# File: peft-main/src/peft/__init__.py __version__ = '0.12.1.dev0' from .auto import AutoPeftModel, AutoPeftModelForCausalLM, AutoPeftModelForSequenceClassification, AutoPeftModelForSeq2SeqLM, AutoPeftModelForTokenClassification, AutoPeftModelForQuestionAnswering, AutoPeftModelForFeatureExtraction from .mapping import MODEL_TYPE_TO_PEFT_MODEL_MAPPING, PEFT_TYPE_TO_CONFIG_MAPPING, get_peft_config, get_peft_model, inject_adapter_in_model from .mixed_model import PeftMixedModel from .peft_model import PeftModel, PeftModelForCausalLM, PeftModelForSeq2SeqLM, PeftModelForSequenceClassification, PeftModelForTokenClassification, PeftModelForQuestionAnswering, PeftModelForFeatureExtraction, get_layer_status, get_model_status from .tuners import AdaptionPromptConfig, AdaptionPromptModel, LoraConfig, LoraRuntimeConfig, LoftQConfig, LoraModel, LoHaConfig, LoHaModel, LoKrConfig, LoKrModel, IA3Config, IA3Model, AdaLoraConfig, AdaLoraModel, BOFTConfig, BOFTModel, PrefixEncoder, PrefixTuningConfig, PromptEmbedding, PromptEncoder, PromptEncoderConfig, PromptEncoderReparameterizationType, PromptTuningConfig, PromptTuningInit, MultitaskPromptTuningConfig, MultitaskPromptTuningInit, OFTConfig, OFTModel, PolyConfig, PolyModel, LNTuningConfig, LNTuningModel, VBLoRAConfig, VBLoRAModel, VeraConfig, VeraModel, FourierFTConfig, FourierFTModel, XLoraConfig, XLoraModel, HRAConfig, HRAModel, VBLoRAConfig from .utils import TRANSFORMERS_MODELS_TO_PREFIX_TUNING_POSTPROCESS_MAPPING, PeftType, TaskType, bloom_model_postprocess_past_key_value, get_peft_model_state_dict, prepare_model_for_kbit_training, replace_lora_weights_loftq, set_peft_model_state_dict, shift_tokens_right, load_peft_weights, cast_mixed_precision_params from .config import PeftConfig, PromptLearningConfig # File: peft-main/src/peft/auto.py from __future__ import annotations import importlib import os from typing import Optional from transformers import AutoModel, AutoModelForCausalLM, AutoModelForQuestionAnswering, AutoModelForSeq2SeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoTokenizer from .config import PeftConfig from .mapping import MODEL_TYPE_TO_PEFT_MODEL_MAPPING from .peft_model import PeftModel, PeftModelForCausalLM, PeftModelForFeatureExtraction, PeftModelForQuestionAnswering, PeftModelForSeq2SeqLM, PeftModelForSequenceClassification, PeftModelForTokenClassification from .utils.constants import TOKENIZER_CONFIG_NAME from .utils.other import check_file_exists_on_hf_hub class _BaseAutoPeftModel: _target_class = None _target_peft_class = None def __init__(self, *args, **kwargs): raise EnvironmentError(f'{self.__class__.__name__} is designed to be instantiated using the `{self.__class__.__name__}.from_pretrained(pretrained_model_name_or_path)` or `{self.__class__.__name__}.from_config(config)` methods.') @classmethod def from_pretrained(cls, pretrained_model_name_or_path, adapter_name: str='default', is_trainable: bool=False, config: Optional[PeftConfig]=None, revision: Optional[str]=None, **kwargs): peft_config = PeftConfig.from_pretrained(pretrained_model_name_or_path, revision=revision, **kwargs) base_model_path = peft_config.base_model_name_or_path base_model_revision = peft_config.revision task_type = getattr(peft_config, 'task_type', None) if cls._target_class is not None: target_class = cls._target_class elif cls._target_class is None and task_type is not None: raise ValueError("Cannot use `AutoPeftModel` with a task type, please use a specific class for your task type. (e.g. `AutoPeftModelForCausalLM` for `task_type='CAUSAL_LM'`)") if task_type is not None: expected_target_class = MODEL_TYPE_TO_PEFT_MODEL_MAPPING[task_type] if cls._target_peft_class.__name__ != expected_target_class.__name__: raise ValueError(f'Expected target PEFT class: {expected_target_class.__name__}, but you have asked for: {cls._target_peft_class.__name__} make sure that you are loading the correct model for your task type.') elif task_type is None and getattr(peft_config, 'auto_mapping', None) is not None: auto_mapping = getattr(peft_config, 'auto_mapping', None) base_model_class = auto_mapping['base_model_class'] parent_library_name = auto_mapping['parent_library'] parent_library = importlib.import_module(parent_library_name) target_class = getattr(parent_library, base_model_class) else: raise ValueError('Cannot infer the auto class from the config, please make sure that you are loading the correct model for your task type.') base_model = target_class.from_pretrained(base_model_path, revision=base_model_revision, **kwargs) tokenizer_exists = False if os.path.exists(os.path.join(pretrained_model_name_or_path, TOKENIZER_CONFIG_NAME)): tokenizer_exists = True else: token = kwargs.get('token', None) if token is None: token = kwargs.get('use_auth_token', None) tokenizer_exists = check_file_exists_on_hf_hub(repo_id=pretrained_model_name_or_path, filename=TOKENIZER_CONFIG_NAME, revision=revision, repo_type=kwargs.get('repo_type', None), token=token) if tokenizer_exists: tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path, trust_remote_code=kwargs.get('trust_remote_code', False)) base_model.resize_token_embeddings(len(tokenizer)) return cls._target_peft_class.from_pretrained(base_model, pretrained_model_name_or_path, adapter_name=adapter_name, is_trainable=is_trainable, config=config, **kwargs) class AutoPeftModel(_BaseAutoPeftModel): _target_class = None _target_peft_class = PeftModel class AutoPeftModelForCausalLM(_BaseAutoPeftModel): _target_class = AutoModelForCausalLM _target_peft_class = PeftModelForCausalLM class AutoPeftModelForSeq2SeqLM(_BaseAutoPeftModel): _target_class = AutoModelForSeq2SeqLM _target_peft_class = PeftModelForSeq2SeqLM class AutoPeftModelForSequenceClassification(_BaseAutoPeftModel): _target_class = AutoModelForSequenceClassification _target_peft_class = PeftModelForSequenceClassification class AutoPeftModelForTokenClassification(_BaseAutoPeftModel): _target_class = AutoModelForTokenClassification _target_peft_class = PeftModelForTokenClassification class AutoPeftModelForQuestionAnswering(_BaseAutoPeftModel): _target_class = AutoModelForQuestionAnswering _target_peft_class = PeftModelForQuestionAnswering class AutoPeftModelForFeatureExtraction(_BaseAutoPeftModel): _target_class = AutoModel _target_peft_class = PeftModelForFeatureExtraction # File: peft-main/src/peft/config.py import inspect import json import os import warnings from dataclasses import asdict, dataclass, field from typing import Dict, Optional, Union from huggingface_hub import hf_hub_download from transformers.utils import PushToHubMixin from .utils import CONFIG_NAME, PeftType, TaskType @dataclass class PeftConfigMixin(PushToHubMixin): peft_type: Optional[PeftType] = field(default=None, metadata={'help': 'The type of PEFT model.'}) auto_mapping: Optional[dict] = field(default=None, metadata={'help': 'An auto mapping dict to help retrieve the base model class if needed.'}) def to_dict(self) -> Dict: return asdict(self) def save_pretrained(self, save_directory: str, **kwargs) -> None: if os.path.isfile(save_directory): raise AssertionError(f'Provided path ({save_directory}) should be a directory, not a file') os.makedirs(save_directory, exist_ok=True) auto_mapping_dict = kwargs.pop('auto_mapping_dict', None) output_dict = self.to_dict() for (key, value) in output_dict.items(): if isinstance(value, set): output_dict[key] = list(value) output_path = os.path.join(save_directory, CONFIG_NAME) if auto_mapping_dict is not None: output_dict['auto_mapping'] = auto_mapping_dict with open(output_path, 'w') as writer: writer.write(json.dumps(output_dict, indent=2, sort_keys=True)) @classmethod def from_peft_type(cls, **kwargs): from peft.mapping import PEFT_TYPE_TO_CONFIG_MAPPING if 'peft_type' in kwargs: peft_type = kwargs['peft_type'] config_cls = PEFT_TYPE_TO_CONFIG_MAPPING[peft_type] else: config_cls = cls return config_cls(**kwargs) @classmethod def from_pretrained(cls, pretrained_model_name_or_path: str, subfolder: Optional[str]=None, **kwargs): path = os.path.join(pretrained_model_name_or_path, subfolder) if subfolder is not None else pretrained_model_name_or_path (hf_hub_download_kwargs, class_kwargs, _) = cls._split_kwargs(kwargs) if os.path.isfile(os.path.join(path, CONFIG_NAME)): config_file = os.path.join(path, CONFIG_NAME) else: try: config_file = hf_hub_download(pretrained_model_name_or_path, CONFIG_NAME, subfolder=subfolder, **hf_hub_download_kwargs) except Exception as exc: raise ValueError(f"Can't find '{CONFIG_NAME}' at '{pretrained_model_name_or_path}'") from exc loaded_attributes = cls.from_json_file(config_file) kwargs = {**class_kwargs, **loaded_attributes} return cls.from_peft_type(**kwargs) @classmethod def from_json_file(cls, path_json_file: str, **kwargs): with open(path_json_file) as file: json_object = json.load(file) if 'runtime_config' in json_object: warnings.warn('The configuration file contains a `runtime_config` key. This is ignored. Runtime configurations are only valid at runtime.') del json_object['runtime_config'] return json_object @classmethod def _split_kwargs(cls, kwargs): hf_hub_download_kwargs = {} class_kwargs = {} other_kwargs = {} for (key, value) in kwargs.items(): if key in inspect.signature(hf_hub_download).parameters: hf_hub_download_kwargs[key] = value elif key in list(cls.__annotations__): class_kwargs[key] = value else: other_kwargs[key] = value return (hf_hub_download_kwargs, class_kwargs, other_kwargs) @classmethod def _get_peft_type(cls, model_id: str, **hf_hub_download_kwargs): subfolder = hf_hub_download_kwargs.get('subfolder', None) path = os.path.join(model_id, subfolder) if subfolder is not None else model_id if os.path.isfile(os.path.join(path, CONFIG_NAME)): config_file = os.path.join(path, CONFIG_NAME) else: try: config_file = hf_hub_download(model_id, CONFIG_NAME, **hf_hub_download_kwargs) except Exception: raise ValueError(f"Can't find '{CONFIG_NAME}' at '{model_id}'") loaded_attributes = cls.from_json_file(config_file) return loaded_attributes['peft_type'] @property def is_prompt_learning(self) -> bool: return False @property def is_adaption_prompt(self) -> bool: return False @dataclass class PeftConfig(PeftConfigMixin): base_model_name_or_path: Optional[str] = field(default=None, metadata={'help': 'The name of the base model to use.'}) revision: Optional[str] = field(default=None, metadata={'help': 'The specific base model version to use.'}) peft_type: Optional[Union[str, PeftType]] = field(default=None, metadata={'help': 'Peft type'}) task_type: Optional[Union[str, TaskType]] = field(default=None, metadata={'help': 'Task type'}) inference_mode: bool = field(default=False, metadata={'help': 'Whether to use inference mode'}) @dataclass class PromptLearningConfig(PeftConfig): num_virtual_tokens: int = field(default=None, metadata={'help': 'Number of virtual tokens'}) token_dim: int = field(default=None, metadata={'help': 'The hidden embedding dimension of the base transformer model'}) num_transformer_submodules: Optional[int] = field(default=None, metadata={'help': 'Number of transformer submodules'}) num_attention_heads: Optional[int] = field(default=None, metadata={'help': 'Number of attention heads'}) num_layers: Optional[int] = field(default=None, metadata={'help': 'Number of transformer layers'}) @property def is_prompt_learning(self) -> bool: return True # File: peft-main/src/peft/helpers.py import inspect from contextlib import contextmanager from copy import deepcopy from functools import update_wrapper from types import MethodType from .peft_model import PeftConfig, PeftModel from .tuners.lora.layer import LoraLayer def update_forward_signature(model: PeftModel) -> None: current_signature = inspect.signature(model.forward) if len(current_signature.parameters) == 2 and 'args' in current_signature.parameters and ('kwargs' in current_signature.parameters): forward = deepcopy(model.forward.__func__) update_wrapper(forward, type(model.get_base_model()).forward, assigned=('__doc__', '__name__', '__annotations__')) model.forward = MethodType(forward, model) def update_generate_signature(model: PeftModel) -> None: if not hasattr(model, 'generate'): return current_signature = inspect.signature(model.generate) if len(current_signature.parameters) == 2 and 'args' in current_signature.parameters and ('kwargs' in current_signature.parameters) or (len(current_signature.parameters) == 1 and 'kwargs' in current_signature.parameters): generate = deepcopy(model.generate.__func__) update_wrapper(generate, type(model.get_base_model()).generate, assigned=('__doc__', '__name__', '__annotations__')) model.generate = MethodType(generate, model) def update_signature(model: PeftModel, method: str='all') -> None: if method == 'forward': update_forward_signature(model) elif method == 'generate': update_generate_signature(model) elif method == 'all': update_forward_signature(model) update_generate_signature(model) else: raise ValueError(f"method {method} is not supported please choose one of ['forward', 'generate', 'all']") def check_if_peft_model(model_name_or_path: str) -> bool: is_peft_model = True try: PeftConfig.from_pretrained(model_name_or_path) except Exception: is_peft_model = False return is_peft_model @contextmanager def rescale_adapter_scale(model, multiplier): if not isinstance(multiplier, (float, int)): raise TypeError(f'Argument multiplier should be of type float, got {type(multiplier)}') original_scaling = {} for module in model.modules(): if isinstance(module, LoraLayer): original_scaling[module] = module.scaling.copy() module.scaling = {k: v * multiplier for (k, v) in module.scaling.items()} if not original_scaling: raise ValueError('scaling is only supported for models with `LoraLayer`s') try: yield finally: for (module, scaling) in original_scaling.items(): module.scaling = scaling # File: peft-main/src/peft/import_utils.py import importlib import importlib.metadata as importlib_metadata from functools import lru_cache import packaging.version @lru_cache def is_bnb_available() -> bool: return importlib.util.find_spec('bitsandbytes') is not None @lru_cache def is_bnb_4bit_available() -> bool: if not is_bnb_available(): return False import bitsandbytes as bnb return hasattr(bnb.nn, 'Linear4bit') @lru_cache def is_auto_gptq_available(): if importlib.util.find_spec('auto_gptq') is not None: AUTOGPTQ_MINIMUM_VERSION = packaging.version.parse('0.5.0') version_autogptq = packaging.version.parse(importlib_metadata.version('auto_gptq')) if AUTOGPTQ_MINIMUM_VERSION <= version_autogptq: return True else: raise ImportError(f'Found an incompatible version of auto-gptq. Found version {version_autogptq}, but only versions above {AUTOGPTQ_MINIMUM_VERSION} are supported') @lru_cache def is_optimum_available() -> bool: return importlib.util.find_spec('optimum') is not None @lru_cache def