# File: accelerate-main/manim_animations/big_model_inference/stage_1.py
from manim import *
class Stage1(Scene):
def construct(self):
mem = Rectangle(height=0.5, width=0.5)
fill = Rectangle(height=0.46, width=0.46).set_stroke(width=0)
cpu_left_col_base = [mem.copy() for i in range(6)]
cpu_right_col_base = [mem.copy() for i in range(6)]
cpu_left_col = VGroup(*cpu_left_col_base).arrange(UP, buff=0)
cpu_right_col = VGroup(*cpu_right_col_base).arrange(UP, buff=0)
cpu_rects = VGroup(cpu_left_col, cpu_right_col).arrange(RIGHT, buff=0)
cpu_text = Text('CPU', font_size=24)
cpu = Group(cpu_rects, cpu_text).arrange(DOWN, buff=0.5, aligned_edge=DOWN)
cpu.move_to([-2.5, -0.5, 0])
self.add(cpu)
gpu_base = [mem.copy() for i in range(1)]
gpu_rect = VGroup(*gpu_base).arrange(UP, buff=0)
gpu_text = Text('GPU', font_size=24)
gpu = Group(gpu_rect, gpu_text).arrange(DOWN, buff=0.5, aligned_edge=DOWN)
gpu.align_to(cpu, DOWN)
gpu.set_x(gpu.get_x() - 1)
self.add(gpu)
model_base = [mem.copy() for i in range(6)]
model_rect = VGroup(*model_base).arrange(RIGHT, buff=0)
model_text = Text('Model', font_size=24)
model = Group(model_rect, model_text).arrange(DOWN, buff=0.5, aligned_edge=DOWN)
model.move_to([3, -1.0, 0])
self.play(Create(cpu_left_col, run_time=1), Create(cpu_right_col, run_time=1), Create(gpu_rect, run_time=1))
step_1 = MarkupText(f"First, an empty model skeleton is loaded\ninto memory without using much RAM.", font_size=24)
key = Square(side_length=2.2)
key.move_to([-5, 2, 0])
key_text = MarkupText(f"Key:\n\n● Empty Model", font_size=18)
key_text.move_to([-5, 2.4, 0])
step_1.move_to([2, 2, 0])
self.play(Write(step_1, run_time=2.5), Write(key_text), Write(key))
self.add(model)
cpu_targs = []
first_animations = []
second_animations = []
for (i, rect) in enumerate(model_base):
cpu_target = Rectangle(height=0.46, width=0.46).set_stroke(width=0.0).set_fill(YELLOW, opacity=0.7)
cpu_target.move_to(rect)
cpu_target.generate_target()
cpu_target.target.height = 0.46 / 4
cpu_target.target.width = 0.46 / 3
if i == 0:
cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT), buff=0.02, direction=UP)
cpu_target.target.set_x(cpu_target.target.get_x() + 0.1)
elif i == 3:
cpu_target.target.next_to(cpu_targs[0].target, direction=UP, buff=0.0)
else:
cpu_target.target.next_to(cpu_targs[i - 1].target, direction=RIGHT, buff=0.0)
cpu_targs.append(cpu_target)
first_animations.append(rect.animate(run_time=0.5).set_stroke(YELLOW))
second_animations.append(MoveToTarget(cpu_target, run_time=1.5))
self.play(*first_animations)
self.play(*second_animations)
self.wait()
# File: accelerate-main/manim_animations/big_model_inference/stage_2.py
from manim import *
class Stage2(Scene):
def construct(self):
mem = Rectangle(height=0.5, width=0.5)
fill = Rectangle(height=0.46, width=0.46).set_stroke(width=0)
cpu_left_col_base = [mem.copy() for i in range(6)]
cpu_right_col_base = [mem.copy() for i in range(6)]
cpu_left_col = VGroup(*cpu_left_col_base).arrange(UP, buff=0)
cpu_right_col = VGroup(*cpu_right_col_base).arrange(UP, buff=0)
cpu_rects = VGroup(cpu_left_col, cpu_right_col).arrange(RIGHT, buff=0)
cpu_text = Text('CPU', font_size=24)
cpu = Group(cpu_rects, cpu_text).arrange(DOWN, buff=0.5, aligned_edge=DOWN)
cpu.move_to([-2.5, -0.5, 0])
self.add(cpu)
gpu_base = [mem.copy() for i in range(4)]
gpu_rect = VGroup(*gpu_base).arrange(UP, buff=0)
gpu_text = Text('GPU', font_size=24)
gpu = Group(gpu_rect, gpu_text).arrange(DOWN, buff=0.5, aligned_edge=DOWN)
gpu.move_to([-1, -1, 0])
self.add(gpu)
model_base = [mem.copy() for i in range(6)]
model_rect = VGroup(*model_base).arrange(RIGHT, buff=0)
model_text = Text('Model', font_size=24)
model = Group(model_rect, model_text).arrange(DOWN, buff=0.5, aligned_edge=DOWN)
model.move_to([3, -1.0, 0])
self.add(model)
cpu_targs = []
for (i, rect) in enumerate(model_base):
rect.set_stroke(YELLOW)
cpu_target = Rectangle(height=0.46 / 4, width=0.46 / 3).set_stroke(width=0.0).set_fill(YELLOW, opacity=0.7)
if i == 0:
cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT), buff=0.02, direction=UP)
cpu_target.set_x(cpu_target.get_x() + 0.1)
elif i == 3:
cpu_target.next_to(cpu_targs[0], direction=UP, buff=0.0)
else:
cpu_target.next_to(cpu_targs[i - 1], direction=RIGHT, buff=0.0)
self.add(cpu_target)
cpu_targs.append(cpu_target)
checkpoint_base = [mem.copy() for i in range(6)]
checkpoint_rect = VGroup(*checkpoint_base).arrange(RIGHT, buff=0)
checkpoint_text = Text('Loaded Checkpoint', font_size=24)
checkpoint = Group(checkpoint_rect, checkpoint_text).arrange(DOWN, aligned_edge=DOWN, buff=0.4)
checkpoint.move_to([3, 0.5, 0])
key = Square(side_length=2.2)
key.move_to([-5, 2, 0])
key_text = MarkupText(f"Key:\n\n● Empty Model", font_size=18)
key_text.move_to([-5, 2.4, 0])
self.add(key_text, key)
blue_text = MarkupText(f"● Checkpoint", font_size=18)
blue_text.next_to(key_text, DOWN * 2.4, aligned_edge=key_text.get_left())
step_2 = MarkupText(f'Next, a second model is loaded into memory,\nwith the weights of a single shard.', font_size=24)
step_2.move_to([2, 2, 0])
self.play(Write(step_2), Write(blue_text))
self.play(Write(checkpoint_text, run_time=1), Create(checkpoint_rect, run_time=1))
first_animations = []
second_animations = []
for (i, rect) in enumerate(checkpoint_base):
target = fill.copy().set_fill(BLUE, opacity=0.7)
target.move_to(rect)
first_animations.append(GrowFromCenter(target, run_time=1))
cpu_target = target.copy()
cpu_target.generate_target()
if i < 5:
cpu_target.target.move_to(cpu_left_col_base[i + 1])
else:
cpu_target.target.move_to(cpu_right_col_base[i - 5])
second_animations.append(MoveToTarget(cpu_target, run_time=1.5))
self.play(*first_animations)
self.play(*second_animations)
self.wait()
# File: accelerate-main/manim_animations/big_model_inference/stage_3.py
from manim import *
class Stage3(Scene):
def construct(self):
mem = Rectangle(height=0.5, width=0.5)
meta_mem = Rectangle(height=0.25, width=0.25)
fill = Rectangle(height=0.46, width=0.46).set_stroke(width=0)
cpu_left_col_base = [mem.copy() for i in range(6)]
cpu_right_col_base = [mem.copy() for i in range(6)]
cpu_left_col = VGroup(*cpu_left_col_base).arrange(UP, buff=0)
cpu_right_col = VGroup(*cpu_right_col_base).arrange(UP, buff=0)
cpu_rects = VGroup(cpu_left_col, cpu_right_col).arrange(RIGHT, buff=0)
cpu_text = Text('CPU', font_size=24)
cpu = Group(cpu_rects, cpu_text).arrange(DOWN, buff=0.5, aligned_edge=DOWN)
cpu.move_to([-2.5, -0.5, 0])
self.add(cpu)
gpu_base = [mem.copy() for i in range(4)]
gpu_rect = VGroup(*gpu_base).arrange(UP, buff=0)
gpu_text = Text('GPU', font_size=24)
gpu = Group(gpu_rect, gpu_text).arrange(DOWN, buff=0.5, aligned_edge=DOWN)
gpu.move_to([-1, -1, 0])
self.add(gpu)
model_base = [mem.copy() for i in range(6)]
model_rect = VGroup(*model_base).arrange(RIGHT, buff=0)
model_text = Text('Model', font_size=24)
model = Group(model_rect, model_text).arrange(DOWN, buff=0.5, aligned_edge=DOWN)
model.move_to([3, -1.0, 0])
self.add(model)
model_arr = []
model_cpu_arr = []
model_meta_arr = []
for (i, rect) in enumerate(model_base):
rect.set_stroke(YELLOW)
cpu_target = Rectangle(height=0.46 / 4, width=0.46 / 3).set_stroke(width=0.0).set_fill(YELLOW, opacity=0.7)
if i == 0:
cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT), buff=0.02, direction=UP)
cpu_target.set_x(cpu_target.get_x() + 0.1)
elif i == 3:
cpu_target.next_to(model_cpu_arr[0], direction=UP, buff=0.0)
else:
cpu_target.next_to(model_cpu_arr[i - 1], direction=RIGHT, buff=0.0)
self.add(cpu_target)
model_cpu_arr.append(cpu_target)
self.add(*model_arr, *model_cpu_arr, *model_meta_arr)
checkpoint_base = [mem.copy() for i in range(6)]
checkpoint_rect = VGroup(*checkpoint_base).arrange(RIGHT, buff=0)
checkpoint_text = Text('Loaded Checkpoint', font_size=24)
checkpoint = Group(checkpoint_rect, checkpoint_text).arrange(DOWN, buff=0.5, aligned_edge=DOWN)
checkpoint.move_to([3, 0.5, 0])
self.add(checkpoint)
ckpt_arr = []
ckpt_cpu_arr = []
for (i, rect) in enumerate(checkpoint_base):
target = fill.copy().set_fill(BLUE, opacity=0.7)
target.move_to(rect)
ckpt_arr.append(target)
cpu_target = target.copy()
if i < 5:
cpu_target.move_to(cpu_left_col_base[i + 1])
else:
cpu_target.move_to(cpu_right_col_base[i - 5])
ckpt_cpu_arr.append(cpu_target)
self.add(*ckpt_arr, *ckpt_cpu_arr)
key = Square(side_length=2.2)
key.move_to([-5, 2, 0])
key_text = MarkupText(f"Key:\n\n● Empty Model", font_size=18)
key_text.move_to([-5, 2.4, 0])
self.add(key_text, key)
blue_text = MarkupText(f"● Checkpoint", font_size=18)
blue_text.next_to(key_text, DOWN * 2.4, aligned_edge=key_text.get_left())
self.add(blue_text)
step_3 = MarkupText(f'Based on the passed in configuration, weights are stored in\na variety of np.memmaps on disk or to a particular device.', font_size=24)
step_3.move_to([2, 2, 0])
disk_left_col_base = [meta_mem.copy() for i in range(6)]
disk_right_col_base = [meta_mem.copy() for i in range(6)]
disk_left_col = VGroup(*disk_left_col_base).arrange(UP, buff=0)
disk_right_col = VGroup(*disk_right_col_base).arrange(UP, buff=0)
disk_rects = VGroup(disk_left_col, disk_right_col).arrange(RIGHT, buff=0)
disk_text = Text('Disk', font_size=24)
disk = Group(disk_rects, disk_text).arrange(DOWN, buff=0.5, aligned_edge=DOWN)
disk.move_to([-4.0, -1.25, 0])
self.play(Write(step_3, run_time=3), Write(disk_text, run_time=1), Create(disk_rects, run_time=1))
animations = []
for (i, rect) in enumerate(ckpt_cpu_arr):
target = rect.copy()
target.generate_target()
target.target.move_to(disk_left_col_base[i]).scale(0.5)
animations.append(MoveToTarget(target, run_time=1.5))
self.play(*animations)
self.play(FadeOut(step_3))
step_4 = MarkupText(f'Then, the checkpoint is removed from memory\nthrough garbage collection.', font_size=24)
step_4.move_to([2, 2, 0])
self.play(Write(step_4, run_time=3))
self.play(FadeOut(checkpoint_rect, checkpoint_text, *ckpt_arr, *ckpt_cpu_arr))
self.wait()
# File: accelerate-main/manim_animations/big_model_inference/stage_4.py
from manim import *
class Stage4(Scene):
def construct(self):
mem = Rectangle(height=0.5, width=0.5)
fill = Rectangle(height=0.46, width=0.46).set_stroke(width=0)
meta_mem = Rectangle(height=0.25, width=0.25)
cpu_left_col_base = [mem.copy() for i in range(6)]
cpu_right_col_base = [mem.copy() for i in range(6)]
cpu_left_col = VGroup(*cpu_left_col_base).arrange(UP, buff=0)
cpu_right_col = VGroup(*cpu_right_col_base).arrange(UP, buff=0)
cpu_rects = VGroup(cpu_left_col, cpu_right_col).arrange(RIGHT, buff=0)
cpu_text = Text('CPU', font_size=24)
cpu = Group(cpu_rects, cpu_text).arrange(DOWN, buff=0.5, aligned_edge=DOWN)
cpu.move_to([-2.5, -0.5, 0])
self.add(cpu)
gpu_base = [mem.copy() for i in range(4)]
gpu_rect = VGroup(*gpu_base).arrange(UP, buff=0)
gpu_text = Text('GPU', font_size=24)
gpu = Group(gpu_rect, gpu_text).arrange(DOWN, buff=0.5, aligned_edge=DOWN)
gpu.move_to([-1, -1, 0])
self.add(gpu)
model_base = [mem.copy() for i in range(6)]
model_rect = VGroup(*model_base).arrange(RIGHT, buff=0)
model_text = Text('Model', font_size=24)
model = Group(model_rect, model_text).arrange(DOWN, buff=0.5, aligned_edge=DOWN)
model.move_to([3, -1.0, 0])
self.add(model)
model_cpu_arr = []
model_meta_arr = []
for (i, rect) in enumerate(model_base):
rect.set_stroke(YELLOW)
cpu_target = Rectangle(height=0.46 / 4, width=0.46 / 3).set_stroke(width=0.0).set_fill(YELLOW, opacity=0.7)
if i == 0:
cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT), buff=0.02, direction=UP)
cpu_target.set_x(cpu_target.get_x() + 0.1)
elif i == 3:
cpu_target.next_to(model_cpu_arr[0], direction=UP, buff=0.0)
else:
cpu_target.next_to(model_cpu_arr[i - 1], direction=RIGHT, buff=0.0)
self.add(cpu_target)
model_cpu_arr.append(cpu_target)
self.add(*model_cpu_arr, *model_meta_arr)
disk_left_col_base = [meta_mem.copy() for i in range(6)]
disk_right_col_base = [meta_mem.copy() for i in range(6)]
disk_left_col = VGroup(*disk_left_col_base).arrange(UP, buff=0)
disk_right_col = VGroup(*disk_right_col_base).arrange(UP, buff=0)
disk_rects = VGroup(disk_left_col, disk_right_col).arrange(RIGHT, buff=0)
disk_text = Text('Disk', font_size=24)
disk = Group(disk_rects, disk_text).arrange(DOWN, buff=0.5, aligned_edge=DOWN)
disk.move_to([-4.0, -1.25, 0])
self.add(disk_text, disk_rects)
cpu_disk_arr = []
for i in range(6):
target = fill.copy().set_fill(BLUE, opacity=0.8)
target.move_to(disk_left_col_base[i]).scale(0.5)
cpu_disk_arr.append(target)
self.add(*cpu_disk_arr)
key = Square(side_length=2.2)
key.move_to([-5, 2, 0])
key_text = MarkupText(f"Key:\n\n● Empty Model", font_size=18)
key_text.move_to([-5, 2.4, 0])
self.add(key_text, key)
blue_text = MarkupText(f"● Checkpoint", font_size=18)
blue_text.next_to(key_text, DOWN * 2.4, aligned_edge=key_text.get_left())
self.add(blue_text)
step_5 = MarkupText(f'The offloaded weights are all sent to the CPU.', font_size=24)
step_5.move_to([2, 2, 0])
self.play(Write(step_5, run_time=3))
for i in range(6):
rect = cpu_disk_arr[i]
cp2 = rect.copy().set_fill(BLUE, opacity=0.8).scale(2.0)
cp2.generate_target()
cp2.target.move_to(model_base[i])
if i == 0:
rect.set_fill(BLUE, opacity=0.8)
rect.generate_target()
rect.target.move_to(cpu_left_col_base[0]).scale(2.0)
self.remove(*model_meta_arr, *model_cpu_arr)
else:
rect.generate_target()
rect.target.move_to(cpu_left_col_base[i]).scale(2.0)
self.play(MoveToTarget(rect), MoveToTarget(cp2), model_base[i].animate.set_stroke(WHITE))
self.play(FadeOut(step_5))
step_5 = MarkupText(f'Finally, hooks are added to each weight in the model\nto transfer the weights from CPU to GPU\n\t\tand back when needed.', font_size=24)
step_5.move_to([2, 2, 0])
self.play(Write(step_5, run_time=3))
arrows = []
animations = []
for i in range(6):
a = Arrow(start=UP, end=DOWN, color=RED, buff=0.5)
a.next_to(model_base[i].get_left(), UP, buff=0.2)
arrows.append(a)
animations.append(Write(a))
self.play(*animations)
self.wait()
# File: accelerate-main/manim_animations/big_model_inference/stage_5.py
from manim import *
class Stage5(Scene):
def construct(self):
mem = Rectangle(height=0.5, width=0.5)
fill = Rectangle(height=0.46, width=0.46).set_stroke(width=0)
meta_mem = Rectangle(height=0.25, width=0.25)
cpu_left_col_base = [mem.copy() for i in range(6)]
cpu_right_col_base = [mem.copy() for i in range(6)]
cpu_left_col = VGroup(*cpu_left_col_base).arrange(UP, buff=0)
cpu_right_col = VGroup(*cpu_right_col_base).arrange(UP, buff=0)
cpu_rects = VGroup(cpu_left_col, cpu_right_col).arrange(RIGHT, buff=0)
cpu_text = Text('CPU', font_size=24)
cpu = Group(cpu_rects, cpu_text).arrange(DOWN, buff=0.5, aligned_edge=DOWN)
cpu.move_to([-2.5, -0.5, 0])
self.add(cpu)
gpu_base = [mem.copy() for i in range(4)]
gpu_rect = VGroup(*gpu_base).arrange(UP, buff=0)
gpu_text = Text('GPU', font_size=24)
gpu = Group(gpu_rect, gpu_text).arrange(DOWN, buff=0.5, aligned_edge=DOWN)
gpu.move_to([-1, -1, 0])
self.add(gpu)
model_base = [mem.copy() for i in range(6)]
model_rect = VGroup(*model_base).arrange(RIGHT, buff=0)
model_text = Text('Model', font_size=24)
model = Group(model_rect, model_text).arrange(DOWN, buff=0.5, aligned_edge=DOWN)
model.move_to([3, -1.0, 0])
self.add(model)
model_arr = []
model_cpu_arr = []
for (i, rect) in enumerate(model_base):
target = fill.copy().set_fill(BLUE, opacity=0.8)
target.move_to(rect)
model_arr.append(target)
cpu_target = Rectangle(height=0.46, width=0.46).set_stroke(width=0.0).set_fill(BLUE, opacity=0.8)
cpu_target.move_to(cpu_left_col_base[i])
model_cpu_arr.append(cpu_target)
self.add(*model_arr, *model_cpu_arr)
disk_left_col_base = [meta_mem.copy() for i in range(6)]
disk_right_col_base = [meta_mem.copy() for i in range(6)]
disk_left_col = VGroup(*disk_left_col_base).arrange(UP, buff=0)
disk_right_col = VGroup(*disk_right_col_base).arrange(UP, buff=0)
disk_rects = VGroup(disk_left_col, disk_right_col).arrange(RIGHT, buff=0)
disk_text = Text('Disk', font_size=24)
disk = Group(disk_rects, disk_text).arrange(DOWN, buff=0.5, aligned_edge=DOWN)
disk.move_to([-4, -1.25, 0])
self.add(disk_text, disk_rects)
key = Square(side_length=2.2)
key.move_to([-5, 2, 0])
key_text = MarkupText(f"Key:\n\n● Empty Model", font_size=18)
key_text.move_to([-5, 2.4, 0])
self.add(key_text, key)
blue_text = MarkupText(f"● Checkpoint", font_size=18)
blue_text.next_to(key_text, DOWN * 2.4, aligned_edge=key_text.get_left())
self.add(blue_text)
step_6 = MarkupText(f'Now watch as an input is passed through the model\nand how the memory is utilized and handled.', font_size=24)
step_6.move_to([2, 2, 0])
self.play(Write(step_6))
input = Square(0.3)
input.set_fill(RED, opacity=1.0)
input.set_stroke(width=0.0)
input.next_to(model_base[0], LEFT, buff=0.5)
self.play(Write(input))
input.generate_target()
input.target.next_to(model_arr[0], direction=LEFT, buff=0.02)
self.play(MoveToTarget(input))
self.play(FadeOut(step_6))
a = Arrow(start=UP, end=DOWN, color=RED, buff=0.5)
a.next_to(model_arr[0].get_left(), UP, buff=0.2)
model_cpu_arr[0].generate_target()
model_cpu_arr[0].target.move_to(gpu_rect[0])
step_7 = MarkupText(f'As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.', font_size=24)
step_7.move_to([2, 2, 0])
self.play(Write(step_7, run_time=3))
circ_kwargs = {'run_time': 1, 'fade_in': True, 'fade_out': True, 'buff': 0.02}
self.play(Write(a), Circumscribe(model_arr[0], color=ORANGE, **circ_kwargs), Circumscribe(model_cpu_arr[0], color=ORANGE, **circ_kwargs), Circumscribe(gpu_rect[0], color=ORANGE, **circ_kwargs))
self.play(MoveToTarget(model_cpu_arr[0]))
a_c = a.copy()
for i in range(6):
a_c.next_to(model_arr[i].get_right() + 0.02, UP, buff=0.2)
input.generate_target()
input.target.move_to(model_arr[i].get_right() + 0.02)
grp = AnimationGroup(FadeOut(a, run_time=0.5), MoveToTarget(input, run_time=0.5), FadeIn(a_c, run_time=0.5), lag_ratio=0.2)
self.play(grp)
model_cpu_arr[i].generate_target()
model_cpu_arr[i].target.move_to(cpu_left_col_base[i])
if i < 5:
model_cpu_arr[i + 1].generate_target()
model_cpu_arr[i + 1].target.move_to(gpu_rect[0])
if i >= 1:
circ_kwargs['run_time'] = 0.7
self.play(Circumscribe(model_arr[i], **circ_kwargs), Circumscribe(cpu_left_col_base[i], **circ_kwargs), Circumscribe(cpu_left_col_base[i + 1], color=ORANGE, **circ_kwargs), Circumscribe(gpu_rect[0], color=ORANGE, **circ_kwargs), Circumscribe(model_arr[i + 1], color=ORANGE, **circ_kwargs))
if i < 1:
self.play(MoveToTarget(model_cpu_arr[i]), MoveToTarget(model_cpu_arr[i + 1]))
else:
self.play(MoveToTarget(model_cpu_arr[i], run_time=0.7), MoveToTarget(model_cpu_arr[i + 1], run_time=0.7))
else:
model_cpu_arr[i].generate_target()
model_cpu_arr[i].target.move_to(cpu_left_col_base[-1])
input.generate_target()
input.target.next_to(model_arr[-1].get_right(), RIGHT + 0.02, buff=0.2)
self.play(Circumscribe(model_arr[-1], color=ORANGE, **circ_kwargs), Circumscribe(cpu_left_col_base[-1], color=ORANGE, **circ_kwargs), Circumscribe(gpu_rect[0], color=ORANGE, **circ_kwargs))
self.play(MoveToTarget(model_cpu_arr[i]))
a = a_c
a_c = a_c.copy()
input.generate_target()
input.target.next_to(model_base[-1], RIGHT + 0.02, buff=0.5)
self.play(FadeOut(step_7), FadeOut(a, run_time=0.5))
step_8 = MarkupText(f'Inference on a model too large for GPU memory\nis successfully completed.', font_size=24)
step_8.move_to([2, 2, 0])
self.play(Write(step_8, run_time=3), MoveToTarget(input))
self.wait()
# File: accelerate-main/manim_animations/dataloaders/stage_0.py
from manim import *
class Stage0(Scene):
def construct(self):
mascot = ImageMobject('mascot_bookie.png')
mascot.scale(0.35)
mascot.move_to([-3.75, -1, 0])
text = Paragraph('Distributed Training,\nHugging Face Accelerate,\nand PyTorch DataLoaders\n\nHow do they all interact?', font_size=36, line_spacing=1, alignment='center', weight=BOLD)
text.move_to([1.75, 0.5, 0])
self.add(mascot)
self.add(text)
# File: accelerate-main/manim_animations/dataloaders/stage_1.py
from manim import *
class Stage01(Scene):
def construct(self):
mascot = ImageMobject('mascot_bookie.png')
mascot.scale(0.35)
mascot.move_to([-3.75, -1, 0])
text = Paragraph('Distributed Training,\nHugging Face Accelerate,\nand PyTorch DataLoaders\n\nHow do they all interact?', font_size=36, line_spacing=1, alignment='center', weight=BOLD)
text.move_to([1.75, 0.5, 0])
self.add(mascot)
self.add(text)
# File: accelerate-main/manim_animations/dataloaders/stage_2.py
from manim import *
class Stage2(Scene):
def construct(self):
fill = Rectangle(height=0.46, width=0.46).set_stroke(width=0)
columns = [VGroup(*[Rectangle(height=0.25, width=0.25, color='green') for i in range(8)]).arrange(RIGHT, buff=0) for j in range(4)]
dataset_recs = VGroup(*columns).arrange(UP, buff=0)
dataset_text = Text('Dataset', font_size=24)
dataset = Group(dataset_recs, dataset_text).arrange(DOWN, buff=0.5, aligned_edge=DOWN)
dataset.move_to([-2, 0, 0])
self.add(dataset)
code = Code(code='dataloader = DataLoader(...)\nfor batch in dataloader():\n\t...', tab_width=4, background='window', language='Python', font='Monospace', font_size=14, corner_radius=0.2, insert_line_no=False, line_spacing=0.75, style=Code.styles_list[1])
code.move_to([-3.5, 2.5, 0])
self.add(code)
dataloader = Group(Rectangle(color='red', height=2, width=2), Text('DataLoader', font_size=24)).arrange(DOWN, buff=0.5, aligned_edge=DOWN)
sampler = Group(Rectangle(color='blue', height=1, width=1), Text('Sampler', font_size=12)).arrange(DOWN, buff=0.25, aligned_edge=DOWN)
dataloader.move_to([1, 0, 0])
sampler.move_to([0.75, 0.25, 0])
self.add(dataloader)
self.add(sampler)
gpu_1 = Group(Rectangle(color='white', height=1, width=1), Text('GPU 1', font_size=12)).arrange(DOWN, buff=0.25, aligned_edge=DOWN).move_to([4, 2, 0])
gpu_2 = Group(Rectangle(color='white', height=1, width=1), Text('GPU 2', font_size=12)).arrange(DOWN, buff=0.25, aligned_edge=DOWN).move_to([4, 0.5, 0])
gpu_3 = Group(Rectangle(color='white', height=1, width=1), Text('GPU 3', font_size=12)).arrange(DOWN, buff=0.25, aligned_edge=DOWN).move_to([4, -1, 0])
gpu_4 = Group(Rectangle(color='white', height=1, width=1), Text('GPU 4', font_size=12)).arrange(DOWN, buff=0.25, aligned_edge=DOWN).move_to([4, -2.5, 0])
gpus = [gpu_1[0], gpu_2[0], gpu_3[0], gpu_4[0]]
self.add(gpu_1, gpu_2, gpu_3, gpu_4)
self.play(Create(gpu_1[0], run_time=0.5), Create(gpu_2[0], run_time=0.5), Create(gpu_3[0], run_time=0.5), Create(gpu_4[0], run_time=0.5), Create(dataset_recs, run_time=1), Create(sampler[0], run_time=1), Create(dataloader[0], run_time=1))
step_1 = MarkupText(f'Without any special care, \nthe same data is sent though each sampler, \nand the same samples are spit out on each GPU', font_size=18)
step_1.move_to([0, -2.5, 0])
self.play(Write(step_1, run_time=4))
first_animations = []
second_animations = []
colors = ['BLUE_E', 'DARK_BROWN', 'GOLD_E', 'GRAY_A']
current_color = colors[0]
buff = 0
lr_buff = 0.25
old_target = None
new_datasets = []
for (i, data) in enumerate(dataset_recs[-1]):
if i % 2 == 0:
current_color = 'BLUE_E'
dataset_target = Rectangle(height=0.46 / 2, width=0.46 / 2).set_stroke(width=0.0).set_fill(current_color, opacity=0.7)
dataset_target.move_to(data)
dataset_target.generate_target()
aligned_edge = ORIGIN
if i % 2 == 0:
old_target = dataset_target.target
buff -= 0.25
aligned_edge = LEFT
dataset_target.target.next_to(sampler, buff=buff, direction=UP, aligned_edge=LEFT)
else:
dataset_target.target.next_to(old_target, direction=RIGHT, buff=0.01)
new_datasets.append(dataset_target)
first_animations.append(data.animate(run_time=0.5).set_stroke(current_color))
second_animations.append(MoveToTarget(dataset_target, run_time=1.5))
self.play(*first_animations)
self.play(*second_animations)
self.wait()
move_animation = []
for (j, gpu) in enumerate(gpus):
buff = 0
for (i, data) in enumerate(new_datasets):
if i % 2 == 0:
current_color = colors[i // 2]
if j != 3:
data = data.copy()
data.generate_target()
aligned_edge = ORIGIN
if i % 2 == 0:
old_target = data.target
buff -= 0.25
aligned_edge = LEFT
data.target.next_to(gpu, buff=buff, direction=UP, aligned_edge=LEFT)
else:
data.target.next_to(old_target, direction=RIGHT, buff=0.01)
move_animation.append(MoveToTarget(data, run_time=1.5))
self.play(*move_animation)
self.remove(step_1)
step_2 = MarkupText(f'This behavior is undesireable, because we want\neach GPU to see different data for efficient training.', font_size=18)
step_2.move_to([0, -2.5, 0])
self.play(Write(step_2, run_time=2.5))
self.wait()
# File: accelerate-main/manim_animations/dataloaders/stage_3.py
from manim import *
class Stage3(Scene):
def construct(self):
step_1 = MarkupText(f'To combat this, Accelerate employs one of two different\nSampler wrapper methods depending on the scenario:', font_size=24)
step_1.move_to([0, 1.5, 0])
self.add(step_1)
step_2 = MarkupText(f"1. Sharding the dataset before drawing:\n\t● IterableDatasetShard\n\t● BatchSamplerShard", font_size=24).next_to(step_1, direction=DOWN, aligned_edge=LEFT)
self.add(step_2)
step_3 = MarkupText(f"\n\n2. Splitting the batch after drawing:\n\t● DataLoaderDispatcher", font_size=24).next_to(step_2, direction=DOWN, aligned_edge=LEFT)
self.add(step_3)
# File: accelerate-main/manim_animations/dataloaders/stage_4.py
from manim import *
class Stage4(Scene):
def construct(self):
step_1 = MarkupText(f"To understand the next part fully, let's define two terms,\n`batch_size` and `global_batch_size`:", font_size=18)
step_1.move_to([0, 1.5, 0])
step_2 = MarkupText(f"\n\n● `batch_size`: \n\tThis will be defined as the batch size seen on a given\n\t*individual* GPU", font_size=18).next_to(step_1, direction=DOWN, aligned_edge=LEFT)
step_3 = MarkupText(f"\n\n● `global_batch_size`:\n\tThis will be defined as the *total* number of\n\tdifferent items seen in the dataset, across all GPUs", font_size=18).next_to(step_2, direction=DOWN, aligned_edge=LEFT)
step_4 = MarkupText(f'\n\nSo if we have a dataset of 64 items, 8 GPUs, \nand a `batch_size` of 8, each *step* will go through\nthe entire dataset one time as 8*8=64', font_size=18).next_to(step_3, direction=DOWN, aligned_edge=LEFT)
self.play(Write(step_1, run_time=4))
self.play(Write(step_2, run_time=4))
self.play(Write(step_3, run_time=4))
self.play(Write(step_4, run_time=6))
self.wait()
# File: accelerate-main/manim_animations/dataloaders/stage_5.py
from manim import *
class Stage5(Scene):
def construct(self):
colors = ['BLUE_E', 'DARK_BROWN', 'GOLD_E', 'GRAY_A']
fill = Rectangle(height=0.46, width=0.46).set_stroke(width=0)
columns = [VGroup(*[Rectangle(height=0.25, width=0.25, color=colors[j]) for i in range(8)]).arrange(RIGHT, buff=0) for j in range(4)]
dataset_recs = VGroup(*columns).arrange(UP, buff=0)
dataset_text = Text('Dataset', font_size=24)
dataset = Group(dataset_recs, dataset_text).arrange(DOWN, buff=0.5, aligned_edge=DOWN)
dataset.move_to([-2, 0, 0])
self.add(dataset)
code = Code(code='# We enable this by default\naccelerator = Accelerator()\ndataloader = DataLoader(...)\ndataloader = accelerator.prepare(dataloader)\nfor batch in dataloader:\n\t...', tab_width=4, background='window', language='Python', font='Monospace', font_size=14, corner_radius=0.2, insert_line_no=False, line_spacing=0.75, style=Code.styles_list[1])
code.move_to([-3.5, 2.5, 0])
self.add(code)
sampler_1 = Group(Rectangle(color='blue', height=1, width=1), Text('Sampler GPU 1', font_size=12)).arrange(DOWN, buff=0.25, aligned_edge=DOWN)
sampler_2 = Group(Rectangle(color='blue', height=1, width=1), Text('Sampler GPU 2', font_size=12)).arrange(DOWN, buff=0.25, aligned_edge=DOWN)
sampler_3 = Group(Rectangle(color='blue', height=1, width=1), Text('Sampler GPU 3', font_size=12)).arrange(DOWN, buff=0.25, aligned_edge=DOWN)
sampler_4 = Group(Rectangle(color='blue', height=1, width=1), Text('Sampler GPU 4', font_size=12)).arrange(DOWN, buff=0.25, aligned_edge=DOWN)
sampler_1.move_to([2, 2, 0])
sampler_2.move_to([2, 0.5, 0])
sampler_3.move_to([2, -1.0, 0])
sampler_4.move_to([2, -2.5, 0])
self.add(sampler_1, sampler_2, sampler_3, sampler_4)
samplers = [sampler_1[0], sampler_2[0], sampler_3[0], sampler_4[0]]
gpu_1 = Group(Rectangle(color='white', height=1, width=1), Text('Output GPU 1', font_size=12)).arrange(DOWN, buff=0.25, aligned_edge=DOWN).move_to([4.5, 2, 0])
gpu_2 = Group(Rectangle(color='white', height=1, width=1), Text('Output GPU 2', font_size=12)).arrange(DOWN, buff=0.25, aligned_edge=DOWN).move_to([4.5, 0.5, 0])
gpu_3 = Group(Rectangle(color='white', height=1, width=1), Text('Output GPU 3', font_size=12)).arrange(DOWN, buff=0.25, aligned_edge=DOWN).move_to([4.5, -1, 0])
gpu_4 = Group(Rectangle(color='white', height=1, width=1), Text('Output GPU 4', font_size=12)).arrange(DOWN, buff=0.25, aligned_edge=DOWN).move_to([4.5, -2.5, 0])
gpus = [gpu_1[0], gpu_2[0], gpu_3[0], gpu_4[0]]
self.add(gpu_1, gpu_2, gpu_3, gpu_4)
self.play(Create(gpu_1[0], run_time=1), Create(gpu_2[0], run_time=1), Create(gpu_3[0], run_time=1), Create(gpu_4[0], run_time=1), Create(dataset_recs, run_time=1), Create(sampler_1[0], run_time=1), Create(sampler_2[0], run_time=1), Create(sampler_3[0], run_time=1), Create(sampler_4[0], run_time=1))
first_animations = []
second_animations = []
colors = ['BLUE_E', 'DARK_BROWN', 'GOLD_E', 'GRAY_A']
current_color = colors[0]
buff = 0
lr_buff = 0.25
old_target = None
new_datasets = []
for (i, row_data) in enumerate(dataset_recs):
new_row = []
current_color = colors[i]
if i == 0:
idx = -3
elif i == 1:
idx = -2
elif i == 2:
idx = -1
elif i == 3:
idx = 0
for (j, indiv_data) in enumerate(row_data):
dataset_target = Rectangle(height=0.46 / 2, width=0.46 / 2).set_stroke(width=0.0).set_fill(current_color, opacity=0.7)
dataset_target.move_to(indiv_data)
dataset_target.generate_target()
aligned_edge = ORIGIN
if j % 8 == 0:
aligned_edge = LEFT
dataset_target.target.next_to(samplers[abs(idx)].get_corner(UP + LEFT), buff=0.02, direction=RIGHT + DOWN)
dataset_target.target.set_x(dataset_target.target.get_x())
elif j % 4 == 0:
old_target = dataset_target.target
dataset_target.target.next_to(samplers[abs(idx)].get_corner(UP + LEFT), buff=0.02, direction=RIGHT + DOWN)
dataset_target.target.set_x(dataset_target.target.get_x())
dataset_target.target.set_y(dataset_target.target.get_y() - 0.25)
else:
dataset_target.target.next_to(old_target, direction=RIGHT, buff=0.02)
old_target = dataset_target.target
new_row.append(dataset_target)
first_animations.append(indiv_data.animate(run_time=0.5).set_stroke(current_color))
second_animations.append(MoveToTarget(dataset_target, run_time=1.5))
new_datasets.append(new_row)
step_1 = MarkupText(f'Since we splice the dataset between each GPU,\nthe models weights can be averaged during `backward()`\nActing as though we did one giant epoch\nvery quickly.', font_size=18)
step_1.move_to([-2.5, -2, 0])
self.play(Write(step_1, run_time=3))
self.play(*first_animations)
self.play(*second_animations)
self.wait(duration=0.5)
move_animation = []
import random
for (i, row) in enumerate(new_datasets):
current_color = colors[i]
if i == 0:
idx = -3
elif i == 1:
idx = -2
elif i == 2:
idx = -1
elif i == 3:
idx = 0
for (j, indiv_data) in enumerate(row):
indiv_data.generate_target()
aligned_edge = ORIGIN
if j % 8 == 0:
aligned_edge = LEFT
indiv_data.target.next_to(gpus[abs(idx)].get_corner(UP + LEFT), buff=0.02, direction=RIGHT + DOWN)
indiv_data.target.set_x(indiv_data.target.get_x())
elif j % 4 == 0:
indiv_data.target.next_to(gpus[abs(idx)].get_corner(UP + LEFT), buff=0.02, direction=RIGHT + DOWN)
indiv_data.target.set_x(indiv_data.target.get_x())
indiv_data.target.set_y(indiv_data.target.get_y() - 0.25)
else:
indiv_data.target.next_to(old_target, direction=RIGHT, buff=0.02)
old_target = indiv_data.target
move_animation.append(MoveToTarget(indiv_data, run_time=1.5))
self.play(*move_animation)
self.wait()
# File: accelerate-main/manim_animations/dataloaders/stage_6.py
from manim import *
class Stage6(Scene):
def construct(self):
colors = ['BLUE_E', 'DARK_BROWN', 'GOLD_E', 'GRAY_A']
fill = Rectangle(height=0.46, width=0.46).set_stroke(width=0)
columns = [VGroup(*[Rectangle(height=0.25, width=0.25, color=colors[j]) for i in range(8)]).arrange(RIGHT, buff=0) for j in range(4)]
dataset_recs = VGroup(*columns).arrange(UP, buff=0)
dataset_text = Text('Dataset', font_size=24)
dataset = Group(dataset_recs, dataset_text).arrange(DOWN, buff=0.5, aligned_edge=DOWN)
dataset.move_to([-2, 0, 0])
self.add(dataset)
code = Code(code='# We enable this by default\naccelerator = Accelerator()\ndataloader = DataLoader(..., shuffle=True)\ndataloader = accelerator.prepare(dataloader)\nfor batch in dataloader:\n\t...', tab_width=4, background='window', language='Python', font='Monospace', font_size=14, corner_radius=0.2, insert_line_no=False, line_spacing=0.75, style=Code.styles_list[1])
code.move_to([-3.5, 2.5, 0])
self.add(code)
sampler_1 = Group(Rectangle(color='blue', height=1, width=1), Text('Sampler GPU 1', font_size=12)).arrange(DOWN, buff=0.25, aligned_edge=DOWN)
sampler_2 = Group(Rectangle(color='blue', height=1, width=1), Text('Sampler GPU 2', font_size=12)).arrange(DOWN, buff=0.25, aligned_edge=DOWN)
sampler_3 = Group(Rectangle(color='blue', height=1, width=1), Text('Sampler GPU 3', font_size=12)).arrange(DOWN, buff=0.25, aligned_edge=DOWN)
sampler_4 = Group(Rectangle(color='blue', height=1, width=1), Text('Sampler GPU 4', font_size=12)).arrange(DOWN, buff=0.25, aligned_edge=DOWN)
sampler_1.move_to([2, 2, 0])
sampler_2.move_to([2, 0.5, 0])
sampler_3.move_to([2, -1.0, 0])
sampler_4.move_to([2, -2.5, 0])
self.add(sampler_1, sampler_2, sampler_3, sampler_4)
samplers = [sampler_1[0], sampler_2[0], sampler_3[0], sampler_4[0]]
gpu_1 = Group(Rectangle(color='white', height=1, width=1), Text('Output GPU 1', font_size=12)).arrange(DOWN, buff=0.25, aligned_edge=DOWN).move_to([4.5, 2, 0])
gpu_2 = Group(Rectangle(color='white', height=1, width=1), Text('Output GPU 2', font_size=12)).arrange(DOWN, buff=0.25, aligned_edge=DOWN).move_to([4.5, 0.5, 0])
gpu_3 = Group(Rectangle(color='white', height=1, width=1), Text('Output GPU 3', font_size=12)).arrange(DOWN, buff=0.25, aligned_edge=DOWN).move_to([4.5, -1, 0])
gpu_4 = Group(Rectangle(color='white', height=1, width=1), Text('Output GPU 4', font_size=12)).arrange(DOWN, buff=0.25, aligned_edge=DOWN).move_to([4.5, -2.5, 0])
gpus = [gpu_1[0], gpu_2[0], gpu_3[0], gpu_4[0]]
self.add(gpu_1, gpu_2, gpu_3, gpu_4)
first_animations = []
second_animations = []
colors = ['BLUE_E', 'DARK_BROWN', 'GOLD_E', 'GRAY_A']
current_color = colors[0]
buff = 0
lr_buff = 0.25
old_target = None
new_datasets = []
for (i, row_data) in enumerate(dataset_recs):
new_row = []
current_color = colors[i]
if i == 0:
idx = -3
elif i == 1:
idx = -2
elif i == 2:
idx = -1
elif i == 3:
idx = 0
for (j, indiv_data) in enumerate(row_data):
dataset_target = Rectangle(height=0.46 / 2, width=0.46 / 2).set_stroke(width=0.0).set_fill(current_color, opacity=0.7)
dataset_target.move_to(indiv_data)
dataset_target.generate_target()
aligned_edge = ORIGIN
if j % 8 == 0:
aligned_edge = LEFT
old_target = dataset_target.target
dataset_target.target.next_to(samplers[abs(idx)].get_corner(UP + LEFT), buff=0.02, direction=RIGHT + DOWN)
dataset_target.target.set_x(dataset_target.target.get_x())
elif j % 4 == 0:
old_target = dataset_target.target
dataset_target.target.next_to(samplers[abs(idx)].get_corner(UP + LEFT), buff=0.02, direction=RIGHT + DOWN)
dataset_target.target.set_x(dataset_target.target.get_x())
dataset_target.target.set_y(dataset_target.target.get_y() - 0.25)
else:
dataset_target.target.next_to(old_target, direction=RIGHT, buff=0.02)
old_target = dataset_target.target
new_row.append(dataset_target)
first_animations.append(indiv_data.animate(run_time=0.5).set_stroke(current_color))
second_animations.append(MoveToTarget(dataset_target, run_time=1.5))
new_datasets.append(new_row)
step_1 = MarkupText(f"During shuffling, each mini-batch's\noutput order will be modified", font_size=18)
step_1.move_to([-1.5, -2, 0])
self.play(Write(step_1, run_time=3))
self.play(*first_animations)
self.play(*second_animations)
self.wait(duration=0.5)
move_animation = []
import random
for (i, row) in enumerate(new_datasets):
row = [row[k] for k in random.sample(range(8), 8)]
current_color = colors[i]
if i == 0:
idx = -3
elif i == 1:
idx = -2
elif i == 2:
idx = -1
elif i == 3:
idx = 0
for (j, indiv_data) in enumerate(row):
indiv_data.generate_target()
aligned_edge = ORIGIN
if j % 8 == 0:
aligned_edge = LEFT
indiv_data.target.next_to(gpus[abs(idx)].get_corner(UP + LEFT), buff=0.02, direction=RIGHT + DOWN)
indiv_data.target.set_x(indiv_data.target.get_x())
elif j % 4 == 0:
indiv_data.target.next_to(gpus[abs(idx)].get_corner(UP + LEFT), buff=0.02, direction=RIGHT + DOWN)
indiv_data.target.set_x(indiv_data.target.get_x())
indiv_data.target.set_y(indiv_data.target.get_y() - 0.25)
else:
indiv_data.target.next_to(old_target, direction=RIGHT, buff=0.02)
old_target = indiv_data.target
move_animation.append(MoveToTarget(indiv_data, run_time=1.5))
self.play(*move_animation)
self.wait()
# File: accelerate-main/manim_animations/dataloaders/stage_7.py
from manim import *
class Stage7(Scene):
def construct(self):
code = Code(code='accelerator = Accelerator(dispatch_batches=True)\ndataloader = DataLoader(...)\ndataloader = accelerator.prepare(dataloader)\nfor batch in dataloader:\n\t...', tab_width=4, background='window', language='Python', font='Monospace', font_size=14, corner_radius=0.2, insert_line_no=False, line_spacing=0.75, style=Code.styles_list[1])
code.move_to([-3.5, 2.5, 0])
self.add(code)
colors = ['BLUE_E', 'DARK_BROWN', 'GOLD_E', 'GRAY_A']
fill = Rectangle(height=0.46, width=0.46).set_stroke(width=0)
columns = [VGroup(*[Rectangle(height=0.25, width=0.25, color=colors[j]) for i in range(8)]).arrange(RIGHT, buff=0) for j in range(4)]
dataset_recs = VGroup(*columns).arrange(UP, buff=0)
dataset_text = Text('Dataset', font_size=24)
dataset = Group(dataset_recs, dataset_text).arrange(DOWN, buff=0.5, aligned_edge=DOWN)
dataset.move_to([-2, 0, 0])
self.add(dataset)
sampler_1 = Group(Rectangle(color='blue', height=1.02, width=1.02), Text('Sampler GPU 1', font_size=12)).arrange(DOWN, buff=0.25, aligned_edge=DOWN)
sampler_2 = Group(Rectangle(color='blue', height=1.02, width=1.02), Text('Sampler GPU 2', font_size=12)).arrange(DOWN, buff=0.25, aligned_edge=DOWN)
sampler_3 = Group(Rectangle(color='blue', height=1.02, width=1.02), Text('Sampler GPU 3', font_size=12)).arrange(DOWN, buff=0.25, aligned_edge=DOWN)
sampler_4 = Group(Rectangle(color='blue', height=1.02, width=1.02), Text('Sampler GPU 4', font_size=12)).arrange(DOWN, buff=0.25, aligned_edge=DOWN)
sampler_1.move_to([2, 2, 0])
sampler_2.move_to([2, 0.5, 0])
sampler_3.move_to([2, -1.0, 0])
sampler_4.move_to([2, -2.5, 0])
self.add(sampler_1, sampler_2, sampler_3, sampler_4)
samplers = [sampler_1[0], sampler_2[0], sampler_3[0], sampler_4[0]]
gpu_1 = Group(Rectangle(color='white', height=1.02, width=0.98), Text('Output GPU 1', font_size=12)).arrange(DOWN, buff=0.25, aligned_edge=DOWN).move_to([4.5, 2, 0])
gpu_2 = Group(Rectangle(color='white', height=1.02, width=0.98), Text('Output GPU 2', font_size=12)).arrange(DOWN, buff=0.25, aligned_edge=DOWN).move_to([4.5, 0.5, 0])
gpu_3 = Group(Rectangle(color='white', height=1.02, width=0.98), Text('Output GPU 3', font_size=12)).arrange(DOWN, buff=0.25, aligned_edge=DOWN).move_to([4.5, -1, 0])
gpu_4 = Group(Rectangle(color='white', height=1.02, width=0.98), Text('Output GPU 4', font_size=12)).arrange(DOWN, buff=0.25, aligned_edge=DOWN).move_to([4.5, -2.5, 0])
gpus = [gpu_1[0], gpu_2[0], gpu_3[0], gpu_4[0]]
self.add(gpu_1, gpu_2, gpu_3, gpu_4)
step_1 = MarkupText(f"When using a `DataLoaderDispatcher`, all\nof the samples are collected from GPU 0's dataset,\nthen divided and sent to each GPU.\nAs a result, this will be slower.", font_size=18)
step_1.move_to([-2.5, -2, 0])
self.play(Write(step_1, run_time=3.5))
first_animations = []
second_animations = []
colors = ['BLUE_E', 'DARK_BROWN', 'GOLD_E', 'GRAY_A']
current_color = colors[0]
ud_buff = 0.01
lr_buff = 0.01
old_target = None
new_datasets = []
for (i, row_data) in enumerate(dataset_recs):
new_row = []
current_color = colors[i]
for (j, indiv_data) in enumerate(row_data):
dataset_target = Rectangle(height=0.46 / 4, width=0.46 / 2).set_stroke(width=0.0).set_fill(current_color, opacity=0.7)
dataset_target.move_to(indiv_data)
dataset_target.generate_target()
aligned_edge = ORIGIN
if j % 8 == 0:
aligned_edge = LEFT
dataset_target.target.next_to(samplers[0].get_corner(DOWN + LEFT), buff=0.0125, direction=RIGHT + UP)
dataset_target.target.set_x(dataset_target.target.get_x())
dataset_target.target.set_y(dataset_target.target.get_y() + 0.25 * i)
elif j % 4 == 0:
old_target = dataset_target.target
dataset_target.target.next_to(samplers[0].get_corner(DOWN + LEFT), buff=0.0125, direction=RIGHT + UP)
dataset_target.target.set_x(dataset_target.target.get_x())
dataset_target.target.set_y(dataset_target.target.get_y() + 0.125 + 0.25 * i)
else:
dataset_target.target.next_to(old_target, direction=RIGHT, buff=0.0125)
old_target = dataset_target.target
new_row.append(dataset_target)
first_animations.append(indiv_data.animate(run_time=0.5).set_stroke(current_color))
second_animations.append(MoveToTarget(dataset_target, run_time=1.5))
new_datasets.append(new_row)
self.play(*first_animations)
self.play(*second_animations)
move_animation = []
for (i, row) in enumerate(new_datasets):
current_color = colors[i]
if i == 0:
idx = -3
elif i == 1:
idx = -2
elif i == 2:
idx = -1
elif i == 3:
idx = 0
for (j, indiv_data) in enumerate(row):
indiv_data.generate_target()
indiv_data.animate.stretch_to_fit_height(0.46 / 2)
aligned_edge = ORIGIN
if j % 8 == 0:
aligned_edge = LEFT
indiv_data.target.next_to(gpus[abs(idx)].get_corner(UP + LEFT), buff=0.01, direction=RIGHT + DOWN)
indiv_data.target.set_x(indiv_data.target.get_x())
indiv_data.target.set_y(indiv_data.target.get_y() - 0.25)
elif j % 4 == 0:
indiv_data.target.next_to(gpus[abs(idx)].get_corner(UP + LEFT), buff=0.01, direction=RIGHT + DOWN)
indiv_data.target.set_x(indiv_data.target.get_x())
else:
indiv_data.target.next_to(old_target, direction=RIGHT, buff=0.01)
old_target = indiv_data.target
move_animation.append(MoveToTarget(indiv_data, run_time=1.5))
self.play(*move_animation)
self.wait()
# File: accelerate-main/src/accelerate/__init__.py
__version__ = '0.35.0.dev0'
from .accelerator import Accelerator
from .big_modeling import cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch
from .data_loader import skip_first_batches
from .inference import prepare_pippy
from .launchers import debug_launcher, notebook_launcher
from .state import PartialState
from .utils import AutocastKwargs, DataLoaderConfiguration, DDPCommunicationHookType, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, ProfileKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states
if is_rich_available():
from .utils import rich
# File: accelerate-main/src/accelerate/accelerator.py
from __future__ import annotations
import contextlib
import functools
import json
import math
import os
import re
import shutil
import sys
import warnings
from collections import OrderedDict
from contextlib import contextmanager
from functools import partial
from types import MethodType
from typing import Any, Callable, Union
import torch
import torch.utils.hooks as hooks
from huggingface_hub import split_torch_state_dict_into_shards
from .checkpointing import load_accelerator_state, load_custom_state, save_accelerator_state, save_custom_state
from .data_loader import DataLoaderDispatcher, prepare_data_loader, skip_first_batches
from .hooks import AlignDevicesHook
from .logging import get_logger
from .optimizer import AcceleratedOptimizer
from .scheduler import AcceleratedScheduler
from .state import AcceleratorState, GradientState, PartialState
from .tracking import LOGGER_TYPE_TO_CLASS, GeneralTracker, filter_trackers
from .utils import MODEL_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SAFE_WEIGHTS_PATTERN_NAME, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, WEIGHTS_PATTERN_NAME, AutocastKwargs, DataLoaderConfiguration, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FP8RecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProfileKwargs, ProjectConfiguration, RNGType, TorchDynamoPlugin, apply_fp8_autowrap, check_os_kernel, clean_state_dict_for_safetensors, compare_versions, convert_model, convert_outputs_to_fp32, extract_model_from_parallel, gather, gather_object, get_mixed_precision_context_manager, get_pretty_name, is_bf16_available, is_deepspeed_available, is_ipex_available, is_lomo_available, is_megatron_lm_available, is_mlu_available, is_msamp_available, is_musa_available, is_npu_available, is_torch_version, is_torch_xla_available, is_transformer_engine_available, is_xpu_available, load_fsdp_model, load_fsdp_optimizer, pad_across_processes, parse_choice_from_env, recursively_apply, reduce, release_memory, save, save_fsdp_model, save_fsdp_optimizer, wait_for_everyone
from .utils.constants import FSDP_PYTORCH_VERSION, PROFILE_PATTERN_NAME
from .utils.modeling import get_state_dict_offloaded_model
from .utils.other import is_compiled_module
if is_deepspeed_available():
from .utils import DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler
if is_megatron_lm_available():
from .utils import MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, megatron_lm_initialize, megatron_lm_prepare_data_loader, megatron_lm_prepare_model_optimizer_scheduler
from torch.distributed.algorithms.join import Join
if is_torch_xla_available():
import torch_xla.amp as xamp
import torch_xla.core.xla_model as xm
import torch_xla.distributed.xla_multiprocessing as xmp
if is_npu_available(check_device=False):
import torch_npu
try:
from torch.optim.lr_scheduler import LRScheduler
except ImportError:
from torch.optim.lr_scheduler import _LRScheduler as LRScheduler
logger = get_logger(__name__)
_split_batches = object()
_dispatch_batches = object()
_even_batches = object()
_use_seedable_sampler = object()
class Accelerator:
def __init__(self, device_placement: bool=True, split_batches: bool=_split_batches, mixed_precision: PrecisionType | str | None=None, gradient_accumulation_steps: int=1, cpu: bool=False, dataloader_config: DataLoaderConfiguration | None=None, deepspeed_plugin: DeepSpeedPlugin | dict[str, DeepSpeedPlugin] | None=None, fsdp_plugin: FullyShardedDataParallelPlugin | None=None, megatron_lm_plugin: MegatronLMPlugin | None=None, rng_types: list[str | RNGType] | None=None, log_with: str | LoggerType | GeneralTracker | list[str | LoggerType | GeneralTracker] | None=None, project_dir: str | os.PathLike | None=None, project_config: ProjectConfiguration | None=None, gradient_accumulation_plugin: GradientAccumulationPlugin | None=None, step_scheduler_with_optimizer: bool=True, kwargs_handlers: list[KwargsHandler] | None=None, dynamo_backend: DynamoBackend | str | None=None, deepspeed_plugins: DeepSpeedPlugin | dict[str, DeepSpeedPlugin] | None=None):
self.trackers = []
if project_config is not None:
self.project_configuration = project_config
else:
self.project_configuration = ProjectConfiguration(project_dir=project_dir)
if project_dir is not None and self.project_dir is None:
self.project_configuration.set_directories(project_dir)
if mixed_precision is not None:
mixed_precision = str(mixed_precision)
if mixed_precision not in PrecisionType:
raise ValueError(f'Unknown mixed_precision mode: {mixed_precision}. Choose between {PrecisionType.list()}')
dynamo_plugin = TorchDynamoPlugin() if dynamo_backend is None else TorchDynamoPlugin(backend=dynamo_backend)
if deepspeed_plugins is not None and deepspeed_plugin is not None:
raise ValueError('You cannot pass in both `deepspeed_plugins` and `deepspeed_plugin`.')
