_in1k': _ttcfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet200d_ra2-bdba9bf9.pth', first_conv='conv1.0', input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=0.95, test_crop_pct=1.0, test_input_size=(3, 320, 320)), 'wide_resnet50_2.racm_in1k': _ttcfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/wide_resnet50_racm-8234f177.pth'), 'resnet18.tv_in1k': _cfg(hf_hub_id='timm/', url='https://download.pytorch.org/models/resnet18-5c106cde.pth', license='bsd-3-clause', origin_url='https://github.com/pytorch/vision'), 'resnet34.tv_in1k': _cfg(hf_hub_id='timm/', url='https://download.pytorch.org/models/resnet34-333f7ec4.pth', license='bsd-3-clause', origin_url='https://github.com/pytorch/vision'), 'resnet50.tv_in1k': _cfg(hf_hub_id='timm/', url='https://download.pytorch.org/models/resnet50-19c8e357.pth', license='bsd-3-clause', origin_url='https://github.com/pytorch/vision'), 'resnet50.tv2_in1k': _cfg(hf_hub_id='timm/', url='https://download.pytorch.org/models/resnet50-11ad3fa6.pth', input_size=(3, 176, 176), pool_size=(6, 6), test_input_size=(3, 224, 224), test_crop_pct=0.965, license='bsd-3-clause', origin_url='https://github.com/pytorch/vision'), 'resnet101.tv_in1k': _cfg(hf_hub_id='timm/', url='https://download.pytorch.org/models/resnet101-5d3b4d8f.pth', license='bsd-3-clause', origin_url='https://github.com/pytorch/vision'), 'resnet101.tv2_in1k': _cfg(hf_hub_id='timm/', url='https://download.pytorch.org/models/resnet101-cd907fc2.pth', input_size=(3, 176, 176), pool_size=(6, 6), test_input_size=(3, 224, 224), test_crop_pct=0.965, license='bsd-3-clause', origin_url='https://github.com/pytorch/vision'), 'resnet152.tv_in1k': _cfg(hf_hub_id='timm/', url='https://download.pytorch.org/models/resnet152-b121ed2d.pth', license='bsd-3-clause', origin_url='https://github.com/pytorch/vision'), 'resnet152.tv2_in1k': _cfg(hf_hub_id='timm/', url='https://download.pytorch.org/models/resnet152-f82ba261.pth', input_size=(3, 176, 176), pool_size=(6, 6), test_input_size=(3, 224, 224), test_crop_pct=0.965, license='bsd-3-clause', origin_url='https://github.com/pytorch/vision'), 'wide_resnet50_2.tv_in1k': _cfg(hf_hub_id='timm/', url='https://download.pytorch.org/models/wide_resnet50_2-95faca4d.pth', license='bsd-3-clause', origin_url='https://github.com/pytorch/vision'), 'wide_resnet50_2.tv2_in1k': _cfg(hf_hub_id='timm/', url='https://download.pytorch.org/models/wide_resnet50_2-9ba9bcbe.pth', input_size=(3, 176, 176), pool_size=(6, 6), test_input_size=(3, 224, 224), test_crop_pct=0.965, license='bsd-3-clause', origin_url='https://github.com/pytorch/vision'), 'wide_resnet101_2.tv_in1k': _cfg(hf_hub_id='timm/', url='https://download.pytorch.org/models/wide_resnet101_2-32ee1156.pth', license='bsd-3-clause', origin_url='https://github.com/pytorch/vision'), 'wide_resnet101_2.tv2_in1k': _cfg(hf_hub_id='timm/', url='https://download.pytorch.org/models/wide_resnet101_2-d733dc28.pth', input_size=(3, 176, 176), pool_size=(6, 6), test_input_size=(3, 224, 224), test_crop_pct=0.965, license='bsd-3-clause', origin_url='https://github.com/pytorch/vision'), 'resnet50_gn.a1h_in1k': _ttcfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/resnet50_gn_a1h2-8fe6c4d0.pth', crop_pct=0.94), 'resnext50_32x4d.a1h_in1k': _rcfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/resnext50_32x4d_a1h-0146ab0a.pth'), 'resnext50_32x4d.a1_in1k': _rcfg(hf_hub_id='timm/', url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-rsb-weights/resnext50_32x4d_a1_0-b5a91a1d.pth'), 'resnext50_32x4d.a2_in1k': _rcfg(hf_hub_id='timm/', url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-rsb-weights/resnext50_32x4d_a2_0-efc76add.pth'), 'resnext50_32x4d.a3_in1k': _r3cfg(hf_hub_id='timm/', url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-rsb-weights/resnext50_32x4d_a3_0-3e450271.pth'), 'resnext50_32x4d.ra_in1k': _ttcfg(hf_hub_id='timm/', url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-weights/resnext50_32x4d_ra-d733960d.pth'), 'resnext50d_32x4d.bt_in1k': _ttcfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnext50d_32x4d-103e99f8.pth', first_conv='conv1.0'), 'resnext101_32x4d.untrained': _ttcfg(), 'resnext101_64x4d.c1_in1k': _rcfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/resnext101_64x4d_c-0d0e0cc0.pth'), 'resnext50_32x4d.tv_in1k': _cfg(hf_hub_id='timm/', url='https://download.pytorch.org/models/resnext50_32x4d-7cdf4587.pth', license='bsd-3-clause', origin_url='https://github.com/pytorch/vision'), 'resnext101_32x8d.tv_in1k': _cfg(hf_hub_id='timm/', url='https://download.pytorch.org/models/resnext101_32x8d-8ba56ff5.pth', license='bsd-3-clause', origin_url='https://github.com/pytorch/vision'), 'resnext101_64x4d.tv_in1k': _cfg(hf_hub_id='timm/', url='https://download.pytorch.org/models/resnext101_64x4d-173b62eb.pth', license='bsd-3-clause', origin_url='https://github.com/pytorch/vision'), 'resnext50_32x4d.tv2_in1k': _cfg(hf_hub_id='timm/', url='https://download.pytorch.org/models/resnext50_32x4d-1a0047aa.pth', input_size=(3, 176, 176), pool_size=(6, 6), test_input_size=(3, 224, 224), test_crop_pct=0.965, license='bsd-3-clause', origin_url='https://github.com/pytorch/vision'), 'resnext101_32x8d.tv2_in1k': _cfg(hf_hub_id='timm/', url='https://download.pytorch.org/models/resnext101_32x8d-110c445d.pth', input_size=(3, 176, 176), pool_size=(6, 6), test_input_size=(3, 224, 224), test_crop_pct=0.965, license='bsd-3-clause', origin_url='https://github.com/pytorch/vision'), 'resnext101_32x8d.fb_wsl_ig1b_ft_in1k': _cfg(hf_hub_id='timm/', url='https://download.pytorch.org/models/ig_resnext101_32x8-c38310e5.pth', license='cc-by-nc-4.0', origin_url='https://github.com/facebookresearch/WSL-Images'), 'resnext101_32x16d.fb_wsl_ig1b_ft_in1k': _cfg(hf_hub_id='timm/', url='https://download.pytorch.org/models/ig_resnext101_32x16-c6f796b0.pth', license='cc-by-nc-4.0', origin_url='https://github.com/facebookresearch/WSL-Images'), 'resnext101_32x32d.fb_wsl_ig1b_ft_in1k': _cfg(hf_hub_id='timm/', url='https://download.pytorch.org/models/ig_resnext101_32x32-e4b90b00.pth', license='cc-by-nc-4.0', origin_url='https://github.com/facebookresearch/WSL-Images'), 'resnext101_32x48d.fb_wsl_ig1b_ft_in1k': _cfg(hf_hub_id='timm/', url='https://download.pytorch.org/models/ig_resnext101_32x48-3e41cc8a.pth', license='cc-by-nc-4.0', origin_url='https://github.com/facebookresearch/WSL-Images'), 'resnet18.fb_ssl_yfcc100m_ft_in1k': _cfg(hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_supervised_resnet18-d92f0530.pth', license='cc-by-nc-4.0', origin_url='https://github.com/facebookresearch/semi-supervised-ImageNet1K-models'), 'resnet50.fb_ssl_yfcc100m_ft_in1k': _cfg(hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_supervised_resnet50-08389792.pth', license='cc-by-nc-4.0', origin_url='https://github.com/facebookresearch/semi-supervised-ImageNet1K-models'), 'resnext50_32x4d.fb_ssl_yfcc100m_ft_in1k': _cfg(hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_supervised_resnext50_32x4-ddb3e555.pth', license='cc-by-nc-4.0', origin_url='https://github.com/facebookresearch/semi-supervised-ImageNet1K-models'), 'resnext101_32x4d.fb_ssl_yfcc100m_ft_in1k': _cfg(hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_supervised_resnext101_32x4-dc43570a.pth', license='cc-by-nc-4.0', origin_url='https://github.com/facebookresearch/semi-supervised-ImageNet1K-models'), 'resnext101_32x8d.fb_ssl_yfcc100m_ft_in1k': _cfg(hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_supervised_resnext101_32x8-2cfe2f8b.pth', license='cc-by-nc-4.0', origin_url='https://github.com/facebookresearch/semi-supervised-ImageNet1K-models'), 'resnext101_32x16d.fb_ssl_yfcc100m_ft_in1k': _cfg(hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_supervised_resnext101_32x16-15fffa57.pth', license='cc-by-nc-4.0', origin_url='https://github.com/facebookresearch/semi-supervised-ImageNet1K-models'), 'resnet18.fb_swsl_ig1b_ft_in1k': _cfg(hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_weakly_supervised_resnet18-118f1556.pth', license='cc-by-nc-4.0', origin_url='https://github.com/facebookresearch/semi-supervised-ImageNet1K-models'), 'resnet50.fb_swsl_ig1b_ft_in1k': _cfg(hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_weakly_supervised_resnet50-16a12f1b.pth', license='cc-by-nc-4.0', origin_url='https://github.com/facebookresearch/semi-supervised-ImageNet1K-models'), 'resnext50_32x4d.fb_swsl_ig1b_ft_in1k': _cfg(hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_weakly_supervised_resnext50_32x4-72679e44.pth', license='cc-by-nc-4.0', origin_url='https://github.com/facebookresearch/semi-supervised-ImageNet1K-models'), 'resnext101_32x4d.fb_swsl_ig1b_ft_in1k': _cfg(hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_weakly_supervised_resnext101_32x4-3f87e46b.pth', license='cc-by-nc-4.0', origin_url='https://github.com/facebookresearch/semi-supervised-ImageNet1K-models'), 'resnext101_32x8d.fb_swsl_ig1b_ft_in1k': _cfg(hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_weakly_supervised_resnext101_32x8-b4712904.pth', license='cc-by-nc-4.0', origin_url='https://github.com/facebookresearch/semi-supervised-ImageNet1K-models'), 'resnext101_32x16d.fb_swsl_ig1b_ft_in1k': _cfg(hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_weakly_supervised_resnext101_32x16-f3559a9c.pth', license='cc-by-nc-4.0', origin_url='https://github.com/facebookresearch/semi-supervised-ImageNet1K-models'), 'ecaresnet26t.ra2_in1k': _ttcfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/ecaresnet26t_ra2-46609757.pth', first_conv='conv1.0', input_size=(3, 256, 256), pool_size=(8, 8), test_crop_pct=0.95, test_input_size=(3, 320, 320)), 'ecaresnetlight.miil_in1k': _tcfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tresnet/ecaresnetlight-75a9c627.pth', test_crop_pct=0.95, test_input_size=(3, 288, 288)), 'ecaresnet50d.miil_in1k': _tcfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tresnet/ecaresnet50d-93c81e3b.pth', first_conv='conv1.0', test_crop_pct=0.95, test_input_size=(3, 288, 288)), 'ecaresnet50d_pruned.miil_in1k': _tcfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tresnet/ecaresnet50d_p-e4fa23c2.pth', first_conv='conv1.0', test_crop_pct=0.95, test_input_size=(3, 288, 288)), 'ecaresnet50t.ra2_in1k': _tcfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/ecaresnet50t_ra2-f7ac63c4.pth', first_conv='conv1.0', input_size=(3, 256, 256), pool_size=(8, 8), test_crop_pct=0.95, test_input_size=(3, 320, 320)), 'ecaresnet50t.a1_in1k': _rcfg(hf_hub_id='timm/', url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-rsb-weights/ecaresnet50t_a1_0-99bd76a8.pth', first_conv='conv1.0'), 'ecaresnet50t.a2_in1k': _rcfg(hf_hub_id='timm/', url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-rsb-weights/ecaresnet50t_a2_0-b1c7b745.pth', first_conv='conv1.0'), 'ecaresnet50t.a3_in1k': _r3cfg(hf_hub_id='timm/', url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-rsb-weights/ecaresnet50t_a3_0-8cc311f1.pth', first_conv='conv1.0'), 'ecaresnet101d.miil_in1k': _tcfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tresnet/ecaresnet101d-153dad65.pth', first_conv='conv1.0', test_crop_pct=0.95, test_input_size=(3, 288, 288)), 'ecaresnet101d_pruned.miil_in1k': _tcfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tresnet/ecaresnet101d_p-9e74cb91.pth', first_conv='conv1.0', test_crop_pct=0.95, test_input_size=(3, 288, 288)), 'ecaresnet200d.untrained': _ttcfg(first_conv='conv1.0', input_size=(3, 256, 256), crop_pct=0.95, pool_size=(8, 8)), 'ecaresnet269d.ra2_in1k': _ttcfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/ecaresnet269d_320_ra2-7baa55cb.pth', first_conv='conv1.0', input_size=(3, 320, 320), pool_size=(10, 10), crop_pct=0.95, test_crop_pct=1.0, test_input_size=(3, 352, 352)), 'ecaresnext26t_32x4d.untrained': _tcfg(first_conv='conv1.0'), 'ecaresnext50t_32x4d.untrained': _tcfg(first_conv='conv1.0'), 'seresnet18.untrained': _ttcfg(), 'seresnet34.untrained': _ttcfg(), 'seresnet50.a1_in1k': _rcfg(hf_hub_id='timm/', url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-rsb-weights/seresnet50_a1_0-ffa00869.pth', crop_pct=0.95), 'seresnet50.a2_in1k': _rcfg(hf_hub_id='timm/', url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-rsb-weights/seresnet50_a2_0-850de0d9.pth', crop_pct=0.95), 'seresnet50.a3_in1k': _r3cfg(hf_hub_id='timm/', url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-rsb-weights/seresnet50_a3_0-317ecd56.pth', crop_pct=0.95), 'seresnet50.ra2_in1k': _ttcfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/seresnet50_ra_224-8efdb4bb.pth'), 'seresnet50t.untrained': _ttcfg(first_conv='conv1.0'), 'seresnet101.untrained': _ttcfg(), 'seresnet152.untrained': _ttcfg(), 'seresnet152d.ra2_in1k': _ttcfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/seresnet152d_ra2-04464dd2.pth', first_conv='conv1.0', input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=0.95, test_crop_pct=1.0, test_input_size=(3, 320, 320)), 'seresnet200d.untrained': _ttcfg(first_conv='conv1.0', input_size=(3, 256, 256), pool_size=(8, 8)), 'seresnet269d.untrained': _ttcfg(first_conv='conv1.0', input_size=(3, 256, 256), pool_size=(8, 8)), 'seresnext26d_32x4d.bt_in1k': _ttcfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/seresnext26d_32x4d-80fa48a3.pth', first_conv='conv1.0'), 'seresnext26t_32x4d.bt_in1k': _ttcfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/seresnext26tn_32x4d-569cb627.pth', first_conv='conv1.0'), 'seresnext50_32x4d.racm_in1k': _ttcfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/seresnext50_32x4d_racm-a304a460.pth'), 'seresnext101_32x4d.untrained': _ttcfg(), 'seresnext101_32x8d.ah_in1k': _rcfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/seresnext101_32x8d_ah-e6bc4c0a.pth'), 'seresnext101d_32x8d.ah_in1k': _rcfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/seresnext101d_32x8d_ah-191d7b94.pth', first_conv='conv1.0'), 'resnetaa50d.sw_in12k_ft_in1k': _ttcfg(hf_hub_id='timm/', first_conv='conv1.0', crop_pct=0.95, test_crop_pct=1.0), 'resnetaa101d.sw_in12k_ft_in1k': _ttcfg(hf_hub_id='timm/', first_conv='conv1.0', crop_pct=0.95, test_crop_pct=1.0), 'seresnextaa101d_32x8d.sw_in12k_ft_in1k_288': _ttcfg(hf_hub_id='timm/', crop_pct=0.95, input_size=(3, 288, 288), pool_size=(9, 9), test_input_size=(3, 320, 320), test_crop_pct=1.0, first_conv='conv1.0'), 'seresnextaa101d_32x8d.sw_in12k_ft_in1k': _ttcfg(hf_hub_id='timm/', first_conv='conv1.0', test_crop_pct=1.0), 'seresnextaa201d_32x8d.sw_in12k_ft_in1k_384': _cfg(hf_hub_id='timm/', interpolation='bicubic', first_conv='conv1.0', pool_size=(12, 12), input_size=(3, 384, 384), crop_pct=1.0), 'seresnextaa201d_32x8d.sw_in12k': _cfg(hf_hub_id='timm/', num_classes=11821, interpolation='bicubic', first_conv='conv1.0', crop_pct=0.95, input_size=(3, 320, 320), pool_size=(10, 10), test_input_size=(3, 384, 384), test_crop_pct=1.0), 'resnetaa50d.sw_in12k': _ttcfg(hf_hub_id='timm/', num_classes=11821, first_conv='conv1.0', crop_pct=0.95, test_crop_pct=1.0), 'resnetaa50d.d_in12k': _ttcfg(hf_hub_id='timm/', num_classes=11821, first_conv='conv1.0', crop_pct=0.95, test_crop_pct=1.0), 'resnetaa101d.sw_in12k': _ttcfg(hf_hub_id='timm/', num_classes=11821, first_conv='conv1.0', crop_pct=0.95, test_crop_pct=1.0), 'seresnextaa101d_32x8d.sw_in12k': _ttcfg(hf_hub_id='timm/', num_classes=11821, first_conv='conv1.0', crop_pct=0.95, test_crop_pct=1.0), 'resnetblur18.untrained': _ttcfg(), 'resnetblur50.bt_in1k': _ttcfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnetblur50-84f4748f.pth'), 'resnetblur50d.untrained': _ttcfg(first_conv='conv1.0'), 'resnetblur101d.untrained': _ttcfg(first_conv='conv1.0'), 'resnetaa34d.untrained': _ttcfg(first_conv='conv1.0'), 'resnetaa50.a1h_in1k': _rcfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/resnetaa50_a1h-4cf422b3.pth'), 'seresnetaa50d.untrained': _ttcfg(first_conv='conv1.0'), 'seresnextaa101d_32x8d.ah_in1k': _rcfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/seresnextaa101d_32x8d_ah-83c8ae12.pth', first_conv='conv1.0'), 'resnetrs50.tf_in1k': _cfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rs-weights/resnetrs50_ema-6b53758b.pth', input_size=(3, 160, 160), pool_size=(5, 5), crop_pct=0.91, test_input_size=(3, 224, 224), interpolation='bicubic', first_conv='conv1.0'), 'resnetrs101.tf_in1k': _cfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rs-weights/resnetrs101_i192_ema-1509bbf6.pth', input_size=(3, 192, 192), pool_size=(6, 6), crop_pct=0.94, test_input_size=(3, 288, 288), interpolation='bicubic', first_conv='conv1.0'), 'resnetrs152.tf_in1k': _cfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rs-weights/resnetrs152_i256_ema-a9aff7f9.pth', input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0, test_input_size=(3, 320, 320), interpolation='bicubic', first_conv='conv1.0'), 'resnetrs200.tf_in1k': _cfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/resnetrs200_c-6b698b88.pth', input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0, test_input_size=(3, 320, 320), interpolation='bicubic', first_conv='conv1.0'), 'resnetrs270.tf_in1k': _cfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rs-weights/resnetrs270_ema-b40e674c.pth', input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0, test_input_size=(3, 352, 352), interpolation='bicubic', first_conv='conv1.0'), 'resnetrs350.tf_in1k': _cfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rs-weights/resnetrs350_i256_ema-5a1aa8f1.pth', input_size=(3, 288, 288), pool_size=(9, 9), crop_pct=1.0, test_input_size=(3, 384, 384), interpolation='bicubic', first_conv='conv1.0'), 'resnetrs420.tf_in1k': _cfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rs-weights/resnetrs420_ema-972dee69.pth', input_size=(3, 320, 320), pool_size=(10, 10), crop_pct=1.0, test_input_size=(3, 416, 416), interpolation='bicubic', first_conv='conv1.0'), 'resnet18.gluon_in1k': _gcfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnet18_v1b-0757602b.pth'), 'resnet34.gluon_in1k': _gcfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnet34_v1b-c6d82d59.pth'), 'resnet50.gluon_in1k': _gcfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnet50_v1b-0ebe02e2.pth'), 'resnet101.gluon_in1k': _gcfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnet101_v1b-3b017079.pth'), 'resnet152.gluon_in1k': _gcfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnet152_v1b-c1edb0dd.pth'), 'resnet50c.gluon_in1k': _gcfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnet50_v1c-48092f55.pth', first_conv='conv1.0'), 'resnet101c.gluon_in1k': _gcfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnet101_v1c-1f26822a.pth', first_conv='conv1.0'), 'resnet152c.gluon_in1k': _gcfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnet152_v1c-a3bb0b98.pth', first_conv='conv1.0'), 'resnet50d.gluon_in1k': _gcfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnet50_v1d-818a1b1b.pth', first_conv='conv1.0'), 'resnet101d.gluon_in1k': _gcfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnet101_v1d-0f9c8644.pth', first_conv='conv1.0'), 'resnet152d.gluon_in1k': _gcfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnet152_v1d-bd354e12.pth', first_conv='conv1.0'), 'resnet50s.gluon_in1k': _gcfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnet50_v1s-1762acc0.pth', first_conv='conv1.0'), 'resnet101s.gluon_in1k': _gcfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnet101_v1s-60fe0cc1.pth', first_conv='conv1.0'), 'resnet152s.gluon_in1k': _gcfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnet152_v1s-dcc41b81.pth', first_conv='conv1.0'), 'resnext50_32x4d.gluon_in1k': _gcfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnext50_32x4d-e6a097c1.pth'), 'resnext101_32x4d.gluon_in1k': _gcfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnext101_32x4d-b253c8c4.pth'), 'resnext101_64x4d.gluon_in1k': _gcfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnext101_64x4d-f9a8e184.pth'), 'seresnext50_32x4d.gluon_in1k': _gcfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_seresnext50_32x4d-90cf2d6e.pth'), 'seresnext101_32x4d.gluon_in1k': _gcfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_seresnext101_32x4d-cf52900d.pth'), 'seresnext101_64x4d.gluon_in1k': _gcfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_seresnext101_64x4d-f9926f93.pth'), 'senet154.gluon_in1k': _gcfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_senet154-70a1a3c0.pth', first_conv='conv1.0')}) + +@register_model +def resnet10t(pretrained: bool=False, **kwargs) -> ResNet: + model_args = dict(block=BasicBlock, layers=(1, 1, 1, 1), stem_width=32, stem_type='deep_tiered', avg_down=True) + return _create_resnet('resnet10t', pretrained, **dict(model_args, **kwargs)) + +@register_model +def resnet14t(pretrained: bool=False, **kwargs) -> ResNet: + model_args = dict(block=Bottleneck, layers=(1, 1, 1, 1), stem_width=32, stem_type='deep_tiered', avg_down=True) + return _create_resnet('resnet14t', pretrained, **dict(model_args, **kwargs)) + +@register_model +def resnet18(pretrained: bool=False, **kwargs) -> ResNet: + model_args = dict(block=BasicBlock, layers=(2, 2, 2, 2)) + return _create_resnet('resnet18', pretrained, **dict(model_args, **kwargs)) + +@register_model +def resnet18d(pretrained: bool=False, **kwargs) -> ResNet: + model_args = dict(block=BasicBlock, layers=(2, 2, 2, 2), stem_width=32, stem_type='deep', avg_down=True) + return _create_resnet('resnet18d', pretrained, **dict(model_args, **kwargs)) + +@register_model +def resnet34(pretrained: bool=False, **kwargs) -> ResNet: + model_args = dict(block=BasicBlock, layers=(3, 4, 6, 3)) + return _create_resnet('resnet34', pretrained, **dict(model_args, **kwargs)) + +@register_model +def resnet34d(pretrained: bool=False, **kwargs) -> ResNet: + model_args = dict(block=BasicBlock, layers=(3, 4, 6, 3), stem_width=32, stem_type='deep', avg_down=True) + return _create_resnet('resnet34d', pretrained, **dict(model_args, **kwargs)) + +@register_model +def resnet26(pretrained: bool=False, **kwargs) -> ResNet: + model_args = dict(block=Bottleneck, layers=(2, 2, 2, 2)) + return _create_resnet('resnet26', pretrained, **dict(model_args, **kwargs)) + +@register_model +def resnet26t(pretrained: bool=False, **kwargs) -> ResNet: + model_args = dict(block=Bottleneck, layers=(2, 2, 2, 2), stem_width=32, stem_type='deep_tiered', avg_down=True) + return _create_resnet('resnet26t', pretrained, **dict(model_args, **kwargs)) + +@register_model +def resnet26d(pretrained: bool=False, **kwargs) -> ResNet: + model_args = dict(block=Bottleneck, layers=(2, 2, 2, 2), stem_width=32, stem_type='deep', avg_down=True) + return _create_resnet('resnet26d', pretrained, **dict(model_args, **kwargs)) + +@register_model +def resnet50(pretrained: bool=False, **kwargs) -> ResNet: + model_args = dict(block=Bottleneck, layers=(3, 4, 6, 3)) + return _create_resnet('resnet50', pretrained, **dict(model_args, **kwargs)) + +@register_model +def resnet50c(pretrained: bool=False, **kwargs) -> ResNet: + model_args = dict(block=Bottleneck, layers=(3, 4, 6, 3), stem_width=32, stem_type='deep') + return _create_resnet('resnet50c', pretrained, **dict(model_args, **kwargs)) + +@register_model +def resnet50d(pretrained: bool=False, **kwargs) -> ResNet: + model_args = dict(block=Bottleneck, layers=(3, 4, 6, 3), stem_width=32, stem_type='deep', avg_down=True) + return _create_resnet('resnet50d', pretrained, **dict(model_args, **kwargs)) + +@register_model +def resnet50s(pretrained: bool=False, **kwargs) -> ResNet: + model_args = dict(block=Bottleneck, layers=(3, 4, 6, 3), stem_width=64, stem_type='deep') + return _create_resnet('resnet50s', pretrained, **dict(model_args, **kwargs)) + +@register_model +def resnet50t(pretrained: bool=False, **kwargs) -> ResNet: + model_args = dict(block=Bottleneck, layers=(3, 4, 6, 3), stem_width=32, stem_type='deep_tiered', avg_down=True) + return _create_resnet('resnet50t', pretrained, **dict(model_args, **kwargs)) + +@register_model +def resnet101(pretrained: bool=False, **kwargs) -> ResNet: + model_args = dict(block=Bottleneck, layers=(3, 4, 23, 3)) + return _create_resnet('resnet101', pretrained, **dict(model_args, **kwargs)) + +@register_model +def resnet101c(pretrained: bool=False, **kwargs) -> ResNet: + model_args = dict(block=Bottleneck, layers=(3, 4, 23, 3), stem_width=32, stem_type='deep') + return _create_resnet('resnet101c', pretrained, **dict(model_args, **kwargs)) + +@register_model +def resnet101d(pretrained: bool=False, **kwargs) -> ResNet: + model_args = dict(block=Bottleneck, layers=(3, 4, 23, 3), stem_width=32, stem_type='deep', avg_down=True) + return _create_resnet('resnet101d', pretrained, **dict(model_args, **kwargs)) + +@register_model +def resnet101s(pretrained: bool=False, **kwargs) -> ResNet: + model_args = dict(block=Bottleneck, layers=(3, 4, 23, 3), stem_width=64, stem_type='deep') + return _create_resnet('resnet101s', pretrained, **dict(model_args, **kwargs)) + +@register_model +def resnet152(pretrained: bool=False, **kwargs) -> ResNet: + model_args = dict(block=Bottleneck, layers=(3, 8, 36, 3)) + return _create_resnet('resnet152', pretrained, **dict(model_args, **kwargs)) + +@register_model +def resnet152c(pretrained: bool=False, **kwargs) -> ResNet: + model_args = dict(block=Bottleneck, layers=(3, 8, 36, 3), stem_width=32, stem_type='deep') + return _create_resnet('resnet152c', pretrained, **dict(model_args, **kwargs)) + +@register_model +def resnet152d(pretrained: bool=False, **kwargs) -> ResNet: + model_args = dict(block=Bottleneck, layers=(3, 8, 36, 3), stem_width=32, stem_type='deep', avg_down=True) + return _create_resnet('resnet152d', pretrained, **dict(model_args, **kwargs)) + +@register_model +def resnet152s(pretrained: bool=False, **kwargs) -> ResNet: + model_args = dict(block=Bottleneck, layers=(3, 8, 36, 3), stem_width=64, stem_type='deep') + return _create_resnet('resnet152s', pretrained, **dict(model_args, **kwargs)) + +@register_model +def resnet200(pretrained: bool=False, **kwargs) -> ResNet: + model_args = dict(block=Bottleneck, layers=(3, 24, 36, 3)) + return _create_resnet('resnet200', pretrained, **dict(model_args, **kwargs)) + +@register_model +def resnet200d(pretrained: bool=False, **kwargs) -> ResNet: + model_args = dict(block=Bottleneck, layers=(3, 24, 36, 3), stem_width=32, stem_type='deep', avg_down=True) + return _create_resnet('resnet200d', pretrained, **dict(model_args, **kwargs)) + +@register_model +def wide_resnet50_2(pretrained: bool=False, **kwargs) -> ResNet: + model_args = dict(block=Bottleneck, layers=(3, 4, 6, 3), base_width=128) + return _create_resnet('wide_resnet50_2', pretrained, **dict(model_args, **kwargs)) + +@register_model +def wide_resnet101_2(pretrained: bool=False, **kwargs) -> ResNet: + model_args = dict(block=Bottleneck, layers=(3, 4, 23, 3), base_width=128) + return _create_resnet('wide_resnet101_2', pretrained, **dict(model_args, **kwargs)) + +@register_model +def resnet50_gn(pretrained: bool=False, **kwargs) -> ResNet: + model_args = dict(block=Bottleneck, layers=(3, 4, 6, 3), norm_layer='groupnorm') + return _create_resnet('resnet50_gn', pretrained, **dict(model_args, **kwargs)) + +@register_model +def resnext50_32x4d(pretrained: bool=False, **kwargs) -> ResNet: + model_args = dict(block=Bottleneck, layers=(3, 4, 6, 3), cardinality=32, base_width=4) + return _create_resnet('resnext50_32x4d', pretrained, **dict(model_args, **kwargs)) + +@register_model +def resnext50d_32x4d(pretrained: bool=False, **kwargs) -> ResNet: + model_args = dict(block=Bottleneck, layers=(3, 4, 6, 3), cardinality=32, base_width=4, stem_width=32, stem_type='deep', avg_down=True) + return _create_resnet('resnext50d_32x4d', pretrained, **dict(model_args, **kwargs)) + +@register_model +def resnext101_32x4d(pretrained: bool=False, **kwargs) -> ResNet: + model_args = dict(block=Bottleneck, layers=(3, 4, 23, 3), cardinality=32, base_width=4) + return _create_resnet('resnext101_32x4d', pretrained, **dict(model_args, **kwargs)) + +@register_model +def resnext101_32x8d(pretrained: bool=False, **kwargs) -> ResNet: + model_args = dict(block=Bottleneck, layers=(3, 4, 23, 3), cardinality=32, base_width=8) + return _create_resnet('resnext101_32x8d', pretrained, **dict(model_args, **kwargs)) + +@register_model +def resnext101_32x16d(pretrained: bool=False, **kwargs) -> ResNet: + model_args = dict(block=Bottleneck, layers=(3, 4, 23, 3), cardinality=32, base_width=16) + return _create_resnet('resnext101_32x16d', pretrained, **dict(model_args, **kwargs)) + +@register_model +def resnext101_32x32d(pretrained: bool=False, **kwargs) -> ResNet: + model_args = dict(block=Bottleneck, layers=(3, 4, 23, 3), cardinality=32, base_width=32) + return _create_resnet('resnext101_32x32d', pretrained, **dict(model_args, **kwargs)) + +@register_model +def resnext101_64x4d(pretrained: bool=False, **kwargs) -> ResNet: + model_args = dict(block=Bottleneck, layers=(3, 4, 23, 3), cardinality=64, base_width=4) + return _create_resnet('resnext101_64x4d', pretrained, **dict(model_args, **kwargs)) + +@register_model +def ecaresnet26t(pretrained: bool=False, **kwargs) -> ResNet: + model_args = dict(block=Bottleneck, layers=(2, 2, 2, 2), stem_width=32, stem_type='deep_tiered', avg_down=True, block_args=dict(attn_layer='eca')) + return _create_resnet('ecaresnet26t', pretrained, **dict(model_args, **kwargs)) + +@register_model +def ecaresnet50d(pretrained: bool=False, **kwargs) -> ResNet: + model_args = dict(block=Bottleneck, layers=(3, 4, 6, 3), stem_width=32, stem_type='deep', avg_down=True, block_args=dict(attn_layer='eca')) + return _create_resnet('ecaresnet50d', pretrained, **dict(model_args, **kwargs)) + +@register_model +def ecaresnet50d_pruned(pretrained: bool=False, **kwargs) -> ResNet: + model_args = dict(block=Bottleneck, layers=(3, 4, 6, 3), stem_width=32, stem_type='deep', avg_down=True, block_args=dict(attn_layer='eca')) + return _create_resnet('ecaresnet50d_pruned', pretrained, pruned=True, **dict(model_args, **kwargs)) + +@register_model +def ecaresnet50t(pretrained: bool=False, **kwargs) -> ResNet: + model_args = dict(block=Bottleneck, layers=(3, 4, 6, 3), stem_width=32, stem_type='deep_tiered', avg_down=True, block_args=dict(attn_layer='eca')) + return _create_resnet('ecaresnet50t', pretrained, **dict(model_args, **kwargs)) + +@register_model +def ecaresnetlight(pretrained: bool=False, **kwargs) -> ResNet: + model_args = dict(block=Bottleneck, layers=(1, 1, 11, 3), stem_width=32, avg_down=True, block_args=dict(attn_layer='eca')) + return _create_resnet('ecaresnetlight', pretrained, **dict(model_args, **kwargs)) + +@register_model +def ecaresnet101d(pretrained: bool=False, **kwargs) -> ResNet: + model_args = dict(block=Bottleneck, layers=(3, 4, 23, 3), stem_width=32, stem_type='deep', avg_down=True, block_args=dict(attn_layer='eca')) + return _create_resnet('ecaresnet101d', pretrained, **dict(model_args, **kwargs)) + +@register_model +def ecaresnet101d_pruned(pretrained: bool=False, **kwargs) -> ResNet: + model_args = dict(block=Bottleneck, layers=(3, 4, 23, 3), stem_width=32, stem_type='deep', avg_down=True, block_args=dict(attn_layer='eca')) + return _create_resnet('ecaresnet101d_pruned', pretrained, pruned=True, **dict(model_args, **kwargs)) + +@register_model +def ecaresnet200d(pretrained: bool=False, **kwargs) -> ResNet: + model_args = dict(block=Bottleneck, layers=(3, 24, 36, 3), stem_width=32, stem_type='deep', avg_down=True, block_args=dict(attn_layer='eca')) + return _create_resnet('ecaresnet200d', pretrained, **dict(model_args, **kwargs)) + +@register_model +def ecaresnet269d(pretrained: bool=False, **kwargs) -> ResNet: + model_args = dict(block=Bottleneck, layers=(3, 30, 48, 8), stem_width=32, stem_type='deep', avg_down=True, block_args=dict(attn_layer='eca')) + return _create_resnet('ecaresnet269d', pretrained, **dict(model_args, **kwargs)) + +@register_model +def ecaresnext26t_32x4d(pretrained: bool=False, **kwargs) -> ResNet: + model_args = dict(block=Bottleneck, layers=(2, 2, 2, 2), cardinality=32, base_width=4, stem_width=32, stem_type='deep_tiered', avg_down=True, block_args=dict(attn_layer='eca')) + return _create_resnet('ecaresnext26t_32x4d', pretrained, **dict(model_args, **kwargs)) + +@register_model +def ecaresnext50t_32x4d(pretrained: bool=False, **kwargs) -> ResNet: + model_args = dict(block=Bottleneck, layers=(2, 2, 2, 2), cardinality=32, base_width=4, stem_width=32, stem_type='deep_tiered', avg_down=True, block_args=dict(attn_layer='eca')) + return _create_resnet('ecaresnext50t_32x4d', pretrained, **dict(model_args, **kwargs)) + +@register_model +def seresnet18(pretrained: bool=False, **kwargs) -> ResNet: + model_args = dict(block=BasicBlock, layers=(2, 2, 2, 2), block_args=dict(attn_layer='se')) + return _create_resnet('seresnet18', pretrained, **dict(model_args, **kwargs)) + +@register_model +def seresnet34(pretrained: bool=False, **kwargs) -> ResNet: + model_args = dict(block=BasicBlock, layers=(3, 4, 6, 3), block_args=dict(attn_layer='se')) + return _create_resnet('seresnet34', pretrained, **dict(model_args, **kwargs)) + +@register_model +def seresnet50(pretrained: bool=False, **kwargs) -> ResNet: + model_args = dict(block=Bottleneck, layers=(3, 4, 6, 3), block_args=dict(attn_layer='se')) + return _create_resnet('seresnet50', pretrained, **dict(model_args, **kwargs)) + +@register_model +def seresnet50t(pretrained: bool=False, **kwargs) -> ResNet: + model_args = dict(block=Bottleneck, layers=(3, 4, 6, 3), stem_width=32, stem_type='deep_tiered', avg_down=True, block_args=dict(attn_layer='se')) + return _create_resnet('seresnet50t', pretrained, **dict(model_args, **kwargs)) + +@register_model +def seresnet101(pretrained: bool=False, **kwargs) -> ResNet: + model_args = dict(block=Bottleneck, layers=(3, 4, 23, 3), block_args=dict(attn_layer='se')) + return _create_resnet('seresnet101', pretrained, **dict(model_args, **kwargs)) + +@register_model +def seresnet152(pretrained: bool=False, **kwargs) -> ResNet: + model_args = dict(block=Bottleneck, layers=(3, 8, 36, 3), block_args=dict(attn_layer='se')) + return _create_resnet('seresnet152', pretrained, **dict(model_args, **kwargs)) + +@register_model +def seresnet152d(pretrained: bool=False, **kwargs) -> ResNet: + model_args = dict(block=Bottleneck, layers=(3, 8, 36, 3), stem_width=32, stem_type='deep', avg_down=True, block_args=dict(attn_layer='se')) + return _create_resnet('seresnet152d', pretrained, **dict(model_args, **kwargs)) + +@register_model +def seresnet200d(pretrained: bool=False, **kwargs) -> ResNet: + model_args = dict(block=Bottleneck, layers=(3, 24, 36, 3), stem_width=32, stem_type='deep', avg_down=True, block_args=dict(attn_layer='se')) + return _create_resnet('seresnet200d', pretrained, **dict(model_args, **kwargs)) + +@register_model +def seresnet269d(pretrained: bool=False, **kwargs) -> ResNet: + model_args = dict(block=Bottleneck, layers=(3, 30, 48, 8), stem_width=32, stem_type='deep', avg_down=True, block_args=dict(attn_layer='se')) + return _create_resnet('seresnet269d', pretrained, **dict(model_args, **kwargs)) + +@register_model +def seresnext26d_32x4d(pretrained: bool=False, **kwargs) -> ResNet: + model_args = dict(block=Bottleneck, layers=(2, 2, 2, 2), cardinality=32, base_width=4, stem_width=32, stem_type='deep', avg_down=True, block_args=dict(attn_layer='se')) + return _create_resnet('seresnext26d_32x4d', pretrained, **dict(model_args, **kwargs)) + +@register_model +def seresnext26t_32x4d(pretrained: bool=False, **kwargs) -> ResNet: + model_args = dict(block=Bottleneck, layers=(2, 2, 2, 2), cardinality=32, base_width=4, stem_width=32, stem_type='deep_tiered', avg_down=True, block_args=dict(attn_layer='se')) + return _create_resnet('seresnext26t_32x4d', pretrained, **dict(model_args, **kwargs)) + +@register_model +def seresnext50_32x4d(pretrained: bool=False, **kwargs) -> ResNet: + model_args = dict(block=Bottleneck, layers=(3, 4, 6, 3), cardinality=32, base_width=4, block_args=dict(attn_layer='se')) + return _create_resnet('seresnext50_32x4d', pretrained, **dict(model_args, **kwargs)) + +@register_model +def seresnext101_32x4d(pretrained: bool=False, **kwargs) -> ResNet: + model_args = dict(block=Bottleneck, layers=(3, 4, 23, 3), cardinality=32, base_width=4, block_args=dict(attn_layer='se')) + return _create_resnet('seresnext101_32x4d', pretrained, **dict(model_args, **kwargs)) + +@register_model +def seresnext101_32x8d(pretrained: bool=False, **kwargs) -> ResNet: + model_args = dict(block=Bottleneck, layers=(3, 4, 23, 3), cardinality=32, base_width=8, block_args=dict(attn_layer='se')) + return _create_resnet('seresnext101_32x8d', pretrained, **dict(model_args, **kwargs)) + +@register_model +def seresnext101d_32x8d(pretrained: bool=False, **kwargs) -> ResNet: + model_args = dict(block=Bottleneck, layers=(3, 4, 23, 3), cardinality=32, base_width=8, stem_width=32, stem_type='deep', avg_down=True, block_args=dict(attn_layer='se')) + return _create_resnet('seresnext101d_32x8d', pretrained, **dict(model_args, **kwargs)) + +@register_model +def seresnext101_64x4d(pretrained: bool=False, **kwargs) -> ResNet: + model_args = dict(block=Bottleneck, layers=(3, 4, 23, 3), cardinality=64, base_width=4, block_args=dict(attn_layer='se')) + return _create_resnet('seresnext101_64x4d', pretrained, **dict(model_args, **kwargs)) + +@register_model +def senet154(pretrained: bool=False, **kwargs) -> ResNet: + model_args = dict(block=Bottleneck, layers=(3, 8, 36, 3), cardinality=64, base_width=4, stem_type='deep', down_kernel_size=3, block_reduce_first=2, block_args=dict(attn_layer='se')) + return _create_resnet('senet154', pretrained, **dict(model_args, **kwargs)) + +@register_model +def resnetblur18(pretrained: bool=False, **kwargs) -> ResNet: + model_args = dict(block=BasicBlock, layers=(2, 2, 2, 2), aa_layer=BlurPool2d) + return _create_resnet('resnetblur18', pretrained, **dict(model_args, **kwargs)) + +@register_model +def resnetblur50(pretrained: bool=False, **kwargs) -> ResNet: + model_args = dict(block=Bottleneck, layers=(3, 4, 6, 3), aa_layer=BlurPool2d) + return _create_resnet('resnetblur50', pretrained, **dict(model_args, **kwargs)) + +@register_model +def resnetblur50d(pretrained: bool=False, **kwargs) -> ResNet: + model_args = dict(block=Bottleneck, layers=(3, 4, 6, 3), aa_layer=BlurPool2d, stem_width=32, stem_type='deep', avg_down=True) + return _create_resnet('resnetblur50d', pretrained, **dict(model_args, **kwargs)) + +@register_model +def resnetblur101d(pretrained: bool=False, **kwargs) -> ResNet: + model_args = dict(block=Bottleneck, layers=(3, 4, 23, 3), aa_layer=BlurPool2d, stem_width=32, stem_type='deep', avg_down=True) + return _create_resnet('resnetblur101d', pretrained, **dict(model_args, **kwargs)) + +@register_model +def resnetaa34d(pretrained: bool=False, **kwargs) -> ResNet: + model_args = dict(block=BasicBlock, layers=(3, 4, 6, 3), aa_layer=nn.AvgPool2d, stem_width=32, stem_type='deep', avg_down=True) + return _create_resnet('resnetaa34d', pretrained, **dict(model_args, **kwargs)) + +@register_model +def resnetaa50(pretrained: bool=False, **kwargs) -> ResNet: + model_args = dict(block=Bottleneck, layers=(3, 4, 6, 3), aa_layer=nn.AvgPool2d) + return _create_resnet('resnetaa50', pretrained, **dict(model_args, **kwargs)) + +@register_model +def resnetaa50d(pretrained: bool=False, **kwargs) -> ResNet: + model_args = dict(block=Bottleneck, layers=(3, 4, 6, 3), aa_layer=nn.AvgPool2d, stem_width=32, stem_type='deep', avg_down=True) + return _create_resnet('resnetaa50d', pretrained, **dict(model_args, **kwargs)) + +@register_model +def resnetaa101d(pretrained: bool=False, **kwargs) -> ResNet: + model_args = dict(block=Bottleneck, layers=(3, 4, 23, 3), aa_layer=nn.AvgPool2d, stem_width=32, stem_type='deep', avg_down=True) + return _create_resnet('resnetaa101d', pretrained, **dict(model_args, **kwargs)) + +@register_model +def seresnetaa50d(pretrained: bool=False, **kwargs) -> ResNet: + model_args = dict(block=Bottleneck, layers=(3, 4, 6, 3), aa_layer=nn.AvgPool2d, stem_width=32, stem_type='deep', avg_down=True, block_args=dict(attn_layer='se')) + return _create_resnet('seresnetaa50d', pretrained, **dict(model_args, **kwargs)) + +@register_model +def seresnextaa101d_32x8d(pretrained: bool=False, **kwargs) -> ResNet: + model_args = dict(block=Bottleneck, layers=(3, 4, 23, 3), cardinality=32, base_width=8, stem_width=32, stem_type='deep', avg_down=True, aa_layer=nn.AvgPool2d, block_args=dict(attn_layer='se')) + return _create_resnet('seresnextaa101d_32x8d', pretrained, **dict(model_args, **kwargs)) + +@register_model +def seresnextaa201d_32x8d(pretrained: bool=False, **kwargs): + model_args = dict(block=Bottleneck, layers=(3, 24, 36, 4), cardinality=32, base_width=8, stem_width=64, stem_type='deep', avg_down=True, aa_layer=nn.AvgPool2d, block_args=dict(attn_layer='se')) + return _create_resnet('seresnextaa201d_32x8d', pretrained, **dict(model_args, **kwargs)) + +@register_model +def resnetrs50(pretrained: bool=False, **kwargs) -> ResNet: + attn_layer = partial(get_attn('se'), rd_ratio=0.25) + model_args = dict(block=Bottleneck, layers=(3, 4, 6, 3), stem_width=32, stem_type='deep', replace_stem_pool=True, avg_down=True, block_args=dict(attn_layer=attn_layer)) + return _create_resnet('resnetrs50', pretrained, **dict(model_args, **kwargs)) + +@register_model +def resnetrs101(pretrained: bool=False, **kwargs) -> ResNet: + attn_layer = partial(get_attn('se'), rd_ratio=0.25) + model_args = dict(block=Bottleneck, layers=(3, 4, 23, 3), stem_width=32, stem_type='deep', replace_stem_pool=True, avg_down=True, block_args=dict(attn_layer=attn_layer)) + return _create_resnet('resnetrs101', pretrained, **dict(model_args, **kwargs)) + +@register_model +def resnetrs152(pretrained: bool=False, **kwargs) -> ResNet: + attn_layer = partial(get_attn('se'), rd_ratio=0.25) + model_args = dict(block=Bottleneck, layers=(3, 8, 36, 3), stem_width=32, stem_type='deep', replace_stem_pool=True, avg_down=True, block_args=dict(attn_layer=attn_layer)) + return _create_resnet('resnetrs152', pretrained, **dict(model_args, **kwargs)) + +@register_model +def resnetrs200(pretrained: bool=False, **kwargs) -> ResNet: + attn_layer = partial(get_attn('se'), rd_ratio=0.25) + model_args = dict(block=Bottleneck, layers=(3, 24, 36, 3), stem_width=32, stem_type='deep', replace_stem_pool=True, avg_down=True, block_args=dict(attn_layer=attn_layer)) + return _create_resnet('resnetrs200', pretrained, **dict(model_args, **kwargs)) + +@register_model +def resnetrs270(pretrained: bool=False, **kwargs) -> ResNet: + attn_layer = partial(get_attn('se'), rd_ratio=0.25) + model_args = dict(block=Bottleneck, layers=(4, 29, 53, 4), stem_width=32, stem_type='deep', replace_stem_pool=True, avg_down=True, block_args=dict(attn_layer=attn_layer)) + return _create_resnet('resnetrs270', pretrained, **dict(model_args, **kwargs)) + +@register_model +def resnetrs350(pretrained: bool=False, **kwargs) -> ResNet: + attn_layer = partial(get_attn('se'), rd_ratio=0.25) + model_args = dict(block=Bottleneck, layers=(4, 36, 72, 4), stem_width=32, stem_type='deep', replace_stem_pool=True, avg_down=True, block_args=dict(attn_layer=attn_layer)) + return _create_resnet('resnetrs350', pretrained, **dict(model_args, **kwargs)) + +@register_model +def resnetrs420(pretrained: bool=False, **kwargs) -> ResNet: + attn_layer = partial(get_attn('se'), rd_ratio=0.25) + model_args = dict(block=Bottleneck, layers=(4, 44, 87, 4), stem_width=32, stem_type='deep', replace_stem_pool=True, avg_down=True, block_args=dict(attn_layer=attn_layer)) + return _create_resnet('resnetrs420', pretrained, **dict(model_args, **kwargs)) +register_model_deprecations(__name__, {'tv_resnet34': 'resnet34.tv_in1k', 'tv_resnet50': 'resnet50.tv_in1k', 'tv_resnet101': 'resnet101.tv_in1k', 'tv_resnet152': 'resnet152.tv_in1k', 'tv_resnext50_32x4d': 'resnext50_32x4d.tv_in1k', 'ig_resnext101_32x8d': 'resnext101_32x8d.fb_wsl_ig1b_ft_in1k', 'ig_resnext101_32x16d': 'resnext101_32x8d.fb_wsl_ig1b_ft_in1k', 'ig_resnext101_32x32d': 'resnext101_32x8d.fb_wsl_ig1b_ft_in1k', 'ig_resnext101_32x48d': 'resnext101_32x8d.fb_wsl_ig1b_ft_in1k', 'ssl_resnet18': 'resnet18.fb_ssl_yfcc100m_ft_in1k', 'ssl_resnet50': 'resnet50.fb_ssl_yfcc100m_ft_in1k', 'ssl_resnext50_32x4d': 'resnext50_32x4d.fb_ssl_yfcc100m_ft_in1k', 'ssl_resnext101_32x4d': 'resnext101_32x4d.fb_ssl_yfcc100m_ft_in1k', 'ssl_resnext101_32x8d': 'resnext101_32x8d.fb_ssl_yfcc100m_ft_in1k', 'ssl_resnext101_32x16d': 'resnext101_32x16d.fb_ssl_yfcc100m_ft_in1k', 'swsl_resnet18': 'resnet18.fb_swsl_ig1b_ft_in1k', 'swsl_resnet50': 'resnet50.fb_swsl_ig1b_ft_in1k', 'swsl_resnext50_32x4d': 'resnext50_32x4d.fb_swsl_ig1b_ft_in1k', 'swsl_resnext101_32x4d': 'resnext101_32x4d.fb_swsl_ig1b_ft_in1k', 'swsl_resnext101_32x8d': 'resnext101_32x8d.fb_swsl_ig1b_ft_in1k', 'swsl_resnext101_32x16d': 'resnext101_32x16d.fb_swsl_ig1b_ft_in1k', 'gluon_resnet18_v1b': 'resnet18.gluon_in1k', 'gluon_resnet34_v1b': 'resnet34.gluon_in1k', 'gluon_resnet50_v1b': 'resnet50.gluon_in1k', 'gluon_resnet101_v1b': 'resnet101.gluon_in1k', 'gluon_resnet152_v1b': 'resnet152.gluon_in1k', 'gluon_resnet50_v1c': 'resnet50c.gluon_in1k', 'gluon_resnet101_v1c': 'resnet101c.gluon_in1k', 'gluon_resnet152_v1c': 'resnet152c.gluon_in1k', 'gluon_resnet50_v1d': 'resnet50d.gluon_in1k', 'gluon_resnet101_v1d': 'resnet101d.gluon_in1k', 'gluon_resnet152_v1d': 'resnet152d.gluon_in1k', 'gluon_resnet50_v1s': 'resnet50s.gluon_in1k', 'gluon_resnet101_v1s': 'resnet101s.gluon_in1k', 'gluon_resnet152_v1s': 'resnet152s.gluon_in1k', 'gluon_resnext50_32x4d': 'resnext50_32x4d.gluon_in1k', 'gluon_resnext101_32x4d': 'resnext101_32x4d.gluon_in1k', 'gluon_resnext101_64x4d': 'resnext101_64x4d.gluon_in1k', 'gluon_seresnext50_32x4d': 'seresnext50_32x4d.gluon_in1k', 'gluon_seresnext101_32x4d': 'seresnext101_32x4d.gluon_in1k', 'gluon_seresnext101_64x4d': 'seresnext101_64x4d.gluon_in1k', 'gluon_senet154': 'senet154.gluon_in1k', 'seresnext26tn_32x4d': 'seresnext26t_32x4d'}) + +# File: pytorch-image-models-main/timm/models/resnetv2.py +"""""" +from collections import OrderedDict +from functools import partial +from typing import Optional +import torch +import torch.nn as nn +from timm.data import IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD +from timm.layers import GroupNormAct, BatchNormAct2d, EvoNorm2dS0, FilterResponseNormTlu2d, ClassifierHead, DropPath, AvgPool2dSame, create_pool2d, StdConv2d, create_conv2d, get_act_layer, get_norm_act_layer, make_divisible +from ._builder import build_model_with_cfg +from ._manipulate import checkpoint_seq, named_apply, adapt_input_conv +from ._registry import generate_default_cfgs, register_model, register_model_deprecations +__all__ = ['ResNetV2'] + +class PreActBottleneck(nn.Module): + + def __init__(self, in_chs, out_chs=None, bottle_ratio=0.25, stride=1, dilation=1, first_dilation=None, groups=1, act_layer=None, conv_layer=None, norm_layer=None, proj_layer=None, drop_path_rate=0.0): + super().__init__() + first_dilation = first_dilation or dilation + conv_layer = conv_layer or StdConv2d + norm_layer = norm_layer or partial(GroupNormAct, num_groups=32) + out_chs = out_chs or in_chs + mid_chs = make_divisible(out_chs * bottle_ratio) + if proj_layer is not None: + self.downsample = proj_layer(in_chs, out_chs, stride=stride, dilation=dilation, first_dilation=first_dilation, preact=True, conv_layer=conv_layer, norm_layer=norm_layer) + else: + self.downsample = None + self.norm1 = norm_layer(in_chs) + self.conv1 = conv_layer(in_chs, mid_chs, 1) + self.norm2 = norm_layer(mid_chs) + self.conv2 = conv_layer(mid_chs, mid_chs, 3, stride=stride, dilation=first_dilation, groups=groups) + self.norm3 = norm_layer(mid_chs) + self.conv3 = conv_layer(mid_chs, out_chs, 1) + self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0 else nn.Identity() + + def zero_init_last(self): + nn.init.zeros_(self.conv3.weight) + + def forward(self, x): + x_preact = self.norm1(x) + shortcut = x + if self.downsample is not None: + shortcut = self.downsample(x_preact) + x = self.conv1(x_preact) + x = self.conv2(self.norm2(x)) + x = self.conv3(self.norm3(x)) + x = self.drop_path(x) + return x + shortcut + +class Bottleneck(nn.Module): + + def __init__(self, in_chs, out_chs=None, bottle_ratio=0.25, stride=1, dilation=1, first_dilation=None, groups=1, act_layer=None, conv_layer=None, norm_layer=None, proj_layer=None, drop_path_rate=0.0): + super().__init__() + first_dilation = first_dilation or dilation + act_layer = act_layer or nn.ReLU + conv_layer = conv_layer or StdConv2d + norm_layer = norm_layer or partial(GroupNormAct, num_groups=32) + out_chs = out_chs or in_chs + mid_chs = make_divisible(out_chs * bottle_ratio) + if proj_layer is not None: + self.downsample = proj_layer(in_chs, out_chs, stride=stride, dilation=dilation, preact=False, conv_layer=conv_layer, norm_layer=norm_layer) + else: + self.downsample = None + self.conv1 = conv_layer(in_chs, mid_chs, 1) + self.norm1 = norm_layer(mid_chs) + self.conv2 = conv_layer(mid_chs, mid_chs, 3, stride=stride, dilation=first_dilation, groups=groups) + self.norm2 = norm_layer(mid_chs) + self.conv3 = conv_layer(mid_chs, out_chs, 1) + self.norm3 = norm_layer(out_chs, apply_act=False) + self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0 else nn.Identity() + self.act3 = act_layer(inplace=True) + + def zero_init_last(self): + if getattr(self.norm3, 'weight', None) is not None: + nn.init.zeros_(self.norm3.weight) + + def forward(self, x): + shortcut = x + if self.downsample is not None: + shortcut = self.downsample(x) + x = self.conv1(x) + x = self.norm1(x) + x = self.conv2(x) + x = self.norm2(x) + x = self.conv3(x) + x = self.norm3(x) + x = self.drop_path(x) + x = self.act3(x + shortcut) + return x + +class DownsampleConv(nn.Module): + + def __init__(self, in_chs, out_chs, stride=1, dilation=1, first_dilation=None, preact=True, conv_layer=None, norm_layer=None): + super(DownsampleConv, self).__init__() + self.conv = conv_layer(in_chs, out_chs, 1, stride=stride) + self.norm = nn.Identity() if preact else norm_layer(out_chs, apply_act=False) + + def forward(self, x): + return self.norm(self.conv(x)) + +class DownsampleAvg(nn.Module): + + def __init__(self, in_chs, out_chs, stride=1, dilation=1, first_dilation=None, preact=True, conv_layer=None, norm_layer=None): + super(DownsampleAvg, self).__init__() + avg_stride = stride if dilation == 1 else 1 + if stride > 1 or dilation > 1: + avg_pool_fn = AvgPool2dSame if avg_stride == 1 and dilation > 1 else nn.AvgPool2d + self.pool = avg_pool_fn(2, avg_stride, ceil_mode=True, count_include_pad=False) + else: + self.pool = nn.Identity() + self.conv = conv_layer(in_chs, out_chs, 1, stride=1) + self.norm = nn.Identity() if preact else norm_layer(out_chs, apply_act=False) + + def forward(self, x): + return self.norm(self.conv(self.pool(x))) + +class ResNetStage(nn.Module): + + def __init__(self, in_chs, out_chs, stride, dilation, depth, bottle_ratio=0.25, groups=1, avg_down=False, block_dpr=None, block_fn=PreActBottleneck, act_layer=None, conv_layer=None, norm_layer=None, **block_kwargs): + super(ResNetStage, self).__init__() + first_dilation = 1 if dilation in (1, 2) else 2 + layer_kwargs = dict(act_layer=act_layer, conv_layer=conv_layer, norm_layer=norm_layer) + proj_layer = DownsampleAvg if avg_down else DownsampleConv + prev_chs = in_chs + self.blocks = nn.Sequential() + for block_idx in range(depth): + drop_path_rate = block_dpr[block_idx] if block_dpr else 0.0 + stride = stride if block_idx == 0 else 1 + self.blocks.add_module(str(block_idx), block_fn(prev_chs, out_chs, stride=stride, dilation=dilation, bottle_ratio=bottle_ratio, groups=groups, first_dilation=first_dilation, proj_layer=proj_layer, drop_path_rate=drop_path_rate, **layer_kwargs, **block_kwargs)) + prev_chs = out_chs + first_dilation = dilation + proj_layer = None + + def forward(self, x): + x = self.blocks(x) + return x + +def is_stem_deep(stem_type): + return any([s in stem_type for s in ('deep', 'tiered')]) + +def create_resnetv2_stem(in_chs, out_chs=64, stem_type='', preact=True, conv_layer=StdConv2d, norm_layer=partial(GroupNormAct, num_groups=32)): + stem = OrderedDict() + assert stem_type in ('', 'fixed', 'same', 'deep', 'deep_fixed', 'deep_same', 'tiered') + if is_stem_deep(stem_type): + if 'tiered' in stem_type: + stem_chs = (3 * out_chs // 8, out_chs // 2) + else: + stem_chs = (out_chs // 2, out_chs // 2) + stem['conv1'] = conv_layer(in_chs, stem_chs[0], kernel_size=3, stride=2) + stem['norm1'] = norm_layer(stem_chs[0]) + stem['conv2'] = conv_layer(stem_chs[0], stem_chs[1], kernel_size=3, stride=1) + stem['norm2'] = norm_layer(stem_chs[1]) + stem['conv3'] = conv_layer(stem_chs[1], out_chs, kernel_size=3, stride=1) + if not preact: + stem['norm3'] = norm_layer(out_chs) + else: + stem['conv'] = conv_layer(in_chs, out_chs, kernel_size=7, stride=2) + if not preact: + stem['norm'] = norm_layer(out_chs) + if 'fixed' in stem_type: + stem['pad'] = nn.ConstantPad2d(1, 0.0) + stem['pool'] = nn.MaxPool2d(kernel_size=3, stride=2, padding=0) + elif 'same' in stem_type: + stem['pool'] = create_pool2d('max', kernel_size=3, stride=2, padding='same') + else: + stem['pool'] = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) + return nn.Sequential(stem) + +class ResNetV2(nn.Module): + + def __init__(self, layers, channels=(256, 512, 1024, 2048), num_classes=1000, in_chans=3, global_pool='avg', output_stride=32, width_factor=1, stem_chs=64, stem_type='', avg_down=False, preact=True, act_layer=nn.ReLU, norm_layer=partial(GroupNormAct, num_groups=32), conv_layer=StdConv2d, drop_rate=0.0, drop_path_rate=0.0, zero_init_last=False): + super().__init__() + self.num_classes = num_classes + self.drop_rate = drop_rate + wf = width_factor + norm_layer = get_norm_act_layer(norm_layer, act_layer=act_layer) + act_layer = get_act_layer(act_layer) + self.feature_info = [] + stem_chs = make_divisible(stem_chs * wf) + self.stem = create_resnetv2_stem(in_chans, stem_chs, stem_type, preact, conv_layer=conv_layer, norm_layer=norm_layer) + stem_feat = ('stem.conv3' if is_stem_deep(stem_type) else 'stem.conv') if preact else 'stem.norm' + self.feature_info.append(dict(num_chs=stem_chs, reduction=2, module=stem_feat)) + prev_chs = stem_chs + curr_stride = 4 + dilation = 1 + block_dprs = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(layers)).split(layers)] + block_fn = PreActBottleneck if preact else Bottleneck + self.stages = nn.Sequential() + for (stage_idx, (d, c, bdpr)) in enumerate(zip(layers, channels, block_dprs)): + out_chs = make_divisible(c * wf) + stride = 1 if stage_idx == 0 else 2 + if curr_stride >= output_stride: + dilation *= stride + stride = 1 + stage = ResNetStage(prev_chs, out_chs, stride=stride, dilation=dilation, depth=d, avg_down=avg_down, act_layer=act_layer, conv_layer=conv_layer, norm_layer=norm_layer, block_dpr=bdpr, block_fn=block_fn) + prev_chs = out_chs + curr_stride *= stride + self.feature_info += [dict(num_chs=prev_chs, reduction=curr_stride, module=f'stages.{stage_idx}')] + self.stages.add_module(str(stage_idx), stage) + self.num_features = self.head_hidden_size = prev_chs + self.norm = norm_layer(self.num_features) if preact else nn.Identity() + self.head = ClassifierHead(self.num_features, num_classes, pool_type=global_pool, drop_rate=self.drop_rate, use_conv=True) + self.init_weights(zero_init_last=zero_init_last) + self.grad_checkpointing = False + + @torch.jit.ignore + def init_weights(self, zero_init_last=True): + named_apply(partial(_init_weights, zero_init_last=zero_init_last), self) + + @torch.jit.ignore() + def load_pretrained(self, checkpoint_path, prefix='resnet/'): + _load_weights(self, checkpoint_path, prefix) + + @torch.jit.ignore + def group_matcher(self, coarse=False): + matcher = dict(stem='^stem', blocks='^stages\\.(\\d+)' if coarse else [('^stages\\.(\\d+)\\.blocks\\.(\\d+)', None), ('^norm', (99999,))]) + return matcher + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + self.grad_checkpointing = enable + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.head.fc + + def reset_classifier(self, num_classes: int, global_pool: Optional[str]=None): + self.num_classes = num_classes + self.head.reset(num_classes, global_pool) + + def forward_features(self, x): + x = self.stem(x) + if self.grad_checkpointing and (not torch.jit.is_scripting()): + x = checkpoint_seq(self.stages, x, flatten=True) + else: + x = self.stages(x) + x = self.norm(x) + return x + + def forward_head(self, x, pre_logits: bool=False): + return self.head(x, pre_logits=pre_logits) if pre_logits else self.head(x) + + def forward(self, x): + x = self.forward_features(x) + x = self.forward_head(x) + return x + +def _init_weights(module: nn.Module, name: str='', zero_init_last=True): + if isinstance(module, nn.Linear) or ('head.fc' in name and isinstance(module, nn.Conv2d)): + nn.init.normal_(module.weight, mean=0.0, std=0.01) + nn.init.zeros_(module.bias) + elif isinstance(module, nn.Conv2d): + nn.init.kaiming_normal_(module.weight, mode='fan_out', nonlinearity='relu') + if module.bias is not None: + nn.init.zeros_(module.bias) + elif isinstance(module, (nn.BatchNorm2d, nn.LayerNorm, nn.GroupNorm)): + nn.init.ones_(module.weight) + nn.init.zeros_(module.bias) + elif zero_init_last and hasattr(module, 'zero_init_last'): + module.zero_init_last() + +@torch.no_grad() +def _load_weights(model: nn.Module, checkpoint_path: str, prefix: str='resnet/'): + import numpy as np + + def t2p(conv_weights): + if conv_weights.ndim == 4: + conv_weights = conv_weights.transpose([3, 2, 0, 1]) + return torch.from_numpy(conv_weights) + weights = np.load(checkpoint_path) + stem_conv_w = adapt_input_conv(model.stem.conv.weight.shape[1], t2p(weights[f'{prefix}root_block/standardized_conv2d/kernel'])) + model.stem.conv.weight.copy_(stem_conv_w) + model.norm.weight.copy_(t2p(weights[f'{prefix}group_norm/gamma'])) + model.norm.bias.copy_(t2p(weights[f'{prefix}group_norm/beta'])) + if isinstance(getattr(model.head, 'fc', None), nn.Conv2d) and model.head.fc.weight.shape[0] == weights[f'{prefix}head/conv2d/kernel'].shape[-1]: + model.head.fc.weight.copy_(t2p(weights[f'{prefix}head/conv2d/kernel'])) + model.head.fc.bias.copy_(t2p(weights[f'{prefix}head/conv2d/bias'])) + for (i, (sname, stage)) in enumerate(model.stages.named_children()): + for (j, (bname, block)) in enumerate(stage.blocks.named_children()): + cname = 'standardized_conv2d' + block_prefix = f'{prefix}block{i + 1}/unit{j + 1:02d}/' + block.conv1.weight.copy_(t2p(weights[f'{block_prefix}a/{cname}/kernel'])) + block.conv2.weight.copy_(t2p(weights[f'{block_prefix}b/{cname}/kernel'])) + block.conv3.weight.copy_(t2p(weights[f'{block_prefix}c/{cname}/kernel'])) + block.norm1.weight.copy_(t2p(weights[f'{block_prefix}a/group_norm/gamma'])) + block.norm2.weight.copy_(t2p(weights[f'{block_prefix}b/group_norm/gamma'])) + block.norm3.weight.copy_(t2p(weights[f'{block_prefix}c/group_norm/gamma'])) + block.norm1.bias.copy_(t2p(weights[f'{block_prefix}a/group_norm/beta'])) + block.norm2.bias.copy_(t2p(weights[f'{block_prefix}b/group_norm/beta'])) + block.norm3.bias.copy_(t2p(weights[f'{block_prefix}c/group_norm/beta'])) + if block.downsample is not None: + w = weights[f'{block_prefix}a/proj/{cname}/kernel'] + block.downsample.conv.weight.copy_(t2p(w)) + +def _create_resnetv2(variant, pretrained=False, **kwargs): + feature_cfg = dict(flatten_sequential=True) + return build_model_with_cfg(ResNetV2, variant, pretrained, feature_cfg=feature_cfg, **kwargs) + +def _create_resnetv2_bit(variant, pretrained=False, **kwargs): + return _create_resnetv2(variant, pretrained=pretrained, stem_type='fixed', conv_layer=partial(StdConv2d, eps=1e-08), **kwargs) + +def _cfg(url='', **kwargs): + return {'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), 'crop_pct': 0.875, 'interpolation': 'bilinear', 'mean': IMAGENET_INCEPTION_MEAN, 'std': IMAGENET_INCEPTION_STD, 'first_conv': 'stem.conv', 'classifier': 'head.fc', **kwargs} +default_cfgs = generate_default_cfgs({'resnetv2_50x1_bit.goog_distilled_in1k': _cfg(hf_hub_id='timm/', interpolation='bicubic', custom_load=True), 'resnetv2_152x2_bit.goog_teacher_in21k_ft_in1k': _cfg(hf_hub_id='timm/', interpolation='bicubic', custom_load=True), 'resnetv2_152x2_bit.goog_teacher_in21k_ft_in1k_384': _cfg(hf_hub_id='timm/', input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, interpolation='bicubic', custom_load=True), 'resnetv2_50x1_bit.goog_in21k_ft_in1k': _cfg(hf_hub_id='timm/', input_size=(3, 448, 448), pool_size=(14, 14), crop_pct=1.0, custom_load=True), 'resnetv2_50x3_bit.goog_in21k_ft_in1k': _cfg(hf_hub_id='timm/', input_size=(3, 448, 448), pool_size=(14, 14), crop_pct=1.0, custom_load=True), 'resnetv2_101x1_bit.goog_in21k_ft_in1k': _cfg(hf_hub_id='timm/', input_size=(3, 448, 448), pool_size=(14, 14), crop_pct=1.0, custom_load=True), 'resnetv2_101x3_bit.goog_in21k_ft_in1k': _cfg(hf_hub_id='timm/', input_size=(3, 448, 448), pool_size=(14, 14), crop_pct=1.0, custom_load=True), 'resnetv2_152x2_bit.goog_in21k_ft_in1k': _cfg(hf_hub_id='timm/', input_size=(3, 448, 448), pool_size=(14, 14), crop_pct=1.0, custom_load=True), 'resnetv2_152x4_bit.goog_in21k_ft_in1k': _cfg(hf_hub_id='timm/', input_size=(3, 480, 480), pool_size=(15, 15), crop_pct=1.0, custom_load=True), 'resnetv2_50x1_bit.goog_in21k': _cfg(hf_hub_id='timm/', num_classes=21843, custom_load=True), 'resnetv2_50x3_bit.goog_in21k': _cfg(hf_hub_id='timm/', num_classes=21843, custom_load=True), 'resnetv2_101x1_bit.goog_in21k': _cfg(hf_hub_id='timm/', num_classes=21843, custom_load=True), 'resnetv2_101x3_bit.goog_in21k': _cfg(hf_hub_id='timm/', num_classes=21843, custom_load=True), 'resnetv2_152x2_bit.goog_in21k': _cfg(hf_hub_id='timm/', num_classes=21843, custom_load=True), 'resnetv2_152x4_bit.goog_in21k': _cfg(hf_hub_id='timm/', num_classes=21843, custom_load=True), 'resnetv2_50.a1h_in1k': _cfg(hf_hub_id='timm/', interpolation='bicubic', crop_pct=0.95, test_input_size=(3, 288, 288), test_crop_pct=1.0), 'resnetv2_50d.untrained': _cfg(interpolation='bicubic', first_conv='stem.conv1'), 'resnetv2_50t.untrained': _cfg(interpolation='bicubic', first_conv='stem.conv1'), 'resnetv2_101.a1h_in1k': _cfg(hf_hub_id='timm/', interpolation='bicubic', crop_pct=0.95, test_input_size=(3, 288, 288), test_crop_pct=1.0), 'resnetv2_101d.untrained': _cfg(interpolation='bicubic', first_conv='stem.conv1'), 'resnetv2_152.untrained': _cfg(interpolation='bicubic'), 'resnetv2_152d.untrained': _cfg(interpolation='bicubic', first_conv='stem.conv1'), 'resnetv2_50d_gn.ah_in1k': _cfg(hf_hub_id='timm/', interpolation='bicubic', first_conv='stem.conv1', crop_pct=0.95, test_input_size=(3, 288, 288), test_crop_pct=1.0), 'resnetv2_50d_evos.ah_in1k': _cfg(hf_hub_id='timm/', interpolation='bicubic', first_conv='stem.conv1', crop_pct=0.95, test_input_size=(3, 288, 288), test_crop_pct=1.0), 'resnetv2_50d_frn.untrained': _cfg(interpolation='bicubic', first_conv='stem.conv1')}) + +@register_model +def resnetv2_50x1_bit(pretrained=False, **kwargs) -> ResNetV2: + return _create_resnetv2_bit('resnetv2_50x1_bit', pretrained=pretrained, layers=[3, 4, 6, 3], width_factor=1, **kwargs) + +@register_model +def resnetv2_50x3_bit(pretrained=False, **kwargs) -> ResNetV2: + return _create_resnetv2_bit('resnetv2_50x3_bit', pretrained=pretrained, layers=[3, 4, 6, 3], width_factor=3, **kwargs) + +@register_model +def resnetv2_101x1_bit(pretrained=False, **kwargs) -> ResNetV2: + return _create_resnetv2_bit('resnetv2_101x1_bit', pretrained=pretrained, layers=[3, 4, 23, 3], width_factor=1, **kwargs) + +@register_model +def resnetv2_101x3_bit(pretrained=False, **kwargs) -> ResNetV2: + return _create_resnetv2_bit('resnetv2_101x3_bit', pretrained=pretrained, layers=[3, 4, 23, 3], width_factor=3, **kwargs) + +@register_model +def resnetv2_152x2_bit(pretrained=False, **kwargs) -> ResNetV2: + return _create_resnetv2_bit('resnetv2_152x2_bit', pretrained=pretrained, layers=[3, 8, 36, 3], width_factor=2, **kwargs) + +@register_model +def resnetv2_152x4_bit(pretrained=False, **kwargs) -> ResNetV2: + return _create_resnetv2_bit('resnetv2_152x4_bit', pretrained=pretrained, layers=[3, 8, 36, 3], width_factor=4, **kwargs) + +@register_model +def resnetv2_50(pretrained=False, **kwargs) -> ResNetV2: + model_args = dict(layers=[3, 4, 6, 3], conv_layer=create_conv2d, norm_layer=BatchNormAct2d) + return _create_resnetv2('resnetv2_50', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def resnetv2_50d(pretrained=False, **kwargs) -> ResNetV2: + model_args = dict(layers=[3, 4, 6, 3], conv_layer=create_conv2d, norm_layer=BatchNormAct2d, stem_type='deep', avg_down=True) + return _create_resnetv2('resnetv2_50d', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def resnetv2_50t(pretrained=False, **kwargs) -> ResNetV2: + model_args = dict(layers=[3, 4, 6, 3], conv_layer=create_conv2d, norm_layer=BatchNormAct2d, stem_type='tiered', avg_down=True) + return _create_resnetv2('resnetv2_50t', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def resnetv2_101(pretrained=False, **kwargs) -> ResNetV2: + model_args = dict(layers=[3, 4, 23, 3], conv_layer=create_conv2d, norm_layer=BatchNormAct2d) + return _create_resnetv2('resnetv2_101', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def resnetv2_101d(pretrained=False, **kwargs) -> ResNetV2: + model_args = dict(layers=[3, 4, 23, 3], conv_layer=create_conv2d, norm_layer=BatchNormAct2d, stem_type='deep', avg_down=True) + return _create_resnetv2('resnetv2_101d', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def resnetv2_152(pretrained=False, **kwargs) -> ResNetV2: + model_args = dict(layers=[3, 8, 36, 3], conv_layer=create_conv2d, norm_layer=BatchNormAct2d) + return _create_resnetv2('resnetv2_152', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def resnetv2_152d(pretrained=False, **kwargs) -> ResNetV2: + model_args = dict(layers=[3, 8, 36, 3], conv_layer=create_conv2d, norm_layer=BatchNormAct2d, stem_type='deep', avg_down=True) + return _create_resnetv2('resnetv2_152d', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def resnetv2_50d_gn(pretrained=False, **kwargs) -> ResNetV2: + model_args = dict(layers=[3, 4, 6, 3], conv_layer=create_conv2d, norm_layer=GroupNormAct, stem_type='deep', avg_down=True) + return _create_resnetv2('resnetv2_50d_gn', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def resnetv2_50d_evos(pretrained=False, **kwargs) -> ResNetV2: + model_args = dict(layers=[3, 4, 6, 3], conv_layer=create_conv2d, norm_layer=EvoNorm2dS0, stem_type='deep', avg_down=True) + return _create_resnetv2('resnetv2_50d_evos', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def resnetv2_50d_frn(pretrained=False, **kwargs) -> ResNetV2: + model_args = dict(layers=[3, 4, 6, 3], conv_layer=create_conv2d, norm_layer=FilterResponseNormTlu2d, stem_type='deep', avg_down=True) + return _create_resnetv2('resnetv2_50d_frn', pretrained=pretrained, **dict(model_args, **kwargs)) +register_model_deprecations(__name__, {'resnetv2_50x1_bitm': 'resnetv2_50x1_bit.goog_in21k_ft_in1k', 'resnetv2_50x3_bitm': 'resnetv2_50x3_bit.goog_in21k_ft_in1k', 'resnetv2_101x1_bitm': 'resnetv2_101x1_bit.goog_in21k_ft_in1k', 'resnetv2_101x3_bitm': 'resnetv2_101x3_bit.goog_in21k_ft_in1k', 'resnetv2_152x2_bitm': 'resnetv2_152x2_bit.goog_in21k_ft_in1k', 'resnetv2_152x4_bitm': 'resnetv2_152x4_bit.goog_in21k_ft_in1k', 'resnetv2_50x1_bitm_in21k': 'resnetv2_50x1_bit.goog_in21k', 'resnetv2_50x3_bitm_in21k': 'resnetv2_50x3_bit.goog_in21k', 'resnetv2_101x1_bitm_in21k': 'resnetv2_101x1_bit.goog_in21k', 'resnetv2_101x3_bitm_in21k': 'resnetv2_101x3_bit.goog_in21k', 'resnetv2_152x2_bitm_in21k': 'resnetv2_152x2_bit.goog_in21k', 'resnetv2_152x4_bitm_in21k': 'resnetv2_152x4_bit.goog_in21k', 'resnetv2_50x1_bit_distilled': 'resnetv2_50x1_bit.goog_distilled_in1k', 'resnetv2_152x2_bit_teacher': 'resnetv2_152x2_bit.goog_teacher_in21k_ft_in1k', 'resnetv2_152x2_bit_teacher_384': 'resnetv2_152x2_bit.goog_teacher_in21k_ft_in1k_384'}) + +# File: pytorch-image-models-main/timm/models/rexnet.py +"""""" +from functools import partial +from math import ceil +from typing import Optional +import torch +import torch.nn as nn +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from timm.layers import ClassifierHead, create_act_layer, ConvNormAct, DropPath, make_divisible, SEModule +from ._builder import build_model_with_cfg +from ._efficientnet_builder import efficientnet_init_weights +from ._manipulate import checkpoint_seq +from ._registry import generate_default_cfgs, register_model +__all__ = ['RexNet'] +SEWithNorm = partial(SEModule, norm_layer=nn.BatchNorm2d) + +class LinearBottleneck(nn.Module): + + def __init__(self, in_chs, out_chs, stride, dilation=(1, 1), exp_ratio=1.0, se_ratio=0.0, ch_div=1, act_layer='swish', dw_act_layer='relu6', drop_path=None): + super(LinearBottleneck, self).__init__() + self.use_shortcut = stride == 1 and dilation[0] == dilation[1] and (in_chs <= out_chs) + self.in_channels = in_chs + self.out_channels = out_chs + if exp_ratio != 1.0: + dw_chs = make_divisible(round(in_chs * exp_ratio), divisor=ch_div) + self.conv_exp = ConvNormAct(in_chs, dw_chs, act_layer=act_layer) + else: + dw_chs = in_chs + self.conv_exp = None + self.conv_dw = ConvNormAct(dw_chs, dw_chs, kernel_size=3, stride=stride, dilation=dilation[0], groups=dw_chs, apply_act=False) + if se_ratio > 0: + self.se = SEWithNorm(dw_chs, rd_channels=make_divisible(int(dw_chs * se_ratio), ch_div)) + else: + self.se = None + self.act_dw = create_act_layer(dw_act_layer) + self.conv_pwl = ConvNormAct(dw_chs, out_chs, 1, apply_act=False) + self.drop_path = drop_path + + def feat_channels(self, exp=False): + return self.conv_dw.out_channels if exp else self.out_channels + + def forward(self, x): + shortcut = x + if self.conv_exp is not None: + x = self.conv_exp(x) + x = self.conv_dw(x) + if self.se is not None: + x = self.se(x) + x = self.act_dw(x) + x = self.conv_pwl(x) + if self.use_shortcut: + if self.drop_path is not None: + x = self.drop_path(x) + x = torch.cat([x[:, 0:self.in_channels] + shortcut, x[:, self.in_channels:]], dim=1) + return x + +def _block_cfg(width_mult=1.0, depth_mult=1.0, initial_chs=16, final_chs=180, se_ratio=0.0, ch_div=1): + layers = [1, 2, 2, 3, 3, 5] + strides = [1, 2, 2, 2, 1, 2] + layers = [ceil(element * depth_mult) for element in layers] + strides = sum([[element] + [1] * (layers[idx] - 1) for (idx, element) in enumerate(strides)], []) + exp_ratios = [1] * layers[0] + [6] * sum(layers[1:]) + depth = sum(layers[:]) * 3 + base_chs = initial_chs / width_mult if width_mult < 1.0 else initial_chs + out_chs_list = [] + for i in range(depth // 3): + out_chs_list.append(make_divisible(round(base_chs * width_mult), divisor=ch_div)) + base_chs += final_chs / (depth // 3 * 1.0) + se_ratios = [0.0] * (layers[0] + layers[1]) + [se_ratio] * sum(layers[2:]) + return list(zip(out_chs_list, exp_ratios, strides, se_ratios)) + +def _build_blocks(block_cfg, prev_chs, width_mult, ch_div=1, output_stride=32, act_layer='swish', dw_act_layer='relu6', drop_path_rate=0.0): + feat_chs = [prev_chs] + feature_info = [] + curr_stride = 2 + dilation = 1 + features = [] + num_blocks = len(block_cfg) + for (block_idx, (chs, exp_ratio, stride, se_ratio)) in enumerate(block_cfg): + next_dilation = dilation + if stride > 1: + fname = 'stem' if block_idx == 0 else f'features.{block_idx - 1}' + feature_info += [dict(num_chs=feat_chs[-1], reduction=curr_stride, module=fname)] + if curr_stride >= output_stride: + next_dilation = dilation * stride + stride = 1 + block_dpr = drop_path_rate * block_idx / (num_blocks - 1) + drop_path = DropPath(block_dpr) if block_dpr > 0.0 else None + features.append(LinearBottleneck(in_chs=prev_chs, out_chs=chs, exp_ratio=exp_ratio, stride=stride, dilation=(dilation, next_dilation), se_ratio=se_ratio, ch_div=ch_div, act_layer=act_layer, dw_act_layer=dw_act_layer, drop_path=drop_path)) + curr_stride *= stride + dilation = next_dilation + prev_chs = chs + feat_chs += [features[-1].feat_channels()] + pen_chs = make_divisible(1280 * width_mult, divisor=ch_div) + feature_info += [dict(num_chs=feat_chs[-1], reduction=curr_stride, module=f'features.{len(features) - 1}')] + features.append(ConvNormAct(prev_chs, pen_chs, act_layer=act_layer)) + return (features, feature_info) + +class RexNet(nn.Module): + + def __init__(self, in_chans=3, num_classes=1000, global_pool='avg', output_stride=32, initial_chs=16, final_chs=180, width_mult=1.0, depth_mult=1.0, se_ratio=1 / 12.0, ch_div=1, act_layer='swish', dw_act_layer='relu6', drop_rate=0.2, drop_path_rate=0.0): + super(RexNet, self).__init__() + self.num_classes = num_classes + self.drop_rate = drop_rate + self.grad_checkpointing = False + assert output_stride in (32, 16, 8) + stem_base_chs = 32 / width_mult if width_mult < 1.0 else 32 + stem_chs = make_divisible(round(stem_base_chs * width_mult), divisor=ch_div) + self.stem = ConvNormAct(in_chans, stem_chs, 3, stride=2, act_layer=act_layer) + block_cfg = _block_cfg(width_mult, depth_mult, initial_chs, final_chs, se_ratio, ch_div) + (features, self.feature_info) = _build_blocks(block_cfg, stem_chs, width_mult, ch_div, output_stride, act_layer, dw_act_layer, drop_path_rate) + self.num_features = self.head_hidden_size = features[-1].out_channels + self.features = nn.Sequential(*features) + self.head = ClassifierHead(self.num_features, num_classes, global_pool, drop_rate) + efficientnet_init_weights(self) + + @torch.jit.ignore + def group_matcher(self, coarse=False): + matcher = dict(stem='^stem', blocks='^features\\.(\\d+)') + return matcher + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + self.grad_checkpointing = enable + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.head.fc + + def reset_classifier(self, num_classes: int, global_pool: Optional[str]=None): + self.num_classes = num_classes + self.head.reset(num_classes, global_pool) + + def forward_features(self, x): + x = self.stem(x) + if self.grad_checkpointing and (not torch.jit.is_scripting()): + x = checkpoint_seq(self.features, x, flatten=True) + else: + x = self.features(x) + return x + + def forward_head(self, x, pre_logits: bool=False): + return self.head(x, pre_logits=pre_logits) if pre_logits else self.head(x) + + def forward(self, x): + x = self.forward_features(x) + x = self.forward_head(x) + return x + +def _create_rexnet(variant, pretrained, **kwargs): + feature_cfg = dict(flatten_sequential=True) + return build_model_with_cfg(RexNet, variant, pretrained, feature_cfg=feature_cfg, **kwargs) + +def _cfg(url='', **kwargs): + return {'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), 'crop_pct': 0.875, 'interpolation': 'bicubic', 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'stem.conv', 'classifier': 'head.fc', 'license': 'mit', **kwargs} +default_cfgs = generate_default_cfgs({'rexnet_100.nav_in1k': _cfg(hf_hub_id='timm/'), 'rexnet_130.nav_in1k': _cfg(hf_hub_id='timm/'), 'rexnet_150.nav_in1k': _cfg(hf_hub_id='timm/'), 'rexnet_200.nav_in1k': _cfg(hf_hub_id='timm/'), 'rexnet_300.nav_in1k': _cfg(hf_hub_id='timm/'), 'rexnetr_100.untrained': _cfg(), 'rexnetr_130.untrained': _cfg(), 'rexnetr_150.untrained': _cfg(), 'rexnetr_200.sw_in12k_ft_in1k': _cfg(hf_hub_id='timm/', crop_pct=0.95, test_crop_pct=1.0, test_input_size=(3, 288, 288), license='apache-2.0'), 'rexnetr_300.sw_in12k_ft_in1k': _cfg(hf_hub_id='timm/', crop_pct=0.95, test_crop_pct=1.0, test_input_size=(3, 288, 288), license='apache-2.0'), 'rexnetr_200.sw_in12k': _cfg(hf_hub_id='timm/', num_classes=11821, crop_pct=0.95, test_crop_pct=1.0, test_input_size=(3, 288, 288), license='apache-2.0'), 'rexnetr_300.sw_in12k': _cfg(hf_hub_id='timm/', num_classes=11821, crop_pct=0.95, test_crop_pct=1.0, test_input_size=(3, 288, 288), license='apache-2.0')}) + +@register_model +def rexnet_100(pretrained=False, **kwargs) -> RexNet: + return _create_rexnet('rexnet_100', pretrained, **kwargs) + +@register_model +def rexnet_130(pretrained=False, **kwargs) -> RexNet: + return _create_rexnet('rexnet_130', pretrained, width_mult=1.3, **kwargs) + +@register_model +def rexnet_150(pretrained=False, **kwargs) -> RexNet: + return _create_rexnet('rexnet_150', pretrained, width_mult=1.5, **kwargs) + +@register_model +def rexnet_200(pretrained=False, **kwargs) -> RexNet: + return _create_rexnet('rexnet_200', pretrained, width_mult=2.0, **kwargs) + +@register_model +def rexnet_300(pretrained=False, **kwargs) -> RexNet: + return _create_rexnet('rexnet_300', pretrained, width_mult=3.0, **kwargs) + +@register_model +def rexnetr_100(pretrained=False, **kwargs) -> RexNet: + return _create_rexnet('rexnetr_100', pretrained, ch_div=8, **kwargs) + +@register_model +def rexnetr_130(pretrained=False, **kwargs) -> RexNet: + return _create_rexnet('rexnetr_130', pretrained, width_mult=1.3, ch_div=8, **kwargs) + +@register_model +def rexnetr_150(pretrained=False, **kwargs) -> RexNet: + return _create_rexnet('rexnetr_150', pretrained, width_mult=1.5, ch_div=8, **kwargs) + +@register_model +def rexnetr_200(pretrained=False, **kwargs) -> RexNet: + return _create_rexnet('rexnetr_200', pretrained, width_mult=2.0, ch_div=8, **kwargs) + +@register_model +def rexnetr_300(pretrained=False, **kwargs) -> RexNet: + return _create_rexnet('rexnetr_300', pretrained, width_mult=3.0, ch_div=16, **kwargs) + +# File: pytorch-image-models-main/timm/models/selecsls.py +"""""" +from typing import List +import torch +import torch.nn as nn +import torch.nn.functional as F +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from timm.layers import create_classifier +from ._builder import build_model_with_cfg +from ._registry import register_model, generate_default_cfgs +__all__ = ['SelecSls'] + +class SequentialList(nn.Sequential): + + def __init__(self, *args): + super(SequentialList, self).__init__(*args) + + @torch.jit._overload_method + def forward(self, x): + pass + + @torch.jit._overload_method + def forward(self, x): + pass + + def forward(self, x) -> List[torch.Tensor]: + for module in self: + x = module(x) + return x + +class SelectSeq(nn.Module): + + def __init__(self, mode='index', index=0): + super(SelectSeq, self).__init__() + self.mode = mode + self.index = index + + @torch.jit._overload_method + def forward(self, x): + pass + + @torch.jit._overload_method + def forward(self, x): + pass + + def forward(self, x) -> torch.Tensor: + if self.mode == 'index': + return x[self.index] + else: + return torch.cat(x, dim=1) + +def conv_bn(in_chs, out_chs, k=3, stride=1, padding=None, dilation=1): + if padding is None: + padding = (stride - 1 + dilation * (k - 1)) // 2 + return nn.Sequential(nn.Conv2d(in_chs, out_chs, k, stride, padding=padding, dilation=dilation, bias=False), nn.BatchNorm2d(out_chs), nn.ReLU(inplace=True)) + +class SelecSlsBlock(nn.Module): + + def __init__(self, in_chs, skip_chs, mid_chs, out_chs, is_first, stride, dilation=1): + super(SelecSlsBlock, self).__init__() + self.stride = stride + self.is_first = is_first + assert stride in [1, 2] + self.conv1 = conv_bn(in_chs, mid_chs, 3, stride, dilation=dilation) + self.conv2 = conv_bn(mid_chs, mid_chs, 1) + self.conv3 = conv_bn(mid_chs, mid_chs // 2, 3) + self.conv4 = conv_bn(mid_chs // 2, mid_chs, 1) + self.conv5 = conv_bn(mid_chs, mid_chs // 2, 3) + self.conv6 = conv_bn(2 * mid_chs + (0 if is_first else skip_chs), out_chs, 1) + + def forward(self, x: List[torch.Tensor]) -> List[torch.Tensor]: + if not isinstance(x, list): + x = [x] + assert len(x) in [1, 2] + d1 = self.conv1(x[0]) + d2 = self.conv3(self.conv2(d1)) + d3 = self.conv5(self.conv4(d2)) + if self.is_first: + out = self.conv6(torch.cat([d1, d2, d3], 1)) + return [out, out] + else: + return [self.conv6(torch.cat([d1, d2, d3, x[1]], 1)), x[1]] + +class SelecSls(nn.Module): + + def __init__(self, cfg, num_classes=1000, in_chans=3, drop_rate=0.0, global_pool='avg'): + self.num_classes = num_classes + super(SelecSls, self).__init__() + self.stem = conv_bn(in_chans, 32, stride=2) + self.features = SequentialList(*[cfg['block'](*block_args) for block_args in cfg['features']]) + self.from_seq = SelectSeq() + self.head = nn.Sequential(*[conv_bn(*conv_args) for conv_args in cfg['head']]) + self.num_features = self.head_hidden_size = cfg['num_features'] + self.feature_info = cfg['feature_info'] + (self.global_pool, self.head_drop, self.fc) = create_classifier(self.num_features, self.num_classes, pool_type=global_pool, drop_rate=drop_rate) + for (n, m) in self.named_modules(): + if isinstance(m, nn.Conv2d): + nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') + + @torch.jit.ignore + def group_matcher(self, coarse=False): + return dict(stem='^stem', blocks='^features\\.(\\d+)', blocks_head='^head') + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + assert not enable, 'gradient checkpointing not supported' + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.fc + + def reset_classifier(self, num_classes: int, global_pool: str='avg'): + self.num_classes = num_classes + (self.global_pool, self.fc) = create_classifier(self.num_features, self.num_classes, pool_type=global_pool) + + def forward_features(self, x): + x = self.stem(x) + x = self.features(x) + x = self.head(self.from_seq(x)) + return x + + def forward_head(self, x, pre_logits: bool=False): + x = self.global_pool(x) + x = self.head_drop(x) + return x if pre_logits else self.fc(x) + + def forward(self, x): + x = self.forward_features(x) + x = self.forward_head(x) + return x + +def _create_selecsls(variant, pretrained, **kwargs): + cfg = {} + feature_info = [dict(num_chs=32, reduction=2, module='stem.2')] + if variant.startswith('selecsls42'): + cfg['block'] = SelecSlsBlock + cfg['features'] = [(32, 0, 64, 64, True, 2), (64, 64, 64, 128, False, 1), (128, 0, 144, 144, True, 2), (144, 144, 144, 288, False, 1), (288, 0, 304, 304, True, 2), (304, 304, 304, 480, False, 1)] + feature_info.extend([dict(num_chs=128, reduction=4, module='features.1'), dict(num_chs=288, reduction=8, module='features.3'), dict(num_chs=480, reduction=16, module='features.5')]) + feature_info.append(dict(num_chs=1024, reduction=32, module='head.1')) + if variant == 'selecsls42b': + cfg['head'] = [(480, 960, 3, 2), (960, 1024, 3, 1), (1024, 1280, 3, 2), (1280, 1024, 1, 1)] + feature_info.append(dict(num_chs=1024, reduction=64, module='head.3')) + cfg['num_features'] = 1024 + else: + cfg['head'] = [(480, 960, 3, 2), (960, 1024, 3, 1), (1024, 1024, 3, 2), (1024, 1280, 1, 1)] + feature_info.append(dict(num_chs=1280, reduction=64, module='head.3')) + cfg['num_features'] = 1280 + elif variant.startswith('selecsls60'): + cfg['block'] = SelecSlsBlock + cfg['features'] = [(32, 0, 64, 64, True, 2), (64, 64, 64, 128, False, 1), (128, 0, 128, 128, True, 2), (128, 128, 128, 128, False, 1), (128, 128, 128, 288, False, 1), (288, 0, 288, 288, True, 2), (288, 288, 288, 288, False, 1), (288, 288, 288, 288, False, 1), (288, 288, 288, 416, False, 1)] + feature_info.extend([dict(num_chs=128, reduction=4, module='features.1'), dict(num_chs=288, reduction=8, module='features.4'), dict(num_chs=416, reduction=16, module='features.8')]) + feature_info.append(dict(num_chs=1024, reduction=32, module='head.1')) + if variant == 'selecsls60b': + cfg['head'] = [(416, 756, 3, 2), (756, 1024, 3, 1), (1024, 1280, 3, 2), (1280, 1024, 1, 1)] + feature_info.append(dict(num_chs=1024, reduction=64, module='head.3')) + cfg['num_features'] = 1024 + else: + cfg['head'] = [(416, 756, 3, 2), (756, 1024, 3, 1), (1024, 1024, 3, 2), (1024, 1280, 1, 1)] + feature_info.append(dict(num_chs=1280, reduction=64, module='head.3')) + cfg['num_features'] = 1280 + elif variant == 'selecsls84': + cfg['block'] = SelecSlsBlock + cfg['features'] = [(32, 0, 64, 64, True, 2), (64, 64, 64, 144, False, 1), (144, 0, 144, 144, True, 2), (144, 144, 144, 144, False, 1), (144, 144, 144, 144, False, 1), (144, 144, 144, 144, False, 1), (144, 144, 144, 304, False, 1), (304, 0, 304, 304, True, 2), (304, 304, 304, 304, False, 1), (304, 304, 304, 304, False, 1), (304, 304, 304, 304, False, 1), (304, 304, 304, 304, False, 1), (304, 304, 304, 512, False, 1)] + feature_info.extend([dict(num_chs=144, reduction=4, module='features.1'), dict(num_chs=304, reduction=8, module='features.6'), dict(num_chs=512, reduction=16, module='features.12')]) + cfg['head'] = [(512, 960, 3, 2), (960, 1024, 3, 1), (1024, 1024, 3, 2), (1024, 1280, 3, 1)] + cfg['num_features'] = 1280 + feature_info.extend([dict(num_chs=1024, reduction=32, module='head.1'), dict(num_chs=1280, reduction=64, module='head.3')]) + else: + raise ValueError('Invalid net configuration ' + variant + ' !!!') + cfg['feature_info'] = feature_info + return build_model_with_cfg(SelecSls, variant, pretrained, model_cfg=cfg, feature_cfg=dict(out_indices=(0, 1, 2, 3, 4), flatten_sequential=True), **kwargs) + +def _cfg(url='', **kwargs): + return {'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (4, 4), 'crop_pct': 0.875, 'interpolation': 'bilinear', 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'stem.0', 'classifier': 'fc', **kwargs} +default_cfgs = generate_default_cfgs({'selecsls42.untrained': _cfg(interpolation='bicubic'), 'selecsls42b.in1k': _cfg(hf_hub_id='timm/', interpolation='bicubic'), 'selecsls60.in1k': _cfg(hf_hub_id='timm/', interpolation='bicubic'), 'selecsls60b.in1k': _cfg(hf_hub_id='timm/', interpolation='bicubic'), 'selecsls84.untrained': _cfg(interpolation='bicubic')}) + +@register_model +def selecsls42(pretrained=False, **kwargs) -> SelecSls: + return _create_selecsls('selecsls42', pretrained, **kwargs) + +@register_model +def selecsls42b(pretrained=False, **kwargs) -> SelecSls: + return _create_selecsls('selecsls42b', pretrained, **kwargs) + +@register_model +def selecsls60(pretrained=False, **kwargs) -> SelecSls: + return _create_selecsls('selecsls60', pretrained, **kwargs) + +@register_model +def selecsls60b(pretrained=False, **kwargs) -> SelecSls: + return _create_selecsls('selecsls60b', pretrained, **kwargs) + +@register_model +def selecsls84(pretrained=False, **kwargs) -> SelecSls: + return _create_selecsls('selecsls84', pretrained, **kwargs) + +# File: pytorch-image-models-main/timm/models/senet.py +"""""" +import math +from collections import OrderedDict +import torch +import torch.nn as nn +import torch.nn.functional as F +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from timm.layers import create_classifier +from ._builder import build_model_with_cfg +from ._registry import register_model, generate_default_cfgs +__all__ = ['SENet'] + +def _weight_init(m): + if isinstance(m, nn.Conv2d): + nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') + elif isinstance(m, nn.BatchNorm2d): + nn.init.constant_(m.weight, 1.0) + nn.init.constant_(m.bias, 0.0) + +class SEModule(nn.Module): + + def __init__(self, channels, reduction): + super(SEModule, self).