is_torch_tpu_available(check_device=True): if importlib.util.find_spec('torch_xla') is not None: if check_device: try: import torch_xla.core.xla_model as xm _ = xm.xla_device() return True except RuntimeError: return False return True return False @lru_cache def is_aqlm_available(): return importlib.util.find_spec('aqlm') is not None @lru_cache def is_auto_awq_available(): return importlib.util.find_spec('awq') is not None @lru_cache def is_eetq_available(): return importlib.util.find_spec('eetq') is not None @lru_cache def is_hqq_available(): return importlib.util.find_spec('hqq') is not None # File: peft-main/src/peft/mapping.py from __future__ import annotations import warnings from typing import TYPE_CHECKING, Any, Optional import torch from peft.tuners.xlora.model import XLoraModel from .config import PeftConfig from .mixed_model import PeftMixedModel from .peft_model import PeftModel, PeftModelForCausalLM, PeftModelForFeatureExtraction, PeftModelForQuestionAnswering, PeftModelForSeq2SeqLM, PeftModelForSequenceClassification, PeftModelForTokenClassification from .tuners import AdaLoraConfig, AdaLoraModel, AdaptionPromptConfig, BOFTConfig, BOFTModel, FourierFTConfig, FourierFTModel, HRAConfig, HRAModel, IA3Config, IA3Model, LNTuningConfig, LNTuningModel, LoHaConfig, LoHaModel, LoKrConfig, LoKrModel, LoraConfig, LoraModel, MultitaskPromptTuningConfig, OFTConfig, OFTModel, PolyConfig, PolyModel, PrefixTuningConfig, PromptEncoderConfig, PromptTuningConfig, VBLoRAConfig, VBLoRAModel, VeraConfig, VeraModel, XLoraConfig from .tuners.tuners_utils import BaseTuner from .utils import _prepare_prompt_learning_config if TYPE_CHECKING: from transformers import PreTrainedModel MODEL_TYPE_TO_PEFT_MODEL_MAPPING: dict[str, type[PeftModel]] = {'SEQ_CLS': PeftModelForSequenceClassification, 'SEQ_2_SEQ_LM': PeftModelForSeq2SeqLM, 'CAUSAL_LM': PeftModelForCausalLM, 'TOKEN_CLS': PeftModelForTokenClassification, 'QUESTION_ANS': PeftModelForQuestionAnswering, 'FEATURE_EXTRACTION': PeftModelForFeatureExtraction} PEFT_TYPE_TO_CONFIG_MAPPING: dict[str, type[PeftConfig]] = {'ADAPTION_PROMPT': AdaptionPromptConfig, 'PROMPT_TUNING': PromptTuningConfig, 'PREFIX_TUNING': PrefixTuningConfig, 'P_TUNING': PromptEncoderConfig, 'LORA': LoraConfig, 'LOHA': LoHaConfig, 'LORAPLUS': LoraConfig, 'LOKR': LoKrConfig, 'ADALORA': AdaLoraConfig, 'BOFT': BOFTConfig, 'IA3': IA3Config, 'MULTITASK_PROMPT_TUNING': MultitaskPromptTuningConfig, 'OFT': OFTConfig, 'POLY': PolyConfig, 'LN_TUNING': LNTuningConfig, 'VERA': VeraConfig, 'FOURIERFT': FourierFTConfig, 'XLORA': XLoraConfig, 'HRA': HRAConfig, 'VBLORA': VBLoRAConfig} PEFT_TYPE_TO_TUNER_MAPPING: dict[str, type[BaseTuner]] = {'LORA': LoraModel, 'LOHA': LoHaModel, 'LOKR': LoKrModel, 'ADALORA': AdaLoraModel, 'BOFT': BOFTModel, 'IA3': IA3Model, 'OFT': OFTModel, 'POLY': PolyModel, 'LN_TUNING': LNTuningModel, 'VERA': VeraModel, 'FOURIERFT': FourierFTModel, 'XLORA': XLoraModel, 'HRA': HRAModel, 'VBLORA': VBLoRAModel} def get_peft_config(config_dict: dict[str, Any]) -> PeftConfig: return PEFT_TYPE_TO_CONFIG_MAPPING[config_dict['peft_type']](**config_dict) def get_peft_model(model: PreTrainedModel, peft_config: PeftConfig, adapter_name: str='default', mixed: bool=False, autocast_adapter_dtype: bool=True, revision: Optional[str]=None) -> PeftModel | PeftMixedModel: model_config = BaseTuner.get_model_config(model) old_name = peft_config.base_model_name_or_path new_name = model.__dict__.get('name_or_path', None) peft_config.base_model_name_or_path = new_name if old_name is not None and old_name != new_name: warnings.warn(f"The PEFT config's `base_model_name_or_path` was renamed from '{old_name}' to '{new_name}'. Please ensure that the correct base model is loaded when loading this checkpoint.") if revision is not None: if peft_config.revision is not None and peft_config.revision != revision: warnings.warn(f'peft config has already set base model revision to {peft_config.revision}, overwriting with revision {revision}') peft_config.revision = revision if mixed: return PeftMixedModel(model, peft_config, adapter_name=adapter_name) if peft_config.task_type not in MODEL_TYPE_TO_PEFT_MODEL_MAPPING.keys() and (not peft_config.is_prompt_learning): return PeftModel(model, peft_config, adapter_name=adapter_name, autocast_adapter_dtype=autocast_adapter_dtype) if peft_config.is_prompt_learning: peft_config = _prepare_prompt_learning_config(peft_config, model_config) return MODEL_TYPE_TO_PEFT_MODEL_MAPPING[peft_config.task_type](model, peft_config, adapter_name=adapter_name, autocast_adapter_dtype=autocast_adapter_dtype) def inject_adapter_in_model(peft_config: PeftConfig, model: torch.nn.Module, adapter_name: str='default') -> torch.nn.Module: if peft_config.is_prompt_learning or peft_config.is_adaption_prompt: raise ValueError('`create_and_replace` does not support prompt learning and adaption prompt yet.') if peft_config.peft_type not in PEFT_TYPE_TO_TUNER_MAPPING.keys(): raise ValueError(f'`inject_adapter_in_model` does not support {peft_config.peft_type} yet. Please use `get_peft_model`.') tuner_cls = PEFT_TYPE_TO_TUNER_MAPPING[peft_config.peft_type] peft_model = tuner_cls(model, peft_config, adapter_name=adapter_name) return peft_model.model # File: peft-main/src/peft/mixed_model.py from __future__ import annotations import os from contextlib import contextmanager from typing import Any, Optional, Union import torch from accelerate.hooks import remove_hook_from_submodules from torch import nn from transformers.utils import PushToHubMixin from peft.utils.constants import DUMMY_MODEL_CONFIG from .config import PeftConfig from .peft_model import PeftModel from .tuners import AdaLoraModel, IA3Model, LoHaModel, LoKrModel, LoraModel, MixedModel, OFTModel from .tuners.mixed import COMPATIBLE_TUNER_TYPES from .utils import PeftType, _set_adapter, _set_trainable PEFT_TYPE_TO_MODEL_MAPPING = {PeftType.LORA: LoraModel, PeftType.LOHA: LoHaModel, PeftType.LOKR: LoKrModel, PeftType.ADALORA: AdaLoraModel, PeftType.IA3: IA3Model, PeftType.OFT: OFTModel} def _prepare_model_for_gradient_checkpointing(model: nn.Module) -> None: if not getattr(model, 'is_gradient_checkpointing', True): return model if not (getattr(model, 'is_loaded_in_8bit', False) or getattr(model, 'is_loaded_in_4bit', False) or getattr(model, 'is_quantized', False)): if hasattr(model, 'enable_input_require_grads'): model.enable_input_require_grads() elif hasattr(model, 'get_input_embeddings'): def make_inputs_require_grad(module, input, output): output.requires_grad_(True) model.get_input_embeddings().register_forward_hook(make_inputs_require_grad) def _check_config_compatible(peft_config: PeftConfig) -> None: if peft_config.peft_type not in COMPATIBLE_TUNER_TYPES: raise ValueError(f"The provided `peft_type` '{peft_config.peft_type.value}' is not compatible with the `PeftMixedModel`. Compatible types are: {COMPATIBLE_TUNER_TYPES}") class PeftMixedModel(PushToHubMixin, torch.nn.Module): def __init__(self, model: nn.Module, peft_config: PeftConfig, adapter_name: str='default') -> None: super().__init__() _check_config_compatible(peft_config) _prepare_model_for_gradient_checkpointing(model) self.modules_to_save = None self.base_model = MixedModel(model, {adapter_name: peft_config}, adapter_name) self.set_modules_to_save(peft_config, adapter_name) self.config = getattr(model, 'config', DUMMY_MODEL_CONFIG) if hasattr(self.base_model, 'config') and hasattr(self.base_model.config, 'pretraining_tp'): self.base_model.config.pretraining_tp = 1 @property def peft_config(self) -> dict[str, PeftConfig]: return self.base_model.peft_config @property def active_adapter(self) -> str: return self.base_model.active_adapter @property def active_adapters(self) -> list[str]: return self.base_model.active_adapters def get_nb_trainable_parameters(self): trainable_params = 0 all_param = 0 for (_, param) in self.named_parameters(): num_params = param.numel() if num_params == 0 and hasattr(param, 'ds_numel'): num_params = param.ds_numel if param.__class__.__name__ == 'Params4bit': num_params = num_params * 2 all_param += num_params if param.requires_grad: trainable_params += num_params return (trainable_params, all_param) def print_trainable_parameters(self): (trainable_params, all_param) = self.get_nb_trainable_parameters() print(f'trainable params: {trainable_params:,d} || all params: {all_param:,d} || trainable%: {100 * trainable_params / all_param:.4f}') def __getattr__(self, name: str): try: return super().__getattr__(name) except AttributeError: if name == 'base_model': raise return getattr(self.base_model, name) def forward(self, *args: Any, **kwargs: Any): return self.base_model(*args, **kwargs) def generate(self, *args: Any, **kwargs: Any): return self.base_model.generate(*args, **kwargs) @contextmanager def disable_adapter(self): try: self.base_model.disable_adapter_layers() yield finally: self.base_model.enable_adapter_layers() def add_adapter(self, adapter_name: str, peft_config: PeftConfig): _check_config_compatible(peft_config) try: self.peft_config[adapter_name] = peft_config self.base_model.inject_adapter(self, adapter_name) except Exception: if adapter_name in self.peft_config: del self.peft_config[adapter_name] raise self.set_modules_to_save(peft_config, adapter_name) def set_modules_to_save(self, peft_config: PeftConfig, adapter_name: str) -> None: if (modules_to_save := getattr(peft_config, 'modules_to_save', None)) is None: return if self.modules_to_save is None: self.modules_to_save = set(modules_to_save) else: self.modules_to_save.update(modules_to_save) _set_trainable(self, adapter_name) def set_adapter(self, adapter_name: Union[str, list[str]]) -> None: if isinstance(adapter_name, str): adapter_name = [adapter_name] mismatched = set(adapter_name) - set(self.peft_config.keys()) if mismatched: raise ValueError(f'Adapter(s) {sorted(mismatched)} not found, available adapters: {sorted(self.peft_config.keys())}') self.base_model.set_adapter(adapter_name) _set_adapter(self, adapter_name) def delete_adapter(self, adapter_name: Union[str, list[str]]) -> None: if isinstance(adapter_name, str): adapter_name = [adapter_name] mismatched = set(adapter_name) - set(self.peft_config.keys()) if mismatched: raise ValueError(f'Adapter(s) {sorted(mismatched)} not found, available adapters: {sorted(self.peft_config.keys())}') self.base_model.delete_adapter(adapter_name) def merge_and_unload(self, *args: Any, **kwargs: Any): return self.base_model.merge_and_unload(*args, **kwargs) def unload(self, *args: Any, **kwargs: Any): return self.base_model.unload(*args, **kwargs) def get_layer_status(self): raise TypeError(f'get_layer_status is not supported for {self.__class__.__name__}.') def get_model_status(self): raise TypeError(f'get_model_status is not supported for {self.__class__.__name__}.') @classmethod def _split_kwargs(cls, kwargs: dict[str, Any]): return PeftModel._split_kwargs(kwargs) def load_adapter(self, model_id: str, adapter_name: str, *args: Any, **kwargs: Any): output = PeftModel.load_adapter(self, model_id, adapter_name, *args, **kwargs) self.set_adapter(self.active_adapters) return output def create_or_update_model_card(self, output_dir: str): raise NotImplementedError(f'Model card creation is not supported for {self.__class__.__name__} (yet).') def save_pretrained(self, save_directory: str, safe_serialization: bool=False, selected_adapters: Optional[list[str]]=None, **kwargs: Any): raise NotImplementedError(f'Saving is not supported for {self.__class__.__name__} (yet).') @classmethod def from_pretrained(cls, model: nn.Module, model_id: str | os.PathLike, adapter_name: str='default', is_trainable: bool=False, config: Optional[PeftConfig]=None, **kwargs: Any): from .mapping import PEFT_TYPE_TO_CONFIG_MAPPING if config is None: config = PEFT_TYPE_TO_CONFIG_MAPPING[PeftConfig._get_peft_type(model_id, subfolder=kwargs.get('subfolder', None), revision=kwargs.get('revision', None), cache_dir=kwargs.get('cache_dir', None), use_auth_token=kwargs.get('use_auth_token', None))].from_pretrained(model_id, **kwargs) elif isinstance(config, PeftConfig): config.inference_mode = not is_trainable else: raise ValueError(f'The input config must be a PeftConfig, got {config.__class__}') if config.peft_type not in PEFT_TYPE_TO_MODEL_MAPPING: raise ValueError(f'Adapter of type {config.peft_type} is not supported for mixed models.') if getattr(model, 'hf_device_map', None) is not None and len(set(model.hf_device_map.values()).intersection({'cpu', 'disk'})) > 0: remove_hook_from_submodules(model) if config.is_prompt_learning and is_trainable: raise ValueError('Cannot set a prompt learning adapter to trainable when loading pretrained adapter.') else: config.inference_mode = not is_trainable model = cls(model, config, adapter_name) model.load_adapter(model_id, adapter_name, is_trainable=is_trainable, **kwargs) return model # File: peft-main/src/peft/optimizers/loraplus.py """""" from __future__ import annotations from operator import attrgetter import torch.nn as nn from torch.optim import Optimizer from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS from transformers.trainer_pt_utils import get_parameter_names from ..peft_model import PeftModel from ..tuners.lora.layer import Embedding def create_loraplus_optimizer(model: PeftModel, optimizer_cls: type[Optimizer], *, lr: float, loraplus_lr_ratio: float, **kwargs) -> Optimizer: decay_parameters = get_parameter_names(model, ALL_LAYERNORM_LAYERS) decay_parameters = [name for name in decay_parameters if 'bias' not in name] param_groups = {'groupA': {}, 'groupB': {}, 'groupB_no_decay': {}, 'embedding': {}} for (name, param) in model.named_parameters(): if not param.requires_grad: continue module = attrgetter(name)(model) if isinstance(module, Embedding): param_groups['embedding'][name] = param elif 'lora_B' in name or param.ndim == 1: if name in decay_parameters: param_groups['groupB'][name] = param else: param_groups['groupB_no_decay'][name] = param else: param_groups['groupA'][name] = param kwargs['lr'] = lr loraplus_weight_decay = kwargs.pop('loraplus_weight_decay', 0.0) loraplus_lr_embedding = kwargs.pop('loraplus_lr_embedding', 1e-06) optimizer_grouped_parameters = [{'params': list(param_groups['groupA'].values()), 'weight_decay': loraplus_weight_decay, 'lr': lr}, {'params': list(param_groups['embedding'].values()), 'weight_decay': loraplus_weight_decay, 'lr': loraplus_lr_embedding}, {'params': list(param_groups['groupB'].values()), 'weight_decay': loraplus_weight_decay, 'lr': lr * loraplus_lr_ratio}, {'params': list(param_groups['groupB_no_decay'].values()), 'weight_decay': 0.0, 'lr': lr * loraplus_lr_ratio}] optimizer = optimizer_cls(optimizer_grouped_parameters, **kwargs) eight_bit_names = ['Adam8bit', 'AdamW8bit', 'PagedAdam8bit', 'PagedAdamW8bit'] if optimizer_cls.