elif deepspeed_plugin is not None:
deepspeed_plugins = deepspeed_plugin
if deepspeed_plugins is None:
if PartialState._shared_state != {} and PartialState().distributed_type == DistributedType.DEEPSPEED:
deepspeed_plugins = AcceleratorState().deepspeed_plugins
else:
deepspeed_plugins = DeepSpeedPlugin() if os.environ.get('ACCELERATE_USE_DEEPSPEED', 'false') == 'true' else None
else:
if PartialState().distributed_type == DistributedType.DEEPSPEED and AcceleratorState._shared_state != {} and (AcceleratorState().deepspeed_plugins is not None):
raise NotImplementedError('You cannot pass in a `deepspeed_plugin` when creating a second `Accelerator`. Please make sure the first `Accelerator` is initialized with all the plugins you want to use.')
if isinstance(deepspeed_plugins, dict):
for plugin in deepspeed_plugins.values():
if not isinstance(plugin, DeepSpeedPlugin):
raise TypeError('`deepspeed_plugin` must be a DeepSpeedPlugin object.')
if deepspeed_plugins is not None:
os.environ['ACCELERATE_USE_DEEPSPEED'] = 'true'
if not is_deepspeed_available():
raise ImportError('DeepSpeed is not installed => run `pip install deepspeed` or build it from source.')
if is_mlu_available():
if compare_versions('deepspeed-mlu', '<', '0.10.1'):
raise ImportError('DeepSpeed MLU version must be >= 0.10.1. Please update DeepSpeed MLU.')
elif is_musa_available():
if compare_versions('deepspeed', '>', '0.14.3'):
raise ImportError('DeepSpeed MUSA version must be <= 0.14.3. Please downgrade DeepSpeed.')
elif compare_versions('deepspeed', '<', '0.9.3'):
raise ImportError('DeepSpeed version must be >= 0.9.3. Please update DeepSpeed.')
mixed_precision = os.environ.get('ACCELERATE_MIXED_PRECISION', 'no') if mixed_precision is None else mixed_precision
if not isinstance(deepspeed_plugins, dict):
deepspeed_plugins.set_mixed_precision(mixed_precision)
deepspeed_plugins.select(_from_accelerator_state=True)
else:
for plugin in deepspeed_plugins.values():
plugin.set_mixed_precision(mixed_precision)
first_plugin = next(iter(deepspeed_plugins.values()))
first_plugin.select(_from_accelerator_state=True)
self.deepspeed_engine_wrapped = None
if os.environ.get('ACCELERATE_USE_FSDP', 'false') == 'true' or isinstance(fsdp_plugin, FullyShardedDataParallelPlugin):
if not is_torch_version('>=', FSDP_PYTORCH_VERSION):
raise ValueError(f'FSDP requires PyTorch >= {FSDP_PYTORCH_VERSION}')
if fsdp_plugin is None:
fsdp_plugin = FullyShardedDataParallelPlugin() if os.environ.get('ACCELERATE_USE_FSDP', 'false') == 'true' else None
else:
if not isinstance(fsdp_plugin, FullyShardedDataParallelPlugin):
raise TypeError('`fsdp_plugin` must be a FullyShardedDataParallelPlugin object.')
os.environ['ACCELERATE_USE_FSDP'] = 'true'
if megatron_lm_plugin is None:
megatron_lm_plugin = MegatronLMPlugin() if os.environ.get('ACCELERATE_USE_MEGATRON_LM', 'false') == 'true' else None
else:
if not isinstance(megatron_lm_plugin, MegatronLMPlugin):
raise TypeError('`megatron_lm_plugin` must be a MegatronLMPlugin object.')
os.environ['ACCELERATE_USE_MEGATRON_LM'] = 'true'
if megatron_lm_plugin:
if not is_megatron_lm_available():
raise ImportError('Megatron is not installed. please build it from source.')
self.ddp_handler = None
self.scaler_handler = None
self.init_handler = None
self.fp8_recipe_handler = None
self.autocast_handler = None
self.profile_handler = None
self.has_lomo_optimizer = False
if kwargs_handlers is not None:
for handler in kwargs_handlers:
assert isinstance(handler, KwargsHandler), f'Unsupported kwargs handler passed: {handler}, must be one that inherits `accelerate.utils.KwargsHandler`.'
if isinstance(handler, DistributedDataParallelKwargs):
if self.ddp_handler is not None:
raise ValueError('You can only pass one `DistributedDataParallelKwargs` in `kwargs_handler`.')
else:
self.ddp_handler = handler
elif isinstance(handler, GradScalerKwargs):
if self.scaler_handler is not None:
raise ValueError('You can only pass one `GradScalerKwargs` in `kwargs_handler`.')
else:
self.scaler_handler = handler
elif isinstance(handler, InitProcessGroupKwargs):
if self.init_handler is not None:
raise ValueError('You can only pass one `InitProcessGroupKwargs` in `kwargs_handler`.')
else:
self.init_handler = handler
elif isinstance(handler, FP8RecipeKwargs):
if self.fp8_recipe_handler is not None:
raise ValueError('You can only pass one `FP8RecipeKwargs` in `kwargs_handler`.')
else:
self.fp8_recipe_handler = handler
elif isinstance(handler, AutocastKwargs):
if self.autocast_handler is not None:
raise ValueError('You can only pass one `AutocastKwargs` in `kwargs_handler`.')
else:
self.autocast_handler = handler
elif isinstance(handler, ProfileKwargs):
if self.profile_handler is not None:
raise ValueError('You can only pass one `ProfileKwargs` in `kwargs_handler`.')
else:
self.profile_handler = handler
kwargs = self.init_handler.to_kwargs() if self.init_handler is not None else {}
self.state = AcceleratorState(mixed_precision=mixed_precision, cpu=cpu, dynamo_plugin=dynamo_plugin, deepspeed_plugin=deepspeed_plugins, fsdp_plugin=fsdp_plugin, megatron_lm_plugin=megatron_lm_plugin, _from_accelerator=True, **kwargs)
if self.state.mixed_precision == 'fp8' and self.fp8_recipe_handler is None:
self.fp8_recipe_handler = FP8RecipeKwargs()
self.delayed_fp8_autocast = False
if self.fp8_recipe_handler is not None:
if self.state.mixed_precision != 'fp8' and self.distributed_type not in (DistributedType.FSDP, DistributedType.DEEPSPEED):
raise ValueError("Passing in a `FP8RecipeKwargs` object requires setting `mixed_precision='fp8'`.")
self.delayed_fp8_autocast = self.fp8_recipe_handler.backend == 'TE' and self.distributed_type in (DistributedType.MULTI_GPU, DistributedType.FSDP)
trackers = filter_trackers(log_with, self.logging_dir)
if len(trackers) < 1 and log_with is not None:
warnings.warn(f'`log_with={log_with}` was passed but no supported trackers are currently installed.')
self.log_with = trackers
if mixed_precision != 'bf16' and getattr(self.state, 'downcast_bfloat', False) and (self.state.distributedType != DistributedType.XLA):
raise ValueError("Can only use `downcast_bf16` when using `mixed_precision='bf16'` and on a TPU")
if gradient_accumulation_plugin is not None:
if gradient_accumulation_steps != 1:
raise ValueError('You can only pass one of `gradient_accumulation_steps` and `gradient_accumulation_plugin`. Please only pass in the created `GradientAccumulationPlugin` object.')
else:
gradient_accumulation_steps = int(parse_choice_from_env('ACCELERATE_GRADIENT_ACCUMULATION_STEPS', gradient_accumulation_steps))
gradient_accumulation_plugin = GradientAccumulationPlugin(num_steps=gradient_accumulation_steps)
self.gradient_state = GradientState(gradient_accumulation_plugin=gradient_accumulation_plugin)
self.device_placement = device_placement
if dataloader_config is None:
dataloader_config = DataLoaderConfiguration()
self.dataloader_config = dataloader_config
self.step_scheduler_with_optimizer = step_scheduler_with_optimizer
self.scaler = None
self.native_amp = False
if self.state.mixed_precision == 'fp16' and self.device.type != 'cpu' and (self.distributed_type not in (DistributedType.DEEPSPEED, DistributedType.MEGATRON_LM)):
self.native_amp = True
if self.device.type not in ('xpu', 'cuda', 'npu', 'xla', 'mlu', 'musa') or is_torch_xla_available(check_is_tpu=True):
raise ValueError(f'fp16 mixed precision requires a GPU (not {self.device.type!r}).')
kwargs = self.scaler_handler.to_kwargs() if self.scaler_handler is not None else {}
if self.distributed_type == DistributedType.FSDP:
from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler
self.scaler = ShardedGradScaler(**kwargs)
elif is_torch_xla_available(check_is_gpu=True):
self.scaler = xamp.GradScaler(**kwargs)
elif is_mlu_available():
self.scaler = torch.mlu.amp.GradScaler(**kwargs)
elif is_musa_available():
self.scalar = torch.musa.amp.GradScaler(**kwargs)
elif is_npu_available():
self.scaler = torch.npu.amp.GradScaler(**kwargs)
elif is_xpu_available():
self.scaler = torch.amp.GradScaler('xpu', **kwargs)
else:
self.scaler = torch.cuda.amp.GradScaler(**kwargs)
elif self.state.mixed_precision == 'bf16' and self.distributed_type not in (DistributedType.DEEPSPEED, DistributedType.MEGATRON_LM):
if self.device.type in ['cpu', 'xpu']:
self.native_amp = True
else:
self.native_amp = is_bf16_available(True)
if mixed_precision == 'bf16' and (not self.native_amp) and (not is_torch_xla_available()):
raise ValueError('bf16 mixed precision requires PyTorch >= 1.10 and a supported device.')
elif self.state.mixed_precision == 'fp8':
self.native_amp = True
if self.fp8_backend == 'MSAMP':
if self.distributed_type == DistributedType.FSDP:
raise NotImplementedError('`accelerate` + `MS-AMP` + `FSDP` is not supported at this time. Please consider using deepspeed, which is supported.')
elif self.distributed_type != DistributedType.DEEPSPEED:
self.scaler = torch.cuda.amp.GradScaler()
self.step = 0
self._optimizers = []
self._models = []
self._schedulers = []
self._dataloaders = []
self._custom_objects = []
self._load_model_state_pre_hook = OrderedDict()
self._save_model_state_pre_hook = OrderedDict()
self.rng_types = rng_types
if self.rng_types is None:
self.rng_types = ['generator']
self.flag_tensor = None
check_os_kernel()
@property
def deepspeed_plugin(self):
return self.state.deepspeed_plugin
@property
def use_distributed(self):
return self.state.use_distributed
@property
def distributed_type(self):
return self.state.distributed_type
@property
def num_processes(self):
return self.state.num_processes
@property
def process_index(self):
return self.state.process_index
@property
def local_process_index(self):
return self.state.local_process_index
@property
def device(self):
return self.state.device
@property
def split_batches(self):
return self.dataloader_config.split_batches
@property
def dispatch_batches(self):
return self.dataloader_config.dispatch_batches
@property
def even_batches(self):
return self.dataloader_config.even_batches
@even_batches.setter
def even_batches(self, value: bool):
self.dataloader_config.even_batches = value
@property
def use_seedable_sampler(self):
return self.dataloader_config.use_seedable_sampler
@property
def non_blocking(self):
return self.dataloader_config.non_blocking
@property
def use_stateful_dataloader(self):
if hasattr(self.dataloader_config, 'use_stateful_dataloader'):
return self.dataloader_config.use_stateful_dataloader
return False
@property
def project_dir(self):
return self.project_configuration.project_dir
@property
def logging_dir(self):
return self.project_configuration.logging_dir
@property
def save_iteration(self):
return self.project_configuration.iteration
@property
def is_main_process(self):
return self.state.is_main_process
@property
def is_local_main_process(self):
return self.state.is_local_main_process
@property
def is_last_process(self):
return self.process_index == self.num_processes - 1
@property
def mixed_precision(self):
return self.state.mixed_precision
@contextmanager
def split_between_processes(self, inputs: list | tuple | dict | torch.Tensor, apply_padding: bool=False):
with PartialState().split_between_processes(inputs, apply_padding=apply_padding) as inputs:
yield inputs
def on_main_process(self, function: Callable[..., Any]=None):
if function is None:
if 'Accelerator.' in self.__qualname__:
function = self
else:
raise ValueError('The `on_main_process` decorator must be called with a function on an instantiated `Accelerator` object.')
def _inner(*args, **kwargs):
return PartialState().on_main_process(function)(*args, **kwargs)
return _inner
def on_local_main_process(self, function: Callable[..., Any]=None):
if function is None:
if 'Accelerator.' in self.__qualname__:
function = self
else:
raise ValueError('The `on_local_main_process` decorator must be called with a function on an instantiated `Accelerator` object.')
def _inner(*args, **kwargs):
return PartialState().on_local_main_process(function)(*args, **kwargs)
return _inner
def on_last_process(self, function: Callable[..., Any]):
if function is None:
if 'Accelerator.' in self.__qualname__:
function = self
else:
raise ValueError('The `on_last_process` decorator must be called with a function on an instantiated `Accelerator` object.')
def _inner(*args, **kwargs):
return PartialState().on_last_process(function)(*args, **kwargs)
return _inner
def on_process(self, function: Callable[..., Any]=None, process_index: int=None):
if self is not None and process_index is not None and (function is None):
return partial(self.on_process, process_index=process_index)
if function is None:
if 'Accelerator.' in self.__qualname__:
function = self
else:
raise ValueError('The `on_main_process` decorator must be called with a function on an instantiated `Accelerator` object.')
def _inner(*args, **kwargs):
return PartialState().on_process(function, process_index)(*args, **kwargs)
return _inner
def on_local_process(self, function: Callable[..., Any]=None, local_process_index: int=None):
if self is not None and local_process_index is not None and (function is None):
return partial(self.on_local_process, local_process_index=local_process_index)
if function is None:
if 'Accelerator.' in self.__qualname__:
function = self
else:
raise ValueError('The `on_main_process` decorator must be called with a function on an instantiated `Accelerator` object.')
def _inner(*args, **kwargs):
return PartialState().on_local_process(function, local_process_index)(*args, **kwargs)
return _inner
@contextmanager
def main_process_first(self):
with self.state.main_process_first():
yield
@contextmanager
def local_main_process_first(self):
with self.state.local_main_process_first():
yield
@contextmanager
def no_sync(self, model):
context = contextlib.nullcontext
if self.use_distributed:
context = getattr(model, 'no_sync', context)
with context():
yield
@staticmethod
@contextmanager
def trigger_sync_in_backward(model):
if not isinstance(model, torch.nn.parallel.DistributedDataParallel):
yield
return
old_require_backward_grad_sync = model.require_backward_grad_sync
old_require_forward_param_sync = model.require_forward_param_sync
model.require_backward_grad_sync = True
model.require_forward_param_sync = True
model.reducer.prepare_for_backward([])
try:
yield
finally:
model.require_backward_grad_sync = old_require_backward_grad_sync
model.require_forward_param_sync = old_require_forward_param_sync
def _do_sync(self):
if self.gradient_state.sync_with_dataloader and self.gradient_state.end_of_dataloader:
self.step = 0
self.gradient_state._set_sync_gradients(True)
else:
self.step += 1
self.gradient_state._set_sync_gradients(self.step % self.gradient_state.num_steps == 0)
@property
def sync_gradients(self):
return self.gradient_state.sync_gradients
@sync_gradients.setter
def sync_gradients(self, sync_gradients):
self.gradient_state.sync_gradients = sync_gradients
@property
def gradient_accumulation_steps(self):
return self.gradient_state.num_steps
@gradient_accumulation_steps.setter
def gradient_accumulation_steps(self, gradient_accumulation_steps):
self.gradient_state.plugin_kwargs.update({'num_steps': gradient_accumulation_steps})
@contextmanager
def accumulate(self, *models):
self._do_sync()
allow_gradient_sync = self.sync_gradients or (self.use_distributed and self.gradient_state.plugin_kwargs.get('sync_each_batch', False))
with contextlib.ExitStack() as cm_stack:
for m in models:
cm_stack.enter_context(contextlib.nullcontext() if allow_gradient_sync else self.no_sync(m))
yield
@contextmanager
def join_uneven_inputs(self, joinables, even_batches=None):
if self.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_NPU, DistributedType.MULTI_MLU, DistributedType.MULTI_MUSA, DistributedType.MULTI_XPU):
dl_even_batches_values = []
if even_batches is not None:
iterable_dl_seen = False
for (dl_idx, dl) in enumerate(self._dataloaders):
if isinstance(dl, DataLoaderDispatcher):
iterable_dl_seen = True
continue
dl_even_batches_values.append((dl_idx, dl.batch_sampler.even_batches))
dl.batch_sampler.even_batches = even_batches
if iterable_dl_seen:
warnings.warn('Overridding even_batches is only supported for map-style datasets, yet some dataloaders given were iterable')
else:
even_batches = self.even_batches
enable_join = False if even_batches else True
try:
with Join(joinables, enable=enable_join, throw_on_early_termination=False):
yield
finally:
for (dl_idx, even_batches_value) in dl_even_batches_values:
self._dataloaders[dl_idx].batch_sampler.even_batches = even_batches_value
else:
if self.distributed_type != DistributedType.NO:
warnings.warn('Joining uneven inputs is only supported for multi-GPU training, as a result `join_uneven_inputs` will have no effect.')
with contextlib.nullcontext(joinables):
yield
def print(self, *args, **kwargs):
self.state.print(*args, **kwargs)
def _prepare_one(self, obj, first_pass=False, device_placement=None):
if first_pass:
if isinstance(obj, torch.utils.data.DataLoader):
return self.prepare_data_loader(obj, device_placement=device_placement)
elif isinstance(obj, torch.nn.Module):
return self.prepare_model(obj, device_placement=device_placement)
elif isinstance(obj, torch.optim.Optimizer):
optimizer = self.prepare_optimizer(obj, device_placement=device_placement)
return optimizer
elif isinstance(obj, LRScheduler):
scheduler = self.prepare_scheduler(obj)
return scheduler
return obj
def prepare(self, *args, device_placement=None):
if device_placement is None:
device_placement = [None for _ in args]
elif self.distributed_type in (DistributedType.DEEPSPEED, DistributedType.MEGATRON_LM):
raise ValueError("You can't customize device placements with DeepSpeed or Megatron-LM.")
elif len(device_placement) != len(args):
raise ValueError(f'`device_placement` should be a list with {len(args)} elements (the number of objects passed).')
for obj in args:
if isinstance(obj, torch.nn.Module) and self.verify_device_map(obj) and (self.distributed_type != DistributedType.NO) and (os.environ.get('ACCELERATE_BYPASS_DEVICE_MAP', 'false') != 'true'):
raise ValueError("You can't train a model that has been loaded with `device_map='auto'` in any distributed mode. Please rerun your script specifying `--num_processes=1` or by launching with `python {{myscript.py}}`.")
if self.distributed_type == DistributedType.DEEPSPEED:
model_count = 0
for obj in args:
if isinstance(obj, torch.nn.Module):
model_count += 1
if model_count > 1:
raise AssertionError("You can't use same `Accelerator()` instance with multiple models when using DeepSpeed")
if self.distributed_type == DistributedType.XLA:
(model_device, optimizer_device) = self._get_devices()
if model_device is not None and optimizer_device is not None and (model_device != optimizer_device):
raise ValueError('The model and the optimizer parameters are not on the same device, which probably means you created an optimizer around your model **before** putting on the device. Make sure the line model.to(device) is before the optimizer creation in your script or remove it entirely and use the flag default value for `device_placement` in your `Accelerator` to let it handle that part for you.')
tpu_should_fix_optimizer = self.device_placement and self.distributed_type == DistributedType.XLA
if tpu_should_fix_optimizer:
old_named_params = self._get_named_parameters(*args)
if self.distributed_type in [DistributedType.MULTI_CPU, DistributedType.MULTI_XPU, DistributedType.NO]:
if self.device.type == 'cpu' and self.state.use_ipex:
args = self._prepare_ipex_or_xpu(*args)
elif self.device.type == 'xpu' and is_xpu_available():
args = self._prepare_ipex_or_xpu(*args)
if self.fp8_backend == 'TE':
args = self._prepare_te(*args)
if self.distributed_type == DistributedType.DEEPSPEED:
result = self._prepare_deepspeed(*args)
elif self.distributed_type == DistributedType.MEGATRON_LM:
result = self._prepare_megatron_lm(*args)
else:
if self.fp8_backend == 'MSAMP':
(args, device_placement) = self._prepare_msamp(*args, device_placement=device_placement)
result = tuple((self._prepare_one(obj, first_pass=True, device_placement=d) for (obj, d) in zip(args, device_placement)))
result = tuple((self._prepare_one(obj, device_placement=d) for (obj, d) in zip(result, device_placement)))
if tpu_should_fix_optimizer:
new_named_params = self._get_named_parameters(*result)
mapping = {p: new_named_params[n] for (n, p) in old_named_params.items()}
for obj in result:
if isinstance(obj, torch.optim.Optimizer):
obj._switch_parameters(mapping)
for item in result:
if any((item in container for container in (self._dataloaders, self._models, self._optimizers, self._schedulers))):
item._is_accelerate_prepared = True
return result if len(result) > 1 else result[0]
def prepare_model(self, model: torch.nn.Module, device_placement: bool=None, evaluation_mode: bool=False):
if device_placement is None:
device_placement = self.device_placement and self.distributed_type != DistributedType.FSDP
self._models.append(model)
if self.verify_device_map(model) and self.distributed_type != DistributedType.NO and (os.environ.get('ACCELERATE_BYPASS_DEVICE_MAP', 'false') != 'true'):
raise ValueError("You can't train a model that has been loaded with `device_map='auto'` in any distributed mode. Please rerun your script specifying `--num_processes=1` or by launching with `python {{myscript.py}}`.")
if self.native_amp:
model._original_forward = model.forward
autocast_context = get_mixed_precision_context_manager(self.native_amp, self.autocast_handler)
if self.fp8_backend == 'MSAMP' or not hasattr(model.forward, '__func__'):
model_forward_func = model.forward
model.forward = convert_outputs_to_fp32(autocast_context(model_forward_func))
else:
model_forward_func = model.forward.__func__
new_forward = autocast_context(model_forward_func)
model.forward = MethodType(new_forward, model)
model.forward = MethodType(convert_outputs_to_fp32(model.forward.__func__), model)
if self.fp8_backend == 'TE' and (not self.delayed_fp8_autocast):
model = apply_fp8_autowrap(model, self.fp8_recipe_handler)
if (getattr(model, 'is_loaded_in_8bit', False) or getattr(model, 'is_loaded_in_4bit', False)) and getattr(model, 'hf_device_map', False):
model_devices = set(model.hf_device_map.values())
if len(model_devices) > 1 and self.distributed_type != DistributedType.NO:
raise ValueError("You can't train a model that has been loaded in 8-bit precision on multiple devices in any distributed mode. In order to use 8-bit models that have been loaded across multiple GPUs the solution is to use Naive Pipeline Parallelism. Therefore you should not specify that you are under any distributed regime in your accelerate config.")
elif len(model_devices) == 1:
current_device = list(model_devices)[0]
current_device_index = current_device.index if isinstance(current_device, torch.device) else current_device
if torch.device(current_device_index) != self.device:
if self.device.index is not None or current_device_index != 0:
raise ValueError("You can't train a model that has been loaded in 8-bit precision on a different device than the one you're training on. Make sure you loaded the model on the correct device using for example `device_map={'':torch.cuda.current_device()}` or `device_map={'':torch.xpu.current_device()}`")
if 'cpu' in model_devices or 'disk' in model_devices:
raise ValueError("You can't train a model that has been loaded in 8-bit precision with CPU or disk offload.")
elif device_placement and (not self.verify_device_map(model)):
model = model.to(self.device)
if not evaluation_mode:
if self.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_MLU, DistributedType.MULTI_MUSA, DistributedType.MULTI_NPU, DistributedType.MULTI_XPU):
if any((p.requires_grad for p in model.parameters())):
kwargs = self.ddp_handler.to_kwargs() if self.ddp_handler is not None else {}
if os.environ.get('ACCELERATE_BYPASS_DEVICE_MAP', 'false') != 'true':
(device_ids, output_device) = ([self.local_process_index], self.local_process_index)
else:
(device_ids, output_device) = (None, None)
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=device_ids, output_device=output_device, **kwargs)
if self.ddp_handler is not None:
self.ddp_handler.register_comm_hook(model)
elif self.distributed_type == DistributedType.FSDP:
from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP
is_type_fsdp = isinstance(model, FSDP) or (is_compiled_module(model) and isinstance(model._orig_mod, FSDP))
if not is_type_fsdp:
self.state.fsdp_plugin.set_auto_wrap_policy(model)
fsdp_plugin = self.state.fsdp_plugin
kwargs = {'sharding_strategy': fsdp_plugin.sharding_strategy, 'cpu_offload': fsdp_plugin.cpu_offload, 'auto_wrap_policy': fsdp_plugin.auto_wrap_policy, 'mixed_precision': fsdp_plugin.mixed_precision_policy, 'sync_module_states': fsdp_plugin.sync_module_states, 'backward_prefetch': fsdp_plugin.backward_prefetch, 'forward_prefetch': fsdp_plugin.forward_prefetch, 'use_orig_params': fsdp_plugin.use_orig_params, 'param_init_fn': fsdp_plugin.param_init_fn, 'ignored_modules': fsdp_plugin.ignored_modules, 'limit_all_gathers': fsdp_plugin.limit_all_gathers, 'device_id': self.device}
model = FSDP(model, **kwargs)
if fsdp_plugin.activation_checkpointing:
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import CheckpointImpl, apply_activation_checkpointing, checkpoint_wrapper
apply_activation_checkpointing(model, checkpoint_wrapper_fn=functools.partial(checkpoint_wrapper, checkpoint_impl=CheckpointImpl.NO_REENTRANT), auto_wrap_policy=fsdp_plugin.auto_wrap_policy)
if self.mixed_precision != 'no':
upcasted_log = []
for module in FSDP.fsdp_modules(model):
if not module._has_params:
continue
param = module._flat_param
if param.dtype != torch.float32 and param.device != torch.device('meta') and param.requires_grad:
name_param_log = (module.module.__class__.__name__, ', '.join(module._flat_param._fqns))
if name_param_log not in upcasted_log:
upcasted_log.append(name_param_log)
param.data = param.data.to(torch.float32)
module._handle._orig_param_dtype = torch.float32
if self.is_main_process:
for (name_log, param_log) in upcasted_log:
warnings.warn(f'Upcasted low precision parameters in {name_log} because mixed precision turned on in FSDP. Affects: {param_log}.')
if len(upcasted_log) > 0:
warnings.warn('FSDP upcast of low precision parameters may affect the precision of model checkpoints.')
if len(self._models) > 1 and self._models[-2] is self._models[-1]:
del self._models[-2]
self._models[-1] = model
elif self.distributed_type == DistributedType.MULTI_CPU:
kwargs = self.ddp_handler.to_kwargs() if self.ddp_handler is not None else {}
model = torch.nn.parallel.DistributedDataParallel(model, **kwargs)
if self.ddp_handler is not None:
self.ddp_handler.register_comm_hook(model)
elif self.distributed_type == DistributedType.XLA and self.state.fork_launched:
model = xmp.MpModelWrapper(model).to(self.device)
if self.delayed_fp8_autocast:
model = apply_fp8_autowrap(model, self.fp8_recipe_handler)
if self.state.dynamo_plugin.backend != DynamoBackend.NO and (not is_compiled_module(model)):
if not is_torch_version('>=', '2.0'):
raise ValueError('Using `torch.compile` requires PyTorch 2.0 or higher.')
model = torch.compile(model, **self.state.dynamo_plugin.to_kwargs())
return model
def _prepare_te(self, *args):
if not is_transformer_engine_available():
raise ImportError('`transformer_engine` was not found on your system. Please ensure that `transformer_engine` is installed')
(model, optimizer) = (None, None)
(num_models, num_optimizers) = (0, 0)
result = [obj for obj in args]
for obj in result:
if isinstance(obj, torch.nn.Module):
model = obj
num_models += 1
elif isinstance(obj, torch.optim.Optimizer):
optimizer = obj
num_optimizers += 1
if optimizer is None and model is None:
return result
elif optimizer is None or model is None:
raise ValueError('You must pass a model and an optimizer together to `accelerate.prepare()` when using TransformerEngine.')
elif num_models > 1 or num_optimizers > 1:
raise ValueError(f"You can't use multiple models ({num_models}) or optimizers {num_optimizers} with TransformerEngine.")
old_named_params = self._get_named_parameters(model)
with torch.no_grad():
convert_model(model)
new_named_params = self._get_named_parameters(model)
mapping = {p: new_named_params[n] for (n, p) in old_named_params.items()}
for param_group in optimizer.param_groups:
param_group['params'] = [mapping[p] for p in param_group['params']]
return result
def _prepare_deepspeed(self, *args):
import deepspeed
ds_initialize = deepspeed.initialize
if self.fp8_backend == 'MSAMP':
from msamp import deepspeed as msamp_deepspeed
ds_initialize = msamp_deepspeed.initialize
deepspeed_plugin = self.deepspeed_plugin
is_dataloader_present = any((isinstance(obj, torch.utils.data.DataLoader) for obj in args))
result = [self._prepare_one(obj, first_pass=True) if isinstance(obj, torch.utils.data.DataLoader) else obj for obj in args]
if deepspeed_plugin.is_auto('train_micro_batch_size_per_gpu'):
if is_dataloader_present:
batch_sizes = [obj.batch_size for obj in args if hasattr(obj, 'batch_size')]
if any((bs is None for bs in batch_sizes)):
raise ValueError("At least one of the dataloaders passed to `accelerate.prepare()` has `None` as batch size. Please set an integer value in `train_micro_batch_size_per_gpu` in the deepspeed config file or assign integer value to `AcceleratorState().deepspeed_plugin.deepspeed_config['train_micro_batch_size_per_gpu']`.")
if self.split_batches:
batch_sizes = [batch_size // self.num_processes for batch_size in batch_sizes]
batch_size_per_device = min(batch_sizes) if deepspeed_plugin.is_train_batch_min else max(batch_sizes)
if len(batch_sizes) > 1:
logger.info(f'Since you passed both train and evaluation dataloader, `is_train_batch_min` (here {deepspeed_plugin.is_train_batch_min} will decide the `train_batch_size` ({batch_size_per_device}).')
else:
raise ValueError("When using DeepSpeed, `accelerate.prepare()` requires you to pass at least one of training or evaluation dataloaders with `batch_size` attribute returning an integer value or alternatively set an integer value in `train_micro_batch_size_per_gpu` in the deepspeed config file or assign integer value to `AcceleratorState().deepspeed_plugin.deepspeed_config['train_micro_batch_size_per_gpu']`.")
else:
batch_size_per_device = deepspeed_plugin.get_value('train_micro_batch_size_per_gpu')
deepspeed_plugin.fill_match('gradient_accumulation_steps', must_match=False, gradient_accumulation_steps=self.gradient_accumulation_steps)
config_kwargs = {'gradient_clipping': 1.0, 'zero_optimization.stage3_gather_16bit_weights_on_model_save': False}
if batch_size_per_device is not None:
config_kwargs['train_micro_batch_size_per_gpu'] = batch_size_per_device
config_kwargs['train_batch_size'] = batch_size_per_device * deepspeed_plugin.get_value('gradient_accumulation_steps') * self.num_processes
model = None
optimizer = None
scheduler = None
for obj in result:
if isinstance(obj, torch.nn.Module):
model = obj
elif isinstance(obj, (torch.optim.Optimizer, DummyOptim)):
optimizer = obj
elif isinstance(obj, (LRScheduler, DummyScheduler)) or type(obj).__name__ in deepspeed.runtime.lr_schedules.VALID_LR_SCHEDULES:
scheduler = obj
if optimizer is not None:
if 'optimizer' in deepspeed_plugin.deepspeed_config and (not isinstance(optimizer, DummyOptim)):
raise ValueError('You cannot specify an optimizer in the config file and in the code at the same time. Please remove the optimizer from the config file or create `accelerate.utils.DummyOptim` in the code.')
elif 'optimizer' not in deepspeed_plugin.deepspeed_config and isinstance(optimizer, DummyOptim):
raise ValueError('You cannot create a `DummyOptim` without specifying an optimizer in the config file.')