__init__() + self.fc1 = nn.Conv2d(channels, channels // reduction, kernel_size=1) + self.relu = nn.ReLU(inplace=True) + self.fc2 = nn.Conv2d(channels // reduction, channels, kernel_size=1) + self.sigmoid = nn.Sigmoid() + + def forward(self, x): + module_input = x + x = x.mean((2, 3), keepdim=True) + x = self.fc1(x) + x = self.relu(x) + x = self.fc2(x) + x = self.sigmoid(x) + return module_input * x + +class Bottleneck(nn.Module): + + def forward(self, x): + shortcut = x + out = self.conv1(x) + out = self.bn1(out) + out = self.relu(out) + out = self.conv2(out) + out = self.bn2(out) + out = self.relu(out) + out = self.conv3(out) + out = self.bn3(out) + if self.downsample is not None: + shortcut = self.downsample(x) + out = self.se_module(out) + shortcut + out = self.relu(out) + return out + +class SEBottleneck(Bottleneck): + expansion = 4 + + def __init__(self, inplanes, planes, groups, reduction, stride=1, downsample=None): + super(SEBottleneck, self).__init__() + self.conv1 = nn.Conv2d(inplanes, planes * 2, kernel_size=1, bias=False) + self.bn1 = nn.BatchNorm2d(planes * 2) + self.conv2 = nn.Conv2d(planes * 2, planes * 4, kernel_size=3, stride=stride, padding=1, groups=groups, bias=False) + self.bn2 = nn.BatchNorm2d(planes * 4) + self.conv3 = nn.Conv2d(planes * 4, planes * 4, kernel_size=1, bias=False) + self.bn3 = nn.BatchNorm2d(planes * 4) + self.relu = nn.ReLU(inplace=True) + self.se_module = SEModule(planes * 4, reduction=reduction) + self.downsample = downsample + self.stride = stride + +class SEResNetBottleneck(Bottleneck): + expansion = 4 + + def __init__(self, inplanes, planes, groups, reduction, stride=1, downsample=None): + super(SEResNetBottleneck, self).__init__() + self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False, stride=stride) + self.bn1 = nn.BatchNorm2d(planes) + self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, padding=1, groups=groups, bias=False) + self.bn2 = nn.BatchNorm2d(planes) + self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) + self.bn3 = nn.BatchNorm2d(planes * 4) + self.relu = nn.ReLU(inplace=True) + self.se_module = SEModule(planes * 4, reduction=reduction) + self.downsample = downsample + self.stride = stride + +class SEResNeXtBottleneck(Bottleneck): + expansion = 4 + + def __init__(self, inplanes, planes, groups, reduction, stride=1, downsample=None, base_width=4): + super(SEResNeXtBottleneck, self).__init__() + width = math.floor(planes * (base_width / 64)) * groups + self.conv1 = nn.Conv2d(inplanes, width, kernel_size=1, bias=False, stride=1) + self.bn1 = nn.BatchNorm2d(width) + self.conv2 = nn.Conv2d(width, width, kernel_size=3, stride=stride, padding=1, groups=groups, bias=False) + self.bn2 = nn.BatchNorm2d(width) + self.conv3 = nn.Conv2d(width, planes * 4, kernel_size=1, bias=False) + self.bn3 = nn.BatchNorm2d(planes * 4) + self.relu = nn.ReLU(inplace=True) + self.se_module = SEModule(planes * 4, reduction=reduction) + self.downsample = downsample + self.stride = stride + +class SEResNetBlock(nn.Module): + expansion = 1 + + def __init__(self, inplanes, planes, groups, reduction, stride=1, downsample=None): + super(SEResNetBlock, self).__init__() + self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=3, padding=1, stride=stride, bias=False) + self.bn1 = nn.BatchNorm2d(planes) + self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, padding=1, groups=groups, bias=False) + self.bn2 = nn.BatchNorm2d(planes) + self.relu = nn.ReLU(inplace=True) + self.se_module = SEModule(planes, reduction=reduction) + self.downsample = downsample + self.stride = stride + + def forward(self, x): + shortcut = x + out = self.conv1(x) + out = self.bn1(out) + out = self.relu(out) + out = self.conv2(out) + out = self.bn2(out) + out = self.relu(out) + if self.downsample is not None: + shortcut = self.downsample(x) + out = self.se_module(out) + shortcut + out = self.relu(out) + return out + +class SENet(nn.Module): + + def __init__(self, block, layers, groups, reduction, drop_rate=0.2, in_chans=3, inplanes=64, input_3x3=False, downsample_kernel_size=1, downsample_padding=0, num_classes=1000, global_pool='avg'): + super(SENet, self).__init__() + self.inplanes = inplanes + self.num_classes = num_classes + self.drop_rate = drop_rate + if input_3x3: + layer0_modules = [('conv1', nn.Conv2d(in_chans, 64, 3, stride=2, padding=1, bias=False)), ('bn1', nn.BatchNorm2d(64)), ('relu1', nn.ReLU(inplace=True)), ('conv2', nn.Conv2d(64, 64, 3, stride=1, padding=1, bias=False)), ('bn2', nn.BatchNorm2d(64)), ('relu2', nn.ReLU(inplace=True)), ('conv3', nn.Conv2d(64, inplanes, 3, stride=1, padding=1, bias=False)), ('bn3', nn.BatchNorm2d(inplanes)), ('relu3', nn.ReLU(inplace=True))] + else: + layer0_modules = [('conv1', nn.Conv2d(in_chans, inplanes, kernel_size=7, stride=2, padding=3, bias=False)), ('bn1', nn.BatchNorm2d(inplanes)), ('relu1', nn.ReLU(inplace=True))] + self.layer0 = nn.Sequential(OrderedDict(layer0_modules)) + self.pool0 = nn.MaxPool2d(3, stride=2, ceil_mode=True) + self.feature_info = [dict(num_chs=inplanes, reduction=2, module='layer0')] + self.layer1 = self._make_layer(block, planes=64, blocks=layers[0], groups=groups, reduction=reduction, downsample_kernel_size=1, downsample_padding=0) + self.feature_info += [dict(num_chs=64 * block.expansion, reduction=4, module='layer1')] + self.layer2 = self._make_layer(block, planes=128, blocks=layers[1], stride=2, groups=groups, reduction=reduction, downsample_kernel_size=downsample_kernel_size, downsample_padding=downsample_padding) + self.feature_info += [dict(num_chs=128 * block.expansion, reduction=8, module='layer2')] + self.layer3 = self._make_layer(block, planes=256, blocks=layers[2], stride=2, groups=groups, reduction=reduction, downsample_kernel_size=downsample_kernel_size, downsample_padding=downsample_padding) + self.feature_info += [dict(num_chs=256 * block.expansion, reduction=16, module='layer3')] + self.layer4 = self._make_layer(block, planes=512, blocks=layers[3], stride=2, groups=groups, reduction=reduction, downsample_kernel_size=downsample_kernel_size, downsample_padding=downsample_padding) + self.feature_info += [dict(num_chs=512 * block.expansion, reduction=32, module='layer4')] + self.num_features = self.head_hidden_size = 512 * block.expansion + (self.global_pool, self.last_linear) = create_classifier(self.num_features, self.num_classes, pool_type=global_pool) + for m in self.modules(): + _weight_init(m) + + def _make_layer(self, block, planes, blocks, groups, reduction, stride=1, downsample_kernel_size=1, downsample_padding=0): + downsample = None + if stride != 1 or self.inplanes != planes * block.expansion: + downsample = nn.Sequential(nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=downsample_kernel_size, stride=stride, padding=downsample_padding, bias=False), nn.BatchNorm2d(planes * block.expansion)) + layers = [block(self.inplanes, planes, groups, reduction, stride, downsample)] + self.inplanes = planes * block.expansion + for i in range(1, blocks): + layers.append(block(self.inplanes, planes, groups, reduction)) + return nn.Sequential(*layers) + + @torch.jit.ignore + def group_matcher(self, coarse=False): + matcher = dict(stem='^layer0', blocks='^layer(\\d+)' if coarse else '^layer(\\d+)\\.(\\d+)') + return matcher + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + assert not enable, 'gradient checkpointing not supported' + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.last_linear + + def reset_classifier(self, num_classes: int, global_pool: str='avg'): + self.num_classes = num_classes + (self.global_pool, self.last_linear) = create_classifier(self.num_features, self.num_classes, pool_type=global_pool) + + def forward_features(self, x): + x = self.layer0(x) + x = self.pool0(x) + x = self.layer1(x) + x = self.layer2(x) + x = self.layer3(x) + x = self.layer4(x) + return x + + def forward_head(self, x, pre_logits: bool=False): + x = self.global_pool(x) + if self.drop_rate > 0.0: + x = F.dropout(x, p=self.drop_rate, training=self.training) + return x if pre_logits else self.last_linear(x) + + def forward(self, x): + x = self.forward_features(x) + x = self.forward_head(x) + return x + +def _create_senet(variant, pretrained=False, **kwargs): + return build_model_with_cfg(SENet, variant, pretrained, **kwargs) + +def _cfg(url='', **kwargs): + return {'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), 'crop_pct': 0.875, 'interpolation': 'bilinear', 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'layer0.conv1', 'classifier': 'last_linear', **kwargs} +default_cfgs = generate_default_cfgs({'legacy_senet154.in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/legacy_senet154-e9eb9fe6.pth'), 'legacy_seresnet18.in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/seresnet18-4bb0ce65.pth', interpolation='bicubic'), 'legacy_seresnet34.in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/seresnet34-a4004e63.pth'), 'legacy_seresnet50.in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-cadene/se_resnet50-ce0d4300.pth'), 'legacy_seresnet101.in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-cadene/se_resnet101-7e38fcc6.pth'), 'legacy_seresnet152.in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-cadene/se_resnet152-d17c99b7.pth'), 'legacy_seresnext26_32x4d.in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/seresnext26_32x4d-65ebdb501.pth', interpolation='bicubic'), 'legacy_seresnext50_32x4d.in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/legacy_se_resnext50_32x4d-f3651bad.pth'), 'legacy_seresnext101_32x4d.in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/legacy_se_resnext101_32x4d-37725eac.pth')}) + +@register_model +def legacy_seresnet18(pretrained=False, **kwargs) -> SENet: + model_args = dict(block=SEResNetBlock, layers=[2, 2, 2, 2], groups=1, reduction=16, **kwargs) + return _create_senet('legacy_seresnet18', pretrained, **model_args) + +@register_model +def legacy_seresnet34(pretrained=False, **kwargs) -> SENet: + model_args = dict(block=SEResNetBlock, layers=[3, 4, 6, 3], groups=1, reduction=16, **kwargs) + return _create_senet('legacy_seresnet34', pretrained, **model_args) + +@register_model +def legacy_seresnet50(pretrained=False, **kwargs) -> SENet: + model_args = dict(block=SEResNetBottleneck, layers=[3, 4, 6, 3], groups=1, reduction=16, **kwargs) + return _create_senet('legacy_seresnet50', pretrained, **model_args) + +@register_model +def legacy_seresnet101(pretrained=False, **kwargs) -> SENet: + model_args = dict(block=SEResNetBottleneck, layers=[3, 4, 23, 3], groups=1, reduction=16, **kwargs) + return _create_senet('legacy_seresnet101', pretrained, **model_args) + +@register_model +def legacy_seresnet152(pretrained=False, **kwargs) -> SENet: + model_args = dict(block=SEResNetBottleneck, layers=[3, 8, 36, 3], groups=1, reduction=16, **kwargs) + return _create_senet('legacy_seresnet152', pretrained, **model_args) + +@register_model +def legacy_senet154(pretrained=False, **kwargs) -> SENet: + model_args = dict(block=SEBottleneck, layers=[3, 8, 36, 3], groups=64, reduction=16, downsample_kernel_size=3, downsample_padding=1, inplanes=128, input_3x3=True, **kwargs) + return _create_senet('legacy_senet154', pretrained, **model_args) + +@register_model +def legacy_seresnext26_32x4d(pretrained=False, **kwargs) -> SENet: + model_args = dict(block=SEResNeXtBottleneck, layers=[2, 2, 2, 2], groups=32, reduction=16, **kwargs) + return _create_senet('legacy_seresnext26_32x4d', pretrained, **model_args) + +@register_model +def legacy_seresnext50_32x4d(pretrained=False, **kwargs) -> SENet: + model_args = dict(block=SEResNeXtBottleneck, layers=[3, 4, 6, 3], groups=32, reduction=16, **kwargs) + return _create_senet('legacy_seresnext50_32x4d', pretrained, **model_args) + +@register_model +def legacy_seresnext101_32x4d(pretrained=False, **kwargs) -> SENet: + model_args = dict(block=SEResNeXtBottleneck, layers=[3, 4, 23, 3], groups=32, reduction=16, **kwargs) + return _create_senet('legacy_seresnext101_32x4d', pretrained, **model_args) + +# File: pytorch-image-models-main/timm/models/sequencer.py +"""""" +import math +from functools import partial +from itertools import accumulate +from typing import Optional, Tuple +import torch +import torch.nn as nn +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, DEFAULT_CROP_PCT +from timm.layers import lecun_normal_, DropPath, Mlp, PatchEmbed, ClassifierHead +from ._builder import build_model_with_cfg +from ._manipulate import named_apply +from ._registry import register_model, generate_default_cfgs +__all__ = ['Sequencer2d'] + +def _init_weights(module: nn.Module, name: str, head_bias: float=0.0, flax=False): + if isinstance(module, nn.Linear): + if name.startswith('head'): + nn.init.zeros_(module.weight) + nn.init.constant_(module.bias, head_bias) + elif flax: + lecun_normal_(module.weight) + if module.bias is not None: + nn.init.zeros_(module.bias) + else: + nn.init.xavier_uniform_(module.weight) + if module.bias is not None: + if 'mlp' in name: + nn.init.normal_(module.bias, std=1e-06) + else: + nn.init.zeros_(module.bias) + elif isinstance(module, nn.Conv2d): + lecun_normal_(module.weight) + if module.bias is not None: + nn.init.zeros_(module.bias) + elif isinstance(module, (nn.LayerNorm, nn.BatchNorm2d, nn.GroupNorm)): + nn.init.ones_(module.weight) + nn.init.zeros_(module.bias) + elif isinstance(module, (nn.RNN, nn.GRU, nn.LSTM)): + stdv = 1.0 / math.sqrt(module.hidden_size) + for weight in module.parameters(): + nn.init.uniform_(weight, -stdv, stdv) + elif hasattr(module, 'init_weights'): + module.init_weights() + +class RNNIdentity(nn.Module): + + def __init__(self, *args, **kwargs): + super(RNNIdentity, self).__init__() + + def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, None]: + return (x, None) + +class RNN2dBase(nn.Module): + + def __init__(self, input_size: int, hidden_size: int, num_layers: int=1, bias: bool=True, bidirectional: bool=True, union='cat', with_fc=True): + super().__init__() + self.input_size = input_size + self.hidden_size = hidden_size + self.output_size = 2 * hidden_size if bidirectional else hidden_size + self.union = union + self.with_vertical = True + self.with_horizontal = True + self.with_fc = with_fc + self.fc = None + if with_fc: + if union == 'cat': + self.fc = nn.Linear(2 * self.output_size, input_size) + elif union == 'add': + self.fc = nn.Linear(self.output_size, input_size) + elif union == 'vertical': + self.fc = nn.Linear(self.output_size, input_size) + self.with_horizontal = False + elif union == 'horizontal': + self.fc = nn.Linear(self.output_size, input_size) + self.with_vertical = False + else: + raise ValueError('Unrecognized union: ' + union) + elif union == 'cat': + pass + if 2 * self.output_size != input_size: + raise ValueError(f'The output channel {2 * self.output_size} is different from the input channel {input_size}.') + elif union == 'add': + pass + if self.output_size != input_size: + raise ValueError(f'The output channel {self.output_size} is different from the input channel {input_size}.') + elif union == 'vertical': + if self.output_size != input_size: + raise ValueError(f'The output channel {self.output_size} is different from the input channel {input_size}.') + self.with_horizontal = False + elif union == 'horizontal': + if self.output_size != input_size: + raise ValueError(f'The output channel {self.output_size} is different from the input channel {input_size}.') + self.with_vertical = False + else: + raise ValueError('Unrecognized union: ' + union) + self.rnn_v = RNNIdentity() + self.rnn_h = RNNIdentity() + + def forward(self, x): + (B, H, W, C) = x.shape + if self.with_vertical: + v = x.permute(0, 2, 1, 3) + v = v.reshape(-1, H, C) + (v, _) = self.rnn_v(v) + v = v.reshape(B, W, H, -1) + v = v.permute(0, 2, 1, 3) + else: + v = None + if self.with_horizontal: + h = x.reshape(-1, W, C) + (h, _) = self.rnn_h(h) + h = h.reshape(B, H, W, -1) + else: + h = None + if v is not None and h is not None: + if self.union == 'cat': + x = torch.cat([v, h], dim=-1) + else: + x = v + h + elif v is not None: + x = v + elif h is not None: + x = h + if self.fc is not None: + x = self.fc(x) + return x + +class LSTM2d(RNN2dBase): + + def __init__(self, input_size: int, hidden_size: int, num_layers: int=1, bias: bool=True, bidirectional: bool=True, union='cat', with_fc=True): + super().__init__(input_size, hidden_size, num_layers, bias, bidirectional, union, with_fc) + if self.with_vertical: + self.rnn_v = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True, bias=bias, bidirectional=bidirectional) + if self.with_horizontal: + self.rnn_h = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True, bias=bias, bidirectional=bidirectional) + +class Sequencer2dBlock(nn.Module): + + def __init__(self, dim, hidden_size, mlp_ratio=3.0, rnn_layer=LSTM2d, mlp_layer=Mlp, norm_layer=partial(nn.LayerNorm, eps=1e-06), act_layer=nn.GELU, num_layers=1, bidirectional=True, union='cat', with_fc=True, drop=0.0, drop_path=0.0): + super().__init__() + channels_dim = int(mlp_ratio * dim) + self.norm1 = norm_layer(dim) + self.rnn_tokens = rnn_layer(dim, hidden_size, num_layers=num_layers, bidirectional=bidirectional, union=union, with_fc=with_fc) + self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + self.norm2 = norm_layer(dim) + self.mlp_channels = mlp_layer(dim, channels_dim, act_layer=act_layer, drop=drop) + + def forward(self, x): + x = x + self.drop_path(self.rnn_tokens(self.norm1(x))) + x = x + self.drop_path(self.mlp_channels(self.norm2(x))) + return x + +class Shuffle(nn.Module): + + def __init__(self): + super().__init__() + + def forward(self, x): + if self.training: + (B, H, W, C) = x.shape + r = torch.randperm(H * W) + x = x.reshape(B, -1, C) + x = x[:, r, :].reshape(B, H, W, -1) + return x + +class Downsample2d(nn.Module): + + def __init__(self, input_dim, output_dim, patch_size): + super().__init__() + self.down = nn.Conv2d(input_dim, output_dim, kernel_size=patch_size, stride=patch_size) + + def forward(self, x): + x = x.permute(0, 3, 1, 2) + x = self.down(x) + x = x.permute(0, 2, 3, 1) + return x + +class Sequencer2dStage(nn.Module): + + def __init__(self, dim, dim_out, depth, patch_size, hidden_size, mlp_ratio, downsample=False, block_layer=Sequencer2dBlock, rnn_layer=LSTM2d, mlp_layer=Mlp, norm_layer=partial(nn.LayerNorm, eps=1e-06), act_layer=nn.GELU, num_layers=1, bidirectional=True, union='cat', with_fc=True, drop=0.0, drop_path=0.0): + super().__init__() + if downsample: + self.downsample = Downsample2d(dim, dim_out, patch_size) + else: + assert dim == dim_out + self.downsample = nn.Identity() + blocks = [] + for block_idx in range(depth): + blocks.append(block_layer(dim_out, hidden_size, mlp_ratio=mlp_ratio, rnn_layer=rnn_layer, mlp_layer=mlp_layer, norm_layer=norm_layer, act_layer=act_layer, num_layers=num_layers, bidirectional=bidirectional, union=union, with_fc=with_fc, drop=drop, drop_path=drop_path[block_idx] if isinstance(drop_path, (list, tuple)) else drop_path)) + self.blocks = nn.Sequential(*blocks) + + def forward(self, x): + x = self.downsample(x) + x = self.blocks(x) + return x + +class Sequencer2d(nn.Module): + + def __init__(self, num_classes=1000, img_size=224, in_chans=3, global_pool='avg', layers=(4, 3, 8, 3), patch_sizes=(7, 2, 2, 1), embed_dims=(192, 384, 384, 384), hidden_sizes=(48, 96, 96, 96), mlp_ratios=(3.0, 3.0, 3.0, 3.0), block_layer=Sequencer2dBlock, rnn_layer=LSTM2d, mlp_layer=Mlp, norm_layer=partial(nn.LayerNorm, eps=1e-06), act_layer=nn.GELU, num_rnn_layers=1, bidirectional=True, union='cat', with_fc=True, drop_rate=0.0, drop_path_rate=0.0, nlhb=False, stem_norm=False): + super().__init__() + assert global_pool in ('', 'avg') + self.num_classes = num_classes + self.global_pool = global_pool + self.num_features = self.head_hidden_size = embed_dims[-1] + self.feature_dim = -1 + self.output_fmt = 'NHWC' + self.feature_info = [] + self.stem = PatchEmbed(img_size=None, patch_size=patch_sizes[0], in_chans=in_chans, embed_dim=embed_dims[0], norm_layer=norm_layer if stem_norm else None, flatten=False, output_fmt='NHWC') + assert len(layers) == len(patch_sizes) == len(embed_dims) == len(hidden_sizes) == len(mlp_ratios) + reductions = list(accumulate(patch_sizes, lambda x, y: x * y)) + stages = [] + prev_dim = embed_dims[0] + for (i, _) in enumerate(embed_dims): + stages += [Sequencer2dStage(prev_dim, embed_dims[i], depth=layers[i], downsample=i > 0, patch_size=patch_sizes[i], hidden_size=hidden_sizes[i], mlp_ratio=mlp_ratios[i], block_layer=block_layer, rnn_layer=rnn_layer, mlp_layer=mlp_layer, norm_layer=norm_layer, act_layer=act_layer, num_layers=num_rnn_layers, bidirectional=bidirectional, union=union, with_fc=with_fc, drop=drop_rate, drop_path=drop_path_rate)] + prev_dim = embed_dims[i] + self.feature_info += [dict(num_chs=prev_dim, reduction=reductions[i], module=f'stages.{i}')] + self.stages = nn.Sequential(*stages) + self.norm = norm_layer(embed_dims[-1]) + self.head = ClassifierHead(self.num_features, num_classes, pool_type=global_pool, drop_rate=drop_rate, input_fmt=self.output_fmt) + self.init_weights(nlhb=nlhb) + + def init_weights(self, nlhb=False): + head_bias = -math.log(self.num_classes) if nlhb else 0.0 + named_apply(partial(_init_weights, head_bias=head_bias), module=self) + + @torch.jit.ignore + def group_matcher(self, coarse=False): + return dict(stem='^stem', blocks=[('^stages\\.(\\d+)', None), ('^norm', (99999,))] if coarse else [('^stages\\.(\\d+)\\.blocks\\.(\\d+)', None), ('^stages\\.(\\d+)\\.downsample', (0,)), ('^norm', (99999,))]) + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + assert not enable, 'gradient checkpointing not supported' + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.head + + def reset_classifier(self, num_classes: int, global_pool: Optional[str]=None): + self.num_classes = num_classes + self.head.reset(num_classes, pool_type=global_pool) + + def forward_features(self, x): + x = self.stem(x) + x = self.stages(x) + x = self.norm(x) + return x + + def forward_head(self, x, pre_logits: bool=False): + return self.head(x, pre_logits=True) if pre_logits else self.head(x) + + def forward(self, x): + x = self.forward_features(x) + x = self.forward_head(x) + return x + +def checkpoint_filter_fn(state_dict, model): + if 'stages.0.blocks.0.norm1.weight' in state_dict: + return state_dict + if 'model' in state_dict: + state_dict = state_dict['model'] + import re + out_dict = {} + for (k, v) in state_dict.items(): + k = re.sub('blocks.([0-9]+).([0-9]+).down', lambda x: f'stages.{int(x.group(1)) + 1}.downsample.down', k) + k = re.sub('blocks.([0-9]+).([0-9]+)', 'stages.\\1.blocks.\\2', k) + k = k.replace('head.', 'head.fc.') + out_dict[k] = v + return out_dict + +def _create_sequencer2d(variant, pretrained=False, **kwargs): + default_out_indices = tuple(range(3)) + out_indices = kwargs.pop('out_indices', default_out_indices) + model = build_model_with_cfg(Sequencer2d, variant, pretrained, pretrained_filter_fn=checkpoint_filter_fn, feature_cfg=dict(flatten_sequential=True, out_indices=out_indices), **kwargs) + return model + +def _cfg(url='', **kwargs): + return {'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, 'crop_pct': DEFAULT_CROP_PCT, 'interpolation': 'bicubic', 'fixed_input_size': True, 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'stem.proj', 'classifier': 'head.fc', **kwargs} +default_cfgs = generate_default_cfgs({'sequencer2d_s.in1k': _cfg(hf_hub_id='timm/'), 'sequencer2d_m.in1k': _cfg(hf_hub_id='timm/'), 'sequencer2d_l.in1k': _cfg(hf_hub_id='timm/')}) + +@register_model +def sequencer2d_s(pretrained=False, **kwargs) -> Sequencer2d: + model_args = dict(layers=[4, 3, 8, 3], patch_sizes=[7, 2, 1, 1], embed_dims=[192, 384, 384, 384], hidden_sizes=[48, 96, 96, 96], mlp_ratios=[3.0, 3.0, 3.0, 3.0], rnn_layer=LSTM2d, bidirectional=True, union='cat', with_fc=True) + model = _create_sequencer2d('sequencer2d_s', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def sequencer2d_m(pretrained=False, **kwargs) -> Sequencer2d: + model_args = dict(layers=[4, 3, 14, 3], patch_sizes=[7, 2, 1, 1], embed_dims=[192, 384, 384, 384], hidden_sizes=[48, 96, 96, 96], mlp_ratios=[3.0, 3.0, 3.0, 3.0], rnn_layer=LSTM2d, bidirectional=True, union='cat', with_fc=True, **kwargs) + model = _create_sequencer2d('sequencer2d_m', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def sequencer2d_l(pretrained=False, **kwargs) -> Sequencer2d: + model_args = dict(layers=[8, 8, 16, 4], patch_sizes=[7, 2, 1, 1], embed_dims=[192, 384, 384, 384], hidden_sizes=[48, 96, 96, 96], mlp_ratios=[3.0, 3.0, 3.0, 3.0], rnn_layer=LSTM2d, bidirectional=True, union='cat', with_fc=True, **kwargs) + model = _create_sequencer2d('sequencer2d_l', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +# File: pytorch-image-models-main/timm/models/sknet.py +"""""" +import math +from torch import nn as nn +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from timm.layers import SelectiveKernel, ConvNormAct, create_attn +from ._builder import build_model_with_cfg +from ._registry import register_model, generate_default_cfgs +from .resnet import ResNet + +class SelectiveKernelBasic(nn.Module): + expansion = 1 + + def __init__(self, inplanes, planes, stride=1, downsample=None, cardinality=1, base_width=64, sk_kwargs=None, reduce_first=1, dilation=1, first_dilation=None, act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d, attn_layer=None, aa_layer=None, drop_block=None, drop_path=None): + super(SelectiveKernelBasic, self).__init__() + sk_kwargs = sk_kwargs or {} + conv_kwargs = dict(act_layer=act_layer, norm_layer=norm_layer) + assert cardinality == 1, 'BasicBlock only supports cardinality of 1' + assert base_width == 64, 'BasicBlock doest not support changing base width' + first_planes = planes // reduce_first + outplanes = planes * self.expansion + first_dilation = first_dilation or dilation + self.conv1 = SelectiveKernel(inplanes, first_planes, stride=stride, dilation=first_dilation, aa_layer=aa_layer, drop_layer=drop_block, **conv_kwargs, **sk_kwargs) + self.conv2 = ConvNormAct(first_planes, outplanes, kernel_size=3, dilation=dilation, apply_act=False, **conv_kwargs) + self.se = create_attn(attn_layer, outplanes) + self.act = act_layer(inplace=True) + self.downsample = downsample + self.drop_path = drop_path + + def zero_init_last(self): + if getattr(self.conv2.bn, 'weight', None) is not None: + nn.init.zeros_(self.conv2.bn.weight) + + def forward(self, x): + shortcut = x + x = self.conv1(x) + x = self.conv2(x) + if self.se is not None: + x = self.se(x) + if self.drop_path is not None: + x = self.drop_path(x) + if self.downsample is not None: + shortcut = self.downsample(shortcut) + x += shortcut + x = self.act(x) + return x + +class SelectiveKernelBottleneck(nn.Module): + expansion = 4 + + def __init__(self, inplanes, planes, stride=1, downsample=None, cardinality=1, base_width=64, sk_kwargs=None, reduce_first=1, dilation=1, first_dilation=None, act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d, attn_layer=None, aa_layer=None, drop_block=None, drop_path=None): + super(SelectiveKernelBottleneck, self).__init__() + sk_kwargs = sk_kwargs or {} + conv_kwargs = dict(act_layer=act_layer, norm_layer=norm_layer) + width = int(math.floor(planes * (base_width / 64)) * cardinality) + first_planes = width // reduce_first + outplanes = planes * self.expansion + first_dilation = first_dilation or dilation + self.conv1 = ConvNormAct(inplanes, first_planes, kernel_size=1, **conv_kwargs) + self.conv2 = SelectiveKernel(first_planes, width, stride=stride, dilation=first_dilation, groups=cardinality, aa_layer=aa_layer, drop_layer=drop_block, **conv_kwargs, **sk_kwargs) + self.conv3 = ConvNormAct(width, outplanes, kernel_size=1, apply_act=False, **conv_kwargs) + self.se = create_attn(attn_layer, outplanes) + self.act = act_layer(inplace=True) + self.downsample = downsample + self.drop_path = drop_path + + def zero_init_last(self): + if getattr(self.conv3.bn, 'weight', None) is not None: + nn.init.zeros_(self.conv3.bn.weight) + + def forward(self, x): + shortcut = x + x = self.conv1(x) + x = self.conv2(x) + x = self.conv3(x) + if self.se is not None: + x = self.se(x) + if self.drop_path is not None: + x = self.drop_path(x) + if self.downsample is not None: + shortcut = self.downsample(shortcut) + x += shortcut + x = self.act(x) + return x + +def _create_skresnet(variant, pretrained=False, **kwargs): + return build_model_with_cfg(ResNet, variant, pretrained, **kwargs) + +def _cfg(url='', **kwargs): + return {'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), 'crop_pct': 0.875, 'interpolation': 'bicubic', 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'conv1', 'classifier': 'fc', **kwargs} +default_cfgs = generate_default_cfgs({'skresnet18.ra_in1k': _cfg(hf_hub_id='timm/'), 'skresnet34.ra_in1k': _cfg(hf_hub_id='timm/'), 'skresnet50.untrained': _cfg(), 'skresnet50d.untrained': _cfg(first_conv='conv1.0'), 'skresnext50_32x4d.ra_in1k': _cfg(hf_hub_id='timm/')}) + +@register_model +def skresnet18(pretrained=False, **kwargs) -> ResNet: + sk_kwargs = dict(rd_ratio=1 / 8, rd_divisor=16, split_input=True) + model_args = dict(block=SelectiveKernelBasic, layers=[2, 2, 2, 2], block_args=dict(sk_kwargs=sk_kwargs), zero_init_last=False, **kwargs) + return _create_skresnet('skresnet18', pretrained, **model_args) + +@register_model +def skresnet34(pretrained=False, **kwargs) -> ResNet: + sk_kwargs = dict(rd_ratio=1 / 8, rd_divisor=16, split_input=True) + model_args = dict(block=SelectiveKernelBasic, layers=[3, 4, 6, 3], block_args=dict(sk_kwargs=sk_kwargs), zero_init_last=False, **kwargs) + return _create_skresnet('skresnet34', pretrained, **model_args) + +@register_model +def skresnet50(pretrained=False, **kwargs) -> ResNet: + sk_kwargs = dict(split_input=True) + model_args = dict(block=SelectiveKernelBottleneck, layers=[3, 4, 6, 3], block_args=dict(sk_kwargs=sk_kwargs), zero_init_last=False, **kwargs) + return _create_skresnet('skresnet50', pretrained, **model_args) + +@register_model +def skresnet50d(pretrained=False, **kwargs) -> ResNet: + sk_kwargs = dict(split_input=True) + model_args = dict(block=SelectiveKernelBottleneck, layers=[3, 4, 6, 3], stem_width=32, stem_type='deep', avg_down=True, block_args=dict(sk_kwargs=sk_kwargs), zero_init_last=False, **kwargs) + return _create_skresnet('skresnet50d', pretrained, **model_args) + +@register_model +def skresnext50_32x4d(pretrained=False, **kwargs) -> ResNet: + sk_kwargs = dict(rd_ratio=1 / 16, rd_divisor=32, split_input=False) + model_args = dict(block=SelectiveKernelBottleneck, layers=[3, 4, 6, 3], cardinality=32, base_width=4, block_args=dict(sk_kwargs=sk_kwargs), zero_init_last=False, **kwargs) + return _create_skresnet('skresnext50_32x4d', pretrained, **model_args) + +# File: pytorch-image-models-main/timm/models/swin_transformer.py +"""""" +import logging +import math +from typing import Callable, List, Optional, Tuple, Union +import torch +import torch.nn as nn +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from timm.layers import PatchEmbed, Mlp, DropPath, ClassifierHead, to_2tuple, to_ntuple, trunc_normal_, _assert, use_fused_attn, resize_rel_pos_bias_table, resample_patch_embed, ndgrid +from ._builder import build_model_with_cfg +from ._features import feature_take_indices +from ._features_fx import register_notrace_function +from ._manipulate import checkpoint_seq, named_apply +from ._registry import generate_default_cfgs, register_model, register_model_deprecations +from .vision_transformer import get_init_weights_vit +__all__ = ['SwinTransformer'] +_logger = logging.getLogger(__name__) +_int_or_tuple_2_t = Union[int, Tuple[int, int]] + +def window_partition(x: torch.Tensor, window_size: Tuple[int, int]) -> torch.Tensor: + (B, H, W, C) = x.shape + x = x.view(B, H // window_size[0], window_size[0], W // window_size[1], window_size[1], C) + windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size[0], window_size[1], C) + return windows + +@register_notrace_function +def window_reverse(windows, window_size: Tuple[int, int], H: int, W: int): + C = windows.shape[-1] + x = windows.view(-1, H // window_size[0], W // window_size[1], window_size[0], window_size[1], C) + x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, H, W, C) + return x + +def get_relative_position_index(win_h: int, win_w: int): + coords = torch.stack(ndgrid(torch.arange(win_h), torch.arange(win_w))) + coords_flatten = torch.flatten(coords, 1) + relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] + relative_coords = relative_coords.permute(1, 2, 0).contiguous() + relative_coords[:, :, 0] += win_h - 1 + relative_coords[:, :, 1] += win_w - 1 + relative_coords[:, :, 0] *= 2 * win_w - 1 + return relative_coords.sum(-1) + +class WindowAttention(nn.Module): + fused_attn: torch.jit.Final[bool] + + def __init__(self, dim: int, num_heads: int, head_dim: Optional[int]=None, window_size: _int_or_tuple_2_t=7, qkv_bias: bool=True, attn_drop: float=0.0, proj_drop: float=0.0): + super().__init__() + self.dim = dim + self.window_size = to_2tuple(window_size) + (win_h, win_w) = self.window_size + self.window_area = win_h * win_w + self.num_heads = num_heads + head_dim = head_dim or dim // num_heads + attn_dim = head_dim * num_heads + self.scale = head_dim ** (-0.5) + self.fused_attn = use_fused_attn(experimental=True) + self.relative_position_bias_table = nn.Parameter(torch.zeros((2 * win_h - 1) * (2 * win_w - 1), num_heads)) + self.register_buffer('relative_position_index', get_relative_position_index(win_h, win_w), persistent=False) + self.qkv = nn.Linear(dim, attn_dim * 3, bias=qkv_bias) + self.attn_drop = nn.Dropout(attn_drop) + self.proj = nn.Linear(attn_dim, dim) + self.proj_drop = nn.Dropout(proj_drop) + trunc_normal_(self.relative_position_bias_table, std=0.02) + self.softmax = nn.Softmax(dim=-1) + + def set_window_size(self, window_size: Tuple[int, int]) -> None: + window_size = to_2tuple(window_size) + if window_size == self.window_size: + return + self.window_size = window_size + (win_h, win_w) = self.window_size + self.window_area = win_h * win_w + with torch.no_grad(): + new_bias_shape = ((2 * win_h - 1) * (2 * win_w - 1), self.num_heads) + self.relative_position_bias_table = nn.Parameter(resize_rel_pos_bias_table(self.relative_position_bias_table, new_window_size=self.window_size, new_bias_shape=new_bias_shape)) + self.register_buffer('relative_position_index', get_relative_position_index(win_h, win_w), persistent=False) + + def _get_rel_pos_bias(self) -> torch.Tensor: + relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(self.window_area, self.window_area, -1) + relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() + return relative_position_bias.unsqueeze(0) + + def forward(self, x, mask: Optional[torch.Tensor]=None): + (B_, N, C) = x.shape + qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) + (q, k, v) = qkv.unbind(0) + if self.fused_attn: + attn_mask = self._get_rel_pos_bias() + if mask is not None: + num_win = mask.shape[0] + mask = mask.view(1, num_win, 1, N, N).expand(B_ // num_win, -1, self.num_heads, -1, -1) + attn_mask = attn_mask + mask.reshape(-1, self.num_heads, N, N) + x = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=attn_mask, dropout_p=self.attn_drop.p if self.training else 0.0) + else: + q = q * self.scale + attn = q @ k.transpose(-2, -1) + attn = attn + self._get_rel_pos_bias() + if mask is not None: + num_win = mask.shape[0] + attn = attn.view(-1, num_win, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0) + attn = attn.view(-1, self.num_heads, N, N) + attn = self.softmax(attn) + attn = self.attn_drop(attn) + x = attn @ v + x = x.transpose(1, 2).reshape(B_, N, -1) + x = self.proj(x) + x = self.proj_drop(x) + return x + +class SwinTransformerBlock(nn.Module): + + def __init__(self, dim: int, input_resolution: _int_or_tuple_2_t, num_heads: int=4, head_dim: Optional[int]=None, window_size: _int_or_tuple_2_t=7, shift_size: int=0, always_partition: bool=False, dynamic_mask: bool=False, mlp_ratio: float=4.0, qkv_bias: bool=True, proj_drop: float=0.0, attn_drop: float=0.0, drop_path: float=0.0, act_layer: Callable=nn.GELU, norm_layer: Callable=nn.LayerNorm): + super().__init__() + self.dim = dim + self.input_resolution = input_resolution + self.target_shift_size = to_2tuple(shift_size) + self.always_partition = always_partition + self.dynamic_mask = dynamic_mask + (self.window_size, self.shift_size) = self._calc_window_shift(window_size, shift_size) + self.window_area = self.window_size[0] * self.window_size[1] + self.mlp_ratio = mlp_ratio + self.norm1 = norm_layer(dim) + self.attn = WindowAttention(dim, num_heads=num_heads, head_dim=head_dim, window_size=self.window_size, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=proj_drop) + self.drop_path1 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + self.norm2 = norm_layer(dim) + self.mlp = Mlp(in_features=dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer, drop=proj_drop) + self.drop_path2 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + self.register_buffer('attn_mask', None if self.dynamic_mask else self.get_attn_mask(), persistent=False) + + def get_attn_mask(self, x: Optional[torch.Tensor]=None) -> Optional[torch.Tensor]: + if any(self.shift_size): + if x is not None: + (H, W) = (x.shape[1], x.shape[2]) + device = x.device + dtype = x.dtype + else: + (H, W) = self.input_resolution + device = None + dtype = None + H = math.ceil(H / self.window_size[0]) * self.window_size[0] + W = math.ceil(W / self.window_size[1]) * self.window_size[1] + img_mask = torch.zeros((1, H, W, 1), dtype=dtype, device=device) + cnt = 0 + for h in ((0, -self.window_size[0]), (-self.window_size[0], -self.shift_size[0]), (-self.shift_size[0], None)): + for w in ((0, -self.window_size[1]), (-self.window_size[1], -self.shift_size[1]), (-self.shift_size[1], None)): + img_mask[:, h[0]:h[1], w[0]:w[1], :] = cnt + cnt += 1 + mask_windows = window_partition(img_mask, self.window_size) + mask_windows = mask_windows.view(-1, self.window_area) + attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) + attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0)) + else: + attn_mask = None + return attn_mask + + def _calc_window_shift(self, target_window_size: Union[int, Tuple[int, int]], target_shift_size: Optional[Union[int, Tuple[int, int]]]=None) -> Tuple[Tuple[int, int], Tuple[int, int]]: + target_window_size = to_2tuple(target_window_size) + if target_shift_size is None: + target_shift_size = self.target_shift_size + if any(target_shift_size): + target_shift_size = (target_window_size[0] // 2, target_window_size[1] // 2) + else: + target_shift_size = to_2tuple(target_shift_size) + if self.always_partition: + return (target_window_size, target_shift_size) + window_size = [r if r <= w else w for (r, w) in zip(self.input_resolution, target_window_size)] + shift_size = [0 if r <= w else s for (r, w, s) in zip(self.input_resolution, window_size, target_shift_size)] + return (tuple(window_size), tuple(shift_size)) + + def set_input_size(self, feat_size: Tuple[int, int], window_size: Tuple[int, int], always_partition: Optional[bool]=None): + self.input_resolution = feat_size + if always_partition is not None: + self.always_partition = always_partition + (self.window_size, self.shift_size) = self._calc_window_shift(window_size) + self.window_area = self.window_size[0] * self.window_size[1] + self.attn.set_window_size(self.window_size) + self.register_buffer('attn_mask', None if self.dynamic_mask else self.get_attn_mask(), persistent=False) + + def _attn(self, x): + (B, H, W, C) = x.shape + has_shift = any(self.shift_size) + if has_shift: + shifted_x = torch.roll(x, shifts=(-self.shift_size[0], -self.shift_size[1]), dims=(1, 2)) + else: + shifted_x = x + pad_h = (self.window_size[0] - H % self.window_size[0]) % self.window_size[0] + pad_w = (self.window_size[1] - W % self.window_size[1]) % self.window_size[1] + shifted_x = torch.nn.functional.pad(shifted_x, (0, 0, 0, pad_w, 0, pad_h)) + (_, Hp, Wp, _) = shifted_x.shape + x_windows = window_partition(shifted_x, self.window_size) + x_windows = x_windows.view(-1, self.window_area, C) + if getattr(self, 'dynamic_mask', False): + attn_mask = self.get_attn_mask(shifted_x) + else: + attn_mask = self.attn_mask + attn_windows = self.attn(x_windows, mask=attn_mask) + attn_windows = attn_windows.view(-1, self.window_size[0], self.window_size[1], C) + shifted_x = window_reverse(attn_windows, self.window_size, Hp, Wp) + shifted_x = shifted_x[:, :H, :W, :].contiguous() + if has_shift: + x = torch.roll(shifted_x, shifts=self.shift_size, dims=(1, 2)) + else: + x = shifted_x + return x + + def forward(self, x): + (B, H, W, C) = x.shape + x = x + self.drop_path1(self._attn(self.norm1(x))) + x = x.reshape(B, -1, C) + x = x + self.drop_path2(self.mlp(self.norm2(x))) + x = x.reshape(B, H, W, C) + return x + +class PatchMerging(nn.Module): + + def __init__(self, dim: int, out_dim: Optional[int]=None, norm_layer: Callable=nn.LayerNorm): + super().__init__() + self.dim = dim + self.out_dim = out_dim or 2 * dim + self.norm = norm_layer(4 * dim) + self.reduction = nn.Linear(4 * dim, self.out_dim, bias=False) + + def forward(self, x): + (B, H, W, C) = x.shape + pad_values = (0, 0, 0, H % 2, 0, W % 2) + x = nn.functional.pad(x, pad_values) + (_, H, W, _) = x.shape + x = x.reshape(B, H // 2, 2, W // 2, 2, C).permute(0, 1, 3, 4, 2, 5).flatten(3) + x = self.norm(x) + x = self.reduction(x) + return x + +class SwinTransformerStage(nn.Module): + + def __init__(self, dim: int, out_dim: int, input_resolution: Tuple[int, int], depth: int, downsample: bool=True, num_heads: int=4, head_dim: Optional[int]=None, window_size: _int_or_tuple_2_t=7, always_partition: bool=False, dynamic_mask: bool=False, mlp_ratio: float=4.0, qkv_bias: bool=True, proj_drop: float=0.0, attn_drop: float=0.0, drop_path: Union[List[float], float]=0.0, norm_layer: Callable=nn.LayerNorm): + super().__init__() + self.dim = dim + self.input_resolution = input_resolution + self.output_resolution = tuple((i // 2 for i in input_resolution)) if downsample else input_resolution + self.depth = depth + self.grad_checkpointing = False + window_size = to_2tuple(window_size) + shift_size = tuple([w // 2 for w in window_size]) + if downsample: + self.downsample = PatchMerging(dim=dim, out_dim=out_dim, norm_layer=norm_layer) + else: + assert dim == out_dim + self.downsample = nn.Identity() + self.blocks = nn.Sequential(*[SwinTransformerBlock(dim=out_dim, input_resolution=self.output_resolution, num_heads=num_heads, head_dim=head_dim, window_size=window_size, shift_size=0 if i % 2 == 0 else shift_size, always_partition=always_partition, dynamic_mask=dynamic_mask, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, proj_drop=proj_drop, attn_drop=attn_drop, drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path, norm_layer=norm_layer) for i in range(depth)]) + + def set_input_size(self, feat_size: Tuple[int, int], window_size: int, always_partition: Optional[bool]=None): + self.input_resolution = feat_size + if isinstance(self.downsample, nn.Identity): + self.output_resolution = feat_size + else: + self.output_resolution = tuple((i // 2 for i in feat_size)) + for block in self.blocks: + block.set_input_size(feat_size=self.output_resolution, window_size=window_size, always_partition=always_partition) + + def forward(self, x): + x = self.downsample(x) + if self.grad_checkpointing and (not torch.jit.is_scripting()): + x = checkpoint_seq(self.blocks, x) + else: + x = self.blocks(x) + return x + +class SwinTransformer(nn.Module): + + def __init__(self, img_size: _int_or_tuple_2_t=224, patch_size: int=4, in_chans: int=3, num_classes: int=1000, global_pool: str='avg', embed_dim: int=96, depths: Tuple[int, ...]=(2, 2, 6, 2), num_heads: Tuple[int, ...]=(3, 6, 12, 24), head_dim: Optional[int]=None, window_size: _int_or_tuple_2_t=7, always_partition: bool=False, strict_img_size: bool=True, mlp_ratio: float=4.0, qkv_bias: bool=True, drop_rate: float=0.0, proj_drop_rate: float=0.0, attn_drop_rate: float=0.0, drop_path_rate: float=0.1, embed_layer: Callable=PatchEmbed, norm_layer: Union[str, Callable]=nn.LayerNorm, weight_init: str='', **kwargs): + super().__init__() + assert global_pool in ('', 'avg') + self.num_classes = num_classes + self.global_pool = global_pool + self.output_fmt = 'NHWC' + self.num_layers = len(depths) + self.embed_dim = embed_dim + self.num_features = self.head_hidden_size = int(embed_dim * 2 ** (self.num_layers - 1)) + self.feature_info = [] + if not isinstance(embed_dim, (tuple, list)): + embed_dim = [int(embed_dim * 2 ** i) for i in range(self.num_layers)] + self.patch_embed = embed_layer(img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim[0], norm_layer=norm_layer, strict_img_size=strict_img_size, output_fmt='NHWC') + patch_grid = self.patch_embed.grid_size + head_dim = to_ntuple(self.num_layers)(head_dim) + if not isinstance(window_size, (list, tuple)): + window_size = to_ntuple(self.num_layers)(window_size) + elif len(window_size) == 2: + window_size = (window_size,) * self.num_layers + assert len(window_size) == self.num_layers + mlp_ratio = to_ntuple(self.num_layers)(mlp_ratio) + dpr = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(depths)).split(depths)] + layers = [] + in_dim = embed_dim[0] + scale = 1 + for i in range(self.num_layers): + out_dim = embed_dim[i] + layers += [SwinTransformerStage(dim=in_dim, out_dim=out_dim, input_resolution=(patch_grid[0] // scale, patch_grid[1] // scale), depth=depths[i], downsample=i > 0, num_heads=num_heads[i], head_dim=head_dim[i], window_size=window_size[i], always_partition=always_partition, dynamic_mask=not strict_img_size, mlp_ratio=mlp_ratio[i], qkv_bias=qkv_bias, proj_drop=proj_drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer)] + in_dim = out_dim + if i > 0: + scale *= 2 + self.feature_info += [dict(num_chs=out_dim, reduction=patch_size * scale, module=f'layers.{i}')] + self.layers = nn.Sequential(*layers) + self.norm = norm_layer(self.num_features) + self.head = ClassifierHead(self.num_features, num_classes, pool_type=global_pool, drop_rate=drop_rate, input_fmt=self.output_fmt) + if weight_init != 'skip': + self.init_weights(weight_init) + + @torch.jit.ignore + def init_weights(self, mode=''): + assert mode in ('jax', 'jax_nlhb', 'moco', '') + head_bias = -math.log(self.num_classes) if 'nlhb' in mode else 0.0 + named_apply(get_init_weights_vit(mode, head_bias=head_bias), self) + + @torch.jit.ignore + def no_weight_decay(self): + nwd = set() + for (n, _) in self.named_parameters(): + if 'relative_position_bias_table' in n: + nwd.add(n) + return nwd + + def set_input_size(self, img_size: Optional[Tuple[int, int]]=None, patch_size: Optional[Tuple[int, int]]=None, window_size: Optional[Tuple[int, int]]=None, window_ratio: int=8, always_partition: Optional[bool]=None) -> None: + if img_size is not None or patch_size is not None: + self.patch_embed.set_input_size(img_size=img_size, patch_size=patch_size) + patch_grid = self.patch_embed.grid_size + if window_size is None: + window_size = tuple([pg // window_ratio for pg in patch_grid]) + for (index, stage) in enumerate(self.layers): + stage_scale = 2 ** max(index - 1, 0) + stage.set_input_size(feat_size=(patch_grid[0] // stage_scale, patch_grid[1] // stage_scale), window_size=window_size, always_partition=always_partition) + + @torch.jit.ignore + def group_matcher(self, coarse=False): + return dict(stem='^patch_embed', blocks='^layers\\.(\\d+)' if coarse else [('^layers\\.(\\d+).downsample', (0,)), ('^layers\\.(\\d+)\\.\\w+\\.(\\d+)', None), ('^norm', (99999,))]) + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + for l in self.layers: + l.grad_checkpointing = enable + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.head.fc + + def reset_classifier(self, num_classes: int, global_pool: Optional[str]=None): + self.num_classes = num_classes + self.head.reset(num_classes, pool_type=global_pool) + + def forward_intermediates(self, x: torch.Tensor, indices: Optional[Union[int, List[int]]]=None, norm: bool=False, stop_early: bool=False, output_fmt: str='NCHW', intermediates_only: bool=False) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]: + assert output_fmt in ('NCHW',), 'Output shape must be NCHW.' + intermediates = [] + (take_indices, max_index) = feature_take_indices(len(self.layers), indices) + x = self.patch_embed(x) + num_stages = len(self.layers) + if torch.jit.is_scripting() or not stop_early: + stages = self.layers + else: + stages = self.layers[:max_index + 1] + for (i, stage) in enumerate(stages): + x = stage(x) + if i in take_indices: + if norm and i == num_stages - 1: + x_inter = self.norm(x) + else: + x_inter = x + x_inter = x_inter.permute(0, 3, 1, 2).contiguous() + intermediates.append(x_inter) + if intermediates_only: + return intermediates + x = self.norm(x) + return (x, intermediates) + + def prune_intermediate_layers(self, indices: Union[int, List[int]]=1, prune_norm: bool=False, prune_head: bool=True): + (take_indices, max_index) = feature_take_indices(len(self.layers), indices) + self.layers = self.layers[:max_index + 1] + if prune_norm: + self.norm = nn.Identity() + if prune_head: + self.reset_classifier(0, '') + return take_indices + + def forward_features(self, x): + x = self.patch_embed(x) + x = self.layers(x) + x = self.norm(x) + return x + + def forward_head(self, x, pre_logits: bool=False): + return self.head(x, pre_logits=True) if pre_logits else self.head(x) + + def forward(self, x): + x = self.forward_features(x) + x = self.forward_head(x) + return x + +def checkpoint_filter_fn(state_dict, model): + old_weights = True + if 'head.fc.weight' in state_dict: + old_weights = False + import re + out_dict = {} + state_dict = state_dict.get('model', state_dict) + state_dict = state_dict.get('state_dict', state_dict) + for (k, v) in state_dict.items(): + if any([n in k for n in ('relative_position_index', 'attn_mask')]): + continue + if 'patch_embed.proj.weight' in k: + (_, _, H, W) = model.patch_embed.proj.weight.shape + if v.shape[-2] != H or v.shape[-1] != W: + v = resample_patch_embed(v, (H, W), interpolation='bicubic', antialias=True, verbose=True) + if k.endswith('relative_position_bias_table'): + m = model.get_submodule(k[:-29]) + if v.shape != m.relative_position_bias_table.shape or m.window_size[0] != m.window_size[1]: + v = resize_rel_pos_bias_table(v, new_window_size=m.window_size, new_bias_shape=m.relative_position_bias_table.shape) + if old_weights: + k = re.sub('layers.(\\d+).downsample', lambda x: f'layers.{int(x.group(1)) + 1}.downsample', k) + k = k.replace('head.', 'head.fc.') + out_dict[k] = v + return out_dict + +def _create_swin_transformer(variant, pretrained=False, **kwargs): + default_out_indices = tuple((i for (i, _) in enumerate(kwargs.get('depths', (1, 1, 3, 1))))) + out_indices = kwargs.pop('out_indices', default_out_indices) + model = build_model_with_cfg(SwinTransformer, variant, pretrained, pretrained_filter_fn=checkpoint_filter_fn, feature_cfg=dict(flatten_sequential=True, out_indices=out_indices), **kwargs) + return model + +def _cfg(url='', **kwargs): + return {'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), 'crop_pct': 0.9, 'interpolation': 'bicubic', 'fixed_input_size': True, 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'patch_embed.proj', 'classifier': 'head.fc', 'license': 'mit', **kwargs} +default_cfgs = generate_default_cfgs({'swin_small_patch4_window7_224.ms_in22k_ft_in1k': _cfg(hf_hub_id='timm/', url='https://github.com/SwinTransformer/storage/releases/download/v1.0.8/swin_small_patch4_window7_224_22kto1k_finetune.pth'), 'swin_base_patch4_window7_224.ms_in22k_ft_in1k': _cfg(hf_hub_id='timm/', url='https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window7_224_22kto1k.pth'), 'swin_base_patch4_window12_384.ms_in22k_ft_in1k': _cfg(hf_hub_id='timm/', url='https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window12_384_22kto1k.pth', input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0), 'swin_large_patch4_window7_224.ms_in22k_ft_in1k': _cfg(hf_hub_id='timm/', url='https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_large_patch4_window7_224_22kto1k.pth'), 'swin_large_patch4_window12_384.ms_in22k_ft_in1k': _cfg(hf_hub_id='timm/', url='https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_large_patch4_window12_384_22kto1k.pth', input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0), 'swin_tiny_patch4_window7_224.ms_in1k': _cfg(hf_hub_id='timm/', url='https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_tiny_patch4_window7_224.pth'), 'swin_small_patch4_window7_224.ms_in1k': _cfg(hf_hub_id='timm/', url='https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_small_patch4_window7_224.pth'), 'swin_base_patch4_window7_224.ms_in1k': _cfg(hf_hub_id='timm/', url='https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window7_224.pth'), 'swin_base_patch4_window12_384.ms_in1k': _cfg(hf_hub_id='timm/', url='https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window12_384.pth', input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0), 'swin_tiny_patch4_window7_224.ms_in22k_ft_in1k': _cfg(hf_hub_id='timm/', url='https://github.com/SwinTransformer/storage/releases/download/v1.0.8/swin_tiny_patch4_window7_224_22kto1k_finetune.pth'), 'swin_tiny_patch4_window7_224.ms_in22k': _cfg(hf_hub_id='timm/', url='https://github.com/SwinTransformer/storage/releases/download/v1.0.8/swin_tiny_patch4_window7_224_22k.pth', num_classes=21841), 'swin_small_patch4_window7_224.ms_in22k': _cfg(hf_hub_id='timm/', url='https://github.com/SwinTransformer/storage/releases/download/v1.0.8/swin_small_patch4_window7_224_22k.pth', num_classes=21841), 'swin_base_patch4_window7_224.ms_in22k': _cfg(hf_hub_id='timm/', url='https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window7_224_22k.pth', num_classes=21841), 'swin_base_patch4_window12_384.ms_in22k': _cfg(hf_hub_id='timm/', url='https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window12_384_22k.pth', input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, num_classes=21841), 'swin_large_patch4_window7_224.ms_in22k': _cfg(hf_hub_id='timm/', url='https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_large_patch4_window7_224_22k.pth', num_classes=21841), 'swin_large_patch4_window12_384.ms_in22k': _cfg(hf_hub_id='timm/', url='https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_large_patch4_window12_384_22k.pth', input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, num_classes=21841), 'swin_s3_tiny_224.ms_in1k': _cfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/s3_t-1d53f6a8.pth'), 'swin_s3_small_224.ms_in1k': _cfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/s3_s-3bb4c69d.pth'), 'swin_s3_base_224.ms_in1k': _cfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/s3_b-a1e95db4.pth')}) + +@register_model +def swin_tiny_patch4_window7_224(pretrained=False, **kwargs) -> SwinTransformer: + model_args = dict(patch_size=4, window_size=7, embed_dim=96, depths=(2, 2, 6, 2), num_heads=(3, 6, 12, 24)) + return _create_swin_transformer('swin_tiny_patch4_window7_224', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def swin_small_patch4_window7_224(pretrained=False, **kwargs) -> SwinTransformer: + model_args = dict(patch_size=4, window_size=7, embed_dim=96, depths=(2, 2, 18, 2), num_heads=(3, 6, 12, 24)) + return _create_swin_transformer('swin_small_patch4_window7_224', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def swin_base_patch4_window7_224(pretrained=False, **kwargs) -> SwinTransformer: + model_args = dict(patch_size=4, window_size=7, embed_dim=128, depths=(2, 2, 18, 2), num_heads=(4, 8, 16, 32)) + return _create_swin_transformer('swin_base_patch4_window7_224', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def swin_base_patch4_window12_384(pretrained=False, **kwargs) -> SwinTransformer: + model_args = dict(patch_size=4, window_size=12, embed_dim=128, depths=(2, 2, 18, 2), num_heads=(4, 8, 16, 32)) + return _create_swin_transformer('swin_base_patch4_window12_384', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def swin_large_patch4_window7_224(pretrained=False, **kwargs) -> SwinTransformer: + model_args = dict(patch_size=4, window_size=7, embed_dim=192, depths=(2, 2, 18, 2), num_heads=(6, 12, 24, 48)) + return _create_swin_transformer('swin_large_patch4_window7_224', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def swin_large_patch4_window12_384(pretrained=False, **kwargs) -> SwinTransformer: + model_args = dict(patch_size=4, window_size=12, embed_dim=192, depths=(2, 2, 18, 2), num_heads=(6, 12, 24, 48)) + return _create_swin_transformer('swin_large_patch4_window12_384', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def swin_s3_tiny_224(pretrained=False, **kwargs) -> SwinTransformer: + model_args = dict(patch_size=4, window_size=(7, 7, 14, 7), embed_dim=96, depths=(2, 2, 6, 2), num_heads=(3, 6, 12, 24)) + return _create_swin_transformer('swin_s3_tiny_224', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def swin_s3_small_224(pretrained=False, **kwargs) -> SwinTransformer: + model_args = dict(patch_size=4, window_size=(14, 14, 14, 7), embed_dim=96, depths=(2, 2, 18, 2), num_heads=(3, 6, 12, 24)) + return _create_swin_transformer('swin_s3_small_224', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def swin_s3_base_224(pretrained=False, **kwargs) -> SwinTransformer: + model_args = dict(patch_size=4, window_size=(7, 7, 14, 7), embed_dim=96, depths=(2, 2, 30, 2), num_heads=(3, 6, 12, 24)) + return _create_swin_transformer('swin_s3_base_224', pretrained=pretrained, **dict(model_args, **kwargs)) +register_model_deprecations(__name__, {'swin_base_patch4_window7_224_in22k': 'swin_base_patch4_window7_224.ms_in22k', 'swin_base_patch4_window12_384_in22k': 'swin_base_patch4_window12_384.ms_in22k', 'swin_large_patch4_window7_224_in22k': 'swin_large_patch4_window7_224.ms_in22k', 'swin_large_patch4_window12_384_in22k': 'swin_large_patch4_window12_384.ms_in22k'}) + +# File: pytorch-image-models-main/timm/models/swin_transformer_v2.py +"""""" +import math +from typing import Callable, List, Optional, Tuple, Union +import torch +import torch.nn as nn +import torch.nn.functional as F +import torch.utils.checkpoint as checkpoint +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from timm.layers import PatchEmbed, Mlp, DropPath, to_2tuple, trunc_normal_, _assert, ClassifierHead, resample_patch_embed, ndgrid, get_act_layer, LayerType +from ._builder import build_model_with_cfg +from ._features import feature_take_indices +from ._features_fx import register_notrace_function +from ._registry import generate_default_cfgs, register_model, register_model_deprecations +__all__ = ['SwinTransformerV2'] +_int_or_tuple_2_t = Union[int, Tuple[int, int]] + +def window_partition(x: torch.Tensor, window_size: Tuple[int, int]) -> torch.Tensor: + (B, H, W, C) = x.shape + x = x.view(B, H // window_size[0], window_size[0], W // window_size[1], window_size[1], C) + windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size[0], window_size[1], C) + return windows + +@register_notrace_function +def window_reverse(windows: torch.Tensor, window_size: Tuple[int, int], img_size: Tuple[int, int]) -> torch.Tensor: + (H, W) = img_size + C = windows.shape[-1] + x = windows.view(-1, H // window_size[0], W // window_size[1], window_size[0], window_size[1], C) + x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, H, W, C) + return x + +class WindowAttention(nn.Module): + + def __init__(self, dim: int, window_size: Tuple[int, int], num_heads: int, qkv_bias: bool=True, qkv_bias_separate: bool=False, attn_drop: float=0.0, proj_drop: float=0.0, pretrained_window_size: Tuple[int, int]=(0, 0)) -> None: + super().__init__() + self.dim = dim + self.window_size = window_size + self.pretrained_window_size = to_2tuple(pretrained_window_size) + self.num_heads = num_heads + self.qkv_bias_separate = qkv_bias_separate + self.logit_scale = nn.Parameter(torch.log(10 * torch.ones((num_heads, 1, 1)))) + self.cpb_mlp = nn.Sequential(nn.Linear(2, 512, bias=True), nn.ReLU(inplace=True), nn.Linear(512, num_heads, bias=False)) + self.qkv = nn.Linear(dim, dim * 3, bias=False) + if qkv_bias: + self.q_bias = nn.Parameter(torch.zeros(dim)) + self.register_buffer('k_bias', torch.zeros(dim), persistent=False) + self.v_bias = nn.Parameter(torch.zeros(dim)) + else: + self.q_bias = None + self.k_bias = None + self.v_bias = None + self.attn_drop = nn.Dropout(attn_drop) + self.proj = nn.Linear(dim, dim) + self.proj_drop = nn.Dropout(proj_drop) + self.softmax = nn.Softmax(dim=-1) + self._make_pair_wise_relative_positions() + + def _make_pair_wise_relative_positions(self): + relative_coords_h = torch.arange(-(self.window_size[0] - 1), self.window_size[0]).to(torch.float32) + relative_coords_w = torch.arange(-(self.window_size[1] - 1), self.window_size[1]).to(torch.float32) + relative_coords_table = torch.stack(ndgrid(relative_coords_h, relative_coords_w)) + relative_coords_table = relative_coords_table.permute(1, 2, 0).contiguous().unsqueeze(0) + if self.pretrained_window_size[0] > 0: + relative_coords_table[:, :, :, 0] /= self.pretrained_window_size[0] - 1 + relative_coords_table[:, :, :, 1] /= self.pretrained_window_size[1] - 1 + else: + relative_coords_table[:, :, :, 0] /= self.window_size[0] - 1 + relative_coords_table[:, :, :, 1] /= self.window_size[1] - 1 + relative_coords_table *= 8 + relative_coords_table = torch.sign(relative_coords_table) * torch.log2(torch.abs(relative_coords_table) + 1.0) / math.log2(8) + self.register_buffer('relative_coords_table', relative_coords_table, persistent=False) + coords_h = torch.arange(self.window_size[0]) + coords_w = torch.arange(self.window_size[1]) + coords = torch.stack(ndgrid(coords_h, coords_w)) + coords_flatten = torch.flatten(coords, 1) + relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] + relative_coords = relative_coords.permute(1, 2, 0).contiguous() + relative_coords[:, :, 0] += self.window_size[0] - 1 + relative_coords[:, :, 1] += self.window_size[1] - 1 + relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1 + relative_position_index = relative_coords.sum(-1) + self.register_buffer('relative_position_index', relative_position_index, persistent=False) + + def set_window_size(self, window_size: Tuple[int, int]) -> None: + window_size = to_2tuple(window_size) + if window_size != self.window_size: + self.window_size = window_size + self._make_pair_wise_relative_positions() + + def forward(self, x: torch.Tensor, mask: Optional[torch.Tensor]=None) -> torch.Tensor: + (B_, N, C) = x.shape + if self.q_bias is None: + qkv = self.qkv(x) + else: + qkv_bias = torch.cat((self.q_bias, self.k_bias, self.v_bias)) + if self.qkv_bias_separate: + qkv = self.qkv(x) + qkv += qkv_bias + else: + qkv = F.linear(x, weight=self.qkv.weight, bias=qkv_bias) + qkv = qkv.reshape(B_, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) + (q, k, v) = qkv.unbind(0) + attn = F.normalize(q, dim=-1) @ F.normalize(k, dim=-1).transpose(-2, -1) + logit_scale = torch.clamp(self.logit_scale, max=math.log(1.0 / 0.01)).exp() + attn = attn * logit_scale + relative_position_bias_table = self.cpb_mlp(self.relative_coords_table).view(-1, self.num_heads) + relative_position_bias = relative_position_bias_table[self.relative_position_index.view(-1)].view(self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) + relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() + relative_position_bias = 16 * torch.sigmoid(relative_position_bias) + attn = attn + relative_position_bias.unsqueeze(0) + if mask is not None: + num_win = mask.shape[0] + attn = attn.view(-1, num_win, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0) + attn = attn.view(-1, self.num_heads, N, N) + attn = self.softmax(attn) + else: + attn = self.softmax(attn) + attn = self.attn_drop(attn) + x = (attn @ v).transpose(1, 2).reshape(B_, N, C) + x = self.proj(x) + x = self.proj_drop(x) + return x + +class SwinTransformerV2Block(nn.Module): + + def __init__(self, dim: int, input_resolution: _int_or_tuple_2_t, num_heads: int, window_size: _int_or_tuple_2_t=7, shift_size: _int_or_tuple_2_t=0, always_partition: bool=False, dynamic_mask: bool=False, mlp_ratio: float=4.0, qkv_bias: bool=True, proj_drop: float=0.0, attn_drop: float=0.0, drop_path: float=0.0, act_layer: LayerType='gelu', norm_layer: nn.Module=nn.LayerNorm, pretrained_window_size: _int_or_tuple_2_t=0): + super().__init__() + self.dim = dim + self.input_resolution = to_2tuple(input_resolution) + self.num_heads = num_heads + self.target_shift_size = to_2tuple(shift_size) + self.always_partition = always_partition + self.dynamic_mask = dynamic_mask + (self.window_size, self.shift_size) = self._calc_window_shift(window_size, shift_size) + self.window_area = self.window_size[0] * self.window_size[1] + self.mlp_ratio = mlp_ratio + act_layer = get_act_layer(act_layer) + self.attn = WindowAttention(dim, window_size=to_2tuple(self.window_size), num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=proj_drop, pretrained_window_size=to_2tuple(pretrained_window_size)) + self.norm1 = norm_layer(dim) + self.drop_path1 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + self.mlp = Mlp(in_features=dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer, drop=proj_drop) + self.norm2 = norm_layer(dim) + self.drop_path2 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + self.register_buffer('attn_mask', None if self.dynamic_mask else self.get_attn_mask(), persistent=False) + + def get_attn_mask(self, x: Optional[torch.Tensor]=None) -> Optional[torch.Tensor]: + if any(self.shift_size): + if x is None: + img_mask = torch.zeros((1, *self.input_resolution, 1)) + else: + img_mask = torch.zeros((1, x.shape[1], x.shape[2], 1), dtype=x.dtype, device=x.device) + cnt = 0 + for h in ((0, -self.window_size[0]), (-self.window_size[0], -self.shift_size[0]), (-self.shift_size[0], None)): + for w in ((0, -self.window_size[1]), (-self.window_size[1], -self.shift_size[1]), (-self.shift_size[1], None)): + img_mask[:, h[0]:h[1], w[0]:w[1], :] = cnt + cnt += 1 + mask_windows = window_partition(img_mask, self.window_size) + mask_windows = mask_windows.view(-1, self.window_area) + attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) + attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0)) + else: + attn_mask = None + return attn_mask + + def _calc_window_shift(self, target_window_size: _int_or_tuple_2_t, target_shift_size: Optional[_int_or_tuple_2_t]=None) -> Tuple[Tuple[int, int], Tuple[int, int]]: + target_window_size = to_2tuple(target_window_size) + if target_shift_size is None: + target_shift_size = self.target_shift_size + if any(target_shift_size): + target_shift_size = (target_window_size[0] // 2, target_window_size[1] // 2) + else: + target_shift_size = to_2tuple(target_shift_size) + if self.always_partition: + return (target_window_size, target_shift_size) + target_window_size = to_2tuple(target_window_size) + target_shift_size = to_2tuple(target_shift_size) + window_size = [r if r <= w else w for (r, w) in zip(self.input_resolution, target_window_size)] + shift_size = [0 if r <= w else s for (r, w, s) in zip(self.input_resolution, window_size, target_shift_size)] + return (tuple(window_size), tuple(shift_size)) + + def set_input_size(self, feat_size: Tuple[int, int], window_size: Tuple[int, int], always_partition: Optional[bool]=None): + self.input_resolution = feat_size + if always_partition is not None: + self.always_partition = always_partition + (self.window_size, self.shift_size) = self._calc_window_shift(to_2tuple(window_size)) + self.window_area = self.window_size[0] * self.window_size[1] + self.attn.set_window_size(self.window_size) + self.register_buffer('attn_mask', None if self.dynamic_mask else self.get_attn_mask(), persistent=False) + + def _attn(self, x: torch.Tensor) -> torch.Tensor: + (B, H, W, C) = x.shape + has_shift = any(self.shift_size) + if has_shift: + shifted_x = torch.roll(x, shifts=(-self.shift_size[0], -self.shift_size[1]), dims=(1, 2)) + else: + shifted_x = x + pad_h = (self.window_size[0] - H % self.window_size[0]) % self.window_size[0] + pad_w = (self.window_size[1] - W % self.window_size[1]) % self.window_size[1] + shifted_x = torch.nn.functional.pad(shifted_x, (0, 0, 0, pad_w, 0, pad_h)) + (_, Hp, Wp, _) = shifted_x.shape + x_windows = window_partition(shifted_x, self.window_size) + x_windows = x_windows.view(-1, self.window_area, C) + if getattr(self, 'dynamic_mask', False): + attn_mask = self.get_attn_mask(shifted_x) + else: + attn_mask = self.attn_mask + attn_windows = self.attn(x_windows, mask=attn_mask) + attn_windows = attn_windows.view(-1, self.window_size[0], self.window_size[1], C) + shifted_x = window_reverse(attn_windows, self.window_size, (Hp, Wp)) + shifted_x = shifted_x[:, :H, :W, :].contiguous() + if has_shift: + x = torch.roll(shifted_x, shifts=self.shift_size, dims=(1, 2)) + else: + x = shifted_x + return x + + def forward(self, x: torch.Tensor) -> torch.Tensor: + (B, H, W, C) = x.shape + x = x + self.drop_path1(self.norm1(self._attn(x))) + x = x.reshape(B, -1, C) + x = x + self.drop_path2(self.norm2(self.mlp(x))) + x = x.reshape(B, H, W, C) + return x + +class PatchMerging(nn.Module): + + def __init__(self, dim: int, out_dim: Optional[int]=None, norm_layer: nn.Module=nn.LayerNorm): + super().__init__() + self.dim = dim + self.out_dim = out_dim or 2 * dim + self.reduction = nn.Linear(4 * dim, self.out_dim, bias=False) + self.norm = norm_layer(self.out_dim) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + (B, H, W, C) = x.shape + pad_values = (0, 0, 0, H % 2, 0, W % 2) + x = nn.functional.pad(x, pad_values) + (_, H, W, _) = x.shape + x = x.reshape(B, H // 2, 2, W // 2, 2, C).permute(0, 1, 3, 4, 2, 5).flatten(3) + x = self.reduction(x) + x = self.norm(x) + return x + +class SwinTransformerV2Stage(nn.Module): + + def __init__(self, dim: int, out_dim: int, input_resolution: _int_or_tuple_2_t, depth: int, num_heads: int, window_size: _int_or_tuple_2_t, always_partition: bool=False, dynamic_mask: bool=False, downsample: bool=False, mlp_ratio: float=4.0, qkv_bias: bool=True, proj_drop: float=0.0, attn_drop: float=0.0, drop_path: float=0.0, act_layer: Union[str, Callable]='gelu', norm_layer: nn.Module=nn.LayerNorm, pretrained_window_size: _int_or_tuple_2_t=0, output_nchw: bool=False) -> None: + super().__init__() + self.dim = dim + self.input_resolution = input_resolution + self.output_resolution = tuple((i // 2 for i in input_resolution)) if downsample else input_resolution + self.depth = depth + self.output_nchw = output_nchw + self.grad_checkpointing = False + window_size = to_2tuple(window_size) + shift_size = tuple([w // 2 for w in window_size]) + if downsample: + self.downsample = PatchMerging(dim=dim, out_dim=out_dim, norm_layer=norm_layer) + else: + assert dim == out_dim + self.downsample = nn.Identity() + self.blocks = nn.ModuleList([SwinTransformerV2Block(dim=out_dim, input_resolution=self.output_resolution, num_heads=num_heads, window_size=window_size, shift_size=0 if i % 2 == 0 else shift_size, always_partition=always_partition, dynamic_mask=dynamic_mask, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, proj_drop=proj_drop, attn_drop=attn_drop, drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path, act_layer=act_layer, norm_layer=norm_layer, pretrained_window_size=pretrained_window_size) for i in range(depth)]) + + def set_input_size(self, feat_size: Tuple[int, int], window_size: int, always_partition: Optional[bool]=None): + self.input_resolution = feat_size + if isinstance(self.downsample, nn.Identity): + self.output_resolution = feat_size + else: + assert isinstance(self.downsample, PatchMerging) + self.output_resolution = tuple((i // 2 for i in feat_size)) + for block in self.blocks: + block.set_input_size(feat_size=self.output_resolution, window_size=window_size, always_partition=always_partition) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + x = self.downsample(x) + for blk in self.blocks: + if self.grad_checkpointing and (not torch.jit.is_scripting()): + x = checkpoint.checkpoint(blk, x) + else: + x = blk(x) + return x + + def _init_respostnorm(self) -> None: + for blk in self.blocks: + nn.init.constant_(blk.norm1.bias, 0) + nn.init.constant_(blk.norm1.weight, 0) + nn.init.constant_(blk.norm2.bias, 0) + nn.init.constant_(blk.norm2.weight, 0) + +class SwinTransformerV2(nn.Module): + + def __init__(self, img_size: _int_or_tuple_2_t=224, patch_size: int=4, in_chans: int=3, num_classes: int=1000, global_pool: str='avg', embed_dim: int=96, depths: Tuple[int, ...]=(2, 2, 6, 2), num_heads: Tuple[int, ...]=(3, 6, 12, 24), window_size: _int_or_tuple_2_t=7, always_partition: bool=False, strict_img_size: bool=True, mlp_ratio: float=4.0, qkv_bias: bool=True, drop_rate: float=0.0, proj_drop_rate: float=0.0, attn_drop_rate: float=0.0, drop_path_rate: float=0.1, act_layer: Union[str, Callable]='gelu', norm_layer: Callable=nn.LayerNorm, pretrained_window_sizes: Tuple[int, ...]=(0, 0, 0, 0), **kwargs): + super().__init__() + self.num_classes = num_classes + assert global_pool in ('', 'avg') + self.global_pool = global_pool + self.output_fmt = 'NHWC' + self.num_layers = len(depths) + self.embed_dim = embed_dim + self.num_features = self.head_hidden_size = int(embed_dim * 2 ** (self.num_layers - 1)) + self.feature_info = [] + if not isinstance(embed_dim, (tuple, list)): + embed_dim = [int(embed_dim * 2 ** i) for i in range(self.num_layers)] + self.patch_embed = PatchEmbed(img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim[0], norm_layer=norm_layer, strict_img_size=strict_img_size, output_fmt='NHWC') + grid_size = self.patch_embed.grid_size + dpr = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(depths)).split(depths)] + layers = [] + in_dim = embed_dim[0] + scale = 1 + for i in range(self.num_layers): + out_dim = embed_dim[i] + layers += [SwinTransformerV2Stage(dim=in_dim, out_dim=out_dim, input_resolution=(grid_size[0] // scale, grid_size[1] // scale), depth=depths[i], downsample=i > 0, num_heads=num_heads[i], window_size=window_size, always_partition=always_partition, dynamic_mask=not strict_img_size, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, proj_drop=proj_drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], act_layer=act_layer, norm_layer=norm_layer, pretrained_window_size=pretrained_window_sizes[i])] + in_dim = out_dim + if i > 0: + scale *= 2 + self.feature_info += [dict(num_chs=out_dim, reduction=4 * scale, module=f'layers.{i}')] + self.layers = nn.Sequential(*layers) + self.norm = norm_layer(self.num_features) + self.head = ClassifierHead(self.num_features, num_classes, pool_type=global_pool, drop_rate=drop_rate, input_fmt=self.output_fmt) + self.apply(self._init_weights) + for bly in self.layers: + bly._init_respostnorm() + + def _init_weights(self, m): + if isinstance(m, nn.Linear): + trunc_normal_(m.weight, std=0.02) + if isinstance(m, nn.Linear) and m.bias is not None: + nn.init.constant_(m.bias, 0) + + def set_input_size(self, img_size: Optional[Tuple[int, int]]=None, patch_size: Optional[Tuple[int, int]]=None, window_size: Optional[Tuple[int, int]]=None, window_ratio: Optional[int]=8, always_partition: Optional[bool]=None): + if img_size is not None or patch_size is not None: + self.patch_embed.set_input_size(img_size=img_size, patch_size=patch_size) + grid_size = self.patch_embed.grid_size + if window_size is None and window_ratio is not None: + window_size = tuple([s // window_ratio for s in grid_size]) + for (index, stage) in enumerate(self.layers): + stage_scale = 2 ** max(index - 1, 0) + stage.set_input_size(feat_size=(grid_size[0] // stage_scale, grid_size[1] // stage_scale), window_size=window_size, always_partition=always_partition) + + @torch.jit.ignore + def no_weight_decay(self): + nod = set() + for (n, m) in self.named_modules(): + if any([kw in n for kw in ('cpb_mlp', 'logit_scale')]): + nod.add(n) + return nod + + @torch.jit.ignore + def group_matcher(self, coarse=False): + return dict(stem='^absolute_pos_embed|patch_embed', blocks='^layers\\.(\\d+)' if coarse else [('^layers\\.(\\d+).downsample', (0,)), ('^layers\\.(\\d+)\\.\\w+\\.(\\d+)', None), ('^norm', (99999,))]) + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + for l in self.layers: + l.grad_checkpointing = enable + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.head.fc + + def reset_classifier(self, num_classes: int, global_pool: Optional[str]=None): + self.num_classes = num_classes + self.head.reset(num_classes, global_pool) + + def forward_intermediates(self, x: torch.Tensor, indices: Optional[Union[int, List[int]]]=None, norm: bool=False, stop_early: bool=False, output_fmt: str='NCHW', intermediates_only: bool=False) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]: + assert output_fmt in ('NCHW',), 'Output shape must be NCHW.' + intermediates = [] + (take_indices, max_index) = feature_take_indices(len(self.layers), indices) + x = self.patch_embed(x) + num_stages = len(self.layers) + if torch.jit.is_scripting() or not stop_early: + stages = self.layers + else: + stages = self.layers[:max_index + 1] + for (i, stage) in enumerate(stages): + x = stage(x) + if i in take_indices: + if norm and i == num_stages - 1: + x_inter = self.norm(x) + else: + x_inter = x + x_inter = x_inter.permute(0, 3, 1, 2).contiguous() + intermediates.append(x_inter) + if intermediates_only: + return intermediates + x = self.norm(x) + return (x, intermediates) + + def prune_intermediate_layers(self, indices: Union[int, List[int]]=1, prune_norm: bool=False, prune_head: bool=True): + (take_indices, max_index) = feature_take_indices(len(self.layers), indices) + self.layers = self.layers[:max_index + 1] + if prune_norm: + self.norm = nn.Identity() + if prune_head: + self.reset_classifier(0, '') + return take_indices + + def forward_features(self, x): + x = self.patch_embed(x) + x = self.layers(x) + x = self.norm(x) + return x + + def forward_head(self, x, pre_logits: bool=False): + return self.head(x, pre_logits=True) if pre_logits else self.head(x) + + def forward(self, x): + x = self.forward_features(x) + x = self.forward_head(x) + return x + +def checkpoint_filter_fn(state_dict, model): + state_dict = state_dict.get('model', state_dict) + state_dict = state_dict.get('state_dict', state_dict) + native_checkpoint = 'head.fc.weight' in state_dict + out_dict = {} + import re + for (k, v) in state_dict.items(): + if any([n in k for n in ('relative_position_index', 'relative_coords_table', 'attn_mask')]): + continue + if 'patch_embed.proj.weight' in k: + (_, _, H, W) = model.patch_embed.proj.weight.shape + if v.shape[-2] != H or v.shape[-1] != W: + v = resample_patch_embed(v, (H, W), interpolation='bicubic', antialias=True, verbose=True) + if not native_checkpoint: + k = re.sub('layers.(\\d+).downsample', lambda x: f'layers.