__name__ in eight_bit_names: import bitsandbytes manager = bitsandbytes.optim.GlobalOptimManager.get_instance() for module in model.modules(): if isinstance(module, nn.Embedding): manager.register_module_override(module, 'weight', {'optim_bits': 32}) return optimizer # File: peft-main/src/peft/peft_model.py from __future__ import annotations import collections import inspect import os import warnings from contextlib import contextmanager from copy import deepcopy from dataclasses import dataclass from typing import Any, Literal, Optional, Union import packaging.version import torch import transformers from accelerate import dispatch_model, infer_auto_device_map from accelerate.hooks import AlignDevicesHook, add_hook_to_module, remove_hook_from_submodules from accelerate.utils import get_balanced_memory, named_module_tensors from huggingface_hub import HfFileSystem, ModelCard, ModelCardData, hf_hub_download from safetensors import safe_open from safetensors.torch import save_file as safe_save_file from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from transformers import PreTrainedModel from transformers.modeling_outputs import QuestionAnsweringModelOutput, SequenceClassifierOutput, TokenClassifierOutput from transformers.utils import PushToHubMixin from peft.utils.constants import DUMMY_MODEL_CONFIG from . import __version__ from .config import PeftConfig from .tuners import AdaLoraModel, AdaptionPromptModel, BOFTModel, FourierFTModel, HRAModel, IA3Model, LNTuningModel, LoHaModel, LoKrModel, LoraModel, MultitaskPromptEmbedding, OFTModel, PolyModel, PrefixEncoder, PromptEmbedding, PromptEncoder, VBLoRAModel, VeraModel, XLoraConfig, XLoraModel from .tuners.tuners_utils import BaseTuner, BaseTunerLayer from .utils import SAFETENSORS_WEIGHTS_NAME, TRANSFORMERS_MODELS_TO_PREFIX_TUNING_POSTPROCESS_MAPPING, WEIGHTS_NAME, PeftType, TaskType, _get_batch_size, _prepare_prompt_learning_config, _set_adapter, _set_trainable, get_peft_model_state_dict, id_tensor_storage, infer_device, load_peft_weights, set_peft_model_state_dict, shift_tokens_right PEFT_TYPE_TO_MODEL_MAPPING = {PeftType.LORA: LoraModel, PeftType.LOHA: LoHaModel, PeftType.LOKR: LoKrModel, PeftType.PROMPT_TUNING: PromptEmbedding, PeftType.P_TUNING: PromptEncoder, PeftType.PREFIX_TUNING: PrefixEncoder, PeftType.ADALORA: AdaLoraModel, PeftType.BOFT: BOFTModel, PeftType.ADAPTION_PROMPT: AdaptionPromptModel, PeftType.IA3: IA3Model, PeftType.OFT: OFTModel, PeftType.POLY: PolyModel, PeftType.LN_TUNING: LNTuningModel, PeftType.VERA: VeraModel, PeftType.FOURIERFT: FourierFTModel, PeftType.XLORA: XLoraModel, PeftType.HRA: HRAModel, PeftType.VBLORA: VBLoRAModel} class PeftModel(PushToHubMixin, torch.nn.Module): def __init__(self, model: PreTrainedModel, peft_config: PeftConfig, adapter_name: str='default', autocast_adapter_dtype: bool=True) -> None: super().__init__() self.modules_to_save = None self.active_adapter = adapter_name self.peft_type = peft_config.peft_type self.special_peft_forward_args = {'adapter_names'} self._is_prompt_learning = peft_config.is_prompt_learning if self._is_prompt_learning: self._peft_config = {adapter_name: peft_config} self.base_model = model self.add_adapter(adapter_name, peft_config) else: self._peft_config = None cls = PEFT_TYPE_TO_MODEL_MAPPING[peft_config.peft_type] self.base_model = cls(model, {adapter_name: peft_config}, adapter_name) self.set_additional_trainable_modules(peft_config, adapter_name) if hasattr(self.base_model, '_cast_adapter_dtype'): self.base_model._cast_adapter_dtype(adapter_name=adapter_name, autocast_adapter_dtype=autocast_adapter_dtype) if getattr(model, 'is_gradient_checkpointing', True): model = self._prepare_model_for_gradient_checkpointing(model) if hasattr(self.base_model, 'config') and hasattr(self.base_model.config, 'pretraining_tp'): self.base_model.config.pretraining_tp = 1 @property def peft_config(self) -> dict[str, PeftConfig]: if self._is_prompt_learning: return self._peft_config return self.base_model.peft_config @property def active_adapters(self) -> list[str]: try: adapters = self.base_model.active_adapters if not isinstance(adapters, list): adapters = self.active_adapter if isinstance(adapters, str): adapters = [adapters] except AttributeError: adapters = self.active_adapter if isinstance(adapters, str): adapters = [adapters] return adapters @peft_config.setter def peft_config(self, value: dict[str, PeftConfig]): if self._is_prompt_learning: self._peft_config = value else: self.base_model.peft_config = value def save_pretrained(self, save_directory: str, safe_serialization: bool=True, selected_adapters: Optional[list[str]]=None, save_embedding_layers: Union[str, bool]='auto', is_main_process: bool=True, convert_pissa_to_lora: Optional[str]=None, path_initial_model_for_weight_conversion: Optional[str]=None, **kwargs: Any) -> None: if os.path.isfile(save_directory): raise ValueError(f'Provided path ({save_directory}) should be a directory, not a file') if selected_adapters is None: selected_adapters = list(self.peft_config.keys()) elif any((selected_adapter_name not in list(self.peft_config.keys()) for selected_adapter_name in selected_adapters)): raise ValueError(f'You passed an invalid `selected_adapters` arguments, current supported adapter names are {list(self.peft_config.keys())} - got {selected_adapters}.') if convert_pissa_to_lora is not None: warnings.warn('`convert_pissa_to_lora` is deprecated and will be removed in a future version. Use `path_initial_model_for_weight_conversion` instead.') path_initial_model_for_weight_conversion = convert_pissa_to_lora def save_mutated_as_lora(peft_config, path_initial_model_for_weight_conversion, output_state_dict, kwargs): if peft_config.use_rslora and (peft_config.rank_pattern or peft_config.alpha_pattern): msg = 'Passing `path_initial_model_for_weight_conversion` to `save_pretrained` is not supported when using `rank_pattern` or `alpha_pattern` at the same time as `use_rslora=True`.' raise ValueError(msg) if not any((str(peft_config.init_lora_weights).lower().startswith(prefix) for prefix in ['pissa', 'olora', 'true'])): warnings.warn('`path_initial_model_for_weight_conversion` only works for converting a PiSSA or OLoRA adapter to a LoRA adapter') initial_adapter_name = os.path.basename(path_initial_model_for_weight_conversion) try: self.load_adapter(os.path.dirname(path_initial_model_for_weight_conversion), subfolder=initial_adapter_name, adapter_name=initial_adapter_name) is_pissa = str(self.peft_config[initial_adapter_name].init_lora_weights).lower().startswith('pissa') is_olora = str(self.peft_config[initial_adapter_name].init_lora_weights).lower() == 'olora' if is_pissa or is_olora: raise ValueError('The `init_lora_weights` parameter of the initial adapter should be set to `True`. Otherwise, `self.load_adapter` will subtract the decomposed values again based on the residual model.') output_state_dict = self.base_model.subtract_mutated_init(output_state_dict, initial_adapter_name, kwargs) finally: self.delete_adapter(initial_adapter_name) return output_state_dict if is_main_process: os.makedirs(save_directory, exist_ok=True) self.create_or_update_model_card(save_directory) for adapter_name in selected_adapters: peft_config = self.peft_config[adapter_name] output_state_dict = get_peft_model_state_dict(self, state_dict=kwargs.get('state_dict', None), adapter_name=adapter_name, save_embedding_layers=save_embedding_layers) output_dir = os.path.join(save_directory, adapter_name) if adapter_name != 'default' else save_directory os.makedirs(output_dir, exist_ok=True) if is_main_process and safe_serialization: ptrs = collections.defaultdict(list) for (name, tensor) in output_state_dict.items(): if isinstance(tensor, torch.Tensor): ptrs[id_tensor_storage(tensor)].append(name) else: ptrs[id(tensor)].append(name) shared_ptrs = {ptr: names for (ptr, names) in ptrs.items() if len(names) > 1} for (_, names) in shared_ptrs.items(): for shared_tensor_name in names[1:]: output_state_dict[shared_tensor_name] = output_state_dict[shared_tensor_name].clone() if path_initial_model_for_weight_conversion is not None: peft_config.init_lora_weights = True peft_config.save_pretrained(path_initial_model_for_weight_conversion) output_state_dict = save_mutated_as_lora(peft_config, path_initial_model_for_weight_conversion, output_state_dict, kwargs) safe_save_file(output_state_dict, os.path.join(output_dir, SAFETENSORS_WEIGHTS_NAME), metadata={'format': 'pt'}) elif is_main_process: if path_initial_model_for_weight_conversion is not None: peft_config.init_lora_weights = True peft_config.save_pretrained(path_initial_model_for_weight_conversion) output_state_dict = save_mutated_as_lora(peft_config, path_initial_model_for_weight_conversion, output_state_dict, kwargs) torch.save(output_state_dict, os.path.join(output_dir, WEIGHTS_NAME)) if peft_config.base_model_name_or_path is None: peft_config.base_model_name_or_path = self.base_model.__dict__.get('name_or_path', None) if peft_config.is_prompt_learning else self.base_model.model.__dict__.get('name_or_path', None) inference_mode = peft_config.inference_mode peft_config.inference_mode = True if peft_config.task_type is None: base_model_class = self._get_base_model_class(is_prompt_tuning=peft_config.is_prompt_learning) parent_library = base_model_class.__module__ auto_mapping_dict = {'base_model_class': base_model_class.__name__, 'parent_library': parent_library} else: auto_mapping_dict = None if is_main_process: if path_initial_model_for_weight_conversion is not None: peft_config.init_lora_weights = True peft_config.r *= 2 if not peft_config.use_rslora: peft_config.lora_alpha *= 2 else: peft_config.lora_alpha *= 2 ** 0.5 if peft_config.rank_pattern: peft_config.rank_pattern = {key: 2 * val for (key, val) in peft_config.rank_pattern.items()} if peft_config.alpha_pattern: peft_config.alpha_pattern = {key: 2 * val for (key, val) in peft_config.alpha_pattern.items()} peft_config.save_pretrained(output_dir, auto_mapping_dict=auto_mapping_dict) peft_config.inference_mode = inference_mode @classmethod def from_pretrained(cls, model: torch.nn.Module, model_id: Union[str, os.PathLike], adapter_name: str='default', is_trainable: bool=False, config: Optional[PeftConfig]=None, autocast_adapter_dtype: bool=True, ephemeral_gpu_offload: bool=False, **kwargs: Any) -> PeftModel: from .mapping import MODEL_TYPE_TO_PEFT_MODEL_MAPPING, PEFT_TYPE_TO_CONFIG_MAPPING if config is None: config = PEFT_TYPE_TO_CONFIG_MAPPING[PeftConfig._get_peft_type(model_id, subfolder=kwargs.get('subfolder', None), revision=kwargs.get('revision', None), cache_dir=kwargs.get('cache_dir', None), use_auth_token=kwargs.get('use_auth_token', None), token=kwargs.get('token', None))].from_pretrained(model_id, **kwargs) elif isinstance(config, PeftConfig): config.inference_mode = not is_trainable else: raise ValueError(f'The input config must be a PeftConfig, got {config.__class__}') if hasattr(config, 'runtime_config'): config.runtime_config.ephemeral_gpu_offload = ephemeral_gpu_offload elif ephemeral_gpu_offload: warnings.warn('Ephemeral GPU offloading is not supported for this model. Ignoring.') if hasattr(model, 'hf_device_map'): weight_map = dict(named_module_tensors(model, recurse=True)) disk_modules = set() index = None for (name, module) in model.named_modules(): if hasattr(module, '_hf_hook') and hasattr(module._hf_hook, 'original_devices'): if hasattr(module._hf_hook.weights_map, 'dataset'): index = module._hf_hook.weights_map.dataset.index for key in module._hf_hook.original_devices.keys(): if module._hf_hook.original_devices[key] == torch.device('meta'): disk_modules.add(str(name) + '.' + str(key)) if disk_modules and (not kwargs.get('use_safetensors', True)): raise ValueError('Disk offloading currently only supported for safetensors') if index: offload_index = {p: {'safetensors_file': index[p]['safetensors_file'], 'weight_name': p, 'dtype': str(weight_map[p].dtype).replace('torch.', '')} for p in weight_map.keys() if p in disk_modules} kwargs['offload_index'] = offload_index if getattr(model, 'hf_device_map', None) is not None and len(set(model.hf_device_map.values()).intersection({'cpu', 'disk'})) > 0: remove_hook_from_submodules(model) if config.is_prompt_learning and is_trainable: raise ValueError('Cannot set a prompt learning adapter to trainable when loading pretrained adapter.') else: config.inference_mode = not is_trainable if isinstance(getattr(model, 'base_model', None), XLoraModel): if not isinstance(config, XLoraConfig): raise TypeError(f"Expected 'XLoraConfig', got '{type(config)}' instead.") if 'adapters' in kwargs: config.adapters = kwargs['adapters'] elif not os.path.exists(model_id): s = HfFileSystem() adapter_names = [file['name'][len(model_id) + 1:] for file in s.ls(model_id) if file['type'] == 'directory'] adapter_paths = {} for adapter_name in adapter_names: adapter_paths[adapter_name] = os.path.join(model_id, model_id) config.adapters = adapter_paths config._subfolders = adapter_names elif 'adapters' not in kwargs: raise ValueError('If model_id is a local path, then `adapters` must be passed in kwargs.') if config.task_type not in MODEL_TYPE_TO_PEFT_MODEL_MAPPING.keys(): model = cls(model, config, adapter_name, autocast_adapter_dtype=autocast_adapter_dtype) else: model = MODEL_TYPE_TO_PEFT_MODEL_MAPPING[config.task_type](model, config, adapter_name, autocast_adapter_dtype=autocast_adapter_dtype) model.load_adapter(model_id, adapter_name, is_trainable=is_trainable, autocast_adapter_dtype=autocast_adapter_dtype, **kwargs) return model def _setup_prompt_encoder(self, adapter_name: str): config = self.peft_config[adapter_name] if not hasattr(self, 'prompt_encoder'): self.prompt_encoder = torch.nn.ModuleDict({}) self.prompt_tokens = {} transformer_backbone = None for (name, module) in self.base_model.named_children(): for param in module.parameters(): param.requires_grad = False if isinstance(module, PreTrainedModel): if transformer_backbone is None: transformer_backbone = module self.transformer_backbone_name = name if transformer_backbone is None: transformer_backbone = self.base_model if config.num_transformer_submodules is None: config.num_transformer_submodules = 2 if config.task_type == TaskType.SEQ_2_SEQ_LM else 1 for (named_param, value) in list(transformer_backbone.named_parameters()): deepspeed_distributed_tensor_shape = getattr(value, 'ds_shape', None) if value.shape[0] == self.base_model.config.vocab_size or (deepspeed_distributed_tensor_shape is not None and deepspeed_distributed_tensor_shape[0] == self.base_model.config.vocab_size): self.word_embeddings = transformer_backbone.get_submodule(named_param.replace('.weight', '')) break if config.peft_type == PeftType.PROMPT_TUNING: prompt_encoder = PromptEmbedding(config, self.word_embeddings) elif config.peft_type == PeftType.MULTITASK_PROMPT_TUNING: prompt_encoder = MultitaskPromptEmbedding(config, self.word_embeddings) elif config.peft_type == PeftType.P_TUNING: prompt_encoder = PromptEncoder(config) elif config.peft_type == PeftType.PREFIX_TUNING: prompt_encoder = PrefixEncoder(config) else: raise ValueError('Not supported') prompt_encoder = prompt_encoder.to(self.device) self.prompt_encoder.update(torch.nn.ModuleDict({adapter_name: prompt_encoder})) self.prompt_tokens[adapter_name] = torch.arange(config.num_virtual_tokens * config.num_transformer_submodules).long() def _prepare_model_for_gradient_checkpointing(self, model: PreTrainedModel): if not (getattr(model, 'is_loaded_in_8bit', False) or getattr(model, 'is_loaded_in_4bit', False) or getattr(model, 'is_quantized', False)): if hasattr(model, 'enable_input_require_grads'): model.enable_input_require_grads() elif hasattr(model, 'get_input_embeddings'): def make_inputs_require_grad(module, input, output): output.requires_grad_(True) model.get_input_embeddings().register_forward_hook(make_inputs_require_grad) return model def get_prompt_embedding_to_save(self, adapter_name: str) -> torch.Tensor: prompt_encoder = self.prompt_encoder[adapter_name] prompt_tokens = self.prompt_tokens[adapter_name].unsqueeze(0).expand(1, -1).to(prompt_encoder.embedding.weight.device) if self.peft_config[adapter_name].peft_type == PeftType.PREFIX_TUNING: prompt_tokens = prompt_tokens[:, :self.peft_config[adapter_name].num_virtual_tokens] if self.peft_config[adapter_name].peft_type == PeftType.MULTITASK_PROMPT_TUNING: prompt_embeddings = super(MultitaskPromptEmbedding, prompt_encoder).forward(prompt_tokens) else: prompt_embeddings = prompt_encoder(prompt_tokens) return prompt_embeddings[0].detach().cpu() def get_prompt(self, batch_size: int, task_ids: Optional[torch.Tensor]=None) -> torch.Tensor: peft_config = self.active_peft_config prompt_encoder = self.prompt_encoder[self.active_adapter] prompt_tokens = self.prompt_tokens[self.active_adapter].unsqueeze(0).expand(batch_size, -1).to(prompt_encoder.embedding.weight.device) if peft_config.peft_type == PeftType.PREFIX_TUNING: prompt_tokens = prompt_tokens[:, :peft_config.num_virtual_tokens] if peft_config.inference_mode: past_key_values = prompt_encoder.embedding.weight.repeat(batch_size, 1, 1) else: past_key_values = prompt_encoder(prompt_tokens) if self.base_model_torch_dtype is not None: past_key_values = past_key_values.to(self.base_model_torch_dtype) past_key_values = past_key_values.view(batch_size, peft_config.num_virtual_tokens, peft_config.num_layers * 2, peft_config.num_attention_heads, peft_config.token_dim // peft_config.num_attention_heads) if peft_config.num_transformer_submodules == 2: past_key_values = torch.cat([past_key_values, past_key_values], dim=2) past_key_values = past_key_values.permute([2, 0, 3, 1, 4]).split(peft_config.num_transformer_submodules * 2) if TRANSFORMERS_MODELS_TO_PREFIX_TUNING_POSTPROCESS_MAPPING.get(self.config.model_type, None) is not None: post_process_fn = TRANSFORMERS_MODELS_TO_PREFIX_TUNING_POSTPROCESS_MAPPING[self.config.model_type] past_key_values = post_process_fn(past_key_values) return past_key_values else: if peft_config.peft_type == PeftType.MULTITASK_PROMPT_TUNING: prompts = prompt_encoder(prompt_tokens, task_ids) else: if peft_config.inference_mode: prompts = prompt_encoder.embedding.weight else: prompt_tokens = prompt_tokens[:1] prompts = prompt_encoder(prompt_tokens) prompts = prompts.repeat(batch_size, 1, 1) return prompts def get_nb_trainable_parameters(self) -> tuple[int, int]: trainable_params = 0 all_param = 0 for (_, param) in self.named_parameters(): num_params = param.numel() if num_params == 0 and hasattr(param, 'ds_numel'): num_params = param.ds_numel if param.__class__.__name__ == 'Params4bit': if hasattr(param, 'element_size'): num_bytes = param.element_size() elif not hasattr(param, 'quant_storage'): num_bytes = 1 else: num_bytes = param.quant_storage.itemsize num_params = num_params * 2 * num_bytes all_param += num_params if param.requires_grad: trainable_params += num_params return (trainable_params, all_param) def print_trainable_parameters(self) -> None: (trainable_params, all_param) = self.get_nb_trainable_parameters() print(f'trainable params: {trainable_params:,d} || all params: {all_param:,d} || trainable%: {100 * trainable_params / all_param:.4f}') def __getattr__(self, name: str): try: return super().__getattr__(name) except AttributeError: if name == 'base_model': raise return getattr(self.base_model, name) @contextmanager def _enable_peft_forward_hooks(self, *args, **kwargs): if hasattr(self.base_model, '_enable_peft_forward_hooks'): with self.base_model._enable_peft_forward_hooks(*args, **kwargs): yield return else: yield return def forward(self, *args: Any, **kwargs: Any): with self._enable_peft_forward_hooks(*args, **kwargs): kwargs = {k: v for (k, v) in kwargs.items() if k not in self.special_peft_forward_args} return self.get_base_model()(*args, **kwargs) def generate(self, *args, **kwargs): with self._enable_peft_forward_hooks(*args, **kwargs): kwargs = {k: v for (k, v) in kwargs.items() if k not in self.special_peft_forward_args} return self.get_base_model().generate(*args, **kwargs) def _get_base_model_class(self, is_prompt_tuning=False): if not is_prompt_tuning: return self.base_model.model.__class__ return self.base_model.__class__ @contextmanager def disable_adapter(self): if self.peft_config[self.active_adapter].is_prompt_learning: try: old_forward = self.forward self.forward = self.base_model.forward old_prepare_inputs_for_generation = self.prepare_inputs_for_generation self.prepare_inputs_for_generation = self.base_model.prepare_inputs_for_generation yield finally: self.forward = old_forward self.prepare_inputs_for_generation = old_prepare_inputs_for_generation elif self.peft_config[self.active_adapter].is_adaption_prompt: try: self.base_model.disable_adapter_layers() yield finally: self.base_model.enable_adapter_layers() else: model_status = self.get_model_status() if model_status.enabled == 'irregular': warnings.warn('The model contains some adapter layers that are enabled and others that are disabled. This is most likely unintentional. After exiting the disable_adapter context, all adapters will be enabled') try: self.base_model.disable_adapter_layers() yield finally: if model_status.enabled is not False: self.base_model.enable_adapter_layers() def get_base_model(self) -> torch.nn.Module: return self.base_model if self.active_peft_config.is_prompt_learning or self.peft_type == PeftType.POLY else self.base_model.model def add_adapter(self, adapter_name: str, peft_config: PeftConfig) -> None: if peft_config.peft_type != self.peft_type: raise ValueError(f'Cannot combine adapters with different peft types. Found {self.peft_type} and {peft_config.peft_type}.') try: if peft_config.is_prompt_learning: self.peft_config[adapter_name] = peft_config if hasattr(self.config, 'to_dict'): dict_config = self.config.to_dict() else: dict_config = self.config peft_config = _prepare_prompt_learning_config(peft_config, dict_config) self._setup_prompt_encoder(adapter_name) elif peft_config.is_adaption_prompt: self.base_model.add_adapter(adapter_name, peft_config) else: self.peft_config[adapter_name] = peft_config self.base_model.inject_adapter(self.base_model.model, adapter_name) except Exception: if adapter_name in self.peft_config: del self.peft_config[adapter_name] raise self.set_additional_trainable_modules(peft_config, adapter_name) def set_additional_trainable_modules(self, peft_config, adapter_name): if getattr(peft_config, 'modules_to_save', None) is not None: if self.modules_to_save is None: self.modules_to_save = set(peft_config.modules_to_save) else: self.modules_to_save.update(peft_config.modules_to_save) _set_trainable(self, adapter_name) def get_layer_status(self) -> list[TunerLayerStatus]: return get_layer_status(self) def get_model_status(self) -> TunerModelStatus: return get_model_status(self) @classmethod def _split_kwargs(cls, kwargs: dict[str, Any]): _kwargs_not_in_hf_hub_download_signature = ('use_auth_token',) hf_hub_download_kwargs = {} other_kwargs = {} for (key, value) in kwargs.items(): if key in inspect.signature(hf_hub_download).parameters or key in _kwargs_not_in_hf_hub_download_signature: hf_hub_download_kwargs[key] = value else: other_kwargs[key] = value return (hf_hub_download_kwargs, other_kwargs) def _update_offload(self, offload_index: dict[str, dict[str, str]], adapters_weights: dict[str, torch.tensor]): if not offload_index: return offload_index prefix = 'base_model.model.' adapter_names = list(self.peft_config.keys()) for adapter_name in adapter_names: keys = list(offload_index.keys()) block_id = keys[0].split('.')[0] + '.' for key in keys: suffix_pos = key.rfind('.') extended_prefix = prefix + key[:suffix_pos] module = dict(self.named_modules())[extended_prefix] if isinstance(module, BaseTunerLayer): new_key = prefix + key[:suffix_pos] + '.base_layer' + key[suffix_pos:] else: new_key = prefix + key offload_index[key]['weight_name'] = new_key offload_index[new_key] = offload_index[key] del offload_index[key] files_seen = set() for new_key in list(offload_index.keys()): fname = offload_index[new_key]['safetensors_file'] new_fname_list = list(fname.split(os.sep)) for (i, name) in enumerate(new_fname_list): if '--' in name: new_fname_list[i] += '-peft' break new_fname = os.path.join(*new_fname_list) if fname in files_seen: continue safe_dict = {} with safe_open(fname, framework='pt') as f: for safe_key in f.keys(): safe_tensor = f.get_tensor(safe_key) metadata = f.metadata() suffix_pos = safe_key.rfind('.') extended_prefix = prefix + block_id + safe_key[:suffix_pos] safe_module = dict(self.named_modules())[extended_prefix] if isinstance(safe_module, BaseTunerLayer): final_key = extended_prefix + '.base_layer' + safe_key[suffix_pos:] lora_dict = {key: val for (key, val) in adapters_weights.items() if extended_prefix in key} for (lora_key, lora_val) in lora_dict.items(): divide = lora_key.rfind('.') new_key = lora_key[:divide] + f'.{adapter_name}' + lora_key[divide:] safe_dict[new_key] = lora_val else: final_key = prefix + block_id + safe_key safe_dict[final_key] = safe_tensor files_seen.add(new_fname) for key in safe_dict.keys(): offload_index[key] = {'safetensors_file': new_fname, 'weight_name': key} base_name = os.path.dirname(new_fname) if not os.path.exists(base_name): os.makedirs(base_name) safe_save_file(safe_dict, new_fname, metadata=metadata) def load_adapter(self, model_id: str, adapter_name: str, is_trainable: bool=False, torch_device: Optional[str]=None, autocast_adapter_dtype: bool=True, ephemeral_gpu_offload: bool=False, **kwargs: Any): from .mapping import PEFT_TYPE_TO_CONFIG_MAPPING (hf_hub_download_kwargs, kwargs) = self._split_kwargs(kwargs) if torch_device is None: torch_device = infer_device() if adapter_name not in self.peft_config: peft_config = PEFT_TYPE_TO_CONFIG_MAPPING[PeftConfig._get_peft_type(model_id, **hf_hub_download_kwargs)].from_pretrained(model_id, ephemeral_gpu_offload=ephemeral_gpu_offload, **hf_hub_download_kwargs) if peft_config.is_prompt_learning and is_trainable: raise ValueError('Cannot set a prompt learning adapter to trainable when loading pretrained adapter.') else: peft_config.inference_mode = not is_trainable self.add_adapter(adapter_name, peft_config) adapters_weights = load_peft_weights(model_id, device=torch_device, **hf_hub_download_kwargs) ignore_mismatched_sizes = kwargs.get('ignore_mismatched_sizes', False) load_result = set_peft_model_state_dict(self, adapters_weights, adapter_name=adapter_name, ignore_mismatched_sizes=ignore_mismatched_sizes) if getattr(self, 'hf_device_map', None) is not None and len(set(self.hf_device_map.values()).intersection({'cpu', 'disk'})) > 0 and (len(self.peft_config) == 1): device_map = kwargs.get('device_map', 'auto') max_memory = kwargs.get('max_memory', None) offload_dir = kwargs.get('offload_folder', None) offload_index = kwargs.get('offload_index', None) dispatch_model_kwargs = {} if 'offload_index' in inspect.signature(dispatch_model).parameters: dispatch_model_kwargs['offload_index'] = offload_index no_split_module_classes = self._no_split_modules if device_map != 'sequential': max_memory = get_balanced_memory(self, max_memory=max_memory, no_split_module_classes=no_split_module_classes, low_zero=device_map == 'balanced_low_0') if isinstance(device_map, str): device_map = infer_auto_device_map(self, max_memory=max_memory, no_split_module_classes=no_split_module_classes) self._update_offload(offload_index, adapters_weights) dispatch_model_kwargs['offload_index'] = offload_index dispatch_model(self, device_map=device_map, offload_dir=offload_dir, **dispatch_model_kwargs) hook = AlignDevicesHook(io_same_device=True) if self.peft_config[adapter_name].is_prompt_learning: remove_hook_from_submodules(self.prompt_encoder) add_hook_to_module(self.get_base_model(), hook) if hasattr(self.base_model, '_cast_adapter_dtype'): self.base_model._cast_adapter_dtype(adapter_name=adapter_name, autocast_adapter_dtype=autocast_adapter_dtype) if not is_trainable: self.eval() return load_result def set_adapter(self, adapter_name: str) -> None: if adapter_name not in self.peft_config: raise ValueError(f'Adapter {adapter_name} not found.') self.active_adapter = adapter_name if not self.peft_config[adapter_name].is_prompt_learning: self.base_model.set_adapter(adapter_name) _set_adapter(self, adapter_name) @property def base_model_torch_dtype(self): return getattr(self.base_model, 'dtype', None) @property def active_peft_config(self): return self.peft_config[self.active_adapter] def create_or_update_model_card(self, output_dir: str): filename = os.path.join(output_dir, 'README.md') card = ModelCard.load(filename) if os.path.exists(filename) else ModelCard.from_template(ModelCardData()) card.data['library_name'] = 'peft' model_config = BaseTuner.get_model_config(self) model_config = None if model_config == DUMMY_MODEL_CONFIG else model_config if model_config is not None and '_name_or_path' in model_config: card.data['base_model'] = model_config['_name_or_path'] lines = card.text.splitlines() quantization_config = None if hasattr(model_config, 'quantization_config'): quantization_config = self.config.quantization_config.to_dict() training_config_text = '' quantization_prefix = 'The following `bitsandbytes` quantization config was used during training:' if quantization_config is not None: training_config_text += f'\n{quantization_prefix}\n' training_config_text += '\n'.join([f'- {name}: {value}' for (name, value) in quantization_config.items()]) training_config_text += '\n' training_procedure_heading = '## Training procedure' if quantization_prefix not in lines and bool(training_config_text): if training_procedure_heading in lines: lines.insert(lines.index(training_procedure_heading) + 2, training_config_text) else: lines.append(f'{training_procedure_heading}\n{training_config_text}') framework_block_heading = '### Framework versions' if f'- PEFT {__version__}' not in lines: if framework_block_heading in lines: lines.insert(lines.index(framework_block_heading) + 2, f'- PEFT {__version__}') else: lines.append(f'{framework_block_heading}\n\n- PEFT {__version__}') card.text = '\n'.join(lines) card.save(filename) class PeftModelForSequenceClassification(PeftModel): def __init__(self, model: torch.nn.Module, peft_config: PeftConfig, adapter_name: str='default', **kwargs) -> None: super().