if isinstance(optimizer, torch.optim.Optimizer):
deepspeed_plugin.deepspeed_config['zero_allow_untested_optimizer'] = True
if scheduler is not None:
if 'scheduler' in deepspeed_plugin.deepspeed_config and (not isinstance(scheduler, DummyScheduler)):
raise ValueError('You cannot specify a scheduler in the config file and in the code at the same time. Please remove the scheduler from the config file or create `accelerate.utils.DummyScheduler` in the code.')
elif 'scheduler' not in deepspeed_plugin.deepspeed_config and isinstance(scheduler, DummyScheduler) and (scheduler.lr_scheduler_callable is None):
raise ValueError('Either specify a scheduler in the config file or pass in the `lr_scheduler_callable` parameter when using `accelerate.utils.DummyScheduler`.')
if optimizer is not None and scheduler is not None:
if isinstance(optimizer, DummyOptim) and (not isinstance(scheduler, DummyScheduler)):
raise ValueError('You can only specify `accelerate.utils.DummyScheduler` in the code when using `accelerate.utils.DummyOptim`.')
if model is not None:
if getattr(self.fp8_recipe_handler, 'backend', None) == 'TE':
model = apply_fp8_autowrap(model, self.fp8_recipe_handler)
deepspeed_plugin.set_moe_leaf_modules(model)
hidden_size_based_keys = ['zero_optimization.reduce_bucket_size', 'zero_optimization.stage3_prefetch_bucket_size', 'zero_optimization.stage3_param_persistence_threshold']
hidden_size_auto_keys = [x for x in hidden_size_based_keys if deepspeed_plugin.is_auto(x)]
if len(hidden_size_auto_keys) > 0:
reasoning = "therefore it's not possible to automatically fill out the following `auto` entries " + f'in the DeepSpeed config file: {hidden_size_auto_keys}. You can fix that by replacing ' + '`auto` values for these keys with an integer value of your choice.'
if not hasattr(model, 'config'):
raise ValueError("Can't find `model.config` entry, " + reasoning)
if hasattr(model.config, 'hidden_size'):
hidden_size = model.config.hidden_size
elif hasattr(model.config, 'hidden_sizes'):
hidden_size = max(model.config.hidden_sizes)
else:
raise ValueError('Can find neither `model.config.hidden_size` nor `model.config.hidden_sizes`, ' + reasoning)
config_kwargs.update({'zero_optimization.reduce_bucket_size': hidden_size * hidden_size, 'zero_optimization.stage3_prefetch_bucket_size': int(0.9 * hidden_size * hidden_size), 'zero_optimization.stage3_param_persistence_threshold': 10 * hidden_size})
if isinstance(optimizer, DummyOptim):
config_kwargs.update({'optimizer.params.lr': optimizer.lr, 'optimizer.params.weight_decay': optimizer.weight_decay})
if isinstance(scheduler, DummyScheduler) and scheduler.lr_scheduler_callable is None:
max_lr = getattr(scheduler.optimizer, 'lr', None) if getattr(scheduler.optimizer, 'defaults', None) is None else scheduler.optimizer.defaults['lr']
config_kwargs.update({'scheduler.params.warmup_min_lr': 0, 'scheduler.params.warmup_max_lr': max_lr, 'scheduler.params.warmup_num_steps': scheduler.warmup_num_steps})
if scheduler.total_num_steps is not None:
config_kwargs['scheduler.params.total_num_steps'] = math.ceil(scheduler.total_num_steps / self.num_processes) if not self.split_batches else scheduler.total_num_steps
deepspeed_plugin.deepspeed_config_process(must_match=False, **config_kwargs)
self.deepspeed_config = deepspeed_plugin.deepspeed_config
kwargs = dict(model=model, config_params=self.deepspeed_config)
if optimizer is not None:
if isinstance(optimizer, DummyOptim):
kwargs['model_parameters'] = optimizer.params
if isinstance(scheduler, DummyScheduler) and scheduler.lr_scheduler_callable is not None:
kwargs['lr_scheduler'] = scheduler.lr_scheduler_callable
else:
if self.deepspeed_config['zero_optimization'].get('offload_optimizer', {}).get('device', 'none') != 'none' and self.deepspeed_config.get('zero_force_ds_cpu_optimizer', True):
from deepspeed.ops.adam import DeepSpeedCPUAdam
defaults = {k: v for (k, v) in optimizer.defaults.items() if k in ['lr', 'weight_decay']}
optimizer = DeepSpeedCPUAdam(optimizer.param_groups, **defaults)
kwargs['optimizer'] = optimizer
if scheduler is not None:
if type(scheduler).__name__ in deepspeed.runtime.lr_schedules.VALID_LR_SCHEDULES:
kwargs['lr_scheduler'] = scheduler
(engine, optimizer, _, lr_scheduler) = ds_initialize(**kwargs)
if optimizer is not None:
optimizer = DeepSpeedOptimizerWrapper(optimizer)
if scheduler is not None:
if lr_scheduler is None:
scheduler = AcceleratedScheduler(scheduler, optimizer, step_with_optimizer=self.step_scheduler_with_optimizer, split_batches=self.split_batches)
else:
scheduler = DeepSpeedSchedulerWrapper(lr_scheduler, optimizer)
for i in range(len(result)):
if isinstance(result[i], torch.nn.Module):
result[i] = engine
elif isinstance(result[i], (torch.optim.Optimizer, DummyOptim)):
result[i] = optimizer
elif isinstance(result[i], (LRScheduler, DummyScheduler)) or type(result[i]).__name__ in deepspeed.runtime.lr_schedules.VALID_LR_SCHEDULES:
result[i] = scheduler
if self.deepspeed_engine_wrapped is None:
self.deepspeed_engine_wrapped = DeepSpeedEngineWrapper(engine)
else:
logger.warning('A wrapped DeepSpeed engine reference is currently tied for this `Accelerator()` instance. If you want to call `accelerator.backward()` referencing a new model/engine, please create a separate `Accelerator()` instance and call `accelerator.prepare()` on it.')
self._models.append(engine)
if optimizer is not None:
self._optimizers.append(optimizer)
if scheduler is not None:
self._schedulers.append(scheduler)
return tuple(result)
def _prepare_megatron_lm(self, *args):
megatron_lm_plugin = self.state.megatron_lm_plugin
micro_batch_size = None
if not megatron_lm_plugin.megatron_dataset_flag:
batch_sizes = [obj.batch_size for obj in args if hasattr(obj, 'batch_size')]
if len(batch_sizes) == 0:
raise ValueError('You must specify a training or evaluation dataloader in `accelerate.prepare()` when using Megatron-LM.')
micro_batch_size = min(batch_sizes) if megatron_lm_plugin.is_train_batch_min else max(batch_sizes)
if len(batch_sizes) > 1:
logger.info(f'Since you passed both train and evaluation dataloader, `is_train_batch_min` (here {megatron_lm_plugin.is_train_batch_min} will decide the `train_batch_size` ({micro_batch_size}).')
else:
for obj in args:
if isinstance(obj, MegatronLMDummyDataLoader):
micro_batch_size = obj.dataset_args['micro_batch_size']
break
if micro_batch_size is not None:
dp_degree = self.num_processes // (megatron_lm_plugin.tp_degree * megatron_lm_plugin.pp_degree)
megatron_lm_plugin.set_training_args(micro_batch_size, dp_degree)
else:
raise ValueError('When you do not pass the dataloader parameter, the `data_parallel_size`, `micro_batch_size`, and `global_batch_size` megatron parameters will not be updated.')
model = None
optimizer = None
scheduler = None
batch_data = None
for obj in args:
if isinstance(obj, torch.utils.data.DataLoader) and batch_data is None:
batch_data = next(iter(obj))
elif isinstance(obj, torch.nn.Module):
model = obj
elif isinstance(obj, torch.optim.Optimizer):
optimizer = obj
elif isinstance(obj, (LRScheduler, MegatronLMDummyScheduler)):
scheduler = obj
if model is not None:
megatron_lm_plugin.set_network_size_args(model, batch_data)
if optimizer is not None:
megatron_lm_plugin.set_optimizer_type(optimizer)
if scheduler is not None:
if not isinstance(scheduler, MegatronLMDummyScheduler):
raise ValueError("You can't use a custom scheduler with Megatron-LM. Please use the `accelerate.utils.MegatronLMDummyScheduler` instead.")
megatron_lm_plugin.set_scheduler_args(scheduler)
megatron_lm_initialize(self, args_defaults=megatron_lm_plugin.megatron_lm_default_args)
(model, optimizer, scheduler) = megatron_lm_prepare_model_optimizer_scheduler(self)
self.wait_for_everyone()
counter = 0
result = []
for obj in args:
if isinstance(obj, torch.utils.data.DataLoader):
result.append(megatron_lm_prepare_data_loader(self, obj))
counter += 1
elif isinstance(obj, MegatronLMDummyDataLoader):
if counter == 0:
obj.set_megatron_data_args()
dataloaders = megatron_lm_prepare_data_loader(self, obj)
result.append(dataloaders[counter])
counter += 1
else:
result.append(obj)
if model is not None:
model = MegatronEngine(self, model, optimizer, scheduler)
if optimizer is not None:
optimizer = MegatronLMOptimizerWrapper(optimizer)
if scheduler is not None:
scheduler = MegatronLMSchedulerWrapper(scheduler, optimizer)
for i in range(len(result)):
if isinstance(result[i], torch.nn.Module):
result[i] = model
elif isinstance(result[i], torch.optim.Optimizer):
result[i] = optimizer
elif isinstance(result[i], MegatronLMDummyScheduler):
result[i] = scheduler
if model is not None:
self._models.append(model)
if len(self._models) > 1:
raise AssertionError("You can't use same `Accelerator()` instance with multiple models when using Megatron-LM")
if optimizer is not None:
self._optimizers.append(optimizer)
if scheduler is not None:
self._schedulers.append(scheduler)
return tuple(result)
def _prepare_ipex_or_xpu(self, *args):
if self.state.use_ipex:
if not is_ipex_available():
raise ImportError("IPEX is not installed or IPEX's version does not match current PyTorch version. Please refer to https://github.com/intel/intel-extension-for-pytorch.")
model = None
optimizer = None
result = [obj for obj in args]
for obj in result:
if isinstance(obj, torch.nn.Module):
model = obj
model.train()
elif isinstance(obj, torch.optim.Optimizer):
optimizer = obj
if optimizer is not None and model is not None:
dtype = torch.bfloat16 if self.state.mixed_precision == 'bf16' else None
if self.device.type == 'xpu':
model = model.to(self.device)
if is_ipex_available():
import intel_extension_for_pytorch as ipex
(model, optimizer) = ipex.optimize(model, optimizer=optimizer, dtype=dtype, inplace=True, level='O1')
for i in range(len(result)):
if isinstance(result[i], torch.nn.Module):
result[i] = model
elif isinstance(result[i], torch.optim.Optimizer):
result[i] = optimizer
return tuple(result)
def _prepare_msamp(self, *args, device_placement):
if not is_msamp_available():
raise ImportError("MS-AMP was not found on your system. Please ensure that MS-AMP is available or choose `'te'` as the backend for FP8 mixed precision training.")
import msamp
(model, optimizer) = (None, None)
optimizer_index = None
(num_models, num_optimizers) = (0, 0)
result = [obj for obj in args]
for (i, obj) in enumerate(result):
if isinstance(obj, torch.nn.Module):
model = obj
num_models += 1
elif isinstance(obj, torch.optim.Optimizer):
optimizer = obj
optimizer_index = i
num_optimizers += 1
if optimizer is None and model is None:
return (result, device_placement)
elif optimizer is None or model is None:
raise ValueError('You must pass a model and an optimizer together to `accelerate.prepare()` when using MS-AMP.')
elif num_models > 1 or num_optimizers > 1:
raise ValueError(f"You can't use multiple models ({num_models}) or optimizers {num_optimizers} with MS-AMP.")
else:
(model, optimizer) = msamp.initialize(model, optimizer, opt_level=self.fp8_recipe_handler.opt_level)
for i in range(len(result)):
if isinstance(result[i], torch.nn.Module):
result[i] = model
elif isinstance(result[i], torch.optim.Optimizer):
result[i] = optimizer
if optimizer_index is not None:
device_placement[optimizer_index] = False
return (tuple(result), device_placement)
def prepare_data_loader(self, data_loader: torch.utils.data.DataLoader, device_placement=None, slice_fn_for_dispatch=None):
if getattr(data_loader, '_is_accelerate_prepared', False):
if data_loader not in self._dataloaders:
self._dataloaders.append(data_loader)
return data_loader
if device_placement is None:
device_placement = self.device_placement if self.distributed_type != DistributedType.XLA else False
prepared_data_loader = prepare_data_loader(data_loader, self.device, num_processes=self.num_processes, process_index=self.process_index, split_batches=self.split_batches, put_on_device=device_placement, rng_types=self.rng_types.copy(), dispatch_batches=self.dispatch_batches, even_batches=self.even_batches, slice_fn_for_dispatch=slice_fn_for_dispatch, use_seedable_sampler=self.use_seedable_sampler, non_blocking=self.non_blocking, use_stateful_dataloader=self.use_stateful_dataloader)
self._dataloaders.append(prepared_data_loader)
return prepared_data_loader
def prepare_optimizer(self, optimizer: torch.optim.Optimizer, device_placement=None):
if is_lomo_available():
from lomo_optim import AdaLomo, Lomo
self.has_lomo_optimizer |= isinstance(optimizer, (Lomo, AdaLomo))
if getattr(optimizer, '_is_accelerate_prepared', False):
if optimizer not in self._optimizers:
self._optimizers.append(optimizer)
return optimizer
if device_placement is None:
device_placement = self.device_placement
scaler = None if self.fp8_backend == 'MSAMP' else self.scaler
optimizer = AcceleratedOptimizer(optimizer, device_placement=device_placement, scaler=scaler)
self._optimizers.append(optimizer)
return optimizer
def prepare_scheduler(self, scheduler: LRScheduler):
if getattr(scheduler, '_is_accelerate_prepared', False):
if scheduler not in self._schedulers:
self._schedulers.append(scheduler)
return scheduler
optimizer = self._optimizers
for opt in self._optimizers:
if getattr(scheduler, 'optimizer', None) == opt.optimizer:
optimizer = opt
break
scheduler = AcceleratedScheduler(scheduler, optimizer, step_with_optimizer=self.step_scheduler_with_optimizer, split_batches=self.split_batches)
self._schedulers.append(scheduler)
return scheduler
def backward(self, loss, **kwargs):
learning_rate = kwargs.get('learning_rate')
if self.distributed_type != DistributedType.DEEPSPEED:
loss = loss / self.gradient_accumulation_steps
if self.distributed_type == DistributedType.DEEPSPEED:
self.deepspeed_engine_wrapped.backward(loss, **kwargs)
elif self.distributed_type == DistributedType.MEGATRON_LM:
return
elif self.scaler is not None:
self.scaler.scale(loss).backward(**kwargs)
elif learning_rate is not None and self.has_lomo_optimizer:
self.lomo_backward(loss, learning_rate)
else:
loss.backward(**kwargs)
def set_trigger(self):
self.flag_tensor = torch.tensor(1, device=self.device)
def check_trigger(self):
if self.flag_tensor is None:
self.flag_tensor = torch.tensor(0, device=self.device)
flag_tensor = self.reduce(self.flag_tensor)
if flag_tensor.item() >= 1:
self.flag_tensor = torch.tensor(0, device=self.device)
return True
return False
def unscale_gradients(self, optimizer=None):
if self.native_amp and self.mixed_precision == 'fp16':
if optimizer is None:
optimizer = self._optimizers
elif not isinstance(optimizer, (tuple, list)):
optimizer = [optimizer]
for opt in optimizer:
while isinstance(opt, AcceleratedOptimizer):
opt = opt.optimizer
self.scaler.unscale_(opt)
def clip_grad_norm_(self, parameters, max_norm, norm_type=2):
if self.distributed_type == DistributedType.FSDP:
self.unscale_gradients()
parameters = [p for p in parameters]
for model in self._models:
if parameters == [p for p in model.parameters()]:
return model.clip_grad_norm_(max_norm, norm_type)
elif self.distributed_type == DistributedType.DEEPSPEED:
return None
elif self.distributed_type == DistributedType.XLA:
for acc_opt in self._optimizers:
if not acc_opt.gradient_state.is_xla_gradients_synced:
opt = acc_opt
while isinstance(opt, AcceleratedOptimizer):
opt = opt.optimizer
gradients = xm._fetch_gradients(opt)
xm.all_reduce('sum', gradients, scale=1.0 / self.num_processes)
acc_opt.gradient_state.is_xla_gradients_synced = True
if os.environ.get('ACCELERATE_USE_FSDP', 'false') == 'true':
self.unscale_gradients()
parameters = [p for p in parameters]
for model in self._models:
if parameters == [p for p in model.parameters()]:
return model.clip_grad_norm_(max_norm, norm_type)
self.unscale_gradients()
return torch.nn.utils.clip_grad_norm_(parameters, max_norm, norm_type=norm_type)
def clip_grad_value_(self, parameters, clip_value):
if self.distributed_type in [DistributedType.DEEPSPEED, DistributedType.FSDP]:
raise Exception('DeepSpeed and FSDP do not support `clip_grad_value_`. Use `clip_grad_norm_` instead.')
self.unscale_gradients()
torch.nn.utils.clip_grad_value_(parameters, clip_value)
def gather(self, tensor):
return gather(tensor)
def gather_for_metrics(self, input_data, use_gather_object=False):
try:
recursively_apply(lambda x: x, input_data, error_on_other_type=True)
all_tensors = True
except TypeError:
all_tensors = False
use_gather_object = use_gather_object or not all_tensors
if use_gather_object:
data = gather_object(input_data)
else:
data = self.gather(input_data)
try:
if self.gradient_state.end_of_dataloader:
if self.gradient_state.remainder == -1:
logger.info('The used dataset had no length, returning gathered tensors. You should drop the remainder yourself.')
return data
elif self.gradient_state.remainder > 0:
def _adjust_samples(tensor):
return tensor[:self.gradient_state.remainder]
if use_gather_object:
return _adjust_samples(data)
else:
return recursively_apply(_adjust_samples, data)
else:
return data
else:
return data
except Exception:
return data
def reduce(self, tensor, reduction='sum', scale=1.0):
return reduce(tensor, reduction, scale)
def pad_across_processes(self, tensor, dim=0, pad_index=0, pad_first=False):
return pad_across_processes(tensor, dim=dim, pad_index=pad_index, pad_first=pad_first)
def unwrap_model(self, model, keep_fp32_wrapper: bool=True):
return extract_model_from_parallel(model, keep_fp32_wrapper)
def wait_for_everyone(self):
wait_for_everyone()
@on_main_process
def init_trackers(self, project_name: str, config: dict | None=None, init_kwargs: dict | None={}):
for tracker in self.log_with:
if issubclass(type(tracker), GeneralTracker):
self.trackers.append(tracker)
else:
tracker_init = LOGGER_TYPE_TO_CLASS[str(tracker)]
if tracker_init.requires_logging_directory:
self.trackers.append(tracker_init(project_name, self.logging_dir, **init_kwargs.get(str(tracker), {})))
else:
self.trackers.append(tracker_init(project_name, **init_kwargs.get(str(tracker), {})))
if config is not None:
for tracker in self.trackers:
tracker.store_init_configuration(config)
def get_tracker(self, name: str, unwrap: bool=False):
if len(self.trackers) > 0:
for tracker in self.trackers:
if tracker.name == name:
return tracker.tracker if unwrap else tracker
raise ValueError(f'{name} is not an available tracker stored inside the `Accelerator`.')
return GeneralTracker(_blank=True)
@on_main_process
def log(self, values: dict, step: int | None=None, log_kwargs: dict | None={}):
for tracker in self.trackers:
tracker.log(values, step=step, **log_kwargs.get(tracker.name, {}))
def end_training(self):
for tracker in self.trackers:
tracker.finish()
self.state.destroy_process_group()
def save(self, obj, f, safe_serialization=False):
save(obj, f, save_on_each_node=self.project_configuration.save_on_each_node, safe_serialization=safe_serialization)
def save_model(self, model: torch.nn.Module, save_directory: Union[str, os.PathLike], max_shard_size: Union[int, str]='10GB', safe_serialization: bool=True):
if os.path.isfile(save_directory):
logger.error(f'Provided path ({save_directory}) should be a directory, not a file')
return
os.makedirs(save_directory, exist_ok=True)
if any([module._hf_hook.offload for module in model.modules() if hasattr(module, '_hf_hook') and isinstance(module._hf_hook, AlignDevicesHook)]):
state_dict = get_state_dict_offloaded_model(model)
else:
if any((param.device == torch.device('meta') for param in model.parameters())):
raise RuntimeError("You can't save the model since some parameters are on the meta device.")
state_dict = self.get_state_dict(model)
if safe_serialization:
state_dict = clean_state_dict_for_safetensors(state_dict)
weights_name = SAFE_WEIGHTS_NAME if safe_serialization else WEIGHTS_NAME
filename_pattern = SAFE_WEIGHTS_PATTERN_NAME if safe_serialization else WEIGHTS_PATTERN_NAME
state_dict_split = split_torch_state_dict_into_shards(state_dict, filename_pattern=filename_pattern, max_shard_size=max_shard_size)
for filename in os.listdir(save_directory):
full_filename = os.path.join(save_directory, filename)
weights_no_suffix = weights_name.replace('.bin', '')
filename_no_suffix = filename.replace('.bin', '')
reg = re.compile('(.*?)-\\d{5}-of-\\d{5}')
if filename.startswith(weights_no_suffix) and os.path.isfile(full_filename) and (filename not in state_dict_split.filename_to_tensors.keys()) and (reg.fullmatch(filename_no_suffix) is not None) and PartialState().is_main_process:
os.remove(full_filename)
for (filename, tensors) in state_dict_split.filename_to_tensors.items():
shard = {tensor: state_dict[tensor] for tensor in tensors}
self.save(shard, os.path.join(save_directory, filename), safe_serialization=safe_serialization)
if state_dict_split.is_sharded:
index = {'metadata': state_dict_split.metadata, 'weight_map': state_dict_split.tensor_to_filename}
save_index_file = SAFE_WEIGHTS_INDEX_NAME if safe_serialization else WEIGHTS_INDEX_NAME
save_index_file = os.path.join(save_directory, save_index_file)
with open(save_index_file, 'w', encoding='utf-8') as f:
content = json.dumps(index, indent=2, sort_keys=True) + '\n'
f.write(content)
logger.info(f'The model is bigger than the maximum size per checkpoint ({max_shard_size}) and is going to be split in {len(state_dict_split.filename_to_tensors)} checkpoint shards. You can find where each parameters has been saved in the index located at {save_index_file}.')
else:
path_to_weights = os.path.join(save_directory, WEIGHTS_NAME)
logger.info(f'Model weights saved in {path_to_weights}')
def register_save_state_pre_hook(self, hook: Callable[..., None]) -> hooks.RemovableHandle:
handle = hooks.RemovableHandle(self._save_model_state_pre_hook)
self._save_model_state_pre_hook[handle.id] = hook
return handle
def save_state(self, output_dir: str=None, safe_serialization: bool=True, **save_model_func_kwargs):
if self.project_configuration.automatic_checkpoint_naming:
output_dir = os.path.join(self.project_dir, 'checkpoints')
os.makedirs(output_dir, exist_ok=True)
if self.project_configuration.automatic_checkpoint_naming:
folders = [os.path.join(output_dir, folder) for folder in os.listdir(output_dir)]
if self.project_configuration.total_limit is not None and len(folders) + 1 > self.project_configuration.total_limit and self.is_main_process:
def _inner(folder):
return list(map(int, re.findall('[\\/]?([0-9]+)(?=[^\\/]*$)', folder)))[0]
folders.sort(key=_inner)
logger.warning(f'Deleting {len(folders) + 1 - self.project_configuration.total_limit} checkpoints to make room for new checkpoint.')
for folder in folders[:len(folders) + 1 - self.project_configuration.total_limit]:
shutil.rmtree(folder)
output_dir = os.path.join(output_dir, f'checkpoint_{self.save_iteration}')
if os.path.exists(output_dir):
raise ValueError(f'Checkpoint directory {output_dir} ({self.save_iteration}) already exists. Please manually override `self.save_iteration` with what iteration to start with.')
self.wait_for_everyone()
os.makedirs(output_dir, exist_ok=True)
logger.info(f'Saving current state to {output_dir}')
if self.distributed_type == DistributedType.XLA:
xm.mark_step()
weights = []
for (i, model) in enumerate(self._models):
if self.distributed_type == DistributedType.FSDP:
logger.info('Saving FSDP model')
save_fsdp_model(self.state.fsdp_plugin, self, model, output_dir, i)
logger.info(f'FSDP Model saved to output dir {output_dir}')
elif self.distributed_type == DistributedType.DEEPSPEED:
logger.info('Saving DeepSpeed Model and Optimizer')
ckpt_id = f'{MODEL_NAME}' if i == 0 else f'{MODEL_NAME}_{i}'
model.save_checkpoint(output_dir, ckpt_id, **save_model_func_kwargs)
logger.info(f'DeepSpeed Model and Optimizer saved to output dir {os.path.join(output_dir, ckpt_id)}')
elif self.distributed_type == DistributedType.MEGATRON_LM:
logger.info('Saving Megatron-LM Model, Optimizer and Scheduler')
model.save_checkpoint(output_dir)
logger.info(f'Megatron-LM Model , Optimizer and Scheduler saved to output dir {output_dir}')
else:
weights.append(self.get_state_dict(model, unwrap=False))
optimizers = []
if self.distributed_type == DistributedType.FSDP:
for (i, opt) in enumerate(self._optimizers):
logger.info('Saving FSDP Optimizer')
save_fsdp_optimizer(self.state.fsdp_plugin, self, opt, self._models[i], output_dir, i)
logger.info(f'FSDP Optimizer saved to output dir {output_dir}')
elif self.distributed_type not in [DistributedType.DEEPSPEED, DistributedType.MEGATRON_LM]:
optimizers = self._optimizers
schedulers = []
if self.distributed_type == DistributedType.DEEPSPEED:
for (i, scheduler) in enumerate(self._schedulers):
if isinstance(scheduler, DeepSpeedSchedulerWrapper):
continue
schedulers.append(scheduler)
elif self.distributed_type not in [DistributedType.MEGATRON_LM]:
schedulers = self._schedulers
dataloaders = self._dataloaders
for hook in self._save_model_state_pre_hook.values():
hook(self._models, weights, output_dir)
save_location = save_accelerator_state(output_dir, weights, optimizers, schedulers, dataloaders, self.state.process_index, self.step, self.scaler, save_on_each_node=self.project_configuration.save_on_each_node, safe_serialization=safe_serialization)
for (i, obj) in enumerate(self._custom_objects):
save_custom_state(obj, output_dir, i, save_on_each_node=self.project_configuration.save_on_each_node)
self.project_configuration.iteration += 1
return save_location
def register_load_state_pre_hook(self, hook: Callable[..., None]) -> hooks.RemovableHandle:
handle = hooks.RemovableHandle(self._load_model_state_pre_hook)
self._load_model_state_pre_hook[handle.id] = hook
return handle
def load_state(self, input_dir: str=None, **load_model_func_kwargs):
if input_dir is not None:
input_dir = os.path.expanduser(input_dir)
if not os.path.isdir(input_dir):
raise ValueError(f'Tried to find {input_dir} but folder does not exist')
elif self.project_configuration.automatic_checkpoint_naming:
input_dir = os.path.join(self.project_dir, 'checkpoints')
folders = [os.path.join(input_dir, folder) for folder in os.listdir(input_dir)]
def _inner(folder):
return list(map(int, re.findall('[\\/]?([0-9]+)(?=[^\\/]*$)', folder)))[0]
folders.sort(key=_inner)
input_dir = folders[-1]
else:
raise ValueError('No input_dir provided and automatic checkpoint naming is disabled.')
logger.info(f'Loading states from {input_dir}')
models = []
for (i, model) in enumerate(self._models):
if self.distributed_type == DistributedType.FSDP:
logger.info('Loading FSDP model')
load_fsdp_model(self.state.fsdp_plugin, self, model, input_dir, i)
logger.info(f'FSDP Model loaded from input dir {input_dir}')
elif self.distributed_type == DistributedType.DEEPSPEED:
logger.info('Loading DeepSpeed Model and Optimizer')
ckpt_id = f'{MODEL_NAME}' if i == 0 else f'{MODEL_NAME}_{i}'
model.load_checkpoint(input_dir, ckpt_id, **load_model_func_kwargs)
logger.info(f'DeepSpeed Model and Optimizer loaded from input dir {os.path.join(input_dir, ckpt_id)}')
elif self.distributed_type == DistributedType.MEGATRON_LM:
logger.info('Loading Megatron-LM Model, Optimizer and Scheduler')
model.load_checkpoint(input_dir)
logger.info(f'Megatron-LM Model , Optimizer and Scheduler loaded from input dir {input_dir}')
else:
models.append(model)
optimizers = []
if self.distributed_type == DistributedType.FSDP:
for (i, opt) in enumerate(self._optimizers):
logger.info('Loading FSDP Optimizer')
load_fsdp_optimizer(self.state.fsdp_plugin, self, opt, self._models[i], input_dir, i)
logger.info(f'FSDP Optimizer loaded from input dir {input_dir}')
elif self.distributed_type not in [DistributedType.DEEPSPEED, DistributedType.MEGATRON_LM]:
optimizers = self._optimizers
schedulers = []
if self.distributed_type == DistributedType.DEEPSPEED:
for (i, scheduler) in enumerate(self._schedulers):
if isinstance(scheduler, DeepSpeedSchedulerWrapper):
continue
schedulers.append(scheduler)
elif self.distributed_type not in [DistributedType.MEGATRON_LM]:
schedulers = self._schedulers
dataloaders = self._dataloaders
for hook in self._load_model_state_pre_hook.values():
hook(models, input_dir)
map_location = load_model_func_kwargs.pop('map_location', None)
if map_location is None:
if self.num_processes > 1 and self.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_MLU, DistributedType.MULTI_MUSA, DistributedType.MULTI_NPU):
map_location = 'on_device'
else:
map_location = 'cpu'
override_attributes = load_accelerator_state(input_dir, models, optimizers, schedulers, dataloaders, self.state.process_index, self.scaler, map_location, **load_model_func_kwargs)
if 'step' in override_attributes:
self.step = override_attributes['step']
custom_checkpoints = [f for f in os.listdir(input_dir) if re.search('^custom_checkpoint_\\d+\\.pkl$', f) is not None]
if len(custom_checkpoints) != len(self._custom_objects):
err = f'Number of custom checkpoints in folder {input_dir} does not match the number of registered objects:'
err += f'\n\tFound checkpoints: {len(custom_checkpoints)}'
err += f'\n\tRegistered objects: {len(self._custom_objects)}\n'
err += 'Please make sure to only load checkpoints from folders that were created with the same set of registered objects,'
err += 'or avoid using `custom_checkpoint` in the filename for files in that same directory and load them in manually.'
raise RuntimeError(err)
else:
logger.info(f'Loading in {len(custom_checkpoints)} custom states')
for (index, obj) in enumerate(self._custom_objects):
load_custom_state(obj, input_dir, index)
def free_memory(self, *objects):
if hasattr(self, 'deepspeed_engine_wrapped'):
if self.deepspeed_engine_wrapped is not None:
self.deepspeed_engine_wrapped.engine.destroy()
self.deepspeed_engine_wrapped = None
objects = release_memory(*objects)
self._schedulers = []
self._optimizers = []
self._models = []
self._dataloaders = []
self.step = 0
return objects
def clear(self, *objects):
return self.free_memory(*objects)
def _get_named_parameters(self, *args):
named_parameters = {}
for obj in args:
if isinstance(obj, torch.nn.Module):
obj = extract_model_from_parallel(obj)
named_parameters.update({n: p for (n, p) in obj.named_parameters()})
return named_parameters
def _get_devices(self, *args):
model_device = None
optimizer_device = None
for obj in args:
if isinstance(obj, torch.nn.Module):
for param in obj.parameters():
model_device = param.device
break
if isinstance(obj, torch.optim.Optimizer):
for param_group in obj.param_groups:
if len(param_group['params']) > 0:
optimizer_device = param_group['params'][0].device
break
return (model_device, optimizer_device)
def get_state_dict(self, model, unwrap=True):
if self.distributed_type == DistributedType.DEEPSPEED:
if self.deepspeed_config['zero_optimization']['stage'] == 3:
if model.zero_gather_16bit_weights_on_model_save():
state_dict = model._zero3_consolidated_16bit_state_dict()
else:
raise ValueError('Cannot get 16bit model weights because `stage3_gather_16bit_weights_on_model_save` in DeepSpeed config is False. To save the model weights in 16bit, set `stage3_gather_16bit_weights_on_model_save` to True in DeepSpeed config file or set `zero3_save_16bit_model` to True when using `accelerate config`. To save the full checkpoint, run `model.save_checkpoint(save_dir)` and use `zero_to_fp32.py` to recover weights.')
else:
from deepspeed.checkpoint.utils import clone_tensors_for_torch_save
state_dict = clone_tensors_for_torch_save(self.unwrap_model(model).state_dict())
elif self.distributed_type == DistributedType.FSDP:
from torch.distributed.fsdp import FullStateDictConfig, StateDictType
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
full_state_dict_config = FullStateDictConfig(offload_to_cpu=True, rank0_only=True)
with FSDP.state_dict_type(model, StateDictType.FULL_STATE_DICT, full_state_dict_config):
state_dict = model.state_dict()
else:
if unwrap:
model = self.unwrap_model(model)
state_dict = model.state_dict()
return state_dict
def register_for_checkpointing(self, *objects):
invalid_objects = []
for obj in objects:
if not hasattr(obj, 'state_dict') or not hasattr(obj, 'load_state_dict'):
invalid_objects.append(obj)
if len(invalid_objects) > 0:
err = 'All `objects` must include a `state_dict` and `load_state_dict` function to be stored. The following inputs are invalid:'
for (index, obj) in enumerate(invalid_objects):
err += f'\n\t- Item at index {index}, `{get_pretty_name(obj)}`'
raise ValueError(err)
self._custom_objects.extend(objects)
@contextmanager
def autocast(self, autocast_handler: AutocastKwargs=None):
if autocast_handler is None:
autocast_handler = self.autocast_handler
autocast_context = get_mixed_precision_context_manager(self.native_amp, autocast_handler)
autocast_context.__enter__()
yield
autocast_context.__exit__(*sys.exc_info())
@contextmanager
def profile(self, profile_handler: ProfileKwargs | None=None):
profile_handler = profile_handler or self.profile_handler or ProfileKwargs()
with profile_handler.build() as profiler:
yield profiler
if profile_handler.output_trace_dir is None:
return
os.makedirs(profile_handler.output_trace_dir, exist_ok=True)
profiler.export_chrome_trace(os.path.join(profile_handler.output_trace_dir, PROFILE_PATTERN_NAME.format(suffix=self.process_index)))
self.wait_for_everyone()
@property
def optimizer_step_was_skipped(self):
for optimizer in self._optimizers:
if optimizer.step_was_skipped:
return True
return False
def skip_first_batches(self, dataloader, num_batches: int=0):
return skip_first_batches(dataloader, num_batches=num_batches)
def __deepcopy__(self, memo):
logger.info('Deep copying the `Accelerator` object, note that this will point to the same original object.')
return self
def verify_device_map(self, model: torch.nn.Module) -> bool:
for m in model.modules():
if hasattr(m, 'hf_device_map') and len(m.hf_device_map) > 1:
return True
return False
def lomo_backward(self, loss: torch.Tensor, learning_rate: float) -> None:
if is_lomo_available():
from lomo_optim import AdaLomo, Lomo
if learning_rate is None:
raise ValueError('A learning rate must be passed in order to call backward pass with LOMO optimizers.')
_backward_called = False
for optimizer in self._optimizers:
if isinstance(optimizer.optimizer, (Lomo, AdaLomo)):
optimizer.optimizer.fused_backward(loss, learning_rate)
_backward_called = True
if not _backward_called:
raise ValueError('Backward pass not properly called on LOMO optimizers. Are you sure you passed a LOMO optimizer in accelerator.prepare()?')
@property
def fp8_backend(self):
if self.mixed_precision == 'fp8' and self.fp8_recipe_handler is not None:
return self.fp8_recipe_handler.backend
elif self.state.deepspeed_plugin is not None and self.state.deepspeed_plugin.enable_msamp:
return 'MSAMP'
return None
# File: accelerate-main/src/accelerate/big_modeling.py
import logging
import os
from contextlib import contextmanager
from functools import wraps
from typing import Dict, List, Optional, Union
import torch
import torch.nn as nn
from .hooks import AlignDevicesHook, CpuOffload, UserCpuOffloadHook, add_hook_to_module, attach_align_device_hook, attach_align_device_hook_on_blocks
from .utils import OffloadedWeightsLoader, check_cuda_p2p_ib_support, check_device_map, extract_submodules_state_dict, find_tied_parameters, get_balanced_memory, infer_auto_device_map, is_mlu_available, is_musa_available, is_npu_available, is_torch_version, is_xpu_available, load_checkpoint_in_model, offload_state_dict, parse_flag_from_env, retie_parameters
from .utils.other import recursive_getattr
logger = logging.getLogger(__name__)
@contextmanager
def init_empty_weights(include_buffers: bool=None):
if include_buffers is None:
include_buffers = parse_flag_from_env('ACCELERATE_INIT_INCLUDE_BUFFERS', False)
with init_on_device(torch.device('meta'), include_buffers=include_buffers) as f:
yield f
@contextmanager
def init_on_device(device: torch.device, include_buffers: bool=None):
if include_buffers is None:
include_buffers = parse_flag_from_env('ACCELERATE_INIT_INCLUDE_BUFFERS', False)
if is_torch_version('>=', '2.0') and include_buffers:
with device:
yield
return
old_register_parameter = nn.Module.register_parameter
if include_buffers:
old_register_buffer = nn.Module.register_buffer
def register_empty_parameter(module, name, param):
old_register_parameter(module, name, param)
if param is not None:
param_cls = type(module._parameters[name])
kwargs = module._parameters[name].__dict__
kwargs['requires_grad'] = param.requires_grad
module._parameters[name] = param_cls(module._parameters[name].to(device), **kwargs)
def register_empty_buffer(module, name, buffer, persistent=True):
old_register_buffer(module, name, buffer, persistent=persistent)
if buffer is not None:
module._buffers[name] = module._buffers[name].to(device)
if include_buffers:
tensor_constructors_to_patch = {torch_function_name: getattr(torch, torch_function_name) for torch_function_name in ['empty', 'zeros', 'ones', 'full']}
else:
tensor_constructors_to_patch = {}
def patch_tensor_constructor(fn):
def wrapper(*args, **kwargs):
kwargs['device'] = device
return fn(*args, **kwargs)
return wrapper
try:
nn.Module.register_parameter = register_empty_parameter
if include_buffers:
nn.Module.register_buffer = register_empty_buffer
for torch_function_name in tensor_constructors_to_patch.keys():
setattr(torch, torch_function_name, patch_tensor_constructor(getattr(torch, torch_function_name)))
yield
finally:
nn.Module.register_parameter = old_register_parameter
if include_buffers:
nn.Module.register_buffer = old_register_buffer
for (torch_function_name, old_torch_function) in tensor_constructors_to_patch.items():
setattr(torch, torch_function_name, old_torch_function)
def cpu_offload(model: nn.Module, execution_device: Optional[torch.device]=None, offload_buffers: bool=False, state_dict: Optional[Dict[str, torch.Tensor]]=None, preload_module_classes: Optional[List[str]]=None):
if execution_device is None:
execution_device = next(iter(model.parameters())).device
if state_dict is None:
state_dict = {n: p.to('cpu') for (n, p) in model.state_dict().items()}
add_hook_to_module(model, AlignDevicesHook(io_same_device=True), append=True)
attach_align_device_hook(model, execution_device=execution_device, offload=True, offload_buffers=offload_buffers, weights_map=state_dict, preload_module_classes=preload_module_classes)
return model
def cpu_offload_with_hook(model: torch.nn.Module, execution_device: Optional[Union[int, str, torch.device]]=None, prev_module_hook: Optional[UserCpuOffloadHook]=None):
hook = CpuOffload(execution_device=execution_device, prev_module_hook=prev_module_hook)
add_hook_to_module(model, hook, append=True)
user_hook = UserCpuOffloadHook(model, hook)
return (model, user_hook)
def disk_offload(model: nn.Module, offload_dir: Union[str, os.PathLike], execution_device: Optional[torch.device]=None, offload_buffers: bool=False, preload_module_classes: Optional[List[str]]=None):
if not os.path.isdir(offload_dir) or not os.path.isfile(os.path.join(offload_dir, 'index.json')):
offload_state_dict(offload_dir, model.state_dict())
if execution_device is None:
execution_device = next(iter(model.parameters())).device
weights_map = OffloadedWeightsLoader(save_folder=offload_dir)
add_hook_to_module(model, AlignDevicesHook(io_same_device=True), append=True)
attach_align_device_hook(model, execution_device=execution_device, offload=True, offload_buffers=offload_buffers, weights_map=weights_map, preload_module_classes=preload_module_classes)
return model
def dispatch_model(model: nn.Module, device_map: Dict[str, Union[str, int, torch.device]], main_device: Optional[torch.device]=None, state_dict: Optional[Dict[str, torch.Tensor]]=None, offload_dir: Optional[Union[str, os.PathLike]]=None, offload_index: Optional[Dict[str, str]]=None, offload_buffers: bool=False, skip_keys: Optional[Union[str, List[str]]]=None, preload_module_classes: Optional[List[str]]=None, force_hooks: bool=False):
check_device_map(model, device_map)
is_bnb_quantized = (getattr(model, 'is_quantized', False) or getattr(model, 'is_loaded_in_8bit', False)) and getattr(model, 'quantization_method', 'bitsandbytes') == 'bitsandbytes'
if len(set(device_map.values())) > 1 or is_bnb_quantized or force_hooks:
if main_device is None:
if set(device_map.values()) == {'cpu'} or set(device_map.values()) == {'cpu', 'disk'}:
main_device = 'cpu'
else:
main_device = [d for d in device_map.values() if d not in ['cpu', 'disk']][0]
if main_device != 'cpu':
cpu_modules = [name for (name, device) in device_map.items() if device == 'cpu']
if state_dict is None and len(cpu_modules) > 0:
state_dict = extract_submodules_state_dict(model.state_dict(), cpu_modules)
disk_modules = [name for (name, device) in device_map.items() if device == 'disk']
if offload_dir is None and offload_index is None and (len(disk_modules) > 0):
raise ValueError(f"We need an `offload_dir` to dispatch this model according to this `device_map`, the following submodules need to be offloaded: {', '.join(disk_modules)}.")
if len(disk_modules) > 0 and offload_index is None and (not os.path.isdir(offload_dir) or not os.path.isfile(os.path.join(offload_dir, 'index.json'))):
disk_state_dict = extract_submodules_state_dict(model.state_dict(), disk_modules)
offload_state_dict(offload_dir, disk_state_dict)
execution_device = {name: main_device if device in ['cpu', 'disk'] else device for (name, device) in device_map.items()}
execution_device[''] = main_device
offloaded_devices = ['disk'] if main_device == 'cpu' or main_device == 'mps' else ['cpu', 'disk']
offload = {name: device in offloaded_devices for (name, device) in device_map.items()}
save_folder = offload_dir if len(disk_modules) > 0 else None
if state_dict is not None or save_folder is not None or offload_index is not None:
device = main_device if offload_index is not None else None
weights_map = OffloadedWeightsLoader(state_dict=state_dict, save_folder=save_folder, index=offload_index, device=device)
else:
weights_map = None
tied_params = find_tied_parameters(model)
tied_params_map = {}
for group in tied_params:
for param_name in group:
data_ptr = recursive_getattr(model, param_name).data_ptr()
tied_params_map[data_ptr] = {}
attach_align_device_hook_on_blocks(model, execution_device=execution_device, offload=offload, offload_buffers=offload_buffers, weights_map=weights_map, skip_keys=skip_keys, preload_module_classes=preload_module_classes, tied_params_map=tied_params_map)
offloaded_devices_str = ' and '.join([device for device in set(device_map.values()) if device in ('cpu', 'disk')])
if len(offloaded_devices_str) > 0:
logger.warning(f'Some parameters are on the meta device because they were offloaded to the {offloaded_devices_str}.')
retie_parameters(model, tied_params)
def add_warning(fn, model):
@wraps(fn)
def wrapper(*args, **kwargs):
warning_msg = "You shouldn't move a model that is dispatched using accelerate hooks."
if str(fn.__name__) == 'to':
to_device = torch._C._nn._parse_to(*args, **kwargs)[0]
if to_device is not None:
logger.warning(warning_msg)
else:
logger.warning(warning_msg)
for param in model.parameters():
if param.device == torch.device('meta'):
raise RuntimeError("You can't move a model that has some modules offloaded to cpu or disk.")