{int(x.group(1)) + 1}.downsample', k) + k = k.replace('head.', 'head.fc.') + out_dict[k] = v + return out_dict + +def _create_swin_transformer_v2(variant, pretrained=False, **kwargs): + default_out_indices = tuple((i for (i, _) in enumerate(kwargs.get('depths', (1, 1, 1, 1))))) + out_indices = kwargs.pop('out_indices', default_out_indices) + model = build_model_with_cfg(SwinTransformerV2, variant, pretrained, pretrained_filter_fn=checkpoint_filter_fn, feature_cfg=dict(flatten_sequential=True, out_indices=out_indices), **kwargs) + return model + +def _cfg(url='', **kwargs): + return {'url': url, 'num_classes': 1000, 'input_size': (3, 256, 256), 'pool_size': (8, 8), 'crop_pct': 0.9, 'interpolation': 'bicubic', 'fixed_input_size': True, 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'patch_embed.proj', 'classifier': 'head.fc', 'license': 'mit', **kwargs} +default_cfgs = generate_default_cfgs({'swinv2_base_window12to16_192to256.ms_in22k_ft_in1k': _cfg(hf_hub_id='timm/', url='https://github.com/SwinTransformer/storage/releases/download/v2.0.0/swinv2_base_patch4_window12to16_192to256_22kto1k_ft.pth'), 'swinv2_base_window12to24_192to384.ms_in22k_ft_in1k': _cfg(hf_hub_id='timm/', url='https://github.com/SwinTransformer/storage/releases/download/v2.0.0/swinv2_base_patch4_window12to24_192to384_22kto1k_ft.pth', input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0), 'swinv2_large_window12to16_192to256.ms_in22k_ft_in1k': _cfg(hf_hub_id='timm/', url='https://github.com/SwinTransformer/storage/releases/download/v2.0.0/swinv2_large_patch4_window12to16_192to256_22kto1k_ft.pth'), 'swinv2_large_window12to24_192to384.ms_in22k_ft_in1k': _cfg(hf_hub_id='timm/', url='https://github.com/SwinTransformer/storage/releases/download/v2.0.0/swinv2_large_patch4_window12to24_192to384_22kto1k_ft.pth', input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0), 'swinv2_tiny_window8_256.ms_in1k': _cfg(hf_hub_id='timm/', url='https://github.com/SwinTransformer/storage/releases/download/v2.0.0/swinv2_tiny_patch4_window8_256.pth'), 'swinv2_tiny_window16_256.ms_in1k': _cfg(hf_hub_id='timm/', url='https://github.com/SwinTransformer/storage/releases/download/v2.0.0/swinv2_tiny_patch4_window16_256.pth'), 'swinv2_small_window8_256.ms_in1k': _cfg(hf_hub_id='timm/', url='https://github.com/SwinTransformer/storage/releases/download/v2.0.0/swinv2_small_patch4_window8_256.pth'), 'swinv2_small_window16_256.ms_in1k': _cfg(hf_hub_id='timm/', url='https://github.com/SwinTransformer/storage/releases/download/v2.0.0/swinv2_small_patch4_window16_256.pth'), 'swinv2_base_window8_256.ms_in1k': _cfg(hf_hub_id='timm/', url='https://github.com/SwinTransformer/storage/releases/download/v2.0.0/swinv2_base_patch4_window8_256.pth'), 'swinv2_base_window16_256.ms_in1k': _cfg(hf_hub_id='timm/', url='https://github.com/SwinTransformer/storage/releases/download/v2.0.0/swinv2_base_patch4_window16_256.pth'), 'swinv2_base_window12_192.ms_in22k': _cfg(hf_hub_id='timm/', url='https://github.com/SwinTransformer/storage/releases/download/v2.0.0/swinv2_base_patch4_window12_192_22k.pth', num_classes=21841, input_size=(3, 192, 192), pool_size=(6, 6)), 'swinv2_large_window12_192.ms_in22k': _cfg(hf_hub_id='timm/', url='https://github.com/SwinTransformer/storage/releases/download/v2.0.0/swinv2_large_patch4_window12_192_22k.pth', num_classes=21841, input_size=(3, 192, 192), pool_size=(6, 6))}) + +@register_model +def swinv2_tiny_window16_256(pretrained=False, **kwargs) -> SwinTransformerV2: + model_args = dict(window_size=16, embed_dim=96, depths=(2, 2, 6, 2), num_heads=(3, 6, 12, 24)) + return _create_swin_transformer_v2('swinv2_tiny_window16_256', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def swinv2_tiny_window8_256(pretrained=False, **kwargs) -> SwinTransformerV2: + model_args = dict(window_size=8, embed_dim=96, depths=(2, 2, 6, 2), num_heads=(3, 6, 12, 24)) + return _create_swin_transformer_v2('swinv2_tiny_window8_256', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def swinv2_small_window16_256(pretrained=False, **kwargs) -> SwinTransformerV2: + model_args = dict(window_size=16, embed_dim=96, depths=(2, 2, 18, 2), num_heads=(3, 6, 12, 24)) + return _create_swin_transformer_v2('swinv2_small_window16_256', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def swinv2_small_window8_256(pretrained=False, **kwargs) -> SwinTransformerV2: + model_args = dict(window_size=8, embed_dim=96, depths=(2, 2, 18, 2), num_heads=(3, 6, 12, 24)) + return _create_swin_transformer_v2('swinv2_small_window8_256', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def swinv2_base_window16_256(pretrained=False, **kwargs) -> SwinTransformerV2: + model_args = dict(window_size=16, embed_dim=128, depths=(2, 2, 18, 2), num_heads=(4, 8, 16, 32)) + return _create_swin_transformer_v2('swinv2_base_window16_256', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def swinv2_base_window8_256(pretrained=False, **kwargs) -> SwinTransformerV2: + model_args = dict(window_size=8, embed_dim=128, depths=(2, 2, 18, 2), num_heads=(4, 8, 16, 32)) + return _create_swin_transformer_v2('swinv2_base_window8_256', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def swinv2_base_window12_192(pretrained=False, **kwargs) -> SwinTransformerV2: + model_args = dict(window_size=12, embed_dim=128, depths=(2, 2, 18, 2), num_heads=(4, 8, 16, 32)) + return _create_swin_transformer_v2('swinv2_base_window12_192', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def swinv2_base_window12to16_192to256(pretrained=False, **kwargs) -> SwinTransformerV2: + model_args = dict(window_size=16, embed_dim=128, depths=(2, 2, 18, 2), num_heads=(4, 8, 16, 32), pretrained_window_sizes=(12, 12, 12, 6)) + return _create_swin_transformer_v2('swinv2_base_window12to16_192to256', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def swinv2_base_window12to24_192to384(pretrained=False, **kwargs) -> SwinTransformerV2: + model_args = dict(window_size=24, embed_dim=128, depths=(2, 2, 18, 2), num_heads=(4, 8, 16, 32), pretrained_window_sizes=(12, 12, 12, 6)) + return _create_swin_transformer_v2('swinv2_base_window12to24_192to384', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def swinv2_large_window12_192(pretrained=False, **kwargs) -> SwinTransformerV2: + model_args = dict(window_size=12, embed_dim=192, depths=(2, 2, 18, 2), num_heads=(6, 12, 24, 48)) + return _create_swin_transformer_v2('swinv2_large_window12_192', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def swinv2_large_window12to16_192to256(pretrained=False, **kwargs) -> SwinTransformerV2: + model_args = dict(window_size=16, embed_dim=192, depths=(2, 2, 18, 2), num_heads=(6, 12, 24, 48), pretrained_window_sizes=(12, 12, 12, 6)) + return _create_swin_transformer_v2('swinv2_large_window12to16_192to256', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def swinv2_large_window12to24_192to384(pretrained=False, **kwargs) -> SwinTransformerV2: + model_args = dict(window_size=24, embed_dim=192, depths=(2, 2, 18, 2), num_heads=(6, 12, 24, 48), pretrained_window_sizes=(12, 12, 12, 6)) + return _create_swin_transformer_v2('swinv2_large_window12to24_192to384', pretrained=pretrained, **dict(model_args, **kwargs)) +register_model_deprecations(__name__, {'swinv2_base_window12_192_22k': 'swinv2_base_window12_192.ms_in22k', 'swinv2_base_window12to16_192to256_22kft1k': 'swinv2_base_window12to16_192to256.ms_in22k_ft_in1k', 'swinv2_base_window12to24_192to384_22kft1k': 'swinv2_base_window12to24_192to384.ms_in22k_ft_in1k', 'swinv2_large_window12_192_22k': 'swinv2_large_window12_192.ms_in22k', 'swinv2_large_window12to16_192to256_22kft1k': 'swinv2_large_window12to16_192to256.ms_in22k_ft_in1k', 'swinv2_large_window12to24_192to384_22kft1k': 'swinv2_large_window12to24_192to384.ms_in22k_ft_in1k'}) + +# File: pytorch-image-models-main/timm/models/swin_transformer_v2_cr.py +"""""" +import logging +import math +from typing import Tuple, Optional, List, Union, Any, Type +import torch +import torch.nn as nn +import torch.nn.functional as F +import torch.utils.checkpoint as checkpoint +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from timm.layers import DropPath, Mlp, ClassifierHead, to_2tuple, _assert, ndgrid +from ._builder import build_model_with_cfg +from ._features import feature_take_indices +from ._features_fx import register_notrace_function +from ._manipulate import named_apply +from ._registry import generate_default_cfgs, register_model +__all__ = ['SwinTransformerV2Cr'] +_logger = logging.getLogger(__name__) + +def bchw_to_bhwc(x: torch.Tensor) -> torch.Tensor: + return x.permute(0, 2, 3, 1) + +def bhwc_to_bchw(x: torch.Tensor) -> torch.Tensor: + return x.permute(0, 3, 1, 2) + +def window_partition(x, window_size: Tuple[int, int]): + (B, H, W, C) = x.shape + x = x.view(B, H // window_size[0], window_size[0], W // window_size[1], window_size[1], C) + windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size[0], window_size[1], C) + return windows + +@register_notrace_function +def window_reverse(windows, window_size: Tuple[int, int], img_size: Tuple[int, int]): + (H, W) = img_size + C = windows.shape[-1] + x = windows.view(-1, H // window_size[0], W // window_size[1], window_size[0], window_size[1], C) + x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, H, W, C) + return x + +class WindowMultiHeadAttention(nn.Module): + + def __init__(self, dim: int, num_heads: int, window_size: Tuple[int, int], drop_attn: float=0.0, drop_proj: float=0.0, meta_hidden_dim: int=384, sequential_attn: bool=False) -> None: + super(WindowMultiHeadAttention, self).__init__() + assert dim % num_heads == 0, 'The number of input features (in_features) are not divisible by the number of heads (num_heads).' + self.in_features: int = dim + self.window_size: Tuple[int, int] = to_2tuple(window_size) + self.num_heads: int = num_heads + self.sequential_attn: bool = sequential_attn + self.qkv = nn.Linear(in_features=dim, out_features=dim * 3, bias=True) + self.attn_drop = nn.Dropout(drop_attn) + self.proj = nn.Linear(in_features=dim, out_features=dim, bias=True) + self.proj_drop = nn.Dropout(drop_proj) + self.meta_mlp = Mlp(2, hidden_features=meta_hidden_dim, out_features=num_heads, act_layer=nn.ReLU, drop=(0.125, 0.0)) + self.logit_scale = nn.Parameter(torch.log(10 * torch.ones(num_heads))) + self._make_pair_wise_relative_positions() + + def _make_pair_wise_relative_positions(self) -> None: + device = self.logit_scale.device + coordinates = torch.stack(ndgrid(torch.arange(self.window_size[0], device=device), torch.arange(self.window_size[1], device=device)), dim=0).flatten(1) + relative_coordinates = coordinates[:, :, None] - coordinates[:, None, :] + relative_coordinates = relative_coordinates.permute(1, 2, 0).reshape(-1, 2).float() + relative_coordinates_log = torch.sign(relative_coordinates) * torch.log(1.0 + relative_coordinates.abs()) + self.register_buffer('relative_coordinates_log', relative_coordinates_log, persistent=False) + + def set_window_size(self, window_size: Tuple[int, int]) -> None: + window_size = to_2tuple(window_size) + if window_size != self.window_size: + self.window_size = window_size + self._make_pair_wise_relative_positions() + + def _relative_positional_encodings(self) -> torch.Tensor: + window_area = self.window_size[0] * self.window_size[1] + relative_position_bias = self.meta_mlp(self.relative_coordinates_log) + relative_position_bias = relative_position_bias.transpose(1, 0).reshape(self.num_heads, window_area, window_area) + relative_position_bias = relative_position_bias.unsqueeze(0) + return relative_position_bias + + def forward(self, x: torch.Tensor, mask: Optional[torch.Tensor]=None) -> torch.Tensor: + (Bw, L, C) = x.shape + qkv = self.qkv(x).view(Bw, L, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) + (query, key, value) = qkv.unbind(0) + attn = F.normalize(query, dim=-1) @ F.normalize(key, dim=-1).transpose(-2, -1) + logit_scale = torch.clamp(self.logit_scale.reshape(1, self.num_heads, 1, 1), max=math.log(1.0 / 0.01)).exp() + attn = attn * logit_scale + attn = attn + self._relative_positional_encodings() + if mask is not None: + num_win: int = mask.shape[0] + attn = attn.view(Bw // num_win, num_win, self.num_heads, L, L) + attn = attn + mask.unsqueeze(1).unsqueeze(0) + attn = attn.view(-1, self.num_heads, L, L) + attn = attn.softmax(dim=-1) + attn = self.attn_drop(attn) + x = (attn @ value).transpose(1, 2).reshape(Bw, L, -1) + x = self.proj(x) + x = self.proj_drop(x) + return x + +class SwinTransformerV2CrBlock(nn.Module): + + def __init__(self, dim: int, num_heads: int, feat_size: Tuple[int, int], window_size: Tuple[int, int], shift_size: Tuple[int, int]=(0, 0), always_partition: bool=False, dynamic_mask: bool=False, mlp_ratio: float=4.0, init_values: Optional[float]=0, proj_drop: float=0.0, drop_attn: float=0.0, drop_path: float=0.0, extra_norm: bool=False, sequential_attn: bool=False, norm_layer: Type[nn.Module]=nn.LayerNorm): + super(SwinTransformerV2CrBlock, self).__init__() + self.dim: int = dim + self.feat_size: Tuple[int, int] = feat_size + self.target_shift_size: Tuple[int, int] = to_2tuple(shift_size) + self.always_partition = always_partition + self.dynamic_mask = dynamic_mask + (self.window_size, self.shift_size) = self._calc_window_shift(window_size) + self.window_area = self.window_size[0] * self.window_size[1] + self.init_values: Optional[float] = init_values + self.attn = WindowMultiHeadAttention(dim=dim, num_heads=num_heads, window_size=self.window_size, drop_attn=drop_attn, drop_proj=proj_drop, sequential_attn=sequential_attn) + self.norm1 = norm_layer(dim) + self.drop_path1 = DropPath(drop_prob=drop_path) if drop_path > 0.0 else nn.Identity() + self.mlp = Mlp(in_features=dim, hidden_features=int(dim * mlp_ratio), drop=proj_drop, out_features=dim) + self.norm2 = norm_layer(dim) + self.drop_path2 = DropPath(drop_prob=drop_path) if drop_path > 0.0 else nn.Identity() + self.norm3 = norm_layer(dim) if extra_norm else nn.Identity() + self.register_buffer('attn_mask', None if self.dynamic_mask else self.get_attn_mask(), persistent=False) + self.init_weights() + + def _calc_window_shift(self, target_window_size: Tuple[int, int]) -> Tuple[Tuple[int, int], Tuple[int, int]]: + target_window_size = to_2tuple(target_window_size) + target_shift_size = self.target_shift_size + if any(target_shift_size): + target_shift_size = (target_window_size[0] // 2, target_window_size[1] // 2) + if self.always_partition: + return (target_window_size, target_shift_size) + window_size = [f if f <= w else w for (f, w) in zip(self.feat_size, target_window_size)] + shift_size = [0 if f <= w else s for (f, w, s) in zip(self.feat_size, window_size, target_shift_size)] + return (tuple(window_size), tuple(shift_size)) + + def get_attn_mask(self, x: Optional[torch.Tensor]=None) -> Optional[torch.Tensor]: + if any(self.shift_size): + if x is None: + img_mask = torch.zeros((1, *self.feat_size, 1)) + else: + img_mask = torch.zeros((1, x.shape[1], x.shape[2], 1), dtype=x.dtype, device=x.device) + cnt = 0 + for h in ((0, -self.window_size[0]), (-self.window_size[0], -self.shift_size[0]), (-self.shift_size[0], None)): + for w in ((0, -self.window_size[1]), (-self.window_size[1], -self.shift_size[1]), (-self.shift_size[1], None)): + img_mask[:, h[0]:h[1], w[0]:w[1], :] = cnt + cnt += 1 + mask_windows = window_partition(img_mask, self.window_size) + mask_windows = mask_windows.view(-1, self.window_area) + attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) + attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0)) + else: + attn_mask = None + return attn_mask + + def init_weights(self): + if self.init_values is not None: + nn.init.constant_(self.norm1.weight, self.init_values) + nn.init.constant_(self.norm2.weight, self.init_values) + + def set_input_size(self, feat_size: Tuple[int, int], window_size: Tuple[int, int]) -> None: + self.feat_size: Tuple[int, int] = feat_size + (self.window_size, self.shift_size) = self._calc_window_shift(to_2tuple(window_size)) + self.window_area = self.window_size[0] * self.window_size[1] + self.attn.set_window_size(self.window_size) + self.register_buffer('attn_mask', None if self.dynamic_mask else self.get_attn_mask(), persistent=False) + + def _shifted_window_attn(self, x): + (B, H, W, C) = x.shape + (sh, sw) = self.shift_size + do_shift: bool = any(self.shift_size) + if do_shift: + x = torch.roll(x, shifts=(-sh, -sw), dims=(1, 2)) + pad_h = (self.window_size[0] - H % self.window_size[0]) % self.window_size[0] + pad_w = (self.window_size[1] - W % self.window_size[1]) % self.window_size[1] + x = torch.nn.functional.pad(x, (0, 0, 0, pad_w, 0, pad_h)) + (_, Hp, Wp, _) = x.shape + x_windows = window_partition(x, self.window_size) + x_windows = x_windows.view(-1, self.window_size[0] * self.window_size[1], C) + if getattr(self, 'dynamic_mask', False): + attn_mask = self.get_attn_mask(x) + else: + attn_mask = self.attn_mask + attn_windows = self.attn(x_windows, mask=attn_mask) + attn_windows = attn_windows.view(-1, self.window_size[0], self.window_size[1], C) + x = window_reverse(attn_windows, self.window_size, (Hp, Wp)) + x = x[:, :H, :W, :].contiguous() + if do_shift: + x = torch.roll(x, shifts=(sh, sw), dims=(1, 2)) + return x + + def forward(self, x: torch.Tensor) -> torch.Tensor: + x = x + self.drop_path1(self.norm1(self._shifted_window_attn(x))) + (B, H, W, C) = x.shape + x = x.reshape(B, -1, C) + x = x + self.drop_path2(self.norm2(self.mlp(x))) + x = self.norm3(x) + x = x.reshape(B, H, W, C) + return x + +class PatchMerging(nn.Module): + + def __init__(self, dim: int, norm_layer: Type[nn.Module]=nn.LayerNorm) -> None: + super(PatchMerging, self).__init__() + self.norm = norm_layer(4 * dim) + self.reduction = nn.Linear(in_features=4 * dim, out_features=2 * dim, bias=False) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + (B, H, W, C) = x.shape + pad_values = (0, 0, 0, H % 2, 0, W % 2) + x = nn.functional.pad(x, pad_values) + (_, H, W, _) = x.shape + x = x.reshape(B, H // 2, 2, W // 2, 2, C).permute(0, 1, 3, 4, 2, 5).flatten(3) + x = self.norm(x) + x = self.reduction(x) + return x + +class PatchEmbed(nn.Module): + + def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, norm_layer=None, strict_img_size=True): + super().__init__() + img_size = to_2tuple(img_size) + patch_size = to_2tuple(patch_size) + self.img_size = img_size + self.patch_size = patch_size + self.grid_size = (img_size[0] // patch_size[0], img_size[1] // patch_size[1]) + self.num_patches = self.grid_size[0] * self.grid_size[1] + self.strict_img_size = strict_img_size + self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) + self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity() + + def set_input_size(self, img_size: Tuple[int, int]): + img_size = to_2tuple(img_size) + if img_size != self.img_size: + self.img_size = img_size + self.grid_size = (img_size[0] // self.patch_size[0], img_size[1] // self.patch_size[1]) + self.num_patches = self.grid_size[0] * self.grid_size[1] + + def forward(self, x): + (B, C, H, W) = x.shape + if self.strict_img_size: + _assert(H == self.img_size[0], f"Input image height ({H}) doesn't match model ({self.img_size[0]}).") + _assert(W == self.img_size[1], f"Input image width ({W}) doesn't match model ({self.img_size[1]}).") + x = self.proj(x) + x = self.norm(x.permute(0, 2, 3, 1)).permute(0, 3, 1, 2) + return x + +class SwinTransformerV2CrStage(nn.Module): + + def __init__(self, embed_dim: int, depth: int, downscale: bool, num_heads: int, feat_size: Tuple[int, int], window_size: Tuple[int, int], always_partition: bool=False, dynamic_mask: bool=False, mlp_ratio: float=4.0, init_values: Optional[float]=0.0, proj_drop: float=0.0, drop_attn: float=0.0, drop_path: Union[List[float], float]=0.0, norm_layer: Type[nn.Module]=nn.LayerNorm, extra_norm_period: int=0, extra_norm_stage: bool=False, sequential_attn: bool=False): + super(SwinTransformerV2CrStage, self).__init__() + self.downscale: bool = downscale + self.grad_checkpointing: bool = False + self.feat_size: Tuple[int, int] = (feat_size[0] // 2, feat_size[1] // 2) if downscale else feat_size + if downscale: + self.downsample = PatchMerging(embed_dim, norm_layer=norm_layer) + embed_dim = embed_dim * 2 + else: + self.downsample = nn.Identity() + + def _extra_norm(index): + i = index + 1 + if extra_norm_period and i % extra_norm_period == 0: + return True + return i == depth if extra_norm_stage else False + self.blocks = nn.Sequential(*[SwinTransformerV2CrBlock(dim=embed_dim, num_heads=num_heads, feat_size=self.feat_size, window_size=window_size, always_partition=always_partition, dynamic_mask=dynamic_mask, shift_size=tuple([0 if index % 2 == 0 else w // 2 for w in window_size]), mlp_ratio=mlp_ratio, init_values=init_values, proj_drop=proj_drop, drop_attn=drop_attn, drop_path=drop_path[index] if isinstance(drop_path, list) else drop_path, extra_norm=_extra_norm(index), sequential_attn=sequential_attn, norm_layer=norm_layer) for index in range(depth)]) + + def set_input_size(self, feat_size: Tuple[int, int], window_size: int, always_partition: Optional[bool]=None): + self.feat_size = (feat_size[0] // 2, feat_size[1] // 2) if self.downscale else feat_size + for block in self.blocks: + block.set_input_size(feat_size=self.feat_size, window_size=window_size) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + x = bchw_to_bhwc(x) + x = self.downsample(x) + for block in self.blocks: + if self.grad_checkpointing and (not torch.jit.is_scripting()): + x = checkpoint.checkpoint(block, x) + else: + x = block(x) + x = bhwc_to_bchw(x) + return x + +class SwinTransformerV2Cr(nn.Module): + + def __init__(self, img_size: Tuple[int, int]=(224, 224), patch_size: int=4, window_size: Optional[int]=None, window_ratio: int=8, always_partition: bool=False, strict_img_size: bool=True, in_chans: int=3, num_classes: int=1000, embed_dim: int=96, depths: Tuple[int, ...]=(2, 2, 6, 2), num_heads: Tuple[int, ...]=(3, 6, 12, 24), mlp_ratio: float=4.0, init_values: Optional[float]=0.0, drop_rate: float=0.0, proj_drop_rate: float=0.0, attn_drop_rate: float=0.0, drop_path_rate: float=0.0, norm_layer: Type[nn.Module]=nn.LayerNorm, extra_norm_period: int=0, extra_norm_stage: bool=False, sequential_attn: bool=False, global_pool: str='avg', weight_init='skip', **kwargs: Any) -> None: + super(SwinTransformerV2Cr, self).__init__() + img_size = to_2tuple(img_size) + self.num_classes: int = num_classes + self.patch_size: int = patch_size + self.img_size: Tuple[int, int] = img_size + self.num_features = self.head_hidden_size = int(embed_dim * 2 ** (len(depths) - 1)) + self.feature_info = [] + self.patch_embed = PatchEmbed(img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim, norm_layer=norm_layer, strict_img_size=strict_img_size) + grid_size = self.patch_embed.grid_size + if window_size is None: + self.window_size = tuple([s // window_ratio for s in grid_size]) + else: + self.window_size = to_2tuple(window_size) + dpr = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(depths)).split(depths)] + stages = [] + in_dim = embed_dim + in_scale = 1 + for (stage_idx, (depth, num_heads)) in enumerate(zip(depths, num_heads)): + stages += [SwinTransformerV2CrStage(embed_dim=in_dim, depth=depth, downscale=stage_idx != 0, feat_size=(grid_size[0] // in_scale, grid_size[1] // in_scale), num_heads=num_heads, window_size=self.window_size, always_partition=always_partition, dynamic_mask=not strict_img_size, mlp_ratio=mlp_ratio, init_values=init_values, proj_drop=proj_drop_rate, drop_attn=attn_drop_rate, drop_path=dpr[stage_idx], extra_norm_period=extra_norm_period, extra_norm_stage=extra_norm_stage or stage_idx + 1 == len(depths), sequential_attn=sequential_attn, norm_layer=norm_layer)] + if stage_idx != 0: + in_dim *= 2 + in_scale *= 2 + self.feature_info += [dict(num_chs=in_dim, reduction=4 * in_scale, module=f'stages.{stage_idx}')] + self.stages = nn.Sequential(*stages) + self.head = ClassifierHead(self.num_features, num_classes, pool_type=global_pool, drop_rate=drop_rate) + if weight_init != 'skip': + named_apply(init_weights, self) + + def set_input_size(self, img_size: Optional[Tuple[int, int]]=None, window_size: Optional[Tuple[int, int]]=None, window_ratio: int=8, always_partition: Optional[bool]=None) -> None: + if img_size is not None: + self.patch_embed.set_input_size(img_size=img_size) + grid_size = self.patch_embed.grid_size + if window_size is None and window_ratio is not None: + window_size = tuple([s // window_ratio for s in grid_size]) + for (index, stage) in enumerate(self.stages): + stage_scale = 2 ** max(index - 1, 0) + stage.set_input_size(feat_size=(grid_size[0] // stage_scale, grid_size[1] // stage_scale), window_size=window_size, always_partition=always_partition) + + @torch.jit.ignore + def group_matcher(self, coarse=False): + return dict(stem='^patch_embed', blocks='^stages\\.(\\d+)' if coarse else [('^stages\\.(\\d+).downsample', (0,)), ('^stages\\.(\\d+)\\.\\w+\\.(\\d+)', None)]) + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + for s in self.stages: + s.grad_checkpointing = enable + + @torch.jit.ignore() + def get_classifier(self) -> nn.Module: + return self.head.fc + + def reset_classifier(self, num_classes: int, global_pool: Optional[str]=None) -> None: + self.num_classes = num_classes + self.head.reset(num_classes, global_pool) + + def forward_intermediates(self, x: torch.Tensor, indices: Optional[Union[int, List[int]]]=None, norm: bool=False, stop_early: bool=False, output_fmt: str='NCHW', intermediates_only: bool=False) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]: + assert output_fmt in ('NCHW',), 'Output shape must be NCHW.' + intermediates = [] + (take_indices, max_index) = feature_take_indices(len(self.stages), indices) + x = self.patch_embed(x) + if torch.jit.is_scripting() or not stop_early: + stages = self.stages + else: + stages = self.stages[:max_index + 1] + for (i, stage) in enumerate(stages): + x = stage(x) + if i in take_indices: + intermediates.append(x) + if intermediates_only: + return intermediates + return (x, intermediates) + + def prune_intermediate_layers(self, indices: Union[int, List[int]]=1, prune_norm: bool=False, prune_head: bool=True): + (take_indices, max_index) = feature_take_indices(len(self.stages), indices) + self.stages = self.stages[:max_index + 1] + if prune_head: + self.reset_classifier(0, '') + return take_indices + + def forward_features(self, x: torch.Tensor) -> torch.Tensor: + x = self.patch_embed(x) + x = self.stages(x) + return x + + def forward_head(self, x, pre_logits: bool=False): + return self.head(x, pre_logits=True) if pre_logits else self.head(x) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + x = self.forward_features(x) + x = self.forward_head(x) + return x + +def init_weights(module: nn.Module, name: str=''): + if isinstance(module, nn.Linear): + if 'qkv' in name: + val = math.sqrt(6.0 / float(module.weight.shape[0] // 3 + module.weight.shape[1])) + nn.init.uniform_(module.weight, -val, val) + elif 'head' in name: + nn.init.zeros_(module.weight) + else: + nn.init.xavier_uniform_(module.weight) + if module.bias is not None: + nn.init.zeros_(module.bias) + elif hasattr(module, 'init_weights'): + module.init_weights() + +def checkpoint_filter_fn(state_dict, model): + state_dict = state_dict.get('model', state_dict) + state_dict = state_dict.get('state_dict', state_dict) + if 'head.fc.weight' in state_dict: + return state_dict + out_dict = {} + for (k, v) in state_dict.items(): + if 'tau' in k: + v = torch.log(1 / v) + k = k.replace('tau', 'logit_scale') + k = k.replace('head.', 'head.fc.') + out_dict[k] = v + return out_dict + +def _create_swin_transformer_v2_cr(variant, pretrained=False, **kwargs): + default_out_indices = tuple((i for (i, _) in enumerate(kwargs.get('depths', (1, 1, 1, 1))))) + out_indices = kwargs.pop('out_indices', default_out_indices) + model = build_model_with_cfg(SwinTransformerV2Cr, variant, pretrained, pretrained_filter_fn=checkpoint_filter_fn, feature_cfg=dict(flatten_sequential=True, out_indices=out_indices), **kwargs) + return model + +def _cfg(url='', **kwargs): + return {'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), 'crop_pct': 0.9, 'interpolation': 'bicubic', 'fixed_input_size': True, 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'patch_embed.proj', 'classifier': 'head.fc', **kwargs} +default_cfgs = generate_default_cfgs({'swinv2_cr_tiny_384.untrained': _cfg(url='', input_size=(3, 384, 384), crop_pct=1.0, pool_size=(12, 12)), 'swinv2_cr_tiny_224.untrained': _cfg(url='', input_size=(3, 224, 224), crop_pct=0.9), 'swinv2_cr_tiny_ns_224.sw_in1k': _cfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-swinv2/swin_v2_cr_tiny_ns_224-ba8166c6.pth', input_size=(3, 224, 224), crop_pct=0.9), 'swinv2_cr_small_384.untrained': _cfg(url='', input_size=(3, 384, 384), crop_pct=1.0, pool_size=(12, 12)), 'swinv2_cr_small_224.sw_in1k': _cfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-swinv2/swin_v2_cr_small_224-0813c165.pth', input_size=(3, 224, 224), crop_pct=0.9), 'swinv2_cr_small_ns_224.sw_in1k': _cfg(hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-swinv2/swin_v2_cr_small_ns_224_iv-2ce90f8e.pth', input_size=(3, 224, 224), crop_pct=0.9), 'swinv2_cr_small_ns_256.untrained': _cfg(url='', input_size=(3, 256, 256), crop_pct=1.0, pool_size=(8, 8)), 'swinv2_cr_base_384.untrained': _cfg(url='', input_size=(3, 384, 384), crop_pct=1.0, pool_size=(12, 12)), 'swinv2_cr_base_224.untrained': _cfg(url='', input_size=(3, 224, 224), crop_pct=0.9), 'swinv2_cr_base_ns_224.untrained': _cfg(url='', input_size=(3, 224, 224), crop_pct=0.9), 'swinv2_cr_large_384.untrained': _cfg(url='', input_size=(3, 384, 384), crop_pct=1.0, pool_size=(12, 12)), 'swinv2_cr_large_224.untrained': _cfg(url='', input_size=(3, 224, 224), crop_pct=0.9), 'swinv2_cr_huge_384.untrained': _cfg(url='', input_size=(3, 384, 384), crop_pct=1.0, pool_size=(12, 12)), 'swinv2_cr_huge_224.untrained': _cfg(url='', input_size=(3, 224, 224), crop_pct=0.9), 'swinv2_cr_giant_384.untrained': _cfg(url='', input_size=(3, 384, 384), crop_pct=1.0, pool_size=(12, 12)), 'swinv2_cr_giant_224.untrained': _cfg(url='', input_size=(3, 224, 224), crop_pct=0.9)}) + +@register_model +def swinv2_cr_tiny_384(pretrained=False, **kwargs) -> SwinTransformerV2Cr: + model_args = dict(embed_dim=96, depths=(2, 2, 6, 2), num_heads=(3, 6, 12, 24)) + return _create_swin_transformer_v2_cr('swinv2_cr_tiny_384', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def swinv2_cr_tiny_224(pretrained=False, **kwargs) -> SwinTransformerV2Cr: + model_args = dict(embed_dim=96, depths=(2, 2, 6, 2), num_heads=(3, 6, 12, 24)) + return _create_swin_transformer_v2_cr('swinv2_cr_tiny_224', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def swinv2_cr_tiny_ns_224(pretrained=False, **kwargs) -> SwinTransformerV2Cr: + model_args = dict(embed_dim=96, depths=(2, 2, 6, 2), num_heads=(3, 6, 12, 24), extra_norm_stage=True) + return _create_swin_transformer_v2_cr('swinv2_cr_tiny_ns_224', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def swinv2_cr_small_384(pretrained=False, **kwargs) -> SwinTransformerV2Cr: + model_args = dict(embed_dim=96, depths=(2, 2, 18, 2), num_heads=(3, 6, 12, 24)) + return _create_swin_transformer_v2_cr('swinv2_cr_small_384', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def swinv2_cr_small_224(pretrained=False, **kwargs) -> SwinTransformerV2Cr: + model_args = dict(embed_dim=96, depths=(2, 2, 18, 2), num_heads=(3, 6, 12, 24)) + return _create_swin_transformer_v2_cr('swinv2_cr_small_224', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def swinv2_cr_small_ns_224(pretrained=False, **kwargs) -> SwinTransformerV2Cr: + model_args = dict(embed_dim=96, depths=(2, 2, 18, 2), num_heads=(3, 6, 12, 24), extra_norm_stage=True) + return _create_swin_transformer_v2_cr('swinv2_cr_small_ns_224', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def swinv2_cr_small_ns_256(pretrained=False, **kwargs) -> SwinTransformerV2Cr: + model_args = dict(embed_dim=96, depths=(2, 2, 18, 2), num_heads=(3, 6, 12, 24), extra_norm_stage=True) + return _create_swin_transformer_v2_cr('swinv2_cr_small_ns_256', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def swinv2_cr_base_384(pretrained=False, **kwargs) -> SwinTransformerV2Cr: + model_args = dict(embed_dim=128, depths=(2, 2, 18, 2), num_heads=(4, 8, 16, 32)) + return _create_swin_transformer_v2_cr('swinv2_cr_base_384', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def swinv2_cr_base_224(pretrained=False, **kwargs) -> SwinTransformerV2Cr: + model_args = dict(embed_dim=128, depths=(2, 2, 18, 2), num_heads=(4, 8, 16, 32)) + return _create_swin_transformer_v2_cr('swinv2_cr_base_224', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def swinv2_cr_base_ns_224(pretrained=False, **kwargs) -> SwinTransformerV2Cr: + model_args = dict(embed_dim=128, depths=(2, 2, 18, 2), num_heads=(4, 8, 16, 32), extra_norm_stage=True) + return _create_swin_transformer_v2_cr('swinv2_cr_base_ns_224', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def swinv2_cr_large_384(pretrained=False, **kwargs) -> SwinTransformerV2Cr: + model_args = dict(embed_dim=192, depths=(2, 2, 18, 2), num_heads=(6, 12, 24, 48)) + return _create_swin_transformer_v2_cr('swinv2_cr_large_384', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def swinv2_cr_large_224(pretrained=False, **kwargs) -> SwinTransformerV2Cr: + model_args = dict(embed_dim=192, depths=(2, 2, 18, 2), num_heads=(6, 12, 24, 48)) + return _create_swin_transformer_v2_cr('swinv2_cr_large_224', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def swinv2_cr_huge_384(pretrained=False, **kwargs) -> SwinTransformerV2Cr: + model_args = dict(embed_dim=352, depths=(2, 2, 18, 2), num_heads=(11, 22, 44, 88), extra_norm_period=6) + return _create_swin_transformer_v2_cr('swinv2_cr_huge_384', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def swinv2_cr_huge_224(pretrained=False, **kwargs) -> SwinTransformerV2Cr: + model_args = dict(embed_dim=352, depths=(2, 2, 18, 2), num_heads=(8, 16, 32, 64), extra_norm_period=6) + return _create_swin_transformer_v2_cr('swinv2_cr_huge_224', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def swinv2_cr_giant_384(pretrained=False, **kwargs) -> SwinTransformerV2Cr: + model_args = dict(embed_dim=512, depths=(2, 2, 42, 2), num_heads=(16, 32, 64, 128), extra_norm_period=6) + return _create_swin_transformer_v2_cr('swinv2_cr_giant_384', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def swinv2_cr_giant_224(pretrained=False, **kwargs) -> SwinTransformerV2Cr: + model_args = dict(embed_dim=512, depths=(2, 2, 42, 2), num_heads=(16, 32, 64, 128), extra_norm_period=6) + return _create_swin_transformer_v2_cr('swinv2_cr_giant_224', pretrained=pretrained, **dict(model_args, **kwargs)) + +# File: pytorch-image-models-main/timm/models/tiny_vit.py +"""""" +__all__ = ['TinyVit'] +import itertools +from functools import partial +from typing import Dict, Optional +import torch +import torch.nn as nn +import torch.nn.functional as F +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from timm.layers import LayerNorm2d, NormMlpClassifierHead, DropPath, trunc_normal_, resize_rel_pos_bias_table_levit, use_fused_attn +from ._builder import build_model_with_cfg +from ._features_fx import register_notrace_module +from ._manipulate import checkpoint_seq +from ._registry import register_model, generate_default_cfgs + +class ConvNorm(torch.nn.Sequential): + + def __init__(self, in_chs, out_chs, ks=1, stride=1, pad=0, dilation=1, groups=1, bn_weight_init=1): + super().__init__() + self.conv = nn.Conv2d(in_chs, out_chs, ks, stride, pad, dilation, groups, bias=False) + self.bn = nn.BatchNorm2d(out_chs) + torch.nn.init.constant_(self.bn.weight, bn_weight_init) + torch.nn.init.constant_(self.bn.bias, 0) + + @torch.no_grad() + def fuse(self): + (c, bn) = (self.conv, self.bn) + w = bn.weight / (bn.running_var + bn.eps) ** 0.5 + w = c.weight * w[:, None, None, None] + b = bn.bias - bn.running_mean * bn.weight / (bn.running_var + bn.eps) ** 0.5 + m = torch.nn.Conv2d(w.size(1) * self.conv.groups, w.size(0), w.shape[2:], stride=self.conv.stride, padding=self.conv.padding, dilation=self.conv.dilation, groups=self.conv.groups) + m.weight.data.copy_(w) + m.bias.data.copy_(b) + return m + +class PatchEmbed(nn.Module): + + def __init__(self, in_chs, out_chs, act_layer): + super().__init__() + self.stride = 4 + self.conv1 = ConvNorm(in_chs, out_chs // 2, 3, 2, 1) + self.act = act_layer() + self.conv2 = ConvNorm(out_chs // 2, out_chs, 3, 2, 1) + + def forward(self, x): + x = self.conv1(x) + x = self.act(x) + x = self.conv2(x) + return x + +class MBConv(nn.Module): + + def __init__(self, in_chs, out_chs, expand_ratio, act_layer, drop_path): + super().__init__() + mid_chs = int(in_chs * expand_ratio) + self.conv1 = ConvNorm(in_chs, mid_chs, ks=1) + self.act1 = act_layer() + self.conv2 = ConvNorm(mid_chs, mid_chs, ks=3, stride=1, pad=1, groups=mid_chs) + self.act2 = act_layer() + self.conv3 = ConvNorm(mid_chs, out_chs, ks=1, bn_weight_init=0.0) + self.act3 = act_layer() + self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + + def forward(self, x): + shortcut = x + x = self.conv1(x) + x = self.act1(x) + x = self.conv2(x) + x = self.act2(x) + x = self.conv3(x) + x = self.drop_path(x) + x += shortcut + x = self.act3(x) + return x + +class PatchMerging(nn.Module): + + def __init__(self, dim, out_dim, act_layer): + super().__init__() + self.conv1 = ConvNorm(dim, out_dim, 1, 1, 0) + self.act1 = act_layer() + self.conv2 = ConvNorm(out_dim, out_dim, 3, 2, 1, groups=out_dim) + self.act2 = act_layer() + self.conv3 = ConvNorm(out_dim, out_dim, 1, 1, 0) + + def forward(self, x): + x = self.conv1(x) + x = self.act1(x) + x = self.conv2(x) + x = self.act2(x) + x = self.conv3(x) + return x + +class ConvLayer(nn.Module): + + def __init__(self, dim, depth, act_layer, drop_path=0.0, conv_expand_ratio=4.0): + super().__init__() + self.dim = dim + self.depth = depth + self.blocks = nn.Sequential(*[MBConv(dim, dim, conv_expand_ratio, act_layer, drop_path[i] if isinstance(drop_path, list) else drop_path) for i in range(depth)]) + + def forward(self, x): + x = self.blocks(x) + return x + +class NormMlp(nn.Module): + + def __init__(self, in_features, hidden_features=None, out_features=None, norm_layer=nn.LayerNorm, act_layer=nn.GELU, drop=0.0): + super().__init__() + out_features = out_features or in_features + hidden_features = hidden_features or in_features + self.norm = norm_layer(in_features) + self.fc1 = nn.Linear(in_features, hidden_features) + self.act = act_layer() + self.drop1 = nn.Dropout(drop) + self.fc2 = nn.Linear(hidden_features, out_features) + self.drop2 = nn.Dropout(drop) + + def forward(self, x): + x = self.norm(x) + x = self.fc1(x) + x = self.act(x) + x = self.drop1(x) + x = self.fc2(x) + x = self.drop2(x) + return x + +class Attention(torch.nn.Module): + fused_attn: torch.jit.Final[bool] + attention_bias_cache: Dict[str, torch.Tensor] + + def __init__(self, dim, key_dim, num_heads=8, attn_ratio=4, resolution=(14, 14)): + super().__init__() + assert isinstance(resolution, tuple) and len(resolution) == 2 + self.num_heads = num_heads + self.scale = key_dim ** (-0.5) + self.key_dim = key_dim + self.val_dim = int(attn_ratio * key_dim) + self.out_dim = self.val_dim * num_heads + self.attn_ratio = attn_ratio + self.resolution = resolution + self.fused_attn = use_fused_attn() + self.norm = nn.LayerNorm(dim) + self.qkv = nn.Linear(dim, num_heads * (self.val_dim + 2 * key_dim)) + self.proj = nn.Linear(self.out_dim, dim) + points = list(itertools.product(range(resolution[0]), range(resolution[1]))) + N = len(points) + attention_offsets = {} + idxs = [] + for p1 in points: + for p2 in points: + offset = (abs(p1[0] - p2[0]), abs(p1[1] - p2[1])) + if offset not in attention_offsets: + attention_offsets[offset] = len(attention_offsets) + idxs.append(attention_offsets[offset]) + self.attention_biases = torch.nn.Parameter(torch.zeros(num_heads, len(attention_offsets))) + self.register_buffer('attention_bias_idxs', torch.LongTensor(idxs).view(N, N), persistent=False) + self.attention_bias_cache = {} + + @torch.no_grad() + def train(self, mode=True): + super().train(mode) + if mode and self.attention_bias_cache: + self.attention_bias_cache = {} + + def get_attention_biases(self, device: torch.device) -> torch.Tensor: + if torch.jit.is_tracing() or self.training: + return self.attention_biases[:, self.attention_bias_idxs] + else: + device_key = str(device) + if device_key not in self.attention_bias_cache: + self.attention_bias_cache[device_key] = self.attention_biases[:, self.attention_bias_idxs] + return self.attention_bias_cache[device_key] + + def forward(self, x): + attn_bias = self.get_attention_biases(x.device) + (B, N, _) = x.shape + x = self.norm(x) + qkv = self.qkv(x) + (q, k, v) = qkv.view(B, N, self.num_heads, -1).split([self.key_dim, self.key_dim, self.val_dim], dim=3) + q = q.permute(0, 2, 1, 3) + k = k.permute(0, 2, 1, 3) + v = v.permute(0, 2, 1, 3) + if self.fused_attn: + x = F.scaled_dot_product_attention(q, k, v, attn_mask=attn_bias) + else: + q = q * self.scale + attn = q @ k.transpose(-2, -1) + attn = attn + attn_bias + attn = attn.softmax(dim=-1) + x = attn @ v + x = x.transpose(1, 2).reshape(B, N, self.out_dim) + x = self.proj(x) + return x + +class TinyVitBlock(nn.Module): + + def __init__(self, dim, num_heads, window_size=7, mlp_ratio=4.0, drop=0.0, drop_path=0.0, local_conv_size=3, act_layer=nn.GELU): + super().__init__() + self.dim = dim + self.num_heads = num_heads + assert window_size > 0, 'window_size must be greater than 0' + self.window_size = window_size + self.mlp_ratio = mlp_ratio + assert dim % num_heads == 0, 'dim must be divisible by num_heads' + head_dim = dim // num_heads + window_resolution = (window_size, window_size) + self.attn = Attention(dim, head_dim, num_heads, attn_ratio=1, resolution=window_resolution) + self.drop_path1 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + self.mlp = NormMlp(in_features=dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer, drop=drop) + self.drop_path2 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + pad = local_conv_size // 2 + self.local_conv = ConvNorm(dim, dim, ks=local_conv_size, stride=1, pad=pad, groups=dim) + + def forward(self, x): + (B, H, W, C) = x.shape + L = H * W + shortcut = x + if H == self.window_size and W == self.window_size: + x = x.reshape(B, L, C) + x = self.attn(x) + x = x.view(B, H, W, C) + else: + pad_b = (self.window_size - H % self.window_size) % self.window_size + pad_r = (self.window_size - W % self.window_size) % self.window_size + padding = pad_b > 0 or pad_r > 0 + if padding: + x = F.pad(x, (0, 0, 0, pad_r, 0, pad_b)) + (pH, pW) = (H + pad_b, W + pad_r) + nH = pH // self.window_size + nW = pW // self.window_size + x = x.view(B, nH, self.window_size, nW, self.window_size, C).transpose(2, 3).reshape(B * nH * nW, self.window_size * self.window_size, C) + x = self.attn(x) + x = x.view(B, nH, nW, self.window_size, self.window_size, C).transpose(2, 3).reshape(B, pH, pW, C) + if padding: + x = x[:, :H, :W].contiguous() + x = shortcut + self.drop_path1(x) + x = x.permute(0, 3, 1, 2) + x = self.local_conv(x) + x = x.reshape(B, C, L).transpose(1, 2) + x = x + self.drop_path2(self.mlp(x)) + return x.view(B, H, W, C) + + def extra_repr(self) -> str: + return f'dim={self.dim}, num_heads={self.num_heads}, window_size={self.window_size}, mlp_ratio={self.mlp_ratio}' +register_notrace_module(TinyVitBlock) + +class TinyVitStage(nn.Module): + + def __init__(self, dim, out_dim, depth, num_heads, window_size, mlp_ratio=4.0, drop=0.0, drop_path=0.0, downsample=None, local_conv_size=3, act_layer=nn.GELU): + super().__init__() + self.depth = depth + self.out_dim = out_dim + if downsample is not None: + self.downsample = downsample(dim=dim, out_dim=out_dim, act_layer=act_layer) + else: + self.downsample = nn.Identity() + assert dim == out_dim + self.blocks = nn.Sequential(*[TinyVitBlock(dim=out_dim, num_heads=num_heads, window_size=window_size, mlp_ratio=mlp_ratio, drop=drop, drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path, local_conv_size=local_conv_size, act_layer=act_layer) for i in range(depth)]) + + def forward(self, x): + x = self.downsample(x) + x = x.permute(0, 2, 3, 1) + x = self.blocks(x) + x = x.permute(0, 3, 1, 2) + return x + + def extra_repr(self) -> str: + return f'dim={self.out_dim}, depth={self.depth}' + +class TinyVit(nn.Module): + + def __init__(self, in_chans=3, num_classes=1000, global_pool='avg', embed_dims=(96, 192, 384, 768), depths=(2, 2, 6, 2), num_heads=(3, 6, 12, 24), window_sizes=(7, 7, 14, 7), mlp_ratio=4.0, drop_rate=0.0, drop_path_rate=0.1, use_checkpoint=False, mbconv_expand_ratio=4.0, local_conv_size=3, act_layer=nn.GELU): + super().__init__() + self.num_classes = num_classes + self.depths = depths + self.num_stages = len(depths) + self.mlp_ratio = mlp_ratio + self.grad_checkpointing = use_checkpoint + self.patch_embed = PatchEmbed(in_chs=in_chans, out_chs=embed_dims[0], act_layer=act_layer) + dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] + self.stages = nn.Sequential() + stride = self.patch_embed.stride + prev_dim = embed_dims[0] + self.feature_info = [] + for stage_idx in range(self.num_stages): + if stage_idx == 0: + stage = ConvLayer(dim=prev_dim, depth=depths[stage_idx], act_layer=act_layer, drop_path=dpr[:depths[stage_idx]], conv_expand_ratio=mbconv_expand_ratio) + else: + out_dim = embed_dims[stage_idx] + drop_path_rate = dpr[sum(depths[:stage_idx]):sum(depths[:stage_idx + 1])] + stage = TinyVitStage(dim=embed_dims[stage_idx - 1], out_dim=out_dim, depth=depths[stage_idx], num_heads=num_heads[stage_idx], window_size=window_sizes[stage_idx], mlp_ratio=self.mlp_ratio, drop=drop_rate, local_conv_size=local_conv_size, drop_path=drop_path_rate, downsample=PatchMerging, act_layer=act_layer) + prev_dim = out_dim + stride *= 2 + self.stages.append(stage) + self.feature_info += [dict(num_chs=prev_dim, reduction=stride, module=f'stages.{stage_idx}')] + self.num_features = self.head_hidden_size = embed_dims[-1] + norm_layer_cf = partial(LayerNorm2d, eps=1e-05) + self.head = NormMlpClassifierHead(self.num_features, num_classes, pool_type=global_pool, norm_layer=norm_layer_cf) + self.apply(self._init_weights) + + def _init_weights(self, m): + if isinstance(m, nn.Linear): + trunc_normal_(m.weight, std=0.02) + if isinstance(m, nn.Linear) and m.bias is not None: + nn.init.constant_(m.bias, 0) + + @torch.jit.ignore + def no_weight_decay_keywords(self): + return {'attention_biases'} + + @torch.jit.ignore + def no_weight_decay(self): + return {x for x in self.state_dict().keys() if 'attention_biases' in x} + + @torch.jit.ignore + def group_matcher(self, coarse=False): + matcher = dict(stem='^patch_embed', blocks='^stages\\.(\\d+)' if coarse else [('^stages\\.(\\d+).downsample', (0,)), ('^stages\\.(\\d+)\\.\\w+\\.(\\d+)', None)]) + return matcher + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + self.grad_checkpointing = enable + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.head.fc + + def reset_classifier(self, num_classes: int, global_pool: Optional[str]=None): + self.num_classes = num_classes + self.head.reset(num_classes, pool_type=global_pool) + + def forward_features(self, x): + x = self.patch_embed(x) + if self.grad_checkpointing and (not torch.jit.is_scripting()): + x = checkpoint_seq(self.stages, x) + else: + x = self.stages(x) + return x + + def forward_head(self, x, pre_logits: bool=False): + x = self.head(x, pre_logits=pre_logits) if pre_logits else self.head(x) + return x + + def forward(self, x): + x = self.forward_features(x) + x = self.forward_head(x) + return x + +def checkpoint_filter_fn(state_dict, model): + if 'model' in state_dict.keys(): + state_dict = state_dict['model'] + target_sd = model.state_dict() + out_dict = {} + for (k, v) in state_dict.items(): + if k.endswith('attention_bias_idxs'): + continue + if 'attention_biases' in k: + v = resize_rel_pos_bias_table_levit(v.T, target_sd[k].shape[::-1]).T + out_dict[k] = v + return out_dict + +def _cfg(url='', **kwargs): + return {'url': url, 'num_classes': 1000, 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'patch_embed.conv1.conv', 'classifier': 'head.fc', 'pool_size': (7, 7), 'input_size': (3, 224, 224), 'crop_pct': 0.95, **kwargs} +default_cfgs = generate_default_cfgs({'tiny_vit_5m_224.dist_in22k': _cfg(hf_hub_id='timm/', num_classes=21841), 'tiny_vit_5m_224.dist_in22k_ft_in1k': _cfg(hf_hub_id='timm/'), 'tiny_vit_5m_224.in1k': _cfg(hf_hub_id='timm/'), 'tiny_vit_11m_224.dist_in22k': _cfg(hf_hub_id='timm/', num_classes=21841), 'tiny_vit_11m_224.dist_in22k_ft_in1k': _cfg(hf_hub_id='timm/'), 'tiny_vit_11m_224.in1k': _cfg(hf_hub_id='timm/'), 'tiny_vit_21m_224.dist_in22k': _cfg(hf_hub_id='timm/', num_classes=21841), 'tiny_vit_21m_224.dist_in22k_ft_in1k': _cfg(hf_hub_id='timm/'), 'tiny_vit_21m_224.in1k': _cfg(hf_hub_id='timm/'), 'tiny_vit_21m_384.dist_in22k_ft_in1k': _cfg(hf_hub_id='timm/', input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0), 'tiny_vit_21m_512.dist_in22k_ft_in1k': _cfg(hf_hub_id='timm/', input_size=(3, 512, 512), pool_size=(16, 16), crop_pct=1.0, crop_mode='squash')}) + +def _create_tiny_vit(variant, pretrained=False, **kwargs): + out_indices = kwargs.pop('out_indices', (0, 1, 2, 3)) + model = build_model_with_cfg(TinyVit, variant, pretrained, feature_cfg=dict(flatten_sequential=True, out_indices=out_indices), pretrained_filter_fn=checkpoint_filter_fn, **kwargs) + return model + +@register_model +def tiny_vit_5m_224(pretrained=False, **kwargs): + model_kwargs = dict(embed_dims=[64, 128, 160, 320], depths=[2, 2, 6, 2], num_heads=[2, 4, 5, 10], window_sizes=[7, 7, 14, 7], drop_path_rate=0.0) + model_kwargs.update(kwargs) + return _create_tiny_vit('tiny_vit_5m_224', pretrained, **model_kwargs) + +@register_model +def tiny_vit_11m_224(pretrained=False, **kwargs): + model_kwargs = dict(embed_dims=[64, 128, 256, 448], depths=[2, 2, 6, 2], num_heads=[2, 4, 8, 14], window_sizes=[7, 7, 14, 7], drop_path_rate=0.1) + model_kwargs.update(kwargs) + return _create_tiny_vit('tiny_vit_11m_224', pretrained, **model_kwargs) + +@register_model +def tiny_vit_21m_224(pretrained=False, **kwargs): + model_kwargs = dict(embed_dims=[96, 192, 384, 576], depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 18], window_sizes=[7, 7, 14, 7], drop_path_rate=0.2) + model_kwargs.update(kwargs) + return _create_tiny_vit('tiny_vit_21m_224', pretrained, **model_kwargs) + +@register_model +def tiny_vit_21m_384(pretrained=False, **kwargs): + model_kwargs = dict(embed_dims=[96, 192, 384, 576], depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 18], window_sizes=[12, 12, 24, 12], drop_path_rate=0.1) + model_kwargs.update(kwargs) + return _create_tiny_vit('tiny_vit_21m_384', pretrained, **model_kwargs) + +@register_model +def tiny_vit_21m_512(pretrained=False, **kwargs): + model_kwargs = dict(embed_dims=[96, 192, 384, 576], depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 18], window_sizes=[16, 16, 32, 16], drop_path_rate=0.1) + model_kwargs.update(kwargs) + return _create_tiny_vit('tiny_vit_21m_512', pretrained, **model_kwargs) + +# File: pytorch-image-models-main/timm/models/tnt.py +"""""" +import math +from typing import Optional +import torch +import torch.nn as nn +from torch.utils.checkpoint import checkpoint +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from timm.layers import Mlp, DropPath, trunc_normal_, _assert, to_2tuple +from ._builder import build_model_with_cfg +from ._registry import register_model +from .vision_transformer import resize_pos_embed +__all__ = ['TNT'] + +def _cfg(url='', **kwargs): + return {'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, 'crop_pct': 0.9, 'interpolation': 'bicubic', 'fixed_input_size': True, 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'pixel_embed.proj', 'classifier': 'head', **kwargs} +default_cfgs = {'tnt_s_patch16_224': _cfg(url='https://github.com/contrastive/pytorch-image-models/releases/download/TNT/tnt_s_patch16_224.pth.tar', mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)), 'tnt_b_patch16_224': _cfg(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))} + +class Attention(nn.Module): + + def __init__(self, dim, hidden_dim, num_heads=8, qkv_bias=False, attn_drop=0.0, proj_drop=0.0): + super().__init__() + self.hidden_dim = hidden_dim + self.num_heads = num_heads + head_dim = hidden_dim // num_heads + self.head_dim = head_dim + self.scale = head_dim ** (-0.5) + self.qk = nn.Linear(dim, hidden_dim * 2, bias=qkv_bias) + self.v = nn.Linear(dim, dim, bias=qkv_bias) + self.attn_drop = nn.Dropout(attn_drop, inplace=True) + self.proj = nn.Linear(dim, dim) + self.proj_drop = nn.Dropout(proj_drop, inplace=True) + + def forward(self, x): + (B, N, C) = x.shape + qk = self.qk(x).reshape(B, N, 2, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4) + (q, k) = qk.unbind(0) + v = self.v(x).reshape(B, N, self.num_heads, -1).permute(0, 2, 1, 3) + attn = q @ k.transpose(-2, -1) * self.scale + attn = attn.softmax(dim=-1) + attn = self.attn_drop(attn) + x = (attn @ v).transpose(1, 2).reshape(B, N, -1) + x = self.proj(x) + x = self.proj_drop(x) + return x + +class Block(nn.Module): + + def __init__(self, dim, dim_out, num_pixel, num_heads_in=4, num_heads_out=12, mlp_ratio=4.0, qkv_bias=False, proj_drop=0.0, attn_drop=0.0, drop_path=0.0, act_layer=nn.GELU, norm_layer=nn.LayerNorm): + super().__init__() + self.norm_in = norm_layer(dim) + self.attn_in = Attention(dim, dim, num_heads=num_heads_in, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=proj_drop) + self.norm_mlp_in = norm_layer(dim) + self.mlp_in = Mlp(in_features=dim, hidden_features=int(dim * 4), out_features=dim, act_layer=act_layer, drop=proj_drop) + self.norm1_proj = norm_layer(dim) + self.proj = nn.Linear(dim * num_pixel, dim_out, bias=True) + self.norm_out = norm_layer(dim_out) + self.attn_out = Attention(dim_out, dim_out, num_heads=num_heads_out, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=proj_drop) + self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + self.norm_mlp = norm_layer(dim_out) + self.mlp = Mlp(in_features=dim_out, hidden_features=int(dim_out * mlp_ratio), out_features=dim_out, act_layer=act_layer, drop=proj_drop) + + def forward(self, pixel_embed, patch_embed): + pixel_embed = pixel_embed + self.drop_path(self.attn_in(self.norm_in(pixel_embed))) + pixel_embed = pixel_embed + self.drop_path(self.mlp_in(self.norm_mlp_in(pixel_embed))) + (B, N, C) = patch_embed.size() + patch_embed = torch.cat([patch_embed[:, 0:1], patch_embed[:, 1:] + self.proj(self.norm1_proj(pixel_embed).reshape(B, N - 1, -1))], dim=1) + patch_embed = patch_embed + self.drop_path(self.attn_out(self.norm_out(patch_embed))) + patch_embed = patch_embed + self.drop_path(self.mlp(self.norm_mlp(patch_embed))) + return (pixel_embed, patch_embed) + +class PixelEmbed(nn.Module): + + def __init__(self, img_size=224, patch_size=16, in_chans=3, in_dim=48, stride=4): + super().__init__() + img_size = to_2tuple(img_size) + patch_size = to_2tuple(patch_size) + self.grid_size = (img_size[0] // patch_size[0], img_size[1] // patch_size[1]) + num_patches = self.grid_size[0] * self.grid_size[1] + self.img_size = img_size + self.num_patches = num_patches + self.in_dim = in_dim + new_patch_size = [math.ceil(ps / stride) for ps in patch_size] + self.new_patch_size = new_patch_size + self.proj = nn.Conv2d(in_chans, self.in_dim, kernel_size=7, padding=3, stride=stride) + self.unfold = nn.Unfold(kernel_size=new_patch_size, stride=new_patch_size) + + def forward(self, x, pixel_pos): + (B, C, H, W) = x.shape + _assert(H == self.img_size[0], f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]}).") + _assert(W == self.img_size[1], f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]}).") + x = self.proj(x) + x = self.unfold(x) + x = x.transpose(1, 2).reshape(B * self.num_patches, self.in_dim, self.new_patch_size[0], self.new_patch_size[1]) + x = x + pixel_pos + x = x.reshape(B * self.num_patches, self.in_dim, -1).transpose(1, 2) + return x + +class TNT(nn.Module): + + def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, global_pool='token', embed_dim=768, inner_dim=48, depth=12, num_heads_inner=4, num_heads_outer=12, mlp_ratio=4.0, qkv_bias=False, drop_rate=0.0, pos_drop_rate=0.0, proj_drop_rate=0.0, attn_drop_rate=0.0, drop_path_rate=0.0, norm_layer=nn.LayerNorm, first_stride=4): + super().__init__() + assert global_pool in ('', 'token', 'avg') + self.num_classes = num_classes + self.global_pool = global_pool + self.num_features = self.head_hidden_size = self.embed_dim = embed_dim + self.grad_checkpointing = False + self.pixel_embed = PixelEmbed(img_size=img_size, patch_size=patch_size, in_chans=in_chans, in_dim=inner_dim, stride=first_stride) + num_patches = self.pixel_embed.num_patches + self.num_patches = num_patches + new_patch_size = self.pixel_embed.new_patch_size + num_pixel = new_patch_size[0] * new_patch_size[1] + self.norm1_proj = norm_layer(num_pixel * inner_dim) + self.proj = nn.Linear(num_pixel * inner_dim, embed_dim) + self.norm2_proj = norm_layer(embed_dim) + self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) + self.patch_pos = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) + self.pixel_pos = nn.Parameter(torch.zeros(1, inner_dim, new_patch_size[0], new_patch_size[1])) + self.pos_drop = nn.Dropout(p=pos_drop_rate) + dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] + blocks = [] + for i in range(depth): + blocks.append(Block(dim=inner_dim, dim_out=embed_dim, num_pixel=num_pixel, num_heads_in=num_heads_inner, num_heads_out=num_heads_outer, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, proj_drop=proj_drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer)) + self.blocks = nn.ModuleList(blocks) + self.norm = norm_layer(embed_dim) + self.head_drop = nn.Dropout(drop_rate) + self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity() + trunc_normal_(self.cls_token, std=0.02) + trunc_normal_(self.patch_pos, std=0.02) + trunc_normal_(self.pixel_pos, std=0.02) + self.apply(self._init_weights) + + def _init_weights(self, m): + if isinstance(m, nn.Linear): + trunc_normal_(m.weight, std=0.02) + if isinstance(m, nn.Linear) and m.bias is not None: + nn.init.constant_(m.bias, 0) + elif isinstance(m, nn.LayerNorm): + nn.init.constant_(m.bias, 0) + nn.init.constant_(m.weight, 1.0) + + @torch.jit.ignore + def no_weight_decay(self): + return {'patch_pos', 'pixel_pos', 'cls_token'} + + @torch.jit.ignore + def group_matcher(self, coarse=False): + matcher = dict(stem='^cls_token|patch_pos|pixel_pos|pixel_embed|norm[12]_proj|proj', blocks=[('^blocks\\.(\\d+)', None), ('^norm', (99999,))]) + return matcher + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + self.grad_checkpointing = enable + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.head + + def reset_classifier(self, num_classes: int, global_pool: Optional[str]=None): + self.num_classes = num_classes + if global_pool is not None: + assert global_pool in ('', 'token', 'avg') + self.global_pool = global_pool + self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() + + def forward_features(self, x): + B = x.shape[0] + pixel_embed = self.pixel_embed(x, self.pixel_pos) + patch_embed = self.norm2_proj(self.proj(self.norm1_proj(pixel_embed.reshape(B, self.num_patches, -1)))) + patch_embed = torch.cat((self.cls_token.expand(B, -1, -1), patch_embed), dim=1) + patch_embed = patch_embed + self.patch_pos + patch_embed = self.pos_drop(patch_embed) + if self.grad_checkpointing and (not torch.jit.is_scripting()): + for blk in self.blocks: + (pixel_embed, patch_embed) = checkpoint(blk, pixel_embed, patch_embed) + else: + for blk in self.blocks: + (pixel_embed, patch_embed) = blk(pixel_embed, patch_embed) + patch_embed = self.norm(patch_embed) + return patch_embed + + def forward_head(self, x, pre_logits: bool=False): + if self.global_pool: + x = x[:, 1:].mean(dim=1) if self.global_pool == 'avg' else x[:, 0] + x = self.head_drop(x) + return x if pre_logits else self.head(x) + + def forward(self, x): + x = self.forward_features(x) + x = self.forward_head(x) + return x + +def checkpoint_filter_fn(state_dict, model): + if state_dict['patch_pos'].shape != model.patch_pos.shape: + state_dict['patch_pos'] = resize_pos_embed(state_dict['patch_pos'], model.patch_pos, getattr(model, 'num_tokens', 1), model.pixel_embed.grid_size) + return state_dict + +def _create_tnt(variant, pretrained=False, **kwargs): + if kwargs.get('features_only', None): + raise RuntimeError('features_only not implemented for Vision Transformer models.') + model = build_model_with_cfg(TNT, variant, pretrained, pretrained_filter_fn=checkpoint_filter_fn, **kwargs) + return model + +@register_model +def tnt_s_patch16_224(pretrained=False, **kwargs) -> TNT: + model_cfg = dict(patch_size=16, embed_dim=384, inner_dim=24, depth=12, num_heads_outer=6, qkv_bias=False) + model = _create_tnt('tnt_s_patch16_224', pretrained=pretrained, **dict(model_cfg, **kwargs)) + return model + +@register_model +def tnt_b_patch16_224(pretrained=False, **kwargs) -> TNT: + model_cfg = dict(patch_size=16, embed_dim=640, inner_dim=40, depth=12, num_heads_outer=10, qkv_bias=False) + model = _create_tnt('tnt_b_patch16_224', pretrained=pretrained, **dict(model_cfg, **kwargs)) + return model + +# File: pytorch-image-models-main/timm/models/tresnet.py +"""""" +from collections import OrderedDict +from functools import partial +from typing import Optional +import torch +import torch.nn as nn +from timm.layers import SpaceToDepth, BlurPool2d, ClassifierHead, SEModule, ConvNormAct, DropPath +from ._builder import build_model_with_cfg +from ._manipulate import checkpoint_seq +from ._registry import register_model, generate_default_cfgs, register_model_deprecations +__all__ = ['TResNet'] + +class BasicBlock(nn.Module): + expansion = 1 + + def __init__(self, inplanes, planes, stride=1, downsample=None, use_se=True, aa_layer=None, drop_path_rate=0.0): + super(BasicBlock, self).__init__() + self.downsample = downsample + self.stride = stride + act_layer = partial(nn.LeakyReLU, negative_slope=0.001) + self.conv1 = ConvNormAct(inplanes, planes, kernel_size=3, stride=stride, act_layer=act_layer, aa_layer=aa_layer) + self.conv2 = ConvNormAct(planes, planes, kernel_size=3, stride=1, apply_act=False) + self.act = nn.ReLU(inplace=True) + rd_chs = max(planes * self.expansion // 4, 64) + self.se = SEModule(planes * self.expansion, rd_channels=rd_chs) if use_se else None + self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0 else nn.Identity() + + def forward(self, x): + if self.downsample is not None: + shortcut = self.downsample(x) + else: + shortcut = x + out = self.conv1(x) + out = self.conv2(out) + if self.se is not None: + out = self.se(out) + out = self.drop_path(out) + shortcut + out = self.act(out) + return out + +class Bottleneck(nn.Module): + expansion = 4 + + def __init__(self, inplanes, planes, stride=1, downsample=None, use_se=True, act_layer=None, aa_layer=None, drop_path_rate=0.0): + super(Bottleneck, self).__init__() + self.downsample = downsample + self.stride = stride + act_layer = act_layer or partial(nn.LeakyReLU, negative_slope=0.001) + self.conv1 = ConvNormAct(inplanes, planes, kernel_size=1, stride=1, act_layer=act_layer) + self.conv2 = ConvNormAct(planes, planes, kernel_size=3, stride=stride, act_layer=act_layer, aa_layer=aa_layer) + reduction_chs = max(planes * self.expansion // 8, 64) + self.se = SEModule(planes, rd_channels=reduction_chs) if use_se else None + self.conv3 = ConvNormAct(planes, planes * self.expansion, kernel_size=1, stride=1, apply_act=False) + self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0 else nn.Identity() + self.act = nn.ReLU(inplace=True) + + def forward(self, x): + if self.downsample is not None: + shortcut = self.downsample(x) + else: + shortcut = x + out = self.conv1(x) + out = self.conv2(out) + if self.se is not None: + out = self.se(out) + out = self.conv3(out) + out = self.drop_path(out) + shortcut + out = self.act(out) + return out + +class TResNet(nn.Module): + + def __init__(self, layers, in_chans=3, num_classes=1000, width_factor=1.0, v2=False, global_pool='fast', drop_rate=0.0, drop_path_rate=0.0): + self.num_classes = num_classes + self.drop_rate = drop_rate + self.grad_checkpointing = False + super(TResNet, self).__init__() + aa_layer = BlurPool2d + act_layer = nn.LeakyReLU + self.inplanes = int(64 * width_factor) + self.planes = int(64 * width_factor) + if v2: + self.inplanes = self.inplanes // 8 * 8 + self.planes = self.planes // 8 * 8 + dpr = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(layers)).split(layers)] + conv1 = ConvNormAct(in_chans * 16, self.planes, stride=1, kernel_size=3, act_layer=act_layer) + layer1 = self._make_layer(Bottleneck if v2 else BasicBlock, self.planes, layers[0], stride=1, use_se=True, aa_layer=aa_layer, drop_path_rate=dpr[0]) + layer2 = self._make_layer(Bottleneck if v2 else BasicBlock, self.planes * 2, layers[1], stride=2, use_se=True, aa_layer=aa_layer, drop_path_rate=dpr[1]) + layer3 = self._make_layer(Bottleneck, self.planes * 4, layers[2], stride=2, use_se=True, aa_layer=aa_layer, drop_path_rate=dpr[2]) + layer4 = self._make_layer(Bottleneck, self.planes * 8, layers[3], stride=2, use_se=False, aa_layer=aa_layer, drop_path_rate=dpr[3]) + self.body = nn.Sequential(OrderedDict([('s2d', SpaceToDepth()), ('conv1', conv1), ('layer1', layer1), ('layer2', layer2), ('layer3', layer3), ('layer4', layer4)])) + self.feature_info = [dict(num_chs=self.planes, reduction=2, module=''), dict(num_chs=self.planes * (Bottleneck.expansion if v2 else 1), reduction=4, module='body.layer1'), dict(num_chs=self.planes * 2 * (Bottleneck.expansion if v2 else 1), reduction=8, module='body.layer2'), dict(num_chs=self.planes * 4 * Bottleneck.expansion, reduction=16, module='body.layer3'), dict(num_chs=self.planes * 8 * Bottleneck.expansion, reduction=32, module='body.layer4')] + self.num_features = self.head_hidden_size = self.planes * 8 * Bottleneck.expansion + self.head = ClassifierHead(self.num_features, num_classes, pool_type=global_pool, drop_rate=drop_rate) + for m in self.modules(): + if isinstance(m, nn.Conv2d): + nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='leaky_relu') + if isinstance(m, nn.Linear): + m.weight.data.normal_(0, 0.01) + for m in self.modules(): + if isinstance(m, BasicBlock): + nn.init.zeros_(m.conv2.bn.weight) + if isinstance(m, Bottleneck): + nn.init.zeros_(m.conv3.bn.weight) + + def _make_layer(self, block, planes, blocks, stride=1, use_se=True, aa_layer=None, drop_path_rate=0.0): + downsample = None + if stride != 1 or self.inplanes != planes * block.expansion: + layers = [] + if stride == 2: + layers.append(nn.AvgPool2d(kernel_size=2, stride=2, ceil_mode=True, count_include_pad=False)) + layers += [ConvNormAct(self.inplanes, planes * block.expansion, kernel_size=1, stride=1, apply_act=False)] + downsample = nn.Sequential(*layers) + layers = [] + for i in range(blocks): + layers.append(block(self.inplanes, planes, stride=stride if i == 0 else 1, downsample=downsample if i == 0 else None, use_se=use_se, aa_layer=aa_layer, drop_path_rate=drop_path_rate[i] if isinstance(drop_path_rate, list) else drop_path_rate)) + self.inplanes = planes * block.expansion + return nn.Sequential(*layers) + + @torch.jit.ignore + def group_matcher(self, coarse=False): + matcher = dict(stem='^body\\.conv1', blocks='^body\\.layer(\\d+)' if coarse else '^body\\.layer(\\d+)\\.(\\d+)') + return matcher + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + self.grad_checkpointing = enable + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.head.fc + + def reset_classifier(self, num_classes: int, global_pool: Optional[str]=None): + self.head.reset(num_classes, pool_type=global_pool) + + def forward_features(self, x): + if self.grad_checkpointing and (not torch.jit.is_scripting()): + x = self.body.s2d(x) + x = self.body.conv1(x) + x = checkpoint_seq([self.body.layer1, self.body.layer2, self.body.layer3, self.body.layer4], x, flatten=True) + else: + x = self.body(x) + return x + + def forward_head(self, x, pre_logits: bool=False): + return self.head(x, pre_logits=pre_logits) if pre_logits else self.head(x) + + def forward(self, x): + x = self.forward_features(x) + x = self.forward_head(x) + return x + +def checkpoint_filter_fn(state_dict, model): + if 'body.conv1.conv.weight' in state_dict: + return state_dict + import re + state_dict = state_dict.get('model', state_dict) + state_dict = state_dict.get('state_dict', state_dict) + out_dict = {} + for (k, v) in state_dict.items(): + k = re.sub('conv(\\d+)\\.0.0', lambda x: f'conv{int(x.group(1))}.conv', k) + k = re.sub('conv(\\d+)\\.0.1', lambda x: f'conv{int(x.group(1))}.bn', k) + k = re.sub('conv(\\d+)\\.0', lambda x: f'conv{int(x.group(1))}.conv', k) + k = re.sub('conv(\\d+)\\.1', lambda x: f'conv{int(x.group(1))}.bn', k) + k = re.sub('downsample\\.(\\d+)\\.0', lambda x: f'downsample.{int(x.group(1))}.conv', k) + k = re.sub('downsample\\.(\\d+)\\.1', lambda x: f'downsample.{int(x.group(1))}.bn', k) + if k.endswith('bn.weight'): + v = v.abs().add(1e-05) + out_dict[k] = v + return out_dict + +def _create_tresnet(variant, pretrained=False, **kwargs): + return build_model_with_cfg(TResNet, variant, pretrained, pretrained_filter_fn=checkpoint_filter_fn, feature_cfg=dict(out_indices=(1, 2, 3, 4), flatten_sequential=True), **kwargs) + +def _cfg(url='', **kwargs): + return {'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), 'crop_pct': 0.875, 'interpolation': 'bilinear', 'mean': (0.0, 0.0, 0.0), 'std': (1.0, 1.0, 1.0), 'first_conv': 'body.conv1.conv', 'classifier': 'head.fc', **kwargs} +default_cfgs = generate_default_cfgs({'tresnet_m.miil_in21k_ft_in1k': _cfg(hf_hub_id='timm/'), 'tresnet_m.miil_in21k': _cfg(hf_hub_id='timm/', num_classes=11221), 'tresnet_m.miil_in1k': _cfg(hf_hub_id='timm/'), 'tresnet_l.miil_in1k': _cfg(hf_hub_id='timm/'), 'tresnet_xl.miil_in1k': _cfg(hf_hub_id='timm/'), 'tresnet_m.miil_in1k_448': _cfg(input_size=(3, 448, 448), pool_size=(14, 14), hf_hub_id='timm/'), 'tresnet_l.miil_in1k_448': _cfg(input_size=(3, 448, 448), pool_size=(14, 14), hf_hub_id='timm/'), 'tresnet_xl.miil_in1k_448': _cfg(input_size=(3, 448, 448), pool_size=(14, 14), hf_hub_id='timm/'), 'tresnet_v2_l.miil_in21k_ft_in1k': _cfg(hf_hub_id='timm/'), 'tresnet_v2_l.miil_in21k': _cfg(hf_hub_id='timm/', num_classes=11221)}) + +@register_model +def tresnet_m(pretrained=False, **kwargs) -> TResNet: + model_args = dict(layers=[3, 4, 11, 3]) + return _create_tresnet('tresnet_m', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def tresnet_l(pretrained=False, **kwargs) -> TResNet: + model_args = dict(layers=[4, 5, 18, 3], width_factor=1.2) + return _create_tresnet('tresnet_l', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def tresnet_xl(pretrained=False, **kwargs) -> TResNet: + model_args = dict(layers=[4, 5, 24, 3], width_factor=1.3) + return _create_tresnet('tresnet_xl', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def tresnet_v2_l(pretrained=False, **kwargs) -> TResNet: + model_args = dict(layers=[3, 4, 23, 3], width_factor=1.0, v2=True) + return _create_tresnet('tresnet_v2_l', pretrained=pretrained, **dict(model_args, **kwargs)) +register_model_deprecations(__name__, {'tresnet_m_miil_in21k': 'tresnet_m.miil_in21k', 'tresnet_m_448': 'tresnet_m.miil_in1k_448', 'tresnet_l_448': 'tresnet_l.miil_in1k_448', 'tresnet_xl_448': 'tresnet_xl.miil_in1k_448'}) + +# File: pytorch-image-models-main/timm/models/twins.py +"""""" +import math +from functools import partial +from typing import List, Optional, Tuple, Union +import torch +import torch.nn as nn +import torch.nn.functional as F +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from timm.layers import Mlp, DropPath, to_2tuple, trunc_normal_, use_fused_attn +from ._builder import build_model_with_cfg +from ._features import feature_take_indices +from ._features_fx import register_notrace_module +from ._registry import register_model, generate_default_cfgs +from .vision_transformer import Attention +__all__ = ['Twins'] +Size_ = Tuple[int, int] + +@register_notrace_module +class LocallyGroupedAttn(nn.Module): + fused_attn: torch.jit.Final[bool] + + def __init__(self, dim, num_heads=8, attn_drop=0.0, proj_drop=0.0, ws=1): + assert ws != 1 + super(LocallyGroupedAttn, self).__init__() + assert dim % num_heads == 0, f'dim {dim} should be divided by num_heads {num_heads}.' + self.dim = dim + self.num_heads = num_heads + head_dim = dim // num_heads + self.scale = head_dim ** (-0.5) + self.fused_attn = use_fused_attn() + self.qkv = nn.Linear(dim, dim * 3, bias=True) + self.attn_drop = nn.Dropout(attn_drop) + self.proj = nn.Linear(dim, dim) + self.proj_drop = nn.Dropout(proj_drop) + self.ws = ws + + def forward(self, x, size: Size_): + (B, N, C) = x.shape + (H, W) = size + x = x.view(B, H, W, C) + pad_l = pad_t = 0 + pad_r = (self.ws - W % self.ws) % self.ws + pad_b = (self.ws - H % self.ws) % self.ws + x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b)) + (_, Hp, Wp, _) = x.shape + (_h, _w) = (Hp // self.ws, Wp // self.ws) + x = x.reshape(B, _h, self.ws, _w, self.ws, C).transpose(2, 3) + qkv = self.qkv(x).reshape(B, _h * _w, self.ws * self.ws, 3, self.num_heads, C // self.num_heads).permute(3, 0, 1, 4, 2, 5) + (q, k, v) = qkv.unbind(0) + if self.fused_attn: + x = F.scaled_dot_product_attention(q, k, v, dropout_p=self.attn_drop.p if self.training else 0.0) + else: + q = q * self.scale + attn = q @ k.transpose(-2, -1) + attn = attn.softmax(dim=-1) + attn = self.attn_drop(attn) + x = attn @ v + x = x.transpose(2, 3).reshape(B, _h, _w, self.ws, self.ws, C) + x = x.transpose(2, 3).reshape(B, _h * self.ws, _w * self.ws, C) + if pad_r > 0 or pad_b > 0: + x = x[:, :H, :W, :].contiguous() + x = x.reshape(B, N, C) + x = self.proj(x) + x = self.proj_drop(x) + return x + +class GlobalSubSampleAttn(nn.Module): + fused_attn: torch.jit.Final[bool] + + def __init__(self, dim, num_heads=8, attn_drop=0.0, proj_drop=0.0, sr_ratio=1): + super().__init__() + assert dim % num_heads == 0, f'dim {dim} should be divided by num_heads {num_heads}.' + self.dim = dim + self.num_heads = num_heads + head_dim = dim // num_heads + self.scale = head_dim ** (-0.5) + self.fused_attn = use_fused_attn() + self.q = nn.Linear(dim, dim, bias=True) + self.kv = nn.Linear(dim, dim * 2, bias=True) + self.attn_drop = nn.Dropout(attn_drop) + self.proj = nn.Linear(dim, dim) + self.proj_drop = nn.Dropout(proj_drop) + self.sr_ratio = sr_ratio + if sr_ratio > 1: + self.sr = nn.Conv2d(dim, dim, kernel_size=sr_ratio, stride=sr_ratio) + self.norm = nn.LayerNorm(dim) + else: + self.sr = None + self.norm = None + + def forward(self, x, size: Size_): + (B, N, C) = x.shape + q = self.q(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) + if self.sr is not None: + x = x.permute(0, 2, 1).reshape(B, C, *size) + x = self.sr(x).reshape(B, C, -1).permute(0, 2, 1) + x = self.norm(x) + kv = self.kv(x).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) + (k, v) = kv.unbind(0) + if self.fused_attn: + x = torch.nn.functional.scaled_dot_product_attention(q, k, v, dropout_p=self.attn_drop.p if self.training else 0.0) + else: + q = q * self.scale + attn = q @ k.transpose(-2, -1) + attn = attn.softmax(dim=-1) + attn = self.attn_drop(attn) + x = attn @ v + x = x.transpose(1, 2).reshape(B, N, C) + x = self.proj(x) + x = self.proj_drop(x) + return x + +class Block(nn.Module): + + def __init__(self, dim, num_heads, mlp_ratio=4.0, proj_drop=0.0, attn_drop=0.0, drop_path=0.0, act_layer=nn.GELU, norm_layer=nn.LayerNorm, sr_ratio=1, ws=None): + super().__init__() + self.norm1 = norm_layer(dim) + if ws is None: + self.attn = Attention(dim, num_heads, False, None, attn_drop, proj_drop) + elif ws == 1: + self.attn = GlobalSubSampleAttn(dim, num_heads, attn_drop, proj_drop, sr_ratio) + else: + self.attn = LocallyGroupedAttn(dim, num_heads, attn_drop, proj_drop, ws) + self.drop_path1 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + self.norm2 = norm_layer(dim) + self.mlp = Mlp(in_features=dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer, drop=proj_drop) + self.drop_path2 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + + def forward(self, x, size: Size_): + x = x + self.drop_path1(self.attn(self.norm1(x), size)) + x = x + self.drop_path2(self.mlp(self.norm2(x))) + return x + +class PosConv(nn.Module): + + def __init__(self, in_chans, embed_dim=768, stride=1): + super(PosConv, self).__init__() + self.proj = nn.Sequential(nn.Conv2d(in_chans, embed_dim, 3, stride, 1, bias=True, groups=embed_dim)) + self.stride = stride + + def forward(self, x, size: Size_): + (B, N, C) = x.shape + cnn_feat_token = x.transpose(1, 2).view(B, C, *size) + x = self.proj(cnn_feat_token) + if self.stride == 1: + x += cnn_feat_token + x = x.flatten(2).transpose(1, 2) + return x + + def no_weight_decay(self): + return ['proj.%d.weight' % i for i in range(4)] + +class PatchEmbed(nn.Module): + + def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768): + super().__init__() + img_size = to_2tuple(img_size) + patch_size = to_2tuple(patch_size) + self.img_size = img_size + self.patch_size = patch_size + assert img_size[0] % patch_size[0] == 0 and img_size[1] % patch_size[1] == 0, f'img_size {img_size} should be divided by patch_size {patch_size}.' + (self.H, self.W) = (img_size[0] // patch_size[0], img_size[1] // patch_size[1]) + self.num_patches = self.H * self.W + self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) + self.norm = nn.LayerNorm(embed_dim) + + def forward(self, x) -> Tuple[torch.Tensor, Size_]: + (B, C, H, W) = x.shape + x = self.proj(x).flatten(2).transpose(1, 2) + x = self.norm(x) + out_size = (H // self.patch_size[0], W // self.patch_size[1]) + return (x, out_size) + +class Twins(nn.Module): + + def __init__(self, img_size=224, patch_size=4, in_chans=3, num_classes=1000, global_pool='avg', embed_dims=(64, 128, 256, 512), num_heads=(1, 2, 4, 8), mlp_ratios=(4, 4, 4, 4), depths=(3, 4, 6, 3), sr_ratios=(8, 4, 2, 1), wss=None, drop_rate=0.0, pos_drop_rate=0.0, proj_drop_rate=0.0, attn_drop_rate=0.0, drop_path_rate=0.0, norm_layer=partial(nn.LayerNorm, eps=1e-06), block_cls=Block): + super().__init__() + self.num_classes = num_classes + self.global_pool = global_pool + self.depths = depths + self.embed_dims = embed_dims + self.num_features = self.head_hidden_size = embed_dims[-1] + self.grad_checkpointing = False + img_size = to_2tuple(img_size) + prev_chs = in_chans + self.patch_embeds = nn.ModuleList() + self.pos_drops = nn.ModuleList() + for i in range(len(depths)): + self.patch_embeds.append(PatchEmbed(img_size, patch_size, prev_chs, embed_dims[i])) + self.pos_drops.append(nn.Dropout(p=pos_drop_rate)) + prev_chs = embed_dims[i] + img_size = tuple((t // patch_size for t in img_size)) + patch_size = 2 + self.blocks = nn.ModuleList() + self.feature_info = [] + dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] + cur = 0 + for k in range(len(depths)): + _block = nn.ModuleList([block_cls(dim=embed_dims[k], num_heads=num_heads[k], mlp_ratio=mlp_ratios[k], proj_drop=proj_drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer, sr_ratio=sr_ratios[k], ws=1 if wss is None or i % 2 == 1 else wss[k]) for i in range(depths[k])]) + self.blocks.append(_block) + self.feature_info += [dict(module=f'block.{k}', num_chs=embed_dims[k], reduction=2 ** (2 + k))] + cur += depths[k] + self.pos_block = nn.ModuleList([PosConv(embed_dim, embed_dim) for embed_dim in embed_dims]) + self.norm = norm_layer(self.num_features) + self.head_drop = nn.Dropout(drop_rate) + self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() + self.apply(self._init_weights) + + @torch.jit.ignore + def no_weight_decay(self): + return set(['pos_block.' + n for (n, p) in self.pos_block.named_parameters()]) + + @torch.jit.ignore + def group_matcher(self, coarse=False): + matcher = dict(stem='^patch_embeds.0', blocks=[('^(?:blocks|patch_embeds|pos_block)\\.(\\d+)', None), ('^norm', (99999,))] if coarse else [('^blocks\\.(\\d+)\\.(\\d+)', None), ('^(?:patch_embeds|pos_block)\\.(\\d+)', (0,)), ('^norm', (99999,))]) + return matcher + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + assert not enable, 'gradient checkpointing not supported' + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.head + + def reset_classifier(self, num_classes: int, global_pool: Optional[str]=None): + self.num_classes = num_classes + if global_pool is not None: + assert global_pool in ('', 'avg') + self.global_pool = global_pool + self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() + + def _init_weights(self, m): + if isinstance(m, nn.Linear): + trunc_normal_(m.weight, std=0.02) + if isinstance(m, nn.Linear) and m.bias is not None: + nn.init.constant_(m.bias, 0) + elif isinstance(m, nn.LayerNorm): + nn.init.constant_(m.bias, 0) + nn.init.constant_(m.weight, 1.0) + elif isinstance(m, nn.Conv2d): + fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels + fan_out //= m.groups + m.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) + if m.bias is not None: + m.bias.data.zero_() + + def forward_intermediates(self, x: torch.Tensor, indices: Optional[Union[int, List[int]]]=None, norm: bool=False, stop_early: bool=False, output_fmt: str='NCHW', intermediates_only: bool=False) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]: + assert output_fmt == 'NCHW', 'Output shape for Twins must be NCHW.' + intermediates = [] + (take_indices, max_index) = feature_take_indices(len(self.blocks), indices) + (B, _, height, width) = x.shape + for (i, (embed, drop, blocks, pos_blk)) in enumerate(zip(self.patch_embeds, self.pos_drops, self.blocks, self.pos_block)): + (x, size) = embed(x) + x = drop(x) + for (j, blk) in enumerate(blocks): + x = blk(x, size) + if j == 0: + x = pos_blk(x, size) + if i < len(self.depths) - 1: + x = x.reshape(B, *size, -1).permute(0, 3, 1, 2).contiguous() + if i in take_indices: + intermediates.append(x) + elif i in take_indices: + x_feat = self.norm(x) if norm else x + intermediates.append(x_feat.reshape(B, *size, -1).permute(0, 3, 1, 2).contiguous()) + if intermediates_only: + return intermediates + x = self.norm(x) + return (x, intermediates) + + def prune_intermediate_layers(self, indices: Union[int, List[int]]=1, prune_norm: bool=False, prune_head: bool=True): + (take_indices, max_index) = feature_take_indices(len(self.blocks), indices) + if prune_norm: + self.norm = nn.Identity() + if prune_head: + self.reset_classifier(0, '') + return take_indices + + def forward_features(self, x): + B = x.shape[0] + for (i, (embed, drop, blocks, pos_blk)) in enumerate(zip(self.patch_embeds, self.pos_drops, self.blocks, self.pos_block)): + (x, size) = embed(x) + x = drop(x) + for (j, blk) in enumerate(blocks): + x = blk(x, size) + if j == 0: + x = pos_blk(x, size) + if i < len(self.depths) - 1: + x = x.reshape(B, *size, -1).permute(0, 3, 1, 2).contiguous() + x = self.norm(x) + return x + + def forward_head(self, x, pre_logits: bool=False): + if self.global_pool == 'avg': + x = x.mean(dim=1) + x = self.head_drop(x) + return x if pre_logits else self.head(x) + + def forward(self, x): + x = self.forward_features(x) + x = self.forward_head(x) + return x + +def _create_twins(variant, pretrained=False, **kwargs): + out_indices = kwargs.pop('out_indices', 4) + model = build_model_with_cfg(Twins, variant, pretrained, feature_cfg=dict(out_indices=out_indices, feature_cls='getter'), **kwargs) + return model + +def _cfg(url='', **kwargs): + return {'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, 'crop_pct': 0.9, 'interpolation': 'bicubic', 'fixed_input_size': True, 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'patch_embeds.0.proj', 'classifier': 'head', **kwargs} +default_cfgs = generate_default_cfgs({'twins_pcpvt_small.in1k': _cfg(hf_hub_id='timm/'), 'twins_pcpvt_base.in1k': _cfg(hf_hub_id='timm/'), 'twins_pcpvt_large.in1k': _cfg(hf_hub_id='timm/'), 'twins_svt_small.in1k': _cfg(hf_hub_id='timm/'), 'twins_svt_base.in1k': _cfg(hf_hub_id='timm/'), 'twins_svt_large.in1k': _cfg(hf_hub_id='timm/')}) + +@register_model +def twins_pcpvt_small(pretrained=False, **kwargs) -> Twins: + model_args = dict(patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4], depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1]) + return _create_twins('twins_pcpvt_small', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def twins_pcpvt_base(pretrained=False, **kwargs) -> Twins: + model_args = dict(patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4], depths=[3, 4, 18, 3], sr_ratios=[8, 4, 2, 1]) + return _create_twins('twins_pcpvt_base', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def twins_pcpvt_large(pretrained=False, **kwargs) -> Twins: + model_args = dict(patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4], depths=[3, 8, 27, 3], sr_ratios=[8, 4, 2, 1]) + return _create_twins('twins_pcpvt_large', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def twins_svt_small(pretrained=False, **kwargs) -> Twins: + model_args = dict(patch_size=4, embed_dims=[64, 128, 256, 512], num_heads=[2, 4, 8, 16], mlp_ratios=[4, 4, 4, 4], depths=[2, 2, 10, 4], wss=[7, 7, 7, 7], sr_ratios=[8, 4, 2, 1]) + return _create_twins('twins_svt_small', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def twins_svt_base(pretrained=False, **kwargs) -> Twins: + model_args = dict(patch_size=4, embed_dims=[96, 192, 384, 768], num_heads=[3, 6, 12, 24], mlp_ratios=[4, 4, 4, 4], depths=[2, 2, 18, 2], wss=[7, 7, 7, 7], sr_ratios=[8, 4, 2, 1]) + return _create_twins('twins_svt_base', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def twins_svt_large(pretrained=False, **kwargs) -> Twins: + model_args = dict(patch_size=4, embed_dims=[128, 256, 512, 1024], num_heads=[4, 8, 16, 32], mlp_ratios=[4, 4, 4, 4], depths=[2, 2, 18, 2], wss=[7, 7, 7, 7], sr_ratios=[8, 4, 2, 1]) + return _create_twins('twins_svt_large', pretrained=pretrained, **dict(model_args, **kwargs)) + +# File: pytorch-image-models-main/timm/models/vgg.py +"""""" +from typing import Any, Dict, List, Optional, Union, cast +import torch +import torch.nn as nn +import torch.nn.functional as F +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from timm.layers import ClassifierHead +from ._builder import build_model_with_cfg +from ._features_fx import register_notrace_module +from ._registry import register_model, generate_default_cfgs +__all__ = ['VGG'] +cfgs: Dict[str, List[Union[str, int]]] = {'vgg11': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'], 'vgg13': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'], 'vgg16': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'], 'vgg19': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M']} + +@register_notrace_module +class ConvMlp(nn.Module): + + def __init__(self, in_features=512, out_features=4096, kernel_size=7, mlp_ratio=1.0, drop_rate: float=0.2, act_layer: nn.Module=None, conv_layer: nn.Module=None): + super(ConvMlp, self).__init__() + self.input_kernel_size = kernel_size + mid_features = int(out_features * mlp_ratio) + self.fc1 = conv_layer(in_features, mid_features, kernel_size, bias=True) + self.act1 = act_layer(True) + self.drop = nn.Dropout(drop_rate) + self.fc2 = conv_layer(mid_features, out_features, 1, bias=True) + self.act2 = act_layer(True) + + def forward(self, x): + if x.shape[-2] < self.input_kernel_size or x.shape[-1] < self.input_kernel_size: + output_size = (max(self.input_kernel_size, x.shape[-2]), max(self.input_kernel_size, x.shape[-1])) + x = F.adaptive_avg_pool2d(x, output_size) + x = self.fc1(x) + x = self.act1(x) + x = self.drop(x) + x = self.fc2(x) + x = self.act2(x) + return x + +class VGG(nn.Module): + + def __init__(self, cfg: List[Any], num_classes: int=1000, in_chans: int=3, output_stride: int=32, mlp_ratio: float=1.0, act_layer: nn.Module=nn.ReLU, conv_layer: nn.Module=nn.Conv2d, norm_layer: nn.Module=None, global_pool: str='avg', drop_rate: float=0.0) -> None: + super(VGG, self).