__init__(model, peft_config, adapter_name, **kwargs) classifier_module_names = ['classifier', 'score'] if self.modules_to_save is None: self.modules_to_save = set(classifier_module_names) else: self.modules_to_save.update(classifier_module_names) if hasattr(peft_config, 'modules_to_save'): if peft_config.modules_to_save is None: peft_config.modules_to_save = classifier_module_names[:] else: peft_config.modules_to_save.extend(classifier_module_names) for (name, _) in self.base_model.named_children(): if any((module_name in name for module_name in self.modules_to_save)): self.cls_layer_name = name break _set_trainable(self, adapter_name) def add_adapter(self, adapter_name: str, peft_config: PeftConfig) -> None: if hasattr(peft_config, 'modules_to_save'): classifier_module_names = ['classifier', 'score'] if peft_config.modules_to_save is None: peft_config.modules_to_save = classifier_module_names[:] else: peft_config.modules_to_save.extend(classifier_module_names) return super().add_adapter(adapter_name, peft_config) def forward(self, input_ids=None, attention_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None, task_ids=None, **kwargs): return_dict = return_dict if return_dict is not None else self.config.use_return_dict peft_config = self.active_peft_config if not peft_config.is_prompt_learning: with self._enable_peft_forward_hooks(**kwargs): kwargs = {k: v for (k, v) in kwargs.items() if k not in self.special_peft_forward_args} if peft_config.peft_type == PeftType.POLY: kwargs['task_ids'] = task_ids return self.base_model(input_ids=input_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, labels=labels, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, **kwargs) batch_size = _get_batch_size(input_ids, inputs_embeds) if attention_mask is not None: prefix_attention_mask = torch.ones(batch_size, peft_config.num_virtual_tokens).to(attention_mask.device) attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=1) if kwargs.get('position_ids', None) is not None: warnings.warn('Position ids are not supported for parameter efficient tuning. Ignoring position ids.') kwargs['position_ids'] = None kwargs.update({'attention_mask': attention_mask, 'labels': labels, 'output_attentions': output_attentions, 'output_hidden_states': output_hidden_states, 'return_dict': return_dict}) if peft_config.peft_type == PeftType.PREFIX_TUNING: return self._prefix_tuning_forward(input_ids=input_ids, **kwargs) else: if kwargs.get('token_type_ids', None) is not None: kwargs['token_type_ids'] = torch.cat((torch.zeros(batch_size, peft_config.num_virtual_tokens).to(self.word_embeddings.weight.device), kwargs['token_type_ids']), dim=1).long() if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) prompts = self.get_prompt(batch_size=batch_size, task_ids=task_ids) prompts = prompts.to(inputs_embeds.dtype) inputs_embeds = torch.cat((prompts, inputs_embeds), dim=1) return self.base_model(inputs_embeds=inputs_embeds, **kwargs) def _prefix_tuning_forward(self, input_ids=None, attention_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None, **kwargs): batch_size = _get_batch_size(input_ids, inputs_embeds) past_key_values = self.get_prompt(batch_size) fwd_params = list(inspect.signature(self.base_model.forward).parameters.keys()) kwargs.update({'input_ids': input_ids, 'attention_mask': attention_mask, 'inputs_embeds': inputs_embeds, 'output_attentions': output_attentions, 'output_hidden_states': output_hidden_states, 'return_dict': return_dict, 'past_key_values': past_key_values}) if 'past_key_values' in fwd_params: return self.base_model(labels=labels, **kwargs) else: transformer_backbone_name = self.base_model.get_submodule(self.transformer_backbone_name) fwd_params = list(inspect.signature(transformer_backbone_name.forward).parameters.keys()) if 'past_key_values' not in fwd_params: raise ValueError('Model does not support past key values which are required for prefix tuning.') outputs = transformer_backbone_name(**kwargs) pooled_output = outputs[1] if len(outputs) > 1 else outputs[0] if 'dropout' in [name for (name, _) in list(self.base_model.named_children())]: pooled_output = self.base_model.dropout(pooled_output) logits = self.base_model.get_submodule(self.cls_layer_name)(pooled_output) loss = None if labels is not None: if self.config.problem_type is None: if self.base_model.num_labels == 1: self.config.problem_type = 'regression' elif self.base_model.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = 'single_label_classification' else: self.config.problem_type = 'multi_label_classification' if self.config.problem_type == 'regression': loss_fct = MSELoss() if self.base_model.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == 'single_label_classification': loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.base_model.num_labels), labels.view(-1)) elif self.config.problem_type == 'multi_label_classification': loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return SequenceClassifierOutput(loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions) class PeftModelForCausalLM(PeftModel): def __init__(self, model: torch.nn.Module, peft_config: PeftConfig, adapter_name: str='default', **kwargs) -> None: super().__init__(model, peft_config, adapter_name, **kwargs) self.base_model_prepare_inputs_for_generation = self.base_model.prepare_inputs_for_generation def forward(self, input_ids=None, attention_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None, task_ids=None, **kwargs): peft_config = self.active_peft_config if not peft_config.is_prompt_learning: if self.base_model.config.model_type == 'mpt': if inputs_embeds is not None: raise AssertionError('forward in MPTForCausalLM does not support inputs_embeds') return self.base_model(input_ids=input_ids, attention_mask=attention_mask, labels=labels, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, **kwargs) if peft_config.peft_type == PeftType.POLY: kwargs['task_ids'] = task_ids with self._enable_peft_forward_hooks(**kwargs): kwargs = {k: v for (k, v) in kwargs.items() if k not in self.special_peft_forward_args} return self.base_model(input_ids=input_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, labels=labels, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, **kwargs) batch_size = _get_batch_size(input_ids, inputs_embeds) if attention_mask is not None: prefix_attention_mask = torch.ones(batch_size, peft_config.num_virtual_tokens).to(attention_mask.device) attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=1) if kwargs.get('position_ids', None) is not None: warnings.warn('Position ids are not supported for parameter efficient tuning. Ignoring position ids.') kwargs['position_ids'] = None if kwargs.get('token_type_ids', None) is not None: warnings.warn('Token type ids are not supported for parameter efficient tuning. Ignoring token type ids') kwargs['token_type_ids'] = None kwargs.update({'attention_mask': attention_mask, 'labels': labels, 'output_attentions': output_attentions, 'output_hidden_states': output_hidden_states, 'return_dict': return_dict}) if peft_config.peft_type == PeftType.PREFIX_TUNING: kwargs['past_key_values'] = self.get_prompt(batch_size) return self.base_model(input_ids=input_ids, inputs_embeds=inputs_embeds, **kwargs) else: if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) if labels is not None: prefix_labels = torch.full((batch_size, peft_config.num_virtual_tokens), -100).to(labels.device) kwargs['labels'] = torch.cat((prefix_labels, labels), dim=1) prompts = self.get_prompt(batch_size=batch_size, task_ids=task_ids) prompts = prompts.to(inputs_embeds.dtype) inputs_embeds = torch.cat((prompts, inputs_embeds), dim=1) return self.base_model(inputs_embeds=inputs_embeds, **kwargs) def generate(self, *args, **kwargs): peft_config = self.active_peft_config self.base_model.prepare_inputs_for_generation = self.prepare_inputs_for_generation if hasattr(self.base_model, 'model'): self.base_model.model.generation_config = self.generation_config else: self.base_model.generation_config = self.generation_config try: if not peft_config.is_prompt_learning: with self._enable_peft_forward_hooks(*args, **kwargs): kwargs = {k: v for (k, v) in kwargs.items() if k not in self.special_peft_forward_args} outputs = self.base_model.generate(*args, **kwargs) else: outputs = self.base_model.generate(**kwargs) except: self.base_model.prepare_inputs_for_generation = self.base_model_prepare_inputs_for_generation raise else: self.base_model.prepare_inputs_for_generation = self.base_model_prepare_inputs_for_generation return outputs def prepare_inputs_for_generation(self, *args, task_ids: Optional[torch.Tensor]=None, **kwargs): peft_config = self.active_peft_config model_kwargs = self.base_model_prepare_inputs_for_generation(*args, **kwargs) uses_transformers_4_38 = packaging.version.parse(transformers.__version__) >= packaging.version.parse('4.38.0') uses_transformers_4_36 = packaging.version.parse(transformers.__version__) >= packaging.version.parse('4.36.0') transformers_new_cache_archs = ['llama', 'mistral', 'persimmon', 'phi'] if packaging.version.parse(transformers.__version__) > packaging.version.parse('4.43.3'): transformers_new_cache_archs.append('bloom') uses_cache = uses_transformers_4_38 or (uses_transformers_4_36 and self.base_model.config.model_type in transformers_new_cache_archs) if peft_config.peft_type == PeftType.POLY: model_kwargs['task_ids'] = task_ids if peft_config.is_prompt_learning: if uses_cache and model_kwargs['past_key_values'] is not None: past_key_values = model_kwargs['past_key_values'] if isinstance(past_key_values, (tuple, list)): seq_len = past_key_values[0][0].shape[-2] else: seq_len = past_key_values.get_seq_length() if seq_len >= model_kwargs['input_ids'].shape[1]: model_kwargs['input_ids'] = model_kwargs['input_ids'][:, -1:] if model_kwargs.get('attention_mask', None) is not None: size = (model_kwargs['input_ids'].shape[0], peft_config.num_virtual_tokens) prefix_attention_mask = torch.ones(size).to(model_kwargs['input_ids'].device) model_kwargs['attention_mask'] = torch.cat((prefix_attention_mask, model_kwargs['attention_mask']), dim=1) if model_kwargs.get('position_ids', None) is not None: warnings.warn('Position ids are not supported for parameter efficient tuning. Ignoring position ids.') model_kwargs['position_ids'] = None if kwargs.get('token_type_ids', None) is not None: warnings.warn('Token type ids are not supported for parameter efficient tuning. Ignoring token type ids') kwargs['token_type_ids'] = None requires_prompt_injection = model_kwargs['past_key_values'] is None or (isinstance(model_kwargs['past_key_values'], transformers.Cache) and (not model_kwargs['past_key_values'])) if requires_prompt_injection and peft_config.peft_type == PeftType.PREFIX_TUNING: new_past_key_values = self.get_prompt(batch_size=model_kwargs['input_ids'].shape[0]) model_kwargs['past_key_values'] = new_past_key_values elif requires_prompt_injection: inputs_embeds = self.word_embeddings(model_kwargs['input_ids']) prompts = self.get_prompt(batch_size=model_kwargs['input_ids'].shape[0], task_ids=task_ids) prompts = prompts.to(inputs_embeds.dtype) model_kwargs['inputs_embeds'] = torch.cat((prompts, inputs_embeds), dim=1) model_kwargs['input_ids'] = None _ = model_kwargs.pop('cache_position', None) return model_kwargs class PeftModelForSeq2SeqLM(PeftModel): def __init__(self, model: torch.nn.Module, peft_config: PeftConfig, adapter_name: str='default', **kwargs) -> None: super().__init__(model, peft_config, adapter_name, **kwargs) self.base_model_prepare_inputs_for_generation = self.base_model.prepare_inputs_for_generation self.base_model_prepare_encoder_decoder_kwargs_for_generation = self.base_model._prepare_encoder_decoder_kwargs_for_generation def forward(self, input_ids=None, attention_mask=None, inputs_embeds=None, decoder_input_ids=None, decoder_attention_mask=None, decoder_inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None, task_ids=None, **kwargs): peft_config = self.active_peft_config if not peft_config.is_prompt_learning: if peft_config.peft_type == PeftType.POLY: kwargs['task_ids'] = task_ids with self._enable_peft_forward_hooks(**kwargs): kwargs = {k: v for (k, v) in kwargs.items() if k not in self.special_peft_forward_args} return self.base_model(input_ids=input_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, decoder_inputs_embeds=decoder_inputs_embeds, labels=labels, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, **kwargs) batch_size = _get_batch_size(input_ids, inputs_embeds) if decoder_attention_mask is not None: prefix_attention_mask = torch.ones(batch_size, peft_config.num_virtual_tokens).to(decoder_attention_mask.device) if peft_config.peft_type not in [PeftType.PROMPT_TUNING, PeftType.P_TUNING]: decoder_attention_mask = torch.cat((prefix_attention_mask, decoder_attention_mask), dim=1) if kwargs.get('position_ids', None) is not None: warnings.warn('Position ids are not supported for parameter efficient tuning. Ignoring position ids.') kwargs['position_ids'] = None if kwargs.get('token_type_ids', None) is not None: warnings.warn('Token type ids are not supported for parameter efficient tuning. Ignoring token type ids') kwargs['token_type_ids'] = None kwargs.update({'attention_mask': attention_mask, 'decoder_attention_mask': decoder_attention_mask, 'labels': labels, 'output_attentions': output_attentions, 'output_hidden_states': output_hidden_states, 'return_dict': return_dict}) if peft_config.peft_type == PeftType.PREFIX_TUNING: kwargs['past_key_values'] = self.get_prompt(batch_size) return self.base_model(input_ids=input_ids, decoder_input_ids=decoder_input_ids, decoder_inputs_embeds=decoder_inputs_embeds, **kwargs) elif peft_config.peft_type in [PeftType.PROMPT_TUNING, PeftType.P_TUNING]: if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) if attention_mask is not None: prefix_attention_mask = torch.ones(batch_size, peft_config.num_virtual_tokens).to(attention_mask.device) kwargs['attention_mask'] = torch.cat((prefix_attention_mask, attention_mask), dim=1) prompts = self.get_prompt(batch_size=batch_size) prompts = prompts.to(inputs_embeds.dtype) inputs_embeds = torch.cat((prompts[:, :peft_config.num_virtual_tokens], inputs_embeds), dim=1) return self.base_model(inputs_embeds=inputs_embeds, decoder_input_ids=decoder_input_ids, decoder_inputs_embeds=decoder_inputs_embeds, **kwargs) else: if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) if decoder_inputs_embeds is None and decoder_input_ids is None: decoder_input_ids = shift_tokens_right(labels, self.config.pad_token_id, self.config.decoder_start_token_id) decoder_inputs_embeds = self.word_embeddings(decoder_input_ids) if attention_mask is not None: prefix_attention_mask = torch.ones(batch_size, peft_config.num_virtual_tokens).to(attention_mask.device) kwargs['attention_mask'] = torch.cat((prefix_attention_mask, attention_mask), dim=1) if labels is not None: if peft_config.num_transformer_submodules == 1: kwargs['labels'] = labels elif peft_config.num_transformer_submodules == 2: prefix_labels = torch.full((batch_size, peft_config.num_virtual_tokens), -100).to(labels.device) kwargs['labels'] = torch.cat((prefix_labels, labels), dim=1) prompts = self.get_prompt(batch_size=batch_size, task_ids=task_ids) prompts = prompts.to(inputs_embeds.dtype) inputs_embeds = torch.cat((prompts[:, :peft_config.num_virtual_tokens], inputs_embeds), dim=1) if peft_config.num_transformer_submodules == 1: return self.base_model(inputs_embeds=inputs_embeds, **kwargs) elif peft_config.num_transformer_submodules == 2: decoder_inputs_embeds = torch.cat((prompts[:, peft_config.num_virtual_tokens:], decoder_inputs_embeds), dim=1) return self.base_model(inputs_embeds=inputs_embeds, decoder_inputs_embeds=decoder_inputs_embeds, **kwargs) def generate(self, **kwargs): peft_config = self.active_peft_config self.base_model.prepare_inputs_for_generation = self.prepare_inputs_for_generation self.base_model._prepare_encoder_decoder_kwargs_for_generation = self._prepare_encoder_decoder_kwargs_for_generation try: if not peft_config.is_prompt_learning: with self._enable_peft_forward_hooks(**kwargs): kwargs = {k: v for (k, v) in kwargs.items() if k not in self.special_peft_forward_args} outputs = self.base_model.generate(**kwargs) else: if 'input_ids' not in kwargs: raise ValueError('input_ids must be provided for Peft model generation') if kwargs.get('position_ids', None) is not None: warnings.warn('Position ids are not supported for parameter efficient tuning. Ignoring position ids.') kwargs['position_ids'] = None if kwargs.get('token_type_ids', None) is not None: warnings.warn('Token type ids are not supported for parameter efficient tuning. Ignoring token type ids') kwargs['token_type_ids'] = None if peft_config.peft_type == PeftType.PREFIX_TUNING: outputs = self.base_model.generate(**kwargs) elif peft_config.peft_type in [PeftType.PROMPT_TUNING, PeftType.P_TUNING, PeftType.MULTITASK_PROMPT_TUNING]: kwargs = deepcopy(kwargs) if 'encoder_outputs' in kwargs: del kwargs['encoder_outputs'] warnings.warn('`encoder_outputs` should not be passed to `generate` when using prompt tuning. Ignoring it.') input_ids = kwargs.pop('input_ids') inputs_embeds = self.word_embeddings(input_ids) batch_size = inputs_embeds.shape[0] prompts = self.get_prompt(batch_size=batch_size, task_ids=kwargs.pop('task_ids', None)) prompts = prompts.to(inputs_embeds.dtype) inputs_embeds = torch.cat((prompts[:, :peft_config.num_virtual_tokens], inputs_embeds), dim=1) kwargs['inputs_embeds'] = inputs_embeds if 'attention_mask' in kwargs: prefix_attention_mask = torch.ones(batch_size, peft_config.num_virtual_tokens).to(kwargs['attention_mask'].device) kwargs['attention_mask'] = torch.cat((prefix_attention_mask, kwargs['attention_mask']), dim=1) return self.base_model.generate(**kwargs) else: raise NotImplementedError except: self.base_model.prepare_inputs_for_generation = self.base_model_prepare_inputs_for_generation self.base_model._prepare_encoder_decoder_kwargs_for_generation = self.base_model_prepare_encoder_decoder_kwargs_for_generation raise else: self.base_model.prepare_inputs_for_generation = self.base_model_prepare_inputs_for_generation self.base_model._prepare_encoder_decoder_kwargs_for_generation = self.base_model_prepare_encoder_decoder_kwargs_for_generation return outputs def prepare_inputs_for_generation(self, *args, task_ids: torch.Tensor=None, **kwargs): peft_config = self.active_peft_config model_kwargs = self.base_model_prepare_inputs_for_generation(*args, **kwargs) if peft_config.peft_type == PeftType.POLY: model_kwargs['task_ids'] = task_ids if model_kwargs['past_key_values'] is None and peft_config.peft_type == PeftType.PREFIX_TUNING: batch_size = model_kwargs['decoder_input_ids'].shape[0] past_key_values = self.get_prompt(batch_size) model_kwargs['past_key_values'] = past_key_values return model_kwargs class PeftModelForTokenClassification(PeftModel): def __init__(self, model: torch.nn.Module, peft_config: PeftConfig=None, adapter_name: str='default', **kwargs) -> None: super().__init__(model, peft_config, adapter_name, **kwargs) classifier_module_names = ['classifier', 'score'] if self.modules_to_save is None: self.modules_to_save = set(classifier_module_names) else: self.modules_to_save.update(classifier_module_names) if hasattr(peft_config, 'modules_to_save'): if peft_config.modules_to_save is None: peft_config.modules_to_save = classifier_module_names[:] else: peft_config.modules_to_save.extend(classifier_module_names) for (name, _) in self.base_model.named_children(): if any((module_name in name for module_name in self.modules_to_save)): self.cls_layer_name = name break _set_trainable(self, adapter_name) def add_adapter(self, adapter_name: str, peft_config: PeftConfig) -> None: if hasattr(peft_config, 'modules_to_save'): classifier_module_names = ['classifier', 'score'] if peft_config.modules_to_save is None: peft_config.modules_to_save = classifier_module_names[:] else: peft_config.modules_to_save.extend(classifier_module_names) return super().add_adapter(adapter_name, peft_config) def forward(self, input_ids=None, attention_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None, task_ids=None, **kwargs): peft_config = self.active_peft_config return_dict = return_dict if return_dict is not None else self.config.use_return_dict if not peft_config.is_prompt_learning: with self._enable_peft_forward_hooks(**kwargs): kwargs = {k: v for (k, v) in kwargs.items() if k not in self.special_peft_forward_args} if peft_config.peft_type == PeftType.POLY: kwargs['task_ids'] = task_ids return self.base_model(input_ids=input_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, labels=labels, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, **kwargs) batch_size = _get_batch_size(input_ids, inputs_embeds) if attention_mask is not None: prefix_attention_mask = torch.ones(batch_size, peft_config.num_virtual_tokens).to(attention_mask.device) attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=1) if kwargs.get('position_ids', None) is not None: warnings.warn('Position ids are not supported for parameter efficient tuning. Ignoring position ids.') kwargs['position_ids'] = None kwargs.update({'attention_mask': attention_mask, 'labels': labels, 'output_attentions': output_attentions, 'output_hidden_states': output_hidden_states, 'return_dict': return_dict}) if peft_config.peft_type == PeftType.PREFIX_TUNING: return self._prefix_tuning_forward(input_ids=input_ids, **kwargs) else: if kwargs.get('token_type_ids', None) is not None: kwargs['token_type_ids'] = torch.cat((torch.zeros(batch_size, peft_config.num_virtual_tokens).to(self.word_embeddings.weight.device), kwargs['token_type_ids']), dim=1).long() if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) prompts = self.get_prompt(batch_size=batch_size, task_ids=task_ids) prompts = prompts.to(inputs_embeds.dtype) inputs_embeds = torch.cat((prompts, inputs_embeds), dim=1) return self.base_model(inputs_embeds=inputs_embeds, **kwargs) def _prefix_tuning_forward(self, input_ids=None, attention_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None, **kwargs): batch_size = _get_batch_size(input_ids, inputs_embeds) past_key_values = self.get_prompt(batch_size) fwd_params = list(inspect.signature(self.base_model.forward).parameters.keys()) kwargs.update({'input_ids': input_ids, 'attention_mask': attention_mask, 'inputs_embeds': inputs_embeds, 'output_attentions': output_attentions, 'output_hidden_states': output_hidden_states, 'return_dict': return_dict, 'past_key_values': past_key_values}) if 'past_key_values' in fwd_params: return self.base_model(labels=labels, **kwargs) else: transformer_backbone_name = self.base_model.get_submodule(self.transformer_backbone_name) fwd_params = list(inspect.signature(transformer_backbone_name.forward).parameters.keys()) if 'past_key_values' not in fwd_params: raise ValueError('Model does not support past key values which are required for prefix tuning.') outputs = transformer_backbone_name(**kwargs) sequence_output = outputs[0] if 'dropout' in [name for (name, _) in list(self.base_model.named_children())]: sequence_output = self.base_model.dropout(sequence_output) logits = self.base_model.get_submodule(self.cls_layer_name)(sequence_output) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return TokenClassifierOutput(loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions) class PeftModelForQuestionAnswering(PeftModel): def __init__(self, model: torch.nn.Module, peft_config: PeftConfig, adapter_name: str='default', **kwargs) -> None: super().__init__(model, peft_config, adapter_name, **kwargs) qa_module_names = ['qa_outputs'] if self.modules_to_save is None: self.modules_to_save = set(qa_module_names) else: self.modules_to_save.update(qa_module_names) if hasattr(peft_config, 'modules_to_save'): if peft_config.modules_to_save is None: peft_config.modules_to_save = qa_module_names[:] else: peft_config.modules_to_save.extend(qa_module_names) for (name, _) in self.base_model.named_children(): if any((module_name in name for module_name in self.modules_to_save)): self.cls_layer_name = name break _set_trainable(self, adapter_name) def add_adapter(self, adapter_name: str, peft_config: PeftConfig) -> None: if hasattr(peft_config, 'modules_to_save'): qa_module_names = ['qa_outputs'] if peft_config.modules_to_save is None: peft_config.modules_to_save = qa_module_names[:] else: peft_config.modules_to_save.extend(qa_module_names) return super().add_adapter(adapter_name, peft_config) def forward(self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, inputs_embeds=None, start_positions=None, end_positions=None, output_attentions=None, output_hidden_states=None, return_dict=None, task_ids=None, **kwargs): peft_config = self.active_peft_config return_dict = return_dict if return_dict is not None else self.config.use_return_dict if not peft_config.is_prompt_learning: if peft_config.peft_type == PeftType.POLY: kwargs['task_ids'] = task_ids with self._enable_peft_forward_hooks(**kwargs): kwargs = {k: v for (k, v) in kwargs.items() if k not in self.special_peft_forward_args} return self.base_model(input_ids=input_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, start_positions=start_positions, end_positions=end_positions, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, **kwargs) batch_size = _get_batch_size(input_ids, inputs_embeds) if attention_mask is not None: prefix_attention_mask = torch.ones(batch_size, peft_config.num_virtual_tokens).to(attention_mask.device) attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=1) if kwargs.get('position_ids', None) is not None: warnings.warn('Position ids are not supported for parameter efficient tuning. Ignoring position ids.') kwargs['position_ids'] = None kwargs.update({'attention_mask': attention_mask, 'start_positions': start_positions, 'end_positions': end_positions, 'output_attentions': output_attentions, 'output_hidden_states': output_hidden_states, 'return_dict': return_dict}) if peft_config.peft_type == PeftType.PREFIX_TUNING: return self._prefix_tuning_forward(input_ids=input_ids, **kwargs) else: if kwargs.get('token_type_ids', None) is not None: kwargs['token_type_ids'] = torch.cat((torch.zeros(batch_size, peft_config.num_virtual_tokens).to(self.word_embeddings.weight.device), kwargs['token_type_ids']), dim=1).long() if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) prompts = self.get_prompt(batch_size=batch_size) prompts = prompts.to(inputs_embeds.dtype) inputs_embeds = torch.cat((prompts, inputs_embeds), dim=1) return self.base_model(inputs_embeds=inputs_embeds, **kwargs) def _prefix_tuning_forward(self, input_ids=None, attention_mask=None, inputs_embeds=None, start_positions=None, end_positions=None, output_attentions=None, output_hidden_states=None, return_dict=None, **kwargs): batch_size = _get_batch_size(input_ids, inputs_embeds) past_key_values = self.get_prompt(batch_size) fwd_params = list(inspect.signature(self.base_model.forward).parameters.keys()) kwargs.update({'input_ids': input_ids, 'attention_mask': attention_mask, 'inputs_embeds': inputs_embeds, 'output_attentions': output_attentions, 'output_hidden_states': output_hidden_states, 'return_dict': return_dict, 'past_key_values': past_key_values}) if 'past_key_values' in fwd_params: return self.base_model(start_positions=start_positions, end_positions=end_positions, **kwargs) else: transformer_backbone_name = self.base_model.get_submodule(self.transformer_backbone_name) fwd_params = list(inspect.signature(transformer_backbone_name.forward).parameters.keys()) if 'past_key_values' not in fwd_params: raise ValueError('Model does not support past key values which are required for prefix tuning.') outputs = transformer_backbone_name(**kwargs) sequence_output = outputs[0] if 'dropout' in [name for (name, _) in list(self.base_model.named_children())]: sequence_output = self.base_model.dropout(sequence_output) logits = self.base_model.get_submodule(self.cls_layer_name)(sequence_output) (start_logits, end_logits) = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1).contiguous() end_logits = end_logits.squeeze(-1).contiguous() total_loss = None if start_positions is not None and end_positions is not None: if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) ignored_index = start_logits.size(1) start_positions = start_positions.clamp(0, ignored_index) end_positions = end_positions.clamp(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if not return_dict: output = (start_logits, end_logits) + outputs[2:] return (total_loss,) + output if total_loss is not None else output return QuestionAnsweringModelOutput(loss=total_loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions) class PeftModelForFeatureExtraction(PeftModel): def __init__(self, model: torch.nn.Module, peft_config: PeftConfig, adapter_name: str='default', **kwargs): super().