return fn(*args, **kwargs)
return wrapper
model.to = add_warning(model.to, model)
if is_npu_available():
model.npu = add_warning(model.npu, model)
elif is_mlu_available():
model.mlu = add_warning(model.mlu, model)
elif is_musa_available():
model.musa = add_warning(model.musa, model)
elif is_xpu_available():
model.xpu = add_warning(model.xpu, model)
else:
model.cuda = add_warning(model.cuda, model)
use_multi_gpu = len([device for device in set(device_map.values()) if device not in ('cpu', 'disk')]) > 1
if use_multi_gpu and (not check_cuda_p2p_ib_support()):
logger.warning("We've detected an older driver with an RTX 4000 series GPU. These drivers have issues with P2P. This can affect the multi-gpu inference when using accelerate device_map.Please make sure to update your driver to the latest version which resolves this.")
else:
device = list(device_map.values())[0]
if is_npu_available() and isinstance(device, int):
device = f'npu:{device}'
elif is_mlu_available() and isinstance(device, int):
device = f'mlu:{device}'
elif is_musa_available() and isinstance(device, int):
device = f'musa:{device}'
elif is_xpu_available() and isinstance(device, int):
device = f'xpu:{device}'
if device != 'disk':
model.to(device)
else:
raise ValueError('You are trying to offload the whole model to the disk. Please use the `disk_offload` function instead.')
model.hf_device_map = dict(device_map)
return model
def load_checkpoint_and_dispatch(model: nn.Module, checkpoint: Union[str, os.PathLike], device_map: Optional[Union[str, Dict[str, Union[int, str, torch.device]]]]=None, max_memory: Optional[Dict[Union[int, str], Union[int, str]]]=None, no_split_module_classes: Optional[List[str]]=None, offload_folder: Optional[Union[str, os.PathLike]]=None, offload_buffers: bool=False, dtype: Optional[Union[str, torch.dtype]]=None, offload_state_dict: Optional[bool]=None, skip_keys: Optional[Union[str, List[str]]]=None, preload_module_classes: Optional[List[str]]=None, force_hooks: bool=False, strict: bool=False):
if isinstance(device_map, str) and device_map not in ['auto', 'balanced', 'balanced_low_0', 'sequential']:
raise ValueError("If passing a string for `device_map`, please choose 'auto', 'balanced', 'balanced_low_0' or 'sequential'.")
if isinstance(device_map, str):
if device_map != 'sequential':
max_memory = get_balanced_memory(model, max_memory=max_memory, no_split_module_classes=no_split_module_classes, dtype=dtype, low_zero=device_map == 'balanced_low_0')
device_map = infer_auto_device_map(model, max_memory=max_memory, no_split_module_classes=no_split_module_classes, dtype=dtype, offload_buffers=offload_buffers)
if offload_state_dict is None and device_map is not None and ('disk' in device_map.values()):
offload_state_dict = True
load_checkpoint_in_model(model, checkpoint, device_map=device_map, offload_folder=offload_folder, dtype=dtype, offload_state_dict=offload_state_dict, offload_buffers=offload_buffers, strict=strict)
if device_map is None:
return model
return dispatch_model(model, device_map=device_map, offload_dir=offload_folder, offload_buffers=offload_buffers, skip_keys=skip_keys, preload_module_classes=preload_module_classes, force_hooks=force_hooks)
# File: accelerate-main/src/accelerate/checkpointing.py
import random
from pathlib import Path
from typing import List
import numpy as np
import torch
from safetensors.torch import load_model
from torch.cuda.amp import GradScaler
from .utils import MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_MODEL_NAME, SAFE_WEIGHTS_NAME, SAMPLER_NAME, SCALER_NAME, SCHEDULER_NAME, WEIGHTS_NAME, get_pretty_name, is_mlu_available, is_torch_xla_available, is_xpu_available, save
if is_torch_xla_available():
import torch_xla.core.xla_model as xm
from .logging import get_logger
from .state import PartialState
logger = get_logger(__name__)
def save_accelerator_state(output_dir: str, model_states: List[dict], optimizers: list, schedulers: list, dataloaders: list, process_index: int, step: int, scaler: GradScaler=None, save_on_each_node: bool=False, safe_serialization: bool=True):
output_dir = Path(output_dir)
for (i, state) in enumerate(model_states):
weights_name = WEIGHTS_NAME if not safe_serialization else SAFE_WEIGHTS_NAME
if i > 0:
weights_name = weights_name.replace('.', f'_{i}.')
output_model_file = output_dir.joinpath(weights_name)
save(state, output_model_file, save_on_each_node=save_on_each_node, safe_serialization=safe_serialization)
logger.info(f'Model weights saved in {output_model_file}')
for (i, opt) in enumerate(optimizers):
state = opt.state_dict()
optimizer_name = f'{OPTIMIZER_NAME}.bin' if i == 0 else f'{OPTIMIZER_NAME}_{i}.bin'
output_optimizer_file = output_dir.joinpath(optimizer_name)
save(state, output_optimizer_file, save_on_each_node=save_on_each_node, safe_serialization=False)
logger.info(f'Optimizer state saved in {output_optimizer_file}')
for (i, scheduler) in enumerate(schedulers):
state = scheduler.state_dict()
scheduler_name = f'{SCHEDULER_NAME}.bin' if i == 0 else f'{SCHEDULER_NAME}_{i}.bin'
output_scheduler_file = output_dir.joinpath(scheduler_name)
save(state, output_scheduler_file, save_on_each_node=save_on_each_node, safe_serialization=False)
logger.info(f'Scheduler state saved in {output_scheduler_file}')
for (i, dataloader) in enumerate(dataloaders):
sampler_name = f'{SAMPLER_NAME}.bin' if i == 0 else f'{SAMPLER_NAME}_{i}.bin'
output_sampler_file = output_dir.joinpath(sampler_name)
from .data_loader import IterableDatasetShard, SeedableRandomSampler
if isinstance(dataloader.dataset, IterableDatasetShard):
sampler = dataloader.get_sampler()
if isinstance(sampler, SeedableRandomSampler):
save(sampler, output_sampler_file, save_on_each_node=save_on_each_node, safe_serialization=False)
if getattr(dataloader, 'use_stateful_dataloader', False):
dataloader_state_dict_name = 'dl_state_dict.bin' if i == 0 else f'dl_state_dict_{i}.bin'
output_dataloader_state_dict_file = output_dir.joinpath(dataloader_state_dict_name)
state_dict = dataloader.state_dict()
torch.save(state_dict, output_dataloader_state_dict_file)
logger.info(f'Sampler state for dataloader {i} saved in {output_sampler_file}')
if scaler is not None:
state = scaler.state_dict()
output_scaler_file = output_dir.joinpath(SCALER_NAME)
torch.save(state, output_scaler_file)
logger.info(f'Gradient scaler state saved in {output_scaler_file}')
states = {}
states_name = f'{RNG_STATE_NAME}_{process_index}.pkl'
states['step'] = step
states['random_state'] = random.getstate()
states['numpy_random_seed'] = np.random.get_state()
states['torch_manual_seed'] = torch.get_rng_state()
if is_xpu_available():
states['torch_xpu_manual_seed'] = torch.xpu.get_rng_state_all()
if is_mlu_available():
states['torch_mlu_manual_seed'] = torch.mlu.get_rng_state_all()
else:
states['torch_cuda_manual_seed'] = torch.cuda.get_rng_state_all()
if is_torch_xla_available():
states['xm_seed'] = xm.get_rng_state()
output_states_file = output_dir.joinpath(states_name)
torch.save(states, output_states_file)
logger.info(f'Random states saved in {output_states_file}')
return output_dir
def load_accelerator_state(input_dir, models, optimizers, schedulers, dataloaders, process_index, scaler=None, map_location=None, **load_model_func_kwargs):
override_attributes = dict()
if map_location not in [None, 'cpu', 'on_device']:
raise TypeError("Unsupported optimizer map location passed, please choose one of `None`, `'cpu'`, or `'on_device'`")
if map_location is None:
map_location = 'cpu'
elif map_location == 'on_device':
map_location = PartialState().device
input_dir = Path(input_dir)
for (i, model) in enumerate(models):
ending = f'_{i}' if i > 0 else ''
input_model_file = input_dir.joinpath(f'{SAFE_MODEL_NAME}{ending}.safetensors')
if input_model_file.exists():
load_model(model, input_model_file, device=str(map_location), **load_model_func_kwargs)
else:
input_model_file = input_dir.joinpath(f'{MODEL_NAME}{ending}.bin')
state_dict = torch.load(input_model_file, map_location=map_location)
model.load_state_dict(state_dict, **load_model_func_kwargs)
logger.info('All model weights loaded successfully')
for (i, opt) in enumerate(optimizers):
optimizer_name = f'{OPTIMIZER_NAME}.bin' if i == 0 else f'{OPTIMIZER_NAME}_{i}.bin'
input_optimizer_file = input_dir.joinpath(optimizer_name)
optimizer_state = torch.load(input_optimizer_file, map_location=map_location)
optimizers[i].load_state_dict(optimizer_state)
logger.info('All optimizer states loaded successfully')
for (i, scheduler) in enumerate(schedulers):
scheduler_name = f'{SCHEDULER_NAME}.bin' if i == 0 else f'{SCHEDULER_NAME}_{i}.bin'
input_scheduler_file = input_dir.joinpath(scheduler_name)
scheduler.load_state_dict(torch.load(input_scheduler_file))
logger.info('All scheduler states loaded successfully')
for (i, dataloader) in enumerate(dataloaders):
sampler_name = f'{SAMPLER_NAME}.bin' if i == 0 else f'{SAMPLER_NAME}_{i}.bin'
input_sampler_file = input_dir.joinpath(sampler_name)
from .data_loader import IterableDatasetShard, SeedableRandomSampler
if isinstance(dataloader.dataset, IterableDatasetShard):
sampler = dataloader.get_sampler()
if isinstance(sampler, SeedableRandomSampler):
sampler = dataloader.set_sampler(torch.load(input_sampler_file))
if getattr(dataloader, 'use_stateful_dataloader', False):
dataloader_state_dict_name = 'dl_state_dict.bin' if i == 0 else f'dl_state_dict_{i}.bin'
input_dataloader_state_dict_file = input_dir.joinpath(dataloader_state_dict_name)
if input_dataloader_state_dict_file.exists():
state_dict = torch.load(input_dataloader_state_dict_file)
dataloader.load_state_dict(state_dict)
logger.info('All dataloader sampler states loaded successfully')
if scaler is not None:
input_scaler_file = input_dir.joinpath(SCALER_NAME)
scaler.load_state_dict(torch.load(input_scaler_file))
logger.info('GradScaler state loaded successfully')
try:
states = torch.load(input_dir.joinpath(f'{RNG_STATE_NAME}_{process_index}.pkl'))
if 'step' in states:
override_attributes['step'] = states['step']
random.setstate(states['random_state'])
np.random.set_state(states['numpy_random_seed'])
torch.set_rng_state(states['torch_manual_seed'])
if is_xpu_available():
torch.xpu.set_rng_state_all(states['torch_xpu_manual_seed'])
if is_mlu_available():
torch.mlu.set_rng_state_all(states['torch_mlu_manual_seed'])
else:
torch.cuda.set_rng_state_all(states['torch_cuda_manual_seed'])
if is_torch_xla_available():
xm.set_rng_state(states['xm_seed'])
logger.info('All random states loaded successfully')
except Exception:
logger.info('Could not load random states')
return override_attributes
def save_custom_state(obj, path, index: int=0, save_on_each_node: bool=False):
save_location = Path(path) / f'custom_checkpoint_{index}.pkl'
logger.info(f'Saving the state of {get_pretty_name(obj)} to {save_location}')
save(obj.state_dict(), save_location, save_on_each_node=save_on_each_node)
def load_custom_state(obj, path, index: int=0):
load_location = f'{path}/custom_checkpoint_{index}.pkl'
logger.info(f'Loading the state of {get_pretty_name(obj)} from {load_location}')
obj.load_state_dict(torch.load(load_location, map_location='cpu'))
# File: accelerate-main/src/accelerate/commands/accelerate_cli.py
from accelerate.commands.config import get_config_parser
from accelerate.commands.env import env_command_parser
from accelerate.commands.estimate import estimate_command_parser
from accelerate.commands.launch import launch_command_parser
from accelerate.commands.merge import merge_command_parser
from accelerate.commands.test import test_command_parser
from accelerate.commands.tpu import tpu_command_parser
from accelerate.commands.utils import CustomArgumentParser
def main():
parser = CustomArgumentParser('Accelerate CLI tool', usage='accelerate []', allow_abbrev=False)
subparsers = parser.add_subparsers(help='accelerate command helpers')
get_config_parser(subparsers=subparsers)
estimate_command_parser(subparsers=subparsers)
env_command_parser(subparsers=subparsers)
launch_command_parser(subparsers=subparsers)
merge_command_parser(subparsers=subparsers)
tpu_command_parser(subparsers=subparsers)
test_command_parser(subparsers=subparsers)
args = parser.parse_args()
if not hasattr(args, 'func'):
parser.print_help()
exit(1)
args.func(args)
if __name__ == '__main__':
main()
# File: accelerate-main/src/accelerate/commands/config/__init__.py
import argparse
from .config import config_command_parser
from .config_args import default_config_file, load_config_from_file
from .default import default_command_parser
from .update import update_command_parser
def get_config_parser(subparsers=None):
parent_parser = argparse.ArgumentParser(add_help=False, allow_abbrev=False)
config_parser = config_command_parser(subparsers)
subcommands = config_parser.add_subparsers(title='subcommands', dest='subcommand')
default_command_parser(subcommands, parents=[parent_parser])
update_command_parser(subcommands, parents=[parent_parser])
return config_parser
def main():
config_parser = get_config_parser()
args = config_parser.parse_args()
if not hasattr(args, 'func'):
config_parser.print_help()
exit(1)
args.func(args)
if __name__ == '__main__':
main()
# File: accelerate-main/src/accelerate/commands/config/cluster.py
import os
from ...utils import ComputeEnvironment, DistributedType, is_deepspeed_available, is_fp8_available, is_mlu_available, is_mps_available, is_msamp_available, is_musa_available, is_npu_available, is_transformer_engine_available, is_transformers_available, is_xpu_available
from ...utils.constants import DEEPSPEED_MULTINODE_LAUNCHERS, FSDP_AUTO_WRAP_POLICY, FSDP_BACKWARD_PREFETCH, FSDP_SHARDING_STRATEGY, FSDP_STATE_DICT_TYPE, TORCH_DYNAMO_MODES
from .config_args import ClusterConfig
from .config_utils import DYNAMO_BACKENDS, _ask_field, _ask_options, _convert_distributed_mode, _convert_dynamo_backend, _convert_fp8_backend, _convert_mixed_precision, _convert_yes_no_to_bool
def get_cluster_input():
distributed_type = _ask_options('Which type of machine are you using?', ['No distributed training', 'multi-CPU', 'multi-XPU', 'multi-GPU', 'multi-NPU', 'multi-MLU', 'multi-MUSA', 'TPU'], _convert_distributed_mode)
machine_rank = 0
num_machines = 1
num_processes = 1
gpu_ids = None
main_process_ip = None
main_process_port = None
rdzv_backend = 'static'
same_network = True
debug = False
if distributed_type in [DistributedType.MULTI_GPU, DistributedType.MULTI_MLU, DistributedType.MULTI_MUSA, DistributedType.MULTI_NPU, DistributedType.MULTI_XPU, DistributedType.MULTI_CPU]:
num_machines = _ask_field('How many different machines will you use (use more than 1 for multi-node training)? [1]: ', int, default=1)
if num_machines > 1:
machine_rank = _ask_options('What is the rank of this machine?', list(range(num_machines)), int)
main_process_ip = _ask_field('What is the IP address of the machine that will host the main process? ')
main_process_port = _ask_field('What is the port you will use to communicate with the main process? ', int)
same_network = _ask_field('Are all the machines on the same local network? Answer `no` if nodes are on the cloud and/or on different network hosts [YES/no]: ', _convert_yes_no_to_bool, default=True, error_message='Please enter yes or no.')
if not same_network:
rdzv_backend = _ask_field("What rendezvous backend will you use? ('static', 'c10d', ...): ", default='static')
debug = _ask_field('Should distributed operations be checked while running for errors? This can avoid timeout issues but will be slower. [yes/NO]: ', _convert_yes_no_to_bool, default=False, error_message='Please enter yes or no.')
if distributed_type == DistributedType.NO:
use_cpu = _ask_field('Do you want to run your training on CPU only (even if a GPU / Apple Silicon / Ascend NPU device is available)? [yes/NO]:', _convert_yes_no_to_bool, default=False, error_message='Please enter yes or no.')
elif distributed_type == DistributedType.MULTI_CPU:
use_cpu = True
else:
use_cpu = False
ipex_config = {}
mpirun_config = {}
if use_cpu:
ipex_config['ipex'] = _ask_field('Do you want to use Intel PyTorch Extension (IPEX) to speed up training on CPU? [yes/NO]:', _convert_yes_no_to_bool, default=False, error_message='Please enter yes or no.')
if distributed_type == DistributedType.MULTI_CPU:
use_mpirun = _ask_field('Do you want accelerate to launch mpirun? [yes/NO]: ', _convert_yes_no_to_bool, default=False, error_message='Please enter yes or no.')
if use_mpirun:
mpirun_hostfile = _ask_field('Please enter the path to the hostfile to use with mpirun [~/hostfile]: ', str, default='~/hostfile')
mpirun_config['mpirun_hostfile'] = os.path.expanduser(mpirun_hostfile.strip())
mpirun_config['mpirun_ccl'] = _ask_field('Enter the number of oneCCL worker threads [1]: ', default=1)
if not use_cpu and is_xpu_available() and (distributed_type not in [DistributedType.MULTI_GPU, DistributedType.MULTI_NPU, DistributedType.MULTI_MLU, DistributedType.XLA, DistributedType.MULTI_MUSA]):
ipex_config['use_xpu'] = _ask_field('Do you want to use XPU plugin to speed up training on XPU? [yes/NO]:', _convert_yes_no_to_bool, default=False, error_message='Please enter yes or no.')
dynamo_config = {}
use_dynamo = _ask_field('Do you wish to optimize your script with torch dynamo?[yes/NO]:', _convert_yes_no_to_bool, default=False, error_message='Please enter yes or no.')
if use_dynamo:
prefix = 'dynamo_'
dynamo_config[prefix + 'backend'] = _ask_options('Which dynamo backend would you like to use?', [x.lower() for x in DYNAMO_BACKENDS], _convert_dynamo_backend, default=2)
use_custom_options = _ask_field('Do you want to customize the defaults sent to torch.compile? [yes/NO]: ', _convert_yes_no_to_bool, default=False, error_message='Please enter yes or no.')
if use_custom_options:
dynamo_config[prefix + 'mode'] = _ask_options('Which mode do you want to use?', TORCH_DYNAMO_MODES, lambda x: TORCH_DYNAMO_MODES[int(x)], default=0)
dynamo_config[prefix + 'use_fullgraph'] = _ask_field('Do you want the fullgraph mode or it is ok to break model into several subgraphs? [yes/NO]: ', _convert_yes_no_to_bool, default=False, error_message='Please enter yes or no.')
dynamo_config[prefix + 'use_dynamic'] = _ask_field('Do you want to enable dynamic shape tracing? [yes/NO]: ', _convert_yes_no_to_bool, default=False, error_message='Please enter yes or no.')
use_mps = not use_cpu and is_mps_available()
deepspeed_config = {}
if distributed_type in [DistributedType.MULTI_GPU, DistributedType.MULTI_XPU, DistributedType.MULTI_NPU, DistributedType.MULTI_MLU, DistributedType.MULTI_MUSA, DistributedType.NO] and (not use_mps):
use_deepspeed = _ask_field('Do you want to use DeepSpeed? [yes/NO]: ', _convert_yes_no_to_bool, default=False, error_message='Please enter yes or no.')
if use_deepspeed:
distributed_type = DistributedType.DEEPSPEED
assert is_deepspeed_available(), 'DeepSpeed is not installed => run `pip3 install deepspeed` or build it from source'
if distributed_type == DistributedType.DEEPSPEED:
use_deepspeed_config = _ask_field('Do you want to specify a json file to a DeepSpeed config? [yes/NO]: ', _convert_yes_no_to_bool, default=False, error_message='Please enter yes or no.')
if use_deepspeed_config:
deepspeed_config['deepspeed_config_file'] = _ask_field('Please enter the path to the json DeepSpeed config file: ', str, default='none')
else:
deepspeed_config['zero_stage'] = _ask_options("What should be your DeepSpeed's ZeRO optimization stage?", [0, 1, 2, 3], int, default=2)
deepspeed_devices = ['none', 'cpu', 'nvme']
if deepspeed_config['zero_stage'] >= 2:
deepspeed_config['offload_optimizer_device'] = _ask_options('Where to offload optimizer states?', deepspeed_devices, lambda x: deepspeed_devices[int(x)])
deepspeed_config['offload_param_device'] = _ask_options('Where to offload parameters?', deepspeed_devices, lambda x: deepspeed_devices[int(x)])
if deepspeed_config['offload_param_device'] == 'nvme':
deepspeed_config['offload_param_nvme_path'] = _ask_field('Nvme Path to offload parameters?', str, default='/nvme')
if deepspeed_config['offload_optimizer_device'] == 'nvme':
deepspeed_config['offload_optimizer_nvme_path'] = _ask_field('Nvme Path to offload optimizer states?', str, default='/nvme')
deepspeed_config['gradient_accumulation_steps'] = _ask_field("How many gradient accumulation steps you're passing in your script? [1]: ", int, default=1)
use_gradient_clipping = _ask_field('Do you want to use gradient clipping? [yes/NO]: ', _convert_yes_no_to_bool, default=False, error_message='Please enter yes or no.')
if use_gradient_clipping:
deepspeed_config['gradient_clipping'] = _ask_field('What is the gradient clipping value? [1.0]: ', float, default=1.0)
if deepspeed_config['zero_stage'] == 3:
deepspeed_config['zero3_save_16bit_model'] = _ask_field('Do you want to save 16-bit model weights when using ZeRO Stage-3? [yes/NO]: ', _convert_yes_no_to_bool, default=False, error_message='Please enter yes or no.')
deepspeed_config['zero3_init_flag'] = _ask_field('Do you want to enable `deepspeed.zero.Init` when using ZeRO Stage-3 for constructing massive models? [yes/NO]: ', _convert_yes_no_to_bool, default=False, error_message='Please enter yes or no.')
if deepspeed_config['zero3_init_flag']:
if not is_transformers_available():
raise Exception('When `zero3_init_flag` is set, it requires Transformers to be installed. Please run `pip3 install transformers`.')
use_moe = _ask_field('Do you want to enable Mixture-of-Experts training (MoE)? [yes/NO]: ', _convert_yes_no_to_bool, default=False, error_message='Please enter yes or no.')
if use_moe:
deepspeed_config['deepspeed_moe_layer_cls_names'] = _ask_field('Specify the comma-separated list of transformers MoE layer class names (case-sensitive), e.g : `MixtralSparseMoeBlock`, `Qwen2MoeSparseMoeBlock`, `JetMoEAttention,JetMoEBlock` ... : ', str)
if num_machines > 1:
launcher_query = 'Which Type of launcher do you want to use?'
deepspeed_config['deepspeed_multinode_launcher'] = _ask_options(launcher_query, DEEPSPEED_MULTINODE_LAUNCHERS, lambda x: DEEPSPEED_MULTINODE_LAUNCHERS[int(x)])
if deepspeed_config['deepspeed_multinode_launcher'] != DEEPSPEED_MULTINODE_LAUNCHERS[1]:
deepspeed_config['deepspeed_hostfile'] = _ask_field('DeepSpeed configures multi-node compute resources with hostfile. Each row is of the format `hostname slots=[num_gpus]`, e.g., `localhost slots=2`; for more information please refer official [documentation](https://www.deepspeed.ai/getting-started/#resource-configuration-multi-node). Please specify the location of hostfile: ', str)
is_exclusion_filter = _ask_field('Do you want to specify exclusion filter string? [yes/NO]: ', _convert_yes_no_to_bool, default=False, error_message='Please enter yes or no.')
if is_exclusion_filter:
deepspeed_config['deepspeed_exclusion_filter'] = _ask_field('DeepSpeed exclusion filter string: ', str)
is_inclusion_filter = _ask_field('Do you want to specify inclusion filter string? [yes/NO]: ', _convert_yes_no_to_bool, default=False, error_message='Please enter yes or no.')
if is_inclusion_filter:
deepspeed_config['deepspeed_inclusion_filter'] = _ask_field('DeepSpeed inclusion filter string: ', str)
fsdp_config = {}
if distributed_type in [DistributedType.MULTI_GPU, DistributedType.MULTI_NPU, DistributedType.MULTI_MLU, DistributedType.MULTI_MUSA, DistributedType.MULTI_XPU]:
use_fsdp = _ask_field('Do you want to use FullyShardedDataParallel? [yes/NO]: ', _convert_yes_no_to_bool, default=False, error_message='Please enter yes or no.')
if use_fsdp:
distributed_type = DistributedType.FSDP
if distributed_type == DistributedType.FSDP:
sharding_strategy_query = 'What should be your sharding strategy?'
fsdp_config['fsdp_sharding_strategy'] = _ask_options(sharding_strategy_query, FSDP_SHARDING_STRATEGY, lambda x: FSDP_SHARDING_STRATEGY[int(x)])
fsdp_config['fsdp_offload_params'] = _ask_field('Do you want to offload parameters and gradients to CPU? [yes/NO]: ', _convert_yes_no_to_bool, default=False, error_message='Please enter yes or no.')
fsdp_wrap_query = 'What should be your auto wrap policy?'
fsdp_config['fsdp_auto_wrap_policy'] = _ask_options(fsdp_wrap_query, FSDP_AUTO_WRAP_POLICY, lambda x: FSDP_AUTO_WRAP_POLICY[int(x)])
if fsdp_config['fsdp_auto_wrap_policy'] == FSDP_AUTO_WRAP_POLICY[0]:
use_no_split_modules = _ask_field("Do you want to use the model's `_no_split_modules` to wrap. Only applicable for 🤗 Transformers [yes/NO]: ", _convert_yes_no_to_bool, default=False, error_message='Please enter yes or no.')
if not use_no_split_modules:
fsdp_config['fsdp_transformer_layer_cls_to_wrap'] = _ask_field('Specify the comma-separated list of transformer layer class names (case-sensitive) to wrap ,e.g, :`BertLayer`, `GPTJBlock`, `T5Block`, `BertLayer,BertEmbeddings,BertSelfOutput` ...? : ', str)
elif fsdp_config['fsdp_auto_wrap_policy'] == FSDP_AUTO_WRAP_POLICY[1]:
fsdp_config['fsdp_min_num_params'] = _ask_field("What should be your FSDP's minimum number of parameters for Default Auto Wrapping Policy? [1e8]: ", int, default=100000000)
fsdp_backward_prefetch_query = "What should be your FSDP's backward prefetch policy?"
fsdp_config['fsdp_backward_prefetch'] = _ask_options(fsdp_backward_prefetch_query, FSDP_BACKWARD_PREFETCH, lambda x: FSDP_BACKWARD_PREFETCH[int(x)])
fsdp_state_dict_type_query = "What should be your FSDP's state dict type?"
fsdp_config['fsdp_state_dict_type'] = _ask_options(fsdp_state_dict_type_query, FSDP_STATE_DICT_TYPE, lambda x: FSDP_STATE_DICT_TYPE[int(x)], default=2)
fsdp_config['fsdp_forward_prefetch'] = _ask_field("Do you want to enable FSDP's forward prefetch policy? [yes/NO]: ", _convert_yes_no_to_bool, default=False, error_message='Please enter yes or no.')
fsdp_config['fsdp_use_orig_params'] = _ask_field("Do you want to enable FSDP's `use_orig_params` feature? [YES/no]: ", _convert_yes_no_to_bool, default=True, error_message='Please enter yes or no.')
fsdp_config['fsdp_cpu_ram_efficient_loading'] = _ask_field('Do you want to enable CPU RAM efficient model loading? Only applicable for 🤗 Transformers models. [YES/no]: ', _convert_yes_no_to_bool, default=True, error_message='Please enter yes or no.')
if fsdp_config['fsdp_cpu_ram_efficient_loading']:
fsdp_config['fsdp_sync_module_states'] = True
else:
fsdp_config['fsdp_sync_module_states'] = _ask_field('Do you want each individually wrapped FSDP unit to broadcast module parameters from rank 0 at the start? [YES/no]: ', _convert_yes_no_to_bool, default=True, error_message='Please enter yes or no.')
fsdp_config['fsdp_activation_checkpointing'] = _ask_field('Do you want to enable FSDP activation checkpointing? [yes/NO]: ', _convert_yes_no_to_bool, default=False, error_message='Please enter yes or no.')
megatron_lm_config = {}
if distributed_type in [DistributedType.MULTI_GPU]:
use_megatron_lm = _ask_field('Do you want to use Megatron-LM ? [yes/NO]: ', _convert_yes_no_to_bool, default=False, error_message='Please enter yes or no.')
if use_megatron_lm:
distributed_type = DistributedType.MEGATRON_LM
if distributed_type == DistributedType.MEGATRON_LM:
prefix = 'megatron_lm_'
megatron_lm_config[prefix + 'tp_degree'] = _ask_field('What is the Tensor Parallelism degree/size? [1]:', int, default=1, error_message='Please enter an integer.')
if megatron_lm_config[prefix + 'tp_degree'] > 1:
megatron_lm_config[prefix + 'sequence_parallelism'] = _ask_field('Do you want to enable Sequence Parallelism? [YES/no]: ', _convert_yes_no_to_bool, default=True, error_message='Please enter yes or no.')
megatron_lm_config[prefix + 'pp_degree'] = _ask_field('What is the Pipeline Parallelism degree/size? [1]:', int, default=1, error_message='Please enter an integer.')
if megatron_lm_config[prefix + 'pp_degree'] > 1:
megatron_lm_config[prefix + 'num_micro_batches'] = _ask_field('What is the number of micro-batches? [1]:', int, default=1, error_message='Please enter an integer.')
megatron_lm_config[prefix + 'recompute_activations'] = _ask_field('Do you want to enable selective activation recomputation? [YES/no]: ', _convert_yes_no_to_bool, default=True, error_message='Please enter yes or no.')
megatron_lm_config[prefix + 'use_distributed_optimizer'] = _ask_field('Do you want to use distributed optimizer which shards optimizer state and gradients across data parallel ranks? [YES/no]: ', _convert_yes_no_to_bool, default=True, error_message='Please enter yes or no.')
megatron_lm_config[prefix + 'gradient_clipping'] = _ask_field('What is the gradient clipping value based on global L2 Norm (0 to disable)? [1.0]: ', float, default=1.0)
tpu_commands = None
tpu_command_file = None
tpu_downcast_bf16 = 'no'
tpu_env = []
tpu_name = None
tpu_vm = None
tpu_zone = None
tpu_use_sudo = False
tpu_use_cluster = False
if distributed_type in [DistributedType.MULTI_CPU, DistributedType.MULTI_XPU, DistributedType.MULTI_GPU, DistributedType.MULTI_MLU, DistributedType.MULTI_MUSA, DistributedType.MULTI_NPU, DistributedType.XLA]:
machine_type = str(distributed_type).split('.')[1].replace('MULTI_', '')
if machine_type == 'TPU':
machine_type += ' cores'
elif machine_type == 'CPU':
machine_type = 'processes'
else:
machine_type += '(s)'
num_processes = _ask_field(f'How many {machine_type} should be used for distributed training? [1]:', int, default=1, error_message='Please enter an integer.')
elif distributed_type in [DistributedType.FSDP, DistributedType.DEEPSPEED, DistributedType.MEGATRON_LM]:
num_processes = _ask_field('How many GPU(s) should be used for distributed training? [1]:', int, default=1, error_message='Please enter an integer.')
else:
num_processes = 1
if distributed_type == DistributedType.MULTI_GPU and num_machines == 1 and (num_processes == 1):
raise ValueError(f'Specified distributed type {distributed_type} but only using 1 GPU on a single machine. Please select `No distributed training` for the type of machine you are using.')
if distributed_type in [DistributedType.MULTI_GPU, DistributedType.MULTI_MLU, DistributedType.MULTI_MUSA, DistributedType.MULTI_NPU, DistributedType.MULTI_XPU, DistributedType.NO] and (not use_cpu) and (not use_mps):
if is_npu_available():
machine_type = 'NPU(s)'
elif is_mlu_available():
machine_type = 'MLU(s)'
elif is_musa_available():
machine_type = 'MUSA(s)'
else:
machine_type = 'GPU(s)'
gpu_ids = _ask_field(f'What {machine_type} (by id) should be used for training on this machine as a comma-seperated list? [all]:', default='all')
enable_cpu_affinity = False
if distributed_type in (DistributedType.NO, DistributedType.MULTI_GPU) and (not use_cpu) and (not use_mps):
enable_cpu_affinity = _ask_field('Would you like to enable numa efficiency? (Currently only supported on NVIDIA hardware). [yes/NO]: ', _convert_yes_no_to_bool, default=False, error_message='Please enter yes or no.')
fp8_config = None
if distributed_type == DistributedType.XLA:
mixed_precision = 'no'
main_training_function = _ask_field('What is the name of the function in your script that should be launched in all parallel scripts? [main]: ', default='main')
tpu_use_cluster = _ask_field('Are you using a TPU cluster? [yes/NO]: ', _convert_yes_no_to_bool, default=False, error_message='Please enter yes or no.')
if tpu_use_cluster:
tpu_name = _ask_field('What is the name of your TPU cluster? ', default=None, error_message='Please enter the name of your TPU cluster.')
tpu_zone = _ask_field('What is the zone of your TPU cluster? ', default=None, error_message='Please enter the zone of your TPU cluster.')
tpu_use_sudo = _ask_field('To run a python script in a TPU pod, should `sudo` be used? [yes/NO]: ', default=False, error_message='Please enter yes or no.')
run_commands = _ask_field('Do you have code you wish to run on startup in each pod? [yes/NO]: ', _convert_yes_no_to_bool, default=False, error_message='Please enter yes or no.')
if run_commands:
use_command_file = _ask_field('Is this code located in a bash script? [yes/NO]: ', _convert_yes_no_to_bool, default=False, error_message='Please enter yes or no.')
if use_command_file:
tpu_command_file = _ask_field('What is the path to your bash script? ', default=None, error_message='Please enter the path to your bash script.')
tpu_command_file = os.path.abspath(tpu_command_file)
else:
print('Please enter each command seperately you wish to run on startup in each pod.')
tpu_commands = []
another_command = True
while another_command:
tpu_commands.append(_ask_field('Please enter a single command to be ran ', default=None, error_message='Please enter the commands you wish to run on startup in each pod as a single string.'))
another_command = _ask_field('Do you wish to add another command? [yes/NO]: ', _convert_yes_no_to_bool, default=False, error_message='Please enter yes or no.')
tpu_vm = _ask_field('If not using an instance group, what are the names of the Compute VM instances to be used, seperated by a comma: ', default='').split(',')
tpu_env = _ask_field('What environment variables do you wish to set in each pod, seperated by a comma: ', default='').split(',')
else:
main_training_function = 'main'
if distributed_type == DistributedType.DEEPSPEED and use_deepspeed_config:
mixed_precision = None
else:
mixed_precision = _ask_options('Do you wish to use mixed precision?', ['no', 'fp16', 'bf16', 'fp8'], _convert_mixed_precision)
if mixed_precision == 'fp8':
if not is_fp8_available():
raise ValueError('FP8 (either Transformer Engine or MSAMP) is not installed on this machine.')
fp8_config = {}
fp8_config['backend'] = _ask_options('Which FP8 backend do you want to use?', ['te', 'msamp'], _convert_fp8_backend)
if fp8_config['backend'] == 'TE':
if not is_transformer_engine_available():
raise ValueError('TransformersEngine was selected, but it is not installed on this machine.')
fp8_config['use_autocast_during_eval'] = _ask_field('Do you want to use FP8 autocast during eval mode? Generally better metrics are found when this is disabled [yes/NO]: ', _convert_yes_no_to_bool, default=False)
fp8_config['margin'] = _ask_field('What margin should be used for gradient scaling? [0]: ', int, default=0)
fp8_config['interval'] = _ask_field('What interval should be used for for how often the scaling factor is recomputed? [1]: ', int, default=1)
fp8_config['fp8_format'] = _ask_options('Which weight format should be used?', ['HYBRID', 'E4M3'], lambda x: 'HYBRID' if x == 0 else 'E4M3', default=0)
fp8_config['amax_history_length'] = _ask_field('What length of history should be used for the amax scaling factor computation? [1024]: ', int, default=1024)
fp8_config['amax_compute_algorithm'] = _ask_options('Which algorithm should be used for the amax scaling factor computation?', ['max', 'most_recent'], lambda x: 'max' if x == 0 else 'most_recent', default=0)
fp8_config['override_linear_precision'] = _ask_field('Do you want to to execute `fprop`, `dgrad`, and `wgrad` GEMMS in higher precision? [yes/NO]: ', _convert_yes_no_to_bool, default=False)
if fp8_config['override_linear_precision']:
fprop = _ask_field('Should `fprop` be executed in higher precision? [yes/NO]: ', _convert_yes_no_to_bool, default=False)
dgrad = _ask_field('Should `dgrad` be executed in higher precision? [yes/NO]: ', _convert_yes_no_to_bool, default=False)
wgrad = _ask_field('Should `wgrad` be executed in higher precision? [yes/NO]: ', _convert_yes_no_to_bool, default=False)
fp8_config['override_linear_precision'] = (fprop, dgrad, wgrad)
elif fp8_config['backend'] == 'MSAMP':
if not is_msamp_available():
raise ValueError('MSAMP was selected, but it is not installed on this machine.')
fp8_config['optimization_level'] = _ask_options('Which optimization level should be used?', ['O1', 'O2'], lambda x: 'O1' if x == 0 else 'O2', default=1)
if use_dynamo and mixed_precision == 'no' and (not use_cpu):
print('Torch dynamo used without mixed precision requires TF32 to be efficient. Accelerate will enable it by default when launching your scripts.')
if distributed_type == DistributedType.XLA and mixed_precision == 'bf16':
tpu_downcast_bf16 = _ask_field('Should `torch.float` be cast as `bfloat16` and `torch.double` remain `float32` on TPUs?', default='no')
return ClusterConfig(compute_environment=ComputeEnvironment.LOCAL_MACHINE, distributed_type=distributed_type, num_processes=num_processes, gpu_ids=gpu_ids, mixed_precision=mixed_precision, downcast_bf16=tpu_downcast_bf16, machine_rank=machine_rank, num_machines=num_machines, main_process_ip=main_process_ip, main_process_port=main_process_port, main_training_function=main_training_function, fp8_config=fp8_config, deepspeed_config=deepspeed_config, fsdp_config=fsdp_config, megatron_lm_config=megatron_lm_config, ipex_config=ipex_config, mpirun_config=mpirun_config, use_cpu=use_cpu, rdzv_backend=rdzv_backend, same_network=same_network, commands=tpu_commands, command_file=tpu_command_file, tpu_env=tpu_env, tpu_name=tpu_name, tpu_vm=tpu_vm, tpu_zone=tpu_zone, tpu_use_sudo=tpu_use_sudo, tpu_use_cluster=tpu_use_cluster, dynamo_config=dynamo_config, debug=debug, enable_cpu_affinity=enable_cpu_affinity)
# File: accelerate-main/src/accelerate/commands/config/config.py
import argparse
import os
from accelerate.utils import ComputeEnvironment
from .cluster import get_cluster_input
from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file
from .config_utils import _ask_field, _ask_options, _convert_compute_environment
from .sagemaker import get_sagemaker_input
description = 'Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine'
def get_user_input():
compute_environment = _ask_options('In which compute environment are you running?', ['This machine', 'AWS (Amazon SageMaker)'], _convert_compute_environment)
if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER:
config = get_sagemaker_input()
else:
config = get_cluster_input()
return config
def config_command_parser(subparsers=None):
if subparsers is not None:
parser = subparsers.add_parser('config', description=description)
else:
parser = argparse.ArgumentParser('Accelerate config command', description=description)
parser.add_argument('--config_file', default=None, help="The path to use to store the config file. Will default to a file named default_config.yaml in the cache location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed with 'huggingface'.")
if subparsers is not None:
parser.set_defaults(func=config_command)
return parser
def config_command(args):
config = get_user_input()
if args.config_file is not None:
config_file = args.config_file
else:
if not os.path.isdir(cache_dir):
os.makedirs(cache_dir)
config_file = default_yaml_config_file
if config_file.endswith('.json'):
config.to_json_file(config_file)
else:
config.to_yaml_file(config_file)
print(f'accelerate configuration saved at {config_file}')
def main():
parser = config_command_parser()
args = parser.parse_args()
config_command(args)
if __name__ == '__main__':
main()
# File: accelerate-main/src/accelerate/commands/config/config_args.py
import json
import os
from dataclasses import dataclass
from enum import Enum
from typing import List, Optional, Union
import yaml
from ...utils import ComputeEnvironment, DistributedType, SageMakerDistributedType
from ...utils.constants import SAGEMAKER_PYTHON_VERSION, SAGEMAKER_PYTORCH_VERSION, SAGEMAKER_TRANSFORMERS_VERSION
hf_cache_home = os.path.expanduser(os.environ.get('HF_HOME', os.path.join(os.environ.get('XDG_CACHE_HOME', '~/.cache'), 'huggingface')))
cache_dir = os.path.join(hf_cache_home, 'accelerate')
default_json_config_file = os.path.join(cache_dir, 'default_config.yaml')
default_yaml_config_file = os.path.join(cache_dir, 'default_config.yaml')
if os.path.isfile(default_yaml_config_file) or not os.path.isfile(default_json_config_file):
default_config_file = default_yaml_config_file
else:
default_config_file = default_json_config_file
def load_config_from_file(config_file):
if config_file is not None:
if not os.path.isfile(config_file):
raise FileNotFoundError(f'The passed configuration file `{config_file}` does not exist. Please pass an existing file to `accelerate launch`, or use the default one created through `accelerate config` and run `accelerate launch` without the `--config_file` argument.')
else:
config_file = default_config_file
with open(config_file, encoding='utf-8') as f:
if config_file.endswith('.json'):
if json.load(f).get('compute_environment', ComputeEnvironment.LOCAL_MACHINE) == ComputeEnvironment.LOCAL_MACHINE:
config_class = ClusterConfig
else:
config_class = SageMakerConfig
return config_class.from_json_file(json_file=config_file)
else:
if yaml.safe_load(f).get('compute_environment', ComputeEnvironment.LOCAL_MACHINE) == ComputeEnvironment.LOCAL_MACHINE:
config_class = ClusterConfig
else:
config_class = SageMakerConfig
return config_class.from_yaml_file(yaml_file=config_file)
@dataclass
class BaseConfig:
compute_environment: ComputeEnvironment
distributed_type: Union[DistributedType, SageMakerDistributedType]
mixed_precision: str
use_cpu: bool
debug: bool
def to_dict(self):
result = self.__dict__
def _convert_enums(value):
if isinstance(value, Enum):
return value.value
if isinstance(value, dict):
if not bool(value):
return None
for (key1, value1) in value.items():
value[key1] = _convert_enums(value1)
return value
for (key, value) in result.items():
result[key] = _convert_enums(value)
result = {k: v for (k, v) in result.items() if v is not None}
return result
@staticmethod
def process_config(config_dict):
if 'compute_environment' not in config_dict:
config_dict['compute_environment'] = ComputeEnvironment.LOCAL_MACHINE
if 'distributed_type' not in config_dict:
raise ValueError('A `distributed_type` must be specified in the config file.')
if 'num_processes' not in config_dict and config_dict['distributed_type'] == DistributedType.NO:
config_dict['num_processes'] = 1
if 'mixed_precision' not in config_dict:
config_dict['mixed_precision'] = 'fp16' if 'fp16' in config_dict and config_dict['fp16'] else None
if 'fp16' in config_dict:
del config_dict['fp16']
if 'dynamo_backend' in config_dict:
dynamo_backend = config_dict.pop('dynamo_backend')
config_dict['dynamo_config'] = {} if dynamo_backend == 'NO' else {'dynamo_backend': dynamo_backend}
if 'use_cpu' not in config_dict:
config_dict['use_cpu'] = False
if 'debug' not in config_dict:
config_dict['debug'] = False
if 'enable_cpu_affinity' not in config_dict:
config_dict['enable_cpu_affinity'] = False
return config_dict
@classmethod
def from_json_file(cls, json_file=None):
json_file = default_json_config_file if json_file is None else json_file
with open(json_file, encoding='utf-8') as f:
config_dict = json.load(f)
config_dict = cls.process_config(config_dict)
extra_keys = sorted(set(config_dict.keys()) - set(cls.__dataclass_fields__.keys()))
if len(extra_keys) > 0:
raise ValueError(f'The config file at {json_file} had unknown keys ({extra_keys}), please try upgrading your `accelerate` version or fix (and potentially remove) these keys from your config file.')
return cls(**config_dict)
def to_json_file(self, json_file):
with open(json_file, 'w', encoding='utf-8') as f:
content = json.dumps(self.to_dict(), indent=2, sort_keys=True) + '\n'
f.write(content)
@classmethod
def from_yaml_file(cls, yaml_file=None):
yaml_file = default_yaml_config_file if yaml_file is None else yaml_file
with open(yaml_file, encoding='utf-8') as f:
config_dict = yaml.safe_load(f)
config_dict = cls.process_config(config_dict)
extra_keys = sorted(set(config_dict.keys()) - set(cls.__dataclass_fields__.keys()))
if len(extra_keys) > 0:
raise ValueError(f'The config file at {yaml_file} had unknown keys ({extra_keys}), please try upgrading your `accelerate` version or fix (and potentially remove) these keys from your config file.')