__init__() + assert output_stride == 32 + self.num_classes = num_classes + self.drop_rate = drop_rate + self.grad_checkpointing = False + self.use_norm = norm_layer is not None + self.feature_info = [] + prev_chs = in_chans + net_stride = 1 + pool_layer = nn.MaxPool2d + layers: List[nn.Module] = [] + for v in cfg: + last_idx = len(layers) - 1 + if v == 'M': + self.feature_info.append(dict(num_chs=prev_chs, reduction=net_stride, module=f'features.{last_idx}')) + layers += [pool_layer(kernel_size=2, stride=2)] + net_stride *= 2 + else: + v = cast(int, v) + conv2d = conv_layer(prev_chs, v, kernel_size=3, padding=1) + if norm_layer is not None: + layers += [conv2d, norm_layer(v), act_layer(inplace=True)] + else: + layers += [conv2d, act_layer(inplace=True)] + prev_chs = v + self.features = nn.Sequential(*layers) + self.feature_info.append(dict(num_chs=prev_chs, reduction=net_stride, module=f'features.{len(layers) - 1}')) + self.num_features = prev_chs + self.head_hidden_size = 4096 + self.pre_logits = ConvMlp(prev_chs, self.head_hidden_size, 7, mlp_ratio=mlp_ratio, drop_rate=drop_rate, act_layer=act_layer, conv_layer=conv_layer) + self.head = ClassifierHead(self.head_hidden_size, num_classes, pool_type=global_pool, drop_rate=drop_rate) + self._initialize_weights() + + @torch.jit.ignore + def group_matcher(self, coarse=False): + return dict(stem='^features\\.0', blocks='^features\\.(\\d+)') + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + assert not enable, 'gradient checkpointing not supported' + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.head.fc + + def reset_classifier(self, num_classes: int, global_pool: Optional[str]=None): + self.num_classes = num_classes + self.head.reset(num_classes, global_pool) + + def forward_features(self, x: torch.Tensor) -> torch.Tensor: + x = self.features(x) + return x + + def forward_head(self, x: torch.Tensor, pre_logits: bool=False): + x = self.pre_logits(x) + return self.head(x, pre_logits=pre_logits) if pre_logits else self.head(x) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + x = self.forward_features(x) + x = self.forward_head(x) + return x + + def _initialize_weights(self) -> None: + for m in self.modules(): + if isinstance(m, nn.Conv2d): + nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') + if m.bias is not None: + nn.init.constant_(m.bias, 0) + elif isinstance(m, nn.BatchNorm2d): + nn.init.constant_(m.weight, 1) + nn.init.constant_(m.bias, 0) + elif isinstance(m, nn.Linear): + nn.init.normal_(m.weight, 0, 0.01) + nn.init.constant_(m.bias, 0) + +def _filter_fn(state_dict): + out_dict = {} + for (k, v) in state_dict.items(): + k_r = k + k_r = k_r.replace('classifier.0', 'pre_logits.fc1') + k_r = k_r.replace('classifier.3', 'pre_logits.fc2') + k_r = k_r.replace('classifier.6', 'head.fc') + if 'classifier.0.weight' in k: + v = v.reshape(-1, 512, 7, 7) + if 'classifier.3.weight' in k: + v = v.reshape(-1, 4096, 1, 1) + out_dict[k_r] = v + return out_dict + +def _create_vgg(variant: str, pretrained: bool, **kwargs: Any) -> VGG: + cfg = variant.split('_')[0] + out_indices = kwargs.pop('out_indices', (0, 1, 2, 3, 4, 5)) + model = build_model_with_cfg(VGG, variant, pretrained, model_cfg=cfgs[cfg], feature_cfg=dict(flatten_sequential=True, out_indices=out_indices), pretrained_filter_fn=_filter_fn, **kwargs) + return model + +def _cfg(url='', **kwargs): + return {'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), 'crop_pct': 0.875, 'interpolation': 'bilinear', 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'features.0', 'classifier': 'head.fc', **kwargs} +default_cfgs = generate_default_cfgs({'vgg11.tv_in1k': _cfg(hf_hub_id='timm/'), 'vgg13.tv_in1k': _cfg(hf_hub_id='timm/'), 'vgg16.tv_in1k': _cfg(hf_hub_id='timm/'), 'vgg19.tv_in1k': _cfg(hf_hub_id='timm/'), 'vgg11_bn.tv_in1k': _cfg(hf_hub_id='timm/'), 'vgg13_bn.tv_in1k': _cfg(hf_hub_id='timm/'), 'vgg16_bn.tv_in1k': _cfg(hf_hub_id='timm/'), 'vgg19_bn.tv_in1k': _cfg(hf_hub_id='timm/')}) + +@register_model +def vgg11(pretrained: bool=False, **kwargs: Any) -> VGG: + model_args = dict(**kwargs) + return _create_vgg('vgg11', pretrained=pretrained, **model_args) + +@register_model +def vgg11_bn(pretrained: bool=False, **kwargs: Any) -> VGG: + model_args = dict(norm_layer=nn.BatchNorm2d, **kwargs) + return _create_vgg('vgg11_bn', pretrained=pretrained, **model_args) + +@register_model +def vgg13(pretrained: bool=False, **kwargs: Any) -> VGG: + model_args = dict(**kwargs) + return _create_vgg('vgg13', pretrained=pretrained, **model_args) + +@register_model +def vgg13_bn(pretrained: bool=False, **kwargs: Any) -> VGG: + model_args = dict(norm_layer=nn.BatchNorm2d, **kwargs) + return _create_vgg('vgg13_bn', pretrained=pretrained, **model_args) + +@register_model +def vgg16(pretrained: bool=False, **kwargs: Any) -> VGG: + model_args = dict(**kwargs) + return _create_vgg('vgg16', pretrained=pretrained, **model_args) + +@register_model +def vgg16_bn(pretrained: bool=False, **kwargs: Any) -> VGG: + model_args = dict(norm_layer=nn.BatchNorm2d, **kwargs) + return _create_vgg('vgg16_bn', pretrained=pretrained, **model_args) + +@register_model +def vgg19(pretrained: bool=False, **kwargs: Any) -> VGG: + model_args = dict(**kwargs) + return _create_vgg('vgg19', pretrained=pretrained, **model_args) + +@register_model +def vgg19_bn(pretrained: bool=False, **kwargs: Any) -> VGG: + model_args = dict(norm_layer=nn.BatchNorm2d, **kwargs) + return _create_vgg('vgg19_bn', pretrained=pretrained, **model_args) + +# File: pytorch-image-models-main/timm/models/visformer.py +"""""" +import torch +import torch.nn as nn +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from timm.layers import to_2tuple, trunc_normal_, DropPath, PatchEmbed, LayerNorm2d, create_classifier, use_fused_attn +from ._builder import build_model_with_cfg +from ._manipulate import checkpoint_seq +from ._registry import register_model, generate_default_cfgs +__all__ = ['Visformer'] + +class SpatialMlp(nn.Module): + + def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.0, group=8, spatial_conv=False): + super().__init__() + out_features = out_features or in_features + hidden_features = hidden_features or in_features + drop_probs = to_2tuple(drop) + self.in_features = in_features + self.out_features = out_features + self.spatial_conv = spatial_conv + if self.spatial_conv: + if group < 2: + hidden_features = in_features * 5 // 6 + else: + hidden_features = in_features * 2 + self.hidden_features = hidden_features + self.group = group + self.conv1 = nn.Conv2d(in_features, hidden_features, 1, stride=1, padding=0, bias=False) + self.act1 = act_layer() + self.drop1 = nn.Dropout(drop_probs[0]) + if self.spatial_conv: + self.conv2 = nn.Conv2d(hidden_features, hidden_features, 3, stride=1, padding=1, groups=self.group, bias=False) + self.act2 = act_layer() + else: + self.conv2 = None + self.act2 = None + self.conv3 = nn.Conv2d(hidden_features, out_features, 1, stride=1, padding=0, bias=False) + self.drop3 = nn.Dropout(drop_probs[1]) + + def forward(self, x): + x = self.conv1(x) + x = self.act1(x) + x = self.drop1(x) + if self.conv2 is not None: + x = self.conv2(x) + x = self.act2(x) + x = self.conv3(x) + x = self.drop3(x) + return x + +class Attention(nn.Module): + fused_attn: torch.jit.Final[bool] + + def __init__(self, dim, num_heads=8, head_dim_ratio=1.0, attn_drop=0.0, proj_drop=0.0): + super().__init__() + self.dim = dim + self.num_heads = num_heads + head_dim = round(dim // num_heads * head_dim_ratio) + self.head_dim = head_dim + self.scale = head_dim ** (-0.5) + self.fused_attn = use_fused_attn(experimental=True) + self.qkv = nn.Conv2d(dim, head_dim * num_heads * 3, 1, stride=1, padding=0, bias=False) + self.attn_drop = nn.Dropout(attn_drop) + self.proj = nn.Conv2d(self.head_dim * self.num_heads, dim, 1, stride=1, padding=0, bias=False) + self.proj_drop = nn.Dropout(proj_drop) + + def forward(self, x): + (B, C, H, W) = x.shape + x = self.qkv(x).reshape(B, 3, self.num_heads, self.head_dim, -1).permute(1, 0, 2, 4, 3) + (q, k, v) = x.unbind(0) + if self.fused_attn: + x = torch.nn.functional.scaled_dot_product_attention(q.contiguous(), k.contiguous(), v.contiguous(), dropout_p=self.attn_drop.p if self.training else 0.0) + else: + attn = q @ k.transpose(-2, -1) * self.scale + attn = attn.softmax(dim=-1) + attn = self.attn_drop(attn) + x = attn @ v + x = x.permute(0, 1, 3, 2).reshape(B, -1, H, W) + x = self.proj(x) + x = self.proj_drop(x) + return x + +class Block(nn.Module): + + def __init__(self, dim, num_heads, head_dim_ratio=1.0, mlp_ratio=4.0, proj_drop=0.0, attn_drop=0.0, drop_path=0.0, act_layer=nn.GELU, norm_layer=LayerNorm2d, group=8, attn_disabled=False, spatial_conv=False): + super().__init__() + self.spatial_conv = spatial_conv + self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + if attn_disabled: + self.norm1 = None + self.attn = None + else: + self.norm1 = norm_layer(dim) + self.attn = Attention(dim, num_heads=num_heads, head_dim_ratio=head_dim_ratio, attn_drop=attn_drop, proj_drop=proj_drop) + self.norm2 = norm_layer(dim) + self.mlp = SpatialMlp(in_features=dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer, drop=proj_drop, group=group, spatial_conv=spatial_conv) + + def forward(self, x): + if self.attn is not None: + x = x + self.drop_path(self.attn(self.norm1(x))) + x = x + self.drop_path(self.mlp(self.norm2(x))) + return x + +class Visformer(nn.Module): + + def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, init_channels=32, embed_dim=384, depth=12, num_heads=6, mlp_ratio=4.0, drop_rate=0.0, pos_drop_rate=0.0, proj_drop_rate=0.0, attn_drop_rate=0.0, drop_path_rate=0.0, norm_layer=LayerNorm2d, attn_stage='111', use_pos_embed=True, spatial_conv='111', vit_stem=False, group=8, global_pool='avg', conv_init=False, embed_norm=None): + super().__init__() + img_size = to_2tuple(img_size) + self.num_classes = num_classes + self.embed_dim = embed_dim + self.init_channels = init_channels + self.img_size = img_size + self.vit_stem = vit_stem + self.conv_init = conv_init + if isinstance(depth, (list, tuple)): + (self.stage_num1, self.stage_num2, self.stage_num3) = depth + depth = sum(depth) + else: + self.stage_num1 = self.stage_num3 = depth // 3 + self.stage_num2 = depth - self.stage_num1 - self.stage_num3 + self.use_pos_embed = use_pos_embed + self.grad_checkpointing = False + dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] + if self.vit_stem: + self.stem = None + self.patch_embed1 = PatchEmbed(img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim, norm_layer=embed_norm, flatten=False) + img_size = [x // patch_size for x in img_size] + elif self.init_channels is None: + self.stem = None + self.patch_embed1 = PatchEmbed(img_size=img_size, patch_size=patch_size // 2, in_chans=in_chans, embed_dim=embed_dim // 2, norm_layer=embed_norm, flatten=False) + img_size = [x // (patch_size // 2) for x in img_size] + else: + self.stem = nn.Sequential(nn.Conv2d(in_chans, self.init_channels, 7, stride=2, padding=3, bias=False), nn.BatchNorm2d(self.init_channels), nn.ReLU(inplace=True)) + img_size = [x // 2 for x in img_size] + self.patch_embed1 = PatchEmbed(img_size=img_size, patch_size=patch_size // 4, in_chans=self.init_channels, embed_dim=embed_dim // 2, norm_layer=embed_norm, flatten=False) + img_size = [x // (patch_size // 4) for x in img_size] + if self.use_pos_embed: + if self.vit_stem: + self.pos_embed1 = nn.Parameter(torch.zeros(1, embed_dim, *img_size)) + else: + self.pos_embed1 = nn.Parameter(torch.zeros(1, embed_dim // 2, *img_size)) + self.pos_drop = nn.Dropout(p=pos_drop_rate) + else: + self.pos_embed1 = None + self.stage1 = nn.Sequential(*[Block(dim=embed_dim // 2, num_heads=num_heads, head_dim_ratio=0.5, mlp_ratio=mlp_ratio, proj_drop=proj_drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, group=group, attn_disabled=attn_stage[0] == '0', spatial_conv=spatial_conv[0] == '1') for i in range(self.stage_num1)]) + if not self.vit_stem: + self.patch_embed2 = PatchEmbed(img_size=img_size, patch_size=patch_size // 8, in_chans=embed_dim // 2, embed_dim=embed_dim, norm_layer=embed_norm, flatten=False) + img_size = [x // (patch_size // 8) for x in img_size] + if self.use_pos_embed: + self.pos_embed2 = nn.Parameter(torch.zeros(1, embed_dim, *img_size)) + else: + self.pos_embed2 = None + else: + self.patch_embed2 = None + self.stage2 = nn.Sequential(*[Block(dim=embed_dim, num_heads=num_heads, head_dim_ratio=1.0, mlp_ratio=mlp_ratio, proj_drop=proj_drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, group=group, attn_disabled=attn_stage[1] == '0', spatial_conv=spatial_conv[1] == '1') for i in range(self.stage_num1, self.stage_num1 + self.stage_num2)]) + if not self.vit_stem: + self.patch_embed3 = PatchEmbed(img_size=img_size, patch_size=patch_size // 8, in_chans=embed_dim, embed_dim=embed_dim * 2, norm_layer=embed_norm, flatten=False) + img_size = [x // (patch_size // 8) for x in img_size] + if self.use_pos_embed: + self.pos_embed3 = nn.Parameter(torch.zeros(1, embed_dim * 2, *img_size)) + else: + self.pos_embed3 = None + else: + self.patch_embed3 = None + self.stage3 = nn.Sequential(*[Block(dim=embed_dim * 2, num_heads=num_heads, head_dim_ratio=1.0, mlp_ratio=mlp_ratio, proj_drop=proj_drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, group=group, attn_disabled=attn_stage[2] == '0', spatial_conv=spatial_conv[2] == '1') for i in range(self.stage_num1 + self.stage_num2, depth)]) + self.num_features = self.head_hidden_size = embed_dim if self.vit_stem else embed_dim * 2 + self.norm = norm_layer(self.num_features) + (global_pool, head) = create_classifier(self.num_features, self.num_classes, pool_type=global_pool) + self.global_pool = global_pool + self.head_drop = nn.Dropout(drop_rate) + self.head = head + if self.use_pos_embed: + trunc_normal_(self.pos_embed1, std=0.02) + if not self.vit_stem: + trunc_normal_(self.pos_embed2, std=0.02) + trunc_normal_(self.pos_embed3, std=0.02) + self.apply(self._init_weights) + + def _init_weights(self, m): + if isinstance(m, nn.Linear): + trunc_normal_(m.weight, std=0.02) + if m.bias is not None: + nn.init.constant_(m.bias, 0) + elif isinstance(m, nn.Conv2d): + if self.conv_init: + nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') + else: + trunc_normal_(m.weight, std=0.02) + if m.bias is not None: + nn.init.constant_(m.bias, 0.0) + + @torch.jit.ignore + def group_matcher(self, coarse=False): + return dict(stem='^patch_embed1|pos_embed1|stem', blocks=[('^stage(\\d+)\\.(\\d+)' if coarse else '^stage(\\d+)\\.(\\d+)', None), ('^(?:patch_embed|pos_embed)(\\d+)', (0,)), ('^norm', (99999,))]) + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + self.grad_checkpointing = enable + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.head + + def reset_classifier(self, num_classes: int, global_pool: str='avg'): + self.num_classes = num_classes + (self.global_pool, self.head) = create_classifier(self.num_features, self.num_classes, pool_type=global_pool) + + def forward_features(self, x): + if self.stem is not None: + x = self.stem(x) + x = self.patch_embed1(x) + if self.pos_embed1 is not None: + x = self.pos_drop(x + self.pos_embed1) + if self.grad_checkpointing and (not torch.jit.is_scripting()): + x = checkpoint_seq(self.stage1, x) + else: + x = self.stage1(x) + if self.patch_embed2 is not None: + x = self.patch_embed2(x) + if self.pos_embed2 is not None: + x = self.pos_drop(x + self.pos_embed2) + if self.grad_checkpointing and (not torch.jit.is_scripting()): + x = checkpoint_seq(self.stage2, x) + else: + x = self.stage2(x) + if self.patch_embed3 is not None: + x = self.patch_embed3(x) + if self.pos_embed3 is not None: + x = self.pos_drop(x + self.pos_embed3) + if self.grad_checkpointing and (not torch.jit.is_scripting()): + x = checkpoint_seq(self.stage3, x) + else: + x = self.stage3(x) + x = self.norm(x) + return x + + def forward_head(self, x, pre_logits: bool=False): + x = self.global_pool(x) + x = self.head_drop(x) + return x if pre_logits else self.head(x) + + def forward(self, x): + x = self.forward_features(x) + x = self.forward_head(x) + return x + +def _create_visformer(variant, pretrained=False, default_cfg=None, **kwargs): + if kwargs.get('features_only', None): + raise RuntimeError('features_only not implemented for Vision Transformer models.') + model = build_model_with_cfg(Visformer, variant, pretrained, **kwargs) + return model + +def _cfg(url='', **kwargs): + return {'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), 'crop_pct': 0.9, 'interpolation': 'bicubic', 'fixed_input_size': True, 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'stem.0', 'classifier': 'head', **kwargs} +default_cfgs = generate_default_cfgs({'visformer_tiny.in1k': _cfg(hf_hub_id='timm/'), 'visformer_small.in1k': _cfg(hf_hub_id='timm/')}) + +@register_model +def visformer_tiny(pretrained=False, **kwargs) -> Visformer: + model_cfg = dict(init_channels=16, embed_dim=192, depth=(7, 4, 4), num_heads=3, mlp_ratio=4.0, group=8, attn_stage='011', spatial_conv='100', norm_layer=nn.BatchNorm2d, conv_init=True, embed_norm=nn.BatchNorm2d) + model = _create_visformer('visformer_tiny', pretrained=pretrained, **dict(model_cfg, **kwargs)) + return model + +@register_model +def visformer_small(pretrained=False, **kwargs) -> Visformer: + model_cfg = dict(init_channels=32, embed_dim=384, depth=(7, 4, 4), num_heads=6, mlp_ratio=4.0, group=8, attn_stage='011', spatial_conv='100', norm_layer=nn.BatchNorm2d, conv_init=True, embed_norm=nn.BatchNorm2d) + model = _create_visformer('visformer_small', pretrained=pretrained, **dict(model_cfg, **kwargs)) + return model + +# File: pytorch-image-models-main/timm/models/vision_transformer.py +"""""" +import logging +import math +from collections import OrderedDict +from functools import partial +from typing import Any, Callable, Dict, Optional, Set, Tuple, Type, Union, List +try: + from typing import Literal +except ImportError: + from typing_extensions import Literal +import torch +import torch.nn as nn +import torch.nn.functional as F +import torch.utils.checkpoint +from torch.jit import Final +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD, OPENAI_CLIP_MEAN, OPENAI_CLIP_STD +from timm.layers import PatchEmbed, Mlp, DropPath, AttentionPoolLatent, RmsNorm, PatchDropout, SwiGLUPacked, trunc_normal_, lecun_normal_, resample_patch_embed, resample_abs_pos_embed, use_fused_attn, get_act_layer, get_norm_layer, LayerType +from ._builder import build_model_with_cfg +from ._features import feature_take_indices +from ._manipulate import named_apply, checkpoint_seq, adapt_input_conv +from ._registry import generate_default_cfgs, register_model, register_model_deprecations +__all__ = ['VisionTransformer'] +_logger = logging.getLogger(__name__) + +class Attention(nn.Module): + fused_attn: Final[bool] + + def __init__(self, dim: int, num_heads: int=8, qkv_bias: bool=False, qk_norm: bool=False, attn_drop: float=0.0, proj_drop: float=0.0, norm_layer: nn.Module=nn.LayerNorm) -> None: + super().__init__() + assert dim % num_heads == 0, 'dim should be divisible by num_heads' + self.num_heads = num_heads + self.head_dim = dim // num_heads + self.scale = self.head_dim ** (-0.5) + self.fused_attn = use_fused_attn() + self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) + self.q_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity() + self.k_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity() + self.attn_drop = nn.Dropout(attn_drop) + self.proj = nn.Linear(dim, dim) + self.proj_drop = nn.Dropout(proj_drop) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + (B, N, C) = x.shape + qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4) + (q, k, v) = qkv.unbind(0) + (q, k) = (self.q_norm(q), self.k_norm(k)) + if self.fused_attn: + x = F.scaled_dot_product_attention(q, k, v, dropout_p=self.attn_drop.p if self.training else 0.0) + else: + q = q * self.scale + attn = q @ k.transpose(-2, -1) + attn = attn.softmax(dim=-1) + attn = self.attn_drop(attn) + x = attn @ v + x = x.transpose(1, 2).reshape(B, N, C) + x = self.proj(x) + x = self.proj_drop(x) + return x + +class LayerScale(nn.Module): + + def __init__(self, dim: int, init_values: float=1e-05, inplace: bool=False) -> None: + super().__init__() + self.inplace = inplace + self.gamma = nn.Parameter(init_values * torch.ones(dim)) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + return x.mul_(self.gamma) if self.inplace else x * self.gamma + +class Block(nn.Module): + + def __init__(self, dim: int, num_heads: int, mlp_ratio: float=4.0, qkv_bias: bool=False, qk_norm: bool=False, proj_drop: float=0.0, attn_drop: float=0.0, init_values: Optional[float]=None, drop_path: float=0.0, act_layer: nn.Module=nn.GELU, norm_layer: nn.Module=nn.LayerNorm, mlp_layer: nn.Module=Mlp) -> None: + super().__init__() + self.norm1 = norm_layer(dim) + self.attn = Attention(dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_norm=qk_norm, attn_drop=attn_drop, proj_drop=proj_drop, norm_layer=norm_layer) + self.ls1 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity() + self.drop_path1 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + self.norm2 = norm_layer(dim) + self.mlp = mlp_layer(in_features=dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer, drop=proj_drop) + self.ls2 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity() + self.drop_path2 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + + def forward(self, x: torch.Tensor) -> torch.Tensor: + x = x + self.drop_path1(self.ls1(self.attn(self.norm1(x)))) + x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x)))) + return x + +class ResPostBlock(nn.Module): + + def __init__(self, dim: int, num_heads: int, mlp_ratio: float=4.0, qkv_bias: bool=False, qk_norm: bool=False, proj_drop: float=0.0, attn_drop: float=0.0, init_values: Optional[float]=None, drop_path: float=0.0, act_layer: nn.Module=nn.GELU, norm_layer: nn.Module=nn.LayerNorm, mlp_layer: nn.Module=Mlp) -> None: + super().__init__() + self.init_values = init_values + self.attn = Attention(dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_norm=qk_norm, attn_drop=attn_drop, proj_drop=proj_drop, norm_layer=norm_layer) + self.norm1 = norm_layer(dim) + self.drop_path1 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + self.mlp = mlp_layer(in_features=dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer, drop=proj_drop) + self.norm2 = norm_layer(dim) + self.drop_path2 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + self.init_weights() + + def init_weights(self) -> None: + if self.init_values is not None: + nn.init.constant_(self.norm1.weight, self.init_values) + nn.init.constant_(self.norm2.weight, self.init_values) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + x = x + self.drop_path1(self.norm1(self.attn(x))) + x = x + self.drop_path2(self.norm2(self.mlp(x))) + return x + +class ParallelScalingBlock(nn.Module): + fused_attn: Final[bool] + + def __init__(self, dim: int, num_heads: int, mlp_ratio: float=4.0, qkv_bias: bool=False, qk_norm: bool=False, proj_drop: float=0.0, attn_drop: float=0.0, init_values: Optional[float]=None, drop_path: float=0.0, act_layer: nn.Module=nn.GELU, norm_layer: nn.Module=nn.LayerNorm, mlp_layer: Optional[nn.Module]=None) -> None: + super().__init__() + assert dim % num_heads == 0, 'dim should be divisible by num_heads' + self.num_heads = num_heads + self.head_dim = dim // num_heads + self.scale = self.head_dim ** (-0.5) + self.fused_attn = use_fused_attn() + mlp_hidden_dim = int(mlp_ratio * dim) + in_proj_out_dim = mlp_hidden_dim + 3 * dim + self.in_norm = norm_layer(dim) + self.in_proj = nn.Linear(dim, in_proj_out_dim, bias=qkv_bias) + self.in_split = [mlp_hidden_dim] + [dim] * 3 + if qkv_bias: + self.register_buffer('qkv_bias', None) + self.register_parameter('mlp_bias', None) + else: + self.register_buffer('qkv_bias', torch.zeros(3 * dim), persistent=False) + self.mlp_bias = nn.Parameter(torch.zeros(mlp_hidden_dim)) + self.q_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity() + self.k_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity() + self.attn_drop = nn.Dropout(attn_drop) + self.attn_out_proj = nn.Linear(dim, dim) + self.mlp_drop = nn.Dropout(proj_drop) + self.mlp_act = act_layer() + self.mlp_out_proj = nn.Linear(mlp_hidden_dim, dim) + self.ls = LayerScale(dim, init_values=init_values) if init_values is not None else nn.Identity() + self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + + def forward(self, x: torch.Tensor) -> torch.Tensor: + (B, N, C) = x.shape + y = self.in_norm(x) + if self.mlp_bias is not None: + y = F.linear(y, self.in_proj.weight, torch.cat((self.qkv_bias, self.mlp_bias))) + else: + y = self.in_proj(y) + (x_mlp, q, k, v) = torch.split(y, self.in_split, dim=-1) + q = self.q_norm(q.view(B, N, self.num_heads, self.head_dim)).transpose(1, 2) + k = self.k_norm(k.view(B, N, self.num_heads, self.head_dim)).transpose(1, 2) + v = v.view(B, N, self.num_heads, self.head_dim).transpose(1, 2) + if self.fused_attn: + x_attn = F.scaled_dot_product_attention(q, k, v, dropout_p=self.attn_drop.p if self.training else 0.0) + else: + q = q * self.scale + attn = q @ k.transpose(-2, -1) + attn = attn.softmax(dim=-1) + attn = self.attn_drop(attn) + x_attn = attn @ v + x_attn = x_attn.transpose(1, 2).reshape(B, N, C) + x_attn = self.attn_out_proj(x_attn) + x_mlp = self.mlp_act(x_mlp) + x_mlp = self.mlp_drop(x_mlp) + x_mlp = self.mlp_out_proj(x_mlp) + y = self.drop_path(self.ls(x_attn + x_mlp)) + x = x + y + return x + +class ParallelThingsBlock(nn.Module): + + def __init__(self, dim: int, num_heads: int, num_parallel: int=2, mlp_ratio: float=4.0, qkv_bias: bool=False, qk_norm: bool=False, init_values: Optional[float]=None, proj_drop: float=0.0, attn_drop: float=0.0, drop_path: float=0.0, act_layer: nn.Module=nn.GELU, norm_layer: nn.Module=nn.LayerNorm, mlp_layer: nn.Module=Mlp) -> None: + super().__init__() + self.num_parallel = num_parallel + self.attns = nn.ModuleList() + self.ffns = nn.ModuleList() + for _ in range(num_parallel): + self.attns.append(nn.Sequential(OrderedDict([('norm', norm_layer(dim)), ('attn', Attention(dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_norm=qk_norm, attn_drop=attn_drop, proj_drop=proj_drop, norm_layer=norm_layer)), ('ls', LayerScale(dim, init_values=init_values) if init_values else nn.Identity()), ('drop_path', DropPath(drop_path) if drop_path > 0.0 else nn.Identity())]))) + self.ffns.append(nn.Sequential(OrderedDict([('norm', norm_layer(dim)), ('mlp', mlp_layer(dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer, drop=proj_drop)), ('ls', LayerScale(dim, init_values=init_values) if init_values else nn.Identity()), ('drop_path', DropPath(drop_path) if drop_path > 0.0 else nn.Identity())]))) + + def _forward_jit(self, x: torch.Tensor) -> torch.Tensor: + x = x + torch.stack([attn(x) for attn in self.attns]).sum(dim=0) + x = x + torch.stack([ffn(x) for ffn in self.ffns]).sum(dim=0) + return x + + @torch.jit.ignore + def _forward(self, x: torch.Tensor) -> torch.Tensor: + x = x + sum((attn(x) for attn in self.attns)) + x = x + sum((ffn(x) for ffn in self.ffns)) + return x + + def forward(self, x: torch.Tensor) -> torch.Tensor: + if torch.jit.is_scripting() or torch.jit.is_tracing(): + return self._forward_jit(x) + else: + return self._forward(x) + +def global_pool_nlc(x: torch.Tensor, pool_type: str='token', num_prefix_tokens: int=1, reduce_include_prefix: bool=False): + if not pool_type: + return x + if pool_type == 'token': + x = x[:, 0] + else: + x = x if reduce_include_prefix else x[:, num_prefix_tokens:] + if pool_type == 'avg': + x = x.mean(dim=1) + elif pool_type == 'avgmax': + x = 0.5 * (x.amax(dim=1) + x.mean(dim=1)) + elif pool_type == 'max': + x = x.amax(dim=1) + else: + assert not pool_type, f'Unknown pool type {pool_type}' + return x + +class VisionTransformer(nn.Module): + dynamic_img_size: Final[bool] + + def __init__(self, img_size: Union[int, Tuple[int, int]]=224, patch_size: Union[int, Tuple[int, int]]=16, in_chans: int=3, num_classes: int=1000, global_pool: Literal['', 'avg', 'avgmax', 'max', 'token', 'map']='token', embed_dim: int=768, depth: int=12, num_heads: int=12, mlp_ratio: float=4.0, qkv_bias: bool=True, qk_norm: bool=False, init_values: Optional[float]=None, class_token: bool=True, pos_embed: str='learn', no_embed_class: bool=False, reg_tokens: int=0, pre_norm: bool=False, fc_norm: Optional[bool]=None, dynamic_img_size: bool=False, dynamic_img_pad: bool=False, drop_rate: float=0.0, pos_drop_rate: float=0.0, patch_drop_rate: float=0.0, proj_drop_rate: float=0.0, attn_drop_rate: float=0.0, drop_path_rate: float=0.0, weight_init: Literal['skip', 'jax', 'jax_nlhb', 'moco', '']='', fix_init: bool=False, embed_layer: Callable=PatchEmbed, norm_layer: Optional[LayerType]=None, act_layer: Optional[LayerType]=None, block_fn: Type[nn.Module]=Block, mlp_layer: Type[nn.Module]=Mlp) -> None: + super().__init__() + assert global_pool in ('', 'avg', 'avgmax', 'max', 'token', 'map') + assert class_token or global_pool != 'token' + assert pos_embed in ('', 'none', 'learn') + use_fc_norm = global_pool in ('avg', 'avgmax', 'max') if fc_norm is None else fc_norm + norm_layer = get_norm_layer(norm_layer) or partial(nn.LayerNorm, eps=1e-06) + act_layer = get_act_layer(act_layer) or nn.GELU + self.num_classes = num_classes + self.global_pool = global_pool + self.num_features = self.head_hidden_size = self.embed_dim = embed_dim + self.num_prefix_tokens = 1 if class_token else 0 + self.num_prefix_tokens += reg_tokens + self.num_reg_tokens = reg_tokens + self.has_class_token = class_token + self.no_embed_class = no_embed_class + self.dynamic_img_size = dynamic_img_size + self.grad_checkpointing = False + embed_args = {} + if dynamic_img_size: + embed_args.update(dict(strict_img_size=False, output_fmt='NHWC')) + self.patch_embed = embed_layer(img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim, bias=not pre_norm, dynamic_img_pad=dynamic_img_pad, **embed_args) + num_patches = self.patch_embed.num_patches + reduction = self.patch_embed.feat_ratio() if hasattr(self.patch_embed, 'feat_ratio') else patch_size + self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) if class_token else None + self.reg_token = nn.Parameter(torch.zeros(1, reg_tokens, embed_dim)) if reg_tokens else None + embed_len = num_patches if no_embed_class else num_patches + self.num_prefix_tokens + if not pos_embed or pos_embed == 'none': + self.pos_embed = None + else: + self.pos_embed = nn.Parameter(torch.randn(1, embed_len, embed_dim) * 0.02) + self.pos_drop = nn.Dropout(p=pos_drop_rate) + if patch_drop_rate > 0: + self.patch_drop = PatchDropout(patch_drop_rate, num_prefix_tokens=self.num_prefix_tokens) + else: + self.patch_drop = nn.Identity() + self.norm_pre = norm_layer(embed_dim) if pre_norm else nn.Identity() + dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] + self.blocks = nn.Sequential(*[block_fn(dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_norm=qk_norm, init_values=init_values, proj_drop=proj_drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, act_layer=act_layer, mlp_layer=mlp_layer) for i in range(depth)]) + self.feature_info = [dict(module=f'blocks.{i}', num_chs=embed_dim, reduction=reduction) for i in range(depth)] + self.norm = norm_layer(embed_dim) if not use_fc_norm else nn.Identity() + if global_pool == 'map': + self.attn_pool = AttentionPoolLatent(self.embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, norm_layer=norm_layer) + else: + self.attn_pool = None + self.fc_norm = norm_layer(embed_dim) if use_fc_norm else nn.Identity() + self.head_drop = nn.Dropout(drop_rate) + self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() + if weight_init != 'skip': + self.init_weights(weight_init) + if fix_init: + self.fix_init_weight() + + def fix_init_weight(self): + + def rescale(param, _layer_id): + param.div_(math.sqrt(2.0 * _layer_id)) + for (layer_id, layer) in enumerate(self.blocks): + rescale(layer.attn.proj.weight.data, layer_id + 1) + rescale(layer.mlp.fc2.weight.data, layer_id + 1) + + def init_weights(self, mode: str='') -> None: + assert mode in ('jax', 'jax_nlhb', 'moco', '') + head_bias = -math.log(self.num_classes) if 'nlhb' in mode else 0.0 + if self.pos_embed is not None: + trunc_normal_(self.pos_embed, std=0.02) + if self.cls_token is not None: + nn.init.normal_(self.cls_token, std=1e-06) + if self.reg_token is not None: + nn.init.normal_(self.reg_token, std=1e-06) + named_apply(get_init_weights_vit(mode, head_bias), self) + + def _init_weights(self, m: nn.Module) -> None: + init_weights_vit_timm(m) + + @torch.jit.ignore() + def load_pretrained(self, checkpoint_path: str, prefix: str='') -> None: + _load_weights(self, checkpoint_path, prefix) + + @torch.jit.ignore + def no_weight_decay(self) -> Set: + return {'pos_embed', 'cls_token', 'dist_token'} + + @torch.jit.ignore + def group_matcher(self, coarse: bool=False) -> Dict: + return dict(stem='^cls_token|pos_embed|patch_embed', blocks=[('^blocks\\.(\\d+)', None), ('^norm', (99999,))]) + + @torch.jit.ignore + def set_grad_checkpointing(self, enable: bool=True) -> None: + self.grad_checkpointing = enable + if hasattr(self.patch_embed, 'set_grad_checkpointing'): + self.patch_embed.set_grad_checkpointing(enable) + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.head + + def reset_classifier(self, num_classes: int, global_pool: Optional[str]=None): + self.num_classes = num_classes + if global_pool is not None: + assert global_pool in ('', 'avg', 'avgmax', 'max', 'token', 'map') + if global_pool == 'map' and self.attn_pool is None: + assert False, 'Cannot currently add attention pooling in reset_classifier().' + elif global_pool != 'map' and self.attn_pool is not None: + self.attn_pool = None + self.global_pool = global_pool + self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() + + def set_input_size(self, img_size: Optional[Tuple[int, int]]=None, patch_size: Optional[Tuple[int, int]]=None): + prev_grid_size = self.patch_embed.grid_size + self.patch_embed.set_input_size(img_size=img_size, patch_size=patch_size) + if self.pos_embed is not None: + num_prefix_tokens = 0 if self.no_embed_class else self.num_prefix_tokens + num_new_tokens = self.patch_embed.num_patches + num_prefix_tokens + if num_new_tokens != self.pos_embed.shape[1]: + self.pos_embed = nn.Parameter(resample_abs_pos_embed(self.pos_embed, new_size=self.patch_embed.grid_size, old_size=prev_grid_size, num_prefix_tokens=num_prefix_tokens, verbose=True)) + + def _pos_embed(self, x: torch.Tensor) -> torch.Tensor: + if self.pos_embed is None: + return x.view(x.shape[0], -1, x.shape[-1]) + if self.dynamic_img_size: + (B, H, W, C) = x.shape + pos_embed = resample_abs_pos_embed(self.pos_embed, (H, W), num_prefix_tokens=0 if self.no_embed_class else self.num_prefix_tokens) + x = x.view(B, -1, C) + else: + pos_embed = self.pos_embed + to_cat = [] + if self.cls_token is not None: + to_cat.append(self.cls_token.expand(x.shape[0], -1, -1)) + if self.reg_token is not None: + to_cat.append(self.reg_token.expand(x.shape[0], -1, -1)) + if self.no_embed_class: + x = x + pos_embed + if to_cat: + x = torch.cat(to_cat + [x], dim=1) + else: + if to_cat: + x = torch.cat(to_cat + [x], dim=1) + x = x + pos_embed + return self.pos_drop(x) + + def forward_intermediates(self, x: torch.Tensor, indices: Optional[Union[int, List[int]]]=None, return_prefix_tokens: bool=False, norm: bool=False, stop_early: bool=False, output_fmt: str='NCHW', intermediates_only: bool=False) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]: + assert output_fmt in ('NCHW', 'NLC'), 'Output format must be one of NCHW or NLC.' + reshape = output_fmt == 'NCHW' + intermediates = [] + (take_indices, max_index) = feature_take_indices(len(self.blocks), indices) + (B, _, height, width) = x.shape + x = self.patch_embed(x) + x = self._pos_embed(x) + x = self.patch_drop(x) + x = self.norm_pre(x) + if torch.jit.is_scripting() or not stop_early: + blocks = self.blocks + else: + blocks = self.blocks[:max_index + 1] + for (i, blk) in enumerate(blocks): + x = blk(x) + if i in take_indices: + intermediates.append(self.norm(x) if norm else x) + if self.num_prefix_tokens: + prefix_tokens = [y[:, 0:self.num_prefix_tokens] for y in intermediates] + intermediates = [y[:, self.num_prefix_tokens:] for y in intermediates] + if reshape: + (H, W) = self.patch_embed.dynamic_feat_size((height, width)) + intermediates = [y.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous() for y in intermediates] + if not torch.jit.is_scripting() and return_prefix_tokens: + intermediates = list(zip(intermediates, prefix_tokens)) + if intermediates_only: + return intermediates + x = self.norm(x) + return (x, intermediates) + + def prune_intermediate_layers(self, indices: Union[int, List[int]]=1, prune_norm: bool=False, prune_head: bool=True): + (take_indices, max_index) = feature_take_indices(len(self.blocks), indices) + self.blocks = self.blocks[:max_index + 1] + if prune_norm: + self.norm = nn.Identity() + if prune_head: + self.fc_norm = nn.Identity() + self.reset_classifier(0, '') + return take_indices + + def get_intermediate_layers(self, x: torch.Tensor, n: Union[int, List[int], Tuple[int]]=1, reshape: bool=False, return_prefix_tokens: bool=False, norm: bool=False) -> List[torch.Tensor]: + return self.forward_intermediates(x, n, return_prefix_tokens=return_prefix_tokens, norm=norm, output_fmt='NCHW' if reshape else 'NLC', intermediates_only=True) + + def forward_features(self, x: torch.Tensor) -> torch.Tensor: + x = self.patch_embed(x) + x = self._pos_embed(x) + x = self.patch_drop(x) + x = self.norm_pre(x) + if self.grad_checkpointing and (not torch.jit.is_scripting()): + x = checkpoint_seq(self.blocks, x) + else: + x = self.blocks(x) + x = self.norm(x) + return x + + def pool(self, x: torch.Tensor, pool_type: Optional[str]=None) -> torch.Tensor: + if self.attn_pool is not None: + x = self.attn_pool(x) + return x + pool_type = self.global_pool if pool_type is None else pool_type + x = global_pool_nlc(x, pool_type=pool_type, num_prefix_tokens=self.num_prefix_tokens) + return x + + def forward_head(self, x: torch.Tensor, pre_logits: bool=False) -> torch.Tensor: + x = self.pool(x) + x = self.fc_norm(x) + x = self.head_drop(x) + return x if pre_logits else self.head(x) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + x = self.forward_features(x) + x = self.forward_head(x) + return x + +def init_weights_vit_timm(module: nn.Module, name: str='') -> None: + if isinstance(module, nn.Linear): + trunc_normal_(module.weight, std=0.02) + if module.bias is not None: + nn.init.zeros_(module.bias) + elif hasattr(module, 'init_weights'): + module.init_weights() + +def init_weights_vit_jax(module: nn.Module, name: str='', head_bias: float=0.0) -> None: + if isinstance(module, nn.Linear): + if name.startswith('head'): + nn.init.zeros_(module.weight) + nn.init.constant_(module.bias, head_bias) + else: + nn.init.xavier_uniform_(module.weight) + if module.bias is not None: + nn.init.normal_(module.bias, std=1e-06) if 'mlp' in name else nn.init.zeros_(module.bias) + elif isinstance(module, nn.Conv2d): + lecun_normal_(module.weight) + if module.bias is not None: + nn.init.zeros_(module.bias) + elif hasattr(module, 'init_weights'): + module.init_weights() + +def init_weights_vit_moco(module: nn.Module, name: str='') -> None: + if isinstance(module, nn.Linear): + if 'qkv' in name: + val = math.sqrt(6.0 / float(module.weight.shape[0] // 3 + module.weight.shape[1])) + nn.init.uniform_(module.weight, -val, val) + else: + nn.init.xavier_uniform_(module.weight) + if module.bias is not None: + nn.init.zeros_(module.bias) + elif hasattr(module, 'init_weights'): + module.init_weights() + +def get_init_weights_vit(mode: str='jax', head_bias: float=0.0) -> Callable: + if 'jax' in mode: + return partial(init_weights_vit_jax, head_bias=head_bias) + elif 'moco' in mode: + return init_weights_vit_moco + else: + return init_weights_vit_timm + +def resize_pos_embed(posemb: torch.Tensor, posemb_new: torch.Tensor, num_prefix_tokens: int=1, gs_new: Tuple[int, int]=(), interpolation: str='bicubic', antialias: bool=False) -> torch.Tensor: + ntok_new = posemb_new.shape[1] - num_prefix_tokens + ntok_old = posemb.shape[1] - num_prefix_tokens + gs_old = [int(math.sqrt(ntok_old))] * 2 + if not len(gs_new): + gs_new = [int(math.sqrt(ntok_new))] * 2 + return resample_abs_pos_embed(posemb, gs_new, gs_old, num_prefix_tokens=num_prefix_tokens, interpolation=interpolation, antialias=antialias, verbose=True) + +@torch.no_grad() +def _load_weights(model: VisionTransformer, checkpoint_path: str, prefix: str='') -> None: + import numpy as np + + def _n2p(w, t=True, idx=None): + if idx is not None: + w = w[idx] + if w.ndim == 4 and w.shape[0] == w.shape[1] == w.shape[2] == 1: + w = w.flatten() + if t: + if w.ndim == 4: + w = w.transpose([3, 2, 0, 1]) + elif w.ndim == 3: + w = w.transpose([2, 0, 1]) + elif w.ndim == 2: + w = w.transpose([1, 0]) + return torch.from_numpy(w) + w = np.load(checkpoint_path) + interpolation = 'bilinear' + antialias = False + big_vision = False + if not prefix: + if 'opt/target/embedding/kernel' in w: + prefix = 'opt/target/' + elif 'params/embedding/kernel' in w: + prefix = 'params/' + big_vision = True + elif 'params/img/embedding/kernel' in w: + prefix = 'params/img/' + big_vision = True + if hasattr(model.patch_embed, 'backbone'): + backbone = model.patch_embed.backbone + stem_only = not hasattr(backbone, 'stem') + stem = backbone if stem_only else backbone.stem + stem.conv.weight.copy_(adapt_input_conv(stem.conv.weight.shape[1], _n2p(w[f'{prefix}conv_root/kernel']))) + stem.norm.weight.copy_(_n2p(w[f'{prefix}gn_root/scale'])) + stem.norm.bias.copy_(_n2p(w[f'{prefix}gn_root/bias'])) + if not stem_only: + for (i, stage) in enumerate(backbone.stages): + for (j, block) in enumerate(stage.blocks): + bp = f'{prefix}block{i + 1}/unit{j + 1}/' + for r in range(3): + getattr(block, f'conv{r + 1}').weight.copy_(_n2p(w[f'{bp}conv{r + 1}/kernel'])) + getattr(block, f'norm{r + 1}').weight.copy_(_n2p(w[f'{bp}gn{r + 1}/scale'])) + getattr(block, f'norm{r + 1}').bias.copy_(_n2p(w[f'{bp}gn{r + 1}/bias'])) + if block.downsample is not None: + block.downsample.conv.weight.copy_(_n2p(w[f'{bp}conv_proj/kernel'])) + block.downsample.norm.weight.copy_(_n2p(w[f'{bp}gn_proj/scale'])) + block.downsample.norm.bias.copy_(_n2p(w[f'{bp}gn_proj/bias'])) + embed_conv_w = _n2p(w[f'{prefix}embedding/kernel']) + else: + embed_conv_w = adapt_input_conv(model.patch_embed.proj.weight.shape[1], _n2p(w[f'{prefix}embedding/kernel'])) + if embed_conv_w.shape[-2:] != model.patch_embed.proj.weight.shape[-2:]: + embed_conv_w = resample_patch_embed(embed_conv_w, model.patch_embed.proj.weight.shape[-2:], interpolation=interpolation, antialias=antialias, verbose=True) + model.patch_embed.proj.weight.copy_(embed_conv_w) + model.patch_embed.proj.bias.copy_(_n2p(w[f'{prefix}embedding/bias'])) + if model.cls_token is not None: + model.cls_token.copy_(_n2p(w[f'{prefix}cls'], t=False)) + if big_vision: + pos_embed_w = _n2p(w[f'{prefix}pos_embedding'], t=False) + else: + pos_embed_w = _n2p(w[f'{prefix}Transformer/posembed_input/pos_embedding'], t=False) + if pos_embed_w.shape != model.pos_embed.shape: + old_shape = pos_embed_w.shape + num_prefix_tokens = 0 if getattr(model, 'no_embed_class', False) else getattr(model, 'num_prefix_tokens', 1) + pos_embed_w = resample_abs_pos_embed(pos_embed_w, new_size=model.patch_embed.grid_size, num_prefix_tokens=num_prefix_tokens, interpolation=interpolation, antialias=antialias, verbose=True) + model.pos_embed.copy_(pos_embed_w) + model.norm.weight.copy_(_n2p(w[f'{prefix}Transformer/encoder_norm/scale'])) + model.norm.bias.copy_(_n2p(w[f'{prefix}Transformer/encoder_norm/bias'])) + if isinstance(model.head, nn.Linear) and f'{prefix}head/bias' in w and (model.head.bias.shape[0] == w[f'{prefix}head/bias'].shape[-1]): + model.head.weight.copy_(_n2p(w[f'{prefix}head/kernel'])) + model.head.bias.copy_(_n2p(w[f'{prefix}head/bias'])) + if model.attn_pool is not None: + block_prefix = f'{prefix}MAPHead_0/' + mha_prefix = block_prefix + f'MultiHeadDotProductAttention_0/' + model.attn_pool.latent.copy_(_n2p(w[f'{block_prefix}probe'], t=False)) + model.attn_pool.kv.weight.copy_(torch.cat([_n2p(w[f'{mha_prefix}{n}/kernel'], t=False).flatten(1).T for n in ('key', 'value')])) + model.attn_pool.kv.bias.copy_(torch.cat([_n2p(w[f'{mha_prefix}{n}/bias'], t=False).reshape(-1) for n in ('key', 'value')])) + model.attn_pool.q.weight.copy_(_n2p(w[f'{mha_prefix}query/kernel'], t=False).flatten(1).T) + model.attn_pool.q.bias.copy_(_n2p(w[f'{mha_prefix}query/bias'], t=False).reshape(-1)) + model.attn_pool.proj.weight.copy_(_n2p(w[f'{mha_prefix}out/kernel']).flatten(1)) + model.attn_pool.proj.bias.copy_(_n2p(w[f'{mha_prefix}out/bias'])) + model.attn_pool.norm.weight.copy_(_n2p(w[f'{block_prefix}LayerNorm_0/scale'])) + model.attn_pool.norm.bias.copy_(_n2p(w[f'{block_prefix}LayerNorm_0/bias'])) + for r in range(2): + getattr(model.attn_pool.mlp, f'fc{r + 1}').weight.copy_(_n2p(w[f'{block_prefix}MlpBlock_0/Dense_{r}/kernel'])) + getattr(model.attn_pool.mlp, f'fc{r + 1}').bias.copy_(_n2p(w[f'{block_prefix}MlpBlock_0/Dense_{r}/bias'])) + (mha_sub, b_sub, ln1_sub) = (0, 0, 1) if big_vision else (1, 3, 2) + for (i, block) in enumerate(model.blocks.children()): + if f'{prefix}Transformer/encoderblock/LayerNorm_0/scale' in w: + block_prefix = f'{prefix}Transformer/encoderblock/' + idx = i + else: + block_prefix = f'{prefix}Transformer/encoderblock_{i}/' + idx = None + mha_prefix = block_prefix + f'MultiHeadDotProductAttention_{mha_sub}/' + block.norm1.weight.copy_(_n2p(w[f'{block_prefix}LayerNorm_0/scale'], idx=idx)) + block.norm1.bias.copy_(_n2p(w[f'{block_prefix}LayerNorm_0/bias'], idx=idx)) + block.attn.qkv.weight.copy_(torch.cat([_n2p(w[f'{mha_prefix}{n}/kernel'], t=False, idx=idx).flatten(1).T for n in ('query', 'key', 'value')])) + block.attn.qkv.bias.copy_(torch.cat([_n2p(w[f'{mha_prefix}{n}/bias'], t=False, idx=idx).reshape(-1) for n in ('query', 'key', 'value')])) + block.attn.proj.weight.copy_(_n2p(w[f'{mha_prefix}out/kernel'], idx=idx).flatten(1)) + block.attn.proj.bias.copy_(_n2p(w[f'{mha_prefix}out/bias'], idx=idx)) + block.norm2.weight.copy_(_n2p(w[f'{block_prefix}LayerNorm_{ln1_sub}/scale'], idx=idx)) + block.norm2.bias.copy_(_n2p(w[f'{block_prefix}LayerNorm_{ln1_sub}/bias'], idx=idx)) + for r in range(2): + getattr(block.mlp, f'fc{r + 1}').weight.copy_(_n2p(w[f'{block_prefix}MlpBlock_{b_sub}/Dense_{r}/kernel'], idx=idx)) + getattr(block.mlp, f'fc{r + 1}').bias.copy_(_n2p(w[f'{block_prefix}MlpBlock_{b_sub}/Dense_{r}/bias'], idx=idx)) + +def _convert_openai_clip(state_dict: Dict[str, torch.Tensor], model: VisionTransformer, prefix: str='visual.') -> Dict[str, torch.Tensor]: + out_dict = {} + swaps = [('conv1', 'patch_embed.proj'), ('positional_embedding', 'pos_embed'), ('transformer.resblocks.', 'blocks.'), ('ln_pre', 'norm_pre'), ('ln_post', 'norm'), ('ln_', 'norm'), ('in_proj_', 'qkv.'), ('out_proj', 'proj'), ('mlp.c_fc', 'mlp.fc1'), ('mlp.c_proj', 'mlp.fc2')] + for (k, v) in state_dict.items(): + if not k.startswith(prefix): + continue + k = k.replace(prefix, '') + for sp in swaps: + k = k.replace(sp[0], sp[1]) + if k == 'proj': + k = 'head.weight' + v = v.transpose(0, 1) + out_dict['head.bias'] = torch.zeros(v.shape[0]) + elif k == 'class_embedding': + k = 'cls_token' + v = v.unsqueeze(0).unsqueeze(1) + elif k == 'pos_embed': + v = v.unsqueeze(0) + out_dict[k] = v + return out_dict + +def _convert_dinov2(state_dict: Dict[str, torch.Tensor], model: VisionTransformer) -> Dict[str, torch.Tensor]: + import re + out_dict = {} + state_dict.pop('mask_token', None) + if 'register_tokens' in state_dict: + out_dict['reg_token'] = state_dict.pop('register_tokens') + out_dict['cls_token'] = state_dict.pop('cls_token') + state_dict['pos_embed'][:, 0] + out_dict['pos_embed'] = state_dict.pop('pos_embed')[:, 1:] + for (k, v) in state_dict.items(): + if re.match('blocks\\.(\\d+)\\.mlp\\.w12\\.(?:weight|bias)', k): + out_dict[k.replace('w12', 'fc1')] = v + continue + elif re.match('blocks\\.(\\d+)\\.mlp\\.w3\\.(?:weight|bias)', k): + out_dict[k.replace('w3', 'fc2')] = v + continue + out_dict[k] = v + return out_dict + +def checkpoint_filter_fn(state_dict: Dict[str, torch.Tensor], model: VisionTransformer, adapt_layer_scale: bool=False, interpolation: str='bicubic', antialias: bool=True) -> Dict[str, torch.Tensor]: + import re + out_dict = {} + state_dict = state_dict.get('model', state_dict) + state_dict = state_dict.get('state_dict', state_dict) + prefix = '' + if 'visual.class_embedding' in state_dict: + state_dict = _convert_openai_clip(state_dict, model) + elif 'module.visual.class_embedding' in state_dict: + state_dict = _convert_openai_clip(state_dict, model, prefix='module.visual.') + elif 'mask_token' in state_dict: + state_dict = _convert_dinov2(state_dict, model) + elif 'encoder' in state_dict: + state_dict = state_dict['encoder'] + prefix = 'module.' + elif 'visual.trunk.pos_embed' in state_dict or 'visual.trunk.blocks.0.norm1.weight' in state_dict: + prefix = 'visual.trunk.' + if 'visual.head.proj.weight' in state_dict and isinstance(model.head, nn.Linear): + out_dict['head.weight'] = state_dict['visual.head.proj.weight'] + out_dict['head.bias'] = torch.zeros(state_dict['visual.head.proj.weight'].shape[0]) + if prefix: + state_dict = {k[len(prefix):]: v for (k, v) in state_dict.items() if k.startswith(prefix)} + for (k, v) in state_dict.items(): + if 'patch_embed.proj.weight' in k: + (O, I, H, W) = model.patch_embed.proj.weight.shape + if len(v.shape) < 4: + (O, I, H, W) = model.patch_embed.proj.weight.shape + v = v.reshape(O, -1, H, W) + if v.shape[-1] != W or v.shape[-2] != H: + v = resample_patch_embed(v, (H, W), interpolation=interpolation, antialias=antialias, verbose=True) + elif k == 'pos_embed' and v.shape[1] != model.pos_embed.shape[1]: + num_prefix_tokens = 0 if getattr(model, 'no_embed_class', False) else getattr(model, 'num_prefix_tokens', 1) + v = resample_abs_pos_embed(v, new_size=model.patch_embed.grid_size, num_prefix_tokens=num_prefix_tokens, interpolation=interpolation, antialias=antialias, verbose=True) + elif adapt_layer_scale and 'gamma_' in k: + k = re.sub('gamma_([0-9])', 'ls\\1.gamma', k) + elif 'pre_logits' in k: + continue + out_dict[k] = v + return out_dict + +def _cfg(url: str='', **kwargs) -> Dict[str, Any]: + return {'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, 'crop_pct': 0.9, 'interpolation': 'bicubic', 'fixed_input_size': True, 'mean': IMAGENET_INCEPTION_MEAN, 'std': IMAGENET_INCEPTION_STD, 'first_conv': 'patch_embed.proj', 'classifier': 'head', **kwargs} +default_cfgs = {'vit_base_patch16_224.augreg2_in21k_ft_in1k': _cfg(hf_hub_id='timm/'), 'vit_base_patch16_384.augreg2_in21k_ft_in1k': _cfg(), 'vit_base_patch8_224.augreg2_in21k_ft_in1k': _cfg(hf_hub_id='timm/'), 'vit_tiny_patch16_224.augreg_in21k_ft_in1k': _cfg(url='https://storage.googleapis.com/vit_models/augreg/Ti_16-i21k-300ep-lr_0.001-aug_none-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_224.npz', hf_hub_id='timm/', custom_load=True), 'vit_tiny_patch16_384.augreg_in21k_ft_in1k': _cfg(url='https://storage.googleapis.com/vit_models/augreg/Ti_16-i21k-300ep-lr_0.001-aug_none-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_384.npz', hf_hub_id='timm/', custom_load=True, input_size=(3, 384, 384), crop_pct=1.0), 'vit_small_patch32_224.augreg_in21k_ft_in1k': _cfg(url='https://storage.googleapis.com/vit_models/augreg/S_32-i21k-300ep-lr_0.001-aug_light1-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_224.npz', hf_hub_id='timm/', custom_load=True), 'vit_small_patch32_384.augreg_in21k_ft_in1k': _cfg(url='https://storage.googleapis.com/vit_models/augreg/S_32-i21k-300ep-lr_0.001-aug_light1-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_384.npz', hf_hub_id='timm/', custom_load=True, input_size=(3, 384, 384), crop_pct=1.0), 'vit_small_patch16_224.augreg_in21k_ft_in1k': _cfg(url='https://storage.googleapis.com/vit_models/augreg/S_16-i21k-300ep-lr_0.001-aug_light1-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_224.npz', hf_hub_id='timm/', custom_load=True), 'vit_small_patch16_384.augreg_in21k_ft_in1k': _cfg(url='https://storage.googleapis.com/vit_models/augreg/S_16-i21k-300ep-lr_0.001-aug_light1-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_384.npz', hf_hub_id='timm/', custom_load=True, input_size=(3, 384, 384), crop_pct=1.0), 'vit_base_patch32_224.augreg_in21k_ft_in1k': _cfg(url='https://storage.googleapis.com/vit_models/augreg/B_32-i21k-300ep-lr_0.001-aug_medium1-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_224.npz', hf_hub_id='timm/', custom_load=True), 'vit_base_patch32_384.augreg_in21k_ft_in1k': _cfg(url='https://storage.googleapis.com/vit_models/augreg/B_32-i21k-300ep-lr_0.001-aug_light1-wd_0.1-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_384.npz', hf_hub_id='timm/', custom_load=True, input_size=(3, 384, 384), crop_pct=1.0), 'vit_base_patch16_224.augreg_in21k_ft_in1k': _cfg(url='https://storage.googleapis.com/vit_models/augreg/B_16-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.01-res_224.npz', hf_hub_id='timm/', custom_load=True), 'vit_base_patch16_384.augreg_in21k_ft_in1k': _cfg(url='https://storage.googleapis.com/vit_models/augreg/B_16-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.01-res_384.npz', hf_hub_id='timm/', custom_load=True, input_size=(3, 384, 384), crop_pct=1.0), 'vit_base_patch8_224.augreg_in21k_ft_in1k': _cfg(url='https://storage.googleapis.com/vit_models/augreg/B_8-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.01-res_224.npz', hf_hub_id='timm/', custom_load=True), 'vit_large_patch16_224.augreg_in21k_ft_in1k': _cfg(url='https://storage.googleapis.com/vit_models/augreg/L_16-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.1-sd_0.1--imagenet2012-steps_20k-lr_0.01-res_224.npz', hf_hub_id='timm/', custom_load=True), 'vit_large_patch16_384.augreg_in21k_ft_in1k': _cfg(url='https://storage.googleapis.com/vit_models/augreg/L_16-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.1-sd_0.1--imagenet2012-steps_20k-lr_0.01-res_384.npz', hf_hub_id='timm/', custom_load=True, input_size=(3, 384, 384), crop_pct=1.0), 'vit_base_patch16_224.orig_in21k_ft_in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_p16_224-80ecf9dd.pth', hf_hub_id='timm/'), 'vit_base_patch16_384.orig_in21k_ft_in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_p16_384-83fb41ba.pth', hf_hub_id='timm/', input_size=(3, 384, 384), crop_pct=1.0), 'vit_large_patch32_384.orig_in21k_ft_in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_p32_384-9b920ba8.pth', hf_hub_id='timm/', input_size=(3, 384, 384), crop_pct=1.0), 'vit_small_patch16_224.augreg_in1k': _cfg(url='https://storage.googleapis.com/vit_models/augreg/S_16-i1k-300ep-lr_0.001-aug_medium2-wd_0.1-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.01-res_224.npz', hf_hub_id='timm/', custom_load=True), 'vit_small_patch16_384.augreg_in1k': _cfg(url='https://storage.googleapis.com/vit_models/augreg/S_16-i1k-300ep-lr_0.001-aug_medium2-wd_0.1-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.01-res_384.npz', hf_hub_id='timm/', custom_load=True, input_size=(3, 384, 384), crop_pct=1.0), 'vit_base_patch32_224.augreg_in1k': _cfg(url='https://storage.googleapis.com/vit_models/augreg/B_32-i1k-300ep-lr_0.001-aug_medium2-wd_0.1-do_0.1-sd_0.1--imagenet2012-steps_20k-lr_0.01-res_224.npz', hf_hub_id='timm/', custom_load=True), 'vit_base_patch32_384.augreg_in1k': _cfg(url='https://storage.googleapis.com/vit_models/augreg/B_32-i1k-300ep-lr_0.001-aug_medium2-wd_0.1-do_0.1-sd_0.1--imagenet2012-steps_20k-lr_0.01-res_384.npz', hf_hub_id='timm/', custom_load=True, input_size=(3, 384, 384), crop_pct=1.0), 'vit_base_patch16_224.augreg_in1k': _cfg(url='https://storage.googleapis.com/vit_models/augreg/B_16-i1k-300ep-lr_0.001-aug_strong2-wd_0.1-do_0.1-sd_0.1--imagenet2012-steps_20k-lr_0.01-res_224.npz', hf_hub_id='timm/', custom_load=True), 'vit_base_patch16_384.augreg_in1k': _cfg(url='https://storage.googleapis.com/vit_models/augreg/B_16-i1k-300ep-lr_0.001-aug_strong2-wd_0.1-do_0.1-sd_0.1--imagenet2012-steps_20k-lr_0.01-res_384.npz', hf_hub_id='timm/', custom_load=True, input_size=(3, 384, 384), crop_pct=1.0), 'vit_large_patch14_224.untrained': _cfg(url=''), 'vit_huge_patch14_224.untrained': _cfg(url=''), 'vit_giant_patch14_224.untrained': _cfg(url=''), 'vit_gigantic_patch14_224.untrained': _cfg(url=''), 'vit_base_patch32_224.orig_in21k': _cfg(hf_hub_id='timm/', num_classes=0), 'vit_base_patch16_224.orig_in21k': _cfg(hf_hub_id='timm/', num_classes=0), 'vit_large_patch32_224.orig_in21k': _cfg(hf_hub_id='timm/', num_classes=0), 'vit_large_patch16_224.orig_in21k': _cfg(hf_hub_id='timm/', num_classes=0), 'vit_huge_patch14_224.orig_in21k': _cfg(hf_hub_id='timm/', num_classes=0), 'vit_tiny_patch16_224.augreg_in21k': _cfg(url='https://storage.googleapis.com/vit_models/augreg/Ti_16-i21k-300ep-lr_0.001-aug_none-wd_0.03-do_0.0-sd_0.0.npz', hf_hub_id='timm/', custom_load=True, num_classes=21843), 'vit_small_patch32_224.augreg_in21k': _cfg(url='https://storage.googleapis.com/vit_models/augreg/S_32-i21k-300ep-lr_0.001-aug_light1-wd_0.03-do_0.0-sd_0.0.npz', hf_hub_id='timm/', custom_load=True, num_classes=21843), 'vit_small_patch16_224.augreg_in21k': _cfg(url='https://storage.googleapis.com/vit_models/augreg/S_16-i21k-300ep-lr_0.001-aug_light1-wd_0.03-do_0.0-sd_0.0.npz', hf_hub_id='timm/', custom_load=True, num_classes=21843), 'vit_base_patch32_224.augreg_in21k': _cfg(url='https://storage.googleapis.com/vit_models/augreg/B_32-i21k-300ep-lr_0.001-aug_medium1-wd_0.03-do_0.0-sd_0.0.npz', hf_hub_id='timm/', custom_load=True, num_classes=21843), 'vit_base_patch16_224.augreg_in21k': _cfg(url='https://storage.googleapis.com/vit_models/augreg/B_16-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.0-sd_0.0.npz', hf_hub_id='timm/', custom_load=True, num_classes=21843), 'vit_base_patch8_224.augreg_in21k': _cfg(url='https://storage.googleapis.com/vit_models/augreg/B_8-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.0-sd_0.0.npz', hf_hub_id='timm/', custom_load=True, num_classes=21843), 'vit_large_patch16_224.augreg_in21k': _cfg(url='https://storage.googleapis.com/vit_models/augreg/L_16-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.1-sd_0.1.npz', hf_hub_id='timm/', custom_load=True, num_classes=21843), 'vit_base_patch32_224.sam_in1k': _cfg(url='https://storage.googleapis.com/vit_models/sam/ViT-B_32.npz', custom_load=True, hf_hub_id='timm/'), 'vit_base_patch16_224.sam_in1k': _cfg(url='https://storage.googleapis.com/vit_models/sam/ViT-B_16.npz', custom_load=True, hf_hub_id='timm/'), 'vit_small_patch16_224.dino': _cfg(url='https://dl.fbaipublicfiles.com/dino/dino_deitsmall16_pretrain/dino_deitsmall16_pretrain.pth', hf_hub_id='timm/', mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, num_classes=0), 'vit_small_patch8_224.dino': _cfg(url='https://dl.fbaipublicfiles.com/dino/dino_deitsmall8_pretrain/dino_deitsmall8_pretrain.pth', hf_hub_id='timm/', mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, num_classes=0), 'vit_base_patch16_224.dino': _cfg(url='https://dl.fbaipublicfiles.com/dino/dino_vitbase16_pretrain/dino_vitbase16_pretrain.pth', hf_hub_id='timm/', mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, num_classes=0), 'vit_base_patch8_224.dino': _cfg(url='https://dl.fbaipublicfiles.com/dino/dino_vitbase8_pretrain/dino_vitbase8_pretrain.pth', hf_hub_id='timm/', mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, num_classes=0), 'vit_small_patch14_dinov2.lvd142m': _cfg(url='https://dl.fbaipublicfiles.com/dinov2/dinov2_vits14/dinov2_vits14_pretrain.pth', hf_hub_id='timm/', license='apache-2.0', mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, num_classes=0, input_size=(3, 518, 518), crop_pct=1.0), 'vit_base_patch14_dinov2.lvd142m': _cfg(url='https://dl.fbaipublicfiles.com/dinov2/dinov2_vitb14/dinov2_vitb14_pretrain.pth', hf_hub_id='timm/', license='apache-2.0', mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, num_classes=0, input_size=(3, 518, 518), crop_pct=1.0), 'vit_large_patch14_dinov2.lvd142m': _cfg(url='https://dl.fbaipublicfiles.com/dinov2/dinov2_vitl14/dinov2_vitl14_pretrain.pth', hf_hub_id='timm/', license='apache-2.0', mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, num_classes=0, input_size=(3, 518, 518), crop_pct=1.0), 'vit_giant_patch14_dinov2.lvd142m': _cfg(url='https://dl.fbaipublicfiles.com/dinov2/dinov2_vitg14/dinov2_vitg14_pretrain.pth', hf_hub_id='timm/', license='apache-2.0', mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, num_classes=0, input_size=(3, 518, 518), crop_pct=1.0), 'vit_small_patch14_reg4_dinov2.lvd142m': _cfg(url='https://dl.fbaipublicfiles.com/dinov2/dinov2_vits14/dinov2_vits14_reg4_pretrain.pth', hf_hub_id='timm/', license='apache-2.0', mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, num_classes=0, input_size=(3, 518, 518), crop_pct=1.0), 'vit_base_patch14_reg4_dinov2.lvd142m': _cfg(url='https://dl.fbaipublicfiles.com/dinov2/dinov2_vitb14/dinov2_vitb14_reg4_pretrain.pth', hf_hub_id='timm/', license='apache-2.0', mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, num_classes=0, input_size=(3, 518, 518), crop_pct=1.0), 'vit_large_patch14_reg4_dinov2.lvd142m': _cfg(url='https://dl.fbaipublicfiles.com/dinov2/dinov2_vitl14/dinov2_vitl14_reg4_pretrain.pth', hf_hub_id='timm/', license='apache-2.0', mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, num_classes=0, input_size=(3, 518, 518), crop_pct=1.0), 'vit_giant_patch14_reg4_dinov2.lvd142m': _cfg(url='https://dl.fbaipublicfiles.com/dinov2/dinov2_vitg14/dinov2_vitg14_reg4_pretrain.pth', hf_hub_id='timm/', license='apache-2.0', mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, num_classes=0, input_size=(3, 518, 518), crop_pct=1.0), 'vit_base_patch16_224_miil.in21k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tresnet/vit_base_patch16_224_in21k_miil-887286df.pth', hf_hub_id='timm/', mean=(0.0, 0.0, 0.0), std=(1.0, 1.0, 1.0), crop_pct=0.875, interpolation='bilinear', num_classes=11221), 'vit_base_patch16_224_miil.in21k_ft_in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tresnet/vit_base_patch16_224_1k_miil_84_4-2deb18e3.pth', hf_hub_id='timm/', mean=(0.0, 0.0, 0.0), std=(1.0, 1.0, 1.0), crop_pct=0.875, interpolation='bilinear'), 'vit_base_patch16_rpn_224.sw_in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/vit_base_patch16_rpn_224-sw-3b07e89d.pth', hf_hub_id='timm/'), 'vit_medium_patch16_gap_240.sw_in12k': _cfg(hf_hub_id='timm/', input_size=(3, 240, 240), crop_pct=0.95, num_classes=11821), 'vit_medium_patch16_gap_256.sw_in12k_ft_in1k': _cfg(hf_hub_id='timm/', input_size=(3, 256, 256), crop_pct=0.95), 'vit_medium_patch16_gap_384.sw_in12k_ft_in1k': _cfg(hf_hub_id='timm/', input_size=(3, 384, 384), crop_pct=0.95, crop_mode='squash'), 'vit_base_patch16_gap_224': _cfg(), 'vit_base_patch32_clip_224.laion2b_ft_in12k_in1k': _cfg(hf_hub_id='timm/', mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD), 'vit_base_patch32_clip_384.laion2b_ft_in12k_in1k': _cfg(hf_hub_id='timm/', mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=1.0, input_size=(3, 384, 384)), 'vit_base_patch32_clip_448.laion2b_ft_in12k_in1k': _cfg(hf_hub_id='timm/', mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=1.0, input_size=(3, 448, 448)), 'vit_base_patch16_clip_224.laion2b_ft_in12k_in1k': _cfg(hf_hub_id='timm/', mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=0.95), 'vit_base_patch16_clip_384.laion2b_ft_in12k_in1k': _cfg(hf_hub_id='timm/', mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=1.0, input_size=(3, 384, 384), crop_mode='squash'), 'vit_large_patch14_clip_224.laion2b_ft_in12k_in1k': _cfg(hf_hub_id='timm/', mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD, crop_pct=1.0), 'vit_large_patch14_clip_336.laion2b_ft_in12k_in1k': _cfg(hf_hub_id='timm/', mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD, crop_pct=1.0, input_size=(3, 336, 336), crop_mode='squash'), 'vit_huge_patch14_clip_224.laion2b_ft_in12k_in1k': _cfg(hf_hub_id='timm/', mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=1.0), 'vit_huge_patch14_clip_336.laion2b_ft_in12k_in1k': _cfg(hf_hub_id='timm/', mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=1.0, input_size=(3, 336, 336), crop_mode='squash'), 'vit_base_patch32_clip_224.openai_ft_in12k_in1k': _cfg(mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD), 'vit_base_patch32_clip_384.openai_ft_in12k_in1k': _cfg(hf_hub_id='timm/', mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=0.95, input_size=(3, 384, 384), crop_mode='squash'), 'vit_base_patch16_clip_224.openai_ft_in12k_in1k': _cfg(hf_hub_id='timm/', mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=0.95), 'vit_base_patch16_clip_384.openai_ft_in12k_in1k': _cfg(hf_hub_id='timm/', mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=0.95, input_size=(3, 384, 384), crop_mode='squash'), 'vit_large_patch14_clip_224.openai_ft_in12k_in1k': _cfg(hf_hub_id='timm/', mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=1.0), 'vit_large_patch14_clip_336.openai_ft_in12k_in1k': _cfg(hf_hub_id='timm/', mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=1.0, input_size=(3, 336, 336), crop_mode='squash'), 'vit_base_patch32_clip_224.laion2b_ft_in1k': _cfg(hf_hub_id='timm/', mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD), 'vit_base_patch16_clip_224.laion2b_ft_in1k': _cfg(hf_hub_id='timm/', mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=1.0), 'vit_base_patch16_clip_384.laion2b_ft_in1k': _cfg(hf_hub_id='timm/', mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=1.0, input_size=(3, 384, 384), crop_mode='squash'), 'vit_large_patch14_clip_224.laion2b_ft_in1k': _cfg(hf_hub_id='timm/', mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD, crop_pct=1.0), 'vit_large_patch14_clip_336.laion2b_ft_in1k': _cfg(hf_hub_id='timm/', mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD, crop_pct=1.0, input_size=(3, 336, 336), crop_mode='squash'), 'vit_huge_patch14_clip_224.laion2b_ft_in1k': _cfg(hf_hub_id='timm/', mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=1.0), 'vit_huge_patch14_clip_336.laion2b_ft_in1k': _cfg(hf_hub_id='', mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=1.0, input_size=(3, 336, 336), crop_mode='squash'), 'vit_base_patch32_clip_224.openai_ft_in1k': _cfg(hf_hub_id='timm/', mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD), 'vit_base_patch16_clip_224.openai_ft_in1k': _cfg(hf_hub_id='timm/', mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD), 'vit_base_patch16_clip_384.openai_ft_in1k': _cfg(hf_hub_id='timm/', mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=1.0, input_size=(3, 384, 384), crop_mode='squash'), 'vit_large_patch14_clip_224.openai_ft_in1k': _cfg(hf_hub_id='timm/', mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=1.0), 'vit_base_patch32_clip_224.laion2b_ft_in12k': _cfg(mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, num_classes=11821), 'vit_base_patch16_clip_224.laion2b_ft_in12k': _cfg(hf_hub_id='timm/', mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, num_classes=11821), 'vit_large_patch14_clip_224.laion2b_ft_in12k': _cfg(hf_hub_id='timm/', mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD, crop_pct=1.0, num_classes=11821), 'vit_huge_patch14_clip_224.laion2b_ft_in12k': _cfg(hf_hub_id='timm/', mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=1.0, num_classes=11821), 'vit_base_patch32_clip_224.openai_ft_in12k': _cfg(mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, num_classes=11821), 'vit_base_patch16_clip_224.openai_ft_in12k': _cfg(hf_hub_id='timm/', mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, num_classes=11821), 'vit_large_patch14_clip_224.openai_ft_in12k': _cfg(hf_hub_id='timm/', mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=1.0, num_classes=11821), 'vit_base_patch32_clip_224.laion2b': _cfg(hf_hub_id='laion/CLIP-ViT-B-32-laion2B-s34B-b79K', hf_hub_filename='open_clip_pytorch_model.bin', mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, num_classes=512), 'vit_base_patch16_clip_224.laion2b': _cfg(hf_hub_id='laion/CLIP-ViT-B-16-laion2B-s34B-b88K', hf_hub_filename='open_clip_pytorch_model.bin', mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=1.0, num_classes=512), 'vit_large_patch14_clip_224.laion2b': _cfg(hf_hub_id='laion/CLIP-ViT-L-14-laion2B-s32B-b82K', hf_hub_filename='open_clip_pytorch_model.bin', mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD, crop_pct=1.0, num_classes=768), 'vit_huge_patch14_clip_224.laion2b': _cfg(hf_hub_id='laion/CLIP-ViT-H-14-laion2B-s32B-b79K', hf_hub_filename='open_clip_pytorch_model.bin', mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=1.0, num_classes=1024), 'vit_giant_patch14_clip_224.laion2b': _cfg(hf_hub_id='laion/CLIP-ViT-g-14-laion2B-s12B-b42K', hf_hub_filename='open_clip_pytorch_model.bin', mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=1.0, num_classes=1024), 'vit_gigantic_patch14_clip_224.laion2b': _cfg(hf_hub_id='laion/CLIP-ViT-bigG-14-laion2B-39B-b160k', hf_hub_filename='open_clip_pytorch_model.bin', mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=1.0, num_classes=1280), 'vit_base_patch32_clip_224.datacompxl': _cfg(hf_hub_id='laion/CLIP-ViT-B-32-DataComp.XL-s13B-b90K', hf_hub_filename='open_clip_pytorch_model.bin', mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=1.0, num_classes=512), 'vit_base_patch32_clip_256.datacompxl': _cfg(hf_hub_id='laion/CLIP-ViT-B-32-256x256-DataComp-s34B-b86K', hf_hub_filename='open_clip_pytorch_model.bin', mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=1.0, input_size=(3, 256, 256), num_classes=512), 'vit_base_patch16_clip_224.datacompxl': _cfg(hf_hub_id='laion/CLIP-ViT-B-16-DataComp.XL-s13B-b90K', hf_hub_filename='open_clip_pytorch_model.bin', mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=1.0, num_classes=512), 'vit_large_patch14_clip_224.datacompxl': _cfg(hf_hub_id='laion/CLIP-ViT-L-14-DataComp.XL-s13B-b90K', hf_hub_filename='open_clip_pytorch_model.bin', mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=1.0, num_classes=768), 'vit_base_patch16_clip_224.dfn2b': _cfg(hf_hub_id='apple/DFN2B-CLIP-ViT-B-16', hf_hub_filename='open_clip_pytorch_model.bin', mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=1.0, num_classes=512), 'vit_large_patch14_clip_224.dfn2b': _cfg(hf_hub_id='apple/DFN2B-CLIP-ViT-L-14', hf_hub_filename='open_clip_pytorch_model.bin', notes=('natively QuickGELU, use quickgelu model variant for original results',), mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=1.0, num_classes=768), 'vit_huge_patch14_clip_224.dfn5b': _cfg(hf_hub_id='apple/DFN5B-CLIP-ViT-H-14', hf_hub_filename='open_clip_pytorch_model.bin', notes=('natively QuickGELU, use quickgelu model variant for original results',), mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=1.0, num_classes=1024), 'vit_huge_patch14_clip_378.dfn5b': _cfg(hf_hub_id='apple/DFN5B-CLIP-ViT-H-14-378', hf_hub_filename='open_clip_pytorch_model.bin', mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, notes=('natively QuickGELU, use quickgelu model variant for original results',), crop_pct=1.0, input_size=(3, 378, 378), num_classes=1024), 'vit_base_patch32_clip_224.metaclip_2pt5b': _cfg(hf_hub_id='facebook/metaclip-b32-fullcc2.5b', hf_hub_filename='metaclip_b32_fullcc2.5b.bin', license='cc-by-nc-4.0', notes=('natively QuickGELU, use quickgelu model variant for original results',), mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=1.0, num_classes=512), 'vit_base_patch16_clip_224.metaclip_2pt5b': _cfg(hf_hub_id='facebook/metaclip-b16-fullcc2.5b', hf_hub_filename='metaclip_b16_fullcc2.5b.bin', license='cc-by-nc-4.0', notes=('natively QuickGELU, use quickgelu model variant for original results',), mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=1.0, num_classes=512), 'vit_large_patch14_clip_224.metaclip_2pt5b': _cfg(hf_hub_id='facebook/metaclip-l14-fullcc2.5b', hf_hub_filename='metaclip_l14_fullcc2.5b.bin', license='cc-by-nc-4.0', notes=('natively QuickGELU, use quickgelu model variant for original results',), mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=1.0, num_classes=768), 'vit_huge_patch14_clip_224.metaclip_2pt5b': _cfg(hf_hub_id='facebook/metaclip-h14-fullcc2.5b', hf_hub_filename='metaclip_h14_fullcc2.5b.bin', license='cc-by-nc-4.0', notes=('natively QuickGELU, use quickgelu model variant for original results',), mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=1.0, num_classes=1024), 'vit_base_patch32_clip_224.openai': _cfg(hf_hub_id='timm/vit_base_patch32_clip_224.openai', notes=('natively QuickGELU, use quickgelu model variant for original results',), mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, num_classes=512), 'vit_base_patch16_clip_224.openai': _cfg(hf_hub_id='timm/vit_base_patch16_clip_224.openai', notes=('natively QuickGELU, use quickgelu model variant for original results',), mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, num_classes=512), 'vit_large_patch14_clip_224.openai': _cfg(hf_hub_id='timm/vit_large_patch14_clip_224.openai', notes=('natively QuickGELU, use quickgelu model variant for original results',), mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=1.0, num_classes=768), 'vit_large_patch14_clip_336.openai': _cfg(hf_hub_id='timm/vit_large_patch14_clip_336.openai', hf_hub_filename='open_clip_pytorch_model.bin', notes=('natively QuickGELU, use quickgelu model variant for original results',), mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=1.0, input_size=(3, 336, 336), num_classes=768), 'vit_base_patch32_plus_256.untrained': _cfg(url='', input_size=(3, 256, 256), crop_pct=0.95), 'vit_base_patch16_plus_240.untrained': _cfg(url='', input_size=(3, 240, 240), crop_pct=0.95), 'vit_small_patch16_36x1_224.untrained': _cfg(url=''), 'vit_small_patch16_18x2_224.untrained': _cfg(url=''), 'vit_base_patch16_18x2_224.untrained': _cfg(url=''), 'eva_large_patch14_196.in22k_ft_in22k_in1k': _cfg(hf_hub_id='timm/', license='mit', mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, input_size=(3, 196, 196), crop_pct=1.0), 'eva_large_patch14_336.in22k_ft_in22k_in1k': _cfg(hf_hub_id='timm/', license='mit', mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, input_size=(3, 336, 336), crop_pct=1.0, crop_mode='squash'), 'eva_large_patch14_196.in22k_ft_in1k': _cfg(hf_hub_id='timm/', license='mit', mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, input_size=(3, 196, 196), crop_pct=1.0), 'eva_large_patch14_336.in22k_ft_in1k': _cfg(hf_hub_id='timm/', license='mit', mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, input_size=(3, 336, 336), crop_pct=1.0, crop_mode='squash'), 'flexivit_small.1200ep_in1k': _cfg(url='https://storage.googleapis.com/big_vision/flexivit/flexivit_s_i1k.npz', custom_load=True, hf_hub_id='timm/', input_size=(3, 240, 240), crop_pct=0.95), 'flexivit_small.600ep_in1k': _cfg(url='https://storage.googleapis.com/big_vision/flexivit/flexivit_s_i1k_600ep.npz', custom_load=True, hf_hub_id='timm/', input_size=(3, 240, 240), crop_pct=0.95), 'flexivit_small.300ep_in1k': _cfg(url='https://storage.googleapis.com/big_vision/flexivit/flexivit_s_i1k_300ep.npz', custom_load=True, hf_hub_id='timm/', input_size=(3, 240, 240), crop_pct=0.95), 'flexivit_base.1200ep_in1k': _cfg(url='https://storage.googleapis.com/big_vision/flexivit/flexivit_b_i1k.npz', custom_load=True, hf_hub_id='timm/', input_size=(3, 240, 240), crop_pct=0.95), 'flexivit_base.600ep_in1k': _cfg(url='https://storage.googleapis.com/big_vision/flexivit/flexivit_b_i1k_600ep.npz', custom_load=True, hf_hub_id='timm/', input_size=(3, 240, 240), crop_pct=0.95), 'flexivit_base.300ep_in1k': _cfg(url='https://storage.googleapis.com/big_vision/flexivit/flexivit_b_i1k_300ep.npz', custom_load=True, hf_hub_id='timm/', input_size=(3, 240, 240), crop_pct=0.95), 'flexivit_base.1000ep_in21k': _cfg(url='https://storage.googleapis.com/big_vision/flexivit/flexivit_b_i21k_1000ep.npz', custom_load=True, hf_hub_id='timm/', input_size=(3, 240, 240), crop_pct=0.95, num_classes=21843), 'flexivit_base.300ep_in21k': _cfg(url='https://storage.googleapis.com/big_vision/flexivit/flexivit_b_i21k_300ep.npz', custom_load=True, hf_hub_id='timm/', input_size=(3, 240, 240), crop_pct=0.95, num_classes=21843), 'flexivit_large.1200ep_in1k': _cfg(url='https://storage.googleapis.com/big_vision/flexivit/flexivit_l_i1k.npz', custom_load=True, hf_hub_id='timm/', input_size=(3, 240, 240), crop_pct=0.95), 'flexivit_large.600ep_in1k': _cfg(url='https://storage.googleapis.com/big_vision/flexivit/flexivit_l_i1k_600ep.npz', custom_load=True, hf_hub_id='timm/', input_size=(3, 240, 240), crop_pct=0.95), 'flexivit_large.300ep_in1k': _cfg(url='https://storage.googleapis.com/big_vision/flexivit/flexivit_l_i1k_300ep.npz', custom_load=True, hf_hub_id='timm/', input_size=(3, 240, 240), crop_pct=0.95), 'flexivit_base.patch16_in21k': _cfg(url='https://storage.googleapis.com/big_vision/flexivit/vit_b16_i21k_300ep.npz', custom_load=True, hf_hub_id='timm/', input_size=(3, 240, 240), crop_pct=0.95, num_classes=21843), 'flexivit_base.patch30_in21k': _cfg(url='https://storage.googleapis.com/big_vision/flexivit/vit_b30_i21k_300ep.npz', custom_load=True, hf_hub_id='timm/', input_size=(3, 240, 240), crop_pct=0.95, num_classes=21843), 'vit_base_patch16_xp_224.untrained': _cfg(url=''), 'vit_large_patch14_xp_224.untrained': _cfg(url=''), 'vit_huge_patch14_xp_224.untrained': _cfg(url=''), 'vit_base_patch16_224.mae': _cfg(url='https://dl.fbaipublicfiles.com/mae/pretrain/mae_pretrain_vit_base.pth', hf_hub_id='timm/', license='cc-by-nc-4.0', mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, num_classes=0), 'vit_large_patch16_224.mae': _cfg(url='https://dl.fbaipublicfiles.com/mae/pretrain/mae_pretrain_vit_large.pth', hf_hub_id='timm/', license='cc-by-nc-4.0', mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, num_classes=0), 'vit_huge_patch14_224.mae': _cfg(url='https://dl.fbaipublicfiles.com/mae/pretrain/mae_pretrain_vit_huge.pth', hf_hub_id='timm/', license='cc-by-nc-4.0', mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, num_classes=0), 'vit_huge_patch14_gap_224.in1k_ijepa': _cfg(url='https://dl.fbaipublicfiles.com/ijepa/IN1K-vit.h.14-300e.pth.tar', license='cc-by-nc-4.0', mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, num_classes=0), 'vit_huge_patch14_gap_224.in22k_ijepa': _cfg(url='https://dl.fbaipublicfiles.com/ijepa/IN22K-vit.h.14-900e.pth.tar', license='cc-by-nc-4.0', mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, num_classes=0), 'vit_huge_patch16_gap_448.in1k_ijepa': _cfg(url='https://dl.fbaipublicfiles.com/ijepa/IN1K-vit.h.16-448px-300e.pth.tar', license='cc-by-nc-4.0', input_size=(3, 448, 448), crop_pct=1.0, mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, num_classes=0), 'vit_giant_patch16_gap_224.in22k_ijepa': _cfg(url='https://dl.fbaipublicfiles.com/ijepa/IN22K-vit.g.16-600e.pth.tar', license='cc-by-nc-4.0', mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, num_classes=0), 'vit_base_patch16_siglip_224.webli': _cfg(hf_hub_id='timm/ViT-B-16-SigLIP', hf_hub_filename='open_clip_pytorch_model.bin', num_classes=0), 'vit_base_patch16_siglip_256.webli': _cfg(hf_hub_id='timm/ViT-B-16-SigLIP-256', hf_hub_filename='open_clip_pytorch_model.bin', input_size=(3, 256, 256), num_classes=0), 'vit_base_patch16_siglip_384.webli': _cfg(hf_hub_id='timm/ViT-B-16-SigLIP-384', hf_hub_filename='open_clip_pytorch_model.bin', input_size=(3, 384, 384), num_classes=0), 'vit_base_patch16_siglip_512.webli': _cfg(hf_hub_id='timm/ViT-B-16-SigLIP-512', hf_hub_filename='open_clip_pytorch_model.bin', input_size=(3, 512, 512), num_classes=0), 'vit_large_patch16_siglip_256.webli': _cfg(hf_hub_id='timm/ViT-L-16-SigLIP-256', hf_hub_filename='open_clip_pytorch_model.bin', input_size=(3, 256, 256), num_classes=0), 'vit_large_patch16_siglip_384.webli': _cfg(hf_hub_id='timm/ViT-L-16-SigLIP-384', hf_hub_filename='open_clip_pytorch_model.bin', input_size=(3, 384, 384), num_classes=0), 'vit_so400m_patch14_siglip_224.webli': _cfg(hf_hub_id='timm/ViT-SO400M-14-SigLIP', hf_hub_filename='open_clip_pytorch_model.bin', num_classes=0), 'vit_so400m_patch14_siglip_384.webli': _cfg(hf_hub_id='timm/ViT-SO400M-14-SigLIP-384', hf_hub_filename='open_clip_pytorch_model.bin', input_size=(3, 384, 384), num_classes=0), 'vit_base_patch16_siglip_gap_224.webli': _cfg(hf_hub_id='timm/ViT-B-16-SigLIP', hf_hub_filename='open_clip_pytorch_model.bin', num_classes=0), 'vit_base_patch16_siglip_gap_256.webli': _cfg(hf_hub_id='timm/ViT-B-16-SigLIP-256', hf_hub_filename='open_clip_pytorch_model.bin', input_size=(3, 256, 256), num_classes=0), 'vit_base_patch16_siglip_gap_384.webli': _cfg(hf_hub_id='timm/ViT-B-16-SigLIP-384', hf_hub_filename='open_clip_pytorch_model.bin', input_size=(3, 384, 384), num_classes=0), 'vit_base_patch16_siglip_gap_512.webli': _cfg(hf_hub_id='timm/ViT-B-16-SigLIP-512', hf_hub_filename='open_clip_pytorch_model.bin', input_size=(3, 512, 512), num_classes=0), 'vit_large_patch16_siglip_gap_256.webli': _cfg(hf_hub_id='timm/ViT-L-16-SigLIP-256', hf_hub_filename='open_clip_pytorch_model.bin', input_size=(3, 256, 256), num_classes=0), 'vit_large_patch16_siglip_gap_384.webli': _cfg(hf_hub_id='timm/ViT-L-16-SigLIP-384', hf_hub_filename='open_clip_pytorch_model.bin', input_size=(3, 384, 384), num_classes=0), 'vit_so400m_patch14_siglip_gap_224.webli': _cfg(hf_hub_id='timm/ViT-SO400M-14-SigLIP', hf_hub_filename='open_clip_pytorch_model.bin', num_classes=0), 'vit_so400m_patch14_siglip_gap_224.pali_mix': _cfg(hf_hub_id='google/paligemma-3b-mix-224-jax', hf_hub_filename='paligemma-3b-mix-224.npz', custom_load='hf', num_classes=0), 'vit_so400m_patch14_siglip_gap_224.pali_pt': _cfg(hf_hub_id='google/paligemma-3b-pt-224-jax', hf_hub_filename='paligemma-3b-pt-224.npz', custom_load='hf', num_classes=0), 'vit_so400m_patch14_siglip_gap_384.webli': _cfg(hf_hub_id='timm/ViT-SO400M-14-SigLIP-384', hf_hub_filename='open_clip_pytorch_model.bin', input_size=(3, 384, 384), crop_pct=1.0, num_classes=0), 'vit_so400m_patch14_siglip_gap_448.pali_mix': _cfg(hf_hub_id='google/paligemma-3b-mix-448-jax', hf_hub_filename='paligemma-3b-mix-448.npz', custom_load='hf', input_size=(3, 448, 448), crop_pct=1.0, num_classes=0), 'vit_so400m_patch14_siglip_gap_448.pali_pt': _cfg(hf_hub_id='google/paligemma-3b-pt-448-jax', hf_hub_filename='paligemma-3b-pt-448.npz', custom_load='hf', input_size=(3, 448, 448), crop_pct=1.0, num_classes=0), 'vit_so400m_patch14_siglip_gap_896.pali_pt': _cfg(hf_hub_id='google/paligemma-3b-pt-896-jax', hf_hub_filename='paligemma-3b-pt-896.npz', custom_load='hf', input_size=(3, 896, 896), crop_pct=1.0, num_classes=0), 'vit_xsmall_patch16_clip_224.tinyclip_yfcc15m': _cfg(hf_hub_id='timm/', hf_hub_filename='open_clip_pytorch_model.bin', license='mit', mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, num_classes=512), 'vit_medium_patch32_clip_224.tinyclip_laion400m': _cfg(hf_hub_id='timm/', hf_hub_filename='open_clip_pytorch_model.bin', license='mit', mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, num_classes=512), 'vit_medium_patch16_clip_224.tinyclip_yfcc15m': _cfg(hf_hub_id='timm/', hf_hub_filename='open_clip_pytorch_model.bin', license='mit', mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, num_classes=512), 'vit_betwixt_patch32_clip_224.tinyclip_laion400m': _cfg(hf_hub_id='timm/', hf_hub_filename='open_clip_pytorch_model.bin', license='mit', mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, num_classes=512), 'vit_wee_patch16_reg1_gap_256.sbb_in1k': _cfg(hf_hub_id='timm/', input_size=(3, 256, 256), crop_pct=0.95), 'vit_pwee_patch16_reg1_gap_256.sbb_in1k': _cfg(hf_hub_id='timm/', input_size=(3, 256, 256), crop_pct=0.95), 'vit_little_patch16_reg1_gap_256.sbb_in12k_ft_in1k': _cfg(hf_hub_id='timm/', input_size=(3, 256, 256), crop_pct=0.95), 'vit_little_patch16_reg1_gap_256.sbb_in12k': _cfg(hf_hub_id='timm/', num_classes=11821, input_size=(3, 256, 256), crop_pct=0.95), 'vit_little_patch16_reg4_gap_256.sbb_in1k': _cfg(hf_hub_id='timm/', input_size=(3, 256, 256), crop_pct=0.95), 'vit_medium_patch16_reg1_gap_256.sbb_in1k': _cfg(hf_hub_id='timm/', input_size=(3, 256, 