__init__(model, peft_config, adapter_name, **kwargs) def forward(self, input_ids=None, attention_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, task_ids=None, **kwargs): peft_config = self.active_peft_config if not peft_config.is_prompt_learning: if peft_config.peft_type == PeftType.POLY: kwargs['task_ids'] = task_ids with self._enable_peft_forward_hooks(**kwargs): kwargs = {k: v for (k, v) in kwargs.items() if k not in self.special_peft_forward_args} return self.base_model(input_ids=input_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, **kwargs) batch_size = _get_batch_size(input_ids, inputs_embeds) if attention_mask is not None: prefix_attention_mask = torch.ones(batch_size, peft_config.num_virtual_tokens).to(attention_mask.device) attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=1) if kwargs.get('position_ids', None) is not None: warnings.warn('Position ids are not supported for parameter efficient tuning. Ignoring position ids.') kwargs['position_ids'] = None if kwargs.get('token_type_ids', None) is not None: warnings.warn('Token type ids are not supported for parameter efficient tuning. Ignoring token type ids') kwargs['token_type_ids'] = None kwargs.update({'attention_mask': attention_mask, 'output_attentions': output_attentions, 'output_hidden_states': output_hidden_states, 'return_dict': return_dict}) if peft_config.peft_type == PeftType.PREFIX_TUNING: kwargs['past_key_values'] = self.get_prompt(batch_size) return self.base_model(input_ids=input_ids, **kwargs) else: if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) prompts = self.get_prompt(batch_size=batch_size) prompts = prompts.to(inputs_embeds.dtype) inputs_embeds = torch.cat((prompts, inputs_embeds), dim=1) return self.base_model(inputs_embeds=inputs_embeds, **kwargs) @dataclass class TunerLayerStatus: name: str module_type: str enabled: bool active_adapters: list[str] merged_adapters: list[str] requires_grad: dict[str, bool | Literal['irregular']] available_adapters: list[str] devices: dict[str, list[str]] def get_layer_status(model: torch.nn.Module) -> list[TunerLayerStatus]: if isinstance(model, PeftModel): base_model = model.base_model if not isinstance(base_model, BaseTuner): raise TypeError('get_layer_status() got an invalid PeftModel instance; prefix tuning and adaption prompt are not supported.') else: base_model = model layer_status: list[TunerLayerStatus] = [] for (name, module) in base_model.named_modules(): if not isinstance(module, BaseTunerLayer): continue mapping_requires_grad_list: dict[str, list[bool]] = collections.defaultdict(list) for adapter_module_name in module.adapter_layer_names: adapter_module = getattr(module, adapter_module_name) if isinstance(adapter_module, torch.nn.ModuleDict): for (key, submodule) in adapter_module.items(): for param in submodule.parameters(): mapping_requires_grad_list[key].append(param.requires_grad) elif isinstance(adapter_module, torch.nn.ParameterDict): for (key, param) in adapter_module.items(): mapping_requires_grad_list[key].append(param.requires_grad) else: pass def check_irrgular(vals: list[bool]) -> bool | Literal['irregular']: if all(vals): return True if not any(vals): return False return 'irregular' requires_grad = {key: check_irrgular(vals) for (key, vals) in mapping_requires_grad_list.items()} devices_dd = collections.defaultdict(list) for adapter_module_name in module.adapter_layer_names + module.other_param_names: adapter_module = getattr(module, adapter_module_name) if isinstance(adapter_module, torch.nn.ModuleDict): for (key, submodule) in adapter_module.items(): devices_dd[key].extend([param.device.type for param in submodule.parameters()]) elif isinstance(adapter_module, torch.nn.ParameterDict) or adapter_module.__class__.__name__ == 'BufferDict': for (key, param) in adapter_module.items(): devices_dd[key].append(param.device.type) devices = {key: sorted(set(val)) for (key, val) in devices_dd.items()} status = TunerLayerStatus(name=name, module_type=repr(module).partition('(')[0], enabled=not module.disable_adapters, active_adapters=module.active_adapters, merged_adapters=module.merged_adapters, requires_grad=requires_grad, available_adapters=sorted(module._get_available_adapters()), devices=devices) layer_status.append(status) if not layer_status: raise ValueError("No adapter layers found in the model, please ensure that it's a PEFT model or that you have PEFT adapters injected in the model.") return layer_status @dataclass class TunerModelStatus: base_model_type: str adapter_model_type: str peft_types: dict[str, str] trainable_params: int total_params: int num_adapter_layers: int enabled: bool | Literal['irregular'] active_adapters: list[str] | Literal['irregular'] merged_adapters: list[str] | Literal['irregular'] requires_grad: dict[str, bool | Literal['irregular']] available_adapters: list[str] devices: dict[str, list[str]] def get_model_status(model: torch.nn.Module) -> TunerModelStatus: if isinstance(model, PeftModel): if not isinstance(model.base_model, BaseTuner): raise TypeError('get_model_status() got an invalid PeftModel instance; prefix tuning and adaption prompt are not supported.') base_model_type = model.get_base_model().__class__.__name__ (trainable_params, total_params) = model.get_nb_trainable_parameters() base_model = model.base_model peft_types = {key: str(config.peft_type).partition('.')[-1] for (key, config) in base_model.peft_config.items()} adapter_model_type = base_model.__class__.__name__ elif isinstance(model, PreTrainedModel): base_model_type = model.__class__.__name__ (trainable_params, total_params) = PeftModel.get_nb_trainable_parameters(model) base_model = model peft_types = {} adapter_model_type = 'None' else: base_model_type = 'other' (trainable_params, total_params) = PeftModel.get_nb_trainable_parameters(model) base_model = model peft_types = {} adapter_model_type = 'None' layer_status = get_layer_status(model) num_adapter_layers = len(layer_status) enabled_set: set[bool] = {status.enabled for status in layer_status} enabled: bool | Literal['irregular'] if len(enabled_set) == 1: enabled = enabled_set.pop() else: enabled = 'irregular' available_adapters: list[str] = sorted(set().union(*(status.available_adapters for status in layer_status))) all_active_adapters: set[tuple[str, ...]] = {tuple(status.active_adapters) for status in layer_status} active_adapters: list[str] | Literal['irregular'] if not all_active_adapters: active_adapters = [] elif len(all_active_adapters) == 1: active_adapters = list(all_active_adapters.pop()) else: active_adapters = 'irregular' merged_all: set[str] = set() for status in layer_status: merged_all.update(status.merged_adapters) merged_adapters: list[str] | Literal['irregular'] = sorted(merged_all) for status in layer_status: unmerged = set(status.available_adapters) - set(status.merged_adapters) if unmerged & merged_all: merged_adapters = 'irregular' break requires_grad_all: dict[str, list[bool | Literal['irregular']]] = collections.defaultdict(list) for status in layer_status: for (key, val) in status.requires_grad.items(): requires_grad_all[key].append(val) def check_irrgular(vals: list[bool | Literal['irregular']]) -> bool | Literal['irregular']: if all((val is True for val in vals)): return True if all((val is False for val in vals)): return False return 'irregular' requires_grad = {key: check_irrgular(vals) for (key, vals) in requires_grad_all.items()} devices_dd = collections.defaultdict(list) for status in layer_status: for (key, val) in status.devices.items(): devices_dd[key].extend(val) devices = {key: sorted(set(val)) for (key, val) in devices_dd.items()} adapter_model_status = TunerModelStatus(base_model_type=base_model_type, adapter_model_type=adapter_model_type, peft_types=peft_types, trainable_params=trainable_params, total_params=total_params, num_adapter_layers=num_adapter_layers, enabled=enabled, active_adapters=active_adapters, merged_adapters=merged_adapters, requires_grad=requires_grad, available_adapters=available_adapters, devices=devices) return adapter_model_status # File: peft-main/src/peft/tuners/__init__.py from .adaption_prompt import AdaptionPromptConfig, AdaptionPromptModel from .lora import LoraConfig, LoraModel, LoftQConfig, LoraRuntimeConfig from .loha import LoHaConfig, LoHaModel from .lokr import LoKrConfig, LoKrModel from .ia3 import IA3Config, IA3Model from .adalora import AdaLoraConfig, AdaLoraModel from .boft import BOFTConfig, BOFTModel from .p_tuning import PromptEncoder, PromptEncoderConfig, PromptEncoderReparameterizationType from .prefix_tuning import PrefixEncoder, PrefixTuningConfig from .prompt_tuning import PromptEmbedding, PromptTuningConfig, PromptTuningInit from .multitask_prompt_tuning import MultitaskPromptEmbedding, MultitaskPromptTuningConfig, MultitaskPromptTuningInit from .oft import OFTConfig, OFTModel from .mixed import MixedModel from .poly import PolyConfig, PolyModel from .ln_tuning import LNTuningConfig, LNTuningModel from .vera import VeraConfig, VeraModel from .fourierft import FourierFTConfig, FourierFTModel from .xlora import XLoraConfig, XLoraModel from .hra import HRAConfig, HRAModel from .vblora import VBLoRAConfig, VBLoRAModel # File: peft-main/src/peft/tuners/_buffer_dict.py from __future__ import annotations import collections from collections import OrderedDict import torch from torch.nn import Module class BufferDict(Module): def __init__(self, buffers=None, persistent: bool=False): super().__init__() if buffers is not None: self.update(buffers) self.persistent = persistent def __getitem__(self, key): return self._buffers[key] def __setitem__(self, key, buffer): self.register_buffer(key, buffer, persistent=self.persistent) def __delitem__(self, key): del self._buffers[key] def __len__(self): return len(self._buffers) def __iter__(self): return iter(self._buffers.keys()) def __contains__(self, key): return key in self._buffers def clear(self): self._buffers.clear() def pop(self, key): v = self[key] del self[key] return v def keys(self): return self._buffers.keys() def items(self): return self._buffers.items() def values(self): return self._buffers.values() def update(self, buffers): if not isinstance(buffers, collections.abc.Iterable): raise TypeError('BuffersDict.update should be called with an iterable of key/value pairs, but got ' + type(buffers).__name__) if isinstance(buffers, collections.abc.Mapping): if isinstance(buffers, (OrderedDict, BufferDict)): for (key, buffer) in buffers.items(): self[key] = buffer else: for (key, buffer) in sorted(buffers.items()): self[key] = buffer else: for (j, p) in enumerate(buffers): if not isinstance(p, collections.abc.Iterable): raise TypeError('BufferDict update sequence element #' + str(j) + ' should be Iterable; is' + type(p).__name__) if not len(p) == 2: raise ValueError('BufferDict update sequence element #' + str(j) + ' has length ' + str(len(p)) + '; 2 is required') self[p[0]] = p[1] def extra_repr(self): child_lines = [] for (k, p) in self._buffers.items(): size_str = 'x'.join((str(size) for size in p.size())) device_str = '' if not p.is_cuda else f' (GPU {p.get_device()})' parastr = f'Buffer containing: [{torch.typename(p)} of size {size_str}{device_str}]' child_lines.append(' (' + k + '): ' + parastr) tmpstr = '\n'.join(child_lines) return tmpstr def __call__(self, input): raise RuntimeError('BufferDict should not be called.') # File: peft-main/src/peft/tuners/adalora/__init__.py from peft.import_utils import is_bnb_4bit_available, is_bnb_available from .config import AdaLoraConfig from .gptq import SVDQuantLinear from .layer import AdaLoraLayer, RankAllocator, SVDLinear from .model import AdaLoraModel __all__ = ['AdaLoraConfig', 'AdaLoraLayer', 'AdaLoraModel', 'SVDLinear', 'RankAllocator', 'SVDQuantLinear'] def __getattr__(name): if name == 'SVDLinear8bitLt' and is_bnb_available(): from .bnb import SVDLinear8bitLt return SVDLinear8bitLt if name == 'SVDLinear4bit' and is_bnb_4bit_available(): from .bnb import SVDLinear4bit return SVDLinear4bit raise AttributeError(f'module {__name__} has no attribute {name}') # File: peft-main/src/peft/tuners/adalora/bnb.py from typing import Any import torch from peft.import_utils import is_bnb_4bit_available, is_bnb_available from .layer import AdaLoraLayer if is_bnb_available(): class SVDLinear8bitLt(torch.nn.Module, AdaLoraLayer): def __init__(self, base_layer: torch.nn.Module, adapter_name: str, r: int=0, lora_alpha: int=1, lora_dropout: float=0.0, init_lora_weights: bool=True, **kwargs) -> None: super().__init__() AdaLoraLayer.__init__(self, base_layer) self.get_base_layer().weight.requires_grad = False self._active_adapter = adapter_name self.update_layer(adapter_name, r, lora_alpha, lora_dropout, init_lora_weights) def forward(self, x: torch.Tensor) -> torch.Tensor: result = self.base_layer(x) if self.disable_adapters: return result for active_adapter in self.active_adapters: if active_adapter not in self.lora_A.keys(): continue requires_conversion = not torch.is_autocast_enabled() if requires_conversion: expected_dtype = result.dtype if x.dtype != torch.float32: x = x.float() lora_A = self.lora_A[active_adapter] lora_B = self.lora_B[active_adapter] lora_E = self.lora_E[active_adapter] dropout = self.lora_dropout[active_adapter] scaling = self.scaling[active_adapter] ranknum = self.ranknum[active_adapter] + 1e-05 output = dropout(x) @ (lora_A * lora_E).T @ lora_B.T if requires_conversion: output = output.to(expected_dtype) output = output * scaling / ranknum result = result + output return result def __repr__(self) -> str: rep = super().__repr__() return 'adalora.' + rep if is_bnb_4bit_available(): class SVDLinear4bit(torch.nn.Module, AdaLoraLayer): def __init__(self, base_layer: torch.nn.Module, adapter_name: str, r: int=0, lora_alpha: int=1, lora_dropout: float=0.0, init_lora_weights: bool=True, **kwargs) -> None: super().__init__() AdaLoraLayer.__init__(self, base_layer) self.get_base_layer().weight.requires_grad = False self._active_adapter = adapter_name self.update_layer(adapter_name, r, lora_alpha, lora_dropout, init_lora_weights) def forward(self, x: torch.Tensor, *args: Any, **kwargs: Any) -> torch.Tensor: result = self.base_layer(x, *args, **kwargs) if self.disable_adapters: return result result = result.clone() for active_adapter in self.active_adapters: if active_adapter not in self.lora_A.keys(): continue lora_A = self.lora_A[active_adapter] lora_B = self.lora_B[active_adapter] lora_E = self.lora_E[active_adapter] dropout = self.lora_dropout[active_adapter] scaling = self.scaling[active_adapter] ranknum = self.ranknum[active_adapter] + 1e-05 requires_conversion = not torch.is_autocast_enabled() if requires_conversion: expected_dtype = result.dtype compute_dtype = lora_A.dtype if x.dtype != compute_dtype: x = x.to(compute_dtype) output = dropout(x) @ (lora_A * lora_E).T @ lora_B.T if requires_conversion: output = output.to(expected_dtype) output = output * scaling / ranknum result += output return result def __repr__(self) -> str: rep = super().