return cls(**config_dict)
def to_yaml_file(self, yaml_file):
with open(yaml_file, 'w', encoding='utf-8') as f:
yaml.safe_dump(self.to_dict(), f)
def __post_init__(self):
if isinstance(self.compute_environment, str):
self.compute_environment = ComputeEnvironment(self.compute_environment)
if isinstance(self.distributed_type, str):
if self.compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER:
self.distributed_type = SageMakerDistributedType(self.distributed_type)
else:
self.distributed_type = DistributedType(self.distributed_type)
if getattr(self, 'dynamo_config', None) is None:
self.dynamo_config = {}
@dataclass
class ClusterConfig(BaseConfig):
num_processes: int = -1
machine_rank: int = 0
num_machines: int = 1
gpu_ids: Optional[str] = None
main_process_ip: Optional[str] = None
main_process_port: Optional[int] = None
rdzv_backend: Optional[str] = 'static'
same_network: Optional[bool] = False
main_training_function: str = 'main'
enable_cpu_affinity: bool = False
fp8_config: dict = None
deepspeed_config: dict = None
fsdp_config: dict = None
megatron_lm_config: dict = None
ipex_config: dict = None
mpirun_config: dict = None
downcast_bf16: bool = False
tpu_name: str = None
tpu_zone: str = None
tpu_use_cluster: bool = False
tpu_use_sudo: bool = False
command_file: str = None
commands: List[str] = None
tpu_vm: List[str] = None
tpu_env: List[str] = None
dynamo_config: dict = None
def __post_init__(self):
if self.deepspeed_config is None:
self.deepspeed_config = {}
if self.fsdp_config is None:
self.fsdp_config = {}
if self.megatron_lm_config is None:
self.megatron_lm_config = {}
if self.ipex_config is None:
self.ipex_config = {}
if self.mpirun_config is None:
self.mpirun_config = {}
if self.fp8_config is None:
self.fp8_config = {}
return super().__post_init__()
@dataclass
class SageMakerConfig(BaseConfig):
ec2_instance_type: str
iam_role_name: str
image_uri: Optional[str] = None
profile: Optional[str] = None
region: str = 'us-east-1'
num_machines: int = 1
gpu_ids: str = 'all'
base_job_name: str = f'accelerate-sagemaker-{num_machines}'
pytorch_version: str = SAGEMAKER_PYTORCH_VERSION
transformers_version: str = SAGEMAKER_TRANSFORMERS_VERSION
py_version: str = SAGEMAKER_PYTHON_VERSION
sagemaker_inputs_file: str = None
sagemaker_metrics_file: str = None
additional_args: dict = None
dynamo_config: dict = None
enable_cpu_affinity: bool = False
# File: accelerate-main/src/accelerate/commands/config/config_utils.py
import argparse
from ...utils.dataclasses import ComputeEnvironment, DistributedType, DynamoBackend, FP8BackendType, PrecisionType, SageMakerDistributedType
from ..menu import BulletMenu
DYNAMO_BACKENDS = ['EAGER', 'AOT_EAGER', 'INDUCTOR', 'AOT_TS_NVFUSER', 'NVPRIMS_NVFUSER', 'CUDAGRAPHS', 'OFI', 'FX2TRT', 'ONNXRT', 'TENSORRT', 'AOT_TORCHXLA_TRACE_ONCE', 'TORHCHXLA_TRACE_ONCE', 'IPEX', 'TVM']
def _ask_field(input_text, convert_value=None, default=None, error_message=None):
ask_again = True
while ask_again:
result = input(input_text)
try:
if default is not None and len(result) == 0:
return default
return convert_value(result) if convert_value is not None else result
except Exception:
if error_message is not None:
print(error_message)
def _ask_options(input_text, options=[], convert_value=None, default=0):
menu = BulletMenu(input_text, options)
result = menu.run(default_choice=default)
return convert_value(result) if convert_value is not None else result
def _convert_compute_environment(value):
value = int(value)
return ComputeEnvironment(['LOCAL_MACHINE', 'AMAZON_SAGEMAKER'][value])
def _convert_distributed_mode(value):
value = int(value)
return DistributedType(['NO', 'MULTI_CPU', 'MULTI_XPU', 'MULTI_GPU', 'MULTI_NPU', 'MULTI_MLU', 'MULTI_MUSA', 'XLA'][value])
def _convert_dynamo_backend(value):
value = int(value)
return DynamoBackend(DYNAMO_BACKENDS[value]).value
def _convert_mixed_precision(value):
value = int(value)
return PrecisionType(['no', 'fp16', 'bf16', 'fp8'][value])
def _convert_sagemaker_distributed_mode(value):
value = int(value)
return SageMakerDistributedType(['NO', 'DATA_PARALLEL', 'MODEL_PARALLEL'][value])
def _convert_fp8_backend(value):
value = int(value)
return FP8BackendType(['TE', 'MSAMP'][value])
def _convert_yes_no_to_bool(value):
return {'yes': True, 'no': False}[value.lower()]
class SubcommandHelpFormatter(argparse.RawDescriptionHelpFormatter):
def _format_usage(self, usage, actions, groups, prefix):
usage = super()._format_usage(usage, actions, groups, prefix)
usage = usage.replace(' [] ', '')
return usage
# File: accelerate-main/src/accelerate/commands/config/default.py
from pathlib import Path
import torch
from ...utils import is_mlu_available, is_musa_available, is_npu_available, is_xpu_available
from .config_args import ClusterConfig, default_json_config_file
from .config_utils import SubcommandHelpFormatter
description = 'Create a default config file for Accelerate with only a few flags set.'
def write_basic_config(mixed_precision='no', save_location: str=default_json_config_file, use_xpu: bool=False):
path = Path(save_location)
path.parent.mkdir(parents=True, exist_ok=True)
if path.exists():
print(f'Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.')
return False
mixed_precision = mixed_precision.lower()
if mixed_precision not in ['no', 'fp16', 'bf16', 'fp8']:
raise ValueError(f"`mixed_precision` should be one of 'no', 'fp16', 'bf16', or 'fp8'. Received {mixed_precision}")
config = {'compute_environment': 'LOCAL_MACHINE', 'mixed_precision': mixed_precision}
if is_mlu_available():
num_mlus = torch.mlu.device_count()
config['num_processes'] = num_mlus
config['use_cpu'] = False
if num_mlus > 1:
config['distributed_type'] = 'MULTI_MLU'
else:
config['distributed_type'] = 'NO'
elif is_musa_available():
num_musas = torch.musa.device_count()
config['num_processes'] = num_musas
config['use_cpu'] = False
if num_musas > 1:
config['distributed_type'] = 'MULTI_MUSA'
else:
config['distributed_type'] = 'NO'
elif torch.cuda.is_available():
num_gpus = torch.cuda.device_count()
config['num_processes'] = num_gpus
config['use_cpu'] = False
if num_gpus > 1:
config['distributed_type'] = 'MULTI_GPU'
else:
config['distributed_type'] = 'NO'
elif is_xpu_available() and use_xpu:
num_xpus = torch.xpu.device_count()
config['num_processes'] = num_xpus
config['use_cpu'] = False
if num_xpus > 1:
config['distributed_type'] = 'MULTI_XPU'
else:
config['distributed_type'] = 'NO'
elif is_npu_available():
num_npus = torch.npu.device_count()
config['num_processes'] = num_npus
config['use_cpu'] = False
if num_npus > 1:
config['distributed_type'] = 'MULTI_NPU'
else:
config['distributed_type'] = 'NO'
else:
num_xpus = 0
config['use_cpu'] = True
config['num_processes'] = 1
config['distributed_type'] = 'NO'
config['debug'] = False
config['enable_cpu_affinity'] = False
config = ClusterConfig(**config)
config.to_json_file(path)
return path
def default_command_parser(parser, parents):
parser = parser.add_parser('default', parents=parents, help=description, formatter_class=SubcommandHelpFormatter)
parser.add_argument('--config_file', default=default_json_config_file, help="The path to use to store the config file. Will default to a file named default_config.yaml in the cache location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed with 'huggingface'.", dest='save_location')
parser.add_argument('--mixed_precision', choices=['no', 'fp16', 'bf16'], type=str, help='Whether or not to use mixed precision training. Choose between FP16 and BF16 (bfloat16) training. BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.', default='no')
parser.set_defaults(func=default_config_command)
return parser
def default_config_command(args):
config_file = write_basic_config(args.mixed_precision, args.save_location)
if config_file:
print(f'accelerate configuration saved at {config_file}')
# File: accelerate-main/src/accelerate/commands/config/sagemaker.py
import json
import os
from ...utils.constants import SAGEMAKER_PARALLEL_EC2_INSTANCES, TORCH_DYNAMO_MODES
from ...utils.dataclasses import ComputeEnvironment, SageMakerDistributedType
from ...utils.imports import is_boto3_available
from .config_args import SageMakerConfig
from .config_utils import DYNAMO_BACKENDS, _ask_field, _ask_options, _convert_dynamo_backend, _convert_mixed_precision, _convert_sagemaker_distributed_mode, _convert_yes_no_to_bool
if is_boto3_available():
import boto3
def _create_iam_role_for_sagemaker(role_name):
iam_client = boto3.client('iam')
sagemaker_trust_policy = {'Version': '2012-10-17', 'Statement': [{'Effect': 'Allow', 'Principal': {'Service': 'sagemaker.amazonaws.com'}, 'Action': 'sts:AssumeRole'}]}
try:
iam_client.create_role(RoleName=role_name, AssumeRolePolicyDocument=json.dumps(sagemaker_trust_policy, indent=2))
policy_document = {'Version': '2012-10-17', 'Statement': [{'Effect': 'Allow', 'Action': ['sagemaker:*', 'ecr:GetDownloadUrlForLayer', 'ecr:BatchGetImage', 'ecr:BatchCheckLayerAvailability', 'ecr:GetAuthorizationToken', 'cloudwatch:PutMetricData', 'cloudwatch:GetMetricData', 'cloudwatch:GetMetricStatistics', 'cloudwatch:ListMetrics', 'logs:CreateLogGroup', 'logs:CreateLogStream', 'logs:DescribeLogStreams', 'logs:PutLogEvents', 'logs:GetLogEvents', 's3:CreateBucket', 's3:ListBucket', 's3:GetBucketLocation', 's3:GetObject', 's3:PutObject'], 'Resource': '*'}]}
iam_client.put_role_policy(RoleName=role_name, PolicyName=f'{role_name}_policy_permission', PolicyDocument=json.dumps(policy_document, indent=2))
except iam_client.exceptions.EntityAlreadyExistsException:
print(f'role {role_name} already exists. Using existing one')
def _get_iam_role_arn(role_name):
iam_client = boto3.client('iam')
return iam_client.get_role(RoleName=role_name)['Role']['Arn']
def get_sagemaker_input():
credentials_configuration = _ask_options('How do you want to authorize?', ['AWS Profile', 'Credentials (AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY) '], int)
aws_profile = None
if credentials_configuration == 0:
aws_profile = _ask_field('Enter your AWS Profile name: [default] ', default='default')
os.environ['AWS_PROFILE'] = aws_profile
else:
print('Note you will need to provide AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY when you launch you training script with,`accelerate launch --aws_access_key_id XXX --aws_secret_access_key YYY`')
aws_access_key_id = _ask_field('AWS Access Key ID: ')
os.environ['AWS_ACCESS_KEY_ID'] = aws_access_key_id
aws_secret_access_key = _ask_field('AWS Secret Access Key: ')
os.environ['AWS_SECRET_ACCESS_KEY'] = aws_secret_access_key
aws_region = _ask_field('Enter your AWS Region: [us-east-1]', default='us-east-1')
os.environ['AWS_DEFAULT_REGION'] = aws_region
role_management = _ask_options('Do you already have an IAM Role for executing Amazon SageMaker Training Jobs?', ['Provide IAM Role name', 'Create new IAM role using credentials'], int)
if role_management == 0:
iam_role_name = _ask_field('Enter your IAM role name: ')
else:
iam_role_name = 'accelerate_sagemaker_execution_role'
print(f'Accelerate will create an iam role "{iam_role_name}" using the provided credentials')
_create_iam_role_for_sagemaker(iam_role_name)
is_custom_docker_image = _ask_field('Do you want to use custom Docker image? [yes/NO]: ', _convert_yes_no_to_bool, default=False, error_message='Please enter yes or no.')
docker_image = None
if is_custom_docker_image:
docker_image = _ask_field('Enter your Docker image: ', lambda x: str(x).lower())
is_sagemaker_inputs_enabled = _ask_field('Do you want to provide SageMaker input channels with data locations? [yes/NO]: ', _convert_yes_no_to_bool, default=False, error_message='Please enter yes or no.')
sagemaker_inputs_file = None
if is_sagemaker_inputs_enabled:
sagemaker_inputs_file = _ask_field('Enter the path to the SageMaker inputs TSV file with columns (channel_name, data_location): ', lambda x: str(x).lower())
is_sagemaker_metrics_enabled = _ask_field('Do you want to enable SageMaker metrics? [yes/NO]: ', _convert_yes_no_to_bool, default=False, error_message='Please enter yes or no.')
sagemaker_metrics_file = None
if is_sagemaker_metrics_enabled:
sagemaker_metrics_file = _ask_field('Enter the path to the SageMaker metrics TSV file with columns (metric_name, metric_regex): ', lambda x: str(x).lower())
distributed_type = _ask_options('What is the distributed mode?', ['No distributed training', 'Data parallelism'], _convert_sagemaker_distributed_mode)
dynamo_config = {}
use_dynamo = _ask_field('Do you wish to optimize your script with torch dynamo?[yes/NO]:', _convert_yes_no_to_bool, default=False, error_message='Please enter yes or no.')
if use_dynamo:
prefix = 'dynamo_'
dynamo_config[prefix + 'backend'] = _ask_options('Which dynamo backend would you like to use?', [x.lower() for x in DYNAMO_BACKENDS], _convert_dynamo_backend, default=2)
use_custom_options = _ask_field('Do you want to customize the defaults sent to torch.compile? [yes/NO]: ', _convert_yes_no_to_bool, default=False, error_message='Please enter yes or no.')
if use_custom_options:
dynamo_config[prefix + 'mode'] = _ask_options('Which mode do you want to use?', TORCH_DYNAMO_MODES, lambda x: TORCH_DYNAMO_MODES[int(x)], default='default')
dynamo_config[prefix + 'use_fullgraph'] = _ask_field('Do you want the fullgraph mode or it is ok to break model into several subgraphs? [yes/NO]: ', _convert_yes_no_to_bool, default=False, error_message='Please enter yes or no.')
dynamo_config[prefix + 'use_dynamic'] = _ask_field('Do you want to enable dynamic shape tracing? [yes/NO]: ', _convert_yes_no_to_bool, default=False, error_message='Please enter yes or no.')
ec2_instance_query = 'Which EC2 instance type you want to use for your training?'
if distributed_type != SageMakerDistributedType.NO:
ec2_instance_type = _ask_options(ec2_instance_query, SAGEMAKER_PARALLEL_EC2_INSTANCES, lambda x: SAGEMAKER_PARALLEL_EC2_INSTANCES[int(x)])
else:
ec2_instance_query += '? [ml.p3.2xlarge]:'
ec2_instance_type = _ask_field(ec2_instance_query, lambda x: str(x).lower(), default='ml.p3.2xlarge')
debug = False
if distributed_type != SageMakerDistributedType.NO:
debug = _ask_field('Should distributed operations be checked while running for errors? This can avoid timeout issues but will be slower. [yes/NO]: ', _convert_yes_no_to_bool, default=False, error_message='Please enter yes or no.')
num_machines = 1
if distributed_type in (SageMakerDistributedType.DATA_PARALLEL, SageMakerDistributedType.MODEL_PARALLEL):
num_machines = _ask_field('How many machines do you want use? [1]: ', int, default=1)
mixed_precision = _ask_options('Do you wish to use FP16 or BF16 (mixed precision)?', ['no', 'fp16', 'bf16', 'fp8'], _convert_mixed_precision)
if use_dynamo and mixed_precision == 'no':
print('Torch dynamo used without mixed precision requires TF32 to be efficient. Accelerate will enable it by default when launching your scripts.')
return SageMakerConfig(image_uri=docker_image, compute_environment=ComputeEnvironment.AMAZON_SAGEMAKER, distributed_type=distributed_type, use_cpu=False, dynamo_config=dynamo_config, ec2_instance_type=ec2_instance_type, profile=aws_profile, region=aws_region, iam_role_name=iam_role_name, mixed_precision=mixed_precision, num_machines=num_machines, sagemaker_inputs_file=sagemaker_inputs_file, sagemaker_metrics_file=sagemaker_metrics_file, debug=debug)
# File: accelerate-main/src/accelerate/commands/config/update.py
from pathlib import Path
from .config_args import default_config_file, load_config_from_file
from .config_utils import SubcommandHelpFormatter
description = 'Update an existing config file with the latest defaults while maintaining the old configuration.'
def update_config(args):
config_file = args.config_file
if config_file is None and Path(default_config_file).exists():
config_file = default_config_file
elif not Path(config_file).exists():
raise ValueError(f"The passed config file located at {config_file} doesn't exist.")
config = load_config_from_file(config_file)
if config_file.endswith('.json'):
config.to_json_file(config_file)
else:
config.to_yaml_file(config_file)
return config_file
def update_command_parser(parser, parents):
parser = parser.add_parser('update', parents=parents, help=description, formatter_class=SubcommandHelpFormatter)
parser.add_argument('--config_file', default=None, help="The path to the config file to update. Will default to a file named default_config.yaml in the cache location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed with 'huggingface'.")
parser.set_defaults(func=update_config_command)
return parser
def update_config_command(args):
config_file = update_config(args)
print(f'Sucessfully updated the configuration file at {config_file}.')
# File: accelerate-main/src/accelerate/commands/env.py
import argparse
import os
import platform
import subprocess
import numpy as np
import psutil
import torch
from accelerate import __version__ as version
from accelerate.commands.config import default_config_file, load_config_from_file
from ..utils import is_mlu_available, is_musa_available, is_npu_available, is_xpu_available
def env_command_parser(subparsers=None):
if subparsers is not None:
parser = subparsers.add_parser('env')
else:
parser = argparse.ArgumentParser('Accelerate env command')
parser.add_argument('--config_file', default=None, help='The config file to use for the default values in the launching script.')
if subparsers is not None:
parser.set_defaults(func=env_command)
return parser
def env_command(args):
pt_version = torch.__version__
pt_cuda_available = torch.cuda.is_available()
pt_xpu_available = is_xpu_available()
pt_mlu_available = is_mlu_available()
pt_musa_available = is_musa_available()
pt_npu_available = is_npu_available()
accelerate_config = 'Not found'
if args.config_file is not None or os.path.isfile(default_config_file):
accelerate_config = load_config_from_file(args.config_file).to_dict()
command = None
bash_location = 'Not found'
if os.name == 'nt':
command = ['where', 'accelerate']
elif os.name == 'posix':
command = ['which', 'accelerate']
if command is not None:
bash_location = subprocess.check_output(command, text=True, stderr=subprocess.STDOUT).strip()
info = {'`Accelerate` version': version, 'Platform': platform.platform(), '`accelerate` bash location': bash_location, 'Python version': platform.python_version(), 'Numpy version': np.__version__, 'PyTorch version (GPU?)': f'{pt_version} ({pt_cuda_available})', 'PyTorch XPU available': str(pt_xpu_available), 'PyTorch NPU available': str(pt_npu_available), 'PyTorch MLU available': str(pt_mlu_available), 'PyTorch MUSA available': str(pt_musa_available), 'System RAM': f'{psutil.virtual_memory().total / 1024 ** 3:.2f} GB'}
if pt_cuda_available:
info['GPU type'] = torch.cuda.get_device_name()
if pt_mlu_available:
info['MLU type'] = torch.mlu.get_device_name()
if pt_npu_available:
info['CANN version'] = torch.version.cann
print('\nCopy-and-paste the text below in your GitHub issue\n')
print('\n'.join([f'- {prop}: {val}' for (prop, val) in info.items()]))
print('- `Accelerate` default config:' if args.config_file is None else '- `Accelerate` config passed:')
accelerate_config_str = '\n'.join([f'\t- {prop}: {val}' for (prop, val) in accelerate_config.items()]) if isinstance(accelerate_config, dict) else f'\t{accelerate_config}'
print(accelerate_config_str)
info['`Accelerate` configs'] = accelerate_config
return info
def main() -> int:
parser = env_command_parser()
args = parser.parse_args()
env_command(args)
return 0
if __name__ == '__main__':
raise SystemExit(main())
# File: accelerate-main/src/accelerate/commands/estimate.py
from huggingface_hub import model_info
from huggingface_hub.utils import GatedRepoError, RepositoryNotFoundError
from accelerate import init_empty_weights
from accelerate.commands.utils import CustomArgumentParser
from accelerate.utils import calculate_maximum_sizes, convert_bytes, is_timm_available, is_transformers_available
if is_transformers_available():
import transformers
from transformers import AutoConfig, AutoModel
if is_timm_available():
import timm
def verify_on_hub(repo: str, token: str=None):
try:
return model_info(repo, token=token)
except (OSError, GatedRepoError):
return 'gated'
except RepositoryNotFoundError:
return 'repo'
def check_has_model(error):
if is_timm_available() and isinstance(error, RuntimeError) and ('Unknown model' in error.args[0]):
return 'timm'
elif is_transformers_available() and isinstance(error, OSError) and ('does not appear to have a file named' in error.args[0]):
return 'transformers'
else:
return 'unknown'
def create_empty_model(model_name: str, library_name: str, trust_remote_code: bool=False, access_token: str=None):
model_info = verify_on_hub(model_name, access_token)
if model_info == 'gated':
raise GatedRepoError(f'Repo for model `{model_name}` is gated. You must be authenticated to access it. Please run `huggingface-cli login`.')
elif model_info == 'repo':
raise RepositoryNotFoundError(f'Repo for model `{model_name}` does not exist on the Hub. If you are trying to access a private repo, make sure you are authenticated via `huggingface-cli login` and have access.')
if library_name is None:
library_name = getattr(model_info, 'library_name', False)
if not library_name:
raise ValueError(f'Model `{model_name}` does not have any library metadata on the Hub, please manually pass in a `--library_name` to use (such as `transformers`)')
if library_name == 'transformers':
if not is_transformers_available():
raise ImportError(f'To check `{model_name}`, `transformers` must be installed. Please install it via `pip install transformers`')
print(f'Loading pretrained config for `{model_name}` from `transformers`...')
if model_info.config is None:
raise RuntimeError(f'Tried to load `{model_name}` with `transformers` but it does not have any metadata.')
auto_map = model_info.config.get('auto_map', False)
config = AutoConfig.from_pretrained(model_name, trust_remote_code=trust_remote_code, token=access_token)
with init_empty_weights():
constructor = AutoModel
if isinstance(auto_map, dict):
value = None
for key in auto_map.keys():
if key.startswith('AutoModelFor'):
value = key
break
if value is not None:
constructor = getattr(transformers, value)
model = constructor.from_config(config, trust_remote_code=trust_remote_code)
elif library_name == 'timm':
if not is_timm_available():
raise ImportError(f'To check `{model_name}`, `timm` must be installed. Please install it via `pip install timm`')
print(f'Loading pretrained config for `{model_name}` from `timm`...')
with init_empty_weights():
model = timm.create_model(model_name, pretrained=False)
else:
raise ValueError(f'Library `{library_name}` is not supported yet, please open an issue on GitHub for us to add support.')
return model
def create_ascii_table(headers: list, rows: list, title: str):
(sep_char, in_between) = ('│', '─')
column_widths = []
for i in range(len(headers)):
column_values = [row[i] for row in rows] + [headers[i]]
max_column_width = max((len(value) for value in column_values))
column_widths.append(max_column_width)
formats = [f'%{column_widths[i]}s' for i in range(len(rows[0]))]
pattern = f'{sep_char}{sep_char.join(formats)}{sep_char}'
diff = 0
def make_row(left_char, middle_char, right_char):
return f'{left_char}{middle_char.join([in_between * n for n in column_widths])}{in_between * diff}{right_char}'
separator = make_row('├', '┼', '┤')
if len(title) > sum(column_widths):
diff = abs(len(title) - len(separator))
column_widths[-1] += diff
separator = make_row('├', '┼', '┤')
initial_rows = [make_row('┌', in_between, '┐'), f'{sep_char}{title.center(len(separator) - 2)}{sep_char}', make_row('├', '┬', '┤')]
table = '\n'.join(initial_rows) + '\n'
column_widths[-1] += diff
centered_line = [text.center(column_widths[i]) for (i, text) in enumerate(headers)]
table += f'{pattern % tuple(centered_line)}\n{separator}\n'
for (i, line) in enumerate(rows):
centered_line = [t.center(column_widths[i]) for (i, t) in enumerate(line)]
table += f'{pattern % tuple(centered_line)}\n'
table += f"└{'┴'.join([in_between * n for n in column_widths])}┘"
return table
def estimate_command_parser(subparsers=None):
if subparsers is not None:
parser = subparsers.add_parser('estimate-memory')
else:
parser = CustomArgumentParser(description='Model size estimator for fitting a model onto CUDA memory.')
parser.add_argument('model_name', type=str, help='The model name on the Hugging Face Hub.')
parser.add_argument('--library_name', type=str, help='The library the model has an integration with, such as `transformers`, needed only if this information is not stored on the Hub.', choices=['timm', 'transformers'])
parser.add_argument('--dtypes', type=str, nargs='+', default=['float32', 'float16', 'int8', 'int4'], help='The dtypes to use for the model, must be one (or many) of `float32`, `float16`, `int8`, and `int4`', choices=['float32', 'float16', 'int8', 'int4'])
parser.add_argument('--trust_remote_code', action='store_true', help='Whether or not to allow for custom models defined on the Hub in their own modeling files. This flag\n should only be used for repositories you trust and in which you have read the code, as it will execute\n code present on the Hub on your local machine.', default=False)
if subparsers is not None:
parser.set_defaults(func=estimate_command)
return parser
def estimate_training_usage(bytes: int, mixed_precision: str, msamp_config: str=None) -> dict:
memory_sizes = {'model': -1, 'optimizer': -1, 'gradients': -1, 'step': -1}
fp32_size = bytes
fp16_size = bytes // 2
if mixed_precision == 'float32':
memory_sizes['model'] = fp32_size
memory_sizes['gradients'] = fp32_size
memory_sizes['optimizer'] = fp32_size * 2
memory_sizes['step'] = fp32_size * 4
elif mixed_precision in ('float16', 'bfloat16') or (mixed_precision == 'fp8' and msamp_config is None):
memory_sizes['model'] = fp32_size
memory_sizes['gradients'] = fp32_size + fp16_size
memory_sizes['optimizer'] = fp32_size * 2
memory_sizes['step'] = memory_sizes['optimizer']
return memory_sizes
def gather_data(args):
try:
model = create_empty_model(args.model_name, library_name=args.library_name, trust_remote_code=args.trust_remote_code)
except (RuntimeError, OSError) as e:
library = check_has_model(e)
if library != 'unknown':
raise RuntimeError(f'Tried to load `{args.model_name}` with `{library}` but a possible model to load was not found inside the repo.')
raise e
(total_size, largest_layer) = calculate_maximum_sizes(model)
data = []
for dtype in args.dtypes:
dtype_total_size = total_size
dtype_largest_layer = largest_layer[0]
dtype_training_size = estimate_training_usage(dtype_total_size, dtype)
if dtype == 'float16':
dtype_total_size /= 2
dtype_largest_layer /= 2
elif dtype == 'int8':
dtype_total_size /= 4
dtype_largest_layer /= 4
elif dtype == 'int4':
dtype_total_size /= 8
dtype_largest_layer /= 8
data.append([dtype, dtype_largest_layer, dtype_total_size, dtype_training_size])
return data
def estimate_command(args):
data = gather_data(args)
for row in data:
for (i, item) in enumerate(row):
if isinstance(item, (int, float)):
row[i] = convert_bytes(item)
elif isinstance(item, dict):
training_usage = max(item.values())
row[i] = convert_bytes(training_usage) if training_usage != -1 else 'N/A'
headers = ['dtype', 'Largest Layer', 'Total Size', 'Training using Adam']
title = f'Memory Usage for loading `{args.model_name}`'
table = create_ascii_table(headers, data, title)
print(table)
def main():
parser = estimate_command_parser()
args = parser.parse_args()
estimate_command(args)
if __name__ == '__main__':
main()
# File: accelerate-main/src/accelerate/commands/launch.py
import argparse
import importlib
import logging
import os
import subprocess
import sys
from pathlib import Path
import psutil
import torch
from accelerate.commands.config import default_config_file, load_config_from_file
from accelerate.commands.config.config_args import SageMakerConfig
from accelerate.commands.config.config_utils import DYNAMO_BACKENDS
from accelerate.commands.utils import CustomArgumentParser
from accelerate.state import get_int_from_env
from accelerate.utils import ComputeEnvironment, DistributedType, PrepareForLaunch, _filter_args, check_cuda_p2p_ib_support, convert_dict_to_env_variables, is_bf16_available, is_deepspeed_available, is_mlu_available, is_musa_available, is_npu_available, is_rich_available, is_sagemaker_available, is_torch_version, is_torch_xla_available, is_xpu_available, patch_environment, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, str_to_bool
from accelerate.utils.constants import DEEPSPEED_MULTINODE_LAUNCHERS, TORCH_DYNAMO_MODES
if is_rich_available():
from rich import get_console
from rich.logging import RichHandler
FORMAT = '%(message)s'
logging.basicConfig(format=FORMAT, datefmt='[%X]', handlers=[RichHandler()])
logger = logging.getLogger(__name__)
options_to_group = {'multi_gpu': 'Distributed GPUs', 'tpu': 'TPU', 'use_deepspeed': 'DeepSpeed Arguments', 'use_fsdp': 'FSDP Arguments', 'use_megatron_lm': 'Megatron-LM Arguments', 'fp8_backend': 'FP8 Arguments'}
def clean_option(option):
if 'fp8_backend' in option:
option = '--fp8_backend'
if option.startswith('--'):
return option[2:].replace('-', '_')
class CustomHelpFormatter(argparse.HelpFormatter):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.titles = ['Hardware Selection Arguments', 'Resource Selection Arguments', 'Training Paradigm Arguments', 'positional arguments', 'optional arguments']
def add_argument(self, action: argparse.Action):
if 'accelerate' in sys.argv[0] and 'launch' in sys.argv[1:]:
args = sys.argv[2:]
else:
args = sys.argv[1:]
if len(args) > 1:
args = list(map(clean_option, args))
used_platforms = [arg for arg in args if arg in options_to_group.keys()]
used_titles = [options_to_group[o] for o in used_platforms]
if action.container.title not in self.titles + used_titles:
action.help = argparse.SUPPRESS
elif action.container.title == 'Hardware Selection Arguments':
if set(action.option_strings).isdisjoint(set(args)):
action.help = argparse.SUPPRESS
else:
action.help = action.help + ' (currently selected)'
elif action.container.title == 'Training Paradigm Arguments':
if set(action.option_strings).isdisjoint(set(args)):
action.help = argparse.SUPPRESS
else:
action.help = action.help + ' (currently selected)'
action.option_strings = [s for s in action.option_strings if '-' not in s[2:]]
super().add_argument(action)
def end_section(self):
if len(self._current_section.items) < 2:
self._current_section.items = []
self._current_section.heading = ''
super().end_section()
def launch_command_parser(subparsers=None):
description = 'Launch a python script in a distributed scenario. Arguments can be passed in with either hyphens (`--num-processes=2`) or underscores (`--num_processes=2`)'
if subparsers is not None:
parser = subparsers.add_parser('launch', description=description, add_help=False, allow_abbrev=False, formatter_class=CustomHelpFormatter)
else:
parser = CustomArgumentParser('Accelerate launch command', description=description, add_help=False, allow_abbrev=False, formatter_class=CustomHelpFormatter)
parser.add_argument('-h', '--help', action='help', help='Show this help message and exit.')
parser.add_argument('--config_file', default=None, help='The config file to use for the default values in the launching script.')
parser.add_argument('--quiet', '-q', action='store_true', help='Silence subprocess errors from the launch stack trace and only show the relevant tracebacks. (Only applicable to DeepSpeed and single-process configurations)')
hardware_args = parser.add_argument_group('Hardware Selection Arguments', 'Arguments for selecting the hardware to be used.')
hardware_args.add_argument('--cpu', default=False, action='store_true', help='Whether or not to force the training on the CPU.')
hardware_args.add_argument('--multi_gpu', default=False, action='store_true', help='Whether or not this should launch a distributed GPU training.')
hardware_args.add_argument('--tpu', default=False, action='store_true', help='Whether or not this should launch a TPU training.')
hardware_args.add_argument('--ipex', default=False, action='store_true', help='Whether or not this should launch a Intel PyTorch Extension (IPEX) training.')
resource_args = parser.add_argument_group('Resource Selection Arguments', 'Arguments for fine-tuning how available hardware should be used.')
resource_args.add_argument('--mixed_precision', type=str, choices=['no', 'fp16', 'bf16', 'fp8'], help='Whether or not to use mixed precision training. Choose between FP16 and BF16 (bfloat16) training. BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.')
resource_args.add_argument('--num_processes', type=int, default=None, help='The total number of processes to be launched in parallel.')
resource_args.add_argument('--num_machines', type=int, default=None, help='The total number of machines used in this training.')
resource_args.add_argument('--num_cpu_threads_per_process', type=int, default=None, help='The number of CPU threads per process. Can be tuned for optimal performance.')
resource_args.add_argument('--enable_cpu_affinity', default=False, action='store_true', help='Whether or not CPU affinity and balancing should be enabled. Currently only supported on NVIDIA hardware.')
resource_args.add_argument('--dynamo_backend', type=str, choices=['no'] + [b.lower() for b in DYNAMO_BACKENDS], help='Choose a backend to optimize your training with dynamo, see more at https://github.com/pytorch/torchdynamo.')
resource_args.add_argument('--dynamo_mode', type=str, default='default', choices=TORCH_DYNAMO_MODES, help='Choose a mode to optimize your training with dynamo.')
resource_args.add_argument('--dynamo_use_fullgraph', default=False, action='store_true', help='Whether to use full graph mode for dynamo or it is ok to break model into several subgraphs')
resource_args.add_argument('--dynamo_use_dynamic', default=False, action='store_true', help='Whether to enable dynamic shape tracing.')
paradigm_args = parser.add_argument_group('Training Paradigm Arguments', 'Arguments for selecting which training paradigm to be used.')
paradigm_args.add_argument('--use_deepspeed', default=False, action='store_true', help='Whether to use deepspeed.')
paradigm_args.add_argument('--use_fsdp', default=False, action='store_true', help='Whether to use fsdp.')
paradigm_args.add_argument('--use_megatron_lm', default=False, action='store_true', help='Whether to use Megatron-LM.')
paradigm_args.add_argument('--use_xpu', default=False, action='store_true', help='Whether to use IPEX plugin to speed up training on XPU specifically.')
distributed_args = parser.add_argument_group('Distributed GPUs', 'Arguments related to distributed GPU training.')
distributed_args.add_argument('--gpu_ids', default=None, help='What GPUs (by id) should be used for training on this machine as a comma-seperated list')
distributed_args.add_argument('--same_network', default=False, action='store_true', help='Whether all machines used for multinode training exist on the same local network.')
distributed_args.add_argument('--machine_rank', type=int, default=None, help='The rank of the machine on which this script is launched.')
distributed_args.add_argument('--main_process_ip', type=str, default=None, help='The IP address of the machine of rank 0.')
distributed_args.add_argument('--main_process_port', type=int, default=None, help='The port to use to communicate with the machine of rank 0.')
distributed_args.add_argument('-t', '--tee', default='0', type=str, help='Tee std streams into a log file and also to console.')
distributed_args.add_argument('--log_dir', type=str, default=None, help='Base directory to use for log files when using torchrun/torch.distributed.run as launcher. Use with --tee to redirect std streams info log files.')
distributed_args.add_argument('--role', type=str, default='default', help='User-defined role for the workers.')
distributed_args.add_argument('--rdzv_backend', type=str, default='static', help="The rendezvous method to use, such as 'static' (the default) or 'c10d'")
distributed_args.add_argument('--rdzv_conf', type=str, default='', help='Additional rendezvous configuration (=,=,...).')
distributed_args.add_argument('--max_restarts', type=int, default=0, help='Maximum number of worker group restarts before failing.')
distributed_args.add_argument('--monitor_interval', type=float, default=0.1, help='Interval, in seconds, to monitor the state of workers.')
parser.add_argument('-m', '--module', action='store_true', help="Change each process to interpret the launch script as a Python module, executing with the same behavior as 'python -m'.")
parser.add_argument('--no_python', action='store_true', help="Skip prepending the training script with 'python' - just execute it directly. Useful when the script is not a Python script.")
tpu_args = parser.add_argument_group('TPU', 'Arguments related to TPU.')
tpu_args.add_argument('--tpu_cluster', action='store_true', dest='tpu_use_cluster', help='Whether to use a GCP TPU pod for training.')
tpu_args.add_argument('--no_tpu_cluster', action='store_false', dest='tpu_use_cluster', help='Should not be passed explicitly, this is for internal use only.')
tpu_args.add_argument('--tpu_use_sudo', action='store_true', help='Whether to use `sudo` when running the TPU training script in each pod.')
tpu_args.add_argument('--vm', type=str, action='append', help='List of single Compute VM instance names. If not provided we assume usage of instance groups. For TPU pods.')
tpu_args.add_argument('--env', type=str, action='append', help='List of environment variables to set on the Compute VM instances. For TPU pods.')
tpu_args.add_argument('--main_training_function', type=str, default=None, help='The name of the main function to be executed in your script (only for TPU training).')
tpu_args.add_argument('--downcast_bf16', action='store_true', help='Whether when using bf16 precision on TPUs if both float and double tensors are cast to bfloat16 or if double tensors remain as float32.')
deepspeed_args = parser.add_argument_group('DeepSpeed Arguments', 'Arguments related to DeepSpeed.')
deepspeed_args.add_argument('--deepspeed_config_file', default=None, type=str, help='DeepSpeed config file.')
deepspeed_args.add_argument('--zero_stage', default=None, type=int, help="DeepSpeed's ZeRO optimization stage (useful only when `use_deepspeed` flag is passed). If unspecified, will default to `2`.")
deepspeed_args.add_argument('--offload_optimizer_device', default=None, type=str, help="Decides where (none|cpu|nvme) to offload optimizer states (useful only when `use_deepspeed` flag is passed). If unspecified, will default to 'none'.")
deepspeed_args.add_argument('--offload_param_device', default=None, type=str, help="Decides where (none|cpu|nvme) to offload parameters (useful only when `use_deepspeed` flag is passed). If unspecified, will default to 'none'.")
deepspeed_args.add_argument('--offload_optimizer_nvme_path', default=None, type=str, help="Decides Nvme Path to offload optimizer states (useful only when `use_deepspeed` flag is passed). If unspecified, will default to 'none'.")
deepspeed_args.add_argument('--offload_param_nvme_path', default=None, type=str, help="Decides Nvme Path to offload parameters (useful only when `use_deepspeed` flag is passed). If unspecified, will default to 'none'.")
deepspeed_args.add_argument('--gradient_accumulation_steps', default=None, type=int, help='No of gradient_accumulation_steps used in your training script (useful only when `use_deepspeed` flag is passed). If unspecified, will default to `1`.')
deepspeed_args.add_argument('--gradient_clipping', default=None, type=float, help='gradient clipping value used in your training script (useful only when `use_deepspeed` flag is passed). If unspecified, will default to `1.0`.')
deepspeed_args.add_argument('--zero3_init_flag', default=None, type=str, help='Decides Whether (true|false) to enable `deepspeed.zero.Init` for constructing massive models. Only applicable with DeepSpeed ZeRO Stage-3. If unspecified, will default to `true`.')
deepspeed_args.add_argument('--zero3_save_16bit_model', default=None, type=str, help='Decides Whether (true|false) to save 16-bit model weights when using ZeRO Stage-3. Only applicable with DeepSpeed ZeRO Stage-3. If unspecified, will default to `false`.')
deepspeed_args.add_argument('--deepspeed_hostfile', default=None, type=str, help='DeepSpeed hostfile for configuring multi-node compute resources.')
deepspeed_args.add_argument('--deepspeed_exclusion_filter', default=None, type=str, help='DeepSpeed exclusion filter string when using mutli-node setup.')
deepspeed_args.add_argument('--deepspeed_inclusion_filter', default=None, type=str, help='DeepSpeed inclusion filter string when using mutli-node setup.')
deepspeed_args.add_argument('--deepspeed_multinode_launcher', default=None, type=str, help='DeepSpeed multi-node launcher to use. If unspecified, will default to `pdsh`.')
deepspeed_args.add_argument('--deepspeed_moe_layer_cls_names', default=None, type=str, help='comma-separated list of transformer MoE layer class names (case-sensitive) to wrap ,e.g, `MixtralSparseMoeBlock`, `Qwen2MoeSparseMoeBlock`, `JetMoEAttention,JetMoEBlock` ... (useful only when `use_deepspeed` flag is passed).')
fsdp_args = parser.add_argument_group('FSDP Arguments', 'Arguments related to Fully Shared Data Parallelism.')
fsdp_args.add_argument('--fsdp_offload_params', default='false', type=str, help='Decides Whether (true|false) to offload parameters and gradients to CPU. (useful only when `use_fsdp` flag is passed).')
fsdp_args.add_argument('--fsdp_min_num_params', type=int, default=100000000.0, help="FSDP's minimum number of parameters for Default Auto Wrapping. (useful only when `use_fsdp` flag is passed).")
fsdp_args.add_argument('--fsdp_sharding_strategy', type=str, default='FULL_SHARD', help="FSDP's Sharding Strategy. (useful only when `use_fsdp` flag is passed).")
fsdp_args.add_argument('--fsdp_auto_wrap_policy', type=str, default=None, help="FSDP's auto wrap policy. (useful only when `use_fsdp` flag is passed).")
fsdp_args.add_argument('--fsdp_transformer_layer_cls_to_wrap', default=None, type=str, help='Transformer layer class name (case-sensitive) to wrap ,e.g, `BertLayer`, `GPTJBlock`, `T5Block` .... (useful only when `use_fsdp` flag is passed).')
fsdp_args.add_argument('--fsdp_backward_prefetch', default=None, type=str, help="FSDP's backward prefetch policy. (useful only when `use_fsdp` flag is passed).")
fsdp_args.add_argument('--fsdp_state_dict_type', default=None, type=str, help="FSDP's state dict type. (useful only when `use_fsdp` flag is passed).")
fsdp_args.add_argument('--fsdp_forward_prefetch', default='false', type=str, help='If True, then FSDP explicitly prefetches the next upcoming all-gather while executing in the forward pass (useful only when `use_fsdp` flag is passed).')
fsdp_args.add_argument('--fsdp_use_orig_params', default='true', type=str, help='If True, allows non-uniform `requires_grad` during init, which means support for interspersed frozen and trainable paramteres. (useful only when `use_fsdp` flag is passed).')
fsdp_args.add_argument('--fsdp_cpu_ram_efficient_loading', default='true', type=str, help='If True, only the first process loads the pretrained model checkoint while all other processes have empty weights. Only applicable for 🤗 Transformers. When using this, `--fsdp_sync_module_states` needs to True. (useful only when `use_fsdp` flag is passed).')
fsdp_args.add_argument('--fsdp_sync_module_states', default='true', type=str, help='If True, each individually wrapped FSDP unit will broadcast module parameters from rank 0. (useful only when `use_fsdp` flag is passed).')
fsdp_args.add_argument('--fsdp_activation_checkpointing', default='false', type=str, help='Decides Whether (true|false) intermediate activations are freed during the forward pass, and a checkpoint is left as a placeholder. (useful only when `use_fsdp` flag is passed).')
megatron_lm_args = parser.add_argument_group('Megatron-LM Arguments', 'Arguments related to Megatron-LM.')
megatron_lm_args.add_argument('--megatron_lm_tp_degree', type=int, default=1, help="Megatron-LM's Tensor Parallelism (TP) degree. (useful only when `use_megatron_lm` flag is passed).")
megatron_lm_args.add_argument('--megatron_lm_pp_degree', type=int, default=1, help="Megatron-LM's Pipeline Parallelism (PP) degree. (useful only when `use_megatron_lm` flag is passed).")
megatron_lm_args.add_argument('--megatron_lm_num_micro_batches', type=int, default=None, help="Megatron-LM's number of micro batches when PP degree > 1. (useful only when `use_megatron_lm` flag is passed).")
megatron_lm_args.add_argument('--megatron_lm_sequence_parallelism', default=None, type=str, help='Decides Whether (true|false) to enable Sequence Parallelism when TP degree > 1. (useful only when `use_megatron_lm` flag is passed).')