256), crop_pct=0.95), 'vit_medium_patch16_reg4_gap_256.sbb_in12k_ft_in1k': _cfg(hf_hub_id='timm/', input_size=(3, 256, 256), crop_pct=0.95), 'vit_medium_patch16_reg4_gap_256.sbb_in1k': _cfg(hf_hub_id='timm/', input_size=(3, 256, 256), crop_pct=0.95), 'vit_medium_patch16_reg4_gap_256.sbb_in12k': _cfg(hf_hub_id='timm/', num_classes=11821, input_size=(3, 256, 256), crop_pct=0.95), 'vit_mediumd_patch16_reg4_gap_256.sbb2_e200_in12k_ft_in1k': _cfg(hf_hub_id='timm/', input_size=(3, 256, 256), crop_pct=0.95), 'vit_mediumd_patch16_reg4_gap_256.sbb_in12k_ft_in1k': _cfg(hf_hub_id='timm/', input_size=(3, 256, 256), crop_pct=0.95), 'vit_mediumd_patch16_reg4_gap_256.sbb2_e200_in12k': _cfg(hf_hub_id='timm/', num_classes=11821, input_size=(3, 256, 256), crop_pct=0.95), 'vit_mediumd_patch16_reg4_gap_256.sbb_in12k': _cfg(hf_hub_id='timm/', num_classes=11821, input_size=(3, 256, 256), crop_pct=0.95), 'vit_mediumd_patch16_reg4_gap_384.sbb2_e200_in12k_ft_in1k': _cfg(hf_hub_id='timm/', input_size=(3, 384, 384), crop_pct=1.0), 'vit_betwixt_patch16_reg1_gap_256.sbb_in1k': _cfg(hf_hub_id='timm/', input_size=(3, 256, 256), crop_pct=0.95), 'vit_betwixt_patch16_reg4_gap_256.sbb2_e200_in12k_ft_in1k': _cfg(hf_hub_id='timm/', input_size=(3, 256, 256), crop_pct=0.95), 'vit_betwixt_patch16_reg4_gap_256.sbb_in12k_ft_in1k': _cfg(hf_hub_id='timm/', input_size=(3, 256, 256), crop_pct=0.95), 'vit_betwixt_patch16_reg4_gap_256.sbb_in1k': _cfg(hf_hub_id='timm/', input_size=(3, 256, 256), crop_pct=0.95), 'vit_betwixt_patch16_reg4_gap_256.sbb2_e200_in12k': _cfg(hf_hub_id='timm/', num_classes=11821, input_size=(3, 256, 256), crop_pct=0.95), 'vit_betwixt_patch16_reg4_gap_256.sbb_in12k': _cfg(hf_hub_id='timm/', num_classes=11821, input_size=(3, 256, 256), crop_pct=0.95), 'vit_betwixt_patch16_reg4_gap_384.sbb2_e200_in12k_ft_in1k': _cfg(hf_hub_id='timm/', input_size=(3, 384, 384), crop_pct=1.0), 'vit_base_patch16_reg4_gap_256.untrained': _cfg(input_size=(3, 256, 256)), 'vit_so150m_patch16_reg4_gap_256.untrained': _cfg(input_size=(3, 256, 256)), 'vit_so150m_patch16_reg4_map_256.untrained': _cfg(input_size=(3, 256, 256)), 'test_vit.r160_in1k': _cfg(hf_hub_id='timm/', input_size=(3, 160, 160), crop_pct=0.875)} +_quick_gelu_cfgs = ['vit_large_patch14_clip_224.dfn2b', 'vit_huge_patch14_clip_224.dfn5b', 'vit_huge_patch14_clip_378.dfn5b', 'vit_base_patch32_clip_224.metaclip_2pt5b', 'vit_base_patch16_clip_224.metaclip_2pt5b', 'vit_large_patch14_clip_224.metaclip_2pt5b', 'vit_huge_patch14_clip_224.metaclip_2pt5b', 'vit_base_patch32_clip_224.openai', 'vit_base_patch16_clip_224.openai', 'vit_large_patch14_clip_224.openai', 'vit_large_patch14_clip_336.openai'] +default_cfgs.update({n.replace('_clip_', '_clip_quickgelu_'): default_cfgs[n] for n in _quick_gelu_cfgs}) +default_cfgs = generate_default_cfgs(default_cfgs) + +def _create_vision_transformer(variant: str, pretrained: bool=False, **kwargs) -> VisionTransformer: + out_indices = kwargs.pop('out_indices', 3) + if 'flexi' in variant: + _filter_fn = partial(checkpoint_filter_fn, interpolation='bilinear', antialias=False) + else: + _filter_fn = checkpoint_filter_fn + strict = True + if 'siglip' in variant and kwargs.get('global_pool', None) != 'map': + strict = False + return build_model_with_cfg(VisionTransformer, variant, pretrained, pretrained_filter_fn=_filter_fn, pretrained_strict=strict, feature_cfg=dict(out_indices=out_indices, feature_cls='getter'), **kwargs) + +@register_model +def vit_tiny_patch16_224(pretrained: bool=False, **kwargs) -> VisionTransformer: + model_args = dict(patch_size=16, embed_dim=192, depth=12, num_heads=3) + model = _create_vision_transformer('vit_tiny_patch16_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_tiny_patch16_384(pretrained: bool=False, **kwargs) -> VisionTransformer: + model_args = dict(patch_size=16, embed_dim=192, depth=12, num_heads=3) + model = _create_vision_transformer('vit_tiny_patch16_384', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_small_patch32_224(pretrained: bool=False, **kwargs) -> VisionTransformer: + model_args = dict(patch_size=32, embed_dim=384, depth=12, num_heads=6) + model = _create_vision_transformer('vit_small_patch32_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_small_patch32_384(pretrained: bool=False, **kwargs) -> VisionTransformer: + model_args = dict(patch_size=32, embed_dim=384, depth=12, num_heads=6) + model = _create_vision_transformer('vit_small_patch32_384', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_small_patch16_224(pretrained: bool=False, **kwargs) -> VisionTransformer: + model_args = dict(patch_size=16, embed_dim=384, depth=12, num_heads=6) + model = _create_vision_transformer('vit_small_patch16_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_small_patch16_384(pretrained: bool=False, **kwargs) -> VisionTransformer: + model_args = dict(patch_size=16, embed_dim=384, depth=12, num_heads=6) + model = _create_vision_transformer('vit_small_patch16_384', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_small_patch8_224(pretrained: bool=False, **kwargs) -> VisionTransformer: + model_args = dict(patch_size=8, embed_dim=384, depth=12, num_heads=6) + model = _create_vision_transformer('vit_small_patch8_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_base_patch32_224(pretrained: bool=False, **kwargs) -> VisionTransformer: + model_args = dict(patch_size=32, embed_dim=768, depth=12, num_heads=12) + model = _create_vision_transformer('vit_base_patch32_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_base_patch32_384(pretrained: bool=False, **kwargs) -> VisionTransformer: + model_args = dict(patch_size=32, embed_dim=768, depth=12, num_heads=12) + model = _create_vision_transformer('vit_base_patch32_384', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_base_patch16_224(pretrained: bool=False, **kwargs) -> VisionTransformer: + model_args = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12) + model = _create_vision_transformer('vit_base_patch16_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_base_patch16_384(pretrained: bool=False, **kwargs) -> VisionTransformer: + model_args = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12) + model = _create_vision_transformer('vit_base_patch16_384', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_base_patch8_224(pretrained: bool=False, **kwargs) -> VisionTransformer: + model_args = dict(patch_size=8, embed_dim=768, depth=12, num_heads=12) + model = _create_vision_transformer('vit_base_patch8_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_large_patch32_224(pretrained: bool=False, **kwargs) -> VisionTransformer: + model_args = dict(patch_size=32, embed_dim=1024, depth=24, num_heads=16) + model = _create_vision_transformer('vit_large_patch32_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_large_patch32_384(pretrained: bool=False, **kwargs) -> VisionTransformer: + model_args = dict(patch_size=32, embed_dim=1024, depth=24, num_heads=16) + model = _create_vision_transformer('vit_large_patch32_384', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_large_patch16_224(pretrained: bool=False, **kwargs) -> VisionTransformer: + model_args = dict(patch_size=16, embed_dim=1024, depth=24, num_heads=16) + model = _create_vision_transformer('vit_large_patch16_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_large_patch16_384(pretrained: bool=False, **kwargs) -> VisionTransformer: + model_args = dict(patch_size=16, embed_dim=1024, depth=24, num_heads=16) + model = _create_vision_transformer('vit_large_patch16_384', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_large_patch14_224(pretrained: bool=False, **kwargs) -> VisionTransformer: + model_args = dict(patch_size=14, embed_dim=1024, depth=24, num_heads=16) + model = _create_vision_transformer('vit_large_patch14_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_huge_patch14_224(pretrained: bool=False, **kwargs) -> VisionTransformer: + model_args = dict(patch_size=14, embed_dim=1280, depth=32, num_heads=16) + model = _create_vision_transformer('vit_huge_patch14_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_giant_patch14_224(pretrained: bool=False, **kwargs) -> VisionTransformer: + model_args = dict(patch_size=14, embed_dim=1408, mlp_ratio=48 / 11, depth=40, num_heads=16) + model = _create_vision_transformer('vit_giant_patch14_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_gigantic_patch14_224(pretrained: bool=False, **kwargs) -> VisionTransformer: + model_args = dict(patch_size=14, embed_dim=1664, mlp_ratio=64 / 13, depth=48, num_heads=16) + model = _create_vision_transformer('vit_gigantic_patch14_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_base_patch16_224_miil(pretrained: bool=False, **kwargs) -> VisionTransformer: + model_args = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, qkv_bias=False) + model = _create_vision_transformer('vit_base_patch16_224_miil', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_medium_patch16_gap_240(pretrained: bool=False, **kwargs) -> VisionTransformer: + model_args = dict(patch_size=16, embed_dim=512, depth=12, num_heads=8, class_token=False, global_pool='avg', qkv_bias=False, init_values=1e-06, fc_norm=False) + model = _create_vision_transformer('vit_medium_patch16_gap_240', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_medium_patch16_gap_256(pretrained: bool=False, **kwargs) -> VisionTransformer: + model_args = dict(patch_size=16, embed_dim=512, depth=12, num_heads=8, class_token=False, global_pool='avg', qkv_bias=False, init_values=1e-06, fc_norm=False) + model = _create_vision_transformer('vit_medium_patch16_gap_256', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_medium_patch16_gap_384(pretrained: bool=False, **kwargs) -> VisionTransformer: + model_args = dict(patch_size=16, embed_dim=512, depth=12, num_heads=8, class_token=False, global_pool='avg', qkv_bias=False, init_values=1e-06, fc_norm=False) + model = _create_vision_transformer('vit_medium_patch16_gap_384', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_betwixt_patch16_gap_256(pretrained: bool=False, **kwargs) -> VisionTransformer: + model_args = dict(patch_size=16, embed_dim=640, depth=12, num_heads=10, class_token=False, global_pool='avg', qkv_bias=False, init_values=1e-06, fc_norm=False) + model = _create_vision_transformer('vit_medium_patch16_gap_256', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_base_patch16_gap_224(pretrained: bool=False, **kwargs) -> VisionTransformer: + model_args = dict(patch_size=16, embed_dim=768, depth=12, num_heads=16, class_token=False, global_pool='avg', fc_norm=False) + model = _create_vision_transformer('vit_base_patch16_gap_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_huge_patch14_gap_224(pretrained: bool=False, **kwargs) -> VisionTransformer: + model_args = dict(patch_size=14, embed_dim=1280, depth=32, num_heads=16, class_token=False, global_pool='avg', fc_norm=False) + model = _create_vision_transformer('vit_huge_patch14_gap_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_huge_patch16_gap_448(pretrained: bool=False, **kwargs) -> VisionTransformer: + model_args = dict(patch_size=16, embed_dim=1280, depth=32, num_heads=16, class_token=False, global_pool='avg', fc_norm=False) + model = _create_vision_transformer('vit_huge_patch16_gap_448', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_giant_patch16_gap_224(pretrained: bool=False, **kwargs) -> VisionTransformer: + model_args = dict(patch_size=16, embed_dim=1408, depth=40, num_heads=16, mlp_ratio=48 / 11, class_token=False, global_pool='avg', fc_norm=False) + model = _create_vision_transformer('vit_giant_patch16_gap_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_xsmall_patch16_clip_224(pretrained: bool=False, **kwargs) -> VisionTransformer: + model_args = dict(embed_dim=256, depth=10, num_heads=4, pre_norm=True, norm_layer=nn.LayerNorm) + model = _create_vision_transformer('vit_xsmall_patch16_clip_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_medium_patch32_clip_224(pretrained: bool=False, **kwargs) -> VisionTransformer: + model_args = dict(patch_size=32, embed_dim=512, depth=12, num_heads=8, pre_norm=True, norm_layer=nn.LayerNorm) + model = _create_vision_transformer('vit_medium_patch32_clip_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_medium_patch16_clip_224(pretrained: bool=False, **kwargs) -> VisionTransformer: + model_args = dict(embed_dim=512, depth=12, num_heads=8, pre_norm=True, norm_layer=nn.LayerNorm) + model = _create_vision_transformer('vit_medium_patch16_clip_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_betwixt_patch32_clip_224(pretrained: bool=False, **kwargs) -> VisionTransformer: + model_args = dict(patch_size=32, embed_dim=640, depth=12, num_heads=10, pre_norm=True, norm_layer=nn.LayerNorm) + model = _create_vision_transformer('vit_betwixt_patch32_clip_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_base_patch32_clip_224(pretrained: bool=False, **kwargs) -> VisionTransformer: + model_args = dict(patch_size=32, embed_dim=768, depth=12, num_heads=12, pre_norm=True, norm_layer=nn.LayerNorm) + model = _create_vision_transformer('vit_base_patch32_clip_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_base_patch32_clip_256(pretrained: bool=False, **kwargs) -> VisionTransformer: + model_args = dict(patch_size=32, embed_dim=768, depth=12, num_heads=12, pre_norm=True, norm_layer=nn.LayerNorm) + model = _create_vision_transformer('vit_base_patch32_clip_256', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_base_patch32_clip_384(pretrained: bool=False, **kwargs) -> VisionTransformer: + model_args = dict(patch_size=32, embed_dim=768, depth=12, num_heads=12, pre_norm=True, norm_layer=nn.LayerNorm) + model = _create_vision_transformer('vit_base_patch32_clip_384', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_base_patch32_clip_448(pretrained: bool=False, **kwargs) -> VisionTransformer: + model_args = dict(patch_size=32, embed_dim=768, depth=12, num_heads=12, pre_norm=True, norm_layer=nn.LayerNorm) + model = _create_vision_transformer('vit_base_patch32_clip_448', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_base_patch16_clip_224(pretrained: bool=False, **kwargs) -> VisionTransformer: + model_args = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, pre_norm=True, norm_layer=nn.LayerNorm) + model = _create_vision_transformer('vit_base_patch16_clip_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_base_patch16_clip_384(pretrained: bool=False, **kwargs) -> VisionTransformer: + model_args = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, pre_norm=True, norm_layer=nn.LayerNorm) + model = _create_vision_transformer('vit_base_patch16_clip_384', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_large_patch14_clip_224(pretrained: bool=False, **kwargs) -> VisionTransformer: + model_args = dict(patch_size=14, embed_dim=1024, depth=24, num_heads=16, pre_norm=True, norm_layer=nn.LayerNorm) + model = _create_vision_transformer('vit_large_patch14_clip_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_large_patch14_clip_336(pretrained: bool=False, **kwargs) -> VisionTransformer: + model_args = dict(patch_size=14, embed_dim=1024, depth=24, num_heads=16, pre_norm=True, norm_layer=nn.LayerNorm) + model = _create_vision_transformer('vit_large_patch14_clip_336', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_huge_patch14_clip_224(pretrained: bool=False, **kwargs) -> VisionTransformer: + model_args = dict(patch_size=14, embed_dim=1280, depth=32, num_heads=16, pre_norm=True, norm_layer=nn.LayerNorm) + model = _create_vision_transformer('vit_huge_patch14_clip_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_huge_patch14_clip_336(pretrained: bool=False, **kwargs) -> VisionTransformer: + model_args = dict(patch_size=14, embed_dim=1280, depth=32, num_heads=16, pre_norm=True, norm_layer=nn.LayerNorm) + model = _create_vision_transformer('vit_huge_patch14_clip_336', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_huge_patch14_clip_378(pretrained: bool=False, **kwargs) -> VisionTransformer: + model_args = dict(patch_size=14, embed_dim=1280, depth=32, num_heads=16, pre_norm=True, norm_layer=nn.LayerNorm) + model = _create_vision_transformer('vit_huge_patch14_clip_378', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_giant_patch14_clip_224(pretrained: bool=False, **kwargs) -> VisionTransformer: + model_args = dict(patch_size=14, embed_dim=1408, mlp_ratio=48 / 11, depth=40, num_heads=16, pre_norm=True, norm_layer=nn.LayerNorm) + model = _create_vision_transformer('vit_giant_patch14_clip_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_gigantic_patch14_clip_224(pretrained: bool=False, **kwargs) -> VisionTransformer: + model_args = dict(patch_size=14, embed_dim=1664, mlp_ratio=64 / 13, depth=48, num_heads=16, pre_norm=True, norm_layer=nn.LayerNorm) + model = _create_vision_transformer('vit_gigantic_patch14_clip_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_base_patch32_clip_quickgelu_224(pretrained: bool=False, **kwargs) -> VisionTransformer: + model_args = dict(patch_size=32, embed_dim=768, depth=12, num_heads=12, pre_norm=True, norm_layer=nn.LayerNorm, act_layer='quick_gelu') + model = _create_vision_transformer('vit_base_patch32_clip_quickgelu_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_base_patch16_clip_quickgelu_224(pretrained: bool=False, **kwargs) -> VisionTransformer: + model_args = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, pre_norm=True, norm_layer=nn.LayerNorm, act_layer='quick_gelu') + model = _create_vision_transformer('vit_base_patch16_clip_quickgelu_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_large_patch14_clip_quickgelu_224(pretrained: bool=False, **kwargs) -> VisionTransformer: + model_args = dict(patch_size=14, embed_dim=1024, depth=24, num_heads=16, pre_norm=True, norm_layer=nn.LayerNorm, act_layer='quick_gelu') + model = _create_vision_transformer('vit_large_patch14_clip_quickgelu_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_large_patch14_clip_quickgelu_336(pretrained: bool=False, **kwargs) -> VisionTransformer: + model_args = dict(patch_size=14, embed_dim=1024, depth=24, num_heads=16, pre_norm=True, norm_layer=nn.LayerNorm, act_layer='quick_gelu') + model = _create_vision_transformer('vit_large_patch14_clip_quickgelu_336', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_huge_patch14_clip_quickgelu_224(pretrained: bool=False, **kwargs) -> VisionTransformer: + model_args = dict(patch_size=14, embed_dim=1280, depth=32, num_heads=16, pre_norm=True, norm_layer=nn.LayerNorm, act_layer='quick_gelu') + model = _create_vision_transformer('vit_huge_patch14_clip_quickgelu_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_huge_patch14_clip_quickgelu_378(pretrained: bool=False, **kwargs) -> VisionTransformer: + model_args = dict(patch_size=14, embed_dim=1280, depth=32, num_heads=16, pre_norm=True, norm_layer=nn.LayerNorm, act_layer='quick_gelu') + model = _create_vision_transformer('vit_huge_patch14_clip_quickgelu_378', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_base_patch32_plus_256(pretrained: bool=False, **kwargs) -> VisionTransformer: + model_args = dict(patch_size=32, embed_dim=896, depth=12, num_heads=14, init_values=1e-05) + model = _create_vision_transformer('vit_base_patch32_plus_256', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_base_patch16_plus_240(pretrained: bool=False, **kwargs) -> VisionTransformer: + model_args = dict(patch_size=16, embed_dim=896, depth=12, num_heads=14, init_values=1e-05) + model = _create_vision_transformer('vit_base_patch16_plus_240', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_base_patch16_rpn_224(pretrained: bool=False, **kwargs) -> VisionTransformer: + model_args = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, qkv_bias=False, init_values=1e-05, class_token=False, block_fn=ResPostBlock, global_pool='avg') + model = _create_vision_transformer('vit_base_patch16_rpn_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_small_patch16_36x1_224(pretrained: bool=False, **kwargs) -> VisionTransformer: + model_args = dict(patch_size=16, embed_dim=384, depth=36, num_heads=6, init_values=1e-05) + model = _create_vision_transformer('vit_small_patch16_36x1_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_small_patch16_18x2_224(pretrained: bool=False, **kwargs) -> VisionTransformer: + model_args = dict(patch_size=16, embed_dim=384, depth=18, num_heads=6, init_values=1e-05, block_fn=ParallelThingsBlock) + model = _create_vision_transformer('vit_small_patch16_18x2_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_base_patch16_18x2_224(pretrained: bool=False, **kwargs) -> VisionTransformer: + model_args = dict(patch_size=16, embed_dim=768, depth=18, num_heads=12, init_values=1e-05, block_fn=ParallelThingsBlock) + model = _create_vision_transformer('vit_base_patch16_18x2_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def eva_large_patch14_196(pretrained: bool=False, **kwargs) -> VisionTransformer: + model_args = dict(patch_size=14, embed_dim=1024, depth=24, num_heads=16, global_pool='avg') + model = _create_vision_transformer('eva_large_patch14_196', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def eva_large_patch14_336(pretrained: bool=False, **kwargs) -> VisionTransformer: + model_args = dict(patch_size=14, embed_dim=1024, depth=24, num_heads=16, global_pool='avg') + model = _create_vision_transformer('eva_large_patch14_336', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def flexivit_small(pretrained: bool=False, **kwargs) -> VisionTransformer: + model_args = dict(patch_size=16, embed_dim=384, depth=12, num_heads=6, no_embed_class=True) + model = _create_vision_transformer('flexivit_small', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def flexivit_base(pretrained: bool=False, **kwargs) -> VisionTransformer: + model_args = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, no_embed_class=True) + model = _create_vision_transformer('flexivit_base', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def flexivit_large(pretrained: bool=False, **kwargs) -> VisionTransformer: + model_args = dict(patch_size=16, embed_dim=1024, depth=24, num_heads=16, no_embed_class=True) + model = _create_vision_transformer('flexivit_large', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_base_patch16_xp_224(pretrained: bool=False, **kwargs) -> VisionTransformer: + model_args = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, pre_norm=True, no_embed_class=True, norm_layer=RmsNorm, block_fn=ParallelScalingBlock, qkv_bias=False, qk_norm=True) + model = _create_vision_transformer('vit_base_patch16_xp_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_large_patch14_xp_224(pretrained: bool=False, **kwargs) -> VisionTransformer: + model_args = dict(patch_size=14, embed_dim=1024, depth=24, num_heads=16, pre_norm=True, no_embed_class=True, norm_layer=RmsNorm, block_fn=ParallelScalingBlock, qkv_bias=False, qk_norm=True) + model = _create_vision_transformer('vit_large_patch14_xp_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_huge_patch14_xp_224(pretrained: bool=False, **kwargs) -> VisionTransformer: + model_args = dict(patch_size=14, embed_dim=1280, depth=32, num_heads=16, pre_norm=True, no_embed_class=True, norm_layer=RmsNorm, block_fn=ParallelScalingBlock, qkv_bias=False, qk_norm=True) + model = _create_vision_transformer('vit_huge_patch14_xp_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_small_patch14_dinov2(pretrained: bool=False, **kwargs) -> VisionTransformer: + model_args = dict(patch_size=14, embed_dim=384, depth=12, num_heads=6, init_values=1e-05) + model = _create_vision_transformer('vit_small_patch14_dinov2', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_base_patch14_dinov2(pretrained: bool=False, **kwargs) -> VisionTransformer: + model_args = dict(patch_size=14, embed_dim=768, depth=12, num_heads=12, init_values=1e-05) + model = _create_vision_transformer('vit_base_patch14_dinov2', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_large_patch14_dinov2(pretrained: bool=False, **kwargs) -> VisionTransformer: + model_args = dict(patch_size=14, embed_dim=1024, depth=24, num_heads=16, init_values=1e-05) + model = _create_vision_transformer('vit_large_patch14_dinov2', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_giant_patch14_dinov2(pretrained: bool=False, **kwargs) -> VisionTransformer: + model_args = dict(patch_size=14, embed_dim=1536, depth=40, num_heads=24, init_values=1e-05, mlp_ratio=2.66667 * 2, mlp_layer=SwiGLUPacked, act_layer=nn.SiLU) + model = _create_vision_transformer('vit_giant_patch14_dinov2', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_small_patch14_reg4_dinov2(pretrained: bool=False, **kwargs) -> VisionTransformer: + model_args = dict(patch_size=14, embed_dim=384, depth=12, num_heads=6, init_values=1e-05, reg_tokens=4, no_embed_class=True) + model = _create_vision_transformer('vit_small_patch14_reg4_dinov2', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_base_patch14_reg4_dinov2(pretrained: bool=False, **kwargs) -> VisionTransformer: + model_args = dict(patch_size=14, embed_dim=768, depth=12, num_heads=12, init_values=1e-05, reg_tokens=4, no_embed_class=True) + model = _create_vision_transformer('vit_base_patch14_reg4_dinov2', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_large_patch14_reg4_dinov2(pretrained: bool=False, **kwargs) -> VisionTransformer: + model_args = dict(patch_size=14, embed_dim=1024, depth=24, num_heads=16, init_values=1e-05, reg_tokens=4, no_embed_class=True) + model = _create_vision_transformer('vit_large_patch14_reg4_dinov2', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_giant_patch14_reg4_dinov2(pretrained: bool=False, **kwargs) -> VisionTransformer: + model_args = dict(patch_size=14, embed_dim=1536, depth=40, num_heads=24, init_values=1e-05, mlp_ratio=2.66667 * 2, mlp_layer=SwiGLUPacked, act_layer=nn.SiLU, reg_tokens=4, no_embed_class=True) + model = _create_vision_transformer('vit_giant_patch14_reg4_dinov2', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_base_patch16_siglip_224(pretrained: bool=False, **kwargs) -> VisionTransformer: + model_args = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, class_token=False, global_pool='map') + model = _create_vision_transformer('vit_base_patch16_siglip_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_base_patch16_siglip_256(pretrained: bool=False, **kwargs) -> VisionTransformer: + model_args = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, class_token=False, global_pool='map') + model = _create_vision_transformer('vit_base_patch16_siglip_256', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_base_patch16_siglip_384(pretrained: bool=False, **kwargs) -> VisionTransformer: + model_args = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, class_token=False, global_pool='map') + model = _create_vision_transformer('vit_base_patch16_siglip_384', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_base_patch16_siglip_512(pretrained: bool=False, **kwargs) -> VisionTransformer: + model_args = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, class_token=False, global_pool='map') + model = _create_vision_transformer('vit_base_patch16_siglip_512', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_large_patch16_siglip_256(pretrained: bool=False, **kwargs) -> VisionTransformer: + model_args = dict(patch_size=16, embed_dim=1024, depth=24, num_heads=16, class_token=False, global_pool='map') + model = _create_vision_transformer('vit_large_patch16_siglip_256', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_large_patch16_siglip_384(pretrained: bool=False, **kwargs) -> VisionTransformer: + model_args = dict(patch_size=16, embed_dim=1024, depth=24, num_heads=16, class_token=False, global_pool='map') + model = _create_vision_transformer('vit_large_patch16_siglip_384', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_so400m_patch14_siglip_224(pretrained: bool=False, **kwargs) -> VisionTransformer: + model_args = dict(patch_size=14, embed_dim=1152, depth=27, num_heads=16, mlp_ratio=3.7362, class_token=False, global_pool='map') + model = _create_vision_transformer('vit_so400m_patch14_siglip_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_so400m_patch14_siglip_384(pretrained: bool=False, **kwargs) -> VisionTransformer: + model_args = dict(patch_size=14, embed_dim=1152, depth=27, num_heads=16, mlp_ratio=3.7362, class_token=False, global_pool='map') + model = _create_vision_transformer('vit_so400m_patch14_siglip_384', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_base_patch16_siglip_gap_224(pretrained: bool=False, **kwargs) -> VisionTransformer: + model_args = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, class_token=False, global_pool='avg', fc_norm=False) + model = _create_vision_transformer('vit_base_patch16_siglip_gap_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_base_patch16_siglip_gap_256(pretrained: bool=False, **kwargs) -> VisionTransformer: + model_args = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, class_token=False, global_pool='avg', fc_norm=False) + model = _create_vision_transformer('vit_base_patch16_siglip_gap_256', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_base_patch16_siglip_gap_384(pretrained: bool=False, **kwargs) -> VisionTransformer: + model_args = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, class_token=False, global_pool='avg', fc_norm=False) + model = _create_vision_transformer('vit_base_patch16_siglip_gap_384', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_base_patch16_siglip_gap_512(pretrained: bool=False, **kwargs) -> VisionTransformer: + model_args = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, class_token=False, global_pool='avg', fc_norm=False) + model = _create_vision_transformer('vit_base_patch16_siglip_gap_512', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_large_patch16_siglip_gap_256(pretrained: bool=False, **kwargs) -> VisionTransformer: + model_args = dict(patch_size=16, embed_dim=1024, depth=24, num_heads=16, class_token=False, global_pool='avg', fc_norm=False) + model = _create_vision_transformer('vit_large_patch16_siglip_gap_256', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_large_patch16_siglip_gap_384(pretrained: bool=False, **kwargs) -> VisionTransformer: + model_args = dict(patch_size=16, embed_dim=1024, depth=24, num_heads=16, class_token=False, global_pool='avg', fc_norm=False) + model = _create_vision_transformer('vit_large_patch16_siglip_gap_384', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_so400m_patch14_siglip_gap_224(pretrained: bool=False, **kwargs) -> VisionTransformer: + model_args = dict(patch_size=14, embed_dim=1152, depth=27, num_heads=16, mlp_ratio=3.7362, class_token=False, global_pool='avg', fc_norm=False) + model = _create_vision_transformer('vit_so400m_patch14_siglip_gap_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_so400m_patch14_siglip_gap_384(pretrained: bool=False, **kwargs) -> VisionTransformer: + model_args = dict(patch_size=14, embed_dim=1152, depth=27, num_heads=16, mlp_ratio=3.7362, class_token=False, global_pool='avg', fc_norm=False) + model = _create_vision_transformer('vit_so400m_patch14_siglip_gap_384', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_so400m_patch14_siglip_gap_448(pretrained: bool=False, **kwargs) -> VisionTransformer: + model_args = dict(patch_size=14, embed_dim=1152, depth=27, num_heads=16, mlp_ratio=3.7362, class_token=False, global_pool='avg', fc_norm=False) + model = _create_vision_transformer('vit_so400m_patch14_siglip_gap_448', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_so400m_patch14_siglip_gap_896(pretrained: bool=False, **kwargs) -> VisionTransformer: + model_args = dict(patch_size=14, embed_dim=1152, depth=27, num_heads=16, mlp_ratio=3.7362, class_token=False, global_pool='avg', fc_norm=False) + model = _create_vision_transformer('vit_so400m_patch14_siglip_gap_896', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_wee_patch16_reg1_gap_256(pretrained: bool=False, **kwargs) -> VisionTransformer: + model_args = dict(patch_size=16, embed_dim=256, depth=14, num_heads=4, init_values=1e-05, mlp_ratio=5, class_token=False, no_embed_class=True, reg_tokens=1, global_pool='avg') + model = _create_vision_transformer('vit_wee_patch16_reg1_gap_256', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_pwee_patch16_reg1_gap_256(pretrained: bool=False, **kwargs) -> VisionTransformer: + model_args = dict(patch_size=16, embed_dim=256, depth=16, num_heads=4, init_values=1e-05, mlp_ratio=5, class_token=False, no_embed_class=True, reg_tokens=1, global_pool='avg', block_fn=ParallelScalingBlock) + model = _create_vision_transformer('vit_pwee_patch16_reg1_gap_256', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_little_patch16_reg1_gap_256(pretrained: bool=False, **kwargs) -> VisionTransformer: + model_args = dict(patch_size=16, embed_dim=320, depth=14, num_heads=5, init_values=1e-05, mlp_ratio=5.6, class_token=False, no_embed_class=True, reg_tokens=1, global_pool='avg') + model = _create_vision_transformer('vit_little_patch16_reg1_gap_256', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_little_patch16_reg4_gap_256(pretrained: bool=False, **kwargs) -> VisionTransformer: + model_args = dict(patch_size=16, embed_dim=320, depth=14, num_heads=5, init_values=1e-05, mlp_ratio=5.6, class_token=False, no_embed_class=True, reg_tokens=4, global_pool='avg') + model = _create_vision_transformer('vit_little_patch16_reg4_gap_256', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_medium_patch16_reg1_gap_256(pretrained: bool=False, **kwargs) -> VisionTransformer: + model_args = dict(patch_size=16, embed_dim=512, depth=12, num_heads=8, init_values=1e-05, class_token=False, no_embed_class=True, reg_tokens=1, global_pool='avg') + model = _create_vision_transformer('vit_medium_patch16_reg1_gap_256', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_medium_patch16_reg4_gap_256(pretrained: bool=False, **kwargs) -> VisionTransformer: + model_args = dict(patch_size=16, embed_dim=512, depth=12, num_heads=8, init_values=1e-05, class_token=False, no_embed_class=True, reg_tokens=4, global_pool='avg') + model = _create_vision_transformer('vit_medium_patch16_reg4_gap_256', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_mediumd_patch16_reg4_gap_256(pretrained: bool=False, **kwargs) -> VisionTransformer: + model_args = dict(patch_size=16, embed_dim=512, depth=20, num_heads=8, init_values=1e-05, class_token=False, no_embed_class=True, reg_tokens=4, global_pool='avg') + model = _create_vision_transformer('vit_mediumd_patch16_reg4_gap_256', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_mediumd_patch16_reg4_gap_384(pretrained: bool=False, **kwargs) -> VisionTransformer: + model_args = dict(patch_size=16, embed_dim=512, depth=20, num_heads=8, init_values=1e-05, class_token=False, no_embed_class=True, reg_tokens=4, global_pool='avg') + model = _create_vision_transformer('vit_mediumd_patch16_reg4_gap_384', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_betwixt_patch16_reg1_gap_256(pretrained: bool=False, **kwargs) -> VisionTransformer: + model_args = dict(patch_size=16, embed_dim=640, depth=12, num_heads=10, init_values=1e-05, class_token=False, no_embed_class=True, reg_tokens=1, global_pool='avg') + model = _create_vision_transformer('vit_betwixt_patch16_reg1_gap_256', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_betwixt_patch16_reg4_gap_256(pretrained: bool=False, **kwargs) -> VisionTransformer: + model_args = dict(patch_size=16, embed_dim=640, depth=12, num_heads=10, init_values=1e-05, class_token=False, no_embed_class=True, reg_tokens=4, global_pool='avg') + model = _create_vision_transformer('vit_betwixt_patch16_reg4_gap_256', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_betwixt_patch16_reg4_gap_384(pretrained: bool=False, **kwargs) -> VisionTransformer: + model_args = dict(patch_size=16, embed_dim=640, depth=12, num_heads=10, init_values=1e-05, class_token=False, no_embed_class=True, reg_tokens=4, global_pool='avg') + model = _create_vision_transformer('vit_betwixt_patch16_reg4_gap_384', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_base_patch16_reg4_gap_256(pretrained: bool=False, **kwargs) -> VisionTransformer: + model_args = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, class_token=False, no_embed_class=True, global_pool='avg', reg_tokens=4) + model = _create_vision_transformer('vit_base_patch16_reg4_gap_256', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_so150m_patch16_reg4_map_256(pretrained: bool=False, **kwargs) -> VisionTransformer: + model_args = dict(patch_size=16, embed_dim=896, depth=18, num_heads=14, mlp_ratio=2.572, class_token=False, reg_tokens=4, global_pool='map') + model = _create_vision_transformer('vit_so150m_patch16_reg4_map_256', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_so150m_patch16_reg4_gap_256(pretrained: bool=False, **kwargs) -> VisionTransformer: + model_args = dict(patch_size=16, embed_dim=896, depth=18, num_heads=14, mlp_ratio=2.572, class_token=False, reg_tokens=4, global_pool='avg', fc_norm=False) + model = _create_vision_transformer('vit_so150m_patch16_reg4_gap_256', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def test_vit(pretrained: bool=False, **kwargs) -> VisionTransformer: + model_args = dict(patch_size=16, embed_dim=64, depth=6, num_heads=2, mlp_ratio=3) + model = _create_vision_transformer('test_vit', pretrained=pretrained, **dict(model_args, **kwargs)) + return model +register_model_deprecations(__name__, {'vit_tiny_patch16_224_in21k': 'vit_tiny_patch16_224.augreg_in21k', 'vit_small_patch32_224_in21k': 'vit_small_patch32_224.augreg_in21k', 'vit_small_patch16_224_in21k': 'vit_small_patch16_224.augreg_in21k', 'vit_base_patch32_224_in21k': 'vit_base_patch32_224.augreg_in21k', 'vit_base_patch16_224_in21k': 'vit_base_patch16_224.augreg_in21k', 'vit_base_patch8_224_in21k': 'vit_base_patch8_224.augreg_in21k', 'vit_large_patch32_224_in21k': 'vit_large_patch32_224.orig_in21k', 'vit_large_patch16_224_in21k': 'vit_large_patch16_224.augreg_in21k', 'vit_huge_patch14_224_in21k': 'vit_huge_patch14_224.orig_in21k', 'vit_base_patch32_224_sam': 'vit_base_patch32_224.sam', 'vit_base_patch16_224_sam': 'vit_base_patch16_224.sam', 'vit_small_patch16_224_dino': 'vit_small_patch16_224.dino', 'vit_small_patch8_224_dino': 'vit_small_patch8_224.dino', 'vit_base_patch16_224_dino': 'vit_base_patch16_224.dino', 'vit_base_patch8_224_dino': 'vit_base_patch8_224.dino', 'vit_base_patch16_224_miil_in21k': 'vit_base_patch16_224_miil.in21k', 'vit_base_patch32_224_clip_laion2b': 'vit_base_patch32_clip_224.laion2b', 'vit_large_patch14_224_clip_laion2b': 'vit_large_patch14_clip_224.laion2b', 'vit_huge_patch14_224_clip_laion2b': 'vit_huge_patch14_clip_224.laion2b', 'vit_giant_patch14_224_clip_laion2b': 'vit_giant_patch14_clip_224.laion2b'}) + +# File: pytorch-image-models-main/timm/models/vision_transformer_hybrid.py +"""""" +import math +from functools import partial +from typing import Dict, List, Optional, Tuple, Type, Union +import torch +import torch.nn as nn +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from timm.layers import StdConv2dSame, StdConv2d, ConvNormAct, to_2tuple, to_ntuple, HybridEmbed +from ._builder import build_model_with_cfg +from ._registry import generate_default_cfgs, register_model, register_model_deprecations +from .resnet import resnet26d, resnet50d +from .resnetv2 import ResNetV2, create_resnetv2_stem +from .vision_transformer import VisionTransformer + +class ConvStem(nn.Sequential): + + def __init__(self, in_chans: int=3, depth: int=3, channels: Union[int, Tuple[int, ...]]=64, kernel_size: Union[int, Tuple[int, ...]]=3, stride: Union[int, Tuple[int, ...]]=(2, 2, 2), padding: Union[str, int, Tuple[int, ...]]='', norm_layer: Type[nn.Module]=nn.BatchNorm2d, act_layer: Type[nn.Module]=nn.ReLU): + super().__init__() + if isinstance(channels, int): + channels = tuple([channels // 2 ** i for i in range(depth)][::-1]) + kernel_size = to_ntuple(depth)(kernel_size) + padding = to_ntuple(depth)(padding) + assert depth == len(stride) == len(kernel_size) == len(channels) + in_chs = in_chans + for i in range(len(channels)): + last_conv = i == len(channels) - 1 + self.add_module(f'{i}', ConvNormAct(in_chs, channels[i], kernel_size=kernel_size[i], stride=stride[i], padding=padding[i], bias=last_conv, apply_norm=not last_conv, apply_act=not last_conv, norm_layer=norm_layer, act_layer=act_layer)) + in_chs = channels[i] + +def _resnetv2(layers=(3, 4, 9), **kwargs): + padding_same = kwargs.get('padding_same', True) + stem_type = 'same' if padding_same else '' + conv_layer = partial(StdConv2dSame, eps=1e-08) if padding_same else partial(StdConv2d, eps=1e-08) + if len(layers): + backbone = ResNetV2(layers=layers, num_classes=0, global_pool='', in_chans=kwargs.get('in_chans', 3), preact=False, stem_type=stem_type, conv_layer=conv_layer) + else: + backbone = create_resnetv2_stem(kwargs.get('in_chans', 3), stem_type=stem_type, preact=False, conv_layer=conv_layer) + return backbone + +def _convert_mobileclip(state_dict, model, prefix='image_encoder.model.'): + out = {} + for (k, v) in state_dict.items(): + if not k.startswith(prefix): + continue + k = k.replace(prefix, '') + k = k.replace('patch_emb.', 'patch_embed.backbone.') + k = k.replace('block.conv', 'conv') + k = k.replace('block.norm', 'bn') + k = k.replace('post_transformer_norm.', 'norm.') + k = k.replace('pre_norm_mha.0', 'norm1') + k = k.replace('pre_norm_mha.1', 'attn') + k = k.replace('pre_norm_ffn.0', 'norm2') + k = k.replace('pre_norm_ffn.1', 'mlp.fc1') + k = k.replace('pre_norm_ffn.4', 'mlp.fc2') + k = k.replace('qkv_proj.', 'qkv.') + k = k.replace('out_proj.', 'proj.') + k = k.replace('transformer.', 'blocks.') + if k == 'pos_embed.pos_embed.pos_embed': + k = 'pos_embed' + v = v.squeeze(0) + if 'classifier.proj' in k: + bias_k = k.replace('classifier.proj', 'head.bias') + k = k.replace('classifier.proj', 'head.weight') + v = v.T + out[bias_k] = torch.zeros(v.shape[0]) + out[k] = v + return out + +def checkpoint_filter_fn(state_dict: Dict[str, torch.Tensor], model: VisionTransformer, interpolation: str='bicubic', antialias: bool=True) -> Dict[str, torch.Tensor]: + from .vision_transformer import checkpoint_filter_fn as _filter_fn + if 'image_encoder.model.patch_emb.0.block.conv.weight' in state_dict: + state_dict = _convert_mobileclip(state_dict, model) + return _filter_fn(state_dict, model, interpolation=interpolation, antialias=antialias) + +def _create_vision_transformer_hybrid(variant, backbone, embed_args=None, pretrained=False, **kwargs): + out_indices = kwargs.pop('out_indices', 3) + embed_args = embed_args or {} + embed_layer = partial(HybridEmbed, backbone=backbone, **embed_args) + kwargs.setdefault('embed_layer', embed_layer) + kwargs.setdefault('patch_size', 1) + return build_model_with_cfg(VisionTransformer, variant, pretrained, pretrained_filter_fn=checkpoint_filter_fn, feature_cfg=dict(out_indices=out_indices, feature_cls='getter'), **kwargs) + +def _cfg(url='', **kwargs): + return {'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, 'crop_pct': 0.9, 'interpolation': 'bicubic', 'fixed_input_size': True, 'mean': (0.5, 0.5, 0.5), 'std': (0.5, 0.5, 0.5), 'first_conv': 'patch_embed.backbone.stem.conv', 'classifier': 'head', **kwargs} +default_cfgs = generate_default_cfgs({'vit_tiny_r_s16_p8_224.augreg_in21k_ft_in1k': _cfg(url='https://storage.googleapis.com/vit_models/augreg/R_Ti_16-i21k-300ep-lr_0.001-aug_none-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_224.npz', hf_hub_id='timm/', custom_load=True, first_conv='patch_embed.backbone.conv'), 'vit_tiny_r_s16_p8_384.augreg_in21k_ft_in1k': _cfg(url='https://storage.googleapis.com/vit_models/augreg/R_Ti_16-i21k-300ep-lr_0.001-aug_none-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_384.npz', hf_hub_id='timm/', first_conv='patch_embed.backbone.conv', input_size=(3, 384, 384), crop_pct=1.0, custom_load=True), 'vit_small_r26_s32_224.augreg_in21k_ft_in1k': _cfg(url='https://storage.googleapis.com/vit_models/augreg/R26_S_32-i21k-300ep-lr_0.001-aug_light0-wd_0.03-do_0.1-sd_0.1--imagenet2012-steps_20k-lr_0.03-res_224.npz', hf_hub_id='timm/', custom_load=True), 'vit_small_r26_s32_384.augreg_in21k_ft_in1k': _cfg(url='https://storage.googleapis.com/vit_models/augreg/R26_S_32-i21k-300ep-lr_0.001-aug_medium2-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_384.npz', hf_hub_id='timm/', input_size=(3, 384, 384), crop_pct=1.0, custom_load=True), 'vit_base_r26_s32_224.untrained': _cfg(), 'vit_base_r50_s16_384.orig_in21k_ft_in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_resnet50_384-9fd3c705.pth', hf_hub_id='timm/', input_size=(3, 384, 384), crop_pct=1.0), 'vit_large_r50_s32_224.augreg_in21k_ft_in1k': _cfg(url='https://storage.googleapis.com/vit_models/augreg/R50_L_32-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.1-sd_0.1--imagenet2012-steps_20k-lr_0.01-res_224.npz', hf_hub_id='timm/', custom_load=True), 'vit_large_r50_s32_384.augreg_in21k_ft_in1k': _cfg(url='https://storage.googleapis.com/vit_models/augreg/R50_L_32-i21k-300ep-lr_0.001-aug_medium2-wd_0.1-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.01-res_384.npz', hf_hub_id='timm/', input_size=(3, 384, 384), crop_pct=1.0, custom_load=True), 'vit_tiny_r_s16_p8_224.augreg_in21k': _cfg(url='https://storage.googleapis.com/vit_models/augreg/R_Ti_16-i21k-300ep-lr_0.001-aug_none-wd_0.03-do_0.0-sd_0.0.npz', hf_hub_id='timm/', num_classes=21843, crop_pct=0.9, first_conv='patch_embed.backbone.conv', custom_load=True), 'vit_small_r26_s32_224.augreg_in21k': _cfg(url='https://storage.googleapis.com/vit_models/augreg/R26_S_32-i21k-300ep-lr_0.001-aug_medium2-wd_0.03-do_0.0-sd_0.0.npz', hf_hub_id='timm/', num_classes=21843, crop_pct=0.9, custom_load=True), 'vit_base_r50_s16_224.orig_in21k': _cfg(hf_hub_id='timm/', num_classes=0, crop_pct=0.9), 'vit_large_r50_s32_224.augreg_in21k': _cfg(url='https://storage.googleapis.com/vit_models/augreg/R50_L_32-i21k-300ep-lr_0.001-aug_medium2-wd_0.1-do_0.0-sd_0.0.npz', hf_hub_id='timm/', num_classes=21843, crop_pct=0.9, custom_load=True), 'vit_small_resnet26d_224.untrained': _cfg(mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, first_conv='patch_embed.backbone.conv1.0'), 'vit_small_resnet50d_s16_224.untrained': _cfg(mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, first_conv='patch_embed.backbone.conv1.0'), 'vit_base_resnet26d_224.untrained': _cfg(mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, first_conv='patch_embed.backbone.conv1.0'), 'vit_base_resnet50d_224.untrained': _cfg(mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, first_conv='patch_embed.backbone.conv1.0'), 'vit_base_mci_224.apple_mclip_lt': _cfg(hf_hub_id='apple/mobileclip_b_lt_timm', url='https://docs-assets.developer.apple.com/ml-research/datasets/mobileclip/mobileclip_blt.pt', num_classes=512, mean=(0.0, 0.0, 0.0), std=(1.0, 1.0, 1.0), first_conv='patch_embed.backbone.0.conv'), 'vit_base_mci_224.apple_mclip': _cfg(hf_hub_id='apple/mobileclip_b_timm', url='https://docs-assets.developer.apple.com/ml-research/datasets/mobileclip/mobileclip_b.pt', num_classes=512, mean=(0.0, 0.0, 0.0), std=(1.0, 1.0, 1.0), first_conv='patch_embed.backbone.0.conv')}) + +@register_model +def vit_tiny_r_s16_p8_224(pretrained=False, **kwargs) -> VisionTransformer: + backbone = _resnetv2(layers=(), **kwargs) + model_args = dict(patch_size=8, embed_dim=192, depth=12, num_heads=3) + model = _create_vision_transformer_hybrid('vit_tiny_r_s16_p8_224', backbone=backbone, pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_tiny_r_s16_p8_384(pretrained=False, **kwargs) -> VisionTransformer: + backbone = _resnetv2(layers=(), **kwargs) + model_args = dict(patch_size=8, embed_dim=192, depth=12, num_heads=3) + model = _create_vision_transformer_hybrid('vit_tiny_r_s16_p8_384', backbone=backbone, pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_small_r26_s32_224(pretrained=False, **kwargs) -> VisionTransformer: + backbone = _resnetv2((2, 2, 2, 2), **kwargs) + model_args = dict(embed_dim=384, depth=12, num_heads=6) + model = _create_vision_transformer_hybrid('vit_small_r26_s32_224', backbone=backbone, pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_small_r26_s32_384(pretrained=False, **kwargs) -> VisionTransformer: + backbone = _resnetv2((2, 2, 2, 2), **kwargs) + model_args = dict(embed_dim=384, depth=12, num_heads=6) + model = _create_vision_transformer_hybrid('vit_small_r26_s32_384', backbone=backbone, pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_base_r26_s32_224(pretrained=False, **kwargs) -> VisionTransformer: + backbone = _resnetv2((2, 2, 2, 2), **kwargs) + model_args = dict(embed_dim=768, depth=12, num_heads=12) + model = _create_vision_transformer_hybrid('vit_base_r26_s32_224', backbone=backbone, pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_base_r50_s16_224(pretrained=False, **kwargs) -> VisionTransformer: + backbone = _resnetv2((3, 4, 9), **kwargs) + model_args = dict(embed_dim=768, depth=12, num_heads=12) + model = _create_vision_transformer_hybrid('vit_base_r50_s16_224', backbone=backbone, pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_base_r50_s16_384(pretrained=False, **kwargs) -> VisionTransformer: + backbone = _resnetv2((3, 4, 9), **kwargs) + model_args = dict(embed_dim=768, depth=12, num_heads=12) + model = _create_vision_transformer_hybrid('vit_base_r50_s16_384', backbone=backbone, pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_large_r50_s32_224(pretrained=False, **kwargs) -> VisionTransformer: + backbone = _resnetv2((3, 4, 6, 3), **kwargs) + model_args = dict(embed_dim=1024, depth=24, num_heads=16) + model = _create_vision_transformer_hybrid('vit_large_r50_s32_224', backbone=backbone, pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_large_r50_s32_384(pretrained=False, **kwargs) -> VisionTransformer: + backbone = _resnetv2((3, 4, 6, 3), **kwargs) + model_args = dict(embed_dim=1024, depth=24, num_heads=16) + model = _create_vision_transformer_hybrid('vit_large_r50_s32_384', backbone=backbone, pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_small_resnet26d_224(pretrained=False, **kwargs) -> VisionTransformer: + backbone = resnet26d(pretrained=pretrained, in_chans=kwargs.get('in_chans', 3), features_only=True, out_indices=[4]) + model_args = dict(embed_dim=768, depth=8, num_heads=8, mlp_ratio=3) + model = _create_vision_transformer_hybrid('vit_small_resnet26d_224', backbone=backbone, pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_small_resnet50d_s16_224(pretrained=False, **kwargs) -> VisionTransformer: + backbone = resnet50d(pretrained=pretrained, in_chans=kwargs.get('in_chans', 3), features_only=True, out_indices=[3]) + model_args = dict(embed_dim=768, depth=8, num_heads=8, mlp_ratio=3) + model = _create_vision_transformer_hybrid('vit_small_resnet50d_s16_224', backbone=backbone, pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_base_resnet26d_224(pretrained=False, **kwargs) -> VisionTransformer: + backbone = resnet26d(pretrained=pretrained, in_chans=kwargs.get('in_chans', 3), features_only=True, out_indices=[4]) + model_args = dict(embed_dim=768, depth=12, num_heads=12) + model = _create_vision_transformer_hybrid('vit_base_resnet26d_224', backbone=backbone, pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_base_resnet50d_224(pretrained=False, **kwargs) -> VisionTransformer: + backbone = resnet50d(pretrained=pretrained, in_chans=kwargs.get('in_chans', 3), features_only=True, out_indices=[4]) + model_args = dict(embed_dim=768, depth=12, num_heads=12) + model = _create_vision_transformer_hybrid('vit_base_resnet50d_224', backbone=backbone, pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_base_mci_224(pretrained=False, **kwargs) -> VisionTransformer: + backbone = ConvStem(channels=(768 // 4, 768 // 4, 768), stride=(4, 2, 2), kernel_size=(4, 2, 2), padding=0, in_chans=kwargs.get('in_chans', 3), act_layer=nn.GELU) + model_args = dict(embed_dim=768, depth=12, num_heads=12, no_embed_class=True) + model = _create_vision_transformer_hybrid('vit_base_mci_224', backbone=backbone, embed_args=dict(proj=False), pretrained=pretrained, **dict(model_args, **kwargs)) + return model +register_model_deprecations(__name__, {'vit_tiny_r_s16_p8_224_in21k': 'vit_tiny_r_s16_p8_224.augreg_in21k', 'vit_small_r26_s32_224_in21k': 'vit_small_r26_s32_224.augreg_in21k', 'vit_base_r50_s16_224_in21k': 'vit_base_r50_s16_224.orig_in21k', 'vit_base_resnet50_224_in21k': 'vit_base_r50_s16_224.orig_in21k', 'vit_large_r50_s32_224_in21k': 'vit_large_r50_s32_224.augreg_in21k', 'vit_base_resnet50_384': 'vit_base_r50_s16_384.orig_in21k_ft_in1k'}) + +# File: pytorch-image-models-main/timm/models/vision_transformer_relpos.py +"""""" +import logging +import math +from functools import partial +from typing import List, Optional, Tuple, Type, Union +try: + from typing import Literal +except ImportError: + from typing_extensions import Literal +import torch +import torch.nn as nn +from torch.jit import Final +from torch.utils.checkpoint import checkpoint +from timm.data import IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD +from timm.layers import PatchEmbed, Mlp, DropPath, RelPosMlp, RelPosBias, use_fused_attn, LayerType +from ._builder import build_model_with_cfg +from ._features import feature_take_indices +from ._manipulate import named_apply +from ._registry import generate_default_cfgs, register_model +from .vision_transformer import get_init_weights_vit +__all__ = ['VisionTransformerRelPos'] +_logger = logging.getLogger(__name__) + +class RelPosAttention(nn.Module): + fused_attn: Final[bool] + + def __init__(self, dim, num_heads=8, qkv_bias=False, qk_norm=False, rel_pos_cls=None, attn_drop=0.0, proj_drop=0.0, norm_layer=nn.LayerNorm): + super().__init__() + assert dim % num_heads == 0, 'dim should be divisible by num_heads' + self.num_heads = num_heads + self.head_dim = dim // num_heads + self.scale = self.head_dim ** (-0.5) + self.fused_attn = use_fused_attn() + self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) + self.q_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity() + self.k_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity() + self.rel_pos = rel_pos_cls(num_heads=num_heads) if rel_pos_cls else None + self.attn_drop = nn.Dropout(attn_drop) + self.proj = nn.Linear(dim, dim) + self.proj_drop = nn.Dropout(proj_drop) + + def forward(self, x, shared_rel_pos: Optional[torch.Tensor]=None): + (B, N, C) = x.shape + qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4) + (q, k, v) = qkv.unbind(0) + q = self.q_norm(q) + k = self.k_norm(k) + if self.fused_attn: + if self.rel_pos is not None: + attn_bias = self.rel_pos.get_bias() + elif shared_rel_pos is not None: + attn_bias = shared_rel_pos + else: + attn_bias = None + x = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=attn_bias, dropout_p=self.attn_drop.p if self.training else 0.0) + else: + q = q * self.scale + attn = q @ k.transpose(-2, -1) + if self.rel_pos is not None: + attn = self.rel_pos(attn, shared_rel_pos=shared_rel_pos) + elif shared_rel_pos is not None: + attn = attn + shared_rel_pos + attn = attn.softmax(dim=-1) + attn = self.attn_drop(attn) + x = attn @ v + x = x.transpose(1, 2).reshape(B, N, C) + x = self.proj(x) + x = self.proj_drop(x) + return x + +class LayerScale(nn.Module): + + def __init__(self, dim, init_values=1e-05, inplace=False): + super().__init__() + self.inplace = inplace + self.gamma = nn.Parameter(init_values * torch.ones(dim)) + + def forward(self, x): + return x.mul_(self.gamma) if self.inplace else x * self.gamma + +class RelPosBlock(nn.Module): + + def __init__(self, dim, num_heads, mlp_ratio=4.0, qkv_bias=False, qk_norm=False, rel_pos_cls=None, init_values=None, proj_drop=0.0, attn_drop=0.0, drop_path=0.0, act_layer=nn.GELU, norm_layer=nn.LayerNorm): + super().__init__() + self.norm1 = norm_layer(dim) + self.attn = RelPosAttention(dim, num_heads, qkv_bias=qkv_bias, qk_norm=qk_norm, rel_pos_cls=rel_pos_cls, attn_drop=attn_drop, proj_drop=proj_drop) + self.ls1 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity() + self.drop_path1 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + self.norm2 = norm_layer(dim) + self.mlp = Mlp(in_features=dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer, drop=proj_drop) + self.ls2 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity() + self.drop_path2 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + + def forward(self, x, shared_rel_pos: Optional[torch.Tensor]=None): + x = x + self.drop_path1(self.ls1(self.attn(self.norm1(x), shared_rel_pos=shared_rel_pos))) + x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x)))) + return x + +class ResPostRelPosBlock(nn.Module): + + def __init__(self, dim, num_heads, mlp_ratio=4.0, qkv_bias=False, qk_norm=False, rel_pos_cls=None, init_values=None, proj_drop=0.0, attn_drop=0.0, drop_path=0.0, act_layer=nn.GELU, norm_layer=nn.LayerNorm): + super().__init__() + self.init_values = init_values + self.attn = RelPosAttention(dim, num_heads, qkv_bias=qkv_bias, qk_norm=qk_norm, rel_pos_cls=rel_pos_cls, attn_drop=attn_drop, proj_drop=proj_drop) + self.norm1 = norm_layer(dim) + self.drop_path1 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + self.mlp = Mlp(in_features=dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer, drop=proj_drop) + self.norm2 = norm_layer(dim) + self.drop_path2 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + self.init_weights() + + def init_weights(self): + if self.init_values is not None: + nn.init.constant_(self.norm1.weight, self.init_values) + nn.init.constant_(self.norm2.weight, self.init_values) + + def forward(self, x, shared_rel_pos: Optional[torch.Tensor]=None): + x = x + self.drop_path1(self.norm1(self.attn(x, shared_rel_pos=shared_rel_pos))) + x = x + self.drop_path2(self.norm2(self.mlp(x))) + return x + +class VisionTransformerRelPos(nn.Module): + + def __init__(self, img_size: Union[int, Tuple[int, int]]=224, patch_size: Union[int, Tuple[int, int]]=16, in_chans: int=3, num_classes: int=1000, global_pool: Literal['', 'avg', 'token', 'map']='avg', embed_dim: int=768, depth: int=12, num_heads: int=12, mlp_ratio: float=4.0, qkv_bias: bool=True, qk_norm: bool=False, init_values: Optional[float]=1e-06, class_token: bool=False, fc_norm: bool=False, rel_pos_type: str='mlp', rel_pos_dim: Optional[int]=None, shared_rel_pos: bool=False, drop_rate: float=0.0, proj_drop_rate: float=0.0, attn_drop_rate: float=0.0, drop_path_rate: float=0.0, weight_init: Literal['skip', 'jax', 'moco', '']='skip', fix_init: bool=False, embed_layer: Type[nn.Module]=PatchEmbed, norm_layer: Optional[LayerType]=None, act_layer: Optional[LayerType]=None, block_fn: Type[nn.Module]=RelPosBlock): + super().__init__() + assert global_pool in ('', 'avg', 'token') + assert class_token or global_pool != 'token' + norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-06) + act_layer = act_layer or nn.GELU + self.num_classes = num_classes + self.global_pool = global_pool + self.num_features = self.head_hidden_size = self.embed_dim = embed_dim + self.num_prefix_tokens = 1 if class_token else 0 + self.grad_checkpointing = False + self.patch_embed = embed_layer(img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim) + feat_size = self.patch_embed.grid_size + r = self.patch_embed.feat_ratio() if hasattr(self.patch_embed, 'feat_ratio') else patch_size + rel_pos_args = dict(window_size=feat_size, prefix_tokens=self.num_prefix_tokens) + if rel_pos_type.startswith('mlp'): + if rel_pos_dim: + rel_pos_args['hidden_dim'] = rel_pos_dim + if 'swin' in rel_pos_type: + rel_pos_args['mode'] = 'swin' + rel_pos_cls = partial(RelPosMlp, **rel_pos_args) + else: + rel_pos_cls = partial(RelPosBias, **rel_pos_args) + self.shared_rel_pos = None + if shared_rel_pos: + self.shared_rel_pos = rel_pos_cls(num_heads=num_heads) + rel_pos_cls = None + self.cls_token = nn.Parameter(torch.zeros(1, self.num_prefix_tokens, embed_dim)) if class_token else None + dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] + self.blocks = nn.ModuleList([block_fn(dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_norm=qk_norm, rel_pos_cls=rel_pos_cls, init_values=init_values, proj_drop=proj_drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, act_layer=act_layer) for i in range(depth)]) + self.feature_info = [dict(module=f'blocks.{i}', num_chs=embed_dim, reduction=r) for i in range(depth)] + self.norm = norm_layer(embed_dim) if not fc_norm else nn.Identity() + self.fc_norm = norm_layer(embed_dim) if fc_norm else nn.Identity() + self.head_drop = nn.Dropout(drop_rate) + self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() + if weight_init != 'skip': + self.init_weights(weight_init) + if fix_init: + self.fix_init_weight() + + def init_weights(self, mode=''): + assert mode in ('jax', 'moco', '') + if self.cls_token is not None: + nn.init.normal_(self.cls_token, std=1e-06) + named_apply(get_init_weights_vit(mode), self) + + def fix_init_weight(self): + + def rescale(param, _layer_id): + param.div_(math.sqrt(2.0 * _layer_id)) + for (layer_id, layer) in enumerate(self.blocks): + rescale(layer.attn.proj.weight.data, layer_id + 1) + rescale(layer.mlp.fc2.weight.data, layer_id + 1) + + @torch.jit.ignore + def no_weight_decay(self): + return {'cls_token'} + + @torch.jit.ignore + def group_matcher(self, coarse=False): + return dict(stem='^cls_token|patch_embed', blocks=[('^blocks\\.(\\d+)', None), ('^norm', (99999,))]) + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + self.grad_checkpointing = enable + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.head + + def reset_classifier(self, num_classes: int, global_pool: Optional[str]=None): + self.num_classes = num_classes + if global_pool is not None: + assert global_pool in ('', 'avg', 'token') + self.global_pool = global_pool + self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() + + def forward_intermediates(self, x: torch.Tensor, indices: Optional[Union[int, List[int]]]=None, return_prefix_tokens: bool=False, norm: bool=False, stop_early: bool=False, output_fmt: str='NCHW', intermediates_only: bool=False) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]: + assert output_fmt in ('NCHW', 'NLC'), 'Output format must be one of NCHW or NLC.' + reshape = output_fmt == 'NCHW' + intermediates = [] + (take_indices, max_index) = feature_take_indices(len(self.blocks), indices) + (B, _, height, width) = x.shape + x = self.patch_embed(x) + if self.cls_token is not None: + x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1) + shared_rel_pos = self.shared_rel_pos.get_bias() if self.shared_rel_pos is not None else None + if torch.jit.is_scripting() or not stop_early: + blocks = self.blocks + else: + blocks = self.blocks[:max_index + 1] + for (i, blk) in enumerate(blocks): + x = blk(x, shared_rel_pos=shared_rel_pos) + if i in take_indices: + intermediates.append(self.norm(x) if norm else x) + if self.num_prefix_tokens: + prefix_tokens = [y[:, 0:self.num_prefix_tokens] for y in intermediates] + intermediates = [y[:, self.num_prefix_tokens:] for y in intermediates] + if reshape: + (H, W) = self.patch_embed.dynamic_feat_size((height, width)) + intermediates = [y.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous() for y in intermediates] + if not torch.jit.is_scripting() and return_prefix_tokens: + intermediates = list(zip(intermediates, prefix_tokens)) + if intermediates_only: + return intermediates + x = self.norm(x) + return (x, intermediates) + + def prune_intermediate_layers(self, indices: Union[int, List[int]]=1, prune_norm: bool=False, prune_head: bool=True): + (take_indices, max_index) = feature_take_indices(len(self.blocks), indices) + self.blocks = self.blocks[:max_index + 1] + if prune_norm: + self.norm = nn.Identity() + if prune_head: + self.fc_norm = nn.Identity() + self.reset_classifier(0, '') + return take_indices + + def forward_features(self, x): + x = self.patch_embed(x) + if self.cls_token is not None: + x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1) + shared_rel_pos = self.shared_rel_pos.get_bias() if self.shared_rel_pos is not None else None + for blk in self.blocks: + if self.grad_checkpointing and (not torch.jit.is_scripting()): + x = checkpoint(blk, x, shared_rel_pos=shared_rel_pos) + else: + x = blk(x, shared_rel_pos=shared_rel_pos) + x = self.norm(x) + return x + + def forward_head(self, x, pre_logits: bool=False): + if self.global_pool: + x = x[:, self.num_prefix_tokens:].mean(dim=1) if self.global_pool == 'avg' else x[:, 0] + x = self.fc_norm(x) + x = self.head_drop(x) + return x if pre_logits else self.head(x) + + def forward(self, x): + x = self.forward_features(x) + x = self.forward_head(x) + return x + +def _create_vision_transformer_relpos(variant, pretrained=False, **kwargs): + out_indices = kwargs.pop('out_indices', 3) + model = build_model_with_cfg(VisionTransformerRelPos, variant, pretrained, feature_cfg=dict(out_indices=out_indices, feature_cls='getter'), **kwargs) + return model + +def _cfg(url='', **kwargs): + return {'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, 'crop_pct': 0.9, 'interpolation': 'bicubic', 'fixed_input_size': True, 'mean': IMAGENET_INCEPTION_MEAN, 'std': IMAGENET_INCEPTION_STD, 'first_conv': 'patch_embed.proj', 'classifier': 'head', **kwargs} +default_cfgs = generate_default_cfgs({'vit_relpos_base_patch32_plus_rpn_256.sw_in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/vit_replos_base_patch32_plus_rpn_256-sw-dd486f51.pth', hf_hub_id='timm/', input_size=(3, 256, 256)), 'vit_relpos_base_patch16_plus_240.untrained': _cfg(url='', input_size=(3, 240, 240)), 'vit_relpos_small_patch16_224.sw_in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/vit_relpos_small_patch16_224-sw-ec2778b4.pth', hf_hub_id='timm/'), 'vit_relpos_medium_patch16_224.sw_in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/vit_relpos_medium_patch16_224-sw-11c174af.pth', hf_hub_id='timm/'), 'vit_relpos_base_patch16_224.sw_in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/vit_relpos_base_patch16_224-sw-49049aed.pth', hf_hub_id='timm/'), 'vit_srelpos_small_patch16_224.sw_in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/vit_srelpos_small_patch16_224-sw-6cdb8849.pth', hf_hub_id='timm/'), 'vit_srelpos_medium_patch16_224.sw_in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/vit_srelpos_medium_patch16_224-sw-ad702b8c.pth', hf_hub_id='timm/'), 'vit_relpos_medium_patch16_cls_224.sw_in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/vit_relpos_medium_patch16_cls_224-sw-cfe8e259.pth', hf_hub_id='timm/'), 'vit_relpos_base_patch16_cls_224.untrained': _cfg(), 'vit_relpos_base_patch16_clsgap_224.sw_in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/vit_relpos_base_patch16_gapcls_224-sw-1a341d6c.pth', hf_hub_id='timm/'), 'vit_relpos_small_patch16_rpn_224.untrained': _cfg(), 'vit_relpos_medium_patch16_rpn_224.sw_in1k': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/vit_relpos_medium_patch16_rpn_224-sw-5d2befd8.pth', hf_hub_id='timm/'), 'vit_relpos_base_patch16_rpn_224.untrained': _cfg()}) + +@register_model +def vit_relpos_base_patch32_plus_rpn_256(pretrained=False, **kwargs) -> VisionTransformerRelPos: + model_args = dict(patch_size=32, embed_dim=896, depth=12, num_heads=14, block_fn=ResPostRelPosBlock) + model = _create_vision_transformer_relpos('vit_relpos_base_patch32_plus_rpn_256', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_relpos_base_patch16_plus_240(pretrained=False, **kwargs) -> VisionTransformerRelPos: + model_args = dict(patch_size=16, embed_dim=896, depth=12, num_heads=14) + model = _create_vision_transformer_relpos('vit_relpos_base_patch16_plus_240', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_relpos_small_patch16_224(pretrained=False, **kwargs) -> VisionTransformerRelPos: + model_args = dict(patch_size=16, embed_dim=384, depth=12, num_heads=6, qkv_bias=False, fc_norm=True) + model = _create_vision_transformer_relpos('vit_relpos_small_patch16_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_relpos_medium_patch16_224(pretrained=False, **kwargs) -> VisionTransformerRelPos: + model_args = dict(patch_size=16, embed_dim=512, depth=12, num_heads=8, qkv_bias=False, fc_norm=True) + model = _create_vision_transformer_relpos('vit_relpos_medium_patch16_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_relpos_base_patch16_224(pretrained=False, **kwargs) -> VisionTransformerRelPos: + model_args = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, qkv_bias=False, fc_norm=True) + model = _create_vision_transformer_relpos('vit_relpos_base_patch16_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_srelpos_small_patch16_224(pretrained=False, **kwargs) -> VisionTransformerRelPos: + model_args = dict(patch_size=16, embed_dim=384, depth=12, num_heads=6, qkv_bias=False, fc_norm=False, rel_pos_dim=384, shared_rel_pos=True) + model = _create_vision_transformer_relpos('vit_srelpos_small_patch16_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_srelpos_medium_patch16_224(pretrained=False, **kwargs) -> VisionTransformerRelPos: + model_args = dict(patch_size=16, embed_dim=512, depth=12, num_heads=8, qkv_bias=False, fc_norm=False, rel_pos_dim=512, shared_rel_pos=True) + model = _create_vision_transformer_relpos('vit_srelpos_medium_patch16_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_relpos_medium_patch16_cls_224(pretrained=False, **kwargs) -> VisionTransformerRelPos: + model_args = dict(patch_size=16, embed_dim=512, depth=12, num_heads=8, qkv_bias=False, fc_norm=False, rel_pos_dim=256, class_token=True, global_pool='token') + model = _create_vision_transformer_relpos('vit_relpos_medium_patch16_cls_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_relpos_base_patch16_cls_224(pretrained=False, **kwargs) -> VisionTransformerRelPos: + model_args = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, qkv_bias=False, class_token=True, global_pool='token') + model = _create_vision_transformer_relpos('vit_relpos_base_patch16_cls_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_relpos_base_patch16_clsgap_224(pretrained=False, **kwargs) -> VisionTransformerRelPos: + model_args = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, qkv_bias=False, fc_norm=True, class_token=True) + model = _create_vision_transformer_relpos('vit_relpos_base_patch16_clsgap_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_relpos_small_patch16_rpn_224(pretrained=False, **kwargs) -> VisionTransformerRelPos: + model_args = dict(patch_size=16, embed_dim=384, depth=12, num_heads=6, qkv_bias=False, block_fn=ResPostRelPosBlock) + model = _create_vision_transformer_relpos('vit_relpos_small_patch16_rpn_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_relpos_medium_patch16_rpn_224(pretrained=False, **kwargs) -> VisionTransformerRelPos: + model_args = dict(patch_size=16, embed_dim=512, depth=12, num_heads=8, qkv_bias=False, block_fn=ResPostRelPosBlock) + model = _create_vision_transformer_relpos('vit_relpos_medium_patch16_rpn_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vit_relpos_base_patch16_rpn_224(pretrained=False, **kwargs) -> VisionTransformerRelPos: + model_args = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, qkv_bias=False, block_fn=ResPostRelPosBlock) + model = _create_vision_transformer_relpos('vit_relpos_base_patch16_rpn_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +# File: pytorch-image-models-main/timm/models/vision_transformer_sam.py +"""""" +import logging +from functools import partial +from typing import Callable, List, Optional, Tuple, Union +import torch +import torch.nn as nn +import torch.nn.functional as F +import torch.utils.checkpoint +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD +from timm.layers import PatchEmbed, Mlp, DropPath, PatchDropout, LayerNorm2d, ClassifierHead, NormMlpClassifierHead, Format, resample_abs_pos_embed_nhwc, RotaryEmbeddingCat, apply_rot_embed_cat, to_2tuple, use_fused_attn +from torch.jit import Final +from ._builder import build_model_with_cfg +from ._features import feature_take_indices +from ._features_fx import register_notrace_function +from ._manipulate import checkpoint_seq +from ._registry import generate_default_cfgs, register_model +__all__ = ['VisionTransformerSAM'] +_logger = logging.getLogger(__name__) + +def get_rel_pos(q_size: int, k_size: int, rel_pos: torch.Tensor) -> torch.Tensor: + max_rel_dist = int(2 * max(q_size, k_size) - 1) + if rel_pos.shape[0] != max_rel_dist: + rel_pos_resized = F.interpolate(rel_pos.reshape(1, rel_pos.shape[0], -1).permute(0, 2, 1), size=max_rel_dist, mode='linear') + rel_pos_resized = rel_pos_resized.reshape(-1, max_rel_dist).permute(1, 0) + else: + rel_pos_resized = rel_pos + q_coords = torch.arange(q_size)[:, None] * max(k_size / q_size, 1.0) + k_coords = torch.arange(k_size)[None, :] * max(q_size / k_size, 1.0) + relative_coords = q_coords - k_coords + (k_size - 1) * max(q_size / k_size, 1.0) + return rel_pos_resized[relative_coords.long()] +register_notrace_function(get_rel_pos) + +def get_decomposed_rel_pos_bias(q: torch.Tensor, rel_pos_h: torch.Tensor, rel_pos_w: torch.Tensor, q_size: Tuple[int, int], k_size: Tuple[int, int]) -> torch.Tensor: + (q_h, q_w) = q_size + (k_h, k_w) = k_size + Rh = get_rel_pos(q_h, k_h, rel_pos_h) + Rw = get_rel_pos(q_w, k_w, rel_pos_w) + (B, _, dim) = q.shape + r_q = q.reshape(B, q_h, q_w, dim) + rel_h = torch.einsum('bhwc,hkc->bhwk', r_q, Rh) + rel_w = torch.einsum('bhwc,wkc->bhwk', r_q, Rw) + attn_bias = rel_h[:, :, :, :, None] + rel_w[:, :, :, None, :] + return attn_bias.reshape(-1, q_h * q_w, k_h * k_w) + +class Attention(nn.Module): + fused_attn: Final[bool] + + def __init__(self, dim, num_heads=8, qkv_bias=True, qk_norm=False, attn_drop=0.0, proj_drop=0.0, norm_layer=nn.LayerNorm, use_rel_pos: bool=False, input_size: Optional[Tuple[int, int]]=None, rope: Optional[nn.Module]=None): + super().__init__() + assert dim % num_heads == 0, 'dim should be divisible by num_heads' + self.num_heads = num_heads + self.head_dim = dim // num_heads + self.scale = self.head_dim ** (-0.5) + self.fused_attn = use_fused_attn() + self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) + self.q_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity() + self.k_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity() + self.attn_drop = nn.Dropout(attn_drop) + self.proj = nn.Linear(dim, dim) + self.proj_drop = nn.Dropout(proj_drop) + self.use_rel_pos = use_rel_pos + if self.use_rel_pos: + assert rope is None + assert input_size is not None, 'Input size must be provided if using relative positional encoding.' + self.rel_pos_h = nn.Parameter(torch.zeros(2 * input_size[0] - 1, self.head_dim)) + self.rel_pos_w = nn.Parameter(torch.zeros(2 * input_size[1] - 1, self.head_dim)) + self.rope = rope + + def forward(self, x): + (B, H, W, _) = x.shape + N = H * W + x = x.reshape(B, N, -1) + qkv = self.qkv(x).view(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) + (q, k, v) = qkv.reshape(3, B * self.num_heads, N, -1).unbind(0) + (q, k) = (self.q_norm(q), self.k_norm(k)) + if self.use_rel_pos: + attn_bias = get_decomposed_rel_pos_bias(q, self.rel_pos_h, self.rel_pos_w, (H, W), (H, W)) + else: + attn_bias = None + if self.rope is not None: + rope = self.rope.get_embed() + q = apply_rot_embed_cat(q, rope).type_as(v) + k = apply_rot_embed_cat(k, rope).type_as(v) + if self.fused_attn: + x = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=attn_bias, dropout_p=self.attn_drop.p if self.training else 0.0) + else: + q = q * self.scale + attn = q @ k.transpose(-2, -1) + if attn_bias is not None: + attn = attn + attn_bias + attn = attn.softmax(dim=-1) + attn = self.attn_drop(attn) + x = attn @ v + x = x.view(B, self.num_heads, N, -1).transpose(1, 2).reshape(B, N, -1) + x = self.proj(x) + x = self.proj_drop(x) + x = x.view(B, H, W, -1) + return x + +class LayerScale(nn.Module): + + def __init__(self, dim, init_values=1e-05, inplace=False): + super().__init__() + self.inplace = inplace + self.gamma = nn.Parameter(init_values * torch.ones(dim)) + + def forward(self, x): + return x.mul_(self.gamma) if self.inplace else x * self.gamma + +class Block(nn.Module): + + def __init__(self, dim, num_heads, mlp_ratio=4.0, qkv_bias=True, qk_norm=False, proj_drop=0.0, attn_drop=0.0, init_values=None, drop_path=0.0, act_layer=nn.GELU, norm_layer=nn.LayerNorm, mlp_layer=Mlp, use_rel_pos=False, window_size=0, input_size=None, rope=None): + super().__init__() + self.window_size = window_size + self.norm1 = norm_layer(dim) + self.attn = Attention(dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_norm=qk_norm, attn_drop=attn_drop, proj_drop=proj_drop, norm_layer=norm_layer, use_rel_pos=use_rel_pos, input_size=input_size if window_size == 0 else (window_size, window_size), rope=rope) + self.ls1 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity() + self.drop_path1 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + self.norm2 = norm_layer(dim) + self.mlp = mlp_layer(in_features=dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer, drop=proj_drop) + self.ls2 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity() + self.drop_path2 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + + def forward(self, x): + (B, H, W, _) = x.shape + shortcut = x + x = self.norm1(x) + pad_hw: Optional[Tuple[int, int]] = None + if self.window_size > 0: + (x, pad_hw) = window_partition(x, self.window_size) + x = self.drop_path1(self.ls1(self.attn(x))) + if self.window_size > 0: + x = window_unpartition(x, self.window_size, (H, W), pad_hw) + x = shortcut + x + x = x.reshape(B, H * W, -1) + x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x)))) + x = x.reshape(B, H, W, -1) + return x + +def window_partition(x: torch.Tensor, window_size: int) -> Tuple[torch.Tensor, Tuple[int, int]]: + (B, H, W, C) = x.shape + pad_h = (window_size - H % window_size) % window_size + pad_w = (window_size - W % window_size) % window_size + x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h)) + (Hp, Wp) = (H + pad_h, W + pad_w) + x = x.view(B, Hp // window_size, window_size, Wp // window_size, window_size, C) + windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C) + return (windows, (Hp, Wp)) + +def window_unpartition(windows: torch.Tensor, window_size: int, hw: Tuple[int, int], pad_hw: Optional[Tuple[int, int]]=None) -> torch.Tensor: + (Hp, Wp) = pad_hw if pad_hw is not None else hw + (H, W) = hw + B = windows.shape[0] // (Hp * Wp // window_size // window_size) + x = windows.view(B, Hp // window_size, Wp // window_size, window_size, window_size, -1) + x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, Hp, Wp, -1) + x = x[:, :H, :W, :].contiguous() + return x + +class VisionTransformerSAM(nn.Module): + + def __init__(self, img_size: int=1024, patch_size: int=16, in_chans: int=3, num_classes: int=768, embed_dim: int=768, depth: int=12, num_heads: int=12, mlp_ratio: float=4.0, qkv_bias: bool=True, qk_norm: bool=False, init_values: Optional[float]=None, pre_norm: bool=False, drop_rate: float=0.0, pos_drop_rate: float=0.0, patch_drop_rate: float=0.0, proj_drop_rate: float=0.0, attn_drop_rate: float=0.0, drop_path_rate: float=0.0, weight_init: str='', embed_layer: Callable=partial(PatchEmbed, output_fmt=Format.NHWC, strict_img_size=False), norm_layer: Optional[Callable]=nn.LayerNorm, act_layer: Optional[Callable]=nn.GELU, block_fn: Callable=Block, mlp_layer: Callable=Mlp, use_abs_pos: bool=True, use_rel_pos: bool=False, use_rope: bool=False, window_size: int=14, global_attn_indexes: Tuple[int, ...]=(), neck_chans: int=256, global_pool: str='avg', head_hidden_size: Optional[int]=None, ref_feat_shape: Optional[Tuple[Tuple[int, int], Tuple[int, int]]]=None): + super().__init__() + norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-06) + act_layer = act_layer or nn.GELU + self.num_classes = num_classes + self.global_pool = global_pool + self.num_features = self.head_hidden_size = self.embed_dim = embed_dim + self.grad_checkpointing = False + self.patch_embed = embed_layer(img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim, bias=not pre_norm) + grid_size = self.patch_embed.grid_size + r = self.patch_embed.feat_ratio() if hasattr(self.patch_embed, 'feat_ratio') else patch_size + if use_abs_pos: + self.pos_embed = nn.Parameter(torch.zeros(1, grid_size[0], grid_size[1], embed_dim)) + else: + self.pos_embed = None + self.pos_drop = nn.Dropout(p=pos_drop_rate) + if patch_drop_rate > 0: + self.patch_drop = PatchDropout(patch_drop_rate, num_prefix_tokens=0) + else: + self.patch_drop = nn.Identity() + self.norm_pre = norm_layer(embed_dim) if pre_norm else nn.Identity() + if use_rope: + assert not use_rel_pos, 'ROPE and relative pos embeddings should not be enabled at same time' + if ref_feat_shape is not None: + assert len(ref_feat_shape) == 2 + ref_feat_shape_global = to_2tuple(ref_feat_shape[0]) + ref_feat_shape_window = to_2tuple(ref_feat_shape[1]) + else: + ref_feat_shape_global = ref_feat_shape_window = None + self.rope_global = RotaryEmbeddingCat(embed_dim // num_heads, in_pixels=False, feat_shape=grid_size, ref_feat_shape=ref_feat_shape_global) + self.rope_window = RotaryEmbeddingCat(embed_dim // num_heads, in_pixels=False, feat_shape=to_2tuple(window_size), ref_feat_shape=ref_feat_shape_window) + else: + self.rope_global = None + self.rope_window = None + dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] + self.blocks = nn.Sequential(*[block_fn(dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_norm=qk_norm, init_values=init_values, proj_drop=proj_drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, act_layer=act_layer, mlp_layer=mlp_layer, use_rel_pos=use_rel_pos, window_size=window_size if i not in global_attn_indexes else 0, input_size=grid_size, rope=self.rope_window if i not in global_attn_indexes else self.rope_global) for i in range(depth)]) + self.feature_info = [dict(module=f'blocks.{i}', num_chs=embed_dim, reduction=r) for i in range(depth)] + if neck_chans: + self.neck = nn.Sequential(nn.Conv2d(embed_dim, neck_chans, kernel_size=1, bias=False), LayerNorm2d(neck_chans), nn.Conv2d(neck_chans, neck_chans, kernel_size=3, padding=1, bias=False), LayerNorm2d(neck_chans)) + self.num_features = neck_chans + else: + if head_hidden_size: + self.neck = nn.Identity() + else: + self.neck = LayerNorm2d(embed_dim) + neck_chans = embed_dim + if head_hidden_size: + self.head = NormMlpClassifierHead(neck_chans, num_classes, hidden_size=head_hidden_size, pool_type=global_pool, drop_rate=drop_rate) + else: + self.head = ClassifierHead(neck_chans, num_classes, pool_type=global_pool, drop_rate=drop_rate) + + @torch.jit.ignore + def no_weight_decay(self): + return {'pos_embed', 'dist_token'} + + @torch.jit.ignore + def group_matcher(self, coarse=False): + return dict(stem='^pos_embed|patch_embed', blocks=[('^blocks\\.