megatron_lm_args.add_argument('--megatron_lm_recompute_activations', default=None, type=str, help='Decides Whether (true|false) to enable Selective Activation Recomputation. (useful only when `use_megatron_lm` flag is passed).')
megatron_lm_args.add_argument('--megatron_lm_use_distributed_optimizer', default=None, type=str, help='Decides Whether (true|false) to use distributed optimizer which shards optimizer state and gradients across Data Pralellel (DP) ranks. (useful only when `use_megatron_lm` flag is passed).')
megatron_lm_args.add_argument('--megatron_lm_gradient_clipping', default=1.0, type=float, help="Megatron-LM's gradient clipping value based on global L2 Norm (0 to disable). (useful only when `use_megatron_lm` flag is passed).")
fp8_args = parser.add_argument_group('FP8 Arguments', 'Arguments related to FP8 training (requires `--mixed_precision=fp8`)')
fp8_args.add_argument('--fp8_backend', type=str, choices=['te', 'msamp'], help='Choose a backend to train with FP8 (te: TransformerEngine, msamp: MS-AMP)')
fp8_args.add_argument('--fp8_use_autocast_during_eval', default=False, action='store_true', help='Whether to use FP8 autocast during eval mode (useful only when `--fp8_backend=te` is passed). Generally better metrics are found when this is not passed.')
fp8_args.add_argument('--fp8_margin', type=int, default=0, help='The margin to use for the gradient scaling (useful only when `--fp8_backend=te` is passed).')
fp8_args.add_argument('--fp8_interval', type=int, default=1, help='The interval to use for how often the scaling factor is recomputed (useful only when `--fp8_backend=te` is passed).')
fp8_args.add_argument('--fp8_format', type=str, default='E4M3', choices=['E4M3', 'HYBRID'], help='The format to use for the FP8 recipe (useful only when `--fp8_backend=te` is passed).')
fp8_args.add_argument('--fp8_amax_history_len', type=int, default=1024, help='The length of the history to use for the scaling factor computation (useful only when `--fp8_backend=te` is passed).')
fp8_args.add_argument('--fp8_amax_compute_algo', type=str, default='most_recent', choices=['max', 'most_recent'], help='The algorithm to use for the scaling factor computation. (useful only when `--fp8_backend=te` is passed).')
fp8_args.add_argument('--fp8_override_linear_precision', type=lambda x: tuple(map(str_to_bool, x.split(','))), default=(False, False, False), help='Whether or not to execute `fprop`, `dgrad`, and `wgrad` GEMMS in higher precision. Should be passed in a comma-seperated string of booleans (useful only when `--fp8_backend=te` is passed).')
fp8_args.add_argument('--fp8_opt_level', type=str, default='O2', choices=['O1', 'O2'], help='What level of 8-bit collective communication should be used with MS-AMP (useful only when `--fp8_backend=msamp` is passed).')
aws_args = parser.add_argument_group('AWS Arguments', 'Arguments related to AWS.')
aws_args.add_argument('--aws_access_key_id', type=str, default=None, help='The AWS_ACCESS_KEY_ID used to launch the Amazon SageMaker training job')
aws_args.add_argument('--aws_secret_access_key', type=str, default=None, help='The AWS_SECRET_ACCESS_KEY used to launch the Amazon SageMaker training job.')
parser.add_argument('--debug', action='store_true', help='Whether to print out the torch.distributed stack trace when something fails.')
parser.add_argument('training_script', type=str, help='The full path to the script to be launched in parallel, followed by all the arguments for the training script.')
mpirun_args = parser.add_argument_group('MPI Arguments', 'Arguments related to mpirun for Multi-CPU')
mpirun_args.add_argument('--mpirun_hostfile', type=str, default=None, help='Location for a hostfile for using Accelerate to launch a multi-CPU training job with mpirun. This will get passed to the MPI --hostfile or -f parameter, depending on which MPI program is installed.')
mpirun_args.add_argument('--mpirun_ccl', type=int, default=1, help='The number of oneCCL worker threads when using Accelerate to launch multi-CPU training with mpirun.')
parser.add_argument('training_script_args', nargs=argparse.REMAINDER, help='Arguments of the training script.')
if subparsers is not None:
parser.set_defaults(func=launch_command)
return parser
def simple_launcher(args):
(cmd, current_env) = prepare_simple_launcher_cmd_env(args)
process = subprocess.Popen(cmd, env=current_env)
process.wait()
if process.returncode != 0:
if not args.quiet:
raise subprocess.CalledProcessError(returncode=process.returncode, cmd=cmd)
else:
sys.exit(1)
def multi_gpu_launcher(args):
import torch.distributed.run as distrib_run
current_env = prepare_multi_gpu_env(args)
if not check_cuda_p2p_ib_support():
message = "Using RTX 4000 series which doesn't support faster communication speedups. Ensuring P2P and IB communications are disabled."
warn = False
if 'NCCL_P2P_DISABLE' not in current_env:
current_env['NCCL_P2P_DISABLE'] = '1'
warn = True
if 'NCCL_IB_DISABLE' not in current_env:
current_env['NCCL_IB_DISABLE'] = '1'
warn = True
if warn:
logger.warning(message)
debug = getattr(args, 'debug', False)
args = _filter_args(args, distrib_run.get_args_parser(), ['--training_script', args.training_script, '--training_script_args', args.training_script_args])
with patch_environment(**current_env):
try:
distrib_run.run(args)
except Exception:
if is_rich_available() and debug:
console = get_console()
console.print('\n[bold red]Using --debug, `torch.distributed` Stack Trace:[/bold red]')
console.print_exception(suppress=[__file__], show_locals=False)
else:
raise
def deepspeed_launcher(args):
import torch.distributed.run as distrib_run
if not is_deepspeed_available():
raise ImportError('DeepSpeed is not installed => run `pip3 install deepspeed` or build it from source.')
else:
from deepspeed.launcher.runner import DEEPSPEED_ENVIRONMENT_NAME
(cmd, current_env) = prepare_deepspeed_cmd_env(args)
if not check_cuda_p2p_ib_support():
message = "Using RTX 4000 series which doesn't support faster communication speedups. Ensuring P2P and IB communications are disabled."
warn = False
if 'NCCL_P2P_DISABLE' not in current_env:
current_env['NCCL_P2P_DISABLE'] = '1'
warn = True
if 'NCCL_IB_DISABLE' not in current_env:
current_env['NCCL_IB_DISABLE'] = '1'
warn = True
if warn:
logger.warning(message)
if args.num_machines > 1 and args.deepspeed_multinode_launcher != DEEPSPEED_MULTINODE_LAUNCHERS[1]:
with open(DEEPSPEED_ENVIRONMENT_NAME, 'a') as f:
valid_env_items = convert_dict_to_env_variables(current_env)
if len(valid_env_items) > 1:
f.writelines(valid_env_items)
process = subprocess.Popen(cmd, env=current_env)
process.wait()
if process.returncode != 0:
if not args.quiet:
raise subprocess.CalledProcessError(returncode=process.returncode, cmd=cmd)
else:
sys.exit(1)
else:
debug = getattr(args, 'debug', False)
args = _filter_args(args, distrib_run.get_args_parser(), ['--training_script', args.training_script, '--training_script_args', args.training_script_args])
with patch_environment(**current_env):
try:
distrib_run.run(args)
except Exception:
if is_rich_available() and debug:
console = get_console()
console.print('\n[bold red]Using --debug, `torch.distributed` Stack Trace:[/bold red]')
console.print_exception(suppress=[__file__], show_locals=False)
else:
raise
def tpu_launcher(args):
import torch_xla.distributed.xla_multiprocessing as xmp
if args.no_python:
raise ValueError('--no_python cannot be used with TPU launcher')
(args, current_env) = prepare_tpu(args, {})
if args.module:
mod_name = args.training_script
else:
script_path = Path(args.training_script)
sys.path.append(str(script_path.parent.resolve()))
mod_name = script_path.stem
mod = importlib.import_module(mod_name)
if not hasattr(mod, args.main_training_function):
raise ValueError(f'Your training script should have a function named {args.main_training_function}, or you should pass a different value to `--main_training_function`.')
sys.argv = [mod.__file__] + args.training_script_args
main_function = getattr(mod, args.main_training_function)
with patch_environment(**current_env):
xmp.spawn(PrepareForLaunch(main_function), args=(), nprocs=args.num_processes)
def tpu_pod_launcher(args):
from torch_xla.distributed import xla_dist
current_env = {}
(args, current_env) = prepare_tpu(args, current_env, True)
debug = getattr(args, 'debug', False)
training_script = args.training_script
training_script_args = args.training_script_args
new_args = _filter_args(args, xla_dist.get_args_parser(), ['--tpu', args.tpu_name, '--positional', '', '--restart-tpuvm-pod-server'])
if args.tpu_use_sudo:
new_cmd = ['sudo']
else:
new_cmd = []
new_cmd += ['accelerate-launch', '--tpu', '--no_tpu_cluster', '--num_machines', '1', '--mixed_precision', 'no', '--dynamo_backend', 'no', '--num_processes', str(args.num_processes), '--main_training_function', str(args.main_training_function), training_script] + training_script_args
new_args.positional = new_cmd
bad_flags = ''
for arg in vars(new_args):
if arg.startswith('docker_'):
value = getattr(new_args, arg)
if value != '' and value is not None:
bad_flags += f'{arg}="{value}"\n'
if bad_flags != '':
raise ValueError(f'Docker containers are not supported for TPU pod launcher currently, please remove the following flags:\n{bad_flags}')
new_args.env = [f'{k}={v}' for (k, v) in current_env.items()]
new_args.env.append('ACCELERATE_IN_TPU_POD=1')
try:
xla_dist.resolve_and_execute(new_args)
except Exception:
if is_rich_available() and debug:
console = get_console()
console.print('\n[bold red]Using --debug, `torch_xla.xla_dist` Stack Trace:[/bold red]')
console.print_exception(suppress=[__file__], show_locals=False)
else:
raise
def sagemaker_launcher(sagemaker_config: SageMakerConfig, args):
if not is_sagemaker_available():
raise ImportError('Please install sagemaker to be able to launch training on Amazon SageMaker with `pip install accelerate[sagemaker]`')
if args.module or args.no_python:
raise ValueError('SageMaker requires a python training script file and cannot be used with --module or --no_python')
from sagemaker.huggingface import HuggingFace
(args, sagemaker_inputs) = prepare_sagemager_args_inputs(sagemaker_config, args)
huggingface_estimator = HuggingFace(**args)
huggingface_estimator.fit(inputs=sagemaker_inputs)
print(f'You can find your model data at: {huggingface_estimator.model_data}')
def _validate_launch_command(args):
if sum([args.multi_gpu, args.cpu, args.tpu, args.use_deepspeed, args.use_fsdp]) > 1:
raise ValueError('You can only use one of `--cpu`, `--multi_gpu`, `--tpu`, `--use_deepspeed`, `--use_fsdp` at a time.')
if args.multi_gpu and args.num_processes is not None and (args.num_processes < 2):
raise ValueError('You need to use at least 2 processes to use `--multi_gpu`.')
defaults = None
warned = []
mp_from_config_flag = False
if args.config_file is not None or (os.path.isfile(default_config_file) and (not args.cpu)):
defaults = load_config_from_file(args.config_file)
if not args.multi_gpu and (not args.tpu) and (not args.tpu_use_cluster) and (not args.use_deepspeed) and (not args.use_fsdp) and (not args.use_megatron_lm):
args.use_deepspeed = defaults.distributed_type == DistributedType.DEEPSPEED
args.multi_gpu = True if defaults.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_NPU, DistributedType.MULTI_MLU, DistributedType.MULTI_MUSA, DistributedType.MULTI_XPU) else False
args.tpu = defaults.distributed_type == DistributedType.XLA
args.use_fsdp = defaults.distributed_type == DistributedType.FSDP
args.use_megatron_lm = defaults.distributed_type == DistributedType.MEGATRON_LM
args.tpu_use_cluster = defaults.tpu_use_cluster if args.tpu else False
if args.gpu_ids is None:
if defaults.gpu_ids is not None:
args.gpu_ids = defaults.gpu_ids
else:
args.gpu_ids = 'all'
if args.multi_gpu and args.num_machines is None:
args.num_machines = defaults.num_machines
if len(args.gpu_ids.split(',')) < 2 and args.gpu_ids != 'all' and args.multi_gpu and (args.num_machines <= 1):
raise ValueError("Less than two GPU ids were configured and tried to run on on multiple GPUs. Please ensure at least two are specified for `--gpu_ids`, or use `--gpu_ids='all'`.")
if defaults.compute_environment == ComputeEnvironment.LOCAL_MACHINE:
for (name, attr) in defaults.__dict__.items():
if isinstance(attr, dict):
for k in defaults.deepspeed_config:
setattr(args, k, defaults.deepspeed_config[k])
for k in defaults.fsdp_config:
arg_to_set = k
if 'fsdp' not in arg_to_set:
arg_to_set = 'fsdp_' + arg_to_set
setattr(args, arg_to_set, defaults.fsdp_config[k])
for k in defaults.megatron_lm_config:
setattr(args, k, defaults.megatron_lm_config[k])
for k in defaults.dynamo_config:
setattr(args, k, defaults.dynamo_config[k])
for k in defaults.ipex_config:
setattr(args, k, defaults.ipex_config[k])
for k in defaults.mpirun_config:
setattr(args, k, defaults.mpirun_config[k])
continue
if name not in ['compute_environment', 'mixed_precision', 'distributed_type'] and getattr(args, name, None) is None:
setattr(args, name, attr)
if not args.debug:
args.debug = defaults.debug
if not args.mixed_precision:
if defaults.mixed_precision is None:
args.mixed_precision = 'no'
else:
args.mixed_precision = defaults.mixed_precision
mp_from_config_flag = True
else:
if args.use_cpu or (args.use_xpu and torch.xpu.is_available()):
native_amp = is_torch_version('>=', '1.10')
else:
native_amp = is_bf16_available(True)
if args.mixed_precision == 'bf16' and (not native_amp) and (not (args.tpu and is_torch_xla_available(check_is_tpu=True))):
raise ValueError('bf16 mixed precision requires PyTorch >= 1.10 and a supported device.')
if args.dynamo_backend is None:
args.dynamo_backend = 'no'
if args.num_processes == -1:
raise ValueError('You need to manually pass in `--num_processes` using this config yaml.')
else:
if args.num_processes is None:
if args.use_xpu and is_xpu_available():
args.num_processes = torch.xpu.device_count()
elif is_mlu_available():
args.num_processes = torch.mlu.device_count()
elif is_musa_available():
args.num_processes = torch.musa.device_count()
elif is_npu_available():
args.num_processes = torch.npu.device_count()
else:
args.num_processes = torch.cuda.device_count()
warned.append(f'\t`--num_processes` was set to a value of `{args.num_processes}`')
if args.debug is None:
args.debug = False
if not args.multi_gpu and args.num_processes > 1 and (args.use_xpu and is_xpu_available() and (torch.xpu.device_count() > 1) or (is_mlu_available() and torch.mlu.device_count() > 1) or (is_musa_available() and torch.musa.device_count() > 1) or (is_npu_available() and torch.npu.device_count() > 1) or (torch.cuda.device_count() > 1)):
warned.append('\t\tMore than one GPU was found, enabling multi-GPU training.\n\t\tIf this was unintended please pass in `--num_processes=1`.')
args.multi_gpu = True
if args.num_machines is None:
warned.append('\t`--num_machines` was set to a value of `1`')
args.num_machines = 1
if args.mixed_precision is None:
warned.append("\t`--mixed_precision` was set to a value of `'no'`")
args.mixed_precision = 'no'
if not hasattr(args, 'use_cpu'):
args.use_cpu = args.cpu
if args.dynamo_backend is None:
warned.append("\t`--dynamo_backend` was set to a value of `'no'`")
args.dynamo_backend = 'no'
if args.debug:
logger.debug('Running script in debug mode, expect distributed operations to be slightly slower.')
is_aws_env_disabled = defaults is None or (defaults is not None and defaults.compute_environment != ComputeEnvironment.AMAZON_SAGEMAKER)
if is_aws_env_disabled and args.num_cpu_threads_per_process is None:
args.num_cpu_threads_per_process = get_int_from_env(['OMP_NUM_THREADS'], 1)
if args.use_cpu and args.num_processes >= 1 and (get_int_from_env(['OMP_NUM_THREADS'], 0) == 0):
local_size = get_int_from_env(['MPI_LOCALNRANKS', 'OMPI_COMM_WORLD_LOCAL_SIZE', 'MV2_COMM_WORLD_LOCAL_SIZE'], max(int(args.num_processes / args.num_machines), 1))
threads_per_process = int(psutil.cpu_count(logical=False) / local_size)
if threads_per_process > 1:
args.num_cpu_threads_per_process = threads_per_process
warned.append(f'\t`--num_cpu_threads_per_process` was set to `{args.num_cpu_threads_per_process}` to improve out-of-box performance when training on CPUs')
if any(warned):
message = 'The following values were not passed to `accelerate launch` and had defaults used instead:\n'
message += '\n'.join(warned)
message += '\nTo avoid this warning pass in values for each of the problematic parameters or run `accelerate config`.'
logger.warning(message)
return (args, defaults, mp_from_config_flag)
def launch_command(args):
(args, defaults, mp_from_config_flag) = _validate_launch_command(args)
if args.use_deepspeed and (not args.cpu):
args.deepspeed_fields_from_accelerate_config = list(defaults.deepspeed_config.keys()) if defaults else []
if mp_from_config_flag:
args.deepspeed_fields_from_accelerate_config.append('mixed_precision')
args.deepspeed_fields_from_accelerate_config = ','.join(args.deepspeed_fields_from_accelerate_config)
deepspeed_launcher(args)
elif args.use_fsdp and (not args.cpu):
multi_gpu_launcher(args)
elif args.use_megatron_lm and (not args.cpu):
multi_gpu_launcher(args)
elif args.multi_gpu and (not args.cpu):
multi_gpu_launcher(args)
elif args.tpu and (not args.cpu):
if args.tpu_use_cluster:
tpu_pod_launcher(args)
else:
tpu_launcher(args)
elif defaults is not None and defaults.compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER:
sagemaker_launcher(defaults, args)
else:
simple_launcher(args)
def main():
parser = launch_command_parser()
args = parser.parse_args()
launch_command(args)
if __name__ == '__main__':
main()
# File: accelerate-main/src/accelerate/commands/menu/cursor.py
""""""
import os
import sys
from contextlib import contextmanager
if os.name == 'nt':
import ctypes
import msvcrt
class CursorInfo(ctypes.Structure):
_fields_ = [('size', ctypes.c_int), ('visible', ctypes.c_byte)]
def hide_cursor():
if os.name == 'nt':
ci = CursorInfo()
handle = ctypes.windll.kernel32.GetStdHandle(-11)
ctypes.windll.kernel32.GetConsoleCursorInfo(handle, ctypes.byref(ci))
ci.visible = False
ctypes.windll.kernel32.SetConsoleCursorInfo(handle, ctypes.byref(ci))
elif os.name == 'posix':
sys.stdout.write('\x1b[?25l')
sys.stdout.flush()
def show_cursor():
if os.name == 'nt':
ci = CursorInfo()
handle = ctypes.windll.kernel32.GetStdHandle(-11)
ctypes.windll.kernel32.GetConsoleCursorInfo(handle, ctypes.byref(ci))
ci.visible = True
ctypes.windll.kernel32.SetConsoleCursorInfo(handle, ctypes.byref(ci))
elif os.name == 'posix':
sys.stdout.write('\x1b[?25h')
sys.stdout.flush()
@contextmanager
def hide():
try:
hide_cursor()
yield
finally:
show_cursor()
# File: accelerate-main/src/accelerate/commands/menu/helpers.py
""""""
import enum
import shutil
import sys
(TERMINAL_WIDTH, _) = shutil.get_terminal_size()
CURSOR_TO_CHAR = {'UP': 'A', 'DOWN': 'B', 'RIGHT': 'C', 'LEFT': 'D'}
class Direction(enum.Enum):
UP = 0
DOWN = 1
def forceWrite(content, end=''):
sys.stdout.write(str(content) + end)
sys.stdout.flush()
def writeColor(content, color, end=''):
forceWrite(f'\x1b[{color}m{content}\x1b[0m', end)
def reset_cursor():
forceWrite('\r')
def move_cursor(num_lines: int, direction: str):
forceWrite(f'\x1b[{num_lines}{CURSOR_TO_CHAR[direction.upper()]}')
def clear_line():
forceWrite(' ' * TERMINAL_WIDTH)
reset_cursor()
def linebreak():
reset_cursor()
forceWrite('-' * TERMINAL_WIDTH)
# File: accelerate-main/src/accelerate/commands/menu/input.py
""""""
from typing import List
from .keymap import KEYMAP, get_character
def mark(key: str):
def decorator(func):
handle = getattr(func, 'handle_key', [])
handle += [key]
func.handle_key = handle
return func
return decorator
def mark_multiple(*keys: List[str]):
def decorator(func):
handle = getattr(func, 'handle_key', [])
handle += keys
func.handle_key = handle
return func
return decorator
class KeyHandler(type):
def __new__(cls, name, bases, attrs):
new_cls = super().__new__(cls, name, bases, attrs)
if not hasattr(new_cls, 'key_handler'):
new_cls.key_handler = {}
new_cls.handle_input = KeyHandler.handle_input
for value in attrs.values():
handled_keys = getattr(value, 'handle_key', [])
for key in handled_keys:
new_cls.key_handler[key] = value
return new_cls
@staticmethod
def handle_input(cls):
char = get_character()
if char != KEYMAP['undefined']:
char = ord(char)
handler = cls.key_handler.get(char)
if handler:
cls.current_selection = char
return handler(cls)
else:
return None
def register(cls):
return KeyHandler(cls.__name__, cls.__bases__, cls.__dict__.copy())
# File: accelerate-main/src/accelerate/commands/menu/keymap.py
""""""
import os
import string
import sys
ARROW_KEY_FLAG = 1 << 8
KEYMAP = {'tab': ord('\t'), 'newline': ord('\r'), 'esc': 27, 'up': 65 + ARROW_KEY_FLAG, 'down': 66 + ARROW_KEY_FLAG, 'right': 67 + ARROW_KEY_FLAG, 'left': 68 + ARROW_KEY_FLAG, 'mod_int': 91, 'undefined': sys.maxsize, 'interrupt': 3, 'insert': 50, 'delete': 51, 'pg_up': 53, 'pg_down': 54}
KEYMAP['arrow_begin'] = KEYMAP['up']
KEYMAP['arrow_end'] = KEYMAP['left']
if sys.platform == 'win32':
WIN_CH_BUFFER = []
WIN_KEYMAP = {b'\xe0H': KEYMAP['up'] - ARROW_KEY_FLAG, b'\x00H': KEYMAP['up'] - ARROW_KEY_FLAG, b'\xe0P': KEYMAP['down'] - ARROW_KEY_FLAG, b'\x00P': KEYMAP['down'] - ARROW_KEY_FLAG, b'\xe0M': KEYMAP['right'] - ARROW_KEY_FLAG, b'\x00M': KEYMAP['right'] - ARROW_KEY_FLAG, b'\xe0K': KEYMAP['left'] - ARROW_KEY_FLAG, b'\x00K': KEYMAP['left'] - ARROW_KEY_FLAG}
for i in range(10):
KEYMAP[str(i)] = ord(str(i))
def get_raw_chars():
if os.name == 'nt':
import msvcrt
encoding = 'mbcs'
while msvcrt.kbhit():
msvcrt.getch()
if len(WIN_CH_BUFFER) == 0:
ch = msvcrt.getch()
if ch in (b'\x00', b'\xe0'):
ch2 = ch + msvcrt.getch()
try:
chx = chr(WIN_KEYMAP[ch2])
WIN_CH_BUFFER.append(chr(KEYMAP['mod_int']))
WIN_CH_BUFFER.append(chx)
if ord(chx) in (KEYMAP['insert'] - 1 << 9, KEYMAP['delete'] - 1 << 9, KEYMAP['pg_up'] - 1 << 9, KEYMAP['pg_down'] - 1 << 9):
WIN_CH_BUFFER.append(chr(126))
ch = chr(KEYMAP['esc'])
except KeyError:
ch = ch2[1]
else:
ch = ch.decode(encoding)
else:
ch = WIN_CH_BUFFER.pop(0)
elif os.name == 'posix':
import termios
import tty
fd = sys.stdin.fileno()
old_settings = termios.tcgetattr(fd)
try:
tty.setraw(fd)
ch = sys.stdin.read(1)
finally:
termios.tcsetattr(fd, termios.TCSADRAIN, old_settings)
return ch
def get_character():
char = get_raw_chars()
if ord(char) in [KEYMAP['interrupt'], KEYMAP['newline']]:
return char
elif ord(char) == KEYMAP['esc']:
combo = get_raw_chars()
if ord(combo) == KEYMAP['mod_int']:
key = get_raw_chars()
if ord(key) >= KEYMAP['arrow_begin'] - ARROW_KEY_FLAG and ord(key) <= KEYMAP['arrow_end'] - ARROW_KEY_FLAG:
return chr(ord(key) + ARROW_KEY_FLAG)
else:
return KEYMAP['undefined']
else:
return get_raw_chars()
elif char in string.printable:
return char
else:
return KEYMAP['undefined']
# File: accelerate-main/src/accelerate/commands/menu/selection_menu.py
""""""
import builtins
import sys
from ...utils.imports import _is_package_available
from . import cursor, input
from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor
from .keymap import KEYMAP
in_colab = False
try:
in_colab = _is_package_available('google.colab')
except ModuleNotFoundError:
pass
@input.register
class BulletMenu:
def __init__(self, prompt: str=None, choices: list=[]):
self.position = 0
self.choices = choices
self.prompt = prompt
if sys.platform == 'win32':
self.arrow_char = '*'
else:
self.arrow_char = '➔ '
def write_choice(self, index, end: str=''):
if sys.platform != 'win32':
writeColor(self.choices[index], 32, end)
else:
forceWrite(self.choices[index], end)
def print_choice(self, index: int):
if index == self.position:
forceWrite(f' {self.arrow_char} ')
self.write_choice(index)
else:
forceWrite(f' {self.choices[index]}')
reset_cursor()
def move_direction(self, direction: Direction, num_spaces: int=1):
old_position = self.position
if direction == Direction.DOWN:
if self.position + 1 >= len(self.choices):
return
self.position += num_spaces
else:
if self.position - 1 < 0:
return
self.position -= num_spaces
clear_line()
self.print_choice(old_position)
move_cursor(num_spaces, direction.name)
self.print_choice(self.position)
@input.mark(KEYMAP['up'])
def move_up(self):
self.move_direction(Direction.UP)
@input.mark(KEYMAP['down'])
def move_down(self):
self.move_direction(Direction.DOWN)
@input.mark(KEYMAP['newline'])
def select(self):
move_cursor(len(self.choices) - self.position, 'DOWN')
return self.position
@input.mark(KEYMAP['interrupt'])
def interrupt(self):
move_cursor(len(self.choices) - self.position, 'DOWN')
raise KeyboardInterrupt
@input.mark_multiple(*[KEYMAP[str(number)] for number in range(10)])
def select_row(self):
index = int(chr(self.current_selection))
movement = index - self.position
if index == self.position:
return
if index < len(self.choices):
if self.position > index:
self.move_direction(Direction.UP, -movement)
elif self.position < index:
self.move_direction(Direction.DOWN, movement)
else:
return
else:
return
def run(self, default_choice: int=0):
if self.prompt:
linebreak()
forceWrite(self.prompt, '\n')
if in_colab:
forceWrite('Please input a choice index (starting from 0), and press enter', '\n')
else:
forceWrite('Please select a choice using the arrow or number keys, and selecting with enter', '\n')
self.position = default_choice
for i in range(len(self.choices)):
self.print_choice(i)
forceWrite('\n')
move_cursor(len(self.choices) - self.position, 'UP')
with cursor.hide():
while True:
if in_colab:
try:
choice = int(builtins.input())
except ValueError:
choice = default_choice
else:
choice = self.handle_input()
if choice is not None:
reset_cursor()
for _ in range(len(self.choices) + 1):
move_cursor(1, 'UP')
clear_line()
self.write_choice(choice, '\n')
return choice
# File: accelerate-main/src/accelerate/commands/merge.py
from accelerate.commands.utils import CustomArgumentParser
from accelerate.utils import merge_fsdp_weights
description = 'Utility to merge the weights from multiple FSDP checkpoints into a single combined checkpoint. Should be used if\n`SHARDED_STATE_DICT` was used for the model. Weights will be saved to `{output_path}`.\n\nThis is a CPU-bound process and requires enough RAM to load the entire model state dict.'
def merge_command(args):
merge_fsdp_weights(args.checkpoint_directory, args.output_path, not args.unsafe_serialization, args.remove_checkpoint_dir)
def merge_command_parser(subparsers=None):
if subparsers is not None:
parser = subparsers.add_parser('merge-weights', description=description)
else:
parser = CustomArgumentParser(description=description)
parser.add_argument('checkpoint_directory', type=str, help='A directory containing sharded weights saved by FSDP.')
parser.add_argument('output_path', type=str, help='The path to save the merged weights. Defaults to the current directory. ')
parser.add_argument('--unsafe_serialization', action='store_false', default=False, help='Whether to save the merged weights as `.bin` rather than `.safetensors` (not recommended).')
parser.add_argument('--remove_checkpoint_dir', action='store_true', help='Whether to remove the checkpoint directory after merging.', default=False)
if subparsers is not None:
parser.set_defaults(func=merge_command)
return parser
def main():
parser = merge_command_parser()
args = parser.parse_args()
merge_command(args)
if __name__ == '__main__':
main()
# File: accelerate-main/src/accelerate/commands/tpu.py
import argparse
import os
import subprocess
from packaging.version import Version, parse
from accelerate.commands.config.config_args import default_config_file, load_config_from_file
_description = 'Run commands across TPU VMs for initial setup before running `accelerate launch`.'
def tpu_command_parser(subparsers=None):
if subparsers is not None:
parser = subparsers.add_parser('tpu-config', description=_description)
else:
parser = argparse.ArgumentParser('Accelerate tpu-config command', description=_description)
config_args = parser.add_argument_group('Config Arguments', 'Arguments that can be configured through `accelerate config`.')
config_args.add_argument('--config_file', type=str, default=None, help='Path to the config file to use for accelerate.')
config_args.add_argument('--tpu_name', default=None, help='The name of the TPU to use. If not specified, will use the TPU specified in the config file.')
config_args.add_argument('--tpu_zone', default=None, help='The zone of the TPU to use. If not specified, will use the zone specified in the config file.')
pod_args = parser.add_argument_group('TPU Arguments', 'Arguments for options ran inside the TPU.')
pod_args.add_argument('--use_alpha', action='store_true', help='Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.')
pod_args.add_argument('--command_file', default=None, help='The path to the file containing the commands to run on the pod on startup.')
pod_args.add_argument('--command', action='append', nargs='+', help='A command to run on the pod. Can be passed multiple times.')
pod_args.add_argument('--install_accelerate', action='store_true', help='Whether to install accelerate on the pod. Defaults to False.')
pod_args.add_argument('--accelerate_version', default='latest', help="The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify 'dev' to install from GitHub.")
pod_args.add_argument('--debug', action='store_true', help='If set, will print the command that would be run instead of running it.')
if subparsers is not None:
parser.set_defaults(func=tpu_command_launcher)
return parser
def tpu_command_launcher(args):
defaults = None
if args.config_file is not None or os.path.isfile(default_config_file):
defaults = load_config_from_file(args.config_file)
if not args.command_file and defaults.command_file is not None and (not args.command):
args.command_file = defaults.command_file
if not args.command and defaults.commands is not None:
args.command = defaults.commands
if not args.tpu_name:
args.tpu_name = defaults.tpu_name
if not args.tpu_zone:
args.tpu_zone = defaults.tpu_zone
if args.accelerate_version == 'dev':
args.accelerate_version = 'git+https://github.com/huggingface/accelerate.git'
elif args.accelerate_version == 'latest':
args.accelerate_version = 'accelerate -U'
elif isinstance(parse(args.accelerate_version), Version):
args.accelerate_version = f'accelerate=={args.accelerate_version}'
if not args.command_file and (not args.command):
raise ValueError('You must specify either a command file or a command to run on the pod.')
if args.command_file:
with open(args.command_file) as f:
args.command = [f.read().splitlines()]
if isinstance(args.command[0], list):
args.command = [line for cmd in args.command for line in cmd]
new_cmd = ['cd /usr/share']
if args.install_accelerate:
new_cmd += [f'pip install {args.accelerate_version}']
new_cmd += args.command
args.command = '; '.join(new_cmd)
cmd = ['gcloud']
if args.use_alpha:
cmd += ['alpha']
cmd += ['compute', 'tpus', 'tpu-vm', 'ssh', args.tpu_name, '--zone', args.tpu_zone, '--command', args.command, '--worker', 'all']
if args.debug:
print(f"Running {' '.join(cmd)}")
return
subprocess.run(cmd)
print('Successfully setup pod.')
def main():
parser = tpu_command_parser()
args = parser.parse_args()
tpu_command_launcher(args)
# File: accelerate-main/src/accelerate/commands/utils.py
import argparse
class _StoreAction(argparse.Action):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
new_option_strings = []
for option_string in self.option_strings:
new_option_strings.append(option_string)
if '_' in option_string[2:]:
new_option_strings.append(option_string.replace('_', '-'))
self.option_strings = new_option_strings
def __call__(self, parser, namespace, values, option_string=None):
setattr(namespace, self.dest, values)
class _StoreConstAction(_StoreAction):
def __init__(self, option_strings, dest, const, default=None, required=False, help=None):
super().__init__(option_strings=option_strings, dest=dest, nargs=0, const=const, default=default, required=required, help=help)
def __call__(self, parser, namespace, values, option_string=None):
setattr(namespace, self.dest, self.const)
class _StoreTrueAction(_StoreConstAction):
def __init__(self, option_strings, dest, default=None, required=False, help=None):
super().__init__(option_strings=option_strings, dest=dest, const=True, default=default, required=required, help=help)
class CustomArgumentGroup(argparse._ArgumentGroup):
def _add_action(self, action):
args = vars(action)
if isinstance(action, argparse._StoreTrueAction):
action = _StoreTrueAction(args['option_strings'], args['dest'], args['default'], args['required'], args['help'])
elif isinstance(action, argparse._StoreConstAction):
action = _StoreConstAction(args['option_strings'], args['dest'], args['const'], args['default'], args['required'], args['help'])
elif isinstance(action, argparse._StoreAction):
action = _StoreAction(**args)
action = super()._add_action(action)
return action
class CustomArgumentParser(argparse.ArgumentParser):
def add_argument(self, *args, **kwargs):
if 'action' in kwargs:
if kwargs['action'] == 'store_true':
kwargs['action'] = _StoreTrueAction
else:
kwargs['action'] = _StoreAction
super().add_argument(*args, **kwargs)
def add_argument_group(self, *args, **kwargs):
group = CustomArgumentGroup(self, *args, **kwargs)
self._action_groups.append(group)
return group
# File: accelerate-main/src/accelerate/data_loader.py
import math
from contextlib import suppress
from typing import Callable, List, Optional, Union
import torch
from torch.utils.data import BatchSampler, DataLoader, IterableDataset, RandomSampler
from .logging import get_logger
from .state import DistributedType, GradientState, PartialState, is_torch_xla_available
from .utils import RNGType, broadcast, broadcast_object_list, concatenate, find_batch_size, get_data_structure, initialize_tensors, is_torch_version, is_torchdata_stateful_dataloader_available, send_to_device, slice_tensors, synchronize_rng_states
logger = get_logger(__name__)
_PYTORCH_DATALOADER_KWARGS = {'batch_size': 1, 'shuffle': False, 'sampler': None, 'batch_sampler': None, 'num_workers': 0, 'collate_fn': None, 'pin_memory': False, 'drop_last': False, 'timeout': 0, 'worker_init_fn': None, 'multiprocessing_context': None, 'generator': None, 'prefetch_factor': 2, 'persistent_workers': False}
_PYTORCH_DATALOADER_ADDITIONAL_KWARGS = {}
for (v, additional_kwargs) in _PYTORCH_DATALOADER_ADDITIONAL_KWARGS.items():
if is_torch_version('>=', v):
_PYTORCH_DATALOADER_KWARGS.update(additional_kwargs)
class SeedableRandomSampler(RandomSampler):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.epoch = 0
self.initial_seed = torch.random.initial_seed()
def __iter__(self):
if self.generator is None:
self.generator = torch.Generator()
self.generator.manual_seed(self.initial_seed)
seed = self.epoch + self.initial_seed
self.generator.manual_seed(seed)
yield from super().__iter__()
self.set_epoch(self.epoch + 1)
def set_epoch(self, epoch: int):
self.epoch = epoch
class BatchSamplerShard(BatchSampler):
def __init__(self, batch_sampler: BatchSampler, num_processes: int=1, process_index: int=0, split_batches: bool=False, even_batches: bool=True):
if split_batches and batch_sampler.batch_size % num_processes != 0:
raise ValueError(f'To use `BatchSamplerShard` in `split_batches` mode, the batch size ({batch_sampler.batch_size}) needs to be a round multiple of the number of processes ({num_processes}).')
self.batch_sampler = batch_sampler
self.num_processes = num_processes
self.process_index = process_index
self.split_batches = split_batches
self.even_batches = even_batches
self.batch_size = getattr(batch_sampler, 'batch_size', None)
self.drop_last = getattr(batch_sampler, 'drop_last', False)
if self.batch_size is None and self.even_batches:
raise ValueError('You need to use `even_batches=False` when the batch sampler has no batch size. If you are not calling this method directly, set `accelerator.even_batches=False` instead.')
@property
def total_length(self):
return len(self.batch_sampler)
def __len__(self):
if self.split_batches:
return len(self.batch_sampler)
if len(self.batch_sampler) % self.num_processes == 0:
return len(self.batch_sampler) // self.num_processes
length = len(self.batch_sampler) // self.num_processes
if self.drop_last:
return length
elif self.even_batches:
return length + 1
else:
return length + 1 if self.process_index < len(self.batch_sampler) % self.num_processes else length
def __iter__(self):
return self._iter_with_split() if self.split_batches else self._iter_with_no_split()
def _iter_with_split(self):
initial_data = []
batch_length = self.batch_sampler.batch_size // self.num_processes
for (idx, batch) in enumerate(self.batch_sampler):
if idx == 0:
initial_data = batch
if len(batch) == self.batch_size:
yield batch[batch_length * self.process_index:batch_length * (self.process_index + 1)]
if not self.drop_last and len(initial_data) > 0 and (len(batch) < self.batch_size):
if not self.even_batches:
if len(batch) > batch_length * self.process_index:
yield batch[batch_length * self.process_index:batch_length * (self.process_index + 1)]
else:
while len(initial_data) < self.batch_size:
initial_data += initial_data
batch = batch + initial_data
yield batch[batch_length * self.process_index:batch_length * (self.process_index + 1)]
def _iter_with_no_split(self):
initial_data = []
batch_to_yield = []
for (idx, batch) in enumerate(self.batch_sampler):
if not self.drop_last and idx < self.num_processes:
initial_data += batch
if idx % self.num_processes == self.process_index:
batch_to_yield = batch
if idx % self.num_processes == self.num_processes - 1 and (self.batch_size is None or len(batch) == self.batch_size):
yield batch_to_yield
batch_to_yield = []
if not self.drop_last and len(initial_data) > 0:
if not self.even_batches:
if len(batch_to_yield) > 0:
yield batch_to_yield
else:
if len(batch_to_yield) == self.batch_size:
yield batch_to_yield
while len(initial_data) < self.num_processes * self.batch_size:
initial_data += initial_data
if len(batch) == self.batch_size:
batch = []
idx += 1
cycle_index = 0
while idx % self.num_processes != 0 or len(batch) > 0:
end_index = cycle_index + self.batch_size - len(batch)
batch += initial_data[cycle_index:end_index]
if idx % self.num_processes == self.process_index:
yield batch
cycle_index = end_index
batch = []
idx += 1
class IterableDatasetShard(IterableDataset):
def __init__(self, dataset: IterableDataset, batch_size: int=1, drop_last: bool=False, num_processes: int=1, process_index: int=0, split_batches: bool=False):
if split_batches and batch_size > 1 and (batch_size % num_processes != 0):
raise ValueError(f'To use `IterableDatasetShard` in `split_batches` mode, the batch size ({batch_size}) needs to be a round multiple of the number of processes ({num_processes}).')
self.dataset = dataset
self.batch_size = batch_size
self.drop_last = drop_last
self.num_processes = num_processes
self.process_index = process_index
self.split_batches = split_batches
def set_epoch(self, epoch):
self.epoch = epoch
if hasattr(self.dataset, 'set_epoch'):
self.dataset.set_epoch(epoch)
def __len__(self):
if self.drop_last:
return len(self.dataset) // (self.batch_size * self.num_processes) * self.batch_size
else:
return math.ceil(len(self.dataset) / (self.batch_size * self.num_processes)) * self.batch_size
def __iter__(self):
if not hasattr(self.dataset, 'set_epoch') and hasattr(self.dataset, 'generator') and isinstance(self.dataset.generator, torch.Generator):
self.dataset.generator.manual_seed(self.epoch)
real_batch_size = self.batch_size if self.split_batches else self.batch_size * self.num_processes
process_batch_size = self.batch_size // self.num_processes if self.split_batches else self.batch_size
process_slice = range(self.process_index * process_batch_size, (self.process_index + 1) * process_batch_size)
first_batch = None
current_batch = []
for element in self.dataset:
current_batch.append(element)
if len(current_batch) == real_batch_size:
for i in process_slice:
yield current_batch[i]
if first_batch is None:
first_batch = current_batch.copy()
current_batch = []
if not self.drop_last and len(current_batch) > 0:
if first_batch is None:
first_batch = current_batch.copy()
while len(current_batch) < real_batch_size:
current_batch += first_batch
for i in process_slice:
yield current_batch[i]
class DataLoaderStateMixin:
def __init_subclass__(cls, **kwargs):
cls.end_of_dataloader = False
cls.remainder = -1
def reset(self):
self.end_of_dataloader = False
self.remainder = -1
def begin(self):
self.reset()
with suppress(Exception):
if not self._drop_last:
length = getattr(self.dataset, 'total_dataset_length', len(self.dataset))
self.remainder = length % self.total_batch_size
self.gradient_state._add_dataloader(self)
def end(self):
self.gradient_state._remove_dataloader(self)
class DataLoaderAdapter:
def __init__(self, dataset, use_stateful_dataloader=False, batch_sampler=None, **kwargs):
self.use_stateful_dataloader = use_stateful_dataloader
if is_torchdata_stateful_dataloader_available():
from torchdata.stateful_dataloader import StatefulDataLoader
if use_stateful_dataloader and (not is_torchdata_stateful_dataloader_available()):
raise ImportError('StatefulDataLoader is not available. Please install torchdata version 0.8.0 or higher to use it.')
if use_stateful_dataloader:
self.base_dataloader = StatefulDataLoader(dataset, batch_sampler=batch_sampler, **kwargs)
else:
self.base_dataloader = DataLoader(dataset, batch_sampler=batch_sampler, **kwargs)
if hasattr(self.base_dataloader, 'state_dict'):
self.dl_state_dict = self.base_dataloader.state_dict()
def __getattr__(self, name):
if name == 'base_dataloader':
raise AttributeError()
return getattr(self.base_dataloader, name)
def state_dict(self):
return self.dl_state_dict
def load_state_dict(self, state_dict):
self.base_dataloader.load_state_dict(state_dict)
@property
def __class__(self):
return self.base_dataloader.__class__
def __len__(self):
return len(self.base_dataloader)
def adjust_state_dict_for_prefetch(self):
if PartialState().distributed_type != DistributedType.NO:
factor = PartialState().num_processes - 1
if self.dl_state_dict['_sampler_iter_yielded'] > 0:
self.dl_state_dict['_sampler_iter_yielded'] -= factor
if self.dl_state_dict['_num_yielded'] > 0:
self.dl_state_dict['_num_yielded'] -= factor
if self.dl_state_dict['_index_sampler_state'] is not None:
if 'samples_yielded' in self.dl_state_dict['_index_sampler_state'] and self.dl_state_dict['_index_sampler_state']['samples_yielded'] > 0:
self.dl_state_dict['_index_sampler_state']['samples_yielded'] -= self.batch_size * factor
def _update_state_dict(self):
if hasattr(self.base_dataloader, 'state_dict'):
self.dl_state_dict = self.base_dataloader.state_dict()
self.adjust_state_dict_for_prefetch()
self.dl_state_dict['_iterator_finished'] = self.end_of_dataloader
class DataLoaderShard(DataLoaderAdapter, DataLoaderStateMixin):
def __init__(self, dataset, device=None, rng_types=None, synchronized_generator=None, skip_batches=0, use_stateful_dataloader=False, _drop_last: bool=False, _non_blocking: bool=False, **kwargs):
super().__init__(dataset, use_stateful_dataloader=use_stateful_dataloader, **kwargs)
self.device = device
self.rng_types = rng_types
self.synchronized_generator = synchronized_generator
self.skip_batches = skip_batches
self.gradient_state = GradientState()
self._drop_last = _drop_last
self._non_blocking = _non_blocking
self.iteration = 0
def __iter__(self):
if self.rng_types is not None:
synchronize_rng_states(self.rng_types, self.synchronized_generator)
self.begin()
self.set_epoch(self.iteration)
dataloader_iter = self.base_dataloader.__iter__()
try:
current_batch = next(dataloader_iter)
except StopIteration:
yield
batch_index = 0
while True:
try:
if self.device is not None:
current_batch = send_to_device(current_batch, self.device, non_blocking=self._non_blocking)
self._update_state_dict()
next_batch = next(dataloader_iter)
if batch_index >= self.skip_batches:
yield current_batch
batch_index += 1
current_batch = next_batch
except StopIteration:
self.end_of_dataloader = True
self._update_state_dict()
if batch_index >= self.skip_batches:
yield current_batch
break
self.iteration += 1
self.end()
def __reduce__(self):
args = super().__reduce__()
return (DataLoaderShard, *args[1:])
def set_epoch(self, epoch: int):
if self.iteration != epoch:
self.iteration = epoch
if hasattr(self.batch_sampler, 'sampler') and hasattr(self.batch_sampler.sampler, 'set_epoch'):
self.batch_sampler.sampler.set_epoch(epoch)
elif hasattr(self.dataset, 'set_epoch'):
self.dataset.set_epoch(epoch)
@property
def total_batch_size(self):
batch_sampler = self.sampler if isinstance(self.sampler, BatchSampler) else self.batch_sampler
return batch_sampler.batch_size if getattr(batch_sampler, 'split_batches', False) else batch_sampler.batch_size * getattr(batch_sampler, 'num_processes', 1)
@property
def total_dataset_length(self):
if hasattr(self.dataset, 'total_length'):
return self.dataset.total_length
else:
return len(self.dataset)
def get_sampler(self):
return get_sampler(self)
def set_sampler(self, sampler):
sampler_is_batch_sampler = isinstance(self.sampler, BatchSampler)
if sampler_is_batch_sampler:
self.sampler.sampler = sampler
else:
self.batch_sampler.sampler = sampler
if hasattr(self.batch_sampler, 'batch_sampler'):
self.batch_sampler.batch_sampler.sampler = sampler
if is_torch_xla_available():
import torch_xla.distributed.parallel_loader as xpl
class MpDeviceLoaderWrapper(xpl.MpDeviceLoader):
def __init__(self, dataloader: DataLoaderShard, device: torch.device):
super().__init__(dataloader, device)
self._rng_types = self._loader.rng_types
self._loader.rng_types = None
self.device = device
def __iter__(self):
if self._rng_types is not None:
synchronize_rng_states(self._rng_types, self._loader.synchronized_generator)
return super().__iter__()
def set_epoch(self, epoch: int):
if hasattr(self.dataloader, 'set_epoch'):
self.dataloader.set_epoch(epoch)
@property
def total_batch_size(self):
return self._loader.total_batch_size
@property
def total_dataset_length(self):
return self._loader.total_dataset_length
@property
def batch_sampler(self):
return self._loader.batch_sampler
@property
def dataloader(self):
return self._loader
class DataLoaderDispatcher(DataLoaderAdapter, DataLoaderStateMixin):
def __init__(self, dataset, split_batches: bool=False, skip_batches=0, use_stateful_dataloader=False, _drop_last: bool=False, _non_blocking: bool=False, slice_fn=None, **kwargs):
shuffle = False
if is_torch_version('>=', '1.11.0'):
from torch.utils.data.datapipes.iter.combinatorics import ShufflerIterDataPipe
if isinstance(dataset, ShufflerIterDataPipe):
shuffle = dataset._shuffle_enabled
super().__init__(dataset, use_stateful_dataloader=use_stateful_dataloader, **kwargs)
self.split_batches = split_batches
if shuffle:
torch.utils.data.graph_settings.apply_shuffle_settings(dataset, shuffle=shuffle)
self.gradient_state = GradientState()
self.state = PartialState()
self._drop_last = _drop_last
self._non_blocking = _non_blocking
self.skip_batches = skip_batches
self.slice_fn = slice_tensors if slice_fn is None else slice_fn
self.iteration = 0
def _fetch_batches(self, iterator):
(batches, batch) = (None, None)
if self.state.process_index == 0:
try:
if self.split_batches:
self._update_state_dict()
batch = next(iterator)
else:
batches = []
for _ in range(self.state.num_processes):
self._update_state_dict()
batches.append(next(iterator))
try:
batch = concatenate(batches, dim=0)
except RuntimeError as e:
raise RuntimeError("You can't use batches of different size with `dispatch_batches=True` or when using an `IterableDataset`.either pass `dispatch_batches=False` and have each process fetch its own batch or pass `split_batches=True`. By doing so, the main process will fetch a full batch and slice it into `num_processes` batches for each process.") from e
batch_info = [get_data_structure(batch), False]
except StopIteration:
batch_info = [None, True]
else:
batch_info = [None, self._stop_iteration]
broadcast_object_list(batch_info)
self._stop_iteration = batch_info[1]
if self._stop_iteration:
if not self.split_batches and (not self._drop_last):
if self.state.process_index == 0 and len(batches) > 0:
batch = concatenate(batches, dim=0)
batch_info = [get_data_structure(batch), False]
else:
batch_info = [None, True]
broadcast_object_list(batch_info)
return (batch, batch_info)
def __iter__(self):
self.begin()
self.set_epoch(self.iteration)
main_iterator = None
if is_torch_version('>=', '2.0.1'):
main_iterator = self.base_dataloader.__iter__()
elif self.state.process_index == 0:
main_iterator = self.base_dataloader.__iter__()
stop_iteration = False
self._stop_iteration = False
first_batch = None
(next_batch, next_batch_info) = self._fetch_batches(main_iterator)
batch_index = 0
while not stop_iteration:
(batch, batch_info) = (next_batch, next_batch_info)
if self.state.process_index != 0:
batch = initialize_tensors(batch_info[0])
batch = send_to_device(batch, self.state.device, non_blocking=self._non_blocking)
batch = broadcast(batch, from_process=0)
if not self._drop_last and first_batch is None:
first_batch = self.slice_fn(batch, slice(0, self.state.num_processes), process_index=self.state.process_index, num_processes=self.state.num_processes)
if batch is None:
raise ValueError(f'Batch does not contain any data (`{batch}`). At the end of all iterable data available before expected stop iteration.')
observed_batch_size = find_batch_size(batch)
batch_size = observed_batch_size // self.state.num_processes
stop_iteration = self._stop_iteration
if not stop_iteration:
(next_batch, next_batch_info) = self._fetch_batches(main_iterator)
if self._stop_iteration and next_batch_info[0] is None:
stop_iteration = True
if not self._drop_last and stop_iteration and (observed_batch_size % self.state.num_processes != 0):
batch = concatenate([batch, first_batch], dim=0)
batch_size += 1
data_slice = slice(self.state.process_index * batch_size, (self.state.process_index + 1) * batch_size)
batch = self.slice_fn(batch, data_slice, process_index=self.state.process_index, num_processes=self.state.num_processes)
if stop_iteration:
self.end_of_dataloader = True
self._update_state_dict()
self.remainder = observed_batch_size
if batch_index >= self.skip_batches:
yield batch
batch_index += 1
self.iteration += 1
self.end()
def set_epoch(self, epoch: int):
if self.iteration != epoch:
self.iteration = epoch
if hasattr(self.batch_sampler, 'sampler') and hasattr(self.batch_sampler.sampler, 'set_epoch'):
self.batch_sampler.sampler.set_epoch(epoch)
elif hasattr(self.dataset, 'set_epoch'):
self.dataset.set_epoch(epoch)
def __len__(self):
whole_length = len(self.base_dataloader)
if self.split_batches:
return whole_length
elif self._drop_last:
return whole_length // self.state.num_processes
else:
return math.ceil(whole_length / self.state.num_processes)
def __reduce__(self):
args = super().__reduce__()
return (DataLoaderDispatcher, *args[1:])
@property
def total_batch_size(self):
return self.dataset.batch_size if self.split_batches else self.dataset.batch_size * self.dataset.num_processes
@property
def total_dataset_length(self):
return len(self.dataset)
def get_sampler(self):
return get_sampler(self)
def set_sampler(self, sampler):
sampler_is_batch_sampler = isinstance(self.sampler, BatchSampler)
if sampler_is_batch_sampler:
self.sampler.sampler = sampler
else:
self.batch_sampler.sampler = sampler
if hasattr(self.batch_sampler, 'batch_sampler'):
self.batch_sampler.batch_sampler.sampler = sampler
def get_sampler(dataloader):
sampler_is_batch_sampler = isinstance(dataloader.sampler, BatchSampler)
if sampler_is_batch_sampler:
sampler = getattr(dataloader.sampler, 'sampler', None)
else:
sampler = getattr(dataloader.batch_sampler, 'sampler', None)
return sampler
def prepare_data_loader(dataloader: DataLoader, device: Optional[torch.device]=None, num_processes: Optional[int]=None, process_index: Optional[int]=None, split_batches: bool=False, put_on_device: bool=False, rng_types: Optional[List[Union[str, RNGType]]]=None, dispatch_batches: Optional[bool]=None, even_batches: bool=True, slice_fn_for_dispatch: Optional[Callable]=None, use_seedable_sampler: bool=False, non_blocking: bool=False, use_stateful_dataloader: bool=False) -> DataLoader:
if dispatch_batches is None:
if not put_on_device:
dispatch_batches = False
else:
dispatch_batches = isinstance(dataloader.dataset, IterableDataset)
if dispatch_batches and (not put_on_device):
raise ValueError('Using `dispatch_batches=True` requires `put_on_device=True`.')
state = PartialState()
if num_processes is None:
num_processes = state.num_processes
if process_index is None:
process_index = state.process_index
if split_batches:
if dataloader.batch_size is not None:
batch_size_for_check = dataloader.batch_size
elif hasattr(dataloader.batch_sampler, 'batch_size'):
batch_size_for_check = dataloader.batch_sampler.batch_size
else:
raise ValueError(f'In order to use `split_batches==True` you must have a `batch_size` attribute either in the passed `dataloader` or `dataloader.batch_sampler` objects, and it has to return a natural number. Your `dataloader.batch_size` is None and `dataloader.batch_sampler` (`{type(dataloader.batch_sampler)}`) does not have the `batch_size` attribute set.')
if batch_size_for_check > 1 and batch_size_for_check % num_processes != 0:
raise ValueError(f'To use a `DataLoader` in `split_batches` mode, the batch size ({dataloader.batch_size}) needs to be a round multiple of the number of processes ({num_processes}).')
new_dataset = dataloader.dataset
new_batch_sampler = dataloader.batch_sampler if not isinstance(new_dataset, IterableDataset) else None
sampler_is_batch_sampler = isinstance(dataloader.sampler, BatchSampler)
synchronized_generator = None
sampler = get_sampler(dataloader)
if isinstance(sampler, RandomSampler) and use_seedable_sampler:
sampler = SeedableRandomSampler(data_source=sampler.data_source, replacement=sampler.replacement, num_samples=sampler._num_samples, generator=getattr(sampler, 'generator', torch.Generator()))
if isinstance(dataloader.sampler, RandomSampler) and state.distributed_type == DistributedType.XLA:
generator = torch.Generator().manual_seed(42)
dataloader.generator = generator
dataloader.sampler.generator = generator
if (num_processes != 1 or state.distributed_type == DistributedType.MEGATRON_LM) and (not dispatch_batches):
if isinstance(new_dataset, IterableDataset):
if getattr(dataloader.dataset, 'generator', None) is not None:
synchronized_generator = dataloader.dataset.generator
new_dataset = IterableDatasetShard(new_dataset, batch_size=dataloader.batch_size, drop_last=dataloader.drop_last, num_processes=num_processes, process_index=process_index, split_batches=split_batches)
else:
if not use_seedable_sampler and hasattr(sampler, 'generator'):
if sampler.generator is None:
sampler.generator = torch.Generator()
synchronized_generator = sampler.generator
batch_sampler = dataloader.sampler if sampler_is_batch_sampler else dataloader.batch_sampler
new_batch_sampler = BatchSamplerShard(batch_sampler, num_processes=num_processes, process_index=process_index, split_batches=split_batches, even_batches=even_batches)
ignore_kwargs = ['batch_size', 'shuffle', 'sampler', 'batch_sampler', 'drop_last']
if rng_types is not None and synchronized_generator is None and ('generator' in rng_types):
rng_types.remove('generator')
kwargs = {k: getattr(dataloader, k, _PYTORCH_DATALOADER_KWARGS[k]) for k in _PYTORCH_DATALOADER_KWARGS if k not in ignore_kwargs}
if new_batch_sampler is None:
kwargs['drop_last'] = dataloader.drop_last
kwargs['batch_size'] = dataloader.batch_size // num_processes if split_batches and (not dispatch_batches) else dataloader.batch_size
if dispatch_batches:
kwargs.pop('generator')
dataloader = DataLoaderDispatcher(new_dataset, split_batches=split_batches, batch_sampler=new_batch_sampler, _drop_last=dataloader.drop_last, _non_blocking=non_blocking, slice_fn=slice_fn_for_dispatch, use_stateful_dataloader=use_stateful_dataloader, **kwargs)
elif sampler_is_batch_sampler:
dataloader = DataLoaderShard(new_dataset, device=device if put_on_device and state.distributed_type != DistributedType.XLA else None, sampler=new_batch_sampler, batch_size=dataloader.batch_size, rng_types=rng_types, _drop_last=dataloader.drop_last, _non_blocking=non_blocking, synchronized_generator=synchronized_generator, use_stateful_dataloader=use_stateful_dataloader, **kwargs)
else:
dataloader = DataLoaderShard(new_dataset, device=device if put_on_device and state.distributed_type != DistributedType.XLA else None, batch_sampler=new_batch_sampler, rng_types=rng_types, synchronized_generator=synchronized_generator, _drop_last=dataloader.drop_last, _non_blocking=non_blocking, use_stateful_dataloader=use_stateful_dataloader, **kwargs)
if isinstance(sampler, SeedableRandomSampler) and use_seedable_sampler:
dataloader.set_sampler(sampler)
if state.distributed_type == DistributedType.XLA:
return MpDeviceLoaderWrapper(dataloader, device)
return dataloader
class SkipBatchSampler(BatchSampler):
def __init__(self, batch_sampler, skip_batches=0):
self.batch_sampler = batch_sampler
self.skip_batches = skip_batches
def __iter__(self):
for (index, samples) in enumerate(self.batch_sampler):
if index >= self.skip_batches:
yield samples
@property
def total_length(self):
return len(self.batch_sampler)
def __len__(self):
return len(self.batch_sampler) - self.skip_batches
class SkipDataLoader(DataLoaderAdapter, DataLoaderStateMixin):
def __init__(self, dataset, skip_batches=0, use_stateful_dataloader=False, **kwargs):
super().__init__(dataset, use_stateful_dataloader=use_stateful_dataloader, **kwargs)
self.skip_batches = skip_batches
self.gradient_state = GradientState()
def __iter__(self):
self.begin()
for (index, batch) in enumerate(self.base_dataloader.__iter__()):
if index >= self.skip_batches:
self._update_state_dict()
yield batch
self.end()
def __len__(self):
return len(self.base_dataloader) - self.skip_batches
def __reduce__(self):
args = super().__reduce__()
return (SkipDataLoader, *args[1:])
def skip_first_batches(dataloader, num_batches=0):
state = PartialState()
if state.distributed_type == DistributedType.XLA:
device = dataloader.device
dataloader = dataloader.dataloader
dataset = dataloader.dataset
sampler_is_batch_sampler = False
if isinstance(dataset, IterableDataset):
new_batch_sampler = None
else:
sampler_is_batch_sampler = isinstance(dataloader.sampler, BatchSampler)
batch_sampler = dataloader.sampler if sampler_is_batch_sampler else dataloader.batch_sampler
new_batch_sampler = SkipBatchSampler(batch_sampler, skip_batches=num_batches)
ignore_kwargs = ['batch_size', 'shuffle', 'sampler', 'batch_sampler', 'drop_last']
kwargs = {k: getattr(dataloader, k, _PYTORCH_DATALOADER_KWARGS[k]) for k in _PYTORCH_DATALOADER_KWARGS if k not in ignore_kwargs}
if new_batch_sampler is None:
kwargs['drop_last'] = dataloader.drop_last
kwargs['batch_size'] = dataloader.batch_size
if isinstance(dataloader, DataLoaderDispatcher):
if new_batch_sampler is None:
kwargs['skip_batches'] = num_batches
dataloader = DataLoaderDispatcher(dataset, split_batches=dataloader.split_batches, batch_sampler=new_batch_sampler, _drop_last=dataloader._drop_last, **kwargs)
elif isinstance(dataloader, DataLoaderShard):
if new_batch_sampler is None:
kwargs['skip_batches'] = num_batches
elif sampler_is_batch_sampler:
kwargs['sampler'] = new_batch_sampler
kwargs['batch_size'] = dataloader.batch_size
else:
kwargs['batch_sampler'] = new_batch_sampler
dataloader = DataLoaderShard(dataset, device=dataloader.device, rng_types=dataloader.rng_types, synchronized_generator=dataloader.synchronized_generator, **kwargs)
elif new_batch_sampler is None:
dataloader = SkipDataLoader(dataset, skip_batches=num_batches, **kwargs)
else:
dataloader = DataLoader(dataset, batch_sampler=new_batch_sampler, **kwargs)
if state.distributed_type == DistributedType.XLA:
dataloader = MpDeviceLoaderWrapper(dataloader, device)
return dataloader
# File: accelerate-main/src/accelerate/hooks.py
import functools
from typing import Dict, List, Mapping, Optional, Union
import torch
import torch.nn as nn
from .state import PartialState
from .utils import PrefixedDataset, find_device, named_module_tensors, send_to_device, set_module_tensor_to_device
from .utils.memory import clear_device_cache
from .utils.modeling import get_non_persistent_buffers
from .utils.other import recursive_getattr
_accelerate_added_attributes = ['to', 'cuda', 'npu', 'xpu', 'mlu', 'musa']
class ModelHook:
no_grad = False
def init_hook(self, module):
return module
def pre_forward(self, module, *args, **kwargs):
return (args, kwargs)
def post_forward(self, module, output):
return output
def detach_hook(self, module):
return module
class SequentialHook(ModelHook):
def __init__(self, *hooks):
self.hooks = hooks
def init_hook(self, module):
for hook in self.hooks:
module = hook.init_hook(module)
return module
def pre_forward(self, module, *args, **kwargs):
for hook in self.hooks:
(args, kwargs) = hook.pre_forward(module, *args, **kwargs)
return (args, kwargs)
def post_forward(self, module, output):
for hook in self.hooks:
output = hook.post_forward(module, output)
return output
def detach_hook(self, module):
for hook in self.hooks:
module = hook.detach_hook(module)
return module
def add_hook_to_module(module: nn.Module, hook: ModelHook, append: bool=False):
if append and getattr(module, '_hf_hook', None) is not None:
old_hook = module._hf_hook
remove_hook_from_module(module)
hook = SequentialHook(old_hook, hook)
if hasattr(module, '_hf_hook') and hasattr(module, '_old_forward'):
old_forward = module._old_forward
else:
old_forward = module.forward
module._old_forward = old_forward
module = hook.init_hook(module)
module._hf_hook = hook
def new_forward(module, *args, **kwargs):
(args, kwargs) = module._hf_hook.pre_forward(module, *args, **kwargs)
if module._hf_hook.no_grad:
with torch.no_grad():
output = module._old_forward(*args, **kwargs)
else:
output = module._old_forward(*args, **kwargs)
return module._hf_hook.post_forward(module, output)
if 'GraphModuleImpl' in str(type(module)):
module.__class__.forward = functools.update_wrapper(functools.partial(new_forward, module), old_forward)
else:
module.forward = functools.update_wrapper(functools.partial(new_forward, module), old_forward)
return module
def remove_hook_from_module(module: nn.Module, recurse=False):
if hasattr(module, '_hf_hook'):
module._hf_hook.detach_hook(module)
delattr(module, '_hf_hook')
if hasattr(module, '_old_forward'):
if 'GraphModuleImpl' in str(type(module)):
module.__class__.forward = module._old_forward
else:
module.forward = module._old_forward
delattr(module, '_old_forward')
for attr in _accelerate_added_attributes:
module.__dict__.pop(attr, None)
if recurse:
for child in module.children():
remove_hook_from_module(child, recurse)
return module
class AlignDevicesHook(ModelHook):
def __init__(self, execution_device: Optional[Union[int, str, torch.device]]=None, offload: bool=False, io_same_device: bool=False, weights_map: Optional[Mapping]=None, offload_buffers: bool=False, place_submodules: bool=False, skip_keys: Optional[Union[str, List[str]]]=None, tied_params_map: Optional[Dict[int, Dict[torch.device, torch.Tensor]]]=None):
self.execution_device = execution_device
self.offload = offload
self.io_same_device = io_same_device
self.weights_map = weights_map
self.offload_buffers = offload_buffers
self.place_submodules = place_submodules
self.skip_keys = skip_keys
self.input_device = None
self.param_original_devices = {}
self.buffer_original_devices = {}
self.tied_params_names = set()
self.tied_params_map = tied_params_map
def __repr__(self):
return f'AlignDevicesHook(execution_device={self.execution_device}, offload={self.offload}, io_same_device={self.io_same_device}, offload_buffers={self.offload_buffers}, place_submodules={self.place_submodules}, skip_keys={repr(self.skip_keys)})'
def init_hook(self, module):
if self.execution_device == 'meta' or self.execution_device == torch.device('meta'):
self.tied_params_map = None
if not self.offload and self.execution_device is not None:
for (name, _) in named_module_tensors(module, recurse=self.place_submodules):
set_module_tensor_to_device(module, name, self.execution_device, tied_params_map=self.tied_params_map)
elif self.offload:
self.original_devices = {name: param.device for (name, param) in named_module_tensors(module, recurse=self.place_submodules)}
if self.weights_map is None:
self.weights_map = {name: param.to('cpu') for (name, param) in named_module_tensors(module, include_buffers=self.offload_buffers, recurse=self.place_submodules)}
for (name, _) in named_module_tensors(module, include_buffers=self.offload_buffers, recurse=self.place_submodules, remove_non_persistent=True):
if self.tied_params_map is not None and recursive_getattr(module, name).data_ptr() in self.tied_params_map:
self.tied_params_names.add(name)
set_module_tensor_to_device(module, name, 'meta')
if not self.offload_buffers and self.execution_device is not None:
for (name, _) in module.named_buffers(recurse=self.place_submodules):
set_module_tensor_to_device(module, name, self.execution_device, tied_params_map=self.tied_params_map)
elif self.offload_buffers and self.execution_device is not None:
for name in get_non_persistent_buffers(module, recurse=self.place_submodules):
set_module_tensor_to_device(module, name, self.execution_device, tied_params_map=self.tied_params_map)
return module
def pre_forward(self, module, *args, **kwargs):
if self.io_same_device:
self.input_device = find_device([args, kwargs])
if self.offload:
self.tied_pointers_to_remove = set()
for (name, _) in named_module_tensors(module, include_buffers=self.offload_buffers, recurse=self.place_submodules, remove_non_persistent=True):
fp16_statistics = None
value = self.weights_map[name]
if 'weight' in name and name.replace('weight', 'SCB') in self.weights_map.keys():
if value.dtype == torch.int8:
fp16_statistics = self.weights_map[name.replace('weight', 'SCB')]
if name in self.tied_params_names and value.data_ptr() not in self.tied_params_map:
self.tied_params_map[value.data_ptr()] = {}
if value is not None and self.tied_params_map is not None and (value.data_ptr() in self.tied_params_map) and (self.execution_device not in self.tied_params_map[value.data_ptr()]):
self.tied_pointers_to_remove.add((value.data_ptr(), self.execution_device))
set_module_tensor_to_device(module, name, self.execution_device, value=value, fp16_statistics=fp16_statistics, tied_params_map=self.tied_params_map)
return (send_to_device(args, self.execution_device), send_to_device(kwargs, self.execution_device, skip_keys=self.skip_keys))
def post_forward(self, module, output):
if self.offload:
for (name, _) in named_module_tensors(module, include_buffers=self.offload_buffers, recurse=self.place_submodules, remove_non_persistent=True):
set_module_tensor_to_device(module, name, 'meta')
if type(module).__name__ == 'Linear8bitLt':
module.state.SCB = None
module.state.CxB = None
for (value_pointer, device) in self.tied_pointers_to_remove:
del self.tied_params_map[value_pointer][device]
self.tied_pointers_to_remove = set()
if self.io_same_device and self.input_device is not None:
output = send_to_device(output, self.input_device, skip_keys=self.skip_keys)
return output
def detach_hook(self, module):
if self.offload:
for (name, device) in self.original_devices.items():
if device != torch.device('meta'):
set_module_tensor_to_device(module, name, device, value=self.weights_map.get(name, None))
return module
def attach_execution_device_hook(module: torch.nn.Module, execution_device: Union[int, str, torch.device], skip_keys: Optional[Union[str, List[str]]]=None, preload_module_classes: Optional[List[str]]=None, tied_params_map: Optional[Dict[int, Dict[torch.device, torch.Tensor]]]=None):
if not hasattr(module, '_hf_hook') and len(module.state_dict()) > 0:
add_hook_to_module(module, AlignDevicesHook(execution_device, skip_keys=skip_keys, tied_params_map=tied_params_map))
if preload_module_classes is not None and module.__class__.__name__ in preload_module_classes:
return
for child in module.children():
attach_execution_device_hook(child, execution_device, skip_keys=skip_keys, tied_params_map=tied_params_map)
def attach_align_device_hook(module: torch.nn.Module, execution_device: Optional[torch.device]=None, offload: bool=False, weights_map: Optional[Mapping]=None, offload_buffers: bool=False, module_name: str='', skip_keys: Optional[Union[str, List[str]]]=None, preload_module_classes: Optional[List[str]]=None, tied_params_map: Optional[Dict[int, Dict[torch.device, torch.Tensor]]]=None):
directs = named_module_tensors(module)
full_offload = offload and preload_module_classes is not None and (module.__class__.__name__ in preload_module_classes)
if len(list(directs)) > 0 or full_offload:
if weights_map is not None:
prefix = f'{module_name}.' if len(module_name) > 0 else ''
prefixed_weights_map = PrefixedDataset(weights_map, prefix)
else:
prefixed_weights_map = None
hook = AlignDevicesHook(execution_device=execution_device, offload=offload, weights_map=prefixed_weights_map, offload_buffers=offload_buffers, place_submodules=full_offload, skip_keys=skip_keys, tied_params_map=tied_params_map)
add_hook_to_module(module, hook, append=True)
if full_offload:
return
for (child_name, child) in module.named_children():
child_name = f'{module_name}.{child_name}' if len(module_name) > 0 else child_name
attach_align_device_hook(child, execution_device=execution_device, offload=offload, weights_map=weights_map, offload_buffers=offload_buffers, module_name=child_name, preload_module_classes=preload_module_classes, skip_keys=skip_keys, tied_params_map=tied_params_map)
def remove_hook_from_submodules(module: nn.Module):
remove_hook_from_module(module)
for child in module.children():
remove_hook_from_submodules(child)
def attach_align_device_hook_on_blocks(module: nn.Module, execution_device: Optional[Union[torch.device, Dict[str, torch.device]]]=None, offload: Union[bool, Dict[str, bool]]=False, weights_map: Mapping=None, offload_buffers: bool=False, module_name: str='', skip_keys: Optional[Union[str, List[str]]]=None, preload_module_classes: Optional[List[str]]=None, tied_params_map: Optional[Dict[int, Dict[torch.device, torch.Tensor]]]=None):
if not isinstance(execution_device, Mapping) and (not isinstance(offload, dict)):
if not offload:
hook = AlignDevicesHook(execution_device=execution_device, io_same_device=True, skip_keys=skip_keys, place_submodules=True, tied_params_map=tied_params_map)
add_hook_to_module(module, hook)
else:
attach_align_device_hook(module, execution_device=execution_device, offload=True, weights_map=weights_map, offload_buffers=offload_buffers, module_name=module_name, skip_keys=skip_keys, tied_params_map=tied_params_map)
return
if not isinstance(execution_device, Mapping):
execution_device = {key: execution_device for key in offload.keys()}
if not isinstance(offload, Mapping):
offload = {key: offload for key in execution_device.keys()}
if module_name in execution_device and module_name in offload and (not offload[module_name]):
hook = AlignDevicesHook(execution_device=execution_device[module_name], offload_buffers=offload_buffers, io_same_device=module_name == '', place_submodules=True, skip_keys=skip_keys, tied_params_map=tied_params_map)
add_hook_to_module(module, hook)
attach_execution_device_hook(module, execution_device[module_name], skip_keys=skip_keys, tied_params_map=tied_params_map)
elif module_name in execution_device and module_name in offload:
attach_align_device_hook(module, execution_device=execution_device[module_name], offload=True, weights_map=weights_map, offload_buffers=offload_buffers, module_name=module_name, skip_keys=skip_keys, preload_module_classes=preload_module_classes, tied_params_map=tied_params_map)
if not hasattr(module, '_hf_hook'):
hook = AlignDevicesHook(execution_device=execution_device[module_name], io_same_device=module_name == '', skip_keys=skip_keys, tied_params_map=tied_params_map)
add_hook_to_module(module, hook)
attach_execution_device_hook(module, execution_device[module_name], preload_module_classes=preload_module_classes, skip_keys=skip_keys, tied_params_map=tied_params_map)
elif module_name == '':
hook = AlignDevicesHook(execution_device=execution_device.get(''), io_same_device=True, skip_keys=skip_keys, tied_params_map=tied_params_map)
add_hook_to_module(module, hook)
for (child_name, child) in module.named_children():
child_name = f'{module_name}.{child_name}' if len(module_name) > 0 else child_name
attach_align_device_hook_on_blocks(child, execution_device=execution_device, offload=offload, weights_map=weights_map, offload_buffers=offload_buffers, module_name=child_name, preload_module_classes=preload_module_classes, skip_keys=skip_keys, tied_params_map=tied_params_map)
class CpuOffload(ModelHook):
def __init__(self, execution_device: Optional[Union[str, int, torch.device]]=None, prev_module_hook: Optional['UserCpuOffloadHook']=None):
self.prev_module_hook = prev_module_hook
self.execution_device = execution_device if execution_device is not None else PartialState().default_device
def init_hook(self, module):
return module.to('cpu')
def pre_forward(self, module, *args, **kwargs):
if self.prev_module_hook is not None:
self.prev_module_hook.offload()
clear_device_cache()
module.to(self.execution_device)
return (send_to_device(args, self.execution_device), send_to_device(kwargs, self.execution_device))
class UserCpuOffloadHook:
def __init__(self, model, hook):
self.model = model
self.hook = hook
def offload(self):
self.hook.init_hook(self.model)
def remove(self):
remove_hook_from_module(self.model)
# File: accelerate-main/src/accelerate/inference.py
import math
from types import MethodType
from typing import Any, Dict, List, Optional, Tuple, Union
from .state import PartialState
from .utils import calculate_maximum_sizes, convert_bytes, copy_tensor_to_devices, ignorant_find_batch_size, infer_auto_device_map, is_pippy_available, pad_input_tensors, send_to_device
def generate_device_map(model, num_processes: int=1, no_split_module_classes=None, max_memory: dict=None):
if num_processes == 1:
return infer_auto_device_map(model, no_split_module_classes=no_split_module_classes, clean_result=False)
if max_memory is None:
(model_size, shared) = calculate_maximum_sizes(model)
memory = (model_size + shared[0]) / num_processes
memory = convert_bytes(memory)
(value, ending) = memory.split(' ')
memory = math.ceil(float(value)) * 1.1
memory = f'{memory} {ending}'
max_memory = {i: memory for i in range(num_processes)}
device_map = infer_auto_device_map(model, max_memory=max_memory, no_split_module_classes=no_split_module_classes, clean_result=False)
return device_map
def find_pippy_batch_size(args, kwargs):
found_batch_size = None
if args is not None:
for arg in args:
found_batch_size = ignorant_find_batch_size(arg)
if found_batch_size is not None:
break
if kwargs is not None and found_batch_size is None:
for kwarg in kwargs.values():
found_batch_size = ignorant_find_batch_size(kwarg)
if found_batch_size is not None:
break
return found_batch_size
def build_pipeline(model, split_points, args, kwargs, num_chunks):
from torch.distributed.pipelining import ScheduleGPipe, SplitPoint, pipeline
state = PartialState()
split_spec = {split_point: SplitPoint.BEGINNING for split_point in split_points}
pipe = pipeline(model, mb_args=args, mb_kwargs=kwargs, split_spec=split_spec)
stage = pipe.build_stage(state.local_process_index, device=state.device)
schedule = ScheduleGPipe(stage, num_chunks)
return schedule
def pippy_forward(forward, num_chunks, gather_output, *args, **kwargs):
state = PartialState()
output = None
if state.num_processes == 1:
output = forward(*args, **kwargs)
elif state.is_local_main_process:
found_batch_size = find_pippy_batch_size(args, kwargs)
if found_batch_size is None:
raise ValueError('Could not find batch size from args or kwargs')
elif found_batch_size != num_chunks:
args = pad_input_tensors(args, found_batch_size, num_chunks)
kwargs = pad_input_tensors(kwargs, found_batch_size, num_chunks)
forward(*args, **kwargs)
elif state.is_last_process:
output = forward()
else:
forward()
if gather_output:
output = copy_tensor_to_devices(output)
return output
def prepare_pippy(model, split_points: Optional[Union[str, List[str]]]='auto', no_split_module_classes: Optional[List[str]]=None, example_args: Optional[Tuple[Any]]=(), example_kwargs: Optional[Dict[str, Any]]=None, num_chunks: Optional[int]=None, gather_output: Optional[bool]=False):
if not is_pippy_available():
raise ImportError('Using `torch.distributed.pipelining` requires PyTorch 2.4.0 or later.')
state = PartialState()
example_args = send_to_device(example_args, 'cpu')
example_kwargs = send_to_device(example_kwargs, 'cpu')
if num_chunks is None:
num_chunks = state.num_processes
if split_points == 'auto':
device_map = generate_device_map(model, num_chunks, no_split_module_classes=no_split_module_classes)
split_points = []
for i in range(1, num_chunks):
split_points.append(next((k for (k, v) in device_map.items() if v == i)))
model.hf_split_points = split_points
stage = build_pipeline(model, split_points, example_args, example_kwargs, num_chunks)
model._original_forward = model.forward
model._original_call = model.__call__
model.pippy_stage = stage
model.hf_split_points = split_points
def forward(*args, **kwargs):
return pippy_forward(stage.step, num_chunks, gather_output, *args, **kwargs)
model_forward = MethodType(forward, model)
forward.__wrapped__ = model_forward
model.forward = forward
return model
# File: accelerate-main/src/accelerate/launchers.py
import os
import sys
import tempfile
import torch
from .state import AcceleratorState, PartialState
from .utils import PrecisionType, PrepareForLaunch, are_libraries_initialized, check_cuda_p2p_ib_support, get_gpu_info, is_mps_available, is_torch_version, patch_environment
from .utils.constants import ELASTIC_LOG_LINE_PREFIX_TEMPLATE_PYTORCH_VERSION
def test_launch():
_ = PartialState()
def notebook_launcher(function, args=(), num_processes=None, mixed_precision='no', use_port='29500', master_addr='127.0.0.1', node_rank=0, num_nodes=1, rdzv_backend='static', rdzv_endpoint='', rdzv_conf=None, rdzv_id='none', max_restarts=0, monitor_interval=0.1, log_line_prefix_template=None):
in_colab = False
in_kaggle = False
if any((key.startswith('KAGGLE') for key in os.environ.keys())):
in_kaggle = True
elif 'IPython' in sys.modules:
in_colab = 'google.colab' in str(sys.modules['IPython'].get_ipython())
try:
mixed_precision = PrecisionType(mixed_precision.lower())
except ValueError:
raise ValueError(f'Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}.')
if (in_colab or in_kaggle) and os.environ.get('TPU_NAME', None) is not None:
import torch_xla.distributed.xla_multiprocessing as xmp
if len(AcceleratorState._shared_state) > 0:
raise ValueError('To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside your training function. Restart your notebook and make sure no cells initializes an `Accelerator`.')
if num_processes is None:
num_processes = 8
launcher = PrepareForLaunch(function, distributed_type='TPU')
print(f'Launching a training on {num_processes} TPU cores.')
xmp.spawn(launcher, args=args, nprocs=num_processes, start_method='fork')
elif in_colab and get_gpu_info()[1] < 2:
if torch.cuda.is_available():
print('Launching training on one GPU.')
else:
print('Launching training on one CPU.')
function(*args)
else:
if num_processes is None:
raise ValueError('You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call.')
if node_rank >= num_nodes:
raise ValueError('The node_rank must be less than the number of nodes.')
if num_processes > 1:
from torch.distributed.launcher.api import LaunchConfig, elastic_launch
from torch.multiprocessing import start_processes
from torch.multiprocessing.spawn import ProcessRaisedException
if len(AcceleratorState._shared_state) > 0:
raise ValueError('To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized inside your training function. Restart your notebook and make sure no cells initializes an `Accelerator`.')
problematic_imports = are_libraries_initialized('bitsandbytes')
if len(problematic_imports) > 0:
err = 'Could not start distributed process. Libraries known to initialize CUDA upon import have been imported already. Please keep these imports inside your training function to try and help with this:'
for lib_name in problematic_imports:
err += f'\n\t* `{lib_name}`'
raise RuntimeError(err)
patched_env = dict(nproc=num_processes, node_rank=node_rank, world_size=num_nodes * num_processes, master_addr=master_addr, master_port=use_port, mixed_precision=mixed_precision)
if not check_cuda_p2p_ib_support():
patched_env['nccl_p2p_disable'] = '1'
patched_env['nccl_ib_disable'] = '1'
with patch_environment(**patched_env):
if os.environ.get('ACCELERATE_DEBUG_MODE', 'false').lower() == 'true':
launcher = PrepareForLaunch(test_launch, distributed_type='MULTI_GPU')
try:
start_processes(launcher, args=(), nprocs=num_processes, start_method='fork')
except ProcessRaisedException as e:
err = 'An issue was found when verifying a stable environment for the notebook launcher.'
if 'Cannot re-initialize CUDA in forked subprocess' in e.args[0]:
raise RuntimeError(f'{err}This likely stems from an outside import causing issues once the `notebook_launcher()` is called. Please review your imports and test them when running the `notebook_launcher()` to identify which one is problematic and causing CUDA to be initialized.') from e
else:
raise RuntimeError(f'{err} The following error was raised: {e}') from e
launcher = PrepareForLaunch(function, distributed_type='MULTI_GPU')
print(f'Launching training on {num_processes} GPUs.')
try:
if rdzv_conf is None:
rdzv_conf = {}
if rdzv_backend == 'static':
rdzv_conf['rank'] = node_rank
if not rdzv_endpoint:
rdzv_endpoint = f'{master_addr}:{use_port}'
launch_config_kwargs = dict(min_nodes=num_nodes, max_nodes=num_nodes, nproc_per_node=num_processes, run_id=rdzv_id, rdzv_endpoint=rdzv_endpoint, rdzv_backend=rdzv_backend, rdzv_configs=rdzv_conf, max_restarts=max_restarts, monitor_interval=monitor_interval, start_method='fork')
if is_torch_version('>=', ELASTIC_LOG_LINE_PREFIX_TEMPLATE_PYTORCH_VERSION):
launch_config_kwargs['log_line_prefix_template'] = log_line_prefix_template
elastic_launch(config=LaunchConfig(**launch_config_kwargs), entrypoint=function)(*args)
except ProcessRaisedException as e:
if 'Cannot re-initialize CUDA in forked subprocess' in e.args[0]:
raise RuntimeError('CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. This likely stems from an outside import causing issues once the `notebook_launcher()` is called. Please review your imports and test them when running the `notebook_launcher()` to identify which one is problematic and causing CUDA to be initialized.') from e
else:
raise RuntimeError(f'An issue was found when launching the training: {e}') from e
else:
if is_mps_available():
os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = '1'
print('Launching training on MPS.')
elif torch.cuda.is_available():
print('Launching training on one GPU.')
else:
print('Launching training on CPU.')
function(*args)
def debug_launcher(function, args=(), num_processes=2):
from torch.multiprocessing import start_processes
with tempfile.NamedTemporaryFile() as tmp_file:
with patch_environment(world_size=num_processes, master_addr='127.0.0.1', master_port='29500', accelerate_mixed_precision='no', accelerate_debug_rdv_file=tmp_file.name, accelerate_use_cpu='yes'):
launcher = PrepareForLaunch(function, debug=True)
start_processes(launcher, args=args, nprocs=num_processes, start_method='fork')
# File: accelerate-main/src/accelerate/local_sgd.py
import torch
from accelerate import Accelerator, DistributedType
class LocalSGD:
def __enter__(self):
if self.enabled:
self.model_sync_obj = self.model.no_sync()
self.model_sync_obj.__enter__()
return self
def __exit__(self, type, value, tb):
if self.enabled:
self._sync_and_avg_model_params()
self.model_sync_obj.__exit__(type, value, tb)
def __init__(self, accelerator: Accelerator, model: torch.nn.Module, local_sgd_steps: int, enabled: bool=True):
if accelerator.distributed_type not in [DistributedType.NO, DistributedType.MULTI_CPU, DistributedType.MULTI_GPU, DistributedType.MULTI_MLU, DistributedType.MULTI_MUSA, DistributedType.MULTI_NPU]:
raise NotImplementedError('LocalSGD is supported only for CPUs and GPUs (no DeepSpeed or MegatronLM)')
self.enabled = enabled and accelerator.distributed_type != DistributedType.NO
self.num_steps = 0
if self.enabled:
self.accelerator = accelerator
self.model = model
self.local_sgd_steps = local_sgd_steps
def step(self):
self.num_steps += 1
if not self.enabled:
return
if self.num_steps % self.local_sgd_steps == 0:
self._sync_and_avg_model_params()
def _sync_and_avg_model_params(self):
self.accelerator.wait_for_everyone()
with self.accelerator.autocast():
for param in self.model.parameters():
param.data = self.accelerator.reduce(param.data, reduction='mean')
# File: accelerate-main/src/accelerate/logging.py
import functools
import logging
import os
from .state import PartialState
class MultiProcessAdapter(logging.LoggerAdapter):
@staticmethod
def _should_log(main_process_only):
state = PartialState()
return not main_process_only or (main_process_only and state.is_main_process)
def log(self, level, msg, *args, **kwargs):
if PartialState._shared_state == {}:
raise RuntimeError('You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.')
main_process_only = kwargs.pop('main_process_only', True)
in_order = kwargs.pop('in_order', False)
kwargs.setdefault('stacklevel', 2)
if self.isEnabledFor(level):
if self._should_log(main_process_only):
(msg, kwargs) = self.process(msg, kwargs)
self.logger.log(level, msg, *args, **kwargs)
elif in_order:
state = PartialState()
for i in range(state.num_processes):
if i == state.process_index:
(msg, kwargs) = self.process(msg, kwargs)
self.logger.log(level, msg, *args, **kwargs)
state.wait_for_everyone()
@functools.lru_cache(None)
def warning_once(self, *args, **kwargs):
self.warning(*args, **kwargs)
def get_logger(name: str, log_level: str=None):
if log_level is None:
log_level = os.environ.get('ACCELERATE_LOG_LEVEL', None)
logger = logging.getLogger(name)
if log_level is not None:
logger.setLevel(log_level.upper())
logger.root.setLevel(log_level.upper())
return MultiProcessAdapter(logger, {})
# File: accelerate-main/src/accelerate/optimizer.py
import inspect
import torch
from .state import AcceleratorState, GradientState
from .utils import DistributedType, honor_type, is_lomo_available, is_torch_xla_available
if is_torch_xla_available():
import torch_xla.core.xla_model as xm
def move_to_device(state, device):
if isinstance(state, (list, tuple)):
return honor_type(state, (move_to_device(t, device) for t in state))
elif isinstance(state, dict):
return type(state)({k: move_to_device(v, device) for (k, v) in state.items()})
elif isinstance(state, torch.Tensor):
return state.to(device)
return state
class AcceleratedOptimizer(torch.optim.Optimizer):
def __init__(self, optimizer, device_placement=True, scaler=None):
self.optimizer = optimizer
self.scaler = scaler
self.accelerator_state = AcceleratorState()
self.gradient_state = GradientState()
self.device_placement = device_placement
self._is_overflow = False
if self.scaler is not None:
self._accelerate_step_called = False
self._optimizer_original_step_method = self.optimizer.step
self._optimizer_patched_step_method = patch_optimizer_step(self, self.optimizer.step)
if device_placement:
state_dict = self.optimizer.state_dict()
if self.accelerator_state.distributed_type == DistributedType.XLA:
xm.send_cpu_data_to_device(state_dict, self.accelerator_state.device)
else:
state_dict = move_to_device(state_dict, self.accelerator_state.device)
self.optimizer.load_state_dict(state_dict)
@property
def state(self):
return self.optimizer.state
@state.setter
def state(self, state):
self.optimizer.state = state
@property
def param_groups(self):
return self.optimizer.param_groups
@param_groups.setter
def param_groups(self, param_groups):
self.optimizer.param_groups = param_groups
@property
def defaults(self):
return self.optimizer.defaults
@defaults.setter
def defaults(self, defaults):
self.optimizer.defaults = defaults
def add_param_group(self, param_group):
self.optimizer.add_param_group(param_group)
def load_state_dict(self, state_dict):
if self.accelerator_state.distributed_type == DistributedType.XLA and self.device_placement:
xm.send_cpu_data_to_device(state_dict, self.accelerator_state.device)
self.optimizer.load_state_dict(state_dict)
def state_dict(self):
return self.optimizer.state_dict()
def zero_grad(self, set_to_none=None):
if self.gradient_state.sync_gradients:
accept_arg = 'set_to_none' in inspect.signature(self.optimizer.zero_grad).parameters
if accept_arg:
if set_to_none is None:
set_to_none = True
self.optimizer.zero_grad(set_to_none=set_to_none)
else:
if set_to_none is not None:
raise ValueError('`set_to_none` for Optimizer.zero_grad` is not supported by this optimizer.')