(\\d+)', None), ('^norm', (99999,))]) + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + self.grad_checkpointing = enable + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.head + + def reset_classifier(self, num_classes: int, global_pool: Optional[str]=None): + self.head.reset(num_classes, global_pool) + + def forward_intermediates(self, x: torch.Tensor, indices: Optional[Union[int, List[int]]]=None, norm: bool=False, stop_early: bool=False, output_fmt: str='NCHW', intermediates_only: bool=False) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]: + assert output_fmt == 'NCHW', 'Output shape for ViT-SAM must be NCHW.' + intermediates = [] + (take_indices, max_index) = feature_take_indices(len(self.blocks), indices) + x = self.patch_embed(x) + if self.pos_embed is not None: + x = x + resample_abs_pos_embed_nhwc(self.pos_embed, x.shape[1:3]) + x = self.pos_drop(x) + x = self.patch_drop(x) + x = self.norm_pre(x) + if torch.jit.is_scripting() or not stop_early: + blocks = self.blocks + else: + blocks = self.blocks[:max_index + 1] + for (i, blk) in enumerate(blocks): + x = blk(x) + if i in take_indices: + if norm: + intermediates.append(self.neck(x.permute(0, 3, 1, 2))) + else: + intermediates.append(x.permute(0, 3, 1, 2)) + if intermediates_only: + return intermediates + x = self.neck(x.permute(0, 3, 1, 2)) + return (x, intermediates) + + def prune_intermediate_layers(self, indices: Optional[Union[int, List[int]]]=None, prune_norm: bool=False, prune_head: bool=True): + (take_indices, max_index) = feature_take_indices(len(self.blocks), indices) + self.blocks = self.blocks[:max_index + 1] + if prune_norm: + self.neck = nn.Identity() + if prune_head: + self.reset_classifier(0, '') + return take_indices + + def forward_features(self, x): + x = self.patch_embed(x) + if self.pos_embed is not None: + x = x + resample_abs_pos_embed_nhwc(self.pos_embed, x.shape[1:3]) + x = self.pos_drop(x) + x = self.patch_drop(x) + x = self.norm_pre(x) + if self.grad_checkpointing and (not torch.jit.is_scripting()): + x = checkpoint_seq(self.blocks, x) + else: + x = self.blocks(x) + x = self.neck(x.permute(0, 3, 1, 2)) + return x + + def forward_head(self, x, pre_logits: bool=False): + return self.head(x, pre_logits=True) if pre_logits else self.head(x) + + def forward(self, x): + x = self.forward_features(x) + x = self.forward_head(x) + return x + +def checkpoint_filter_fn(state_dict, model): + sam_checkpoint = 'image_encoder.patch_embed.proj.weight' in state_dict + out_dict = {} + for (k, v) in state_dict.items(): + if k.startswith('image_encoder.'): + k = k[14:] + k = k.replace('mlp.lin', 'mlp.fc') + elif sam_checkpoint: + continue + out_dict[k] = v + return out_dict + +def _cfg(url='', **kwargs): + return {'url': url, 'num_classes': 1000, 'input_size': (3, 1024, 1024), 'pool_size': None, 'crop_pct': 0.9, 'interpolation': 'bicubic', 'fixed_input_size': True, 'mean': IMAGENET_INCEPTION_MEAN, 'std': IMAGENET_INCEPTION_STD, 'first_conv': 'patch_embed.proj', 'classifier': 'head.fc', **kwargs} +default_cfgs = generate_default_cfgs({'samvit_base_patch16.sa1b': _cfg(url='https://dl.fbaipublicfiles.com/segment_anything/sam_vit_b_01ec64.pth', hf_hub_id='timm/', license='apache-2.0', mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, num_classes=0, input_size=(3, 1024, 1024), crop_pct=1.0), 'samvit_large_patch16.sa1b': _cfg(url='https://dl.fbaipublicfiles.com/segment_anything/sam_vit_l_0b3195.pth', hf_hub_id='timm/', license='apache-2.0', mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, num_classes=0, input_size=(3, 1024, 1024), crop_pct=1.0), 'samvit_huge_patch16.sa1b': _cfg(url='https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth', hf_hub_id='timm/', license='apache-2.0', mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, num_classes=0, input_size=(3, 1024, 1024), crop_pct=1.0), 'samvit_base_patch16_224': _cfg(mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, num_classes=1000, input_size=(3, 224, 224), crop_pct=0.9)}) + +def _create_vision_transformer(variant, pretrained=False, **kwargs): + out_indices = kwargs.pop('out_indices', 3) + return build_model_with_cfg(VisionTransformerSAM, variant, pretrained, pretrained_filter_fn=checkpoint_filter_fn, feature_cfg=dict(out_indices=out_indices, feature_cls='getter'), **kwargs) + +@register_model +def samvit_base_patch16(pretrained=False, **kwargs) -> VisionTransformerSAM: + model_args = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, global_attn_indexes=[2, 5, 8, 11], window_size=14, use_rel_pos=True, img_size=1024) + model = _create_vision_transformer('samvit_base_patch16', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def samvit_large_patch16(pretrained=False, **kwargs) -> VisionTransformerSAM: + model_args = dict(patch_size=16, embed_dim=1024, depth=24, num_heads=16, global_attn_indexes=[5, 11, 17, 23], window_size=14, use_rel_pos=True, img_size=1024) + model = _create_vision_transformer('samvit_large_patch16', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def samvit_huge_patch16(pretrained=False, **kwargs) -> VisionTransformerSAM: + model_args = dict(patch_size=16, embed_dim=1280, depth=32, num_heads=16, global_attn_indexes=[7, 15, 23, 31], window_size=14, use_rel_pos=True, img_size=1024) + model = _create_vision_transformer('samvit_huge_patch16', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def samvit_base_patch16_224(pretrained=False, **kwargs) -> VisionTransformerSAM: + model_args = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, global_attn_indexes=[2, 5, 8, 11], window_size=14, use_rel_pos=True, use_abs_pos=False, img_size=224, neck_chans=None) + model = _create_vision_transformer('samvit_base_patch16_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +# File: pytorch-image-models-main/timm/models/vitamin.py +"""""" +import math +from dataclasses import dataclass, field +from functools import partial +from typing import Optional, Union, Tuple +import torch +import torch.nn as nn +from timm.data import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD +from timm.layers import create_act_layer, get_norm_layer, get_norm_act_layer, create_conv2d, make_divisible, DropPath, HybridEmbed +from ._builder import build_model_with_cfg +from ._manipulate import named_apply, checkpoint_seq +from ._registry import register_model, generate_default_cfgs +from .vision_transformer import VisionTransformer, checkpoint_filter_fn + +@dataclass +class VitConvCfg: + expand_ratio: float = 4.0 + expand_output: bool = True + kernel_size: int = 3 + group_size: int = 1 + pre_norm_act: bool = False + stride_mode: str = 'dw' + pool_type: str = 'avg2' + downsample_pool_type: str = 'avg2' + act_layer: str = 'gelu' + norm_layer: str = '' + norm_eps: float = 1e-05 + down_shortcut: Optional[bool] = True + mlp: str = 'mlp' + +@dataclass +class VitCfg: + embed_dim: Tuple[Union[int, Tuple[int, ...]], ...] = (96, 192, 384, 768) + depths: Tuple[Union[int, Tuple[int, ...]], ...] = (2, 3, 5, 2) + stem_width: int = 64 + conv_cfg: VitConvCfg = field(default_factory=VitConvCfg) + head_type: str = '' + +def _init_conv(module, name, scheme=''): + if isinstance(module, nn.Conv2d): + fan_out = module.kernel_size[0] * module.kernel_size[1] * module.out_channels + fan_out //= module.groups + nn.init.normal_(module.weight, 0, math.sqrt(2.0 / fan_out)) + if module.bias is not None: + nn.init.zeros_(module.bias) + +class Stem(nn.Module): + + def __init__(self, in_chs: int, out_chs: int, act_layer: str='gelu', norm_layer: str='layernorm2d', norm_eps: float=1e-06, bias: bool=True): + super().__init__() + norm_act_layer = partial(get_norm_act_layer(norm_layer, act_layer), eps=norm_eps) + self.out_chs = out_chs + self.conv1 = create_conv2d(in_chs, out_chs, 3, stride=2, bias=bias) + self.norm1 = norm_act_layer(out_chs) + self.conv2 = create_conv2d(out_chs, out_chs, 3, stride=1, bias=bias) + named_apply(_init_conv, self) + + def forward(self, x): + x = self.conv1(x) + x = self.norm1(x) + x = self.conv2(x) + return x + +class Downsample2d(nn.Module): + + def __init__(self, dim: int, dim_out: int, pool_type: str='avg2', bias: bool=True): + super().__init__() + self.pool = nn.AvgPool2d(kernel_size=3, stride=2, padding=1, count_include_pad=False) + if dim != dim_out: + self.expand = nn.Conv2d(dim, dim_out, 1, bias=bias) + else: + self.expand = nn.Identity() + + def forward(self, x): + x = self.pool(x) + x = self.expand(x) + return x + +class StridedConv(nn.Module): + + def __init__(self, kernel_size=3, stride=2, padding=1, in_chans=3, embed_dim=768): + super().__init__() + norm_layer = partial(get_norm_layer('layernorm2d'), eps=1e-06) + self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding) + self.norm = norm_layer(in_chans) + + def forward(self, x): + x = self.norm(x) + x = self.proj(x) + return x + +class MbConvLNBlock(nn.Module): + + def __init__(self, in_chs: int, out_chs: int, stride: int=1, drop_path: float=0.0, kernel_size: int=3, norm_layer: str='layernorm2d', norm_eps: float=1e-06, act_layer: str='gelu', expand_ratio: float=4.0): + super(MbConvLNBlock, self).__init__() + (self.stride, self.in_chs, self.out_chs) = (stride, in_chs, out_chs) + mid_chs = make_divisible(out_chs * expand_ratio) + prenorm_act_layer = partial(get_norm_act_layer(norm_layer, act_layer), eps=norm_eps) + if stride == 2: + self.shortcut = Downsample2d(in_chs, out_chs, pool_type='avg', bias=True) + elif in_chs != out_chs: + self.shortcut = nn.Conv2d(in_chs, out_chs, 1, bias=True) + else: + self.shortcut = nn.Identity() + self.pre_norm = prenorm_act_layer(in_chs, apply_act=False) + self.down = nn.Identity() + self.conv1_1x1 = create_conv2d(in_chs, mid_chs, 1, stride=1, bias=True) + self.act1 = create_act_layer(act_layer, inplace=True) + self.conv2_kxk = create_conv2d(mid_chs, mid_chs, kernel_size, stride=stride, dilation=1, groups=mid_chs, bias=True) + self.act2 = create_act_layer(act_layer, inplace=True) + self.conv3_1x1 = create_conv2d(mid_chs, out_chs, 1, bias=True) + self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + + def init_weights(self, scheme=''): + named_apply(partial(_init_conv, scheme=scheme), self) + + def forward(self, x): + shortcut = self.shortcut(x) + x = self.pre_norm(x) + x = self.down(x) + x = self.conv1_1x1(x) + x = self.act1(x) + x = self.conv2_kxk(x) + x = self.act2(x) + x = self.conv3_1x1(x) + x = self.drop_path(x) + shortcut + return x + +class MbConvStages(nn.Module): + + def __init__(self, cfg: VitCfg, img_size: Union[int, Tuple[int, int]]=224, in_chans: int=3): + super().__init__() + self.grad_checkpointing = False + self.stem = Stem(in_chs=in_chans, out_chs=cfg.stem_width) + stages = [] + self.num_stages = len(cfg.embed_dim) + for (s, dim) in enumerate(cfg.embed_dim[:2]): + stage_in_chs = cfg.embed_dim[s - 1] if s > 0 else cfg.stem_width + blocks = [MbConvLNBlock(in_chs=stage_in_chs if d == 0 else dim, out_chs=dim, stride=2 if d == 0 else 1) for d in range(cfg.depths[s])] + stages += [nn.Sequential(*blocks)] + self.stages = nn.Sequential(*stages) + self.pool = StridedConv(stride=2, in_chans=cfg.embed_dim[1], embed_dim=cfg.embed_dim[2]) + + def forward(self, x): + x = self.stem(x) + if self.grad_checkpointing and (not torch.jit.is_scripting()): + x = checkpoint_seq(self.stages, x) + else: + x = self.stages(x) + x = self.pool(x) + return x + +class GeGluMlp(nn.Module): + + def __init__(self, in_features, hidden_features, act_layer='gelu', drop=0.0): + super().__init__() + norm_layer = partial(get_norm_layer('layernorm'), eps=1e-06) + self.norm = norm_layer(in_features) + self.w0 = nn.Linear(in_features, hidden_features) + self.act = create_act_layer(act_layer) + self.w1 = nn.Linear(in_features, hidden_features) + self.w2 = nn.Linear(hidden_features, in_features) + + def forward(self, x): + x = self.norm(x) + x = self.act(self.w0(x)) * self.w1(x) + x = self.w2(x) + return x + +def _create_vitamin(variant, pretrained=False, embed_cfg=None, **kwargs): + out_indices = kwargs.pop('out_indices', 3) + assert embed_cfg is not None + backbone = MbConvStages(cfg=embed_cfg, in_chans=kwargs.get('in_chans', 3)) + kwargs['embed_layer'] = partial(HybridEmbed, backbone=backbone, proj=False) + kwargs.setdefault('patch_size', 1) + return build_model_with_cfg(VisionTransformer, variant, pretrained, pretrained_filter_fn=checkpoint_filter_fn, feature_cfg=dict(out_indices=out_indices, feature_cls='getter'), **kwargs) + +def _cfg(url='', **kwargs): + return {'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, 'crop_pct': 0.9, 'interpolation': 'bicubic', 'fixed_input_size': True, 'mean': OPENAI_CLIP_MEAN, 'std': OPENAI_CLIP_STD, 'first_conv': 'patch_embed.backbone.stem.conv1', 'classifier': 'head', **kwargs} +default_cfgs = generate_default_cfgs({'vitamin_small_224.datacomp1b_clip_ltt': _cfg(hf_hub_id='jienengchen/ViTamin-S-LTT', num_classes=384), 'vitamin_small_224.datacomp1b_clip': _cfg(hf_hub_id='jienengchen/ViTamin-S', num_classes=384), 'vitamin_base_224.datacomp1b_clip_ltt': _cfg(hf_hub_id='jienengchen/ViTamin-B-LTT', num_classes=768), 'vitamin_base_224.datacomp1b_clip': _cfg(hf_hub_id='jienengchen/ViTamin-B', num_classes=768), 'vitamin_large_224.datacomp1b_clip': _cfg(hf_hub_id='jienengchen/ViTamin-L-224px', num_classes=768), 'vitamin_large_256.datacomp1b_clip': _cfg(hf_hub_id='jienengchen/ViTamin-L-256px', num_classes=768, input_size=(3, 256, 256), crop_pct=1.0), 'vitamin_large_336.datacomp1b_clip': _cfg(hf_hub_id='jienengchen/ViTamin-L-336px', num_classes=768, input_size=(3, 336, 336), crop_pct=1.0), 'vitamin_large_384.datacomp1b_clip': _cfg(hf_hub_id='jienengchen/ViTamin-L-384px', num_classes=768, input_size=(3, 384, 384), crop_pct=1.0), 'vitamin_large2_224.datacomp1b_clip': _cfg(hf_hub_id='jienengchen/ViTamin-L2-224px', num_classes=1024), 'vitamin_large2_256.datacomp1b_clip': _cfg(hf_hub_id='jienengchen/ViTamin-L2-256px', num_classes=1024, input_size=(3, 256, 256), crop_pct=1.0), 'vitamin_large2_336.datacomp1b_clip': _cfg(hf_hub_id='jienengchen/ViTamin-L2-336px', num_classes=1024, input_size=(3, 336, 336), crop_pct=1.0), 'vitamin_large2_384.datacomp1b_clip': _cfg(hf_hub_id='jienengchen/ViTamin-L2-384px', num_classes=1024, input_size=(3, 384, 384), crop_pct=1.0), 'vitamin_xlarge_256.datacomp1b_clip': _cfg(hf_hub_id='jienengchen/ViTamin-XL-256px', num_classes=1152, input_size=(3, 256, 256), crop_pct=1.0), 'vitamin_xlarge_336.datacomp1b_clip': _cfg(hf_hub_id='jienengchen/ViTamin-XL-336px', num_classes=1152, input_size=(3, 336, 336), crop_pct=1.0), 'vitamin_xlarge_384.datacomp1b_clip': _cfg(hf_hub_id='jienengchen/ViTamin-XL-384px', num_classes=1152, input_size=(3, 384, 384), crop_pct=1.0)}) + +@register_model +def vitamin_small_224(pretrained=False, **kwargs) -> VisionTransformer: + embed_cfg = VitCfg(embed_dim=(64, 128, 384), depths=(2, 4, 1), stem_width=64, conv_cfg=VitConvCfg(norm_layer='layernorm2d', norm_eps=1e-06), head_type='1d') + model_args = dict(embed_dim=384, depth=14, num_heads=6, mlp_layer=GeGluMlp, mlp_ratio=2.0, class_token=False, global_pool='avg', embed_cfg=embed_cfg) + model = _create_vitamin('vitamin_small_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vitamin_base_224(pretrained=False, **kwargs) -> VisionTransformer: + embed_cfg = VitCfg(embed_dim=(128, 256, 768), depths=(2, 4, 1), stem_width=128, conv_cfg=VitConvCfg(norm_layer='layernorm2d', norm_eps=1e-06), head_type='1d') + model_args = dict(embed_dim=768, depth=14, num_heads=12, mlp_layer=GeGluMlp, mlp_ratio=2.0, class_token=False, global_pool='avg', embed_cfg=embed_cfg) + model = _create_vitamin('vitamin_base_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vitamin_large_224(pretrained=False, **kwargs) -> VisionTransformer: + embed_cfg = VitCfg(embed_dim=(160, 320, 1024), depths=(2, 4, 1), stem_width=160, conv_cfg=VitConvCfg(norm_layer='layernorm2d', norm_eps=1e-06), head_type='1d') + model_args = dict(embed_dim=1024, depth=31, num_heads=16, mlp_layer=GeGluMlp, mlp_ratio=2.0, class_token=False, global_pool='avg', embed_cfg=embed_cfg) + model = _create_vitamin('vitamin_large_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vitamin_large_256(pretrained=False, **kwargs) -> VisionTransformer: + embed_cfg = VitCfg(embed_dim=(160, 320, 1024), depths=(2, 4, 1), stem_width=160, conv_cfg=VitConvCfg(norm_layer='layernorm2d', norm_eps=1e-06), head_type='1d') + model_args = dict(img_size=256, embed_dim=1024, depth=31, num_heads=16, mlp_layer=GeGluMlp, mlp_ratio=2.0, class_token=False, global_pool='avg', embed_cfg=embed_cfg) + model = _create_vitamin('vitamin_large_256', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vitamin_large_336(pretrained=False, **kwargs) -> VisionTransformer: + embed_cfg = VitCfg(embed_dim=(160, 320, 1024), depths=(2, 4, 1), stem_width=160, conv_cfg=VitConvCfg(norm_layer='layernorm2d', norm_eps=1e-06), head_type='1d') + model_args = dict(img_size=336, embed_dim=1024, depth=31, num_heads=16, mlp_layer=GeGluMlp, mlp_ratio=2.0, class_token=False, global_pool='avg', embed_cfg=embed_cfg) + model = _create_vitamin('vitamin_large_336', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vitamin_large_384(pretrained=False, **kwargs) -> VisionTransformer: + embed_cfg = VitCfg(embed_dim=(160, 320, 1024), depths=(2, 4, 1), stem_width=160, conv_cfg=VitConvCfg(norm_layer='layernorm2d', norm_eps=1e-06), head_type='1d') + model_args = dict(img_size=384, embed_dim=1024, depth=31, num_heads=16, mlp_layer=GeGluMlp, mlp_ratio=2.0, class_token=False, global_pool='avg', embed_cfg=embed_cfg) + model = _create_vitamin('vitamin_large_384', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vitamin_large2_224(pretrained=False, **kwargs) -> VisionTransformer: + embed_cfg = VitCfg(embed_dim=(160, 320, 1024), depths=(2, 4, 1), stem_width=160, conv_cfg=VitConvCfg(norm_layer='layernorm2d', norm_eps=1e-06), head_type='1d') + model_args = dict(embed_dim=1024, depth=31, num_heads=16, mlp_layer=GeGluMlp, mlp_ratio=2.0, class_token=False, global_pool='avg', embed_cfg=embed_cfg) + model = _create_vitamin('vitamin_large2_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vitamin_large2_256(pretrained=False, **kwargs) -> VisionTransformer: + embed_cfg = VitCfg(embed_dim=(160, 320, 1024), depths=(2, 4, 1), stem_width=160, conv_cfg=VitConvCfg(norm_layer='layernorm2d', norm_eps=1e-06), head_type='1d') + model_args = dict(img_size=256, embed_dim=1024, depth=31, num_heads=16, mlp_layer=GeGluMlp, mlp_ratio=2.0, class_token=False, global_pool='avg', embed_cfg=embed_cfg) + model = _create_vitamin('vitamin_large2_256', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vitamin_large2_336(pretrained=False, **kwargs) -> VisionTransformer: + embed_cfg = VitCfg(embed_dim=(160, 320, 1024), depths=(2, 4, 1), stem_width=160, conv_cfg=VitConvCfg(norm_layer='layernorm2d', norm_eps=1e-06), head_type='1d') + model_args = dict(img_size=336, embed_dim=1024, depth=31, num_heads=16, mlp_layer=GeGluMlp, mlp_ratio=2.0, class_token=False, global_pool='avg', embed_cfg=embed_cfg) + model = _create_vitamin('vitamin_large2_336', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vitamin_large2_384(pretrained=False, **kwargs) -> VisionTransformer: + embed_cfg = VitCfg(embed_dim=(160, 320, 1024), depths=(2, 4, 1), stem_width=160, conv_cfg=VitConvCfg(norm_layer='layernorm2d', norm_eps=1e-06), head_type='1d') + model_args = dict(img_size=384, embed_dim=1024, depth=31, num_heads=16, mlp_layer=GeGluMlp, mlp_ratio=2.0, class_token=False, global_pool='avg', embed_cfg=embed_cfg) + model = _create_vitamin('vitamin_large2_384', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vitamin_xlarge_256(pretrained=False, **kwargs) -> VisionTransformer: + embed_cfg = VitCfg(embed_dim=(192, 384, 1152), depths=(2, 4, 1), stem_width=192, conv_cfg=VitConvCfg(norm_layer='layernorm2d', norm_eps=1e-06), head_type='1d') + model_args = dict(img_size=256, embed_dim=1152, depth=32, num_heads=16, mlp_layer=GeGluMlp, mlp_ratio=2.0, class_token=False, global_pool='avg', pos_embed='none', embed_cfg=embed_cfg) + model = _create_vitamin('vitamin_xlarge_256', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vitamin_xlarge_336(pretrained=False, **kwargs) -> VisionTransformer: + embed_cfg = VitCfg(embed_dim=(192, 384, 1152), depths=(2, 4, 1), stem_width=192, conv_cfg=VitConvCfg(norm_layer='layernorm2d', norm_eps=1e-06), head_type='1d') + model_args = dict(img_size=336, embed_dim=1152, depth=32, num_heads=16, mlp_layer=GeGluMlp, mlp_ratio=2.0, class_token=False, global_pool='avg', pos_embed='none', embed_cfg=embed_cfg) + model = _create_vitamin('vitamin_xlarge_256', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def vitamin_xlarge_384(pretrained=False, **kwargs) -> VisionTransformer: + embed_cfg = VitCfg(embed_dim=(192, 384, 1152), depths=(2, 4, 1), stem_width=192, conv_cfg=VitConvCfg(norm_layer='layernorm2d', norm_eps=1e-06), head_type='1d') + model_args = dict(img_size=384, embed_dim=1152, depth=32, num_heads=16, mlp_layer=GeGluMlp, mlp_ratio=2.0, class_token=False, global_pool='avg', pos_embed='none', embed_cfg=embed_cfg) + model = _create_vitamin('vitamin_xlarge_384', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +# File: pytorch-image-models-main/timm/models/volo.py +"""""" +import math +from typing import List, Optional, Tuple, Union +import numpy as np +import torch +import torch.nn as nn +import torch.nn.functional as F +from torch.utils.checkpoint import checkpoint +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from timm.layers import DropPath, Mlp, to_2tuple, to_ntuple, trunc_normal_, use_fused_attn +from ._builder import build_model_with_cfg +from ._features import feature_take_indices +from ._registry import register_model, generate_default_cfgs +__all__ = ['VOLO'] + +class OutlookAttention(nn.Module): + + def __init__(self, dim, num_heads, kernel_size=3, padding=1, stride=1, qkv_bias=False, attn_drop=0.0, proj_drop=0.0): + super().__init__() + head_dim = dim // num_heads + self.num_heads = num_heads + self.kernel_size = kernel_size + self.padding = padding + self.stride = stride + self.scale = head_dim ** (-0.5) + self.v = nn.Linear(dim, dim, bias=qkv_bias) + self.attn = nn.Linear(dim, kernel_size ** 4 * num_heads) + self.attn_drop = nn.Dropout(attn_drop) + self.proj = nn.Linear(dim, dim) + self.proj_drop = nn.Dropout(proj_drop) + self.unfold = nn.Unfold(kernel_size=kernel_size, padding=padding, stride=stride) + self.pool = nn.AvgPool2d(kernel_size=stride, stride=stride, ceil_mode=True) + + def forward(self, x): + (B, H, W, C) = x.shape + v = self.v(x).permute(0, 3, 1, 2) + (h, w) = (math.ceil(H / self.stride), math.ceil(W / self.stride)) + v = self.unfold(v).reshape(B, self.num_heads, C // self.num_heads, self.kernel_size * self.kernel_size, h * w).permute(0, 1, 4, 3, 2) + attn = self.pool(x.permute(0, 3, 1, 2)).permute(0, 2, 3, 1) + attn = self.attn(attn).reshape(B, h * w, self.num_heads, self.kernel_size * self.kernel_size, self.kernel_size * self.kernel_size).permute(0, 2, 1, 3, 4) + attn = attn * self.scale + attn = attn.softmax(dim=-1) + attn = self.attn_drop(attn) + x = (attn @ v).permute(0, 1, 4, 3, 2).reshape(B, C * self.kernel_size * self.kernel_size, h * w) + x = F.fold(x, output_size=(H, W), kernel_size=self.kernel_size, padding=self.padding, stride=self.stride) + x = self.proj(x.permute(0, 2, 3, 1)) + x = self.proj_drop(x) + return x + +class Outlooker(nn.Module): + + def __init__(self, dim, kernel_size, padding, stride=1, num_heads=1, mlp_ratio=3.0, attn_drop=0.0, drop_path=0.0, act_layer=nn.GELU, norm_layer=nn.LayerNorm, qkv_bias=False): + super().__init__() + self.norm1 = norm_layer(dim) + self.attn = OutlookAttention(dim, num_heads, kernel_size=kernel_size, padding=padding, stride=stride, qkv_bias=qkv_bias, attn_drop=attn_drop) + self.drop_path1 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + self.norm2 = norm_layer(dim) + self.mlp = Mlp(in_features=dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer) + self.drop_path2 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + + def forward(self, x): + x = x + self.drop_path1(self.attn(self.norm1(x))) + x = x + self.drop_path2(self.mlp(self.norm2(x))) + return x + +class Attention(nn.Module): + fused_attn: torch.jit.Final[bool] + + def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0.0, proj_drop=0.0): + super().__init__() + self.num_heads = num_heads + head_dim = dim // num_heads + self.scale = head_dim ** (-0.5) + self.fused_attn = use_fused_attn() + self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) + self.attn_drop = nn.Dropout(attn_drop) + self.proj = nn.Linear(dim, dim) + self.proj_drop = nn.Dropout(proj_drop) + + def forward(self, x): + (B, H, W, C) = x.shape + qkv = self.qkv(x).reshape(B, H * W, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) + (q, k, v) = qkv.unbind(0) + if self.fused_attn: + x = F.scaled_dot_product_attention(q, k, v, dropout_p=self.attn_drop.p if self.training else 0.0) + else: + q = q * self.scale + attn = q @ k.transpose(-2, -1) + attn = attn.softmax(dim=-1) + attn = self.attn_drop(attn) + x = attn @ v + x = x.transpose(1, 2).reshape(B, H, W, C) + x = self.proj(x) + x = self.proj_drop(x) + return x + +class Transformer(nn.Module): + + def __init__(self, dim, num_heads, mlp_ratio=4.0, qkv_bias=False, attn_drop=0.0, drop_path=0.0, act_layer=nn.GELU, norm_layer=nn.LayerNorm): + super().__init__() + self.norm1 = norm_layer(dim) + self.attn = Attention(dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop) + self.drop_path1 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + self.norm2 = norm_layer(dim) + self.mlp = Mlp(in_features=dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer) + self.drop_path2 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + + def forward(self, x): + x = x + self.drop_path1(self.attn(self.norm1(x))) + x = x + self.drop_path2(self.mlp(self.norm2(x))) + return x + +class ClassAttention(nn.Module): + + def __init__(self, dim, num_heads=8, head_dim=None, qkv_bias=False, attn_drop=0.0, proj_drop=0.0): + super().__init__() + self.num_heads = num_heads + if head_dim is not None: + self.head_dim = head_dim + else: + head_dim = dim // num_heads + self.head_dim = head_dim + self.scale = head_dim ** (-0.5) + self.kv = nn.Linear(dim, self.head_dim * self.num_heads * 2, bias=qkv_bias) + self.q = nn.Linear(dim, self.head_dim * self.num_heads, bias=qkv_bias) + self.attn_drop = nn.Dropout(attn_drop) + self.proj = nn.Linear(self.head_dim * self.num_heads, dim) + self.proj_drop = nn.Dropout(proj_drop) + + def forward(self, x): + (B, N, C) = x.shape + kv = self.kv(x).reshape(B, N, 2, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4) + (k, v) = kv.unbind(0) + q = self.q(x[:, :1, :]).reshape(B, self.num_heads, 1, self.head_dim) * self.scale + attn = q @ k.transpose(-2, -1) + attn = attn.softmax(dim=-1) + attn = self.attn_drop(attn) + cls_embed = (attn @ v).transpose(1, 2).reshape(B, 1, self.head_dim * self.num_heads) + cls_embed = self.proj(cls_embed) + cls_embed = self.proj_drop(cls_embed) + return cls_embed + +class ClassBlock(nn.Module): + + def __init__(self, dim, num_heads, head_dim=None, mlp_ratio=4.0, qkv_bias=False, drop=0.0, attn_drop=0.0, drop_path=0.0, act_layer=nn.GELU, norm_layer=nn.LayerNorm): + super().__init__() + self.norm1 = norm_layer(dim) + self.attn = ClassAttention(dim, num_heads=num_heads, head_dim=head_dim, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop) + self.drop_path1 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + self.norm2 = norm_layer(dim) + self.mlp = Mlp(in_features=dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer, drop=drop) + self.drop_path2 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + + def forward(self, x): + cls_embed = x[:, :1] + cls_embed = cls_embed + self.drop_path1(self.attn(self.norm1(x))) + cls_embed = cls_embed + self.drop_path2(self.mlp(self.norm2(cls_embed))) + return torch.cat([cls_embed, x[:, 1:]], dim=1) + +def get_block(block_type, **kargs): + if block_type == 'ca': + return ClassBlock(**kargs) + +def rand_bbox(size, lam, scale=1): + W = size[1] // scale + H = size[2] // scale + cut_rat = np.sqrt(1.0 - lam) + cut_w = (W * cut_rat).astype(int) + cut_h = (H * cut_rat).astype(int) + cx = np.random.randint(W) + cy = np.random.randint(H) + bbx1 = np.clip(cx - cut_w // 2, 0, W) + bby1 = np.clip(cy - cut_h // 2, 0, H) + bbx2 = np.clip(cx + cut_w // 2, 0, W) + bby2 = np.clip(cy + cut_h // 2, 0, H) + return (bbx1, bby1, bbx2, bby2) + +class PatchEmbed(nn.Module): + + def __init__(self, img_size=224, stem_conv=False, stem_stride=1, patch_size=8, in_chans=3, hidden_dim=64, embed_dim=384): + super().__init__() + assert patch_size in [4, 8, 16] + if stem_conv: + self.conv = nn.Sequential(nn.Conv2d(in_chans, hidden_dim, kernel_size=7, stride=stem_stride, padding=3, bias=False), nn.BatchNorm2d(hidden_dim), nn.ReLU(inplace=True), nn.Conv2d(hidden_dim, hidden_dim, kernel_size=3, stride=1, padding=1, bias=False), nn.BatchNorm2d(hidden_dim), nn.ReLU(inplace=True), nn.Conv2d(hidden_dim, hidden_dim, kernel_size=3, stride=1, padding=1, bias=False), nn.BatchNorm2d(hidden_dim), nn.ReLU(inplace=True)) + else: + self.conv = None + self.proj = nn.Conv2d(hidden_dim, embed_dim, kernel_size=patch_size // stem_stride, stride=patch_size // stem_stride) + self.num_patches = img_size // patch_size * (img_size // patch_size) + + def forward(self, x): + if self.conv is not None: + x = self.conv(x) + x = self.proj(x) + return x + +class Downsample(nn.Module): + + def __init__(self, in_embed_dim, out_embed_dim, patch_size=2): + super().__init__() + self.proj = nn.Conv2d(in_embed_dim, out_embed_dim, kernel_size=patch_size, stride=patch_size) + + def forward(self, x): + x = x.permute(0, 3, 1, 2) + x = self.proj(x) + x = x.permute(0, 2, 3, 1) + return x + +def outlooker_blocks(block_fn, index, dim, layers, num_heads=1, kernel_size=3, padding=1, stride=2, mlp_ratio=3.0, qkv_bias=False, attn_drop=0, drop_path_rate=0.0, **kwargs): + blocks = [] + for block_idx in range(layers[index]): + block_dpr = drop_path_rate * (block_idx + sum(layers[:index])) / (sum(layers) - 1) + blocks.append(block_fn(dim, kernel_size=kernel_size, padding=padding, stride=stride, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, attn_drop=attn_drop, drop_path=block_dpr)) + blocks = nn.Sequential(*blocks) + return blocks + +def transformer_blocks(block_fn, index, dim, layers, num_heads, mlp_ratio=3.0, qkv_bias=False, attn_drop=0, drop_path_rate=0.0, **kwargs): + blocks = [] + for block_idx in range(layers[index]): + block_dpr = drop_path_rate * (block_idx + sum(layers[:index])) / (sum(layers) - 1) + blocks.append(block_fn(dim, num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, attn_drop=attn_drop, drop_path=block_dpr)) + blocks = nn.Sequential(*blocks) + return blocks + +class VOLO(nn.Module): + + def __init__(self, layers, img_size=224, in_chans=3, num_classes=1000, global_pool='token', patch_size=8, stem_hidden_dim=64, embed_dims=None, num_heads=None, downsamples=(True, False, False, False), outlook_attention=(True, False, False, False), mlp_ratio=3.0, qkv_bias=False, drop_rate=0.0, pos_drop_rate=0.0, attn_drop_rate=0.0, drop_path_rate=0.0, norm_layer=nn.LayerNorm, post_layers=('ca', 'ca'), use_aux_head=True, use_mix_token=False, pooling_scale=2): + super().__init__() + num_layers = len(layers) + mlp_ratio = to_ntuple(num_layers)(mlp_ratio) + img_size = to_2tuple(img_size) + self.num_classes = num_classes + self.global_pool = global_pool + self.mix_token = use_mix_token + self.pooling_scale = pooling_scale + self.num_features = self.head_hidden_size = embed_dims[-1] + if use_mix_token: + self.beta = 1.0 + assert global_pool == 'token', 'return all tokens if mix_token is enabled' + self.grad_checkpointing = False + self.patch_embed = PatchEmbed(stem_conv=True, stem_stride=2, patch_size=patch_size, in_chans=in_chans, hidden_dim=stem_hidden_dim, embed_dim=embed_dims[0]) + r = patch_size + patch_grid = (img_size[0] // patch_size // pooling_scale, img_size[1] // patch_size // pooling_scale) + self.pos_embed = nn.Parameter(torch.zeros(1, patch_grid[0], patch_grid[1], embed_dims[-1])) + self.pos_drop = nn.Dropout(p=pos_drop_rate) + self.stage_ends = [] + self.feature_info = [] + network = [] + block_idx = 0 + for i in range(len(layers)): + if outlook_attention[i]: + stage = outlooker_blocks(Outlooker, i, embed_dims[i], layers, num_heads[i], mlp_ratio=mlp_ratio[i], qkv_bias=qkv_bias, attn_drop=attn_drop_rate, norm_layer=norm_layer) + else: + stage = transformer_blocks(Transformer, i, embed_dims[i], layers, num_heads[i], mlp_ratio=mlp_ratio[i], qkv_bias=qkv_bias, drop_path_rate=drop_path_rate, attn_drop=attn_drop_rate, norm_layer=norm_layer) + network.append(stage) + self.stage_ends.append(block_idx) + self.feature_info.append(dict(num_chs=embed_dims[i], reduction=r, module=f'network.{block_idx}')) + block_idx += 1 + if downsamples[i]: + network.append(Downsample(embed_dims[i], embed_dims[i + 1], 2)) + r *= 2 + block_idx += 1 + self.network = nn.ModuleList(network) + self.post_network = None + if post_layers is not None: + self.post_network = nn.ModuleList([get_block(post_layers[i], dim=embed_dims[-1], num_heads=num_heads[-1], mlp_ratio=mlp_ratio[-1], qkv_bias=qkv_bias, attn_drop=attn_drop_rate, drop_path=0.0, norm_layer=norm_layer) for i in range(len(post_layers))]) + self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dims[-1])) + trunc_normal_(self.cls_token, std=0.02) + if use_aux_head: + self.aux_head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() + else: + self.aux_head = None + self.norm = norm_layer(self.num_features) + self.head_drop = nn.Dropout(drop_rate) + self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() + trunc_normal_(self.pos_embed, std=0.02) + self.apply(self._init_weights) + + def _init_weights(self, m): + if isinstance(m, nn.Linear): + trunc_normal_(m.weight, std=0.02) + if isinstance(m, nn.Linear) and m.bias is not None: + nn.init.constant_(m.bias, 0) + + @torch.jit.ignore + def no_weight_decay(self): + return {'pos_embed', 'cls_token'} + + @torch.jit.ignore + def group_matcher(self, coarse=False): + return dict(stem='^cls_token|pos_embed|patch_embed', blocks=[('^network\\.(\\d+)\\.(\\d+)', None), ('^network\\.(\\d+)', (0,))], blocks2=[('^cls_token', (0,)), ('^post_network\\.(\\d+)', None), ('^norm', (99999,))]) + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + self.grad_checkpointing = enable + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.head + + def reset_classifier(self, num_classes: int, global_pool: Optional[str]=None): + self.num_classes = num_classes + if global_pool is not None: + self.global_pool = global_pool + self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() + if self.aux_head is not None: + self.aux_head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() + + def forward_tokens(self, x): + for (idx, block) in enumerate(self.network): + if idx == 2: + x = x + self.pos_embed + x = self.pos_drop(x) + if self.grad_checkpointing and (not torch.jit.is_scripting()): + x = checkpoint(block, x) + else: + x = block(x) + (B, H, W, C) = x.shape + x = x.reshape(B, -1, C) + return x + + def forward_cls(self, x): + (B, N, C) = x.shape + cls_tokens = self.cls_token.expand(B, -1, -1) + x = torch.cat([cls_tokens, x], dim=1) + for block in self.post_network: + if self.grad_checkpointing and (not torch.jit.is_scripting()): + x = checkpoint(block, x) + else: + x = block(x) + return x + + def forward_train(self, x): + x = self.patch_embed(x) + x = x.permute(0, 2, 3, 1) + if self.mix_token and self.training: + lam = np.random.beta(self.beta, self.beta) + (patch_h, patch_w) = (x.shape[1] // self.pooling_scale, x.shape[2] // self.pooling_scale) + (bbx1, bby1, bbx2, bby2) = rand_bbox(x.size(), lam, scale=self.pooling_scale) + temp_x = x.clone() + (sbbx1, sbby1) = (self.pooling_scale * bbx1, self.pooling_scale * bby1) + (sbbx2, sbby2) = (self.pooling_scale * bbx2, self.pooling_scale * bby2) + temp_x[:, sbbx1:sbbx2, sbby1:sbby2, :] = x.flip(0)[:, sbbx1:sbbx2, sbby1:sbby2, :] + x = temp_x + else: + (bbx1, bby1, bbx2, bby2) = (0, 0, 0, 0) + x = self.forward_tokens(x) + if self.post_network is not None: + x = self.forward_cls(x) + x = self.norm(x) + if self.global_pool == 'avg': + x_cls = x.mean(dim=1) + elif self.global_pool == 'token': + x_cls = x[:, 0] + else: + x_cls = x + if self.aux_head is None: + return x_cls + x_aux = self.aux_head(x[:, 1:]) + if not self.training: + return x_cls + 0.5 * x_aux.max(1)[0] + if self.mix_token and self.training: + x_aux = x_aux.reshape(x_aux.shape[0], patch_h, patch_w, x_aux.shape[-1]) + temp_x = x_aux.clone() + temp_x[:, bbx1:bbx2, bby1:bby2, :] = x_aux.flip(0)[:, bbx1:bbx2, bby1:bby2, :] + x_aux = temp_x + x_aux = x_aux.reshape(x_aux.shape[0], patch_h * patch_w, x_aux.shape[-1]) + return (x_cls, x_aux, (bbx1, bby1, bbx2, bby2)) + + def forward_intermediates(self, x: torch.Tensor, indices: Optional[Union[int, List[int]]]=None, norm: bool=False, stop_early: bool=False, output_fmt: str='NCHW', intermediates_only: bool=False) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]: + assert output_fmt in ('NCHW',), 'Output format must be NCHW.' + intermediates = [] + (take_indices, max_index) = feature_take_indices(len(self.stage_ends), indices) + take_indices = [self.stage_ends[i] for i in take_indices] + max_index = self.stage_ends[max_index] + (B, _, height, width) = x.shape + x = self.patch_embed(x).permute(0, 2, 3, 1) + if torch.jit.is_scripting() or not stop_early: + network = self.network + else: + network = self.network[:max_index + 1] + for (idx, block) in enumerate(network): + if idx == 2: + x = x + self.pos_embed + x = self.pos_drop(x) + x = block(x) + if idx in take_indices: + if norm and idx >= 2: + x_inter = self.norm(x) + else: + x_inter = x + intermediates.append(x_inter.permute(0, 3, 1, 2)) + if intermediates_only: + return intermediates + (B, H, W, C) = x.shape + x = x.reshape(B, -1, C) + if self.post_network is not None: + x = self.forward_cls(x) + x = self.norm(x) + return (x, intermediates) + + def prune_intermediate_layers(self, indices: Union[int, List[int]]=1, prune_norm: bool=False, prune_head: bool=True): + (take_indices, max_index) = feature_take_indices(len(self.stage_ends), indices) + max_index = self.stage_ends[max_index] + self.network = self.network[:max_index + 1] + if prune_norm: + self.norm = nn.Identity() + if prune_head: + self.post_network = nn.ModuleList() + self.reset_classifier(0, '') + return take_indices + + def forward_features(self, x): + x = self.patch_embed(x).permute(0, 2, 3, 1) + x = self.forward_tokens(x) + if self.post_network is not None: + x = self.forward_cls(x) + x = self.norm(x) + return x + + def forward_head(self, x, pre_logits: bool=False): + if self.global_pool == 'avg': + out = x.mean(dim=1) + elif self.global_pool == 'token': + out = x[:, 0] + else: + out = x + x = self.head_drop(x) + if pre_logits: + return out + out = self.head(out) + if self.aux_head is not None: + aux = self.aux_head(x[:, 1:]) + out = out + 0.5 * aux.max(1)[0] + return out + + def forward(self, x): + x = self.forward_features(x) + x = self.forward_head(x) + return x + +def _create_volo(variant, pretrained=False, **kwargs): + out_indices = kwargs.pop('out_indices', 3) + return build_model_with_cfg(VOLO, variant, pretrained, feature_cfg=dict(out_indices=out_indices, feature_cls='getter'), **kwargs) + +def _cfg(url='', **kwargs): + return {'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, 'crop_pct': 0.96, 'interpolation': 'bicubic', 'fixed_input_size': True, 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'patch_embed.conv.0', 'classifier': ('head', 'aux_head'), **kwargs} +default_cfgs = generate_default_cfgs({'volo_d1_224.sail_in1k': _cfg(hf_hub_id='timm/', url='https://github.com/sail-sg/volo/releases/download/volo_1/d1_224_84.2.pth.tar', crop_pct=0.96), 'volo_d1_384.sail_in1k': _cfg(hf_hub_id='timm/', url='https://github.com/sail-sg/volo/releases/download/volo_1/d1_384_85.2.pth.tar', crop_pct=1.0, input_size=(3, 384, 384)), 'volo_d2_224.sail_in1k': _cfg(hf_hub_id='timm/', url='https://github.com/sail-sg/volo/releases/download/volo_1/d2_224_85.2.pth.tar', crop_pct=0.96), 'volo_d2_384.sail_in1k': _cfg(hf_hub_id='timm/', url='https://github.com/sail-sg/volo/releases/download/volo_1/d2_384_86.0.pth.tar', crop_pct=1.0, input_size=(3, 384, 384)), 'volo_d3_224.sail_in1k': _cfg(hf_hub_id='timm/', url='https://github.com/sail-sg/volo/releases/download/volo_1/d3_224_85.4.pth.tar', crop_pct=0.96), 'volo_d3_448.sail_in1k': _cfg(hf_hub_id='timm/', url='https://github.com/sail-sg/volo/releases/download/volo_1/d3_448_86.3.pth.tar', crop_pct=1.0, input_size=(3, 448, 448)), 'volo_d4_224.sail_in1k': _cfg(hf_hub_id='timm/', url='https://github.com/sail-sg/volo/releases/download/volo_1/d4_224_85.7.pth.tar', crop_pct=0.96), 'volo_d4_448.sail_in1k': _cfg(hf_hub_id='timm/', url='https://github.com/sail-sg/volo/releases/download/volo_1/d4_448_86.79.pth.tar', crop_pct=1.15, input_size=(3, 448, 448)), 'volo_d5_224.sail_in1k': _cfg(hf_hub_id='timm/', url='https://github.com/sail-sg/volo/releases/download/volo_1/d5_224_86.10.pth.tar', crop_pct=0.96), 'volo_d5_448.sail_in1k': _cfg(hf_hub_id='timm/', url='https://github.com/sail-sg/volo/releases/download/volo_1/d5_448_87.0.pth.tar', crop_pct=1.15, input_size=(3, 448, 448)), 'volo_d5_512.sail_in1k': _cfg(hf_hub_id='timm/', url='https://github.com/sail-sg/volo/releases/download/volo_1/d5_512_87.07.pth.tar', crop_pct=1.15, input_size=(3, 512, 512))}) + +@register_model +def volo_d1_224(pretrained=False, **kwargs) -> VOLO: + model_args = dict(layers=(4, 4, 8, 2), embed_dims=(192, 384, 384, 384), num_heads=(6, 12, 12, 12), **kwargs) + model = _create_volo('volo_d1_224', pretrained=pretrained, **model_args) + return model + +@register_model +def volo_d1_384(pretrained=False, **kwargs) -> VOLO: + model_args = dict(layers=(4, 4, 8, 2), embed_dims=(192, 384, 384, 384), num_heads=(6, 12, 12, 12), **kwargs) + model = _create_volo('volo_d1_384', pretrained=pretrained, **model_args) + return model + +@register_model +def volo_d2_224(pretrained=False, **kwargs) -> VOLO: + model_args = dict(layers=(6, 4, 10, 4), embed_dims=(256, 512, 512, 512), num_heads=(8, 16, 16, 16), **kwargs) + model = _create_volo('volo_d2_224', pretrained=pretrained, **model_args) + return model + +@register_model +def volo_d2_384(pretrained=False, **kwargs) -> VOLO: + model_args = dict(layers=(6, 4, 10, 4), embed_dims=(256, 512, 512, 512), num_heads=(8, 16, 16, 16), **kwargs) + model = _create_volo('volo_d2_384', pretrained=pretrained, **model_args) + return model + +@register_model +def volo_d3_224(pretrained=False, **kwargs) -> VOLO: + model_args = dict(layers=(8, 8, 16, 4), embed_dims=(256, 512, 512, 512), num_heads=(8, 16, 16, 16), **kwargs) + model = _create_volo('volo_d3_224', pretrained=pretrained, **model_args) + return model + +@register_model +def volo_d3_448(pretrained=False, **kwargs) -> VOLO: + model_args = dict(layers=(8, 8, 16, 4), embed_dims=(256, 512, 512, 512), num_heads=(8, 16, 16, 16), **kwargs) + model = _create_volo('volo_d3_448', pretrained=pretrained, **model_args) + return model + +@register_model +def volo_d4_224(pretrained=False, **kwargs) -> VOLO: + model_args = dict(layers=(8, 8, 16, 4), embed_dims=(384, 768, 768, 768), num_heads=(12, 16, 16, 16), **kwargs) + model = _create_volo('volo_d4_224', pretrained=pretrained, **model_args) + return model + +@register_model +def volo_d4_448(pretrained=False, **kwargs) -> VOLO: + model_args = dict(layers=(8, 8, 16, 4), embed_dims=(384, 768, 768, 768), num_heads=(12, 16, 16, 16), **kwargs) + model = _create_volo('volo_d4_448', pretrained=pretrained, **model_args) + return model + +@register_model +def volo_d5_224(pretrained=False, **kwargs) -> VOLO: + model_args = dict(layers=(12, 12, 20, 4), embed_dims=(384, 768, 768, 768), num_heads=(12, 16, 16, 16), mlp_ratio=4, stem_hidden_dim=128, **kwargs) + model = _create_volo('volo_d5_224', pretrained=pretrained, **model_args) + return model + +@register_model +def volo_d5_448(pretrained=False, **kwargs) -> VOLO: + model_args = dict(layers=(12, 12, 20, 4), embed_dims=(384, 768, 768, 768), num_heads=(12, 16, 16, 16), mlp_ratio=4, stem_hidden_dim=128, **kwargs) + model = _create_volo('volo_d5_448', pretrained=pretrained, **model_args) + return model + +@register_model +def volo_d5_512(pretrained=False, **kwargs) -> VOLO: + model_args = dict(layers=(12, 12, 20, 4), embed_dims=(384, 768, 768, 768), num_heads=(12, 16, 16, 16), mlp_ratio=4, stem_hidden_dim=128, **kwargs) + model = _create_volo('volo_d5_512', pretrained=pretrained, **model_args) + return model + +# File: pytorch-image-models-main/timm/models/vovnet.py +"""""" +from typing import List, Optional +import torch +import torch.nn as nn +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from timm.layers import ConvNormAct, SeparableConvNormAct, BatchNormAct2d, ClassifierHead, DropPath, create_attn, create_norm_act_layer +from ._builder import build_model_with_cfg +from ._manipulate import checkpoint_seq +from ._registry import register_model, generate_default_cfgs +__all__ = ['VovNet'] + +class SequentialAppendList(nn.Sequential): + + def __init__(self, *args): + super(SequentialAppendList, self).__init__(*args) + + def forward(self, x: torch.Tensor, concat_list: List[torch.Tensor]) -> torch.Tensor: + for (i, module) in enumerate(self): + if i == 0: + concat_list.append(module(x)) + else: + concat_list.append(module(concat_list[-1])) + x = torch.cat(concat_list, dim=1) + return x + +class OsaBlock(nn.Module): + + def __init__(self, in_chs, mid_chs, out_chs, layer_per_block, residual=False, depthwise=False, attn='', norm_layer=BatchNormAct2d, act_layer=nn.ReLU, drop_path=None): + super(OsaBlock, self).__init__() + self.residual = residual + self.depthwise = depthwise + conv_kwargs = dict(norm_layer=norm_layer, act_layer=act_layer) + next_in_chs = in_chs + if self.depthwise and next_in_chs != mid_chs: + assert not residual + self.conv_reduction = ConvNormAct(next_in_chs, mid_chs, 1, **conv_kwargs) + else: + self.conv_reduction = None + mid_convs = [] + for i in range(layer_per_block): + if self.depthwise: + conv = SeparableConvNormAct(mid_chs, mid_chs, **conv_kwargs) + else: + conv = ConvNormAct(next_in_chs, mid_chs, 3, **conv_kwargs) + next_in_chs = mid_chs + mid_convs.append(conv) + self.conv_mid = SequentialAppendList(*mid_convs) + next_in_chs = in_chs + layer_per_block * mid_chs + self.conv_concat = ConvNormAct(next_in_chs, out_chs, **conv_kwargs) + self.attn = create_attn(attn, out_chs) if attn else None + self.drop_path = drop_path + + def forward(self, x): + output = [x] + if self.conv_reduction is not None: + x = self.conv_reduction(x) + x = self.conv_mid(x, output) + x = self.conv_concat(x) + if self.attn is not None: + x = self.attn(x) + if self.drop_path is not None: + x = self.drop_path(x) + if self.residual: + x = x + output[0] + return x + +class OsaStage(nn.Module): + + def __init__(self, in_chs, mid_chs, out_chs, block_per_stage, layer_per_block, downsample=True, residual=True, depthwise=False, attn='ese', norm_layer=BatchNormAct2d, act_layer=nn.ReLU, drop_path_rates=None): + super(OsaStage, self).__init__() + self.grad_checkpointing = False + if downsample: + self.pool = nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True) + else: + self.pool = None + blocks = [] + for i in range(block_per_stage): + last_block = i == block_per_stage - 1 + if drop_path_rates is not None and drop_path_rates[i] > 0.0: + drop_path = DropPath(drop_path_rates[i]) + else: + drop_path = None + blocks += [OsaBlock(in_chs, mid_chs, out_chs, layer_per_block, residual=residual and i > 0, depthwise=depthwise, attn=attn if last_block else '', norm_layer=norm_layer, act_layer=act_layer, drop_path=drop_path)] + in_chs = out_chs + self.blocks = nn.Sequential(*blocks) + + def forward(self, x): + if self.pool is not None: + x = self.pool(x) + if self.grad_checkpointing and (not torch.jit.is_scripting()): + x = checkpoint_seq(self.blocks, x) + else: + x = self.blocks(x) + return x + +class VovNet(nn.Module): + + def __init__(self, cfg, in_chans=3, num_classes=1000, global_pool='avg', output_stride=32, norm_layer=BatchNormAct2d, act_layer=nn.ReLU, drop_rate=0.0, drop_path_rate=0.0, **kwargs): + super(VovNet, self).__init__() + self.num_classes = num_classes + self.drop_rate = drop_rate + assert output_stride == 32 + cfg = dict(cfg, **kwargs) + stem_stride = cfg.get('stem_stride', 4) + stem_chs = cfg['stem_chs'] + stage_conv_chs = cfg['stage_conv_chs'] + stage_out_chs = cfg['stage_out_chs'] + block_per_stage = cfg['block_per_stage'] + layer_per_block = cfg['layer_per_block'] + conv_kwargs = dict(norm_layer=norm_layer, act_layer=act_layer) + last_stem_stride = stem_stride // 2 + conv_type = SeparableConvNormAct if cfg['depthwise'] else ConvNormAct + self.stem = nn.Sequential(*[ConvNormAct(in_chans, stem_chs[0], 3, stride=2, **conv_kwargs), conv_type(stem_chs[0], stem_chs[1], 3, stride=1, **conv_kwargs), conv_type(stem_chs[1], stem_chs[2], 3, stride=last_stem_stride, **conv_kwargs)]) + self.feature_info = [dict(num_chs=stem_chs[1], reduction=2, module=f'stem.{(1 if stem_stride == 4 else 2)}')] + current_stride = stem_stride + stage_dpr = torch.split(torch.linspace(0, drop_path_rate, sum(block_per_stage)), block_per_stage) + in_ch_list = stem_chs[-1:] + stage_out_chs[:-1] + stage_args = dict(residual=cfg['residual'], depthwise=cfg['depthwise'], attn=cfg['attn'], **conv_kwargs) + stages = [] + for i in range(4): + downsample = stem_stride == 2 or i > 0 + stages += [OsaStage(in_ch_list[i], stage_conv_chs[i], stage_out_chs[i], block_per_stage[i], layer_per_block, downsample=downsample, drop_path_rates=stage_dpr[i], **stage_args)] + self.num_features = stage_out_chs[i] + current_stride *= 2 if downsample else 1 + self.feature_info += [dict(num_chs=self.num_features, reduction=current_stride, module=f'stages.{i}')] + self.stages = nn.Sequential(*stages) + self.head_hidden_size = self.num_features + self.head = ClassifierHead(self.num_features, num_classes, pool_type=global_pool, drop_rate=drop_rate) + for (n, m) in self.named_modules(): + if isinstance(m, nn.Conv2d): + nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') + elif isinstance(m, nn.Linear): + nn.init.zeros_(m.bias) + + @torch.jit.ignore + def group_matcher(self, coarse=False): + return dict(stem='^stem', blocks='^stages\\.(\\d+)' if coarse else '^stages\\.(\\d+).blocks\\.(\\d+)') + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + for s in self.stages: + s.grad_checkpointing = enable + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.head.fc + + def reset_classifier(self, num_classes, global_pool: Optional[str]=None): + self.num_classes = num_classes + self.head.reset(num_classes, global_pool) + + def forward_features(self, x): + x = self.stem(x) + return self.stages(x) + + def forward_head(self, x, pre_logits: bool=False): + return self.head(x, pre_logits=pre_logits) if pre_logits else self.head(x) + + def forward(self, x): + x = self.forward_features(x) + x = self.forward_head(x) + return x +model_cfgs = dict(vovnet39a=dict(stem_chs=[64, 64, 128], stage_conv_chs=[128, 160, 192, 224], stage_out_chs=[256, 512, 768, 1024], layer_per_block=5, block_per_stage=[1, 1, 2, 2], residual=False, depthwise=False, attn=''), vovnet57a=dict(stem_chs=[64, 64, 128], stage_conv_chs=[128, 160, 192, 224], stage_out_chs=[256, 512, 768, 1024], layer_per_block=5, block_per_stage=[1, 1, 4, 3], residual=False, depthwise=False, attn=''), ese_vovnet19b_slim_dw=dict(stem_chs=[64, 64, 64], stage_conv_chs=[64, 80, 96, 112], stage_out_chs=[112, 256, 384, 512], layer_per_block=3, block_per_stage=[1, 1, 1, 1], residual=True, depthwise=True, attn='ese'), ese_vovnet19b_dw=dict(stem_chs=[64, 64, 64], stage_conv_chs=[128, 160, 192, 224], stage_out_chs=[256, 512, 768, 1024], layer_per_block=3, block_per_stage=[1, 1, 1, 1], residual=True, depthwise=True, attn='ese'), ese_vovnet19b_slim=dict(stem_chs=[64, 64, 128], stage_conv_chs=[64, 80, 96, 112], stage_out_chs=[112, 256, 384, 512], layer_per_block=3, block_per_stage=[1, 1, 1, 1], residual=True, depthwise=False, attn='ese'), ese_vovnet19b=dict(stem_chs=[64, 64, 128], stage_conv_chs=[128, 160, 192, 224], stage_out_chs=[256, 512, 768, 1024], layer_per_block=3, block_per_stage=[1, 1, 1, 1], residual=True, depthwise=False, attn='ese'), ese_vovnet39b=dict(stem_chs=[64, 64, 128], stage_conv_chs=[128, 160, 192, 224], stage_out_chs=[256, 512, 768, 1024], layer_per_block=5, block_per_stage=[1, 1, 2, 2], residual=True, depthwise=False, attn='ese'), ese_vovnet57b=dict(stem_chs=[64, 64, 128], stage_conv_chs=[128, 160, 192, 224], stage_out_chs=[256, 512, 768, 1024], layer_per_block=5, block_per_stage=[1, 1, 4, 3], residual=True, depthwise=False, attn='ese'), ese_vovnet99b=dict(stem_chs=[64, 64, 128], stage_conv_chs=[128, 160, 192, 224], stage_out_chs=[256, 512, 768, 1024], layer_per_block=5, block_per_stage=[1, 3, 9, 3], residual=True, depthwise=False, attn='ese'), eca_vovnet39b=dict(stem_chs=[64, 64, 128], stage_conv_chs=[128, 160, 192, 224], stage_out_chs=[256, 512, 768, 1024], layer_per_block=5, block_per_stage=[1, 1, 2, 2], residual=True, depthwise=False, attn='eca')) +model_cfgs['ese_vovnet39b_evos'] = model_cfgs['ese_vovnet39b'] + +def _create_vovnet(variant, pretrained=False, **kwargs): + return build_model_with_cfg(VovNet, variant, pretrained, model_cfg=model_cfgs[variant], feature_cfg=dict(flatten_sequential=True), **kwargs) + +def _cfg(url='', **kwargs): + return {'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), 'crop_pct': 0.875, 'interpolation': 'bicubic', 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'stem.0.conv', 'classifier': 'head.fc', **kwargs} +default_cfgs = generate_default_cfgs({'vovnet39a.untrained': _cfg(url=''), 'vovnet57a.untrained': _cfg(url=''), 'ese_vovnet19b_slim_dw.untrained': _cfg(url=''), 'ese_vovnet19b_dw.ra_in1k': _cfg(hf_hub_id='timm/', test_input_size=(3, 288, 288), test_crop_pct=0.95), 'ese_vovnet19b_slim.untrained': _cfg(url=''), 'ese_vovnet39b.ra_in1k': _cfg(hf_hub_id='timm/', test_input_size=(3, 288, 288), test_crop_pct=0.95), 'ese_vovnet57b.untrained': _cfg(url=''), 'ese_vovnet99b.untrained': _cfg(url=''), 'eca_vovnet39b.untrained': _cfg(url=''), 'ese_vovnet39b_evos.untrained': _cfg(url='')}) + +@register_model +def vovnet39a(pretrained=False, **kwargs) -> VovNet: + return _create_vovnet('vovnet39a', pretrained=pretrained, **kwargs) + +@register_model +def vovnet57a(pretrained=False, **kwargs) -> VovNet: + return _create_vovnet('vovnet57a', pretrained=pretrained, **kwargs) + +@register_model +def ese_vovnet19b_slim_dw(pretrained=False, **kwargs) -> VovNet: + return _create_vovnet('ese_vovnet19b_slim_dw', pretrained=pretrained, **kwargs) + +@register_model +def ese_vovnet19b_dw(pretrained=False, **kwargs) -> VovNet: + return _create_vovnet('ese_vovnet19b_dw', pretrained=pretrained, **kwargs) + +@register_model +def ese_vovnet19b_slim(pretrained=False, **kwargs) -> VovNet: + return _create_vovnet('ese_vovnet19b_slim', pretrained=pretrained, **kwargs) + +@register_model +def ese_vovnet39b(pretrained=False, **kwargs) -> VovNet: + return _create_vovnet('ese_vovnet39b', pretrained=pretrained, **kwargs) + +@register_model +def ese_vovnet57b(pretrained=False, **kwargs) -> VovNet: + return _create_vovnet('ese_vovnet57b', pretrained=pretrained, **kwargs) + +@register_model +def ese_vovnet99b(pretrained=False, **kwargs) -> VovNet: + return _create_vovnet('ese_vovnet99b', pretrained=pretrained, **kwargs) + +@register_model +def eca_vovnet39b(pretrained=False, **kwargs) -> VovNet: + return _create_vovnet('eca_vovnet39b', pretrained=pretrained, **kwargs) + +@register_model +def ese_vovnet39b_evos(pretrained=False, **kwargs) -> VovNet: + + def norm_act_fn(num_features, **nkwargs): + return create_norm_act_layer('evonorms0', num_features, jit=False, **nkwargs) + return _create_vovnet('ese_vovnet39b_evos', pretrained=pretrained, norm_layer=norm_act_fn, **kwargs) + +# File: pytorch-image-models-main/timm/models/xception.py +"""""" +import torch.jit +import torch.nn as nn +import torch.nn.functional as F +from timm.layers import create_classifier +from ._builder import build_model_with_cfg +from ._registry import register_model, generate_default_cfgs, register_model_deprecations +__all__ = ['Xception'] + +class SeparableConv2d(nn.Module): + + def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, padding=0, dilation=1): + super(SeparableConv2d, self).__init__() + self.conv1 = nn.Conv2d(in_channels, in_channels, kernel_size, stride, padding, dilation, groups=in_channels, bias=False) + self.pointwise = nn.Conv2d(in_channels, out_channels, 1, 1, 0, 1, 1, bias=False) + + def forward(self, x): + x = self.conv1(x) + x = self.pointwise(x) + return x + +class Block(nn.Module): + + def __init__(self, in_channels, out_channels, reps, strides=1, start_with_relu=True, grow_first=True): + super(Block, self).__init__() + if out_channels != in_channels or strides != 1: + self.skip = nn.Conv2d(in_channels, out_channels, 1, stride=strides, bias=False) + self.skipbn = nn.BatchNorm2d(out_channels) + else: + self.skip = None + rep = [] + for i in range(reps): + if grow_first: + inc = in_channels if i == 0 else out_channels + outc = out_channels + else: + inc = in_channels + outc = in_channels if i < reps - 1 else out_channels + rep.append(nn.ReLU(inplace=True)) + rep.append(SeparableConv2d(inc, outc, 3, stride=1, padding=1)) + rep.append(nn.BatchNorm2d(outc)) + if not start_with_relu: + rep = rep[1:] + else: + rep[0] = nn.ReLU(inplace=False) + if strides != 1: + rep.append(nn.MaxPool2d(3, strides, 1)) + self.rep = nn.Sequential(*rep) + + def forward(self, inp): + x = self.rep(inp) + if self.skip is not None: + skip = self.skip(inp) + skip = self.skipbn(skip) + else: + skip = inp + x += skip + return x + +class Xception(nn.Module): + + def __init__(self, num_classes=1000, in_chans=3, drop_rate=0.0, global_pool='avg'): + super(Xception, self).__init__() + self.drop_rate = drop_rate + self.global_pool = global_pool + self.num_classes = num_classes + self.num_features = self.head_hidden_size = 2048 + self.conv1 = nn.Conv2d(in_chans, 32, 3, 2, 0, bias=False) + self.bn1 = nn.BatchNorm2d(32) + self.act1 = nn.ReLU(inplace=True) + self.conv2 = nn.Conv2d(32, 64, 3, bias=False) + self.bn2 = nn.BatchNorm2d(64) + self.act2 = nn.ReLU(inplace=True) + self.block1 = Block(64, 128, 2, 2, start_with_relu=False) + self.block2 = Block(128, 256, 2, 2) + self.block3 = Block(256, 728, 2, 2) + self.block4 = Block(728, 728, 3, 1) + self.block5 = Block(728, 728, 3, 1) + self.block6 = Block(728, 728, 3, 1) + self.block7 = Block(728, 728, 3, 1) + self.block8 = Block(728, 728, 3, 1) + self.block9 = Block(728, 728, 3, 1) + self.block10 = Block(728, 728, 3, 1) + self.block11 = Block(728, 728, 3, 1) + self.block12 = Block(728, 1024, 2, 2, grow_first=False) + self.conv3 = SeparableConv2d(1024, 1536, 3, 1, 1) + self.bn3 = nn.BatchNorm2d(1536) + self.act3 = nn.ReLU(inplace=True) + self.conv4 = SeparableConv2d(1536, self.num_features, 3, 1, 1) + self.bn4 = nn.BatchNorm2d(self.num_features) + self.act4 = nn.ReLU(inplace=True) + self.feature_info = [dict(num_chs=64, reduction=2, module='act2'), dict(num_chs=128, reduction=4, module='block2.rep.0'), dict(num_chs=256, reduction=8, module='block3.rep.0'), dict(num_chs=728, reduction=16, module='block12.rep.0'), dict(num_chs=2048, reduction=32, module='act4')] + (self.global_pool, self.fc) = create_classifier(self.num_features, self.num_classes, pool_type=global_pool) + for m in self.modules(): + if isinstance(m, nn.Conv2d): + nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') + elif isinstance(m, nn.BatchNorm2d): + m.weight.data.fill_(1) + m.bias.data.zero_() + + @torch.jit.ignore + def group_matcher(self, coarse=False): + return dict(stem='^conv[12]|bn[12]', blocks=[('^block(\\d+)', None), ('^conv[34]|bn[34]', (99,))]) + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + assert not enable, 'gradient checkpointing not supported' + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.fc + + def reset_classifier(self, num_classes: int, global_pool: str='avg'): + self.num_classes = num_classes + (self.global_pool, self.fc) = create_classifier(self.num_features, self.num_classes, pool_type=global_pool) + + def forward_features(self, x): + x = self.conv1(x) + x = self.bn1(x) + x = self.act1(x) + x = self.conv2(x) + x = self.bn2(x) + x = self.act2(x) + x = self.block1(x) + x = self.block2(x) + x = self.block3(x) + x = self.block4(x) + x = self.block5(x) + x = self.block6(x) + x = self.block7(x) + x = self.block8(x) + x = self.block9(x) + x = self.block10(x) + x = self.block11(x) + x = self.block12(x) + x = self.conv3(x) + x = self.bn3(x) + x = self.act3(x) + x = self.conv4(x) + x = self.bn4(x) + x = self.act4(x) + return x + + def forward_head(self, x, pre_logits: bool=False): + x = self.global_pool(x) + if self.drop_rate: + F.dropout(x, self.drop_rate, training=self.training) + return x if pre_logits else self.fc(x) + + def forward(self, x): + x = self.forward_features(x) + x = self.forward_head(x) + return x + +def _xception(variant, pretrained=False, **kwargs): + return build_model_with_cfg(Xception, variant, pretrained, feature_cfg=dict(feature_cls='hook'), **kwargs) +default_cfgs = generate_default_cfgs({'legacy_xception.tf_in1k': {'url': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-cadene/xception-43020ad28.pth', 'input_size': (3, 299, 299), 'pool_size': (10, 10), 'crop_pct': 0.8975, 'interpolation': 'bicubic', 'mean': (0.5, 0.5, 0.5), 'std': (0.5, 0.5, 0.5), 'num_classes': 1000, 'first_conv': 'conv1', 'classifier': 'fc'}}) + +@register_model +def legacy_xception(pretrained=False, **kwargs) -> Xception: + return _xception('legacy_xception', pretrained=pretrained, **kwargs) +register_model_deprecations(__name__, {'xception': 'legacy_xception'}) + +# File: pytorch-image-models-main/timm/models/xception_aligned.py +"""""" +from functools import partial +from typing import List, Dict, Type, Optional +import torch +import torch.nn as nn +from timm.data import IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD +from timm.layers import ClassifierHead, ConvNormAct, DropPath, PadType, create_conv2d, get_norm_act_layer +from timm.layers.helpers import to_3tuple +from ._builder import build_model_with_cfg +from ._manipulate import checkpoint_seq +from ._registry import register_model, generate_default_cfgs +__all__ = ['XceptionAligned'] + +class SeparableConv2d(nn.Module): + + def __init__(self, in_chs: int, out_chs: int, kernel_size: int=3, stride: int=1, dilation: int=1, padding: PadType='', act_layer: Type[nn.Module]=nn.ReLU, norm_layer: Type[nn.Module]=nn.BatchNorm2d): + super(SeparableConv2d, self).__init__() + self.kernel_size = kernel_size + self.dilation = dilation + self.conv_dw = create_conv2d(in_chs, in_chs, kernel_size, stride=stride, padding=padding, dilation=dilation, depthwise=True) + self.bn_dw = norm_layer(in_chs) + self.act_dw = act_layer(inplace=True) if act_layer is not None else nn.Identity() + self.conv_pw = create_conv2d(in_chs, out_chs, kernel_size=1) + self.bn_pw = norm_layer(out_chs) + self.act_pw = act_layer(inplace=True) if act_layer is not None else nn.Identity() + + def forward(self, x): + x = self.conv_dw(x) + x = self.bn_dw(x) + x = self.act_dw(x) + x = self.conv_pw(x) + x = self.bn_pw(x) + x = self.act_pw(x) + return x + +class PreSeparableConv2d(nn.Module): + + def __init__(self, in_chs: int, out_chs: int, kernel_size: int=3, stride: int=1, dilation: int=1, padding: PadType='', act_layer: Type[nn.Module]=nn.ReLU, norm_layer: Type[nn.Module]=nn.BatchNorm2d, first_act: bool=True): + super(PreSeparableConv2d, self).__init__() + norm_act_layer = get_norm_act_layer(norm_layer, act_layer=act_layer) + self.kernel_size = kernel_size + self.dilation = dilation + self.norm = norm_act_layer(in_chs, inplace=True) if first_act else nn.Identity() + self.conv_dw = create_conv2d(in_chs, in_chs, kernel_size, stride=stride, padding=padding, dilation=dilation, depthwise=True) + self.conv_pw = create_conv2d(in_chs, out_chs, kernel_size=1) + + def forward(self, x): + x = self.norm(x) + x = self.conv_dw(x) + x = self.conv_pw(x) + return x + +class XceptionModule(nn.Module): + + def __init__(self, in_chs: int, out_chs: int, stride: int=1, dilation: int=1, pad_type: PadType='', start_with_relu: bool=True, no_skip: bool=False, act_layer: Type[nn.Module]=nn.ReLU, norm_layer: Optional[Type[nn.Module]]=None, drop_path: Optional[nn.Module]=None): + super(XceptionModule, self).__init__() + out_chs = to_3tuple(out_chs) + self.in_channels = in_chs + self.out_channels = out_chs[-1] + self.no_skip = no_skip + if not no_skip and (self.out_channels != self.in_channels or stride != 1): + self.shortcut = ConvNormAct(in_chs, self.out_channels, 1, stride=stride, norm_layer=norm_layer, apply_act=False) + else: + self.shortcut = None + separable_act_layer = None if start_with_relu else act_layer + self.stack = nn.Sequential() + for i in range(3): + if start_with_relu: + self.stack.add_module(f'act{i + 1}', act_layer(inplace=i > 0)) + self.stack.add_module(f'conv{i + 1}', SeparableConv2d(in_chs, out_chs[i], 3, stride=stride if i == 2 else 1, dilation=dilation, padding=pad_type, act_layer=separable_act_layer, norm_layer=norm_layer)) + in_chs = out_chs[i] + self.drop_path = drop_path + + def forward(self, x): + skip = x + x = self.stack(x) + if self.shortcut is not None: + skip = self.shortcut(skip) + if not self.no_skip: + if self.drop_path is not None: + x = self.drop_path(x) + x = x + skip + return x + +class PreXceptionModule(nn.Module): + + def __init__(self, in_chs: int, out_chs: int, stride: int=1, dilation: int=1, pad_type: PadType='', no_skip: bool=False, act_layer: Type[nn.Module]=nn.ReLU, norm_layer: Optional[Type[nn.Module]]=None, drop_path: Optional[nn.Module]=None): + super(PreXceptionModule, self).__init__() + out_chs = to_3tuple(out_chs) + self.in_channels = in_chs + self.out_channels = out_chs[-1] + self.no_skip = no_skip + if not no_skip and (self.out_channels != self.in_channels or stride != 1): + self.shortcut = create_conv2d(in_chs, self.out_channels, 1, stride=stride) + else: + self.shortcut = nn.Identity() + self.norm = get_norm_act_layer(norm_layer, act_layer=act_layer)(in_chs, inplace=True) + self.stack = nn.Sequential() + for i in range(3): + self.stack.add_module(f'conv{i + 1}', PreSeparableConv2d(in_chs, out_chs[i], 3, stride=stride if i == 2 else 1, dilation=dilation, padding=pad_type, act_layer=act_layer, norm_layer=norm_layer, first_act=i > 0)) + in_chs = out_chs[i] + self.drop_path = drop_path + + def forward(self, x): + x = self.norm(x) + skip = x + x = self.stack(x) + if not self.no_skip: + if self.drop_path is not None: + x = self.drop_path(x) + x = x + self.shortcut(skip) + return x + +class XceptionAligned(nn.Module): + + def __init__(self, block_cfg: List[Dict], num_classes: int=1000, in_chans: int=3, output_stride: int=32, preact: bool=False, act_layer: Type[nn.Module]=nn.ReLU, norm_layer: Type[nn.Module]=nn.BatchNorm2d, drop_rate: float=0.0, drop_path_rate: float=0.0, global_pool: str='avg'): + super(XceptionAligned, self).__init__() + assert output_stride in (8, 16, 32) + self.num_classes = num_classes + self.drop_rate = drop_rate + self.grad_checkpointing = False + layer_args = dict(act_layer=act_layer, norm_layer=norm_layer) + self.stem = nn.Sequential(*[ConvNormAct(in_chans, 32, kernel_size=3, stride=2, **layer_args), create_conv2d(32, 64, kernel_size=3, stride=1) if preact else ConvNormAct(32, 64, kernel_size=3, stride=1, **layer_args)]) + curr_dilation = 1 + curr_stride = 2 + self.feature_info = [] + self.blocks = nn.Sequential() + module_fn = PreXceptionModule if preact else XceptionModule + net_num_blocks = len(block_cfg) + net_block_idx = 0 + for (i, b) in enumerate(block_cfg): + block_dpr = drop_path_rate * net_block_idx / (net_num_blocks - 1) + b['drop_path'] = DropPath(block_dpr) if block_dpr > 0.0 else None + b['dilation'] = curr_dilation + if b['stride'] > 1: + name = f'blocks.{i}.stack.conv2' if preact else f'blocks.{i}.stack.act3' + self.feature_info += [dict(num_chs=to_3tuple(b['out_chs'])[-2], reduction=curr_stride, module=name)] + next_stride = curr_stride * b['stride'] + if next_stride > output_stride: + curr_dilation *= b['stride'] + b['stride'] = 1 + else: + curr_stride = next_stride + self.blocks.add_module(str(i), module_fn(**b, **layer_args)) + self.num_features = self.blocks[-1].out_channels + net_block_idx += 1 + self.feature_info += [dict(num_chs=self.num_features, reduction=curr_stride, module='blocks.' + str(len(self.blocks) - 1))] + self.act = act_layer(inplace=True) if preact else nn.Identity() + self.head_hidden_size = self.num_features + self.head = ClassifierHead(in_features=self.num_features, num_classes=num_classes, pool_type=global_pool, drop_rate=drop_rate) + + @torch.jit.ignore + def group_matcher(self, coarse=False): + return dict(stem='^stem', blocks='^blocks\\.(\\d+)') + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + self.grad_checkpointing = enable + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.head.fc + + def reset_classifier(self, num_classes: int, global_pool: Optional[str]=None): + self.head.reset(num_classes, pool_type=global_pool) + + def forward_features(self, x): + x = self.stem(x) + if self.grad_checkpointing and (not torch.jit.is_scripting()): + x = checkpoint_seq(self.blocks, x) + else: + x = self.blocks(x) + x = self.act(x) + return x + + def forward_head(self, x, pre_logits: bool=False): + return self.head(x, pre_logits=pre_logits) if pre_logits else self.head(x) + + def forward(self, x): + x = self.forward_features(x) + x = self.forward_head(x) + return x + +def _xception(variant, pretrained=False, **kwargs): + return build_model_with_cfg(XceptionAligned, variant, pretrained, feature_cfg=dict(flatten_sequential=True, feature_cls='hook'), **kwargs) + +def _cfg(url='', **kwargs): + return {'url': url, 'num_classes': 1000, 'input_size': (3, 299, 299), 'pool_size': (10, 10), 'crop_pct': 0.903, 'interpolation': 'bicubic', 'mean': IMAGENET_INCEPTION_MEAN, 'std': IMAGENET_INCEPTION_STD, 'first_conv': 'stem.0.conv', 'classifier': 'head.fc', **kwargs} +default_cfgs = generate_default_cfgs({'xception65.ra3_in1k': _cfg(hf_hub_id='timm/', crop_pct=0.94), 'xception41.tf_in1k': _cfg(hf_hub_id='timm/'), 'xception65.tf_in1k': _cfg(hf_hub_id='timm/'), 'xception71.tf_in1k': _cfg(hf_hub_id='timm/'), 'xception41p.ra3_in1k': _cfg(hf_hub_id='timm/', crop_pct=0.94), 'xception65p.ra3_in1k': _cfg(hf_hub_id='timm/', crop_pct=0.94)}) + +@register_model +def xception41(pretrained=False, **kwargs) -> XceptionAligned: + block_cfg = [dict(in_chs=64, out_chs=128, stride=2), dict(in_chs=128, out_chs=256, stride=2), dict(in_chs=256, out_chs=728, stride=2), *[dict(in_chs=728, out_chs=728, stride=1)] * 8, dict(in_chs=728, out_chs=(728, 1024, 1024), stride=2), dict(in_chs=1024, out_chs=(1536, 1536, 2048), stride=1, no_skip=True, start_with_relu=False)] + model_args = dict(block_cfg=block_cfg, norm_layer=partial(nn.BatchNorm2d, eps=0.001, momentum=0.1)) + return _xception('xception41', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def xception65(pretrained=False, **kwargs) -> XceptionAligned: + block_cfg = [dict(in_chs=64, out_chs=128, stride=2), dict(in_chs=128, out_chs=256, stride=2), dict(in_chs=256, out_chs=728, stride=2), *[dict(in_chs=728, out_chs=728, stride=1)] * 16, dict(in_chs=728, out_chs=(728, 1024, 1024), stride=2), dict(in_chs=1024, out_chs=(1536, 1536, 2048), stride=1, no_skip=True, start_with_relu=False)] + model_args = dict(block_cfg=block_cfg, norm_layer=partial(nn.BatchNorm2d, eps=0.001, momentum=0.1)) + return _xception('xception65', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def xception71(pretrained=False, **kwargs) -> XceptionAligned: + block_cfg = [dict(in_chs=64, out_chs=128, stride=2), dict(in_chs=128, out_chs=256, stride=1), dict(in_chs=256, out_chs=256, stride=2), dict(in_chs=256, out_chs=728, stride=1), dict(in_chs=728, out_chs=728, stride=2), *[dict(in_chs=728, out_chs=728, stride=1)] * 16, dict(in_chs=728, out_chs=(728, 1024, 1024), stride=2), dict(in_chs=1024, out_chs=(1536, 1536, 2048), stride=1, no_skip=True, start_with_relu=False)] + model_args = dict(block_cfg=block_cfg, norm_layer=partial(nn.BatchNorm2d, eps=0.001, momentum=0.1)) + return _xception('xception71', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def xception41p(pretrained=False, **kwargs) -> XceptionAligned: + block_cfg = [dict(in_chs=64, out_chs=128, stride=2), dict(in_chs=128, out_chs=256, stride=2), dict(in_chs=256, out_chs=728, stride=2), *[dict(in_chs=728, out_chs=728, stride=1)] * 8, dict(in_chs=728, out_chs=(728, 1024, 1024), stride=2), dict(in_chs=1024, out_chs=(1536, 1536, 2048), no_skip=True, stride=1)] + model_args = dict(block_cfg=block_cfg, preact=True, norm_layer=nn.BatchNorm2d) + return _xception('xception41p', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def xception65p(pretrained=False, **kwargs) -> XceptionAligned: + block_cfg = [dict(in_chs=64, out_chs=128, stride=2), dict(in_chs=128, out_chs=256, stride=2), dict(in_chs=256, out_chs=728, stride=2), *[dict(in_chs=728, out_chs=728, stride=1)] * 16, dict(in_chs=728, out_chs=(728, 1024, 1024), stride=2), dict(in_chs=1024, out_chs=(1536, 1536, 2048), stride=1, no_skip=True)] + model_args = dict(block_cfg=block_cfg, preact=True, norm_layer=partial(nn.BatchNorm2d, eps=0.001, momentum=0.1)) + return _xception('xception65p', pretrained=pretrained, **dict(model_args, **kwargs)) + +# File: pytorch-image-models-main/timm/models/xcit.py +"""""" +import math +from functools import partial +from typing import List, Optional, Tuple, Union +import torch +import torch.nn as nn +from torch.utils.checkpoint import checkpoint +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from timm.layers import DropPath, trunc_normal_, to_2tuple, use_fused_attn +from ._builder import build_model_with_cfg +from ._features import feature_take_indices +from ._features_fx import register_notrace_module +from ._registry import register_model, generate_default_cfgs, register_model_deprecations +from .cait import ClassAttn +from .vision_transformer import Mlp +__all__ = ['Xcit'] + +@register_notrace_module +class PositionalEncodingFourier(nn.Module): + + def __init__(self, hidden_dim=32, dim=768, temperature=10000): + super().__init__() + self.token_projection = nn.Conv2d(hidden_dim * 2, dim, kernel_size=1) + self.scale = 2 * math.pi + self.temperature = temperature + self.hidden_dim = hidden_dim + self.dim = dim + self.eps = 1e-06 + + def forward(self, B: int, H: int, W: int): + device = self.token_projection.weight.device + dtype = self.token_projection.weight.dtype + y_embed = torch.arange(1, H + 1, device=device).to(torch.float32).unsqueeze(1).repeat(1, 1, W) + x_embed = torch.arange(1, W + 1, device=device).to(torch.float32).repeat(1, H, 1) + y_embed = y_embed / (y_embed[:, -1:, :] + self.eps) * self.scale + x_embed = x_embed / (x_embed[:, :, -1:] + self.eps) * self.scale + dim_t = torch.arange(self.hidden_dim, device=device).to(torch.float32) + dim_t = self.temperature ** (2 * torch.div(dim_t, 2, rounding_mode='floor') / self.hidden_dim) + pos_x = x_embed[:, :, :, None] / dim_t + pos_y = y_embed[:, :, :, None] / dim_t + pos_x = torch.stack([pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()], dim=4).flatten(3) + pos_y = torch.stack([pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()], dim=4).flatten(3) + pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2) + pos = self.token_projection(pos.to(dtype)) + return pos.repeat(B, 1, 1, 1) + +def conv3x3(in_planes, out_planes, stride=1): + return torch.nn.Sequential(nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False), nn.BatchNorm2d(out_planes)) + +class ConvPatchEmbed(nn.Module): + + def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, act_layer=nn.GELU): + super().__init__() + img_size = to_2tuple(img_size) + num_patches = img_size[1] // patch_size * (img_size[0] // patch_size) + self.img_size = img_size + self.patch_size = patch_size + self.num_patches = num_patches + if patch_size == 16: + self.proj = torch.nn.Sequential(conv3x3(in_chans, embed_dim // 8, 2), act_layer(), conv3x3(embed_dim // 8, embed_dim // 4, 2), act_layer(), conv3x3(embed_dim // 4, embed_dim // 2, 2), act_layer(), conv3x3(embed_dim // 2, embed_dim, 2)) + elif patch_size == 8: + self.proj = torch.nn.Sequential(conv3x3(in_chans, embed_dim // 4, 2), act_layer(), conv3x3(embed_dim // 4, embed_dim // 2, 2), act_layer(), conv3x3(embed_dim // 2, embed_dim, 2)) + else: + raise 'For convolutional projection, patch size has to be in [8, 16]' + + def forward(self, x): + x = self.proj(x) + (Hp, Wp) = (x.shape[2], x.shape[3]) + x = x.flatten(2).transpose(1, 2) + return (x, (Hp, Wp)) + +class LPI(nn.Module): + + def __init__(self, in_features, out_features=None, act_layer=nn.GELU, kernel_size=3): + super().__init__() + out_features = out_features or in_features + padding = kernel_size // 2 + self.conv1 = torch.nn.Conv2d(in_features, in_features, kernel_size=kernel_size, padding=padding, groups=in_features) + self.act = act_layer() + self.bn = nn.BatchNorm2d(in_features) + self.conv2 = torch.nn.Conv2d(in_features, out_features, kernel_size=kernel_size, padding=padding, groups=out_features) + + def forward(self, x, H: int, W: int): + (B, N, C) = x.shape + x = x.permute(0, 2, 1).reshape(B, C, H, W) + x = self.conv1(x) + x = self.act(x) + x = self.bn(x) + x = self.conv2(x) + x = x.reshape(B, C, N).permute(0, 2, 1) + return x + +class ClassAttentionBlock(nn.Module): + + def __init__(self, dim, num_heads, mlp_ratio=4.0, qkv_bias=False, proj_drop=0.0, attn_drop=0.0, drop_path=0.0, act_layer=nn.GELU, norm_layer=nn.LayerNorm, eta=1.0, tokens_norm=False): + super().__init__() + self.norm1 = norm_layer(dim) + self.attn = ClassAttn(dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=proj_drop) + self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + self.norm2 = norm_layer(dim) + self.mlp = Mlp(in_features=dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer, drop=proj_drop) + if eta is not None: + self.gamma1 = nn.Parameter(eta * torch.ones(dim)) + self.gamma2 = nn.Parameter(eta * torch.ones(dim)) + else: + (self.gamma1, self.gamma2) = (1.0, 1.0) + self.tokens_norm = tokens_norm + + def forward(self, x): + x_norm1 = self.norm1(x) + x_attn = torch.cat([self.attn(x_norm1), x_norm1[:, 1:]], dim=1) + x = x + self.drop_path(self.gamma1 * x_attn) + if self.tokens_norm: + x = self.norm2(x) + else: + x = torch.cat([self.norm2(x[:, 0:1]), x[:, 1:]], dim=1) + x_res = x + cls_token = x[:, 0:1] + cls_token = self.gamma2 * self.mlp(cls_token) + x = torch.cat([cls_token, x[:, 1:]], dim=1) + x = x_res + self.drop_path(x) + return x + +class XCA(nn.Module): + fused_attn: torch.jit.Final[bool] + '' + + def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0.0, proj_drop=0.0): + super().__init__() + self.num_heads = num_heads + self.fused_attn = use_fused_attn(experimental=True) + self.temperature = nn.Parameter(torch.ones(num_heads, 1, 1)) + self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) + self.attn_drop = nn.Dropout(attn_drop) + self.proj = nn.Linear(dim, dim) + self.proj_drop = nn.Dropout(proj_drop) + + def forward(self, x): + (B, N, C) = x.shape + qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 4, 1) + (q, k, v) = qkv.unbind(0) + if self.fused_attn: + q = torch.nn.functional.normalize(q, dim=-1) * self.temperature + k = torch.nn.functional.normalize(k, dim=-1) + x = torch.nn.functional.scaled_dot_product_attention(q, k, v, scale=1.0) + else: + q = torch.nn.functional.normalize(q, dim=-1) + k = torch.nn.functional.normalize(k, dim=-1) + attn = q @ k.transpose(-2, -1) * self.temperature + attn = attn.softmax(dim=-1) + attn = self.attn_drop(attn) + x = attn @ v + x = x.permute(0, 3, 1, 2).reshape(B, N, C) + x = self.proj(x) + x = self.proj_drop(x) + return x + + @torch.jit.ignore + def no_weight_decay(self): + return {'temperature'} + +class XCABlock(nn.Module): + + def __init__(self, dim, num_heads, mlp_ratio=4.0, qkv_bias=False, proj_drop=0.0, attn_drop=0.0, drop_path=0.0, act_layer=nn.GELU, norm_layer=nn.LayerNorm, eta=1.0): + super().__init__() + self.norm1 = norm_layer(dim) + self.attn = XCA(dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=proj_drop) + self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + self.norm3 = norm_layer(dim) + self.local_mp = LPI(in_features=dim, act_layer=act_layer) + self.norm2 = norm_layer(dim) + self.mlp = Mlp(in_features=dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer, drop=proj_drop) + self.gamma1 = nn.Parameter(eta * torch.ones(dim)) + self.gamma3 = nn.Parameter(eta * torch.ones(dim)) + self.gamma2 = nn.Parameter(eta * torch.ones(dim)) + + def forward(self, x, H: int, W: int): + x = x + self.drop_path(self.gamma1 * self.attn(self.norm1(x))) + x = x + self.drop_path(self.gamma3 * self.local_mp(self.norm3(x), H, W)) + x = x + self.drop_path(self.gamma2 * self.mlp(self.norm2(x))) + return x + +class Xcit(nn.Module): + + def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, global_pool='token', embed_dim=768, depth=12, num_heads=12, mlp_ratio=4.0, qkv_bias=True, drop_rate=0.0, pos_drop_rate=0.0, proj_drop_rate=0.0, attn_drop_rate=0.0, drop_path_rate=0.0, act_layer=None, norm_layer=None, cls_attn_layers=2, use_pos_embed=True, eta=1.0, tokens_norm=False): + super().__init__() + assert global_pool in ('', 'avg', 'token') + img_size = to_2tuple(img_size) + assert img_size[0] % patch_size == 0 and img_size[0] % patch_size == 0, '`patch_size` should divide image dimensions evenly' + norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-06) + act_layer = act_layer or nn.GELU + self.num_classes = num_classes + self.num_features = self.head_hidden_size = self.embed_dim = embed_dim + self.global_pool = global_pool + self.grad_checkpointing = False + self.patch_embed = ConvPatchEmbed(img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim, act_layer=act_layer) + r = patch_size + self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) + if use_pos_embed: + self.pos_embed = PositionalEncodingFourier(dim=embed_dim) + else: + self.pos_embed = None + self.pos_drop = nn.Dropout(p=pos_drop_rate) + self.blocks = nn.ModuleList([XCABlock(dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, proj_drop=proj_drop_rate, attn_drop=attn_drop_rate, drop_path=drop_path_rate, act_layer=act_layer, norm_layer=norm_layer, eta=eta) for _ in range(depth)]) + self.feature_info = [dict(num_chs=embed_dim, reduction=r, module=f'blocks.{i}') for i in range(depth)] + self.cls_attn_blocks = nn.ModuleList([ClassAttentionBlock(dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, proj_drop=drop_rate, attn_drop=attn_drop_rate, act_layer=act_layer, norm_layer=norm_layer, eta=eta, tokens_norm=tokens_norm) for _ in range(cls_attn_layers)]) + self.norm = norm_layer(embed_dim) + self.head_drop = nn.Dropout(drop_rate) + self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() + trunc_normal_(self.cls_token, std=0.02) + self.apply(self._init_weights) + + def _init_weights(self, m): + if isinstance(m, nn.Linear): + trunc_normal_(m.weight, std=0.02) + if isinstance(m, nn.Linear) and m.bias is not None: + nn.init.constant_(m.bias, 0) + + @torch.jit.ignore + def no_weight_decay(self): + return {'pos_embed', 'cls_token'} + + @torch.jit.ignore + def group_matcher(self, coarse=False): + return dict(stem='^cls_token|pos_embed|patch_embed', blocks='^blocks\\.(\\d+)', cls_attn_blocks=[('^cls_attn_blocks\\.(\\d+)', None), ('^norm', (99999,))]) + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + self.grad_checkpointing = enable + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.head + + def reset_classifier(self, num_classes: int, global_pool: Optional[str]=None): + self.num_classes = num_classes + if global_pool is not None: + assert global_pool in ('', 'avg', 'token') + self.global_pool = global_pool + self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() + + def forward_intermediates(self, x: torch.Tensor, indices: Optional[Union[int, List[int]]]=None, norm: bool=False, stop_early: bool=False, output_fmt: str='NCHW', intermediates_only: bool=False) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]: + assert output_fmt in ('NCHW', 'NLC'), 'Output format must be one of NCHW or NLC.' + reshape = output_fmt == 'NCHW' + intermediates = [] + (take_indices, max_index) = feature_take_indices(len(self.blocks), indices) + (B, _, height, width) = x.shape + (x, (Hp, Wp)) = self.patch_embed(x) + if self.pos_embed is not None: + pos_encoding = self.pos_embed(B, Hp, Wp).reshape(B, -1, x.shape[1]).permute(0, 2, 1) + x = x + pos_encoding + x = self.pos_drop(x) + if torch.jit.is_scripting() or not stop_early: + blocks = self.blocks + else: + blocks = self.blocks[:max_index + 1] + for (i, blk) in enumerate(blocks): + x = blk(x, Hp, Wp) + if i in take_indices: + intermediates.append(self.norm(x) if norm else x) + if reshape: + intermediates = [y.reshape(B, Hp, Wp, -1).permute(0, 3, 1, 2).contiguous() for y in intermediates] + if intermediates_only: + return intermediates + x = torch.cat((self.cls_token.expand(B, -1, -1), x), dim=1) + for blk in self.cls_attn_blocks: + x = blk(x) + x = self.norm(x) + return (x, intermediates) + + def prune_intermediate_layers(self, indices: Union[int, List[int]]=1, prune_norm: bool=False, prune_head: bool=True): + (take_indices, max_index) = feature_take_indices(len(self.blocks), indices) + self.blocks = self.blocks[:max_index + 1] + if prune_norm: + self.norm = nn.Identity() + if prune_head: + self.cls_attn_blocks = nn.ModuleList() + self.reset_classifier(0, '') + return take_indices + + def forward_features(self, x): + B = x.shape[0] + (x, (Hp, Wp)) = self.patch_embed(x) + if self.pos_embed is not None: + pos_encoding = self.pos_embed(B, Hp, Wp).reshape(B, -1, x.shape[1]).permute(0, 2, 1) + x = x + pos_encoding + x = self.pos_drop(x) + for blk in self.blocks: + if self.grad_checkpointing and (not torch.jit.is_scripting()): + x = checkpoint(blk, x, Hp, Wp) + else: + x = blk(x, Hp, Wp) + x = torch.cat((self.cls_token.expand(B, -1, -1), x), dim=1) + for blk in self.cls_attn_blocks: + if self.grad_checkpointing and (not torch.jit.is_scripting()): + x = checkpoint(blk, x) + else: + x = blk(x) + x = self.norm(x) + return x + + def forward_head(self, x, pre_logits: bool=False): + if self.global_pool: + x = x[:, 1:].mean(dim=1) if self.global_pool == 'avg' else x[:, 0] + x = self.head_drop(x) + return x if pre_logits else self.head(x) + + def forward(self, x): + x = self.forward_features(x) + x = self.forward_head(x) + return x + +def checkpoint_filter_fn(state_dict, model): + if 'model' in state_dict: + state_dict = state_dict['model'] + use_pos_embed = getattr(model, 'pos_embed', None) is not None + pos_embed_keys = [k for k in state_dict if k.startswith('pos_embed')] + for k in pos_embed_keys: + if use_pos_embed: + state_dict[k.replace('pos_embeder.', 'pos_embed.')] = state_dict.pop(k) + else: + del state_dict[k] + if 'cls_attn_blocks.0.attn.qkv.weight' in state_dict and 'cls_attn_blocks.0.attn.q.weight' in model.state_dict(): + num_ca_blocks = len(model.cls_attn_blocks) + for i in range(num_ca_blocks): + qkv_weight = state_dict.pop(f'cls_attn_blocks.