self.optimizer.zero_grad()
def train(self):
if hasattr(self.optimizer, 'train') and callable(self.optimizer.train):
self.optimizer.train()
def eval(self):
if hasattr(self.optimizer, 'eval') and callable(self.optimizer.eval):
self.optimizer.eval()
def step(self, closure=None):
if is_lomo_available():
from lomo_optim import AdaLomo, Lomo
if not self.gradient_state.is_xla_gradients_synced and self.accelerator_state.distributed_type == DistributedType.XLA:
gradients = xm._fetch_gradients(self.optimizer)
xm.all_reduce('sum', gradients, scale=1.0 / xm.xrt_world_size())
self.gradient_state.is_xla_gradients_synced = True
if is_lomo_available():
if isinstance(self.optimizer, (Lomo, AdaLomo)):
return
if self.gradient_state.sync_gradients:
if self.scaler is not None:
self.optimizer.step = self._optimizer_patched_step_method
self.scaler.step(self.optimizer, closure)
self.scaler.update()
if not self._accelerate_step_called:
self._is_overflow = True
else:
self._is_overflow = False
self.optimizer.step = self._optimizer_original_step_method
self._accelerate_step_called = False
else:
self.optimizer.step(closure)
if self.accelerator_state.distributed_type == DistributedType.XLA:
self.gradient_state.is_xla_gradients_synced = False
def _switch_parameters(self, parameters_map):
for param_group in self.optimizer.param_groups:
param_group['params'] = [parameters_map.get(p, p) for p in param_group['params']]
@property
def step_was_skipped(self):
return self._is_overflow
def __getstate__(self):
_ignored_keys = ['_accelerate_step_called', '_optimizer_original_step_method', '_optimizer_patched_step_method']
return {k: v for (k, v) in self.__dict__.items() if k not in _ignored_keys}
def __setstate__(self, state):
self.__dict__.update(state)
if self.scaler is not None:
self._accelerate_step_called = False
self._optimizer_original_step_method = self.optimizer.step
self._optimizer_patched_step_method = patch_optimizer_step(self, self.optimizer.step)
def patch_optimizer_step(accelerated_optimizer: AcceleratedOptimizer, method):
def patched_step(*args, **kwargs):
accelerated_optimizer._accelerate_step_called = True
return method(*args, **kwargs)
return patched_step
# File: accelerate-main/src/accelerate/scheduler.py
import warnings
from .state import AcceleratorState, GradientState
warnings.filterwarnings('ignore', category=UserWarning, module='torch.optim.lr_scheduler')
class AcceleratedScheduler:
def __init__(self, scheduler, optimizers, step_with_optimizer: bool=True, split_batches: bool=False):
self.scheduler = scheduler
self.optimizers = optimizers if isinstance(optimizers, (list, tuple)) else [optimizers]
self.split_batches = split_batches
self.step_with_optimizer = step_with_optimizer
self.gradient_state = GradientState()
def step(self, *args, **kwargs):
if not self.step_with_optimizer:
self.scheduler.step(*args, **kwargs)
return
if not self.gradient_state.sync_gradients:
if self.gradient_state.adjust_scheduler:
self.scheduler._step_count += 1
return
for opt in self.optimizers:
if opt.step_was_skipped:
return
if self.split_batches:
self.scheduler.step(*args, **kwargs)
else:
num_processes = AcceleratorState().num_processes
for _ in range(num_processes):
if hasattr(self.scheduler, 'total_steps'):
if self.scheduler._step_count <= self.scheduler.total_steps:
self.scheduler.step(*args, **kwargs)
else:
self.scheduler.step(*args, **kwargs)
def get_last_lr(self):
return self.scheduler.get_last_lr()
def state_dict(self):
return self.scheduler.state_dict()
def load_state_dict(self, state_dict):
self.scheduler.load_state_dict(state_dict)
def get_lr(self):
return self.scheduler.get_lr()
def print_lr(self, *args, **kwargs):
return self.scheduler.print_lr(*args, **kwargs)
# File: accelerate-main/src/accelerate/state.py
from __future__ import annotations
import logging
import os
import threading
import warnings
from contextlib import contextmanager
from functools import partial
from typing import Any, Callable, Optional
import torch
from .utils import DistributedType, DynamoBackend, GradientAccumulationPlugin, check_cuda_p2p_ib_support, check_fp8_capability, deepspeed_required, get_ccl_version, get_cpu_distributed_information, get_int_from_env, is_ccl_available, is_datasets_available, is_deepspeed_available, is_fp8_available, is_ipex_available, is_mlu_available, is_mps_available, is_musa_available, is_npu_available, is_torch_xla_available, is_xpu_available, parse_choice_from_env, parse_flag_from_env, set_numa_affinity
from .utils.dataclasses import SageMakerDistributedType
if is_torch_xla_available():
import torch_xla.core.xla_model as xm
if is_mlu_available(check_device=False):
import torch_mlu
if is_musa_available(check_device=False):
import torch_musa
if is_npu_available(check_device=False):
import torch_npu
logger = logging.getLogger(__name__)
def is_initialized() -> bool:
return AcceleratorState._shared_state != {}
def do_nothing(*args, **kwargs):
return None
class ThreadLocalSharedDict(threading.local):
def __init__(self, thread_local: bool=False):
self._storage = {}
def __get__(self, obj, objtype=None):
return self._storage
def __set__(self, obj, value):
self._storage = value
SharedDict = dict if not is_torch_xla_available() else ThreadLocalSharedDict
class PartialState:
_shared_state = SharedDict()
_known_attrs = ['_cpu', '_mixed_precision', '_shared_state', 'backend', 'debug', 'device', 'distributed_type', 'fork_launched', 'local_process_index', 'num_processes', 'process_index']
def __init__(self, cpu: bool=False, **kwargs):
self.__dict__ = self._shared_state
if not self.initialized:
self._cpu = cpu
self.backend = None
env_device = os.environ.get('ACCELERATE_TORCH_DEVICE', None)
self.device = torch.device(env_device) if env_device is not None else None
self.debug = parse_flag_from_env('ACCELERATE_DEBUG_MODE')
use_sagemaker_dp = kwargs.pop('_use_sagemaker_dp', None)
dist_information = None
if use_sagemaker_dp is None:
use_sagemaker_dp = os.environ.get('ACCELERATE_USE_SAGEMAKER', 'false') == 'true' and os.environ.get('ACCELERATE_SAGEMAKER_DISTRIBUTED_TYPE') != SageMakerDistributedType.NO
original_backend = kwargs.pop('backend', None)
(backend, distributed_type) = self._prepare_backend(cpu, use_sagemaker_dp, original_backend)
if original_backend is not None and backend != original_backend:
raise ValueError(f'Your assigned backend {original_backend} is not avaliable, please use {backend}')
self.backend = backend
self.distributed_type = distributed_type
use_deepspeed = False
if not cpu and self.backend != 'xla':
if int(os.environ.get('LOCAL_RANK', -1)) != -1:
if os.environ.get('ACCELERATE_USE_DEEPSPEED', 'false') == 'true':
if not is_deepspeed_available():
raise ImportError('DeepSpeed is not available => install it using `pip3 install deepspeed` or build it from source')
from deepspeed import comm as dist
if not dist.is_initialized():
dist.init_distributed(dist_backend=self.backend, auto_mpi_discovery=False, **kwargs)
use_deepspeed = True
elif self.distributed_type not in (DistributedType.MULTI_XPU, DistributedType.MULTI_CPU) and (not torch.distributed.is_initialized()):
torch.distributed.init_process_group(backend=self.backend, **kwargs)
if self.distributed_type in (DistributedType.MULTI_XPU, DistributedType.MULTI_CPU):
dist_information = get_cpu_distributed_information()
os.environ['RANK'] = str(dist_information.rank)
os.environ['WORLD_SIZE'] = str(dist_information.world_size)
os.environ['LOCAL_RANK'] = str(dist_information.local_rank)
os.environ['LOCAL_WORLD_SIZE'] = str(dist_information.local_world_size)
if not os.environ.get('MASTER_PORT', None):
os.environ['MASTER_PORT'] = '29500'
if not os.environ.get('MASTER_ADDR', None) and dist_information.local_world_size != dist_information.world_size and (self.backend != 'mpi'):
raise ValueError("Tried to launch on distributed with multinode, but `MASTER_ADDR` env was not set, please try exporting rank 0's hostname as `MASTER_ADDR`")
kwargs['rank'] = dist_information.rank
kwargs['world_size'] = dist_information.world_size
if self.distributed_type == DistributedType.MULTI_CPU and get_int_from_env(['OMP_NUM_THREADS'], 0) == 0:
import psutil
num_cpu_threads_per_process = int(psutil.cpu_count(logical=False) / dist_information.local_world_size)
if num_cpu_threads_per_process == 0:
num_cpu_threads_per_process = 1
torch.set_num_threads(num_cpu_threads_per_process)
warnings.warn(f'OMP_NUM_THREADS/MKL_NUM_THREADS unset, we set it at {num_cpu_threads_per_process} to improve oob performance.')
if not torch.distributed.is_initialized():
torch.distributed.init_process_group(backend=self.backend, **kwargs)
if self.backend is None:
self.distributed_type = DistributedType.NO
self.num_processes = 1
self.process_index = 0
self.local_process_index = 0
elif self.backend == 'xla':
self.set_device()
xm.set_replication(self.device, xm.get_xla_supported_devices())
self.num_processes = xm.xrt_world_size()
self.process_index = xm.get_ordinal()
if is_torch_xla_available(check_is_tpu=True):
self.local_process_index = xm.get_local_ordinal()
else:
self.local_process_index = int(os.environ.get('LOCAL_RANK', -1))
else:
self.num_processes = torch.distributed.get_world_size()
self.process_index = torch.distributed.get_rank()
self.local_process_index = int(os.environ.get('LOCAL_RANK', -1)) if dist_information is None else dist_information.local_rank
self.set_device()
if use_deepspeed:
self.distributed_type = DistributedType.DEEPSPEED
if parse_flag_from_env('ACCELERATE_CPU_AFFINITY', False):
set_numa_affinity(self.local_process_index)
if self.device.type == 'cuda' and (not check_cuda_p2p_ib_support()):
if 'NCCL_P2P_DISABLE' not in os.environ or 'NCCL_IB_DISABLE' not in os.environ:
raise NotImplementedError('Using RTX 4000 series doesn\'t support faster communication broadband via P2P or IB. Please set `NCCL_P2P_DISABLE="1"` and `NCCL_IB_DISABLE="1" or use `accelerate launch` which will do this automatically.')
self.fork_launched = parse_flag_from_env('FORK_LAUNCHED', 0)
def __repr__(self) -> str:
return f"Distributed environment: {self.distributed_type}{(' Backend: ' + self.backend if self.backend else '')}\nNum processes: {self.num_processes}\nProcess index: {self.process_index}\nLocal process index: {self.local_process_index}\nDevice: {self.device}\n"
@staticmethod
def _reset_state():
PartialState._shared_state.clear()
@property
def initialized(self) -> bool:
return self._shared_state != {}
@property
def use_distributed(self):
return self.distributed_type != DistributedType.NO and self.num_processes > 1
@property
def is_last_process(self) -> bool:
return self.process_index == self.num_processes - 1
@property
def is_main_process(self) -> bool:
return self.process_index == 0 if self.distributed_type != DistributedType.MEGATRON_LM else self.is_last_process
@property
def is_local_main_process(self) -> bool:
return self.local_process_index == 0 if self.distributed_type != DistributedType.MEGATRON_LM else self.is_last_process
def wait_for_everyone(self):
if self.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_MLU, DistributedType.MULTI_MUSA, DistributedType.MULTI_NPU, DistributedType.MULTI_XPU, DistributedType.MULTI_CPU, DistributedType.DEEPSPEED, DistributedType.FSDP):
torch.distributed.barrier()
elif self.distributed_type == DistributedType.XLA:
xm.rendezvous('accelerate.utils.wait_for_everyone')
def _goes_first(self, is_main: bool):
if not is_main:
self.wait_for_everyone()
yield
if is_main:
self.wait_for_everyone()
@contextmanager
def split_between_processes(self, inputs: list | tuple | dict | torch.Tensor, apply_padding: bool=False):
if self.num_processes == 1:
yield inputs
return
length = len(inputs)
if isinstance(inputs, dict):
length = len(inputs[list(inputs.keys())[0]])
if not all((len(v) == length for v in inputs.values())):
raise ValueError('All values in the dictionary must have the same length')
(num_samples_per_process, num_extras) = divmod(length, self.num_processes)
start_index = self.process_index * num_samples_per_process + min(self.process_index, num_extras)
end_index = start_index + num_samples_per_process + (1 if self.process_index < num_extras else 0)
def _split_values(inputs, start_index, end_index):
if isinstance(inputs, (list, tuple, torch.Tensor)):
if start_index >= len(inputs):
result = inputs[-1:]
else:
result = inputs[start_index:end_index]
if apply_padding:
if isinstance(result, torch.Tensor):
from accelerate.utils import pad_across_processes, send_to_device
tensorized_result = send_to_device(result, self.device)
result = pad_across_processes(tensorized_result, pad_index=inputs[-1])
else:
result += [result[-1]] * (num_samples_per_process + 1 - len(result))
return result
elif isinstance(inputs, dict):
for key in inputs.keys():
inputs[key] = _split_values(inputs[key], start_index, end_index)
return inputs
else:
if is_datasets_available():
from datasets import Dataset
if isinstance(inputs, Dataset):
if start_index >= len(inputs):
start_index = len(inputs) - 1
if end_index > len(inputs):
end_index = len(inputs)
result_idcs = list(range(start_index, end_index))
if apply_padding:
result_idcs += [end_index - 1] * (num_samples_per_process + 1 - len(result_idcs))
return inputs.select(result_idcs)
return inputs
yield _split_values(inputs, start_index, end_index)
@contextmanager
def main_process_first(self):
yield from self._goes_first(self.is_main_process)
@contextmanager
def local_main_process_first(self):
yield from self._goes_first(self.is_local_main_process)
def on_main_process(self, function: Callable[..., Any]=None):
if not self.initialized:
raise ValueError('The `PartialState` or `Accelerator` must be initialized before calling this function.')
if self.is_main_process or not self.use_distributed:
return function
return do_nothing
def on_local_main_process(self, function: Callable[..., Any]=None):
if self.is_local_main_process or not self.use_distributed:
return function
return do_nothing
def on_last_process(self, function: Callable[..., Any]):
if self.is_last_process or not self.use_distributed:
return function
return do_nothing
def on_process(self, function: Callable[..., Any]=None, process_index: int=None):
if function is None:
return partial(self.on_process, process_index=process_index)
if self.process_index == process_index or not self.use_distributed:
return function
return do_nothing
def on_local_process(self, function: Callable[..., Any]=None, local_process_index: int=None):
if function is None:
return partial(self.on_local_process, local_process_index=local_process_index)
if self.local_process_index == local_process_index or not self.use_distributed:
return function
return do_nothing
def print(self, *args, **kwargs):
if self.is_local_main_process:
print(*args, **kwargs)
@property
def default_device(self) -> torch.device:
if is_mps_available():
os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = '1'
return torch.device('mps')
elif is_mlu_available():
return torch.device('mlu')
elif is_musa_available():
return torch.device('musa')
elif is_npu_available():
return torch.device('npu')
elif torch.cuda.is_available():
return torch.device('cuda')
elif is_xpu_available():
return torch.device('xpu:0')
else:
return torch.device('cpu')
def _prepare_backend(self, cpu: bool=False, sagemaker_dp=False, backend: str=None) -> tuple[str, DistributedType]:
distributed_type = None
if sagemaker_dp:
import smdistributed.dataparallel.torch.torch_smddp
backend = 'smddp'
distributed_type = DistributedType.MULTI_GPU
elif is_torch_xla_available():
backend = 'xla'
distributed_type = DistributedType.XLA
elif int(os.environ.get('LOCAL_RANK', -1)) != -1 and (not cpu):
if is_mlu_available():
backend = 'cncl'
distributed_type = DistributedType.MULTI_MLU
elif is_musa_available():
backend = 'mccl'
distributed_type = DistributedType.MULTI_MUSA
elif is_npu_available():
backend = 'hccl'
distributed_type = DistributedType.MULTI_NPU
elif torch.cuda.is_available():
if backend is None:
backend = 'nccl'
distributed_type = DistributedType.MULTI_GPU
if distributed_type is None and (int(os.environ.get('LOCAL_RANK', -1)) != -1 or get_int_from_env(['PMI_SIZE', 'OMPI_COMM_WORLD_SIZE', 'MV2_COMM_WORLD_SIZE', 'WORLD_SIZE'], 1) > 1):
if not cpu and is_xpu_available():
distributed_type = DistributedType.MULTI_XPU
else:
distributed_type = DistributedType.MULTI_CPU
if backend in (None, 'ccl') and is_ccl_available() and (get_int_from_env(['CCL_WORKER_COUNT'], 0) > 0 or distributed_type == DistributedType.MULTI_XPU):
if get_ccl_version() >= '1.12':
import oneccl_bindings_for_pytorch
else:
import torch_ccl
backend = 'ccl'
elif backend in (None, 'mpi') and torch.distributed.is_mpi_available():
backend = 'mpi'
else:
backend = 'gloo'
if distributed_type is None:
distributed_type = DistributedType.NO
return (backend, distributed_type)
def set_device(self):
if self.device is not None:
return
if self.distributed_type == DistributedType.NO:
self.device = torch.device('cpu') if self._cpu else self.default_device
return
device = str(self.distributed_type).split('.')[-1].replace('MULTI_', '').lower()
if device not in ('cpu', 'gpu', 'mlu', 'musa', 'npu', 'xpu', 'xla'):
raise ValueError(f"Can't set device for {self.distributed_type} ({device}), verify we should be calling `_set_device()` for it!")
if device == 'xla':
self.device = xm.xla_device()
else:
if device == 'gpu':
device = 'cuda'
device_module = getattr(torch, device)
device_index = self.local_process_index % device_module.device_count()
self.device = torch.device(device, device_index)
device_module.set_device(self.device)
def destroy_process_group(self, group=None):
if self.fork_launched and group is None:
return
if torch.distributed.is_initialized():
torch.distributed.destroy_process_group(group)
def __getattr__(self, name: str):
if name in self._known_attrs:
raise AttributeError(f'`PartialState` object has no attribute `{name}`. This happens if `PartialState._reset_state()` was called and an `Accelerator` or `PartialState` was not reinitialized.')
raise AttributeError(f"'PartialState' object has no attribute '{name}'")
class AcceleratorState:
_shared_state = SharedDict()
_known_attrs = PartialState._known_attrs + ['deepspeed_plugin', 'use_ipex', 'fsdp_plugin', 'megatron_lm_plugin', 'dynamo_plugin']
def __init__(self, mixed_precision: str=None, cpu: bool=False, dynamo_plugin=None, deepspeed_plugin=None, fsdp_plugin=None, megatron_lm_plugin=None, _from_accelerator: bool=False, **kwargs):
self.__dict__ = self._shared_state
if parse_flag_from_env('ACCELERATE_USE_CPU'):
cpu = True
if PartialState._shared_state == {}:
PartialState(cpu, **kwargs)
self.__dict__.update(PartialState._shared_state)
self._check_initialized(mixed_precision, cpu)
if not self.initialized:
self.deepspeed_plugins = None
self.use_ipex = None
mixed_precision = parse_choice_from_env('ACCELERATE_MIXED_PRECISION', 'no') if mixed_precision is None else mixed_precision.lower()
if mixed_precision == 'fp8':
if not is_fp8_available():
raise ValueError('Using `fp8` precision requires `transformer_engine` or `MS-AMP` to be installed.')
elif not check_fp8_capability():
logger.warning(f'The current device has compute capability of {torch.cuda.get_device_capability()} which is insufficient for FP8 mixed precision training (requires a GPU Hopper/Ada Lovelace or higher, compute capability of 8.9 or higher). Will use FP16 instead.')
mixed_precision = 'fp16'
self.dynamo_plugin = dynamo_plugin
if not _from_accelerator:
raise ValueError('Please make sure to properly initialize your accelerator via `accelerator = Accelerator()` before using any functionality from the `accelerate` library.')
self._mixed_precision = 'no' if self.distributed_type == DistributedType.DEEPSPEED else mixed_precision
if self.distributed_type == DistributedType.XLA and is_torch_xla_available(check_is_tpu=True):
if mixed_precision == 'bf16':
if os.environ.get('ACCELERATE_DOWNCAST_BF16'):
os.environ['XLA_USE_BF16'] = str(0)
os.environ['XLA_DOWNCAST_BF16'] = str(1)
self.downcast_bfloat = True
else:
os.environ['XLA_USE_BF16'] = str(1)
os.environ['XLA_DOWNCAST_BF16'] = str(0)
self.downcast_bfloat = False
elif os.environ.get('ACCELERATE_USE_DEEPSPEED', 'false') == 'true' and (not cpu):
self.deepspeed_plugins = deepspeed_plugin
self.distributed_type = DistributedType.DEEPSPEED
elif self.distributed_type in [DistributedType.MULTI_GPU, DistributedType.MULTI_MLU, DistributedType.MULTI_MUSA, DistributedType.MULTI_NPU, DistributedType.MULTI_XPU]:
if os.environ.get('ACCELERATE_USE_FSDP', 'false') == 'true' or fsdp_plugin is not None:
self.distributed_type = DistributedType.FSDP
if self._mixed_precision != 'no':
fsdp_plugin.set_mixed_precision(self._mixed_precision)
self.fsdp_plugin = fsdp_plugin
if os.environ.get('ACCELERATE_USE_MEGATRON_LM', 'false') == 'true' and self.distributed_type not in [DistributedType.MULTI_XPU]:
self.distributed_type = DistributedType.MEGATRON_LM
megatron_lm_plugin.set_mixed_precision(self._mixed_precision)
self.megatron_lm_plugin = megatron_lm_plugin
elif self.distributed_type in [DistributedType.MULTI_CPU, DistributedType.MULTI_XPU, DistributedType.NO]:
if is_ipex_available():
self.use_ipex = parse_flag_from_env('ACCELERATE_USE_IPEX', default=True)
else:
self.use_ipex = False
if self.dynamo_plugin.backend != DynamoBackend.NO and self._mixed_precision == 'no' and (self.device.type == 'cuda'):
torch.backends.cuda.matmul.allow_tf32 = True
if self.dynamo_plugin.backend != DynamoBackend.NO and self._mixed_precision == 'no' and (self.device.type == 'musa'):
torch.backends.musa.matmul.allow_tf32 = True
PartialState._shared_state['distributed_type'] = self.distributed_type
@property
def initialized(self) -> bool:
return self._shared_state != PartialState._shared_state
def __repr__(self):
repr = PartialState().__repr__() + f'\nMixed precision type: {self.mixed_precision}\n'
if self.distributed_type == DistributedType.DEEPSPEED:
repr += f'ds_config: {self.deepspeed_plugin.deepspeed_config}\n'
return repr
def _check_initialized(self, mixed_precision=None, cpu=None):
if self.initialized:
err = 'AcceleratorState has already been initialized and cannot be changed, restart your runtime completely and pass `{flag}` to `Accelerator()`.'
if cpu and self.device.type != 'cpu':
raise ValueError(err.format(flag='cpu=True'))
if mixed_precision is not None and mixed_precision != self._mixed_precision and (self.distributed_type != DistributedType.DEEPSPEED):
raise ValueError(err.format(flag=f"mixed_precision='{mixed_precision}'"))
@property
def mixed_precision(self):
if self.distributed_type == DistributedType.DEEPSPEED:
config = self.deepspeed_plugin.deepspeed_config
if config.get('fp16', {}).get('enabled', False):
mixed_precision = 'fp16'
elif config.get('bf16', {}).get('enabled', False):
mixed_precision = 'bf16'
else:
mixed_precision = 'no'
else:
mixed_precision = self._mixed_precision
return mixed_precision
@staticmethod
def _reset_state(reset_partial_state: bool=False):
AcceleratorState._shared_state.clear()
if reset_partial_state:
PartialState._reset_state()
def destroy_process_group(self, group=None):
PartialState().destroy_process_group(group)
@property
def fork_launched(self):
return PartialState().fork_launched
@property
def use_distributed(self):
return PartialState().use_distributed
@property
def is_last_process(self) -> bool:
return PartialState().is_last_process
@property
def is_main_process(self) -> bool:
return PartialState().is_main_process
@property
def is_local_main_process(self) -> bool:
return PartialState().is_local_main_process
def wait_for_everyone(self):
PartialState().wait_for_everyone()
@contextmanager
def split_between_processes(self, inputs: list | tuple | dict | torch.Tensor, apply_padding: bool=False):
with PartialState().split_between_processes(inputs, apply_padding=apply_padding) as inputs:
yield inputs
@contextmanager
def main_process_first(self):
with PartialState().main_process_first():
yield
@contextmanager
def local_main_process_first(self):
with PartialState().local_main_process_first():
yield
@property
def deepspeed_plugin(self):
if self.distributed_type != DistributedType.DEEPSPEED:
return None
from accelerate.utils.deepspeed import get_active_deepspeed_plugin
return get_active_deepspeed_plugin(self)
@deepspeed_required
def get_deepspeed_plugin(self, name: str):
return self.deepspeed_plugins[name]
@deepspeed_required
def select_deepspeed_plugin(self, name: str=None):
for (key, plugin) in self.deepspeed_plugins.items():
if key != name:
plugin._unselect()
self.deepspeed_plugins[name].select(_from_accelerator_state=True)
def print(self, *args, **kwargs):
PartialState().print(*args, **kwargs)
def __getattr__(self, name: str):
if name in self._known_attrs:
raise AttributeError(f'`AcceleratorState` object has no attribute `{name}`. This happens if `AcceleratorState._reset_state()` was called and an `Accelerator` or `PartialState` was not reinitialized.')
raise AttributeError(f"'AcceleratorState' object has no attribute '{name}'")
class GradientState:
_shared_state = SharedDict()
def __init__(self, gradient_accumulation_plugin: Optional[GradientAccumulationPlugin]=None):
self.__dict__ = self._shared_state
if not self.initialized:
self.sync_gradients = True
self.active_dataloader = None
self.dataloader_references = [None]
self.plugin_kwargs = gradient_accumulation_plugin.to_kwargs() if gradient_accumulation_plugin is not None else {}
self._is_xla_gradients_synced = False
if gradient_accumulation_plugin is not None and self.plugin_kwargs != gradient_accumulation_plugin.to_kwargs():
self.plugin_kwargs = gradient_accumulation_plugin.to_kwargs()
@property
def num_steps(self) -> int:
return self.plugin_kwargs.get('num_steps', 1)
@property
def adjust_scheduler(self) -> bool:
return self.plugin_kwargs.get('adjust_scheduler', False)
@property
def sync_with_dataloader(self) -> bool:
return self.plugin_kwargs.get('sync_with_dataloader', True)
@property
def initialized(self) -> bool:
return GradientState._shared_state != {}
@property
def end_of_dataloader(self) -> bool:
if not self.in_dataloader:
return False
return self.active_dataloader.end_of_dataloader
@property
def remainder(self) -> int:
if not self.in_dataloader:
return -1
return self.active_dataloader.remainder
def __repr__(self):
return f'Sync Gradients: {self.sync_gradients}\nAt end of current dataloader: {self.end_of_dataloader}\nExtra samples added: {self.remainder}\nGradient accumulation plugin: {self.plugin_kwargs}\n'
@property
def is_xla_gradients_synced(self):
if parse_flag_from_env('ACCELERATE_USE_FSDP', default=False):
return True
return self._is_xla_gradients_synced
@is_xla_gradients_synced.setter
def is_xla_gradients_synced(self, is_synced):
self._is_xla_gradients_synced = is_synced
def _set_sync_gradients(self, sync_gradients):
self.sync_gradients = sync_gradients
if self.sync_gradients and is_torch_xla_available(check_is_tpu=True) and (PartialState().distributed_type == DistributedType.XLA):
xm.mark_step()
def _add_dataloader(self, dataloader):
self.active_dataloader = dataloader
self.dataloader_references.append(self.active_dataloader)
def _remove_dataloader(self, dataloader):
self.dataloader_references.remove(dataloader)
self.active_dataloader = self.dataloader_references[-1]
@property
def in_dataloader(self) -> bool:
return self.active_dataloader is not None
@staticmethod
def _reset_state():
GradientState._shared_state.clear()
# File: accelerate-main/src/accelerate/tracking.py
import json
import os
import time
from functools import wraps
from typing import Any, Dict, List, Optional, Union
import yaml
from .logging import get_logger
from .state import PartialState
from .utils import LoggerType, is_aim_available, is_clearml_available, is_comet_ml_available, is_dvclive_available, is_mlflow_available, is_tensorboard_available, is_wandb_available, listify
_available_trackers = []
if is_tensorboard_available():
_available_trackers.append(LoggerType.TENSORBOARD)
if is_wandb_available():
_available_trackers.append(LoggerType.WANDB)
if is_comet_ml_available():
_available_trackers.append(LoggerType.COMETML)
if is_aim_available():
_available_trackers.append(LoggerType.AIM)
if is_mlflow_available():
_available_trackers.append(LoggerType.MLFLOW)
if is_clearml_available():
_available_trackers.append(LoggerType.CLEARML)
if is_dvclive_available():
_available_trackers.append(LoggerType.DVCLIVE)
logger = get_logger(__name__)
def on_main_process(function):
@wraps(function)
def execute_on_main_process(self, *args, **kwargs):
if getattr(self, 'main_process_only', False):
return PartialState().on_main_process(function)(self, *args, **kwargs)
else:
return function(self, *args, **kwargs)
return execute_on_main_process
def get_available_trackers():
return _available_trackers
class GeneralTracker:
main_process_only = True
def __init__(self, _blank=False):
if not _blank:
err = ''
if not hasattr(self, 'name'):
err += '`name`'
if not hasattr(self, 'requires_logging_directory'):
if len(err) > 0:
err += ', '
err += '`requires_logging_directory`'
if 'tracker' not in dir(self):
if len(err) > 0:
err += ', '
err += '`tracker`'
if len(err) > 0:
raise NotImplementedError(f'The implementation for this tracker class is missing the following required attributes. Please define them in the class definition: {err}')
def store_init_configuration(self, values: dict):
pass
def log(self, values: dict, step: Optional[int], **kwargs):
pass
def finish(self):
pass
class TensorBoardTracker(GeneralTracker):
name = 'tensorboard'
requires_logging_directory = True
@on_main_process
def __init__(self, run_name: str, logging_dir: Union[str, os.PathLike], **kwargs):
try:
from torch.utils import tensorboard
except ModuleNotFoundError:
import tensorboardX as tensorboard
super().__init__()
self.run_name = run_name
self.logging_dir = os.path.join(logging_dir, run_name)
self.writer = tensorboard.SummaryWriter(self.logging_dir, **kwargs)
logger.debug(f'Initialized TensorBoard project {self.run_name} logging to {self.logging_dir}')
logger.debug('Make sure to log any initial configurations with `self.store_init_configuration` before training!')
@property
def tracker(self):
return self.writer
@on_main_process
def store_init_configuration(self, values: dict):
self.writer.add_hparams(values, metric_dict={})
self.writer.flush()
project_run_name = time.time()
dir_name = os.path.join(self.logging_dir, str(project_run_name))
os.makedirs(dir_name, exist_ok=True)
with open(os.path.join(dir_name, 'hparams.yml'), 'w') as outfile:
try:
yaml.dump(values, outfile)
except yaml.representer.RepresenterError:
logger.error('Serialization to store hyperparameters failed')
raise
logger.debug('Stored initial configuration hyperparameters to TensorBoard and hparams yaml file')
@on_main_process
def log(self, values: dict, step: Optional[int]=None, **kwargs):
values = listify(values)
for (k, v) in values.items():
if isinstance(v, (int, float)):
self.writer.add_scalar(k, v, global_step=step, **kwargs)
elif isinstance(v, str):
self.writer.add_text(k, v, global_step=step, **kwargs)
elif isinstance(v, dict):
self.writer.add_scalars(k, v, global_step=step, **kwargs)
self.writer.flush()
logger.debug('Successfully logged to TensorBoard')
@on_main_process
def log_images(self, values: dict, step: Optional[int], **kwargs):
for (k, v) in values.items():
self.writer.add_images(k, v, global_step=step, **kwargs)
logger.debug('Successfully logged images to TensorBoard')
@on_main_process
def finish(self):
self.writer.close()
logger.debug('TensorBoard writer closed')
class WandBTracker(GeneralTracker):
name = 'wandb'
requires_logging_directory = False
main_process_only = False
@on_main_process
def __init__(self, run_name: str, **kwargs):
super().__init__()
self.run_name = run_name
import wandb
self.run = wandb.init(project=self.run_name, **kwargs)
logger.debug(f'Initialized WandB project {self.run_name}')
logger.debug('Make sure to log any initial configurations with `self.store_init_configuration` before training!')
@property
def tracker(self):
return self.run
@on_main_process
def store_init_configuration(self, values: dict):
import wandb
wandb.config.update(values, allow_val_change=True)
logger.debug('Stored initial configuration hyperparameters to WandB')
@on_main_process
def log(self, values: dict, step: Optional[int]=None, **kwargs):
self.run.log(values, step=step, **kwargs)
logger.debug('Successfully logged to WandB')
@on_main_process
def log_images(self, values: dict, step: Optional[int]=None, **kwargs):
import wandb
for (k, v) in values.items():
self.log({k: [wandb.Image(image) for image in v]}, step=step, **kwargs)
logger.debug('Successfully logged images to WandB')
@on_main_process
def log_table(self, table_name: str, columns: List[str]=None, data: List[List[Any]]=None, dataframe: Any=None, step: Optional[int]=None, **kwargs):
import wandb
values = {table_name: wandb.Table(columns=columns, data=data, dataframe=dataframe)}
self.log(values, step=step, **kwargs)
@on_main_process
def finish(self):
self.run.finish()
logger.debug('WandB run closed')
class CometMLTracker(GeneralTracker):
name = 'comet_ml'
requires_logging_directory = False
@on_main_process
def __init__(self, run_name: str, **kwargs):
super().__init__()
self.run_name = run_name
from comet_ml import Experiment
self.writer = Experiment(project_name=run_name, **kwargs)
logger.debug(f'Initialized CometML project {self.run_name}')
logger.debug('Make sure to log any initial configurations with `self.store_init_configuration` before training!')
@property
def tracker(self):
return self.writer
@on_main_process
def store_init_configuration(self, values: dict):
self.writer.log_parameters(values)
logger.debug('Stored initial configuration hyperparameters to CometML')
@on_main_process
def log(self, values: dict, step: Optional[int]=None, **kwargs):
if step is not None:
self.writer.set_step(step)
for (k, v) in values.items():
if isinstance(v, (int, float)):
self.writer.log_metric(k, v, step=step, **kwargs)
elif isinstance(v, str):
self.writer.log_other(k, v, **kwargs)
elif isinstance(v, dict):
self.writer.log_metrics(v, step=step, **kwargs)
logger.debug('Successfully logged to CometML')
@on_main_process
def finish(self):
self.writer.end()
logger.debug('CometML run closed')
class AimTracker(GeneralTracker):
name = 'aim'
requires_logging_directory = True
@on_main_process
def __init__(self, run_name: str, logging_dir: Optional[Union[str, os.PathLike]]='.', **kwargs):
self.run_name = run_name
from aim import Run
self.writer = Run(repo=logging_dir, **kwargs)
self.writer.name = self.run_name
logger.debug(f'Initialized Aim project {self.run_name}')
logger.debug('Make sure to log any initial configurations with `self.store_init_configuration` before training!')
@property
def tracker(self):
return self.writer
@on_main_process
def store_init_configuration(self, values: dict):
self.writer['hparams'] = values
@on_main_process
def log(self, values: dict, step: Optional[int], **kwargs):
for (key, value) in values.items():
self.writer.track(value, name=key, step=step, **kwargs)
@on_main_process
def log_images(self, values: dict, step: Optional[int]=None, kwargs: Optional[Dict[str, dict]]=None):
import aim
aim_image_kw = {}
track_kw = {}
if kwargs is not None:
aim_image_kw = kwargs.get('aim_image', {})
track_kw = kwargs.get('track', {})
for (key, value) in values.items():
if isinstance(value, tuple):
(img, caption) = value
else:
(img, caption) = (value, '')
aim_image = aim.Image(img, caption=caption, **aim_image_kw)
self.writer.track(aim_image, name=key, step=step, **track_kw)
@on_main_process
def finish(self):
self.writer.close()
class MLflowTracker(GeneralTracker):
name = 'mlflow'
requires_logging_directory = False
@on_main_process
def __init__(self, experiment_name: str=None, logging_dir: Optional[Union[str, os.PathLike]]=None, run_id: Optional[str]=None, tags: Optional[Union[Dict[str, Any], str]]=None, nested_run: Optional[bool]=False, run_name: Optional[str]=None, description: Optional[str]=None):
experiment_name = os.environ.get('MLFLOW_EXPERIMENT_NAME', experiment_name)
run_id = os.environ.get('MLFLOW_RUN_ID', run_id)
tags = os.environ.get('MLFLOW_TAGS', tags)
if isinstance(tags, str):
tags = json.loads(tags)
nested_run = os.environ.get('MLFLOW_NESTED_RUN', nested_run)
import mlflow
exps = mlflow.search_experiments(filter_string=f"name = '{experiment_name}'")
if len(exps) > 0:
if len(exps) > 1:
logger.warning('Multiple experiments with the same name found. Using first one.')
experiment_id = exps[0].experiment_id
else:
experiment_id = mlflow.create_experiment(name=experiment_name, artifact_location=logging_dir, tags=tags)
self.active_run = mlflow.start_run(run_id=run_id, experiment_id=experiment_id, run_name=run_name, nested=nested_run, tags=tags, description=description)
logger.debug(f'Initialized mlflow experiment {experiment_name}')
logger.debug('Make sure to log any initial configurations with `self.store_init_configuration` before training!')
@property
def tracker(self):
return self.active_run
@on_main_process
def store_init_configuration(self, values: dict):
import mlflow
for (name, value) in list(values.items()):
if len(str(value)) > mlflow.utils.validation.MAX_PARAM_VAL_LENGTH:
logger.warning_once(f'''Accelerate is attempting to log a value of "{value}" for key "{name}" as a parameter. MLflow's log_param() only accepts values no longer than {mlflow.utils.validation.MAX_PARAM_VAL_LENGTH} characters so we dropped this attribute.''')
del values[name]
values_list = list(values.items())
for i in range(0, len(values_list), mlflow.utils.validation.MAX_PARAMS_TAGS_PER_BATCH):
mlflow.log_params(dict(values_list[i:i + mlflow.utils.validation.MAX_PARAMS_TAGS_PER_BATCH]))
logger.debug('Stored initial configuration hyperparameters to MLflow')
@on_main_process
def log(self, values: dict, step: Optional[int]):
metrics = {}
for (k, v) in values.items():
if isinstance(v, (int, float)):
metrics[k] = v
else:
logger.warning_once(f'''MLflowTracker is attempting to log a value of "{v}" of type {type(v)} for key "{k}" as a metric. MLflow's log_metric() only accepts float and int types so we dropped this attribute.''')
import mlflow
mlflow.log_metrics(metrics, step=step)
logger.debug('Successfully logged to mlflow')
@on_main_process
def finish(self):
import mlflow
mlflow.end_run()
class ClearMLTracker(GeneralTracker):
name = 'clearml'
requires_logging_directory = False
@on_main_process
def __init__(self, run_name: str=None, **kwargs):
from clearml import Task
current_task = Task.current_task()
self._initialized_externally = False
if current_task:
self._initialized_externally = True
self.task = current_task
return
kwargs.setdefault('project_name', os.environ.get('CLEARML_PROJECT', run_name))
kwargs.setdefault('task_name', os.environ.get('CLEARML_TASK', run_name))
self.task = Task.init(**kwargs)
@property
def tracker(self):
return self.task
@on_main_process
def store_init_configuration(self, values: dict):
return self.task.connect_configuration(values)
@on_main_process
def log(self, values: Dict[str, Union[int, float]], step: Optional[int]=None, **kwargs):
clearml_logger = self.task.get_logger()
for (k, v) in values.items():
if not isinstance(v, (int, float)):
logger.warning_once(f'''Accelerator is attempting to log a value of "{v}" of type {type(v)} for key "{k}" as a scalar. This invocation of ClearML logger's report_scalar() is incorrect so we dropped this attribute.''')
continue
if step is None:
clearml_logger.report_single_value(name=k, value=v, **kwargs)
continue
(title, series) = ClearMLTracker._get_title_series(k)
clearml_logger.report_scalar(title=title, series=series, value=v, iteration=step, **kwargs)
@on_main_process
def log_images(self, values: dict, step: Optional[int]=None, **kwargs):
clearml_logger = self.task.get_logger()
for (k, v) in values.items():
(title, series) = ClearMLTracker._get_title_series(k)
clearml_logger.report_image(title=title, series=series, iteration=step, image=v, **kwargs)
@on_main_process
def log_table(self, table_name: str, columns: List[str]=None, data: List[List[Any]]=None, dataframe: Any=None, step: Optional[int]=None, **kwargs):
to_report = dataframe
if dataframe is None:
if data is None:
raise ValueError('`ClearMLTracker.log_table` requires that `data` to be supplied if `dataframe` is `None`')
to_report = [columns] + data if columns else data
(title, series) = ClearMLTracker._get_title_series(table_name)
self.task.get_logger().report_table(title=title, series=series, table_plot=to_report, iteration=step, **kwargs)
@on_main_process
def finish(self):
if self.task and (not self._initialized_externally):
self.task.close()
@staticmethod
def _get_title_series(name):
for prefix in ['eval', 'test', 'train']:
if name.startswith(prefix + '_'):
return (name[len(prefix) + 1:], prefix)
return (name, 'train')
class DVCLiveTracker(GeneralTracker):
name = 'dvclive'
requires_logging_directory = False
@on_main_process
def __init__(self, run_name: Optional[str]=None, live: Optional[Any]=None, **kwargs):
from dvclive import Live
super().__init__()
self.live = live if live is not None else Live(**kwargs)
@property
def tracker(self):
return self.live
@on_main_process
def store_init_configuration(self, values: dict):
self.live.log_params(values)
@on_main_process
def log(self, values: dict, step: Optional[int]=None, **kwargs):
from dvclive.plots import Metric
if step is not None:
self.live.step = step
for (k, v) in values.items():
if Metric.could_log(v):
self.live.log_metric(k, v, **kwargs)
else:
logger.warning_once(f'''Accelerator attempted to log a value of "{v}" of type {type(v)} for key "{k}" as a scalar. This invocation of DVCLive's Live.log_metric() is incorrect so we dropped this attribute.''')
self.live.next_step()
@on_main_process
def finish(self):
self.live.end()
LOGGER_TYPE_TO_CLASS = {'aim': AimTracker, 'comet_ml': CometMLTracker, 'mlflow': MLflowTracker, 'tensorboard': TensorBoardTracker, 'wandb': WandBTracker, 'clearml': ClearMLTracker, 'dvclive': DVCLiveTracker}
def filter_trackers(log_with: List[Union[str, LoggerType, GeneralTracker]], logging_dir: Union[str, os.PathLike]=None):
loggers = []
if log_with is not None:
if not isinstance(log_with, (list, tuple)):
log_with = [log_with]
if 'all' in log_with or LoggerType.ALL in log_with:
loggers = [o for o in log_with if issubclass(type(o), GeneralTracker)] + get_available_trackers()
else:
for log_type in log_with:
if log_type not in LoggerType and (not issubclass(type(log_type), GeneralTracker)):
raise ValueError(f'Unsupported logging capability: {log_type}. Choose between {LoggerType.list()}')
if issubclass(type(log_type), GeneralTracker):
loggers.append(log_type)
else:
log_type = LoggerType(log_type)
if log_type not in loggers:
if log_type in get_available_trackers():
tracker_init = LOGGER_TYPE_TO_CLASS[str(log_type)]
if tracker_init.requires_logging_directory:
if logging_dir is None:
raise ValueError(f'Logging with `{log_type}` requires a `logging_dir` to be passed in.')
loggers.append(log_type)
else:
logger.debug(f'Tried adding logger {log_type}, but package is unavailable in the system.')
return loggers