{i}.attn.qkv.weight') + qkv_weight = qkv_weight.reshape(3, -1, qkv_weight.shape[-1]) + for (j, subscript) in enumerate('qkv'): + state_dict[f'cls_attn_blocks.{i}.attn.{subscript}.weight'] = qkv_weight[j] + qkv_bias = state_dict.pop(f'cls_attn_blocks.{i}.attn.qkv.bias', None) + if qkv_bias is not None: + qkv_bias = qkv_bias.reshape(3, -1) + for (j, subscript) in enumerate('qkv'): + state_dict[f'cls_attn_blocks.{i}.attn.{subscript}.bias'] = qkv_bias[j] + return state_dict + +def _create_xcit(variant, pretrained=False, default_cfg=None, **kwargs): + out_indices = kwargs.pop('out_indices', 3) + model = build_model_with_cfg(Xcit, variant, pretrained, pretrained_filter_fn=checkpoint_filter_fn, feature_cfg=dict(out_indices=out_indices, feature_cls='getter'), **kwargs) + return model + +def _cfg(url='', **kwargs): + return {'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, 'crop_pct': 1.0, 'interpolation': 'bicubic', 'fixed_input_size': True, 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'patch_embed.proj.0.0', 'classifier': 'head', **kwargs} +default_cfgs = generate_default_cfgs({'xcit_nano_12_p16_224.fb_in1k': _cfg(hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/xcit/xcit_nano_12_p16_224.pth'), 'xcit_nano_12_p16_224.fb_dist_in1k': _cfg(hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/xcit/xcit_nano_12_p16_224_dist.pth'), 'xcit_nano_12_p16_384.fb_dist_in1k': _cfg(hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/xcit/xcit_nano_12_p16_384_dist.pth', input_size=(3, 384, 384)), 'xcit_tiny_12_p16_224.fb_in1k': _cfg(hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/xcit/xcit_tiny_12_p16_224.pth'), 'xcit_tiny_12_p16_224.fb_dist_in1k': _cfg(hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/xcit/xcit_tiny_12_p16_224_dist.pth'), 'xcit_tiny_12_p16_384.fb_dist_in1k': _cfg(hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/xcit/xcit_tiny_12_p16_384_dist.pth', input_size=(3, 384, 384)), 'xcit_tiny_24_p16_224.fb_in1k': _cfg(hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/xcit/xcit_tiny_24_p16_224.pth'), 'xcit_tiny_24_p16_224.fb_dist_in1k': _cfg(hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/xcit/xcit_tiny_24_p16_224_dist.pth'), 'xcit_tiny_24_p16_384.fb_dist_in1k': _cfg(hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/xcit/xcit_tiny_24_p16_384_dist.pth', input_size=(3, 384, 384)), 'xcit_small_12_p16_224.fb_in1k': _cfg(hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/xcit/xcit_small_12_p16_224.pth'), 'xcit_small_12_p16_224.fb_dist_in1k': _cfg(hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/xcit/xcit_small_12_p16_224_dist.pth'), 'xcit_small_12_p16_384.fb_dist_in1k': _cfg(hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/xcit/xcit_small_12_p16_384_dist.pth', input_size=(3, 384, 384)), 'xcit_small_24_p16_224.fb_in1k': _cfg(hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/xcit/xcit_small_24_p16_224.pth'), 'xcit_small_24_p16_224.fb_dist_in1k': _cfg(hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/xcit/xcit_small_24_p16_224_dist.pth'), 'xcit_small_24_p16_384.fb_dist_in1k': _cfg(hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/xcit/xcit_small_24_p16_384_dist.pth', input_size=(3, 384, 384)), 'xcit_medium_24_p16_224.fb_in1k': _cfg(hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/xcit/xcit_medium_24_p16_224.pth'), 'xcit_medium_24_p16_224.fb_dist_in1k': _cfg(hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/xcit/xcit_medium_24_p16_224_dist.pth'), 'xcit_medium_24_p16_384.fb_dist_in1k': _cfg(hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/xcit/xcit_medium_24_p16_384_dist.pth', input_size=(3, 384, 384)), 'xcit_large_24_p16_224.fb_in1k': _cfg(hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/xcit/xcit_large_24_p16_224.pth'), 'xcit_large_24_p16_224.fb_dist_in1k': _cfg(hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/xcit/xcit_large_24_p16_224_dist.pth'), 'xcit_large_24_p16_384.fb_dist_in1k': _cfg(hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/xcit/xcit_large_24_p16_384_dist.pth', input_size=(3, 384, 384)), 'xcit_nano_12_p8_224.fb_in1k': _cfg(hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/xcit/xcit_nano_12_p8_224.pth'), 'xcit_nano_12_p8_224.fb_dist_in1k': _cfg(hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/xcit/xcit_nano_12_p8_224_dist.pth'), 'xcit_nano_12_p8_384.fb_dist_in1k': _cfg(hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/xcit/xcit_nano_12_p8_384_dist.pth', input_size=(3, 384, 384)), 'xcit_tiny_12_p8_224.fb_in1k': _cfg(hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/xcit/xcit_tiny_12_p8_224.pth'), 'xcit_tiny_12_p8_224.fb_dist_in1k': _cfg(hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/xcit/xcit_tiny_12_p8_224_dist.pth'), 'xcit_tiny_12_p8_384.fb_dist_in1k': _cfg(hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/xcit/xcit_tiny_12_p8_384_dist.pth', input_size=(3, 384, 384)), 'xcit_tiny_24_p8_224.fb_in1k': _cfg(hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/xcit/xcit_tiny_24_p8_224.pth'), 'xcit_tiny_24_p8_224.fb_dist_in1k': _cfg(hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/xcit/xcit_tiny_24_p8_224_dist.pth'), 'xcit_tiny_24_p8_384.fb_dist_in1k': _cfg(hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/xcit/xcit_tiny_24_p8_384_dist.pth', input_size=(3, 384, 384)), 'xcit_small_12_p8_224.fb_in1k': _cfg(hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/xcit/xcit_small_12_p8_224.pth'), 'xcit_small_12_p8_224.fb_dist_in1k': _cfg(hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/xcit/xcit_small_12_p8_224_dist.pth'), 'xcit_small_12_p8_384.fb_dist_in1k': _cfg(hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/xcit/xcit_small_12_p8_384_dist.pth', input_size=(3, 384, 384)), 'xcit_small_24_p8_224.fb_in1k': _cfg(hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/xcit/xcit_small_24_p8_224.pth'), 'xcit_small_24_p8_224.fb_dist_in1k': _cfg(hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/xcit/xcit_small_24_p8_224_dist.pth'), 'xcit_small_24_p8_384.fb_dist_in1k': _cfg(hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/xcit/xcit_small_24_p8_384_dist.pth', input_size=(3, 384, 384)), 'xcit_medium_24_p8_224.fb_in1k': _cfg(hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/xcit/xcit_medium_24_p8_224.pth'), 'xcit_medium_24_p8_224.fb_dist_in1k': _cfg(hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/xcit/xcit_medium_24_p8_224_dist.pth'), 'xcit_medium_24_p8_384.fb_dist_in1k': _cfg(hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/xcit/xcit_medium_24_p8_384_dist.pth', input_size=(3, 384, 384)), 'xcit_large_24_p8_224.fb_in1k': _cfg(hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/xcit/xcit_large_24_p8_224.pth'), 'xcit_large_24_p8_224.fb_dist_in1k': _cfg(hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/xcit/xcit_large_24_p8_224_dist.pth'), 'xcit_large_24_p8_384.fb_dist_in1k': _cfg(hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/xcit/xcit_large_24_p8_384_dist.pth', input_size=(3, 384, 384))}) + +@register_model +def xcit_nano_12_p16_224(pretrained=False, **kwargs) -> Xcit: + model_args = dict(patch_size=16, embed_dim=128, depth=12, num_heads=4, eta=1.0, tokens_norm=False) + model = _create_xcit('xcit_nano_12_p16_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def xcit_nano_12_p16_384(pretrained=False, **kwargs) -> Xcit: + model_args = dict(patch_size=16, embed_dim=128, depth=12, num_heads=4, eta=1.0, tokens_norm=False, img_size=384) + model = _create_xcit('xcit_nano_12_p16_384', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def xcit_tiny_12_p16_224(pretrained=False, **kwargs) -> Xcit: + model_args = dict(patch_size=16, embed_dim=192, depth=12, num_heads=4, eta=1.0, tokens_norm=True) + model = _create_xcit('xcit_tiny_12_p16_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def xcit_tiny_12_p16_384(pretrained=False, **kwargs) -> Xcit: + model_args = dict(patch_size=16, embed_dim=192, depth=12, num_heads=4, eta=1.0, tokens_norm=True) + model = _create_xcit('xcit_tiny_12_p16_384', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def xcit_small_12_p16_224(pretrained=False, **kwargs) -> Xcit: + model_args = dict(patch_size=16, embed_dim=384, depth=12, num_heads=8, eta=1.0, tokens_norm=True) + model = _create_xcit('xcit_small_12_p16_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def xcit_small_12_p16_384(pretrained=False, **kwargs) -> Xcit: + model_args = dict(patch_size=16, embed_dim=384, depth=12, num_heads=8, eta=1.0, tokens_norm=True) + model = _create_xcit('xcit_small_12_p16_384', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def xcit_tiny_24_p16_224(pretrained=False, **kwargs) -> Xcit: + model_args = dict(patch_size=16, embed_dim=192, depth=24, num_heads=4, eta=1e-05, tokens_norm=True) + model = _create_xcit('xcit_tiny_24_p16_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def xcit_tiny_24_p16_384(pretrained=False, **kwargs) -> Xcit: + model_args = dict(patch_size=16, embed_dim=192, depth=24, num_heads=4, eta=1e-05, tokens_norm=True) + model = _create_xcit('xcit_tiny_24_p16_384', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def xcit_small_24_p16_224(pretrained=False, **kwargs) -> Xcit: + model_args = dict(patch_size=16, embed_dim=384, depth=24, num_heads=8, eta=1e-05, tokens_norm=True) + model = _create_xcit('xcit_small_24_p16_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def xcit_small_24_p16_384(pretrained=False, **kwargs) -> Xcit: + model_args = dict(patch_size=16, embed_dim=384, depth=24, num_heads=8, eta=1e-05, tokens_norm=True) + model = _create_xcit('xcit_small_24_p16_384', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def xcit_medium_24_p16_224(pretrained=False, **kwargs) -> Xcit: + model_args = dict(patch_size=16, embed_dim=512, depth=24, num_heads=8, eta=1e-05, tokens_norm=True) + model = _create_xcit('xcit_medium_24_p16_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def xcit_medium_24_p16_384(pretrained=False, **kwargs) -> Xcit: + model_args = dict(patch_size=16, embed_dim=512, depth=24, num_heads=8, eta=1e-05, tokens_norm=True) + model = _create_xcit('xcit_medium_24_p16_384', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def xcit_large_24_p16_224(pretrained=False, **kwargs) -> Xcit: + model_args = dict(patch_size=16, embed_dim=768, depth=24, num_heads=16, eta=1e-05, tokens_norm=True) + model = _create_xcit('xcit_large_24_p16_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def xcit_large_24_p16_384(pretrained=False, **kwargs) -> Xcit: + model_args = dict(patch_size=16, embed_dim=768, depth=24, num_heads=16, eta=1e-05, tokens_norm=True) + model = _create_xcit('xcit_large_24_p16_384', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def xcit_nano_12_p8_224(pretrained=False, **kwargs) -> Xcit: + model_args = dict(patch_size=8, embed_dim=128, depth=12, num_heads=4, eta=1.0, tokens_norm=False) + model = _create_xcit('xcit_nano_12_p8_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def xcit_nano_12_p8_384(pretrained=False, **kwargs) -> Xcit: + model_args = dict(patch_size=8, embed_dim=128, depth=12, num_heads=4, eta=1.0, tokens_norm=False) + model = _create_xcit('xcit_nano_12_p8_384', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def xcit_tiny_12_p8_224(pretrained=False, **kwargs) -> Xcit: + model_args = dict(patch_size=8, embed_dim=192, depth=12, num_heads=4, eta=1.0, tokens_norm=True) + model = _create_xcit('xcit_tiny_12_p8_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def xcit_tiny_12_p8_384(pretrained=False, **kwargs) -> Xcit: + model_args = dict(patch_size=8, embed_dim=192, depth=12, num_heads=4, eta=1.0, tokens_norm=True) + model = _create_xcit('xcit_tiny_12_p8_384', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def xcit_small_12_p8_224(pretrained=False, **kwargs) -> Xcit: + model_args = dict(patch_size=8, embed_dim=384, depth=12, num_heads=8, eta=1.0, tokens_norm=True) + model = _create_xcit('xcit_small_12_p8_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def xcit_small_12_p8_384(pretrained=False, **kwargs) -> Xcit: + model_args = dict(patch_size=8, embed_dim=384, depth=12, num_heads=8, eta=1.0, tokens_norm=True) + model = _create_xcit('xcit_small_12_p8_384', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def xcit_tiny_24_p8_224(pretrained=False, **kwargs) -> Xcit: + model_args = dict(patch_size=8, embed_dim=192, depth=24, num_heads=4, eta=1e-05, tokens_norm=True) + model = _create_xcit('xcit_tiny_24_p8_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def xcit_tiny_24_p8_384(pretrained=False, **kwargs) -> Xcit: + model_args = dict(patch_size=8, embed_dim=192, depth=24, num_heads=4, eta=1e-05, tokens_norm=True) + model = _create_xcit('xcit_tiny_24_p8_384', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def xcit_small_24_p8_224(pretrained=False, **kwargs) -> Xcit: + model_args = dict(patch_size=8, embed_dim=384, depth=24, num_heads=8, eta=1e-05, tokens_norm=True) + model = _create_xcit('xcit_small_24_p8_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def xcit_small_24_p8_384(pretrained=False, **kwargs) -> Xcit: + model_args = dict(patch_size=8, embed_dim=384, depth=24, num_heads=8, eta=1e-05, tokens_norm=True) + model = _create_xcit('xcit_small_24_p8_384', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def xcit_medium_24_p8_224(pretrained=False, **kwargs) -> Xcit: + model_args = dict(patch_size=8, embed_dim=512, depth=24, num_heads=8, eta=1e-05, tokens_norm=True) + model = _create_xcit('xcit_medium_24_p8_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def xcit_medium_24_p8_384(pretrained=False, **kwargs) -> Xcit: + model_args = dict(patch_size=8, embed_dim=512, depth=24, num_heads=8, eta=1e-05, tokens_norm=True) + model = _create_xcit('xcit_medium_24_p8_384', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def xcit_large_24_p8_224(pretrained=False, **kwargs) -> Xcit: + model_args = dict(patch_size=8, embed_dim=768, depth=24, num_heads=16, eta=1e-05, tokens_norm=True) + model = _create_xcit('xcit_large_24_p8_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + +@register_model +def xcit_large_24_p8_384(pretrained=False, **kwargs) -> Xcit: + model_args = dict(patch_size=8, embed_dim=768, depth=24, num_heads=16, eta=1e-05, tokens_norm=True) + model = _create_xcit('xcit_large_24_p8_384', pretrained=pretrained, **dict(model_args, **kwargs)) + return model +register_model_deprecations(__name__, {'xcit_nano_12_p16_224_dist': 'xcit_nano_12_p16_224.fb_dist_in1k', 'xcit_nano_12_p16_384_dist': 'xcit_nano_12_p16_384.fb_dist_in1k', 'xcit_tiny_12_p16_224_dist': 'xcit_tiny_12_p16_224.fb_dist_in1k', 'xcit_tiny_12_p16_384_dist': 'xcit_tiny_12_p16_384.fb_dist_in1k', 'xcit_tiny_24_p16_224_dist': 'xcit_tiny_24_p16_224.fb_dist_in1k', 'xcit_tiny_24_p16_384_dist': 'xcit_tiny_24_p16_384.fb_dist_in1k', 'xcit_small_12_p16_224_dist': 'xcit_small_12_p16_224.fb_dist_in1k', 'xcit_small_12_p16_384_dist': 'xcit_small_12_p16_384.fb_dist_in1k', 'xcit_small_24_p16_224_dist': 'xcit_small_24_p16_224.fb_dist_in1k', 'xcit_small_24_p16_384_dist': 'xcit_small_24_p16_384.fb_dist_in1k', 'xcit_medium_24_p16_224_dist': 'xcit_medium_24_p16_224.fb_dist_in1k', 'xcit_medium_24_p16_384_dist': 'xcit_medium_24_p16_384.fb_dist_in1k', 'xcit_large_24_p16_224_dist': 'xcit_large_24_p16_224.fb_dist_in1k', 'xcit_large_24_p16_384_dist': 'xcit_large_24_p16_384.fb_dist_in1k', 'xcit_nano_12_p8_224_dist': 'xcit_nano_12_p8_224.fb_dist_in1k', 'xcit_nano_12_p8_384_dist': 'xcit_nano_12_p8_384.fb_dist_in1k', 'xcit_tiny_12_p8_224_dist': 'xcit_tiny_12_p8_224.fb_dist_in1k', 'xcit_tiny_12_p8_384_dist': 'xcit_tiny_12_p8_384.fb_dist_in1k', 'xcit_tiny_24_p8_224_dist': 'xcit_tiny_24_p8_224.fb_dist_in1k', 'xcit_tiny_24_p8_384_dist': 'xcit_tiny_24_p8_384.fb_dist_in1k', 'xcit_small_12_p8_224_dist': 'xcit_small_12_p8_224.fb_dist_in1k', 'xcit_small_12_p8_384_dist': 'xcit_small_12_p8_384.fb_dist_in1k', 'xcit_small_24_p8_224_dist': 'xcit_small_24_p8_224.fb_dist_in1k', 'xcit_small_24_p8_384_dist': 'xcit_small_24_p8_384.fb_dist_in1k', 'xcit_medium_24_p8_224_dist': 'xcit_medium_24_p8_224.fb_dist_in1k', 'xcit_medium_24_p8_384_dist': 'xcit_medium_24_p8_384.fb_dist_in1k', 'xcit_large_24_p8_224_dist': 'xcit_large_24_p8_224.fb_dist_in1k', 'xcit_large_24_p8_384_dist': 'xcit_large_24_p8_384.fb_dist_in1k'}) + +# File: pytorch-image-models-main/timm/optim/__init__.py +from .adabelief import AdaBelief +from .adafactor import Adafactor +from .adahessian import Adahessian +from .adamp import AdamP +from .adamw import AdamW +from .adan import Adan +from .lamb import Lamb +from .lars import Lars +from .lookahead import Lookahead +from .madgrad import MADGRAD +from .nadam import Nadam +from .nvnovograd import NvNovoGrad +from .radam import RAdam +from .rmsprop_tf import RMSpropTF +from .sgdp import SGDP +from .lion import Lion +from .optim_factory import create_optimizer, create_optimizer_v2, optimizer_kwargs + +# File: pytorch-image-models-main/timm/optim/adabelief.py +import math +import torch +from torch.optim.optimizer import Optimizer + +class AdaBelief(Optimizer): + + def __init__(self, params, lr=0.001, betas=(0.9, 0.999), eps=1e-16, weight_decay=0, amsgrad=False, decoupled_decay=True, fixed_decay=False, rectify=True, degenerated_to_sgd=True): + if not 0.0 <= lr: + raise ValueError('Invalid learning rate: {}'.format(lr)) + if not 0.0 <= eps: + raise ValueError('Invalid epsilon value: {}'.format(eps)) + if not 0.0 <= betas[0] < 1.0: + raise ValueError('Invalid beta parameter at index 0: {}'.format(betas[0])) + if not 0.0 <= betas[1] < 1.0: + raise ValueError('Invalid beta parameter at index 1: {}'.format(betas[1])) + if isinstance(params, (list, tuple)) and len(params) > 0 and isinstance(params[0], dict): + for param in params: + if 'betas' in param and (param['betas'][0] != betas[0] or param['betas'][1] != betas[1]): + param['buffer'] = [[None, None, None] for _ in range(10)] + defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, amsgrad=amsgrad, degenerated_to_sgd=degenerated_to_sgd, decoupled_decay=decoupled_decay, rectify=rectify, fixed_decay=fixed_decay, buffer=[[None, None, None] for _ in range(10)]) + super(AdaBelief, self).__init__(params, defaults) + + def __setstate__(self, state): + super(AdaBelief, self).__setstate__(state) + for group in self.param_groups: + group.setdefault('amsgrad', False) + + @torch.no_grad() + def reset(self): + for group in self.param_groups: + for p in group['params']: + state = self.state[p] + amsgrad = group['amsgrad'] + state['step'] = 0 + state['exp_avg'] = torch.zeros_like(p) + state['exp_avg_var'] = torch.zeros_like(p) + if amsgrad: + state['max_exp_avg_var'] = torch.zeros_like(p) + + @torch.no_grad() + def step(self, closure=None): + loss = None + if closure is not None: + with torch.enable_grad(): + loss = closure() + for group in self.param_groups: + for p in group['params']: + if p.grad is None: + continue + grad = p.grad + if grad.dtype in {torch.float16, torch.bfloat16}: + grad = grad.float() + if grad.is_sparse: + raise RuntimeError('AdaBelief does not support sparse gradients, please consider SparseAdam instead') + p_fp32 = p + if p.dtype in {torch.float16, torch.bfloat16}: + p_fp32 = p_fp32.float() + amsgrad = group['amsgrad'] + (beta1, beta2) = group['betas'] + state = self.state[p] + if len(state) == 0: + state['step'] = 0 + state['exp_avg'] = torch.zeros_like(p_fp32) + state['exp_avg_var'] = torch.zeros_like(p_fp32) + if amsgrad: + state['max_exp_avg_var'] = torch.zeros_like(p_fp32) + if group['decoupled_decay']: + if not group['fixed_decay']: + p_fp32.mul_(1.0 - group['lr'] * group['weight_decay']) + else: + p_fp32.mul_(1.0 - group['weight_decay']) + elif group['weight_decay'] != 0: + grad.add_(p_fp32, alpha=group['weight_decay']) + (exp_avg, exp_avg_var) = (state['exp_avg'], state['exp_avg_var']) + state['step'] += 1 + bias_correction1 = 1 - beta1 ** state['step'] + bias_correction2 = 1 - beta2 ** state['step'] + exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1) + grad_residual = grad - exp_avg + exp_avg_var.mul_(beta2).addcmul_(grad_residual, grad_residual, value=1 - beta2) + if amsgrad: + max_exp_avg_var = state['max_exp_avg_var'] + torch.max(max_exp_avg_var, exp_avg_var.add_(group['eps']), out=max_exp_avg_var) + denom = (max_exp_avg_var.sqrt() / math.sqrt(bias_correction2)).add_(group['eps']) + else: + denom = (exp_avg_var.add_(group['eps']).sqrt() / math.sqrt(bias_correction2)).add_(group['eps']) + if not group['rectify']: + step_size = group['lr'] / bias_correction1 + p_fp32.addcdiv_(exp_avg, denom, value=-step_size) + else: + buffered = group['buffer'][int(state['step'] % 10)] + if state['step'] == buffered[0]: + (num_sma, step_size) = (buffered[1], buffered[2]) + else: + buffered[0] = state['step'] + beta2_t = beta2 ** state['step'] + num_sma_max = 2 / (1 - beta2) - 1 + num_sma = num_sma_max - 2 * state['step'] * beta2_t / (1 - beta2_t) + buffered[1] = num_sma + if num_sma >= 5: + step_size = math.sqrt((1 - beta2_t) * (num_sma - 4) / (num_sma_max - 4) * (num_sma - 2) / num_sma * num_sma_max / (num_sma_max - 2)) / (1 - beta1 ** state['step']) + elif group['degenerated_to_sgd']: + step_size = 1.0 / (1 - beta1 ** state['step']) + else: + step_size = -1 + buffered[2] = step_size + if num_sma >= 5: + denom = exp_avg_var.sqrt().add_(group['eps']) + p_fp32.addcdiv_(exp_avg, denom, value=-step_size * group['lr']) + elif step_size > 0: + p_fp32.add_(exp_avg, alpha=-step_size * group['lr']) + if p.dtype in {torch.float16, torch.bfloat16}: + p.copy_(p_fp32) + return loss + +# File: pytorch-image-models-main/timm/optim/adafactor.py +"""""" +import torch +import math + +class Adafactor(torch.optim.Optimizer): + + def __init__(self, params, lr=None, eps=1e-30, eps_scale=0.001, clip_threshold=1.0, decay_rate=-0.8, betas=None, weight_decay=0.0, scale_parameter=True, warmup_init=False): + relative_step = not lr + if warmup_init and (not relative_step): + raise ValueError('warmup_init requires relative_step=True') + beta1 = None if betas is None else betas[0] + defaults = dict(lr=lr, eps=eps, eps_scale=eps_scale, clip_threshold=clip_threshold, decay_rate=decay_rate, beta1=beta1, weight_decay=weight_decay, scale_parameter=scale_parameter, relative_step=relative_step, warmup_init=warmup_init) + super(Adafactor, self).__init__(params, defaults) + + @staticmethod + def _get_lr(param_group, param_state): + if param_group['relative_step']: + min_step = 1e-06 * param_state['step'] if param_group['warmup_init'] else 0.01 + lr_t = min(min_step, 1.0 / math.sqrt(param_state['step'])) + param_scale = 1.0 + if param_group['scale_parameter']: + param_scale = max(param_group['eps_scale'], param_state['RMS']) + param_group['lr'] = lr_t * param_scale + return param_group['lr'] + + @staticmethod + def _get_options(param_group, param_shape): + factored = len(param_shape) >= 2 + use_first_moment = param_group['beta1'] is not None + return (factored, use_first_moment) + + @staticmethod + def _rms(tensor): + return tensor.norm(2) / tensor.numel() ** 0.5 + + def _approx_sq_grad(self, exp_avg_sq_row, exp_avg_sq_col): + r_factor = (exp_avg_sq_row / exp_avg_sq_row.mean(dim=-1, keepdim=True)).rsqrt_().unsqueeze(-1) + c_factor = exp_avg_sq_col.unsqueeze(-2).rsqrt() + return torch.mul(r_factor, c_factor) + + @torch.no_grad() + def step(self, closure=None): + loss = None + if closure is not None: + with torch.enable_grad(): + loss = closure() + for group in self.param_groups: + for p in group['params']: + if p.grad is None: + continue + grad = p.grad + if grad.dtype in {torch.float16, torch.bfloat16}: + grad = grad.float() + if grad.is_sparse: + raise RuntimeError('Adafactor does not support sparse gradients.') + state = self.state[p] + (factored, use_first_moment) = self._get_options(group, grad.shape) + if len(state) == 0: + state['step'] = 0 + if use_first_moment: + state['exp_avg'] = torch.zeros_like(grad) + if factored: + state['exp_avg_sq_row'] = torch.zeros(grad.shape[:-1]).to(grad) + state['exp_avg_sq_col'] = torch.zeros(grad.shape[:-2] + grad.shape[-1:]).to(grad) + else: + state['exp_avg_sq'] = torch.zeros_like(grad) + state['RMS'] = 0 + else: + if use_first_moment: + state['exp_avg'] = state['exp_avg'].to(grad) + if factored: + state['exp_avg_sq_row'] = state['exp_avg_sq_row'].to(grad) + state['exp_avg_sq_col'] = state['exp_avg_sq_col'].to(grad) + else: + state['exp_avg_sq'] = state['exp_avg_sq'].to(grad) + p_fp32 = p + if p.dtype in {torch.float16, torch.bfloat16}: + p_fp32 = p_fp32.float() + state['step'] += 1 + state['RMS'] = self._rms(p_fp32) + lr_t = self._get_lr(group, state) + beta2t = 1.0 - math.pow(state['step'], group['decay_rate']) + update = grad ** 2 + group['eps'] + if factored: + exp_avg_sq_row = state['exp_avg_sq_row'] + exp_avg_sq_col = state['exp_avg_sq_col'] + exp_avg_sq_row.mul_(beta2t).add_(update.mean(dim=-1), alpha=1.0 - beta2t) + exp_avg_sq_col.mul_(beta2t).add_(update.mean(dim=-2), alpha=1.0 - beta2t) + update = self._approx_sq_grad(exp_avg_sq_row, exp_avg_sq_col) + update.mul_(grad) + else: + exp_avg_sq = state['exp_avg_sq'] + exp_avg_sq.mul_(beta2t).add_(update, alpha=1.0 - beta2t) + update = exp_avg_sq.rsqrt().mul_(grad) + update.div_((self._rms(update) / group['clip_threshold']).clamp_(min=1.0)) + update.mul_(lr_t) + if use_first_moment: + exp_avg = state['exp_avg'] + exp_avg.mul_(group['beta1']).add_(update, alpha=1 - group['beta1']) + update = exp_avg + if group['weight_decay'] != 0: + p_fp32.add_(p_fp32, alpha=-group['weight_decay'] * lr_t) + p_fp32.add_(-update) + if p.dtype in {torch.float16, torch.bfloat16}: + p.copy_(p_fp32) + return loss + +# File: pytorch-image-models-main/timm/optim/adahessian.py +"""""" +import torch + +class Adahessian(torch.optim.Optimizer): + + def __init__(self, params, lr=0.1, betas=(0.9, 0.999), eps=1e-08, weight_decay=0.0, hessian_power=1.0, update_each=1, n_samples=1, avg_conv_kernel=False): + if not 0.0 <= lr: + raise ValueError(f'Invalid learning rate: {lr}') + if not 0.0 <= eps: + raise ValueError(f'Invalid epsilon value: {eps}') + if not 0.0 <= betas[0] < 1.0: + raise ValueError(f'Invalid beta parameter at index 0: {betas[0]}') + if not 0.0 <= betas[1] < 1.0: + raise ValueError(f'Invalid beta parameter at index 1: {betas[1]}') + if not 0.0 <= hessian_power <= 1.0: + raise ValueError(f'Invalid Hessian power value: {hessian_power}') + self.n_samples = n_samples + self.update_each = update_each + self.avg_conv_kernel = avg_conv_kernel + self.seed = 2147483647 + self.generator = torch.Generator().manual_seed(self.seed) + defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, hessian_power=hessian_power) + super(Adahessian, self).__init__(params, defaults) + for p in self.get_params(): + p.hess = 0.0 + self.state[p]['hessian step'] = 0 + + @property + def is_second_order(self): + return True + + def get_params(self): + return (p for group in self.param_groups for p in group['params'] if p.requires_grad) + + def zero_hessian(self): + for p in self.get_params(): + if not isinstance(p.hess, float) and self.state[p]['hessian step'] % self.update_each == 0: + p.hess.zero_() + + @torch.no_grad() + def set_hessian(self): + params = [] + for p in filter(lambda p: p.grad is not None, self.get_params()): + if self.state[p]['hessian step'] % self.update_each == 0: + params.append(p) + self.state[p]['hessian step'] += 1 + if len(params) == 0: + return + if self.generator.device != params[0].device: + self.generator = torch.Generator(params[0].device).manual_seed(self.seed) + grads = [p.grad for p in params] + for i in range(self.n_samples): + zs = [torch.randint(0, 2, p.size(), generator=self.generator, device=p.device) * 2.0 - 1.0 for p in params] + h_zs = torch.autograd.grad(grads, params, grad_outputs=zs, only_inputs=True, retain_graph=i < self.n_samples - 1) + for (h_z, z, p) in zip(h_zs, zs, params): + p.hess += h_z * z / self.n_samples + + @torch.no_grad() + def step(self, closure=None): + loss = None + if closure is not None: + loss = closure() + self.zero_hessian() + self.set_hessian() + for group in self.param_groups: + for p in group['params']: + if p.grad is None or p.hess is None: + continue + if self.avg_conv_kernel and p.dim() == 4: + p.hess = torch.abs(p.hess).mean(dim=[2, 3], keepdim=True).expand_as(p.hess).clone() + p.mul_(1 - group['lr'] * group['weight_decay']) + state = self.state[p] + if len(state) == 1: + state['step'] = 0 + state['exp_avg'] = torch.zeros_like(p) + state['exp_hessian_diag_sq'] = torch.zeros_like(p) + (exp_avg, exp_hessian_diag_sq) = (state['exp_avg'], state['exp_hessian_diag_sq']) + (beta1, beta2) = group['betas'] + state['step'] += 1 + exp_avg.mul_(beta1).add_(p.grad, alpha=1 - beta1) + exp_hessian_diag_sq.mul_(beta2).addcmul_(p.hess, p.hess, value=1 - beta2) + bias_correction1 = 1 - beta1 ** state['step'] + bias_correction2 = 1 - beta2 ** state['step'] + k = group['hessian_power'] + denom = (exp_hessian_diag_sq / bias_correction2).pow_(k / 2).add_(group['eps']) + step_size = group['lr'] / bias_correction1 + p.addcdiv_(exp_avg, denom, value=-step_size) + return loss + +# File: pytorch-image-models-main/timm/optim/adamp.py +"""""" +import torch +import torch.nn.functional as F +from torch.optim.optimizer import Optimizer +import math + +def _channel_view(x) -> torch.Tensor: + return x.reshape(x.size(0), -1) + +def _layer_view(x) -> torch.Tensor: + return x.reshape(1, -1) + +def projection(p, grad, perturb, delta: float, wd_ratio: float, eps: float): + wd = 1.0 + expand_size = (-1,) + (1,) * (len(p.shape) - 1) + for view_func in [_channel_view, _layer_view]: + param_view = view_func(p) + grad_view = view_func(grad) + cosine_sim = F.cosine_similarity(grad_view, param_view, dim=1, eps=eps).abs_() + if cosine_sim.max() < delta / math.sqrt(param_view.size(1)): + p_n = p / param_view.norm(p=2, dim=1).add_(eps).reshape(expand_size) + perturb -= p_n * view_func(p_n * perturb).sum(dim=1).reshape(expand_size) + wd = wd_ratio + return (perturb, wd) + return (perturb, wd) + +class AdamP(Optimizer): + + def __init__(self, params, lr=0.001, betas=(0.9, 0.999), eps=1e-08, weight_decay=0, delta=0.1, wd_ratio=0.1, nesterov=False): + defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, delta=delta, wd_ratio=wd_ratio, nesterov=nesterov) + super(AdamP, self).__init__(params, defaults) + + @torch.no_grad() + def step(self, closure=None): + loss = None + if closure is not None: + with torch.enable_grad(): + loss = closure() + for group in self.param_groups: + for p in group['params']: + if p.grad is None: + continue + grad = p.grad + (beta1, beta2) = group['betas'] + nesterov = group['nesterov'] + state = self.state[p] + if len(state) == 0: + state['step'] = 0 + state['exp_avg'] = torch.zeros_like(p) + state['exp_avg_sq'] = torch.zeros_like(p) + (exp_avg, exp_avg_sq) = (state['exp_avg'], state['exp_avg_sq']) + state['step'] += 1 + bias_correction1 = 1 - beta1 ** state['step'] + bias_correction2 = 1 - beta2 ** state['step'] + exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1) + exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2) + denom = (exp_avg_sq.sqrt() / math.sqrt(bias_correction2)).add_(group['eps']) + step_size = group['lr'] / bias_correction1 + if nesterov: + perturb = (beta1 * exp_avg + (1 - beta1) * grad) / denom + else: + perturb = exp_avg / denom + wd_ratio = 1.0 + if len(p.shape) > 1: + (perturb, wd_ratio) = projection(p, grad, perturb, group['delta'], group['wd_ratio'], group['eps']) + if group['weight_decay'] > 0: + p.mul_(1.0 - group['lr'] * group['weight_decay'] * wd_ratio) + p.add_(perturb, alpha=-step_size) + return loss + +# File: pytorch-image-models-main/timm/optim/adamw.py +"""""" +import math +import torch +from torch.optim.optimizer import Optimizer + +class AdamW(Optimizer): + + def __init__(self, params, lr=0.001, betas=(0.9, 0.999), eps=1e-08, weight_decay=0.01, amsgrad=False): + if not 0.0 <= lr: + raise ValueError('Invalid learning rate: {}'.format(lr)) + if not 0.0 <= eps: + raise ValueError('Invalid epsilon value: {}'.format(eps)) + if not 0.0 <= betas[0] < 1.0: + raise ValueError('Invalid beta parameter at index 0: {}'.format(betas[0])) + if not 0.0 <= betas[1] < 1.0: + raise ValueError('Invalid beta parameter at index 1: {}'.format(betas[1])) + defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, amsgrad=amsgrad) + super(AdamW, self).__init__(params, defaults) + + def __setstate__(self, state): + super(AdamW, self).__setstate__(state) + for group in self.param_groups: + group.setdefault('amsgrad', False) + + @torch.no_grad() + def step(self, closure=None): + loss = None + if closure is not None: + with torch.enable_grad(): + loss = closure() + for group in self.param_groups: + for p in group['params']: + if p.grad is None: + continue + p.data.mul_(1 - group['lr'] * group['weight_decay']) + grad = p.grad + if grad.is_sparse: + raise RuntimeError('Adam does not support sparse gradients, please consider SparseAdam instead') + amsgrad = group['amsgrad'] + state = self.state[p] + if len(state) == 0: + state['step'] = 0 + state['exp_avg'] = torch.zeros_like(p) + state['exp_avg_sq'] = torch.zeros_like(p) + if amsgrad: + state['max_exp_avg_sq'] = torch.zeros_like(p) + (exp_avg, exp_avg_sq) = (state['exp_avg'], state['exp_avg_sq']) + if amsgrad: + max_exp_avg_sq = state['max_exp_avg_sq'] + (beta1, beta2) = group['betas'] + state['step'] += 1 + bias_correction1 = 1 - beta1 ** state['step'] + bias_correction2 = 1 - beta2 ** state['step'] + exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1) + exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2) + if amsgrad: + torch.max(max_exp_avg_sq, exp_avg_sq, out=max_exp_avg_sq) + denom = (max_exp_avg_sq.sqrt() / math.sqrt(bias_correction2)).add_(group['eps']) + else: + denom = (exp_avg_sq.sqrt() / math.sqrt(bias_correction2)).add_(group['eps']) + step_size = group['lr'] / bias_correction1 + p.addcdiv_(exp_avg, denom, value=-step_size) + return loss + +# File: pytorch-image-models-main/timm/optim/adan.py +"""""" +import math +import torch +from torch.optim import Optimizer + +class Adan(Optimizer): + + def __init__(self, params, lr=0.001, betas=(0.98, 0.92, 0.99), eps=1e-08, weight_decay=0.0, no_prox=False): + if not 0.0 <= lr: + raise ValueError('Invalid learning rate: {}'.format(lr)) + if not 0.0 <= eps: + raise ValueError('Invalid epsilon value: {}'.format(eps)) + if not 0.0 <= betas[0] < 1.0: + raise ValueError('Invalid beta parameter at index 0: {}'.format(betas[0])) + if not 0.0 <= betas[1] < 1.0: + raise ValueError('Invalid beta parameter at index 1: {}'.format(betas[1])) + if not 0.0 <= betas[2] < 1.0: + raise ValueError('Invalid beta parameter at index 2: {}'.format(betas[2])) + defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, no_prox=no_prox) + super(Adan, self).__init__(params, defaults) + + @torch.no_grad() + def restart_opt(self): + for group in self.param_groups: + group['step'] = 0 + for p in group['params']: + if p.requires_grad: + state = self.state[p] + state['exp_avg'] = torch.zeros_like(p) + state['exp_avg_sq'] = torch.zeros_like(p) + state['exp_avg_diff'] = torch.zeros_like(p) + + @torch.no_grad() + def step(self, closure=None): + loss = None + if closure is not None: + with torch.enable_grad(): + loss = closure() + for group in self.param_groups: + (beta1, beta2, beta3) = group['betas'] + if 'step' in group: + group['step'] += 1 + else: + group['step'] = 1 + bias_correction1 = 1.0 - beta1 ** group['step'] + bias_correction2 = 1.0 - beta2 ** group['step'] + bias_correction3 = 1.0 - beta3 ** group['step'] + for p in group['params']: + if p.grad is None: + continue + grad = p.grad + state = self.state[p] + if len(state) == 0: + state['exp_avg'] = torch.zeros_like(p) + state['exp_avg_diff'] = torch.zeros_like(p) + state['exp_avg_sq'] = torch.zeros_like(p) + state['pre_grad'] = grad.clone() + (exp_avg, exp_avg_sq, exp_avg_diff) = (state['exp_avg'], state['exp_avg_diff'], state['exp_avg_sq']) + grad_diff = grad - state['pre_grad'] + exp_avg.lerp_(grad, 1.0 - beta1) + exp_avg_diff.lerp_(grad_diff, 1.0 - beta2) + update = grad + beta2 * grad_diff + exp_avg_sq.mul_(beta3).addcmul_(update, update, value=1.0 - beta3) + denom = (exp_avg_sq.sqrt() / math.sqrt(bias_correction3)).add_(group['eps']) + update = (exp_avg / bias_correction1 + beta2 * exp_avg_diff / bias_correction2).div_(denom) + if group['no_prox']: + p.data.mul_(1 - group['lr'] * group['weight_decay']) + p.add_(update, alpha=-group['lr']) + else: + p.add_(update, alpha=-group['lr']) + p.data.div_(1 + group['lr'] * group['weight_decay']) + state['pre_grad'].copy_(grad) + return loss + +# File: pytorch-image-models-main/timm/optim/lamb.py +"""""" +import math +import torch +from torch.optim import Optimizer + +class Lamb(Optimizer): + + def __init__(self, params, lr=0.001, bias_correction=True, betas=(0.9, 0.999), eps=1e-06, weight_decay=0.01, grad_averaging=True, max_grad_norm=1.0, trust_clip=False, always_adapt=False): + defaults = dict(lr=lr, bias_correction=bias_correction, betas=betas, eps=eps, weight_decay=weight_decay, grad_averaging=grad_averaging, max_grad_norm=max_grad_norm, trust_clip=trust_clip, always_adapt=always_adapt) + super().__init__(params, defaults) + + @torch.no_grad() + def step(self, closure=None): + loss = None + if closure is not None: + with torch.enable_grad(): + loss = closure() + device = self.param_groups[0]['params'][0].device + one_tensor = torch.tensor(1.0, device=device) + global_grad_norm = torch.zeros(1, device=device) + for group in self.param_groups: + for p in group['params']: + if p.grad is None: + continue + grad = p.grad + if grad.is_sparse: + raise RuntimeError('Lamb does not support sparse gradients, consider SparseAdam instad.') + global_grad_norm.add_(grad.pow(2).sum()) + global_grad_norm = torch.sqrt(global_grad_norm) + max_grad_norm = torch.tensor(self.defaults['max_grad_norm'], device=device) + clip_global_grad_norm = torch.where(global_grad_norm > max_grad_norm, global_grad_norm / max_grad_norm, one_tensor) + for group in self.param_groups: + bias_correction = 1 if group['bias_correction'] else 0 + (beta1, beta2) = group['betas'] + grad_averaging = 1 if group['grad_averaging'] else 0 + beta3 = 1 - beta1 if grad_averaging else 1.0 + if 'step' in group: + group['step'] += 1 + else: + group['step'] = 1 + if bias_correction: + bias_correction1 = 1 - beta1 ** group['step'] + bias_correction2 = 1 - beta2 ** group['step'] + else: + (bias_correction1, bias_correction2) = (1.0, 1.0) + for p in group['params']: + if p.grad is None: + continue + grad = p.grad.div_(clip_global_grad_norm) + state = self.state[p] + if len(state) == 0: + state['exp_avg'] = torch.zeros_like(p) + state['exp_avg_sq'] = torch.zeros_like(p) + (exp_avg, exp_avg_sq) = (state['exp_avg'], state['exp_avg_sq']) + exp_avg.mul_(beta1).add_(grad, alpha=beta3) + exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2) + denom = (exp_avg_sq.sqrt() / math.sqrt(bias_correction2)).add_(group['eps']) + update = (exp_avg / bias_correction1).div_(denom) + weight_decay = group['weight_decay'] + if weight_decay != 0: + update.add_(p, alpha=weight_decay) + if weight_decay != 0 or group['always_adapt']: + w_norm = p.norm(2.0) + g_norm = update.norm(2.0) + trust_ratio = torch.where(w_norm > 0, torch.where(g_norm > 0, w_norm / g_norm, one_tensor), one_tensor) + if group['trust_clip']: + trust_ratio = torch.minimum(trust_ratio, one_tensor) + update.mul_(trust_ratio) + p.add_(update, alpha=-group['lr']) + return loss + +# File: pytorch-image-models-main/timm/optim/lars.py +"""""" +import torch +from torch.optim.optimizer import Optimizer + +class Lars(Optimizer): + + def __init__(self, params, lr=1.0, momentum=0, dampening=0, weight_decay=0, nesterov=False, trust_coeff=0.001, eps=1e-08, trust_clip=False, always_adapt=False): + if lr < 0.0: + raise ValueError(f'Invalid learning rate: {lr}') + if momentum < 0.0: + raise ValueError(f'Invalid momentum value: {momentum}') + if weight_decay < 0.0: + raise ValueError(f'Invalid weight_decay value: {weight_decay}') + if nesterov and (momentum <= 0 or dampening != 0): + raise ValueError('Nesterov momentum requires a momentum and zero dampening') + defaults = dict(lr=lr, momentum=momentum, dampening=dampening, weight_decay=weight_decay, nesterov=nesterov, trust_coeff=trust_coeff, eps=eps, trust_clip=trust_clip, always_adapt=always_adapt) + super().__init__(params, defaults) + + def __setstate__(self, state): + super().__setstate__(state) + for group in self.param_groups: + group.setdefault('nesterov', False) + + @torch.no_grad() + def step(self, closure=None): + loss = None + if closure is not None: + with torch.enable_grad(): + loss = closure() + device = self.param_groups[0]['params'][0].device + one_tensor = torch.tensor(1.0, device=device) + for group in self.param_groups: + weight_decay = group['weight_decay'] + momentum = group['momentum'] + dampening = group['dampening'] + nesterov = group['nesterov'] + trust_coeff = group['trust_coeff'] + eps = group['eps'] + for p in group['params']: + if p.grad is None: + continue + grad = p.grad + if weight_decay != 0 or group['always_adapt']: + w_norm = p.norm(2.0) + g_norm = grad.norm(2.0) + trust_ratio = trust_coeff * w_norm / (g_norm + w_norm * weight_decay + eps) + trust_ratio = torch.where(w_norm > 0, torch.where(g_norm > 0, trust_ratio, one_tensor), one_tensor) + if group['trust_clip']: + trust_ratio = torch.minimum(trust_ratio / group['lr'], one_tensor) + grad.add_(p, alpha=weight_decay) + grad.mul_(trust_ratio) + if momentum != 0: + param_state = self.state[p] + if 'momentum_buffer' not in param_state: + buf = param_state['momentum_buffer'] = torch.clone(grad).detach() + else: + buf = param_state['momentum_buffer'] + buf.mul_(momentum).add_(grad, alpha=1.0 - dampening) + if nesterov: + grad = grad.add(buf, alpha=momentum) + else: + grad = buf + p.add_(grad, alpha=-group['lr']) + return loss + +# File: pytorch-image-models-main/timm/optim/lion.py +"""""" +from typing import List +import torch +from torch.optim.optimizer import Optimizer + +class Lion(Optimizer): + + def __init__(self, params, lr=0.0001, betas=(0.9, 0.99), weight_decay=0.0, maximize=False, foreach=None): + if not 0.0 <= lr: + raise ValueError('Invalid learning rate: {}'.format(lr)) + if not 0.0 <= betas[0] < 1.0: + raise ValueError('Invalid beta parameter at index 0: {}'.format(betas[0])) + if not 0.0 <= betas[1] < 1.0: + raise ValueError('Invalid beta parameter at index 1: {}'.format(betas[1])) + defaults = dict(lr=lr, betas=betas, weight_decay=weight_decay, foreach=foreach, maximize=maximize) + super().__init__(params, defaults) + + def __setstate__(self, state): + super().__setstate__(state) + for group in self.param_groups: + group.setdefault('maximize', False) + group.setdefault('foreach', None) + + @torch.no_grad() + def step(self, closure=None): + loss = None + if closure is not None: + with torch.enable_grad(): + loss = closure() + for group in self.param_groups: + params_with_grad = [] + grads = [] + exp_avgs = [] + (beta1, beta2) = group['betas'] + for p in group['params']: + if p.grad is None: + continue + params_with_grad.append(p) + if p.grad.is_sparse: + raise RuntimeError('Lion does not support sparse gradients') + grads.append(p.grad) + state = self.state[p] + if len(state) == 0: + state['exp_avg'] = torch.zeros_like(p, memory_format=torch.preserve_format) + exp_avgs.append(state['exp_avg']) + lion(params_with_grad, grads, exp_avgs, beta1=beta1, beta2=beta2, lr=group['lr'], weight_decay=group['weight_decay'], maximize=group['maximize'], foreach=group['foreach']) + return loss + +def lion(params: List[torch.Tensor], grads: List[torch.Tensor], exp_avgs: List[torch.Tensor], maximize: bool=False, foreach: bool=None, *, beta1: float, beta2: float, lr: float, weight_decay: float): + if foreach is None: + foreach = False + if foreach and torch.jit.is_scripting(): + raise RuntimeError('torch.jit.script not supported with foreach optimizers') + if foreach and (not torch.jit.is_scripting()): + func = _multi_tensor_lion + else: + func = _single_tensor_lion + func(params, grads, exp_avgs, beta1=beta1, beta2=beta2, lr=lr, weight_decay=weight_decay, maximize=maximize) + +def _single_tensor_lion(params: List[torch.Tensor], grads: List[torch.Tensor], exp_avgs: List[torch.Tensor], *, beta1: float, beta2: float, lr: float, weight_decay: float, maximize: bool): + for (i, param) in enumerate(params): + grad = grads[i] if not maximize else -grads[i] + exp_avg = exp_avgs[i] + if torch.is_complex(param): + grad = torch.view_as_real(grad) + exp_avg = torch.view_as_real(exp_avg) + param = torch.view_as_real(param) + param.mul_(1 - lr * weight_decay) + update = exp_avg.mul(beta1).add_(grad, alpha=1 - beta1) + param.add_(torch.sign(update), alpha=-lr) + exp_avg.lerp_(grad, 1 - beta2) + +def _multi_tensor_lion(params: List[torch.Tensor], grads: List[torch.Tensor], exp_avgs: List[torch.Tensor], *, beta1: float, beta2: float, lr: float, weight_decay: float, maximize: bool): + if len(params) == 0: + return + if maximize: + grads = torch._foreach_neg(tuple(grads)) + grads = [torch.view_as_real(x) if torch.is_complex(x) else x for x in grads] + exp_avgs = [torch.view_as_real(x) if torch.is_complex(x) else x for x in exp_avgs] + params = [torch.view_as_real(x) if torch.is_complex(x) else x for x in params] + torch._foreach_mul_(params, 1 - lr * weight_decay) + updates = torch._foreach_mul(exp_avgs, beta1) + torch._foreach_add_(updates, grads, alpha=1 - beta1) + updates = [u.sign() for u in updates] + torch._foreach_add_(params, updates, alpha=-lr) + torch._foreach_mul_(exp_avgs, beta2) + torch._foreach_add_(exp_avgs, grads, alpha=1 - beta2) + +# File: pytorch-image-models-main/timm/optim/lookahead.py +"""""" +from collections import OrderedDict +from typing import Callable, Dict +import torch +from torch.optim.optimizer import Optimizer +from collections import defaultdict + +class Lookahead(Optimizer): + + def __init__(self, base_optimizer, alpha=0.5, k=6): + self._optimizer_step_pre_hooks: Dict[int, Callable] = OrderedDict() + self._optimizer_step_post_hooks: Dict[int, Callable] = OrderedDict() + if not 0.0 <= alpha <= 1.0: + raise ValueError(f'Invalid slow update rate: {alpha}') + if not 1 <= k: + raise ValueError(f'Invalid lookahead steps: {k}') + defaults = dict(lookahead_alpha=alpha, lookahead_k=k, lookahead_step=0) + self._base_optimizer = base_optimizer + self.param_groups = base_optimizer.param_groups + self.defaults = base_optimizer.defaults + self.defaults.update(defaults) + self.state = defaultdict(dict) + for (name, default) in defaults.items(): + for group in self._base_optimizer.param_groups: + group.setdefault(name, default) + + @torch.no_grad() + def update_slow(self, group): + for fast_p in group['params']: + if fast_p.grad is None: + continue + param_state = self._base_optimizer.state[fast_p] + if 'lookahead_slow_buff' not in param_state: + param_state['lookahead_slow_buff'] = torch.empty_like(fast_p) + param_state['lookahead_slow_buff'].copy_(fast_p) + slow = param_state['lookahead_slow_buff'] + slow.add_(fast_p - slow, alpha=group['lookahead_alpha']) + fast_p.copy_(slow) + + def sync_lookahead(self): + for group in self._base_optimizer.param_groups: + self.update_slow(group) + + @torch.no_grad() + def step(self, closure=None): + loss = self._base_optimizer.step(closure) + for group in self._base_optimizer.param_groups: + group['lookahead_step'] += 1 + if group['lookahead_step'] % group['lookahead_k'] == 0: + self.update_slow(group) + return loss + + def state_dict(self): + return self._base_optimizer.state_dict() + + def load_state_dict(self, state_dict): + self._base_optimizer.load_state_dict(state_dict) + self.param_groups = self._base_optimizer.param_groups + +# File: pytorch-image-models-main/timm/optim/madgrad.py +"""""" +import math +from typing import TYPE_CHECKING, Any, Callable, Optional +import torch +import torch.optim +if TYPE_CHECKING: + from torch.optim.optimizer import _params_t +else: + _params_t = Any + +class MADGRAD(torch.optim.Optimizer): + + def __init__(self, params: _params_t, lr: float=0.01, momentum: float=0.9, weight_decay: float=0, eps: float=1e-06, decoupled_decay: bool=False): + if momentum < 0 or momentum >= 1: + raise ValueError(f'Momentum {momentum} must be in the range [0,1]') + if lr <= 0: + raise ValueError(f'Learning rate {lr} must be positive') + if weight_decay < 0: + raise ValueError(f'Weight decay {weight_decay} must be non-negative') + if eps < 0: + raise ValueError(f'Eps must be non-negative') + defaults = dict(lr=lr, eps=eps, momentum=momentum, weight_decay=weight_decay, decoupled_decay=decoupled_decay) + super().__init__(params, defaults) + + @property + def supports_memory_efficient_fp16(self) -> bool: + return False + + @property + def supports_flat_params(self) -> bool: + return True + + @torch.no_grad() + def step(self, closure: Optional[Callable[[], float]]=None) -> Optional[float]: + loss = None + if closure is not None: + with torch.enable_grad(): + loss = closure() + for group in self.param_groups: + eps = group['eps'] + lr = group['lr'] + eps + weight_decay = group['weight_decay'] + momentum = group['momentum'] + ck = 1 - momentum + for p in group['params']: + if p.grad is None: + continue + grad = p.grad + if momentum != 0.0 and grad.is_sparse: + raise RuntimeError('momentum != 0 is not compatible with sparse gradients') + state = self.state[p] + if len(state) == 0: + state['step'] = 0 + state['grad_sum_sq'] = torch.zeros_like(p) + state['s'] = torch.zeros_like(p) + if momentum != 0: + state['x0'] = torch.clone(p).detach() + state['step'] += 1 + grad_sum_sq = state['grad_sum_sq'] + s = state['s'] + lamb = lr * math.sqrt(state['step']) + if weight_decay != 0: + if group['decoupled_decay']: + p.mul_(1.0 - group['lr'] * weight_decay) + else: + if grad.is_sparse: + raise RuntimeError('weight_decay option is not compatible with sparse gradients') + grad.add_(p, alpha=weight_decay) + if grad.is_sparse: + grad = grad.coalesce() + grad_val = grad._values() + p_masked = p.sparse_mask(grad) + grad_sum_sq_masked = grad_sum_sq.sparse_mask(grad) + s_masked = s.sparse_mask(grad) + rms_masked_vals = grad_sum_sq_masked._values().pow(1 / 3).add_(eps) + x0_masked_vals = p_masked._values().addcdiv(s_masked._values(), rms_masked_vals, value=1) + grad_sq = grad * grad + grad_sum_sq.add_(grad_sq, alpha=lamb) + grad_sum_sq_masked.add_(grad_sq, alpha=lamb) + rms_masked_vals = grad_sum_sq_masked._values().pow_(1 / 3).add_(eps) + s.add_(grad, alpha=lamb) + s_masked._values().add_(grad_val, alpha=lamb) + p_kp1_masked_vals = x0_masked_vals.addcdiv(s_masked._values(), rms_masked_vals, value=-1) + p_masked._values().add_(p_kp1_masked_vals, alpha=-1) + p.add_(p_masked, alpha=-1) + else: + if momentum == 0: + rms = grad_sum_sq.pow(1 / 3).add_(eps) + x0 = p.addcdiv(s, rms, value=1) + else: + x0 = state['x0'] + grad_sum_sq.addcmul_(grad, grad, value=lamb) + rms = grad_sum_sq.pow(1 / 3).add_(eps) + s.add_(grad, alpha=lamb) + if momentum == 0: + p.copy_(x0.addcdiv(s, rms, value=-1)) + else: + z = x0.addcdiv(s, rms, value=-1) + p.mul_(1 - ck).add_(z, alpha=ck) + return loss + +# File: pytorch-image-models-main/timm/optim/nadam.py +import math +import torch +from torch.optim.optimizer import Optimizer + +class Nadam(Optimizer): + + def __init__(self, params, lr=0.002, betas=(0.9, 0.999), eps=1e-08, weight_decay=0, schedule_decay=0.004): + if not 0.0 <= lr: + raise ValueError('Invalid learning rate: {}'.format(lr)) + defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, schedule_decay=schedule_decay) + super(Nadam, self).__init__(params, defaults) + + @torch.no_grad() + def step(self, closure=None): + loss = None + if closure is not None: + with torch.enable_grad(): + loss = closure() + for group in self.param_groups: + for p in group['params']: + if p.grad is None: + continue + grad = p.grad + state = self.state[p] + if len(state) == 0: + state['step'] = 0 + state['m_schedule'] = 1.0 + state['exp_avg'] = torch.zeros_like(p) + state['exp_avg_sq'] = torch.zeros_like(p) + m_schedule = state['m_schedule'] + schedule_decay = group['schedule_decay'] + (exp_avg, exp_avg_sq) = (state['exp_avg'], state['exp_avg_sq']) + (beta1, beta2) = group['betas'] + eps = group['eps'] + state['step'] += 1 + t = state['step'] + bias_correction2 = 1 - beta2 ** t + if group['weight_decay'] != 0: + grad = grad.add(p, alpha=group['weight_decay']) + momentum_cache_t = beta1 * (1.0 - 0.5 * 0.96 ** (t * schedule_decay)) + momentum_cache_t_1 = beta1 * (1.0 - 0.5 * 0.96 ** ((t + 1) * schedule_decay)) + m_schedule_new = m_schedule * momentum_cache_t + m_schedule_next = m_schedule * momentum_cache_t * momentum_cache_t_1 + state['m_schedule'] = m_schedule_new + exp_avg.mul_(beta1).add_(grad, alpha=1.0 - beta1) + exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1.0 - beta2) + denom = (exp_avg_sq.sqrt() / math.sqrt(bias_correction2)).add_(eps) + p.addcdiv_(grad, denom, value=-group['lr'] * (1.0 - momentum_cache_t) / (1.0 - m_schedule_new)) + p.addcdiv_(exp_avg, denom, value=-group['lr'] * momentum_cache_t_1 / (1.0 - m_schedule_next)) + return loss + +# File: pytorch-image-models-main/timm/optim/nadamw.py +"""""" +import math +from typing import List, Optional +import torch +from torch import Tensor + +class NAdamW(torch.optim.Optimizer): + + def __init__(self, params, lr=0.001, betas=(0.9, 0.999), eps=1e-08, weight_decay=0.01, maximize: bool=False, foreach: Optional[bool]=None, capturable: bool=False): + if not 0.0 <= lr: + raise ValueError(f'Invalid learning rate: {lr}') + if not 0.0 <= eps: + raise ValueError(f'Invalid epsilon value: {eps}') + if not 0.0 <= betas[0] < 1.0: + raise ValueError(f'Invalid beta parameter at index 0: {betas[0]}') + if not 0.0 <= betas[1] < 1.0: + raise ValueError(f'Invalid beta parameter at index 1: {betas[1]}') + if not 0.0 <= weight_decay: + raise ValueError(f'Invalid weight_decay value: {weight_decay}') + defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, foreach=foreach, maximize=maximize, capturable=capturable) + super().__init__(params, defaults) + + def __setstate__(self, state): + super().__setstate__(state) + state_values = list(self.state.values()) + step_is_tensor = len(state_values) != 0 and torch.is_tensor(state_values[0]['step']) + if not step_is_tensor: + for s in state_values: + s['step'] = torch.tensor(float(s['step'])) + + @torch.no_grad() + def step(self, closure=None): + self._cuda_graph_capture_health_check() + loss = None + if closure is not None: + with torch.enable_grad(): + loss = closure() + for group in self.param_groups: + params_with_grad = [] + grads = [] + exp_avgs = [] + exp_avg_sqs = [] + state_steps = [] + (beta1, beta2) = group['betas'] + for p in group['params']: + if p.grad is None: + continue + params_with_grad.append(p) + if p.grad.is_sparse: + raise RuntimeError('NAdamW does not support sparse gradients') + grads.append(p.grad) + state = self.state[p] + if len(state) == 0: + state['step'] = torch.tensor(0.0) + state['exp_avg'] = torch.zeros_like(p, memory_format=torch.preserve_format) + state['exp_avg_sq'] = torch.zeros_like(p, memory_format=torch.preserve_format) + exp_avgs.append(state['exp_avg']) + exp_avg_sqs.append(state['exp_avg_sq']) + state_steps.append(state['step']) + nadamw(params_with_grad, grads, exp_avgs, exp_avg_sqs, state_steps, beta1=beta1, beta2=beta2, lr=group['lr'], weight_decay=group['weight_decay'], eps=group['eps'], maximize=group['maximize'], capturable=group['capturable']) + return loss + +def nadamw(params: List[Tensor], grads: List[Tensor], exp_avgs: List[Tensor], exp_avg_sqs: List[Tensor], state_steps: List[Tensor], foreach: Optional[bool]=None, capturable: bool=False, *, beta1: float, beta2: float, lr: float, weight_decay: float, eps: float, maximize: bool) -> None: + if not all((isinstance(t, torch.Tensor) for t in state_steps)): + raise RuntimeError('API has changed, `state_steps` argument must contain a list of' + ' singleton tensors') + if foreach is None: + foreach = True + if foreach and (not torch.jit.is_scripting()): + func = _multi_tensor_nadamw + else: + func = _single_tensor_nadamw + func(params, grads, exp_avgs, exp_avg_sqs, state_steps, beta1=beta1, beta2=beta2, lr=lr, weight_decay=weight_decay, eps=eps, maximize=maximize, capturable=capturable) + +def _single_tensor_nadamw(params: List[Tensor], grads: List[Tensor], exp_avgs: List[Tensor], exp_avg_sqs: List[Tensor], state_steps: List[Tensor], *, beta1: float, beta2: float, lr: float, weight_decay: float, eps: float, maximize: bool, capturable: bool): + for (i, param) in enumerate(params): + grad = grads[i] if not maximize else -grads[i] + exp_avg = exp_avgs[i] + exp_avg_sq = exp_avg_sqs[i] + step_t = state_steps[i] + step_t += 1 + param.mul_(1.0 - lr * weight_decay) + exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1) + exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2) + if capturable: + step = step_t + bias_correction1 = 1 - torch.pow(beta1, step) + bias_correction2 = 1 - torch.pow(beta2, step) + step_size = lr / bias_correction1 + step_size_neg = step_size.neg() + bias_correction2_sqrt = bias_correction2.sqrt() + exp_avg = exp_avg.mul(beta1).add_(grad, alpha=1 - beta1) + denom = (exp_avg_sq.sqrt() / (bias_correction2_sqrt * step_size_neg)).add_(eps / step_size_neg) + param.addcdiv_(exp_avg, denom) + else: + step = step_t.item() + bias_correction1 = 1 - beta1 ** step + bias_correction2 = 1 - beta2 ** step + step_size = lr / bias_correction1 + bias_correction2_sqrt = math.sqrt(bias_correction2) + exp_avg = exp_avg.mul(beta1).add_(grad, alpha=1 - beta1) + denom = (exp_avg_sq.sqrt() / bias_correction2_sqrt).add_(eps) + param.addcdiv_(exp_avg, denom, value=-step_size) + +def _multi_tensor_nadamw(params: List[Tensor], grads: List[Tensor], exp_avgs: List[Tensor], exp_avg_sqs: List[Tensor], state_steps: List[Tensor], *, beta1: float, beta2: float, lr: float, weight_decay: float, eps: float, maximize: bool, capturable: bool): + if len(params) == 0: + return + if capturable: + assert all((p.is_cuda and step.is_cuda for (p, step) in zip(params, state_steps))), 'If capturable=True, params and state_steps must be CUDA tensors.' + if maximize: + grads = torch._foreach_neg(tuple(grads)) + grads = [torch.view_as_real(x) if torch.is_complex(x) else x for x in grads] + exp_avgs = [torch.view_as_real(x) if torch.is_complex(x) else x for x in exp_avgs] + exp_avg_sqs = [torch.view_as_real(x) if torch.is_complex(x) else x for x in exp_avg_sqs] + params = [torch.view_as_real(x) if torch.is_complex(x) else x for x in params] + torch._foreach_add_(state_steps, 1) + torch._foreach_mul_(params, 1 - lr * weight_decay) + torch._foreach_mul_(exp_avgs, beta1) + torch._foreach_add_(exp_avgs, grads, alpha=1 - beta1) + torch._foreach_mul_(exp_avg_sqs, beta2) + torch._foreach_addcmul_(exp_avg_sqs, grads, grads, 1 - beta2) + if capturable: + bias_correction1 = [torch.pow(beta1, step) for step in state_steps] + bias_correction2 = [torch.pow(beta2, step) for step in state_steps] + torch._foreach_sub_(bias_correction1, 1) + torch._foreach_sub_(bias_correction2, 1) + torch._foreach_neg_(bias_correction1) + torch._foreach_neg_(bias_correction2) + step_size = torch._foreach_div(bias_correction1, lr) + torch._foreach_reciprocal_(step_size) + torch._foreach_neg_(step_size) + bias_correction2_sqrt = torch._foreach_sqrt(bias_correction2) + exp_avgs = torch._foreach_mul(exp_avgs, beta1) + torch._foreach_add_(exp_avgs, grads, alpha=1 - beta1) + exp_avg_sq_sqrt = torch._foreach_sqrt(exp_avg_sqs) + torch._foreach_div_(exp_avg_sq_sqrt, torch._foreach_mul(bias_correction2_sqrt, step_size)) + eps_over_step_size = torch._foreach_div(step_size, eps) + torch._foreach_reciprocal_(eps_over_step_size) + denom = torch._foreach_add(exp_avg_sq_sqrt, eps_over_step_size) + torch._foreach_addcdiv_(params, exp_avgs, denom) + else: + bias_correction1 = [1 - beta1 ** step.item() for step in state_steps] + bias_correction2 = [1 - beta2 ** step.item() for step in state_steps] + step_size = [lr / bc * -1 for bc in bias_correction1] + bias_correction2_sqrt = [math.sqrt(bc) for bc in bias_correction2] + exp_avgs = torch._foreach_mul(exp_avgs, beta1) + torch._foreach_add_(exp_avgs, grads, alpha=1 - beta1) + exp_avg_sq_sqrt = torch._foreach_sqrt(exp_avg_sqs) + torch._foreach_div_(exp_avg_sq_sqrt, bias_correction2_sqrt) + denom = torch._foreach_add(exp_avg_sq_sqrt, eps) + torch._foreach_addcdiv_(params, exp_avgs, denom, step_size) + +# File: pytorch-image-models-main/timm/optim/nvnovograd.py +"""""" +import torch +from torch.optim.optimizer import Optimizer +import math + +class NvNovoGrad(Optimizer): + + def __init__(self, params, lr=0.001, betas=(0.95, 0.98), eps=1e-08, weight_decay=0, grad_averaging=False, amsgrad=False): + if not 0.0 <= lr: + raise ValueError('Invalid learning rate: {}'.format(lr)) + if not 0.0 <= eps: + raise ValueError('Invalid epsilon value: {}'.format(eps)) + if not 0.0 <= betas[0] < 1.0: + raise ValueError('Invalid beta parameter at index 0: {}'.format(betas[0])) + if not 0.0 <= betas[1] < 1.0: + raise ValueError('Invalid beta parameter at index 1: {}'.format(betas[1])) + defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, grad_averaging=grad_averaging, amsgrad=amsgrad) + super(NvNovoGrad, self).__init__(params, defaults) + + def __setstate__(self, state): + super(NvNovoGrad, self).__setstate__(state) + for group in self.param_groups: + group.setdefault('amsgrad', False) + + @torch.no_grad() + def step(self, closure=None): + loss = None + if closure is not None: + with torch.enable_grad(): + loss = closure() + for group in self.param_groups: + for p in group['params']: + if p.grad is None: + continue + grad = p.grad + if grad.is_sparse: + raise RuntimeError('Sparse gradients are not supported.') + amsgrad = group['amsgrad'] + state = self.state[p] + if len(state) == 0: + state['step'] = 0 + state['exp_avg'] = torch.zeros_like(p) + state['exp_avg_sq'] = torch.zeros([]).to(state['exp_avg'].device) + if amsgrad: + state['max_exp_avg_sq'] = torch.zeros([]).to(state['exp_avg'].device) + (exp_avg, exp_avg_sq) = (state['exp_avg'], state['exp_avg_sq']) + if amsgrad: + max_exp_avg_sq = state['max_exp_avg_sq'] + (beta1, beta2) = group['betas'] + state['step'] += 1 + norm = torch.sum(torch.pow(grad, 2)) + if exp_avg_sq == 0: + exp_avg_sq.copy_(norm) + else: + exp_avg_sq.mul_(beta2).add_(norm, alpha=1 - beta2) + if amsgrad: + torch.max(max_exp_avg_sq, exp_avg_sq, out=max_exp_avg_sq) + denom = max_exp_avg_sq.sqrt().add_(group['eps']) + else: + denom = exp_avg_sq.sqrt().add_(group['eps']) + grad.div_(denom) + if group['weight_decay'] != 0: + grad.add_(p, alpha=group['weight_decay']) + if group['grad_averaging']: + grad.mul_(1 - beta1) + exp_avg.mul_(beta1).add_(grad) + p.add_(exp_avg, alpha=-group['lr']) + return loss + +# File: pytorch-image-models-main/timm/optim/optim_factory.py +"""""" +import logging +from itertools import islice +from typing import Optional, Callable, Tuple +import torch +import torch.nn as nn +import torch.optim as optim +from timm.models import group_parameters +from .adabelief import AdaBelief +from .adafactor import Adafactor +from .adahessian import Adahessian +from .adamp import AdamP +from .adan import Adan +from .lamb import Lamb +from .lars import Lars +from .lion import Lion +from .lookahead import Lookahead +from .madgrad import MADGRAD +from .nadam import Nadam +from .nadamw import NAdamW +from .nvnovograd import NvNovoGrad +from .radam import RAdam +from .rmsprop_tf import RMSpropTF +from .sgdp import SGDP +from .sgdw import SGDW +_logger = logging.getLogger(__name__) +_DEFAULT_FOREACH = {'lion'} + +def param_groups_weight_decay(model: nn.Module, weight_decay=1e-05, no_weight_decay_list=()): + no_weight_decay_list = set(no_weight_decay_list) + decay = [] + no_decay = [] + for (name, param) in model.named_parameters(): + if not param.requires_grad: + continue + if param.ndim <= 1 or name.endswith('.bias') or name in no_weight_decay_list: + no_decay.append(param) + else: + decay.append(param) + return [{'params': no_decay, 'weight_decay': 0.0}, {'params': decay, 'weight_decay': weight_decay}] + +def _group(it, size): + it = iter(it) + return iter(lambda : tuple(islice(it, size)), ()) + +def _layer_map(model, layers_per_group=12, num_groups=None): + + def _in_head(n, hp): + if not hp: + return True + elif isinstance(hp, (tuple, list)): + return any([n.startswith(hpi) for hpi in hp]) + else: + return n.startswith(hp) + head_prefix = getattr(model, 'pretrained_cfg', {}).get('classifier', None) + names_trunk = [] + names_head = [] + for (n, _) in model.named_parameters(): + names_head.append(n) if _in_head(n, head_prefix) else names_trunk.append(n) + num_trunk_layers = len(names_trunk) + if num_groups is not None: + layers_per_group = -(num_trunk_layers // -num_groups) + names_trunk = list(_group(names_trunk, layers_per_group)) + num_trunk_groups = len(names_trunk) + layer_map = {n: i for (i, l) in enumerate(names_trunk) for n in l} + layer_map.update({n: num_trunk_groups for n in names_head}) + return layer_map + +def param_groups_layer_decay(model: nn.Module, weight_decay: float=0.05, no_weight_decay_list: Tuple[str]=(), layer_decay: float=0.75, end_layer_decay: Optional[float]=None, verbose: bool=False): + no_weight_decay_list = set(no_weight_decay_list) + param_group_names = {} + param_groups = {} + if hasattr(model, 'group_matcher'): + layer_map = group_parameters(model, model.group_matcher(coarse=False), reverse=True) + else: + layer_map = _layer_map(model) + num_layers = max(layer_map.values()) + 1 + layer_max = num_layers - 1 + layer_scales = list((layer_decay ** (layer_max - i) for i in range(num_layers))) + for (name, param) in model.named_parameters(): + if not param.requires_grad: + continue + if param.ndim == 1 or name in no_weight_decay_list: + g_decay = 'no_decay' + this_decay = 0.0 + else: + g_decay = 'decay' + this_decay = weight_decay + layer_id = layer_map.get(name, layer_max) + group_name = 'layer_%d_%s' % (layer_id, g_decay) + if group_name not in param_groups: + this_scale = layer_scales[layer_id] + param_group_names[group_name] = {'lr_scale': this_scale, 'weight_decay': this_decay, 'param_names': []} + param_groups[group_name] = {'lr_scale': this_scale, 'weight_decay': this_decay, 'params': []} + param_group_names[group_name]['param_names'].append(name) + param_groups[group_name]['params'].append(param) + if verbose: + import json + _logger.info('parameter groups: \n%s' % json.dumps(param_group_names, indent=2)) + return list(param_groups.values()) + +def optimizer_kwargs(cfg): + kwargs = dict(opt=cfg.opt, lr=cfg.lr, weight_decay=cfg.weight_decay, momentum=cfg.momentum) + if getattr(cfg, 'opt_eps', None) is not None: + kwargs['eps'] = cfg.opt_eps + if getattr(cfg, 'opt_betas', None) is not None: + kwargs['betas'] = cfg.opt_betas + if getattr(cfg, 'layer_decay', None) is not None: + kwargs['layer_decay'] = cfg.layer_decay + if getattr(cfg, 'opt_args', None) is not None: + kwargs.update(cfg.opt_args) + if getattr(cfg, 'opt_foreach', None) is not None: + kwargs['foreach'] = cfg.opt_foreach + return kwargs + +def create_optimizer(args, model, filter_bias_and_bn=True): + return create_optimizer_v2(model, **optimizer_kwargs(cfg=args), filter_bias_and_bn=filter_bias_and_bn) + +def create_optimizer_v2(model_or_params, opt: str='sgd', lr: Optional[float]=None, weight_decay: float=0.0, momentum: float=0.9, foreach: Optional[bool]=None, filter_bias_and_bn: bool=True, layer_decay: Optional[float]=None, param_group_fn: Optional[Callable]=None, **kwargs): + if isinstance(model_or_params, nn.Module): + no_weight_decay = {} + if hasattr(model_or_params, 'no_weight_decay'): + no_weight_decay = model_or_params.no_weight_decay() + if param_group_fn: + parameters = param_group_fn(model_or_params) + elif layer_decay is not None: + parameters = param_groups_layer_decay(model_or_params, weight_decay=weight_decay, layer_decay=layer_decay, no_weight_decay_list=no_weight_decay) + weight_decay = 0.0 + elif weight_decay and filter_bias_and_bn: + parameters = param_groups_weight_decay(model_or_params, weight_decay, no_weight_decay) + weight_decay = 0.0 + else: + parameters = model_or_params.parameters() + else: + parameters = model_or_params + opt_lower = opt.lower() + opt_split = opt_lower.split('_') + opt_lower = opt_split[-1] + if opt_lower.startswith('fused'): + try: + from apex.optimizers import FusedNovoGrad, FusedAdam, FusedLAMB, FusedSGD + has_apex = True + except ImportError: + has_apex = False + assert has_apex and torch.cuda.is_available(), 'APEX and CUDA required for fused optimizers' + if opt_lower.startswith('bnb'): + try: + import bitsandbytes as bnb + has_bnb = True + except ImportError: + has_bnb = False + assert has_bnb and torch.cuda.is_available(), 'bitsandbytes and CUDA required for bnb optimizers' + opt_args = dict(weight_decay=weight_decay, **kwargs) + if lr is not None: + opt_args.setdefault('lr', lr) + if foreach is None: + if opt in _DEFAULT_FOREACH: + opt_args.setdefault('foreach', True) + else: + opt_args['foreach'] = foreach + if opt_lower == 'sgd' or opt_lower == 'nesterov': + opt_args.pop('eps', None) + optimizer = optim.SGD(parameters, momentum=momentum, nesterov=True, **opt_args) + elif opt_lower == 'momentum': + opt_args.pop('eps', None) + optimizer = optim.SGD(parameters, momentum=momentum, nesterov=False, **opt_args) + elif opt_lower == 'sgdp': + optimizer = SGDP(parameters, momentum=momentum, nesterov=True, **opt_args) + elif opt_lower == 'sgdw' or opt_lower == 'nesterovw': + opt_args.pop('eps', None) + optimizer = SGDW(parameters, momentum=momentum, nesterov=True, **opt_args) + elif opt_lower == 'momentumw': + opt_args.pop('eps', None) + optimizer = SGDW(parameters, momentum=momentum, nesterov=False, **opt_args) + elif opt_lower == 'adam': + optimizer = optim.Adam(parameters, **opt_args) + elif opt_lower == 'adamw': + optimizer = optim.AdamW(parameters, **opt_args) + elif opt_lower == 'adamp': + optimizer = AdamP(parameters, wd_ratio=0.01, nesterov=True, **opt_args) + elif opt_lower == 'nadam': + try: + optimizer = optim.Nadam(parameters, **opt_args) + except AttributeError: + optimizer = Nadam(parameters, **opt_args) + elif opt_lower == 'nadamw': + optimizer = NAdamW(parameters, **opt_args) + elif opt_lower == 'radam': + optimizer = RAdam(parameters, **opt_args) + elif opt_lower == 'adamax': + optimizer = optim.Adamax(parameters, **opt_args) + elif opt_lower == 'adabelief': + optimizer = AdaBelief(parameters, rectify=False, **opt_args) + elif opt_lower == 'radabelief': + optimizer = AdaBelief(parameters, rectify=True, **opt_args) + elif opt_lower == 'adadelta': + optimizer = optim.Adadelta(parameters, **opt_args) + elif opt_lower == 'adagrad': + opt_args.setdefault('eps', 1e-08) + optimizer = optim.Adagrad(parameters, **opt_args) + elif opt_lower == 'adafactor': + optimizer = Adafactor(parameters, **opt_args) + elif opt_lower == 'adanp': + optimizer = Adan(parameters, no_prox=False, **opt_args) + elif opt_lower == 'adanw': + optimizer = Adan(parameters, no_prox=True, **opt_args) + elif opt_lower == 'lamb': + optimizer = Lamb(parameters, **opt_args) + elif opt_lower == 'lambc': + optimizer = Lamb(parameters, trust_clip=True, **opt_args) + elif opt_lower == 'larc': + optimizer = Lars(parameters, momentum=momentum, trust_clip=True, **opt_args) + elif opt_lower == 'lars': + optimizer = Lars(parameters, momentum=momentum, **opt_args) + elif opt_lower == 'nlarc': + optimizer = Lars(parameters, momentum=momentum, trust_clip=True, nesterov=True, **opt_args) + elif opt_lower == 'nlars': + optimizer = Lars(parameters, momentum=momentum, nesterov=True, **opt_args) + elif opt_lower == 'madgrad': + optimizer = MADGRAD(parameters, momentum=momentum, **opt_args) + elif opt_lower == 'madgradw': + optimizer = MADGRAD(parameters, momentum=momentum, decoupled_decay=True, **opt_args) + elif opt_lower == 'novograd' or opt_lower == 'nvnovograd': + optimizer = NvNovoGrad(parameters, **opt_args) + elif opt_lower == 'rmsprop': + optimizer = optim.RMSprop(parameters, alpha=0.9, momentum=momentum, **opt_args) + elif opt_lower == 'rmsproptf': + optimizer = RMSpropTF(parameters, alpha=0.9, momentum=momentum, **opt_args) + elif opt_lower == 'lion': + opt_args.pop('eps', None) + optimizer = Lion(parameters, **opt_args) + elif opt_lower == 'adahessian': + optimizer = Adahessian(parameters, **opt_args) + elif opt_lower == 'fusedsgd': + opt_args.pop('eps', None) + optimizer = FusedSGD(parameters, momentum=momentum, nesterov=True, **opt_args) + elif opt_lower == 'fusedmomentum': + opt_args.pop('eps', None) + optimizer = FusedSGD(parameters, momentum=momentum, nesterov=False, **opt_args) + elif opt_lower == 'fusedadam': + optimizer = FusedAdam(parameters, adam_w_mode=False, **opt_args) + elif opt_lower == 'fusedadamw': + optimizer = FusedAdam(parameters, adam_w_mode=True, **opt_args) + elif opt_lower == 'fusedlamb': + optimizer = FusedLAMB(parameters, **opt_args) + elif opt_lower == 'fusednovograd': + opt_args.setdefault('betas', (0.95, 0.98)) + optimizer = FusedNovoGrad(parameters, **opt_args) + elif opt_lower == 'bnbsgd': + opt_args.pop('eps', None) + optimizer = bnb.optim.SGD(parameters, momentum=momentum, nesterov=True, **opt_args) + elif opt_lower == 'bnbsgd8bit': + opt_args.pop('eps', None) + optimizer = bnb.optim.SGD8bit(parameters, momentum=momentum, nesterov=True, **opt_args) + elif opt_lower == 'bnbmomentum': + opt_args.pop('eps', None) + optimizer = bnb.optim.SGD(parameters, momentum=momentum, **opt_args) + elif opt_lower == 'bnbmomentum8bit': + opt_args.pop('eps', None) + optimizer = bnb.optim.SGD8bit(parameters, momentum=momentum, **opt_args) + elif opt_lower == 'bnbadam': + optimizer = bnb.optim.Adam(parameters, **opt_args) + elif opt_lower == 'bnbadam8bit': + optimizer = bnb.optim.Adam8bit(parameters, **opt_args) + elif opt_lower == 'bnbadamw': + optimizer = bnb.optim.AdamW(parameters, **opt_args) + elif opt_lower == 'bnbadamw8bit': + optimizer = bnb.optim.AdamW8bit(parameters, **opt_args) + elif opt_lower == 'bnblamb': + optimizer = bnb.optim.LAMB(parameters, **opt_args) + elif opt_lower == 'bnblamb8bit': + optimizer = bnb.optim.LAMB8bit(parameters, **opt_args) + elif opt_lower == 'bnblars': + optimizer = bnb.optim.LARS(parameters, **opt_args) + elif opt_lower == 'bnblarsb8bit': + optimizer = bnb.optim.LAMB8bit(parameters, **opt_args) + elif opt_lower == 'bnblion': + optimizer = bnb.optim.Lion(parameters, **opt_args) + elif opt_lower == 'bnblion8bit': + optimizer = bnb.optim.Lion8bit(parameters, **opt_args) + else: + assert False and 'Invalid optimizer' + raise ValueError + if len(opt_split) > 1: + if opt_split[0] == 'lookahead': + optimizer = Lookahead(optimizer) + return optimizer + +# File: pytorch-image-models-main/timm/optim/radam.py +"""""" +import math +import torch +from torch.optim.optimizer import Optimizer + +class RAdam(Optimizer): + + def __init__(self, params, lr=0.001, betas=(0.9, 0.999), eps=1e-08, weight_decay=0): + defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, buffer=[[None, None, None] for _ in range(10)]) + super(RAdam, self).__init__(params, defaults) + + def __setstate__(self, state): + super(RAdam, self).__setstate__(state) + + @torch.no_grad() + def step(self, closure=None): + loss = None + if closure is not None: + with torch.enable_grad(): + loss = closure() + for group in self.param_groups: + for p in group['params']: + if p.grad is None: + continue + grad = p.grad.float() + if grad.is_sparse: + raise RuntimeError('RAdam does not support sparse gradients') + p_fp32 = p.float() + state = self.state[p] + if len(state) == 0: + state['step'] = 0 + state['exp_avg'] = torch.zeros_like(p_fp32) + state['exp_avg_sq'] = torch.zeros_like(p_fp32) + else: + state['exp_avg'] = state['exp_avg'].type_as(p_fp32) + state['exp_avg_sq'] = state['exp_avg_sq'].type_as(p_fp32) + (exp_avg, exp_avg_sq) = (state['exp_avg'], state['exp_avg_sq']) + (beta1, beta2) = group['betas'] + exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2) + exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1) + state['step'] += 1 + buffered = group['buffer'][int(state['step'] % 10)] + if state['step'] == buffered[0]: + (num_sma, step_size) = (buffered[1], buffered[2]) + else: + buffered[0] = state['step'] + beta2_t = beta2 ** state['step'] + num_sma_max = 2 / (1 - beta2) - 1 + num_sma = num_sma_max - 2 * state['step'] * beta2_t / (1 - beta2_t) + buffered[1] = num_sma + if num_sma >= 5: + step_size = group['lr'] * math.sqrt((1 - beta2_t) * (num_sma - 4) / (num_sma_max - 4) * (num_sma - 2) / num_sma * num_sma_max / (num_sma_max - 2)) / (1 - beta1 ** state['step']) + else: + step_size = group['lr'] / (1 - beta1 ** state['step']) + buffered[2] = step_size + if group['weight_decay'] != 0: + p_fp32.add_(p_fp32, alpha=-group['weight_decay'] * group['lr']) + if num_sma >= 5: + denom = exp_avg_sq.sqrt().add_(group['eps']) + p_fp32.addcdiv_(exp_avg, denom, value=-step_size) + else: + p_fp32.add_(exp_avg, alpha=-step_size) + p.copy_(p_fp32) + return loss + +# File: pytorch-image-models-main/timm/optim/rmsprop_tf.py +"""""" +import torch +from torch.optim import Optimizer + +class RMSpropTF(Optimizer): + + def __init__(self, params, lr=0.01, alpha=0.9, eps=1e-10, weight_decay=0, momentum=0.0, centered=False, decoupled_decay=False, lr_in_momentum=True): + if not 0.0 <= lr: + raise ValueError('Invalid learning rate: {}'.format(lr)) + if not 0.0 <= eps: + raise ValueError('Invalid epsilon value: {}'.format(eps)) + if not 0.0 <= momentum: + raise ValueError('Invalid momentum value: {}'.format(momentum)) + if not 0.0 <= weight_decay: + raise ValueError('Invalid weight_decay value: {}'.format(weight_decay)) + if not 0.0 <= alpha: + raise ValueError('Invalid alpha value: {}'.format(alpha)) + defaults = dict(lr=lr, momentum=momentum, alpha=alpha, eps=eps, centered=centered, weight_decay=weight_decay, decoupled_decay=decoupled_decay, lr_in_momentum=lr_in_momentum) + super(RMSpropTF, self).__init__(params, defaults) + + def __setstate__(self, state): + super(RMSpropTF, self).__setstate__(state) + for group in self.param_groups: + group.setdefault('momentum', 0) + group.setdefault('centered', False) + + @torch.no_grad() + def step(self, closure=None): + loss = None + if closure is not None: + with torch.enable_grad(): + loss = closure() + for group in self.param_groups: + for p in group['params']: + if p.grad is None: + continue + grad = p.grad + if grad.is_sparse: + raise RuntimeError('RMSprop does not support sparse gradients') + state = self.state[p] + if len(state) == 0: + state['step'] = 0 + state['square_avg'] = torch.ones_like(p) + if group['momentum'] > 0: + state['momentum_buffer'] = torch.zeros_like(p) + if group['centered']: + state['grad_avg'] = torch.zeros_like(p) + square_avg = state['square_avg'] + one_minus_alpha = 1.0 - group['alpha'] + state['step'] += 1 + if group['weight_decay'] != 0: + if group['decoupled_decay']: + p.mul_(1.0 - group['lr'] * group['weight_decay']) + else: + grad = grad.add(p, alpha=group['weight_decay']) + square_avg.add_(grad.pow(2) - square_avg, alpha=one_minus_alpha) + if group['centered']: + grad_avg = state['grad_avg'] + grad_avg.add_(grad - grad_avg, alpha=one_minus_alpha) + avg = square_avg.addcmul(grad_avg, grad_avg, value=-1).add(group['eps']).sqrt_() + else: + avg = square_avg.add(group['eps']).sqrt_() + if group['momentum'] > 0: + buf = state['momentum_buffer'] + if group['lr_in_momentum']: + buf.mul_(group['momentum']).addcdiv_(grad, avg, value=group['lr']) + p.add_(-buf) + else: + buf.mul_(group['momentum']).addcdiv_(grad, avg) + p.add_(buf, alpha=-group['lr']) + else: + p.addcdiv_(grad, avg, value=-group['lr']) + return loss + +# File: pytorch-image-models-main/timm/optim/sgdp.py +"""""" +import torch +import torch.nn.functional as F +from torch.optim.optimizer import Optimizer, required +import math +from .adamp import projection + +class SGDP(Optimizer): + + def __init__(self, params, lr=required, momentum=0, dampening=0, weight_decay=0, nesterov=False, eps=1e-08, delta=0.1, wd_ratio=0.1): + defaults = dict(lr=lr, momentum=momentum, dampening=dampening, weight_decay=weight_decay, nesterov=nesterov, eps=eps, delta=delta, wd_ratio=wd_ratio) + super(SGDP, self).__init__(params, defaults) + + @torch.no_grad() + def step(self, closure=None): + loss = None + if closure is not None: + with torch.enable_grad(): + loss = closure() + for group in self.param_groups: + weight_decay = group['weight_decay'] + momentum = group['momentum'] + dampening = group['dampening'] + nesterov = group['nesterov'] + for p in group['params']: + if p.grad is None: + continue + grad = p.grad + state = self.state[p] + if len(state) == 0: + state['momentum'] = torch.zeros_like(p) + buf = state['momentum'] + buf.mul_(momentum).add_(grad, alpha=1.0 - dampening) + if nesterov: + d_p = grad + momentum * buf + else: + d_p = buf + wd_ratio = 1.0 + if len(p.shape) > 1: + (d_p, wd_ratio) = projection(p, grad, d_p, group['delta'], group['wd_ratio'], group['eps']) + if weight_decay != 0: + p.mul_(1.0 - group['lr'] * group['weight_decay'] * wd_ratio / (1 - momentum)) + p.add_(d_p, alpha=-group['lr']) + return loss + +# File: pytorch-image-models-main/timm/optim/sgdw.py +from functools import update_wrapper, wraps +import torch +from torch import Tensor +from torch.optim.optimizer import Optimizer +try: + from torch.optim.optimizer import _use_grad_for_differentiable, _default_to_fused_or_foreach + has_recent_pt = True +except ImportError: + has_recent_pt = False +from typing import List, Optional +__all__ = ['SGDW', 'sgdw'] + +class SGDW(Optimizer): + + def __init__(self, params, lr=0.001, momentum=0, dampening=0, weight_decay=0, nesterov=False, *, maximize: bool=False, foreach: Optional[bool]=None, differentiable: bool=False): + if lr < 0.0: + raise ValueError(f'Invalid learning rate: {lr}') + if momentum < 0.0: + raise ValueError(f'Invalid momentum value: {momentum}') + if weight_decay < 0.0: + raise ValueError(f'Invalid weight_decay value: {weight_decay}') + defaults = dict(lr=lr, momentum=momentum, dampening=dampening, weight_decay=weight_decay, nesterov=nesterov, maximize=maximize, foreach=foreach, differentiable=differentiable) + if nesterov and (momentum <= 0 or dampening != 0): + raise ValueError('Nesterov momentum requires a momentum and zero dampening') + super().__init__(params, defaults) + + def __setstate__(self, state): + super().__setstate__(state) + for group in self.param_groups: + group.setdefault('nesterov', False) + group.setdefault('maximize', False) + group.setdefault('foreach', None) + group.setdefault('differentiable', False) + + def _init_group(self, group, params_with_grad, d_p_list, momentum_buffer_list): + has_sparse_grad = False + for p in group['params']: + if p.grad is not None: + params_with_grad.append(p) + d_p_list.append(p.grad) + if p.grad.is_sparse: + has_sparse_grad = True + state = self.state[p] + if 'momentum_buffer' not in state: + momentum_buffer_list.append(None) + else: + momentum_buffer_list.append(state['momentum_buffer']) + return has_sparse_grad + + @torch.no_grad() + def step(self, closure=None): + loss = None + if closure is not None: + with torch.enable_grad(): + loss = closure() + for group in self.param_groups: + params_with_grad = [] + d_p_list = [] + momentum_buffer_list = [] + has_sparse_grad = self._init_group(group, params_with_grad, d_p_list, momentum_buffer_list) + sgdw(params_with_grad, d_p_list, momentum_buffer_list, weight_decay=group['weight_decay'], momentum=group['momentum'], lr=group['lr'], dampening=group['dampening'], nesterov=group['nesterov'], maximize=group['maximize'], has_sparse_grad=has_sparse_grad, foreach=group['foreach']) + for (p, momentum_buffer) in zip(params_with_grad, momentum_buffer_list): + state = self.state[p] + state['momentum_buffer'] = momentum_buffer + return loss + +def sgdw(params: List[Tensor], d_p_list: List[Tensor], momentum_buffer_list: List[Optional[Tensor]], has_sparse_grad: bool=None, foreach: Optional[bool]=None, *, weight_decay: float, momentum: float, lr: float, dampening: float, nesterov: bool, maximize: bool): + if has_recent_pt and hasattr(Optimizer, '_group_tensors_by_device_and_dtype'): + if foreach is None: + if not torch.jit.is_scripting(): + (_, foreach) = _default_to_fused_or_foreach(params, differentiable=False, use_fused=False) + else: + foreach = False + if foreach and torch.jit.is_scripting(): + raise RuntimeError('torch.jit.script not supported with foreach optimizers') + else: + foreach = False + if foreach and (not torch.jit.is_scripting()): + func = _multi_tensor_sgdw + else: + func = _single_tensor_sgdw + func(params, d_p_list, momentum_buffer_list, weight_decay=weight_decay, momentum=momentum, lr=lr, dampening=dampening, nesterov=nesterov, has_sparse_grad=has_sparse_grad, maximize=maximize) + +def _single_tensor_sgdw(params: List[Tensor], d_p_list: List[Tensor], momentum_buffer_list: List[Optional[Tensor]], *, weight_decay: float, momentum: float, lr: float, dampening: float, nesterov: bool, maximize: bool, has_sparse_grad: bool): + for (i, param) in enumerate(params): + d_p = d_p_list[i] if not maximize else -d_p_list[i] + param.mul_(1.0 - lr * weight_decay) + if momentum != 0: + buf = momentum_buffer_list[i] + if buf is None: + buf = torch.clone(d_p).detach() + momentum_buffer_list[i] = buf + else: + buf.mul_(momentum).add_(d_p, alpha=1 - dampening) + if nesterov: + d_p = d_p.add(buf, alpha=momentum) + else: + d_p = buf + param.add_(d_p, alpha=-lr) + +def _multi_tensor_sgdw(params: List[Tensor], grads: List[Tensor], momentum_buffer_list: List[Optional[Tensor]], *, weight_decay: float, momentum: float, lr: float, dampening: float, nesterov: bool, maximize: bool, has_sparse_grad: bool): + if len(params) == 0: + return + grouped_tensors = Optimizer._group_tensors_by_device_and_dtype([params, grads, momentum_buffer_list], with_indices=True) + for ((device_params, device_grads, device_momentum_buffer_list), indices) in grouped_tensors.values(): + device_has_sparse_grad = has_sparse_grad and any((grad.is_sparse for grad in device_grads)) + if maximize: + device_grads = torch._foreach_neg(device_grads) + torch._foreach_mul_(params, 1.0 - lr * weight_decay) + if momentum != 0: + bufs = [] + all_states_with_momentum_buffer = True + for i in range(len(device_momentum_buffer_list)): + if device_momentum_buffer_list[i] is None: + all_states_with_momentum_buffer = False + break + else: + bufs.append(device_momentum_buffer_list[i]) + if all_states_with_momentum_buffer: + torch._foreach_mul_(bufs, momentum) + torch._foreach_add_(bufs, device_grads, alpha=1 - dampening) + else: + bufs = [] + for i in range(len(device_momentum_buffer_list)): + if device_momentum_buffer_list[i] is None: + buf = device_momentum_buffer_list[i] = momentum_buffer_list[indices[i]] = torch.clone(device_grads[i]).detach() + else: + buf = device_momentum_buffer_list[i] + buf.mul_(momentum).add_(device_grads[i], alpha=1 - dampening) + bufs.append(buf) + if nesterov: + torch._foreach_add_(device_grads, bufs, alpha=momentum) + else: + device_grads = bufs + if not device_has_sparse_grad: + torch._foreach_add_(device_params, device_grads, alpha=-lr) + else: + for i in range(len(device_params)): + device_params[i].add_(device_grads[i], alpha=-lr) + +# File: pytorch-image-models-main/timm/scheduler/cosine_lr.py +"""""" +import logging +import math +import numpy as np +import torch +from typing import List +from .scheduler import Scheduler +_logger = logging.getLogger(__name__) + +class CosineLRScheduler(Scheduler): + + def __init__(self, optimizer: torch.optim.Optimizer, t_initial: int, lr_min: float=0.0, cycle_mul: float=1.0, cycle_decay: float=1.0, cycle_limit: int=1, warmup_t=0, warmup_lr_init=0, warmup_prefix=False, t_in_epochs=True, noise_range_t=None, noise_pct=0.67, noise_std=1.0, noise_seed=42, k_decay=1.0, initialize=True) -> None: + super().__init__(optimizer, param_group_field='lr', t_in_epochs=t_in_epochs, noise_range_t=noise_range_t, noise_pct=noise_pct, noise_std=noise_std, noise_seed=noise_seed, initialize=initialize) + assert t_initial > 0 + assert lr_min >= 0 + if t_initial == 1 and cycle_mul == 1 and (cycle_decay == 1): + _logger.warning('Cosine annealing scheduler will have no effect on the learning rate since t_initial = t_mul = eta_mul = 1.') + self.t_initial = t_initial + self.lr_min = lr_min + self.cycle_mul = cycle_mul + self.cycle_decay = cycle_decay + self.cycle_limit = cycle_limit + self.warmup_t = warmup_t + self.warmup_lr_init = warmup_lr_init + self.warmup_prefix = warmup_prefix + self.k_decay = k_decay + if self.warmup_t: + self.warmup_steps = [(v - warmup_lr_init) / self.warmup_t for v in self.base_values] + super().update_groups(self.warmup_lr_init) + else: + self.warmup_steps = [1 for _ in self.base_values] + + def _get_lr(self, t: int) -> List[float]: + if t < self.warmup_t: + lrs = [self.warmup_lr_init + t * s for s in self.warmup_steps] + else: + if self.warmup_prefix: + t = t - self.warmup_t + if self.cycle_mul != 1: + i = math.floor(math.log(1 - t / self.t_initial * (1 - self.cycle_mul), self.cycle_mul)) + t_i = self.cycle_mul ** i * self.t_initial + t_curr = t - (1 - self.cycle_mul ** i) / (1 - self.cycle_mul) * self.t_initial + else: + i = t // self.t_initial + t_i = self.t_initial + t_curr = t - self.t_initial * i + gamma = self.cycle_decay ** i + lr_max_values = [v * gamma for v in self.base_values] + k = self.k_decay + if i < self.cycle_limit: + lrs = [self.lr_min + 0.5 * (lr_max - self.lr_min) * (1 + math.cos(math.pi * t_curr ** k / t_i ** k)) for lr_max in lr_max_values] + else: + lrs = [self.lr_min for _ in self.base_values] + return lrs + + def get_cycle_length(self, cycles=0): + cycles = max(1, cycles or self.cycle_limit) + if self.cycle_mul == 1.0: + return self.t_initial * cycles + else: + return int(math.floor(-self.t_initial * (self.cycle_mul ** cycles - 1) / (1 - self.cycle_mul))) + +# File: pytorch-image-models-main/timm/scheduler/multistep_lr.py +"""""" +import torch +import bisect +from timm.scheduler.scheduler import Scheduler +from typing import List + +class MultiStepLRScheduler(Scheduler): + + def __init__(self, optimizer: torch.optim.Optimizer, decay_t: List[int], decay_rate: float=1.0, warmup_t=0, warmup_lr_init=0, warmup_prefix=True, t_in_epochs=True, noise_range_t=None, noise_pct=0.67, noise_std=1.0, noise_seed=42, initialize=True) -> None: + super().__init__(optimizer, param_group_field='lr', t_in_epochs=t_in_epochs, noise_range_t=noise_range_t, noise_pct=noise_pct, noise_std=noise_std, noise_seed=noise_seed, initialize=initialize) + self.decay_t = decay_t + self.decay_rate = decay_rate + self.warmup_t = warmup_t + self.warmup_lr_init = warmup_lr_init + self.warmup_prefix = warmup_prefix + if self.warmup_t: + self.warmup_steps = [(v - warmup_lr_init) / self.warmup_t for v in self.base_values] + super().update_groups(self.warmup_lr_init) + else: + self.warmup_steps = [1 for _ in self.base_values] + + def get_curr_decay_steps(self, t): + return bisect.bisect_right(self.decay_t, t + 1) + + def _get_lr(self, t: int) -> List[float]: + if t < self.warmup_t: + lrs = [self.warmup_lr_init + t * s for s in self.warmup_steps] + else: + if self.warmup_prefix: + t = t - self.warmup_t + lrs = [v * self.decay_rate ** self.get_curr_decay_steps(t) for v in self.base_values] + return lrs + +# File: pytorch-image-models-main/timm/scheduler/plateau_lr.py +"""""" +import torch +from typing import List +from .scheduler import Scheduler + +class PlateauLRScheduler(Scheduler): + + def __init__(self, optimizer, decay_rate=0.1, patience_t=10, verbose=True, threshold=0.0001, cooldown_t=0, warmup_t=0, warmup_lr_init=0, lr_min=0, mode='max', noise_range_t=None, noise_type='normal', noise_pct=0.67, noise_std=1.0, noise_seed=None, initialize=True): + super().__init__(optimizer, 'lr', noise_range_t=noise_range_t, noise_type=noise_type, noise_pct=noise_pct, noise_std=noise_std, noise_seed=noise_seed, initialize=initialize) + self.lr_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(self.optimizer, patience=patience_t, factor=decay_rate, verbose=verbose, threshold=threshold, cooldown=cooldown_t, mode=mode, min_lr=lr_min) + self.warmup_t = warmup_t + self.warmup_lr_init = warmup_lr_init + if self.warmup_t: + self.warmup_steps = [(v - warmup_lr_init) / self.warmup_t for v in self.base_values] + super().update_groups(self.warmup_lr_init) + else: + self.warmup_steps = [1 for _ in self.base_values] + self.restore_lr = None + + def state_dict(self): + return {'best': self.lr_scheduler.best, 'last_epoch': self.lr_scheduler.last_epoch} + + def load_state_dict(self, state_dict): + self.lr_scheduler.best = state_dict['best'] + if 'last_epoch' in state_dict: + self.lr_scheduler.last_epoch = state_dict['last_epoch'] + + def step(self, epoch, metric=None): + if epoch <= self.warmup_t: + lrs = [self.warmup_lr_init + epoch * s for s in self.warmup_steps] + super().update_groups(lrs) + else: + if self.restore_lr is not None: + for (i, param_group) in enumerate(self.optimizer.param_groups): + param_group['lr'] = self.restore_lr[i] + self.restore_lr = None + self.lr_scheduler.step(metric, epoch) + if self._is_apply_noise(epoch): + self._apply_noise(epoch) + + def step_update(self, num_updates: int, metric: float=None): + return None + + def _apply_noise(self, epoch): + noise = self._calculate_noise(epoch) + restore_lr = [] + for (i, param_group) in enumerate(self.optimizer.param_groups): + old_lr = float(param_group['lr']) + restore_lr.append(old_lr) + new_lr = old_lr + old_lr * noise + param_group['lr'] = new_lr + self.restore_lr = restore_lr + + def _get_lr(self, t: int) -> List[float]: + assert False, 'should not be called as step is overridden' + +# File: pytorch-image-models-main/timm/scheduler/poly_lr.py +"""""" +import math +import logging +from typing import List +import torch +from .scheduler import Scheduler +_logger = logging.getLogger(__name__) + +class PolyLRScheduler(Scheduler): + + def __init__(self, optimizer: torch.optim.Optimizer, t_initial: int, power: float=0.5, lr_min: float=0.0, cycle_mul: float=1.0, cycle_decay: float=1.0, cycle_limit: int=1, warmup_t=0, warmup_lr_init=0, warmup_prefix=False, t_in_epochs=True, noise_range_t=None, noise_pct=0.67, noise_std=1.0, noise_seed=42, k_decay=1.0, initialize=True) -> None: + super().__init__(optimizer, param_group_field='lr', t_in_epochs=t_in_epochs, noise_range_t=noise_range_t, noise_pct=noise_pct, noise_std=noise_std, noise_seed=noise_seed, initialize=initialize) + assert t_initial > 0 + assert lr_min >= 0 + if t_initial == 1 and cycle_mul == 1 and (cycle_decay == 1): + _logger.warning('Cosine annealing scheduler will have no effect on the learning rate since t_initial = t_mul = eta_mul = 1.') + self.t_initial = t_initial + self.power = power + self.lr_min = lr_min + self.cycle_mul = cycle_mul + self.cycle_decay = cycle_decay + self.cycle_limit = cycle_limit + self.warmup_t = warmup_t + self.warmup_lr_init = warmup_lr_init + self.warmup_prefix = warmup_prefix + self.k_decay = k_decay + if self.warmup_t: + self.warmup_steps = [(v - warmup_lr_init) / self.warmup_t for v in self.base_values] + super().update_groups(self.warmup_lr_init) + else: + self.warmup_steps = [1 for _ in self.base_values] + + def _get_lr(self, t: int) -> List[float]: + if t < self.warmup_t: + lrs = [self.warmup_lr_init + t * s for s in self.warmup_steps] + else: + if self.warmup_prefix: + t = t - self.warmup_t + if self.cycle_mul != 1: + i = math.floor(math.log(1 - t / self.t_initial * (1 - self.cycle_mul), self.cycle_mul)) + t_i = self.cycle_mul ** i * self.t_initial + t_curr = t - (1 - self.cycle_mul ** i) / (1 - self.cycle_mul) * self.t_initial + else: + i = t // self.t_initial + t_i = self.t_initial + t_curr = t - self.t_initial * i + gamma = self.cycle_decay ** i + lr_max_values = [v * gamma for v in self.base_values] + k = self.k_decay + if i < self.cycle_limit: + lrs = [self.lr_min + (lr_max - self.lr_min) * (1 - t_curr ** k / t_i ** k) ** self.power for lr_max in lr_max_values] + else: + lrs = [self.lr_min for _ in self.base_values] + return lrs + + def get_cycle_length(self, cycles=0): + cycles = max(1, cycles or self.cycle_limit) + if self.cycle_mul == 1.0: + return self.t_initial * cycles + else: + return int(math.floor(-self.t_initial * (self.cycle_mul ** cycles - 1) / (1 - self.cycle_mul))) + +# File: pytorch-image-models-main/timm/scheduler/scheduler.py +import abc +from abc import ABC +from typing import Any, Dict, List, Optional +import torch + +class Scheduler(ABC): + + def __init__(self, optimizer: torch.optim.Optimizer, param_group_field: str, t_in_epochs: bool=True, noise_range_t=None, noise_type='normal', noise_pct=0.67, noise_std=1.0, noise_seed=None, initialize: bool=True) -> None: + self.optimizer = optimizer + self.param_group_field = param_group_field + self._initial_param_group_field = f'initial_{param_group_field}' + if initialize: + for (i, group) in enumerate(self.optimizer.param_groups): + if param_group_field not in group: + raise KeyError(f'{param_group_field} missing from param_groups[{i}]') + group.setdefault(self._initial_param_group_field, group[param_group_field]) + else: + for (i, group) in enumerate(self.optimizer.param_groups): + if self._initial_param_group_field not in group: + raise KeyError(f'{self._initial_param_group_field} missing from param_groups[{i}]') + self.base_values = [group[self._initial_param_group_field] for group in self.optimizer.param_groups] + self.metric = None + self.t_in_epochs = t_in_epochs + self.noise_range_t = noise_range_t + self.noise_pct = noise_pct + self.noise_type = noise_type + self.noise_std = noise_std + self.noise_seed = noise_seed if noise_seed is not None else 42 + self.update_groups(self.base_values) + + def state_dict(self) -> Dict[str, Any]: + return {key: value for (key, value) in self.__dict__.items() if key != 'optimizer'} + + def load_state_dict(self, state_dict: Dict[str, Any]) -> None: + self.__dict__.update(state_dict) + + @abc.abstractmethod + def _get_lr(self, t: int) -> List[float]: + pass + + def _get_values(self, t: int, on_epoch: bool=True) -> Optional[List[float]]: + proceed = on_epoch and self.t_in_epochs or (not on_epoch and (not self.t_in_epochs)) + if not proceed: + return None + return self._get_lr(t) + + def step(self, epoch: int, metric: float=None) -> None: + self.metric = metric + values = self._get_values(epoch, on_epoch=True) + if values is not None: + values = self._add_noise(values, epoch) + self.update_groups(values) + + def step_update(self, num_updates: int, metric: float=None): + self.metric = metric + values = self._get_values(num_updates, on_epoch=False) + if values is not None: + values = self._add_noise(values, num_updates) + self.update_groups(values) + + def update_groups(self, values): + if not isinstance(values, (list, tuple)): + values = [values] * len(self.optimizer.param_groups) + for (param_group, value) in zip(self.optimizer.param_groups, values): + if 'lr_scale' in param_group: + param_group[self.param_group_field] = value * param_group['lr_scale'] + else: + param_group[self.param_group_field] = value + + def _add_noise(self, lrs, t): + if self._is_apply_noise(t): + noise = self._calculate_noise(t) + lrs = [v + v * noise for v in lrs] + return lrs + + def _is_apply_noise(self, t) -> bool: + apply_noise = False + if self.noise_range_t is not None: + if isinstance(self.noise_range_t, (list, tuple)): + apply_noise = self.noise_range_t[0] <= t < self.noise_range_t[1] + else: + apply_noise = t >= self.noise_range_t + return apply_noise + + def _calculate_noise(self, t) -> float: + g = torch.Generator() + g.manual_seed(self.noise_seed + t) + if self.noise_type == 'normal': + while True: + noise = torch.randn(1, generator=g).item() + if abs(noise) < self.noise_pct: + return noise + else: + noise = 2 * (torch.rand(1, generator=g).item() - 0.5) * self.noise_pct + return noise + +# File: pytorch-image-models-main/timm/scheduler/scheduler_factory.py +"""""" +from typing import List, Optional, Union +from torch.optim import Optimizer +from .cosine_lr import CosineLRScheduler +from .multistep_lr import MultiStepLRScheduler +from .plateau_lr import PlateauLRScheduler +from .poly_lr import PolyLRScheduler +from .step_lr import StepLRScheduler +from .tanh_lr import TanhLRScheduler + +def scheduler_kwargs(cfg, decreasing_metric: Optional[bool]=None): + eval_metric = getattr(cfg, 'eval_metric', 'top1') + if decreasing_metric is not None: + plateau_mode = 'min' if decreasing_metric else 'max' + else: + plateau_mode = 'min' if 'loss' in eval_metric else 'max' + kwargs = dict(sched=cfg.sched, num_epochs=getattr(cfg, 'epochs', 100), decay_epochs=getattr(cfg, 'decay_epochs', 30), decay_milestones=getattr(cfg, 'decay_milestones', [30, 60]), warmup_epochs=getattr(cfg, 'warmup_epochs', 5), cooldown_epochs=getattr(cfg, 'cooldown_epochs', 0), patience_epochs=getattr(cfg, 'patience_epochs', 10), decay_rate=getattr(cfg, 'decay_rate', 0.1), min_lr=getattr(cfg, 'min_lr', 0.0), warmup_lr=getattr(cfg, 'warmup_lr', 1e-05), warmup_prefix=getattr(cfg, 'warmup_prefix', False), noise=getattr(cfg, 'lr_noise', None), noise_pct=getattr(cfg, 'lr_noise_pct', 0.67), noise_std=getattr(cfg, 'lr_noise_std', 1.0), noise_seed=getattr(cfg, 'seed', 42), cycle_mul=getattr(cfg, 'lr_cycle_mul', 1.0), cycle_decay=getattr(cfg, 'lr_cycle_decay', 0.1), cycle_limit=getattr(cfg, 'lr_cycle_limit', 1), k_decay=getattr(cfg, 'lr_k_decay', 1.0), plateau_mode=plateau_mode, step_on_epochs=not getattr(cfg, 'sched_on_updates', False)) + return kwargs + +def create_scheduler(args, optimizer: Optimizer, updates_per_epoch: int=0): + return create_scheduler_v2(optimizer=optimizer, **scheduler_kwargs(args), updates_per_epoch=updates_per_epoch) + +def create_scheduler_v2(optimizer: Optimizer, sched: str='cosine', num_epochs: int=300, decay_epochs: int=90, decay_milestones: List[int]=(90, 180, 270), cooldown_epochs: int=0, patience_epochs: int=10, decay_rate: float=0.1, min_lr: float=0, warmup_lr: float=1e-05, warmup_epochs: int=0, warmup_prefix: bool=False, noise: Union[float, List[float]]=None, noise_pct: float=0.67, noise_std: float=1.0, noise_seed: int=42, cycle_mul: float=1.0, cycle_decay: float=0.1, cycle_limit: int=1, k_decay: float=1.0, plateau_mode: str='max', step_on_epochs: bool=True, updates_per_epoch: int=0): + t_initial = num_epochs + warmup_t = warmup_epochs + decay_t = decay_epochs + cooldown_t = cooldown_epochs + if not step_on_epochs: + assert updates_per_epoch > 0, 'updates_per_epoch must be set to number of dataloader batches' + t_initial = t_initial * updates_per_epoch + warmup_t = warmup_t * updates_per_epoch + decay_t = decay_t * updates_per_epoch + decay_milestones = [d * updates_per_epoch for d in decay_milestones] + cooldown_t = cooldown_t * updates_per_epoch + warmup_args = dict(warmup_lr_init=warmup_lr, warmup_t=warmup_t, warmup_prefix=warmup_prefix) + if noise is not None: + if isinstance(noise, (list, tuple)): + noise_range = [n * t_initial for n in noise] + if len(noise_range) == 1: + noise_range = noise_range[0] + else: + noise_range = noise * t_initial + else: + noise_range = None + noise_args = dict(noise_range_t=noise_range, noise_pct=noise_pct, noise_std=noise_std, noise_seed=noise_seed) + cycle_args = dict(cycle_mul=cycle_mul, cycle_decay=cycle_decay, cycle_limit=cycle_limit) + lr_scheduler = None + if sched == 'cosine': + lr_scheduler = CosineLRScheduler(optimizer, t_initial=t_initial, lr_min=min_lr, t_in_epochs=step_on_epochs, **cycle_args, **warmup_args, **noise_args, k_decay=k_decay) + elif sched == 'tanh': + lr_scheduler = TanhLRScheduler(optimizer, t_initial=t_initial, lr_min=min_lr, t_in_epochs=step_on_epochs, **cycle_args, **warmup_args, **noise_args) + elif sched == 'step': + lr_scheduler = StepLRScheduler(optimizer, decay_t=decay_t, decay_rate=decay_rate, t_in_epochs=step_on_epochs, **warmup_args, **noise_args) + elif sched == 'multistep': + lr_scheduler = MultiStepLRScheduler(optimizer, decay_t=decay_milestones, decay_rate=decay_rate, t_in_epochs=step_on_epochs, **warmup_args, **noise_args) + elif sched == 'plateau': + assert step_on_epochs, 'Plateau LR only supports step per epoch.' + warmup_args.pop('warmup_prefix', False) + lr_scheduler = PlateauLRScheduler(optimizer, decay_rate=decay_rate, patience_t=patience_epochs, cooldown_t=0, **warmup_args, lr_min=min_lr, mode=plateau_mode, **noise_args) + elif sched == 'poly': + lr_scheduler = PolyLRScheduler(optimizer, power=decay_rate, t_initial=t_initial, lr_min=min_lr, t_in_epochs=step_on_epochs, k_decay=k_decay, **cycle_args, **warmup_args, **noise_args) + if hasattr(lr_scheduler, 'get_cycle_length'): + t_with_cycles_and_cooldown = lr_scheduler.get_cycle_length() + cooldown_t + if step_on_epochs: + num_epochs = t_with_cycles_and_cooldown + else: + num_epochs = t_with_cycles_and_cooldown // updates_per_epoch + return (lr_scheduler, num_epochs) + +# File: pytorch-image-models-main/timm/scheduler/step_lr.py +"""""" +import math +import torch +from typing import List +from .scheduler import Scheduler + +class StepLRScheduler(Scheduler): + + def __init__(self, optimizer: torch.optim.Optimizer, decay_t: float, decay_rate: float=1.0, warmup_t=0, warmup_lr_init=0, warmup_prefix=True, t_in_epochs=True, noise_range_t=None, noise_pct=0.67, noise_std=1.0, noise_seed=42, initialize=True) -> None: + super().__init__(optimizer, param_group_field='lr', t_in_epochs=t_in_epochs, noise_range_t=noise_range_t, noise_pct=noise_pct, noise_std=noise_std, noise_seed=noise_seed, initialize=initialize) + self.decay_t = decay_t + self.decay_rate = decay_rate + self.warmup_t = warmup_t + self.warmup_lr_init = warmup_lr_init + self.warmup_prefix = warmup_prefix + if self.warmup_t: + self.warmup_steps = [(v - warmup_lr_init) / self.warmup_t for v in self.base_values] + super().update_groups(self.warmup_lr_init) + else: + self.warmup_steps = [1 for _ in self.base_values] + + def _get_lr(self, t: int) -> List[float]: + if t < self.warmup_t: + lrs = [self.warmup_lr_init + t * s for s in self.warmup_steps] + else: + if self.warmup_prefix: + t = t - self.warmup_t + lrs = [v * self.decay_rate ** (t // self.decay_t) for v in self.base_values] + return lrs + +# File: pytorch-image-models-main/timm/scheduler/tanh_lr.py +"""""" +import logging +import math +import numpy as np +import torch +from typing import List +from .scheduler import Scheduler +_logger = logging.getLogger(__name__) + +class TanhLRScheduler(Scheduler): + + def __init__(self, optimizer: torch.optim.Optimizer, t_initial: int, lb: float=-7.0, ub: float=3.0, lr_min: float=0.0, cycle_mul: float=1.0, cycle_decay: float=1.0, cycle_limit: int=1, warmup_t=0, warmup_lr_init=0, warmup_prefix=False, t_in_epochs=True, noise_range_t=None, noise_pct=0.67, noise_std=1.0, noise_seed=42, initialize=True) -> None: + super().__init__(optimizer, param_group_field='lr', t_in_epochs=t_in_epochs, noise_range_t=noise_range_t, noise_pct=noise_pct, noise_std=noise_std, noise_seed=noise_seed, initialize=initialize) + assert t_initial > 0 + assert lr_min >= 0 + assert lb < ub + assert cycle_limit >= 0 + assert warmup_t >= 0 + assert warmup_lr_init >= 0 + self.lb = lb + self.ub = ub + self.t_initial = t_initial + self.lr_min = lr_min + self.cycle_mul = cycle_mul + self.cycle_decay = cycle_decay + self.cycle_limit = cycle_limit + self.warmup_t = warmup_t + self.warmup_lr_init = warmup_lr_init + self.warmup_prefix = warmup_prefix + if self.warmup_t: + t_v = self.base_values if self.warmup_prefix else self._get_lr(self.warmup_t) + self.warmup_steps = [(v - warmup_lr_init) / self.warmup_t for v in t_v] + super().update_groups(self.warmup_lr_init) + else: + self.warmup_steps = [1 for _ in self.base_values] + + def _get_lr(self, t: int) -> List[float]: + if t < self.warmup_t: + lrs = [self.warmup_lr_init + t * s for s in self.warmup_steps] + else: + if self.warmup_prefix: + t = t - self.warmup_t + if self.cycle_mul != 1: + i = math.floor(math.log(1 - t / self.t_initial * (1 - self.cycle_mul), self.cycle_mul)) + t_i = self.cycle_mul ** i * self.t_initial + t_curr = t - (1 - self.cycle_mul ** i) / (1 - self.cycle_mul) * self.t_initial + else: + i = t // self.t_initial + t_i = self.t_initial + t_curr = t - self.t_initial * i + if i < self.cycle_limit: + gamma = self.cycle_decay ** i + lr_max_values = [v * gamma for v in self.base_values] + tr = t_curr / t_i + lrs = [self.lr_min + 0.5 * (lr_max - self.lr_min) * (1 - math.tanh(self.lb * (1.0 - tr) + self.ub * tr)) for lr_max in lr_max_values] + else: + lrs = [self.lr_min for _ in self.base_values] + return lrs + + def get_cycle_length(self, cycles=0): + cycles = max(1, cycles or self.cycle_limit) + if self.cycle_mul == 1.0: + return self.t_initial * cycles + else: + return int(math.floor(-self.t_initial * (self.cycle_mul ** cycles - 1) / (1 - self.cycle_mul))) + +# File: pytorch-image-models-main/train.py +"""""" +import argparse +import importlib +import json +import logging +import os +import time +from collections import OrderedDict +from contextlib import suppress +from datetime import datetime +from functools import partial +import torch +import torch.nn as nn +import torchvision.utils +import yaml +from torch.nn.parallel import DistributedDataParallel as NativeDDP +from timm import utils +from timm.data import create_dataset, create_loader, resolve_data_config, Mixup, FastCollateMixup, AugMixDataset +from timm.layers import convert_splitbn_model, convert_sync_batchnorm, set_fast_norm +from timm.loss import JsdCrossEntropy, SoftTargetCrossEntropy, BinaryCrossEntropy, LabelSmoothingCrossEntropy +from timm.models import create_model, safe_model_name, resume_checkpoint, load_checkpoint, model_parameters +from timm.optim import create_optimizer_v2, optimizer_kwargs +from timm.scheduler import create_scheduler_v2, scheduler_kwargs +from timm.utils import ApexScaler, NativeScaler +try: + from apex import amp + from apex.parallel import DistributedDataParallel as ApexDDP + from apex.parallel import convert_syncbn_model + has_apex = True +except ImportError: + has_apex = False +has_native_amp = False +try: + if getattr(torch.cuda.amp, 'autocast') is not None: + has_native_amp = True +except AttributeError: + pass +try: + import wandb + has_wandb = True +except ImportError: + has_wandb = False +try: + from functorch.compile import memory_efficient_fusion + has_functorch = True +except ImportError as e: + has_functorch = False +has_compile = hasattr(torch, 'compile') +_logger = logging.getLogger('train') +config_parser = parser = argparse.ArgumentParser(description='Training Config', add_help=False) +parser.add_argument('-c', '--config', default='', type=str, metavar='FILE', help='YAML config file specifying default arguments') +parser = argparse.ArgumentParser(description='PyTorch ImageNet Training') +group = parser.add_argument_group('Dataset parameters') +parser.add_argument('data', nargs='?', metavar='DIR', const=None, help='path to dataset (positional is *deprecated*, use --data-dir)') +parser.add_argument('--data-dir', metavar='DIR', help='path to dataset (root dir)') +parser.add_argument('--dataset', metavar='NAME', default='', help='dataset type + name ("/") (default: ImageFolder or ImageTar if empty)') +group.add_argument('--train-split', metavar='NAME', default='train', help='dataset train split (default: train)') +group.add_argument('--val-split', metavar='NAME', default='validation', help='dataset validation split (default: validation)') +parser.add_argument('--train-num-samples', default=None, type=int, metavar='N', help='Manually specify num samples in train split, for IterableDatasets.') +parser.add_argument('--val-num-samples', default=None, type=int, metavar='N', help='Manually specify num samples in validation split, for IterableDatasets.') +group.add_argument('--dataset-download', action='store_true', default=False, help='Allow download of dataset for torch/ and tfds/ datasets that support it.') +group.add_argument('--class-map', default='', type=str, metavar='FILENAME', help='path to class to idx mapping file (default: "")') +group.add_argument('--input-img-mode', default=None, type=str, help='Dataset image conversion mode for input images.') +group.add_argument('--input-key', default=None, type=str, help='Dataset key for input images.') +group.add_argument('--target-key', default=None, type=str, help='Dataset key for target labels.') +group = parser.add_argument_group('Model parameters') +group.add_argument('--model', default='resnet50', type=str, metavar='MODEL', help='Name of model to train (default: "resnet50")') +group.add_argument('--pretrained', action='store_true', default=False, help='Start with pretrained version of specified network (if avail)') +group.add_argument('--pretrained-path', default=None, type=str, help='Load this checkpoint as if they were the pretrained weights (with adaptation).') +group.add_argument('--initial-checkpoint', default='', type=str, metavar='PATH', help='Load this checkpoint into model after initialization (default: none)') +group.add_argument('--resume', default='', type=str, metavar='PATH', help='Resume full model and optimizer state from checkpoint (default: none)') +group.add_argument('--no-resume-opt', action='store_true', default=False, help='prevent resume of optimizer state when resuming model') +group.add_argument('--num-classes', type=int, default=None, metavar='N', help='number of label classes (Model default if None)') +group.add_argument('--gp', default=None, type=str, metavar='POOL', help='Global pool type, one of (fast, avg, max, avgmax, avgmaxc). Model default if None.') +group.add_argument('--img-size', type=int, default=None, metavar='N', help='Image size (default: None => model default)') +group.add_argument('--in-chans', type=int, default=None, metavar='N', help='Image input channels (default: None => 3)') +group.add_argument('--input-size', default=None, nargs=3, type=int, metavar='N N N', help='Input all image dimensions (d h w, e.g. --input-size 3 224 224), uses model default if empty') +group.add_argument('--crop-pct', default=None, type=float, metavar='N', help='Input image center crop percent (for validation only)') +group.add_argument('--mean', type=float, nargs='+', default=None, metavar='MEAN', help='Override mean pixel value of dataset') +group.add_argument('--std', type=float, nargs='+', default=None, metavar='STD', help='Override std deviation of dataset') +group.add_argument('--interpolation', default='', type=str, metavar='NAME', help='Image resize interpolation type (overrides model)') +group.add_argument('-b', '--batch-size', type=int, default=128, metavar='N', help='Input batch size for training (default: 128)') +group.add_argument('-vb', '--validation-batch-size', type=int, default=None, metavar='N', help='Validation batch size override (default: None)') +group.add_argument('--channels-last', action='store_true', default=False, help='Use channels_last memory layout') +group.add_argument('--fuser', default='', type=str, help="Select jit fuser. One of ('', 'te', 'old', 'nvfuser')") +group.add_argument('--grad-accum-steps', type=int, default=1, metavar='N', help='The number of steps to accumulate gradients (default: 1)') +group.add_argument('--grad-checkpointing', action='store_true', default=False, help='Enable gradient checkpointing through model blocks/stages') +group.add_argument('--fast-norm', default=False, action='store_true', help='enable experimental fast-norm') +group.add_argument('--model-kwargs', nargs='*', default={}, action=utils.ParseKwargs) +group.add_argument('--head-init-scale', default=None, type=float, help='Head initialization scale') +group.add_argument('--head-init-bias', default=None, type=float, help='Head initialization bias value') +scripting_group = group.add_mutually_exclusive_group() +scripting_group.add_argument('--torchscript', dest='torchscript', action='store_true', help='torch.jit.script the full model') +scripting_group.add_argument('--torchcompile', nargs='?', type=str, default=None, const='inductor', help='Enable compilation w/ specified backend (default: inductor).') +group = parser.add_argument_group('Device parameters') +group.add_argument('--device', default='cuda', type=str, help='Device (accelerator) to use.') +group.add_argument('--amp', action='store_true', default=False, help='use NVIDIA Apex AMP or Native AMP for mixed precision training') +group.add_argument('--amp-dtype', default='float16', type=str, help='lower precision AMP dtype (default: float16)') +group.add_argument('--amp-impl', default='native', type=str, help='AMP impl to use, "native" or "apex" (default: native)') +group.add_argument('--no-ddp-bb', action='store_true', default=False, help='Force broadcast buffers for native DDP to off.') +group.add_argument('--synchronize-step', action='store_true', default=False, help='torch.cuda.synchronize() end of each step') +group.add_argument('--local_rank', default=0, type=int) +parser.add_argument('--device-modules', default=None, type=str, nargs='+', help='Python imports for device backend modules.') +group = parser.add_argument_group('Optimizer parameters') +group.add_argument('--opt', default='sgd', type=str, metavar='OPTIMIZER', help='Optimizer (default: "sgd")') +group.add_argument('--opt-eps', default=None, type=float, metavar='EPSILON', help='Optimizer Epsilon (default: None, use opt default)') +group.add_argument('--opt-betas', default=None, type=float, nargs='+', metavar='BETA', help='Optimizer Betas (default: None, use opt default)') +group.add_argument('--momentum', type=float, default=0.9, metavar='M', help='Optimizer momentum (default: 0.9)') +group.add_argument('--weight-decay', type=float, default=2e-05, help='weight decay (default: 2e-5)') +group.add_argument('--clip-grad', type=float, default=None, metavar='NORM', help='Clip gradient norm (default: None, no clipping)') +group.add_argument('--clip-mode', type=str, default='norm', help='Gradient clipping mode. One of ("norm", "value", "agc")') +group.add_argument('--layer-decay', type=float, default=None, help='layer-wise learning rate decay (default: None)') +group.add_argument('--opt-kwargs', nargs='*', default={}, action=utils.ParseKwargs) +group = parser.add_argument_group('Learning rate schedule parameters') +group.add_argument('--sched', type=str, default='cosine', metavar='SCHEDULER', help='LR scheduler (default: "cosine"') +group.add_argument('--sched-on-updates', action='store_true', default=False, help='Apply LR scheduler step on update instead of epoch end.') +group.add_argument('--lr', type=float, default=None, metavar='LR', help='learning rate, overrides lr-base if set (default: None)') +group.add_argument('--lr-base', type=float, default=0.1, metavar='LR', help='base learning rate: lr = lr_base * global_batch_size / base_size') +group.add_argument('--lr-base-size', type=int, default=256, metavar='DIV', help='base learning rate batch size (divisor, default: 256).') +group.add_argument('--lr-base-scale', type=str, default='', metavar='SCALE', help='base learning rate vs batch_size scaling ("linear", "sqrt", based on opt if empty)') +group.add_argument('--lr-noise', type=float, nargs='+', default=None, metavar='pct, pct', help='learning rate noise on/off epoch percentages') +group.add_argument('--lr-noise-pct', type=float, default=0.67, metavar='PERCENT', help='learning rate noise limit percent (default: 0.67)') +group.add_argument('--lr-noise-std', type=float, default=1.0, metavar='STDDEV', help='learning rate noise std-dev (default: 1.0)') +group.add_argument('--lr-cycle-mul', type=float, default=1.0, metavar='MULT', help='learning rate cycle len multiplier (default: 1.0)') +group.add_argument('--lr-cycle-decay', type=float, default=0.5, metavar='MULT', help='amount to decay each learning rate cycle (default: 0.5)') +group.add_argument('--lr-cycle-limit', type=int, default=1, metavar='N', help='learning rate cycle limit, cycles enabled if > 1') +group.add_argument('--lr-k-decay', type=float, default=1.0, help='learning rate k-decay for cosine/poly (default: 1.0)') +group.add_argument('--warmup-lr', type=float, default=1e-05, metavar='LR', help='warmup learning rate (default: 1e-5)') +group.add_argument('--min-lr', type=float, default=0, metavar='LR', help='lower lr bound for cyclic schedulers that hit 0 (default: 0)') +group.add_argument('--epochs', type=int, default=300, metavar='N', help='number of epochs to train (default: 300)') +group.add_argument('--epoch-repeats', type=float, default=0.0, metavar='N', help='epoch repeat multiplier (number of times to repeat dataset epoch per train epoch).') +group.add_argument('--start-epoch', default=None, type=int, metavar='N', help='manual epoch number (useful on restarts)') +group.add_argument('--decay-milestones', default=[90, 180, 270], type=int, nargs='+', metavar='MILESTONES', help='list of decay epoch indices for multistep lr. must be increasing') +group.add_argument('--decay-epochs', type=float, default=90, metavar='N', help='epoch interval to decay LR') +group.add_argument('--warmup-epochs', type=int, default=5, metavar='N', help='epochs to warmup LR, if scheduler supports') +(group.add_argument('--warmup-prefix', action='store_true', default=False, help='Exclude warmup period from decay schedule.'),) +group.add_argument('--cooldown-epochs', type=int, default=0, metavar='N', help='epochs to cooldown LR at min_lr, after cyclic schedule ends') +group.add_argument('--patience-epochs', type=int, default=10, metavar='N', help='patience epochs for Plateau LR scheduler (default: 10)') +group.add_argument('--decay-rate', '--dr', type=float, default=0.1, metavar='RATE', help='LR decay rate (default: 0.1)') +group = parser.add_argument_group('Augmentation and regularization parameters') +group.add_argument('--no-aug', action='store_true', default=False, help='Disable all training augmentation, override other train aug args') +(group.add_argument('--train-crop-mode', type=str, default=None, help='Crop-mode in train'),) +group.add_argument('--scale', type=float, nargs='+', default=[0.08, 1.0], metavar='PCT', help='Random resize scale (default: 0.08 1.0)') +group.add_argument('--ratio', type=float, nargs='+', default=[3.0 / 4.0, 4.0 / 3.0], metavar='RATIO', help='Random resize aspect ratio (default: 0.75 1.33)') +group.add_argument('--hflip', type=float, default=0.5, help='Horizontal flip training aug probability') +group.add_argument('--vflip', type=float, default=0.0, help='Vertical flip training aug probability') +group.add_argument('--color-jitter', type=float, default=0.4, metavar='PCT', help='Color jitter factor (default: 0.4)') +group.add_argument('--color-jitter-prob', type=float, default=None, metavar='PCT', help='Probability of applying any color jitter.') +group.add_argument('--grayscale-prob', type=float, default=None, metavar='PCT', help='Probability of applying random grayscale conversion.') +group.add_argument('--gaussian-blur-prob', type=float, default=None, metavar='PCT', help='Probability of applying gaussian blur.') +(group.add_argument('--aa', type=str, default=None, metavar='NAME', help='Use AutoAugment policy. "v0" or "original". (default: None)'),) +group.add_argument('--aug-repeats', type=float, default=0, help='Number of augmentation repetitions (distributed training only) (default: 0)') +group.add_argument('--aug-splits', type=int, default=0, help='Number of augmentation splits (default: 0, valid: 0 or >=2)') +group.add_argument('--jsd-loss', action='store_true', default=False, help='Enable Jensen-Shannon Divergence + CE loss. Use with `--aug-splits`.') +group.add_argument('--bce-loss', action='store_true', default=False, help='Enable BCE loss w/ Mixup/CutMix use.') +group.add_argument('--bce-sum', action='store_true', default=False, help='Sum over classes when using BCE loss.') +group.add_argument('--bce-target-thresh', type=float, default=None, help='Threshold for binarizing softened BCE targets (default: None, disabled).') +group.add_argument('--bce-pos-weight', type=float, default=None, help='Positive weighting for BCE loss.') +group.add_argument('--reprob', type=float, default=0.0, metavar='PCT', help='Random erase prob (default: 0.)') +group.add_argument('--remode', type=str, default='pixel', help='Random erase mode (default: "pixel")') +group.add_argument('--recount', type=int, default=1, help='Random erase count (default: 1)') +group.add_argument('--resplit', action='store_true', default=False, help='Do not random erase first (clean) augmentation split') +group.add_argument('--mixup', type=float, default=0.0, help='mixup alpha, mixup enabled if > 0. (default: 0.)') +group.add_argument('--cutmix', type=float, default=0.0, help='cutmix alpha, cutmix enabled if > 0. (default: 0.)') +group.add_argument('--cutmix-minmax', type=float, nargs='+', default=None, help='cutmix min/max ratio, overrides alpha and enables cutmix if set (default: None)') +group.add_argument('--mixup-prob', type=float, default=1.0, help='Probability of performing mixup or cutmix when either/both is enabled') +group.add_argument('--mixup-switch-prob', type=float, default=0.5, help='Probability of switching to cutmix when both mixup and cutmix enabled') +group.add_argument('--mixup-mode', type=str, default='batch', help='How to apply mixup/cutmix params. Per "batch", "pair", or "elem"') +group.add_argument('--mixup-off-epoch', default=0, type=int, metavar='N', help='Turn off mixup after this epoch, disabled if 0 (default: 0)') +group.add_argument('--smoothing', type=float, default=0.1, help='Label smoothing (default: 0.1)') +group.add_argument('--train-interpolation', type=str, default='random', help='Training interpolation (random, bilinear, bicubic default: "random")') +group.add_argument('--drop', type=float, default=0.0, metavar='PCT', help='Dropout rate (default: 0.)') +group.add_argument('--drop-connect', type=float, default=None, metavar='PCT', help='Drop connect rate, DEPRECATED, use drop-path (default: None)') +group.add_argument('--drop-path', type=float, default=None, metavar='PCT', help='Drop path rate (default: None)') +group.add_argument('--drop-block', type=float, default=None, metavar='PCT', help='Drop block rate (default: None)') +group = parser.add_argument_group('Batch norm parameters', 'Only works with gen_efficientnet based models currently.') +group.add_argument('--bn-momentum', type=float, default=None, help='BatchNorm momentum override (if not None)') +group.add_argument('--bn-eps', type=float, default=None, help='BatchNorm epsilon override (if not None)') +group.add_argument('--sync-bn', action='store_true', help='Enable NVIDIA Apex or Torch synchronized BatchNorm.') +group.add_argument('--dist-bn', type=str, default='reduce', help='Distribute BatchNorm stats between nodes after each epoch ("broadcast", "reduce", or "")') +group.add_argument('--split-bn', action='store_true', help='Enable separate BN layers per augmentation split.') +group = parser.add_argument_group('Model exponential moving average parameters') +group.add_argument('--model-ema', action='store_true', default=False, help='Enable tracking moving average of model weights.') +group.add_argument('--model-ema-force-cpu', action='store_true', default=False, help='Force ema to be tracked on CPU, rank=0 node only. Disables EMA validation.') +group.add_argument('--model-ema-decay', type=float, default=0.9998, help='Decay factor for model weights moving average (default: 0.9998)') +group.add_argument('--model-ema-warmup', action='store_true', help='Enable warmup for model EMA decay.') +group = parser.add_argument_group('Miscellaneous parameters') +group.add_argument('--seed', type=int, default=42, metavar='S', help='random seed (default: 42)') +group.add_argument('--worker-seeding', type=str, default='all', help='worker seed mode (default: all)') +group.add_argument('--log-interval', type=int, default=50, metavar='N', help='how many batches to wait before logging training status') +group.add_argument('--recovery-interval', type=int, default=0, metavar='N', help='how many batches to wait before writing recovery checkpoint') +group.add_argument('--checkpoint-hist', type=int, default=10, metavar='N', help='number of checkpoints to keep (default: 10)') +group.add_argument('-j', '--workers', type=int, default=4, metavar='N', help='how many training processes to use (default: 4)') +group.add_argument('--save-images', action='store_true', default=False, help='save images of input bathes every log interval for debugging') +group.add_argument('--pin-mem', action='store_true', default=False, help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.') +group.add_argument('--no-prefetcher', action='store_true', default=False, help='disable fast prefetcher') +group.add_argument('--output', default='', type=str, metavar='PATH', help='path to output folder (default: none, current dir)') +group.add_argument('--experiment', default='', type=str, metavar='NAME', help='name of train experiment, name of sub-folder for output') +group.add_argument('--eval-metric', default='top1', type=str, metavar='EVAL_METRIC', help='Best metric (default: "top1"') +group.add_argument('--tta', type=int, default=0, metavar='N', help='Test/inference time augmentation (oversampling) factor. 0=None (default: 0)') +group.add_argument('--use-multi-epochs-loader', action='store_true', default=False, help='use the multi-epochs-loader to save time at the beginning of every epoch') +group.add_argument('--log-wandb', action='store_true', default=False, help='log training and validation metrics to wandb') + +def _parse_args(): + (args_config, remaining) = config_parser.parse_known_args() + if args_config.config: + with open(args_config.config, 'r') as f: + cfg = yaml.safe_load(f) + parser.set_defaults(**cfg) + args = parser.parse_args(remaining) + args_text = yaml.safe_dump(args.__dict__, default_flow_style=False) + return (args, args_text) + +def main(): + utils.setup_default_logging() + (args, args_text) = _parse_args() + if args.device_modules: + for module in args.device_modules: + importlib.import_module(module) + if torch.cuda.is_available(): + torch.backends.cuda.matmul.allow_tf32 = True + torch.backends.cudnn.benchmark = True + args.prefetcher = not args.no_prefetcher + args.grad_accum_steps = max(1, args.grad_accum_steps) + device = utils.init_distributed_device(args) + if args.distributed: + _logger.info(f'Training in distributed mode with multiple processes, 1 device per process.Process {args.rank}, total {args.world_size}, device {args.device}.') + else: + _logger.info(f'Training with a single process on 1 device ({args.device}).') + assert args.rank >= 0 + use_amp = None + amp_dtype = torch.float16 + if args.amp: + if args.amp_impl == 'apex': + assert has_apex, 'AMP impl specified as APEX but APEX is not installed.' + use_amp = 'apex' + assert args.amp_dtype == 'float16' + else: + assert has_native_amp, 'Please update PyTorch to a version with native AMP (or use APEX).' + use_amp = 'native' + assert args.amp_dtype in ('float16', 'bfloat16') + if args.amp_dtype == 'bfloat16': + amp_dtype = torch.bfloat16 + utils.random_seed(args.seed, args.rank) + if args.fuser: + utils.set_jit_fuser(args.fuser) + if args.fast_norm: + set_fast_norm() + in_chans = 3 + if args.in_chans is not None: + in_chans = args.in_chans + elif args.input_size is not None: + in_chans = args.input_size[0] + factory_kwargs = {} + if args.pretrained_path: + factory_kwargs['pretrained_cfg_overlay'] = dict(file=args.pretrained_path, num_classes=-1) + model = create_model(args.model, pretrained=args.pretrained, in_chans=in_chans, num_classes=args.num_classes, drop_rate=args.drop, drop_path_rate=args.drop_path, drop_block_rate=args.drop_block, global_pool=args.gp, bn_momentum=args.bn_momentum, bn_eps=args.bn_eps, scriptable=args.torchscript, checkpoint_path=args.initial_checkpoint, **factory_kwargs, **args.model_kwargs) + if args.head_init_scale is not None: + with torch.no_grad(): + model.get_classifier().weight.mul_(args.head_init_scale) + model.get_classifier().bias.mul_(args.head_init_scale) + if args.head_init_bias is not None: + nn.init.constant_(model.get_classifier().bias, args.head_init_bias) + if args.num_classes is None: + assert hasattr(model, 'num_classes'), 'Model must have `num_classes` attr if not set on cmd line/config.' + args.num_classes = model.num_classes + if args.grad_checkpointing: + model.set_grad_checkpointing(enable=True) + if utils.is_primary(args): + _logger.info(f'Model {safe_model_name(args.model)} created, param count:{sum([m.numel() for m in model.parameters()])}') + data_config = resolve_data_config(vars(args), model=model, verbose=utils.is_primary(args)) + num_aug_splits = 0 + if args.aug_splits > 0: + assert args.aug_splits > 1, 'A split of 1 makes no sense' + num_aug_splits = args.aug_splits + if args.split_bn: + assert num_aug_splits > 1 or args.resplit + model = convert_splitbn_model(model, max(num_aug_splits, 2)) + model.to(device=device) + if args.channels_last: + model.to(memory_format=torch.channels_last) + if args.distributed and args.sync_bn: + args.dist_bn = '' + assert not args.split_bn + if has_apex and use_amp == 'apex': + model = convert_syncbn_model(model) + else: + model = convert_sync_batchnorm(model) + if utils.is_primary(args): + _logger.info('Converted model to use Synchronized BatchNorm. WARNING: You may have issues if using zero initialized BN layers (enabled by default for ResNets) while sync-bn enabled.') + if args.torchscript: + assert not args.torchcompile + assert not use_amp == 'apex', 'Cannot use APEX AMP with torchscripted model' + assert not args.sync_bn, 'Cannot use SyncBatchNorm with torchscripted model' + model = torch.jit.script(model) + if not args.lr: + global_batch_size = args.batch_size * args.world_size * args.grad_accum_steps + batch_ratio = global_batch_size / args.lr_base_size + if not args.lr_base_scale: + on = args.opt.lower() + args.lr_base_scale = 'sqrt' if any([o in on for o in ('ada', 'lamb')]) else 'linear' + if args.lr_base_scale == 'sqrt': + batch_ratio = batch_ratio ** 0.5 + args.lr = args.lr_base * batch_ratio + if utils.is_primary(args): + _logger.info(f'Learning rate ({args.lr}) calculated from base learning rate ({args.lr_base}) and effective global batch size ({global_batch_size}) with {args.lr_base_scale} scaling.') + optimizer = create_optimizer_v2(model, **optimizer_kwargs(cfg=args), **args.opt_kwargs) + amp_autocast = suppress + loss_scaler = None + if use_amp == 'apex': + assert device.type == 'cuda' + (model, optimizer) = amp.initialize(model, optimizer, opt_level='O1') + loss_scaler = ApexScaler() + if utils.is_primary(args): + _logger.info('Using NVIDIA APEX AMP. Training in mixed precision.') + elif use_amp == 'native': + try: + amp_autocast = partial(torch.autocast, device_type=device.type, dtype=amp_dtype) + except (AttributeError, TypeError): + assert device.type == 'cuda' + amp_autocast = torch.cuda.amp.autocast + if device.type == 'cuda' and amp_dtype == torch.float16: + loss_scaler = NativeScaler() + if utils.is_primary(args): + _logger.info('Using native Torch AMP. Training in mixed precision.') + elif utils.is_primary(args): + _logger.info('AMP not enabled. Training in float32.') + resume_epoch = None + if args.resume: + resume_epoch = resume_checkpoint(model, args.resume, optimizer=None if args.no_resume_opt else optimizer, loss_scaler=None if args.no_resume_opt else loss_scaler, log_info=utils.is_primary(args)) + model_ema = None + if args.model_ema: + model_ema = utils.ModelEmaV3(model, decay=args.model_ema_decay, use_warmup=args.model_ema_warmup, device='cpu' if args.model_ema_force_cpu else None) + if args.resume: + load_checkpoint(model_ema.module, args.resume, use_ema=True) + if args.torchcompile: + model_ema = torch.compile(model_ema, backend=args.torchcompile) + if args.distributed: + if has_apex and use_amp == 'apex': + if utils.is_primary(args): + _logger.info('Using NVIDIA APEX DistributedDataParallel.') + model = ApexDDP(model, delay_allreduce=True) + else: + if utils.is_primary(args): + _logger.info('Using native Torch DistributedDataParallel.') + model = NativeDDP(model, device_ids=[device], broadcast_buffers=not args.no_ddp_bb) + if args.torchcompile: + assert has_compile, 'A version of torch w/ torch.compile() is required for --compile, possibly a nightly.' + model = torch.compile(model, backend=args.torchcompile) + if args.data and (not args.data_dir): + args.data_dir = args.data + if args.input_img_mode is None: + input_img_mode = 'RGB' if data_config['input_size'][0] == 3 else 'L' + else: + input_img_mode = args.input_img_mode + dataset_train = create_dataset(args.dataset, root=args.data_dir, split=args.train_split, is_training=True, class_map=args.class_map, download=args.dataset_download, batch_size=args.batch_size, seed=args.seed, repeats=args.epoch_repeats, input_img_mode=input_img_mode, input_key=args.input_key, target_key=args.target_key, num_samples=args.train_num_samples) + if args.val_split: + dataset_eval = create_dataset(args.dataset, root=args.data_dir, split=args.val_split, is_training=False, class_map=args.class_map, download=args.dataset_download, batch_size=args.batch_size, input_img_mode=input_img_mode, input_key=args.input_key, target_key=args.target_key, num_samples=args.val_num_samples) + collate_fn = None + mixup_fn = None + mixup_active = args.mixup > 0 or args.cutmix > 0.0 or args.cutmix_minmax is not None + if mixup_active: + mixup_args = dict(mixup_alpha=args.mixup, cutmix_alpha=args.cutmix, cutmix_minmax=args.cutmix_minmax, prob=args.mixup_prob, switch_prob=args.mixup_switch_prob, mode=args.mixup_mode, label_smoothing=args.smoothing, num_classes=args.num_classes) + if args.prefetcher: + assert not num_aug_splits + collate_fn = FastCollateMixup(**mixup_args) + else: + mixup_fn = Mixup(**mixup_args) + if num_aug_splits > 1: + dataset_train = AugMixDataset(dataset_train, num_splits=num_aug_splits) + train_interpolation = args.train_interpolation + if args.no_aug or not train_interpolation: + train_interpolation = data_config['interpolation'] + loader_train = create_loader(dataset_train, input_size=data_config['input_size'], batch_size=args.batch_size, is_training=True, no_aug=args.no_aug, re_prob=args.reprob, re_mode=args.remode, re_count=args.recount, re_split=args.resplit, train_crop_mode=args.train_crop_mode, scale=args.scale, ratio=args.ratio, hflip=args.hflip, vflip=args.vflip, color_jitter=args.color_jitter, color_jitter_prob=args.color_jitter_prob, grayscale_prob=args.grayscale_prob, gaussian_blur_prob=args.gaussian_blur_prob, auto_augment=args.aa, num_aug_repeats=args.aug_repeats, num_aug_splits=num_aug_splits, interpolation=train_interpolation, mean=data_config['mean'], std=data_config['std'], num_workers=args.workers, distributed=args.distributed, collate_fn=collate_fn, pin_memory=args.pin_mem, device=device, use_prefetcher=args.prefetcher, use_multi_epochs_loader=args.use_multi_epochs_loader, worker_seeding=args.worker_seeding) + loader_eval = None + if args.val_split: + eval_workers = args.workers + if args.distributed and ('tfds' in args.dataset or 'wds' in args.dataset): + eval_workers = min(2, args.workers) + loader_eval = create_loader(dataset_eval, input_size=data_config['input_size'], batch_size=args.validation_batch_size or args.batch_size, is_training=False, interpolation=data_config['interpolation'], mean=data_config['mean'], std=data_config['std'], num_workers=eval_workers, distributed=args.distributed, crop_pct=data_config['crop_pct'], pin_memory=args.pin_mem, device=device, use_prefetcher=args.prefetcher) + if args.jsd_loss: + assert num_aug_splits > 1 + train_loss_fn = JsdCrossEntropy(num_splits=num_aug_splits, smoothing=args.smoothing) + elif mixup_active: + if args.bce_loss: + train_loss_fn = BinaryCrossEntropy(target_threshold=args.bce_target_thresh, sum_classes=args.bce_sum, pos_weight=args.bce_pos_weight) + else: + train_loss_fn = SoftTargetCrossEntropy() + elif args.smoothing: + if args.bce_loss: + train_loss_fn = BinaryCrossEntropy(smoothing=args.smoothing, target_threshold=args.bce_target_thresh, sum_classes=args.bce_sum, pos_weight=args.bce_pos_weight) + else: + train_loss_fn = LabelSmoothingCrossEntropy(smoothing=args.smoothing) + else: + train_loss_fn = nn.CrossEntropyLoss() + train_loss_fn = train_loss_fn.to(device=device) + validate_loss_fn = nn.CrossEntropyLoss().to(device=device) + eval_metric = args.eval_metric if loader_eval is not None else 'loss' + decreasing_metric = eval_metric == 'loss' + best_metric = None + best_epoch = None + saver = None + output_dir = None + if utils.is_primary(args): + if args.experiment: + exp_name = args.experiment + else: + exp_name = '-'.join([datetime.now().strftime('%Y%m%d-%H%M%S'), safe_model_name(args.model), str(data_config['input_size'][-1])]) + output_dir = utils.get_outdir(args.output if args.output else './output/train', exp_name) + saver = utils.CheckpointSaver(model=model, optimizer=optimizer, args=args, model_ema=model_ema, amp_scaler=loss_scaler, checkpoint_dir=output_dir, recovery_dir=output_dir, decreasing=decreasing_metric, max_history=args.checkpoint_hist) + with open(os.path.join(output_dir, 'args.yaml'), 'w') as f: + f.write(args_text) + if utils.is_primary(args) and args.log_wandb: + if has_wandb: + wandb.init(project=args.experiment, config=args) + else: + _logger.warning("You've requested to log metrics to wandb but package not found. Metrics not being logged to wandb, try `pip install wandb`") + updates_per_epoch = (len(loader_train) + args.grad_accum_steps - 1) // args.grad_accum_steps + (lr_scheduler, num_epochs) = create_scheduler_v2(optimizer, **scheduler_kwargs(args, decreasing_metric=decreasing_metric), updates_per_epoch=updates_per_epoch) + start_epoch = 0 + if args.start_epoch is not None: + start_epoch = args.start_epoch + elif resume_epoch is not None: + start_epoch = resume_epoch + if lr_scheduler is not None and start_epoch > 0: + if args.sched_on_updates: + lr_scheduler.step_update(start_epoch * updates_per_epoch) + else: + lr_scheduler.step(start_epoch) + if utils.is_primary(args): + _logger.info(f"Scheduled epochs: {num_epochs}. LR stepped per {('epoch' if lr_scheduler.t_in_epochs else 'update')}.") + results = [] + try: + for epoch in range(start_epoch, num_epochs): + if hasattr(dataset_train, 'set_epoch'): + dataset_train.set_epoch(epoch) + elif args.distributed and hasattr(loader_train.sampler, 'set_epoch'): + loader_train.sampler.set_epoch(epoch) + train_metrics = train_one_epoch(epoch, model, loader_train, optimizer, train_loss_fn, args, lr_scheduler=lr_scheduler, saver=saver, output_dir=output_dir, amp_autocast=amp_autocast, loss_scaler=loss_scaler, model_ema=model_ema, mixup_fn=mixup_fn, num_updates_total=num_epochs * updates_per_epoch) + if args.distributed and args.dist_bn in ('broadcast', 'reduce'): + if utils.is_primary(args): + _logger.info('Distributing BatchNorm running means and vars') + utils.distribute_bn(model, args.world_size, args.dist_bn == 'reduce') + if loader_eval is not None: + eval_metrics = validate(model, loader_eval, validate_loss_fn, args, device=device, amp_autocast=amp_autocast) + if model_ema is not None and (not args.model_ema_force_cpu): + if args.distributed and args.dist_bn in ('broadcast', 'reduce'): + utils.distribute_bn(model_ema, args.world_size, args.dist_bn == 'reduce') + ema_eval_metrics = validate(model_ema, loader_eval, validate_loss_fn, args, device=device, amp_autocast=amp_autocast, log_suffix=' (EMA)') + eval_metrics = ema_eval_metrics + else: + eval_metrics = None + if output_dir is not None: + lrs = [param_group['lr'] for param_group in optimizer.param_groups] + utils.update_summary(epoch, train_metrics, eval_metrics, filename=os.path.join(output_dir, 'summary.csv'), lr=sum(lrs) / len(lrs), write_header=best_metric is None, log_wandb=args.log_wandb and has_wandb) + if eval_metrics is not None: + latest_metric = eval_metrics[eval_metric] + else: + latest_metric = train_metrics[eval_metric] + if saver is not None: + (best_metric, best_epoch) = saver.save_checkpoint(epoch, metric=latest_metric) + if lr_scheduler is not None: + lr_scheduler.step(epoch + 1, latest_metric) + results.append({'epoch': epoch, 'train': train_metrics, 'validation': eval_metrics}) + except KeyboardInterrupt: + pass + results = {'all': results} + if best_metric is not None: + results['best'] = results['all'][best_epoch - start_epoch] + _logger.info('*** Best metric: {0} (epoch {1})'.format(best_metric, best_epoch)) + print(f'--result\n{json.dumps(results, indent=4)}') + +def train_one_epoch(epoch, model, loader, optimizer, loss_fn, args, device=torch.device('cuda'), lr_scheduler=None, saver=None, output_dir=None, amp_autocast=suppress, loss_scaler=None, model_ema=None, mixup_fn=None, num_updates_total=None): + if args.mixup_off_epoch and epoch >= args.mixup_off_epoch: + if args.prefetcher and loader.mixup_enabled: + loader.mixup_enabled = False + elif mixup_fn is not None: + mixup_fn.mixup_enabled = False + second_order = hasattr(optimizer, 'is_second_order') and optimizer.is_second_order + has_no_sync = hasattr(model, 'no_sync') + update_time_m = utils.AverageMeter() + data_time_m = utils.AverageMeter() + losses_m = utils.AverageMeter() + model.train() + accum_steps = args.grad_accum_steps + last_accum_steps = len(loader) % accum_steps + updates_per_epoch = (len(loader) + accum_steps - 1) // accum_steps + num_updates = epoch * updates_per_epoch + last_batch_idx = len(loader) - 1 + last_batch_idx_to_accum = len(loader) - last_accum_steps + data_start_time = update_start_time = time.time() + optimizer.zero_grad() + update_sample_count = 0 + for (batch_idx, (input, target)) in enumerate(loader): + last_batch = batch_idx == last_batch_idx + need_update = last_batch or (batch_idx + 1) % accum_steps == 0 + update_idx = batch_idx // accum_steps + if batch_idx >= last_batch_idx_to_accum: + accum_steps = last_accum_steps + if not args.prefetcher: + (input, target) = (input.to(device), target.to(device)) + if mixup_fn is not None: + (input, target) = mixup_fn(input, target) + if args.channels_last: + input = input.contiguous(memory_format=torch.channels_last) + data_time_m.update(accum_steps * (time.time() - data_start_time)) + + def _forward(): + with amp_autocast(): + output = model(input) + loss = loss_fn(output, target) + if accum_steps > 1: + loss /= accum_steps + return loss + + def _backward(_loss): + if loss_scaler is not None: + loss_scaler(_loss, optimizer, clip_grad=args.clip_grad, clip_mode=args.clip_mode, parameters=model_parameters(model, exclude_head='agc' in args.clip_mode), create_graph=second_order, need_update=need_update) + else: + _loss.backward(create_graph=second_order) + if need_update: + if args.clip_grad is not None: + utils.dispatch_clip_grad(model_parameters(model, exclude_head='agc' in args.clip_mode), value=args.clip_grad, mode=args.clip_mode) + optimizer.step() + if has_no_sync and (not need_update): + with model.no_sync(): + loss = _forward() + _backward(loss) + else: + loss = _forward() + _backward(loss) + if not args.distributed: + losses_m.update(loss.item() * accum_steps, input.size(0)) + update_sample_count += input.size(0) + if not need_update: + data_start_time = time.time() + continue + num_updates += 1 + optimizer.zero_grad() + if model_ema is not None: + model_ema.update(model, step=num_updates) + if args.synchronize_step and device.type == 'cuda': + torch.cuda.synchronize() + time_now = time.time() + update_time_m.update(time.time() - update_start_time) + update_start_time = time_now + if update_idx % args.log_interval == 0: + lrl = [param_group['lr'] for param_group in optimizer.param_groups] + lr = sum(lrl) / len(lrl) + if args.distributed: + reduced_loss = utils.reduce_tensor(loss.data, args.world_size) + losses_m.update(reduced_loss.item() * accum_steps, input.size(0)) + update_sample_count *= args.world_size + if utils.is_primary(args): + _logger.info(f'Train: {epoch} [{update_idx:>4d}/{updates_per_epoch} ({100.0 * (update_idx + 1) / updates_per_epoch:>3.0f}%)] Loss: {losses_m.val:#.3g} ({losses_m.avg:#.3g}) Time: {update_time_m.val:.3f}s, {update_sample_count / update_time_m.val:>7.2f}/s ({update_time_m.avg:.3f}s, {update_sample_count / update_time_m.avg:>7.2f}/s) LR: {lr:.3e} Data: {data_time_m.val:.3f} ({data_time_m.avg:.3f})') + if args.save_images and output_dir: + torchvision.utils.save_image(input, os.path.join(output_dir, 'train-batch-%d.jpg' % batch_idx), padding=0, normalize=True) + if saver is not None and args.recovery_interval and ((update_idx + 1) % args.recovery_interval == 0): + saver.save_recovery(epoch, batch_idx=update_idx) + if lr_scheduler is not None: + lr_scheduler.step_update(num_updates=num_updates, metric=losses_m.avg) + update_sample_count = 0 + data_start_time = time.time() + if hasattr(optimizer, 'sync_lookahead'): + optimizer.sync_lookahead() + return OrderedDict([('loss', losses_m.avg)]) + +def validate(model, loader, loss_fn, args, device=torch.device('cuda'), amp_autocast=suppress, log_suffix=''): + batch_time_m = utils.AverageMeter() + losses_m = utils.AverageMeter() + top1_m = utils.AverageMeter() + top5_m = utils.AverageMeter() + model.eval() + end = time.time() + last_idx = len(loader) - 1 + with torch.no_grad(): + for (batch_idx, (input, target)) in enumerate(loader): + last_batch = batch_idx == last_idx + if not args.prefetcher: + input = input.to(device) + target = target.to(device) + if args.channels_last: + input = input.contiguous(memory_format=torch.channels_last) + with amp_autocast(): + output = model(input) + if isinstance(output, (tuple, list)): + output = output[0] + reduce_factor = args.tta + if reduce_factor > 1: + output = output.unfold(0, reduce_factor, reduce_factor).mean(dim=2) + target = target[0:target.size(0):reduce_factor] + loss = loss_fn(output, target) + (acc1, acc5) = utils.accuracy(output, target, topk=(1, 5)) + if args.distributed: + reduced_loss = utils.reduce_tensor(loss.data, args.world_size) + acc1 = utils.reduce_tensor(acc1, args.world_size) + acc5 = utils.reduce_tensor(acc5, args.world_size) + else: + reduced_loss = loss.data + if device.type == 'cuda': + torch.cuda.synchronize() + losses_m.update(reduced_loss.item(), input.size(0)) + top1_m.update(acc1.item(), output.size(0)) + top5_m.update(acc5.item(), output.size(0)) + batch_time_m.update(time.time() - end) + end = time.time() + if utils.is_primary(args) and (last_batch or batch_idx % args.log_interval == 0): + log_name = 'Test' + log_suffix + _logger.info(f'{log_name}: [{batch_idx:>4d}/{last_idx}] Time: {batch_time_m.val:.3f} ({batch_time_m.avg:.3f}) Loss: {losses_m.val:>7.3f} ({losses_m.avg:>6.3f}) Acc@1: {top1_m.val:>7.3f} ({top1_m.avg:>7.3f}) Acc@5: {top5_m.val:>7.3f} ({top5_m.avg:>7.3f})') + metrics = OrderedDict([('loss', losses_m.avg), ('top1', top1_m.avg), ('top5', top5_m.avg)]) + return metrics +if __name__ == '__main__': + main() + +# File: pytorch-image-models-main/validate.py +"""""" +import argparse +import csv +import glob +import json +import logging +import os +import time +from collections import OrderedDict +from contextlib import suppress +from functools import partial +import torch +import torch.nn as nn +import torch.nn.parallel +from timm.data import create_dataset, create_loader, resolve_data_config, RealLabelsImagenet +from timm.layers import apply_test_time_pool, set_fast_norm +from timm.models import create_model, load_checkpoint, is_model, list_models +from timm.utils import accuracy, AverageMeter, natural_key, setup_default_logging, set_jit_fuser, decay_batch_step, check_batch_size_retry, ParseKwargs, reparameterize_model +try: + from apex import amp + has_apex = True +except ImportError: + has_apex = False +has_native_amp = False +try: + if getattr(torch.cuda.amp, 'autocast') is not None: + has_native_amp = True +except AttributeError: + pass +try: + from functorch.compile import memory_efficient_fusion + has_functorch = True +except ImportError as e: + has_functorch = False +has_compile = hasattr(torch, 'compile') +_logger = logging.getLogger('validate') +parser = argparse.ArgumentParser(description='PyTorch ImageNet Validation') +parser.add_argument('data', nargs='?', metavar='DIR', const=None, help='path to dataset (*deprecated*, use --data-dir)') +parser.add_argument('--data-dir', metavar='DIR', help='path to dataset (root dir)') +parser.add_argument('--dataset', metavar='NAME', default='', help='dataset type + name ("/") (default: ImageFolder or ImageTar if empty)') +parser.add_argument('--split', metavar='NAME', default='validation', help='dataset split (default: validation)') +parser.add_argument('--num-samples', default=None, type=int, metavar='N', help='Manually specify num samples in dataset split, for IterableDatasets.') +parser.add_argument('--dataset-download', action='store_true', default=False, help='Allow download of dataset for torch/ and tfds/ datasets that support it.') +parser.add_argument('--class-map', default='', type=str, metavar='FILENAME', help='path to class to idx mapping file (default: "")') +parser.add_argument('--input-key', default=None, type=str, help='Dataset key for input images.') +parser.add_argument('--input-img-mode', default=None, type=str, help='Dataset image conversion mode for input images.') +parser.add_argument('--target-key', default=None, type=str, help='Dataset key for target labels.') +parser.add_argument('--model', '-m', metavar='NAME', default='dpn92', help='model architecture (default: dpn92)') +parser.add_argument('--pretrained', dest='pretrained', action='store_true', help='use pre-trained model') +parser.add_argument('-j', '--workers', default=4, type=int, metavar='N', help='number of data loading workers (default: 4)') +parser.add_argument('-b', '--batch-size', default=256, type=int, metavar='N', help='mini-batch size (default: 256)') +parser.add_argument('--img-size', default=None, type=int, metavar='N', help='Input image dimension, uses model default if empty') +parser.add_argument('--in-chans', type=int, default=None, metavar='N', help='Image input channels (default: None => 3)') +parser.add_argument('--input-size', default=None, nargs=3, type=int, metavar='N N N', help='Input all image dimensions (d h w, e.g. --input-size 3 224 224), uses model default if empty') +parser.add_argument('--use-train-size', action='store_true', default=False, help='force use of train input size, even when test size is specified in pretrained cfg') +parser.add_argument('--crop-pct', default=None, type=float, metavar='N', help='Input image center crop pct') +parser.add_argument('--crop-mode', default=None, type=str, metavar='N', help='Input image crop mode (squash, border, center). Model default if None.') +parser.add_argument('--crop-border-pixels', type=int, default=None, help='Crop pixels from image border.') +parser.add_argument('--mean', type=float, nargs='+', default=None, metavar='MEAN', help='Override mean pixel value of dataset') +parser.add_argument('--std', type=float, nargs='+', default=None, metavar='STD', help='Override std deviation of of dataset') +parser.add_argument('--interpolation', default='', type=str, metavar='NAME', help='Image resize interpolation type (overrides model)') +parser.add_argument('--num-classes', type=int, default=None, help='Number classes in dataset') +parser.add_argument('--gp', default=None, type=str, metavar='POOL', help='Global pool type, one of (fast, avg, max, avgmax, avgmaxc). Model default if None.') +parser.add_argument('--log-freq', default=10, type=int, metavar='N', help='batch logging frequency (default: 10)') +parser.add_argument('--checkpoint', default='', type=str, metavar='PATH', help='path to latest checkpoint (default: none)') +parser.add_argument('--num-gpu', type=int, default=1, help='Number of GPUS to use') +parser.add_argument('--test-pool', dest='test_pool', action='store_true', help='enable test time pool') +parser.add_argument('--no-prefetcher', action='store_true', default=False, help='disable fast prefetcher') +parser.add_argument('--pin-mem', action='store_true', default=False, help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.') +parser.add_argument('--channels-last', action='store_true', default=False, help='Use channels_last memory layout') +parser.add_argument('--device', default='cuda', type=str, help='Device (accelerator) to use.') +parser.add_argument('--amp', action='store_true', default=False, help='use NVIDIA Apex AMP or Native AMP for mixed precision training') +parser.add_argument('--amp-dtype', default='float16', type=str, help='lower precision AMP dtype (default: float16)') +parser.add_argument('--amp-impl', default='native', type=str, help='AMP impl to use, "native" or "apex" (default: native)') +parser.add_argument('--tf-preprocessing', action='store_true', default=False, help='Use Tensorflow preprocessing pipeline (require CPU TF installed') +parser.add_argument('--use-ema', dest='use_ema', action='store_true', help='use ema version of weights if present') +parser.add_argument('--fuser', default='', type=str, help="Select jit fuser. One of ('', 'te', 'old', 'nvfuser')") +parser.add_argument('--fast-norm', default=False, action='store_true', help='enable experimental fast-norm') +parser.add_argument('--reparam', default=False, action='store_true', help='Reparameterize model') +parser.add_argument('--model-kwargs', nargs='*', default={}, action=ParseKwargs) +scripting_group = parser.add_mutually_exclusive_group() +scripting_group.add_argument('--torchscript', default=False, action='store_true', help='torch.jit.script the full model') +scripting_group.add_argument('--torchcompile', nargs='?', type=str, default=None, const='inductor', help='Enable compilation w/ specified backend (default: inductor).') +scripting_group.add_argument('--aot-autograd', default=False, action='store_true', help='Enable AOT Autograd support.') +parser.add_argument('--results-file', default='', type=str, metavar='FILENAME', help='Output csv file for validation results (summary)') +parser.add_argument('--results-format', default='csv', type=str, help='Format for results file one of (csv, json) (default: csv).') +parser.add_argument('--real-labels', default='', type=str, metavar='FILENAME', help='Real labels JSON file for imagenet evaluation') +parser.add_argument('--valid-labels', default='', type=str, metavar='FILENAME', help='Valid label indices txt file for validation of partial label space') +parser.add_argument('--retry', default=False, action='store_true', help='Enable batch size decay & retry for single model validation') + +def validate(args): + args.pretrained = args.pretrained or not args.checkpoint + args.prefetcher = not args.no_prefetcher + if torch.cuda.is_available(): + torch.backends.cuda.matmul.allow_tf32 = True + torch.backends.cudnn.benchmark = True + device = torch.device(args.device) + use_amp = None + amp_autocast = suppress + if args.amp: + if args.amp_impl == 'apex': + assert has_apex, 'AMP impl specified as APEX but APEX is not installed.' + assert args.amp_dtype == 'float16' + use_amp = 'apex' + _logger.info('Validating in mixed precision with NVIDIA APEX AMP.') + else: + assert has_native_amp, 'Please update PyTorch to a version with native AMP (or use APEX).' + assert args.amp_dtype in ('float16', 'bfloat16') + use_amp = 'native' + amp_dtype = torch.bfloat16 if args.amp_dtype == 'bfloat16' else torch.float16 + amp_autocast = partial(torch.autocast, device_type=device.type, dtype=amp_dtype) + _logger.info('Validating in mixed precision with native PyTorch AMP.') + else: + _logger.info('Validating in float32. AMP not enabled.') + if args.fuser: + set_jit_fuser(args.fuser) + if args.fast_norm: + set_fast_norm() + in_chans = 3 + if args.in_chans is not None: + in_chans = args.in_chans + elif args.input_size is not None: + in_chans = args.input_size[0] + model = create_model(args.model, pretrained=args.pretrained, num_classes=args.num_classes, in_chans=in_chans, global_pool=args.gp, scriptable=args.torchscript, **args.model_kwargs) + if args.num_classes is None: + assert hasattr(model, 'num_classes'), 'Model must have `num_classes` attr if not set on cmd line/config.' + args.num_classes = model.num_classes + if args.checkpoint: + load_checkpoint(model, args.checkpoint, args.use_ema) + if args.reparam: + model = reparameterize_model(model) + param_count = sum([m.numel() for m in model.parameters()]) + _logger.info('Model %s created, param count: %d' % (args.model, param_count)) + data_config = resolve_data_config(vars(args), model=model, use_test_size=not args.use_train_size, verbose=True) + test_time_pool = False + if args.test_pool: + (model, test_time_pool) = apply_test_time_pool(model, data_config) + model = model.to(device) + if args.channels_last: + model = model.to(memory_format=torch.channels_last) + if args.torchscript: + assert not use_amp == 'apex', 'Cannot use APEX AMP with torchscripted model' + model = torch.jit.script(model) + elif args.torchcompile: + assert has_compile, 'A version of torch w/ torch.compile() is required for --compile, possibly a nightly.' + torch._dynamo.reset() + model = torch.compile(model, backend=args.torchcompile) + elif args.aot_autograd: + assert has_functorch, 'functorch is needed for --aot-autograd' + model = memory_efficient_fusion(model) + if use_amp == 'apex': + model = amp.initialize(model, opt_level='O1') + if args.num_gpu > 1: + model = torch.nn.DataParallel(model, device_ids=list(range(args.num_gpu))) + criterion = nn.CrossEntropyLoss().to(device) + root_dir = args.data or args.data_dir + if args.input_img_mode is None: + input_img_mode = 'RGB' if data_config['input_size'][0] == 3 else 'L' + else: + input_img_mode = args.input_img_mode + dataset = create_dataset(root=root_dir, name=args.dataset, split=args.split, download=args.dataset_download, load_bytes=args.tf_preprocessing, class_map=args.class_map, num_samples=args.num_samples, input_key=args.input_key, input_img_mode=input_img_mode, target_key=args.target_key) + if args.valid_labels: + with open(args.valid_labels, 'r') as f: + valid_labels = [int(line.rstrip()) for line in f] + else: + valid_labels = None + if args.real_labels: + real_labels = RealLabelsImagenet(dataset.filenames(basename=True), real_json=args.real_labels) + else: + real_labels = None + crop_pct = 1.0 if test_time_pool else data_config['crop_pct'] + loader = create_loader(dataset, input_size=data_config['input_size'], batch_size=args.batch_size, use_prefetcher=args.prefetcher, interpolation=data_config['interpolation'], mean=data_config['mean'], std=data_config['std'], num_workers=args.workers, crop_pct=crop_pct, crop_mode=data_config['crop_mode'], crop_border_pixels=args.crop_border_pixels, pin_memory=args.pin_mem, device=device, tf_preprocessing=args.tf_preprocessing) + batch_time = AverageMeter() + losses = AverageMeter() + top1 = AverageMeter() + top5 = AverageMeter() + model.eval() + with torch.no_grad(): + input = torch.randn((args.batch_size,) + tuple(data_config['input_size'])).to(device) + if args.channels_last: + input = input.contiguous(memory_format=torch.channels_last) + with amp_autocast(): + model(input) + end = time.time() + for (batch_idx, (input, target)) in enumerate(loader): + if args.no_prefetcher: + target = target.to(device) + input = input.to(device) + if args.channels_last: + input = input.contiguous(memory_format=torch.channels_last) + with amp_autocast(): + output = model(input) + if valid_labels is not None: + output = output[:, valid_labels] + loss = criterion(output, target) + if real_labels is not None: + real_labels.add_result(output) + (acc1, acc5) = accuracy(output.detach(), target, topk=(1, 5)) + losses.update(loss.item(), input.size(0)) + top1.update(acc1.item(), input.size(0)) + top5.update(acc5.item(), input.size(0)) + batch_time.update(time.time() - end) + end = time.time() + if batch_idx % args.log_freq == 0: + _logger.info('Test: [{0:>4d}/{1}] Time: {batch_time.val:.3f}s ({batch_time.avg:.3f}s, {rate_avg:>7.2f}/s) Loss: {loss.val:>7.4f} ({loss.avg:>6.4f}) Acc@1: {top1.val:>7.3f} ({top1.avg:>7.3f}) Acc@5: {top5.val:>7.3f} ({top5.avg:>7.3f})'.format(batch_idx, len(loader), batch_time=batch_time, rate_avg=input.size(0) / batch_time.avg, loss=losses, top1=top1, top5=top5)) + if real_labels is not None: + (top1a, top5a) = (real_labels.get_accuracy(k=1), real_labels.get_accuracy(k=5)) + else: + (top1a, top5a) = (top1.avg, top5.avg) + results = OrderedDict(model=args.model, top1=round(top1a, 4), top1_err=round(100 - top1a, 4), top5=round(top5a, 4), top5_err=round(100 - top5a, 4), param_count=round(param_count / 1000000.0, 2), img_size=data_config['input_size'][-1], crop_pct=crop_pct, interpolation=data_config['interpolation']) + _logger.info(' * Acc@1 {:.3f} ({:.3f}) Acc@5 {:.3f} ({:.3f})'.format(results['top1'], results['top1_err'], results['top5'], results['top5_err'])) + return results + +def _try_run(args, initial_batch_size): + batch_size = initial_batch_size + results = OrderedDict() + error_str = 'Unknown' + while batch_size: + args.batch_size = batch_size * args.num_gpu + try: + if torch.cuda.is_available() and 'cuda' in args.device: + torch.cuda.empty_cache() + results = validate(args) + return results + except RuntimeError as e: + error_str = str(e) + _logger.error(f'"{error_str}" while running validation.') + if not check_batch_size_retry(error_str): + break + batch_size = decay_batch_step(batch_size) + _logger.warning(f'Reducing batch size to {batch_size} for retry.') + results['error'] = error_str + _logger.error(f'{args.model} failed to validate ({error_str}).') + return results +_NON_IN1K_FILTERS = ['*_in21k', '*_in22k', '*in12k', '*_dino', '*fcmae', '*seer'] + +def main(): + setup_default_logging() + args = parser.parse_args() + model_cfgs = [] + model_names = [] + if os.path.isdir(args.checkpoint): + checkpoints = glob.glob(args.checkpoint + '/*.pth.tar') + checkpoints += glob.glob(args.checkpoint + '/*.pth') + model_names = list_models(args.model) + model_cfgs = [(args.model, c) for c in sorted(checkpoints, key=natural_key)] + else: + if args.model == 'all': + args.pretrained = True + model_names = list_models(pretrained=True, exclude_filters=_NON_IN1K_FILTERS) + model_cfgs = [(n, '') for n in model_names] + elif not is_model(args.model): + model_names = list_models(args.model, pretrained=True) + model_cfgs = [(n, '') for n in model_names] + if not model_cfgs and os.path.isfile(args.model): + with open(args.model) as f: + model_names = [line.rstrip() for line in f] + model_cfgs = [(n, None) for n in model_names if n] + if len(model_cfgs): + _logger.info('Running bulk validation on these pretrained models: {}'.format(', '.join(model_names))) + results = [] + try: + initial_batch_size = args.batch_size + for (m, c) in model_cfgs: + args.model = m + args.checkpoint = c + r = _try_run(args, initial_batch_size) + if 'error' in r: + continue + if args.checkpoint: + r['checkpoint'] = args.checkpoint + results.append(r) + except KeyboardInterrupt as e: + pass + results = sorted(results, key=lambda x: x['top1'], reverse=True) + elif args.retry: + results = _try_run(args, args.batch_size) + else: + results = validate(args) + if args.results_file: + write_results(args.results_file, results, format=args.results_format) + print(f'--result\n{json.dumps(results, indent=4)}') + +def write_results(results_file, results, format='csv'): + with open(results_file, mode='w') as cf: + if format == 'json': + json.dump(results, cf, indent=4) + else: + if not isinstance(results, (list, tuple)): + results = [results] + if not results: + return + dw = csv.DictWriter(cf, fieldnames=results[0].keys()) + dw.writeheader() + for r in results: + dw.writerow(r) + cf.flush() +if __name__ == '__main__': + main() +