__repr__() return 'adalora.' + rep # File: peft-main/src/peft/tuners/adalora/config.py import warnings from dataclasses import dataclass, field from typing import Optional from peft.tuners.lora import LoraConfig from peft.utils import PeftType @dataclass class AdaLoraConfig(LoraConfig): target_r: int = field(default=8, metadata={'help': 'Target Lora matrix dimension.'}) init_r: int = field(default=12, metadata={'help': 'Initial Lora matrix dimension.'}) tinit: int = field(default=0, metadata={'help': 'The steps of initial warmup.'}) tfinal: int = field(default=0, metadata={'help': 'The steps of final warmup.'}) deltaT: int = field(default=1, metadata={'help': 'Step interval of rank allocation.'}) beta1: float = field(default=0.85, metadata={'help': 'Hyperparameter of EMA.'}) beta2: float = field(default=0.85, metadata={'help': 'Hyperparameter of EMA.'}) orth_reg_weight: float = field(default=0.5, metadata={'help': 'The orthogonal regularization coefficient.'}) total_step: Optional[int] = field(default=None, metadata={'help': 'The total training steps.'}) rank_pattern: Optional[dict] = field(default=None, metadata={'help': 'The saved rank pattern.'}) def __post_init__(self): self.peft_type = PeftType.ADALORA if self.use_dora: raise ValueError(f'{self.peft_type} does not support DoRA.') if self.loftq_config: raise ValueError(f'{self.peft_type} does not support LOFTQ.') self.target_modules = set(self.target_modules) if isinstance(self.target_modules, list) else self.target_modules if isinstance(self.target_modules, str) and self.layers_to_transform is not None: raise ValueError('`layers_to_transform` cannot be used when `target_modules` is a str.') if isinstance(self.target_modules, str) and self.layers_pattern is not None: raise ValueError('`layers_pattern` cannot be used when `target_modules` is a str.') if self.r != 8: warnings.warn('Note that `r` is not used in AdaLora and will be ignored.If you intended to set the initial rank, use `init_r` instead.') # File: peft-main/src/peft/tuners/adalora/gptq.py import torch from .layer import AdaLoraLayer class SVDQuantLinear(torch.nn.Module, AdaLoraLayer): def __init__(self, base_layer, adapter_name, r: int=0, lora_alpha: int=1, lora_dropout: float=0.0, init_lora_weights: bool=True, **kwargs) -> None: super().__init__() AdaLoraLayer.__init__(self, base_layer) self.quant_linear_module = base_layer self._active_adapter = adapter_name self.update_layer(adapter_name, r, lora_alpha, lora_dropout, init_lora_weights) def forward(self, x: torch.Tensor) -> torch.Tensor: result = self.quant_linear_module(x) if self.disable_adapters: return result for active_adapter in self.active_adapters: if active_adapter not in self.lora_A.keys(): continue lora_A = self.lora_A[active_adapter] lora_B = self.lora_B[active_adapter] lora_E = self.lora_E[active_adapter] dropout = self.lora_dropout[active_adapter] scaling = self.scaling[active_adapter] ranknum = self.ranknum[active_adapter] + 1e-05 requires_conversion = not torch.is_autocast_enabled() if requires_conversion: expected_dtype = result.dtype if x.dtype != torch.float32: x = x.float() output = dropout(x) @ (lora_A * lora_E).T @ lora_B.T * scaling / ranknum if requires_conversion: output = output.to(expected_dtype) result += output return result def __repr__(self) -> str: rep = super().__repr__() return 'adalora.' + rep # File: peft-main/src/peft/tuners/adalora/layer.py import warnings from typing import Any, List, Optional import packaging import torch import transformers from torch import nn from peft.tuners.lora import LoraLayer from peft.tuners.tuners_utils import check_adapters_to_merge from peft.utils import transpose if packaging.version.parse(transformers.__version__) >= packaging.version.parse('4.33.0'): from transformers.integrations import deepspeed_config else: from transformers.deepspeed import deepspeed_config class AdaLoraLayer(LoraLayer): adapter_layer_names = ('lora_A', 'lora_B', 'lora_E', 'lora_embedding_A', 'lora_embedding_B') other_param_names = ('r', 'lora_alpha', 'scaling', 'lora_dropout', 'ranknum') def __init__(self, base_layer: nn.Module) -> None: super().__init__(base_layer) self.lora_E = nn.ParameterDict({}) self.lora_A = nn.ParameterDict({}) self.lora_B = nn.ParameterDict({}) self.ranknum = nn.ParameterDict({}) def update_layer(self, adapter_name, r, lora_alpha, lora_dropout, init_lora_weights): if r < 0: raise ValueError(f'`r` should be a positive integer or 0, but the value passed is {r}') self.r[adapter_name] = r self.lora_alpha[adapter_name] = lora_alpha if lora_dropout > 0.0: lora_dropout_layer = nn.Dropout(p=lora_dropout) else: lora_dropout_layer = nn.Identity() self.lora_dropout[adapter_name] = lora_dropout_layer self.lora_A[adapter_name] = nn.Parameter(torch.randn(r, self.in_features)) self.lora_E[adapter_name] = nn.Parameter(torch.randn(r, 1)) self.lora_B[adapter_name] = nn.Parameter(torch.randn(self.out_features, r)) self.ranknum[adapter_name] = nn.Parameter(torch.randn(1), requires_grad=False) self.ranknum[adapter_name].data.fill_(float(r)) self.ranknum[adapter_name].requires_grad = False self.scaling[adapter_name] = lora_alpha if lora_alpha > 0 else float(r) if init_lora_weights: self.reset_lora_parameters(adapter_name) self._move_adapter_to_device_of_base_layer(adapter_name) self.set_adapter(self.active_adapters) def reset_lora_parameters(self, adapter_name): if adapter_name in self.lora_A.keys(): nn.init.zeros_(self.lora_E[adapter_name]) nn.init.normal_(self.lora_A[adapter_name], mean=0.0, std=0.02) nn.init.normal_(self.lora_B[adapter_name], mean=0.0, std=0.02) class SVDLinear(nn.Module, AdaLoraLayer): def __init__(self, base_layer: nn.Module, adapter_name: str, r: int=0, lora_alpha: int=1, lora_dropout: float=0.0, fan_in_fan_out: bool=False, init_lora_weights: bool=True, **kwargs) -> None: super().__init__() AdaLoraLayer.__init__(self, base_layer) self.get_base_layer().weight.requires_grad = False self.fan_in_fan_out = fan_in_fan_out self._active_adapter = adapter_name self.update_layer(adapter_name, r, lora_alpha, lora_dropout, init_lora_weights) def merge(self, safe_merge: bool=False, adapter_names: Optional[List[str]]=None) -> None: adapter_names = check_adapters_to_merge(self, adapter_names) if not adapter_names: return for active_adapter in adapter_names: base_layer = self.get_base_layer() if active_adapter in self.lora_A.keys(): if safe_merge: orig_weights = base_layer.weight.data.clone() orig_weights += self.get_delta_weight(active_adapter) if not torch.isfinite(orig_weights).all(): raise ValueError(f'NaNs detected in the merged weights. The adapter {active_adapter} seems to be broken') base_layer.weight.data = orig_weights else: base_layer.weight.data += self.get_delta_weight(active_adapter) self.merged_adapters.append(active_adapter) def unmerge(self) -> None: if not self.merged: warnings.warn('Already unmerged. Nothing to do.') return while len(self.merged_adapters) > 0: active_adapter = self.merged_adapters.pop() if active_adapter in self.lora_A.keys(): self.get_base_layer().weight.data -= self.get_delta_weight(active_adapter) def get_delta_weight(self, adapter) -> torch.Tensor: return transpose(self.lora_B[adapter] @ (self.lora_A[adapter] * self.lora_E[adapter]), self.fan_in_fan_out) * self.scaling[adapter] / (self.ranknum[adapter] + 1e-05) def forward(self, x: torch.Tensor, *args: Any, **kwargs: Any) -> torch.Tensor: if self.disable_adapters: if self.merged: self.unmerge() result = self.base_layer(x, *args, **kwargs) elif self.merged: result = self.base_layer(x, *args, **kwargs) else: result = self.base_layer(x, *args, **kwargs) for active_adapter in self.active_adapters: if active_adapter not in self.lora_A.keys(): continue lora_A = self.lora_A[active_adapter] lora_B = self.lora_B[active_adapter] lora_E = self.lora_E[active_adapter] dropout = self.lora_dropout[active_adapter] scaling = self.scaling[active_adapter] ranknum = self.ranknum[active_adapter] + 1e-05 x = x.to(lora_A.dtype) result += dropout(x) @ (lora_A * lora_E).T @ lora_B.T * scaling / ranknum return result def __repr__(self) -> str: rep = super().__repr__() return 'adalora.' + rep class RankAllocator: def __init__(self, model, peft_config, adapter_name): self.peft_config = peft_config self.adapter_name = adapter_name self.beta1 = peft_config.beta1 self.beta2 = peft_config.beta2 assert self.beta1 > 0 and self.beta1 < 1 assert self.beta2 > 0 and self.beta2 < 1 self.reset_ipt() self._set_budget_scheduler(model) def set_total_step(self, total_step): self.peft_config.total_step = total_step def reset_ipt(self): self.ipt = {} self.exp_avg_ipt = {} self.exp_avg_unc = {} def _set_budget_scheduler(self, model): self.init_bgt = 0 self.name_set = set() for (n, p) in model.named_parameters(): if f'lora_A.{self.adapter_name}' in n: self.init_bgt += p.size(0) self.name_set.add(n.replace('lora_A', '%s')) self.name_set = sorted(self.name_set) self.target_bgt = self.peft_config.target_r * len(self.name_set) def budget_schedule(self, step: int): tinit = self.peft_config.tinit tfinal = self.peft_config.tfinal total_step = self.peft_config.total_step if step <= tinit: budget = self.init_bgt mask_ind = False elif step > total_step - tfinal: budget = self.target_bgt mask_ind = True else: mul_coeff = 1 - (step - tinit) / (total_step - tfinal - tinit) budget = int((self.init_bgt - self.target_bgt) * mul_coeff ** 3 + self.target_bgt) mask_ind = True if step % self.peft_config.deltaT == 0 else False return (budget, mask_ind) def update_ipt(self, model): for (n, p) in model.named_parameters(): if 'lora_' in n and self.adapter_name in n: if n not in self.ipt: self.ipt[n] = torch.zeros_like(p) self.exp_avg_ipt[n] = torch.zeros_like(p) self.exp_avg_unc[n] = torch.zeros_like(p) with torch.no_grad(): if deepspeed_config() is not None: import deepspeed grad = deepspeed.utils.safe_get_full_grad(p) self.ipt[n] = (p * grad).abs().detach() else: self.ipt[n] = (p * p.grad).abs().detach() self.exp_avg_ipt[n] = self.beta1 * self.exp_avg_ipt[n] + (1 - self.beta1) * self.ipt[n] self.exp_avg_unc[n] = self.beta2 * self.exp_avg_unc[n] + (1 - self.beta2) * (self.ipt[n] - self.exp_avg_ipt[n]).abs() def _element_score(self, n): return self.exp_avg_ipt[n] * self.exp_avg_unc[n] def _combine_ipt(self, ipt_E, ipt_AB): ipt_AB = ipt_AB.sum(dim=1, keepdim=False) sum_ipt = ipt_E.view(-1) + ipt_AB.view(-1) return sum_ipt def mask_to_budget(self, model, budget): value_ipt = {} vector_ipt = {} triplet_ipt = {} for (n, p) in model.named_parameters(): if f'lora_A.{self.adapter_name}' in n: entry_ipt = self._element_score(n) comb_ipt = torch.mean(entry_ipt, dim=1, keepdim=True) name_m = n.replace('lora_A', '%s') if name_m not in vector_ipt: vector_ipt[name_m] = [comb_ipt] else: vector_ipt[name_m].append(comb_ipt) if f'lora_B.{self.adapter_name}' in n: entry_ipt = self._element_score(n) comb_ipt = torch.mean(entry_ipt, dim=0, keepdim=False).view(-1, 1) name_m = n.replace('lora_B', '%s') if name_m not in vector_ipt: vector_ipt[name_m] = [comb_ipt] else: vector_ipt[name_m].append(comb_ipt) if f'lora_E.{self.adapter_name}' in n: entry_ipt = self._element_score(n) name_m = n.replace('lora_E', '%s') value_ipt[name_m] = entry_ipt all_score = [] for name_m in vector_ipt: ipt_E = value_ipt[name_m] ipt_AB = torch.cat(vector_ipt[name_m], dim=1) sum_ipt = self._combine_ipt(ipt_E, ipt_AB) name_E = name_m % 'lora_E' triplet_ipt[name_E] = sum_ipt.view(-1, 1) all_score.append(sum_ipt.view(-1)) mask_threshold = torch.kthvalue(torch.cat(all_score), k=self.init_bgt - budget)[0].item() rank_pattern = {} with torch.no_grad(): for (n, p) in model.named_parameters(): if f'lora_E.{self.adapter_name}' in n: p.masked_fill_(triplet_ipt[n] <= mask_threshold, 0.0) rank_pattern[n] = (~(triplet_ipt[n] <= mask_threshold)).view(-1).tolist() return rank_pattern def update_and_allocate(self, model, global_step, force_mask=False): if global_step < self.peft_config.total_step - self.peft_config.tfinal: self.update_ipt(model) (budget, mask_ind) = self.budget_schedule(global_step) if mask_ind or force_mask: rank_pattern = self.mask_to_budget(model, budget) else: rank_pattern = None return (budget, rank_pattern) def mask_using_rank_pattern(self, model, rank_pattern): is_adapter_name_truncated = False if self.adapter_name not in next(iter(rank_pattern.keys())): is_adapter_name_truncated = True with torch.no_grad(): for (n, p) in model.named_parameters(): if f'lora_E.{self.adapter_name}' in n: key = n if not is_adapter_name_truncated else n.replace(f'.{self.adapter_name}', '') mask = torch.Tensor(rank_pattern[key]).unsqueeze(-1).to(p.device) p.masked_fill_(~mask.bool(), 0.0) # File: peft-main/src/peft/tuners/adalora/model.py import warnings import torch from transformers.pytorch_utils import Conv1D from peft.import_utils import is_bnb_4bit_available, is_bnb_available from peft.tuners.lora import LoraConfig, LoraModel from peft.tuners.tuners_utils import BaseTunerLayer from peft.utils import TRANSFORMERS_MODELS_TO_ADALORA_TARGET_MODULES_MAPPING, _freeze_adapter, _get_submodules, get_auto_gptq_quant_linear, get_quantization_config from peft.utils.integrations import gather_params_ctx from .gptq import SVDQuantLinear from .layer import AdaLoraLayer, RankAllocator, SVDLinear class AdaLoraModel(LoraModel): def __init__(self, model, config, adapter_name): super().__init__(model, config, adapter_name) traininable_mode_counter = 0 for config in self.peft_config.values(): if not config.inference_mode: traininable_mode_counter += 1 if traininable_mode_counter > 1: raise ValueError('AdaLoraModel supports only 1 trainable adapter. When using multiple adapters, set inference_mode to True for all adapters except the one you want to train.') if self.peft_config[adapter_name].inference_mode: _freeze_adapter(self.model, adapter_name) else: self.trainable_adapter_name = adapter_name self.rankallocator = RankAllocator(self.model, self.peft_config[adapter_name], self.trainable_adapter_name) def _check_new_adapter_config(self, config: LoraConfig) -> None: super()._check_new_adapter_config(config) traininable_mode_counter = 0 for config_ in self.peft_config.values(): if not config_.inference_mode: traininable_mode_counter += 1 if traininable_mode_counter > 1: raise ValueError(f'{self.__class__.__name__} supports only 1 trainable adapter. When using multiple adapters, set inference_mode to True for all adapters except the one you want to train.') def _create_and_replace(self, lora_config, adapter_name, target, target_name, parent, current_key): kwargs = {'r': lora_config.init_r, 'lora_alpha': lora_config.lora_alpha, 'lora_dropout': lora_config.lora_dropout, 'fan_in_fan_out': lora_config.fan_in_fan_out, 'init_lora_weights': lora_config.init_lora_weights, 'loaded_in_8bit': getattr(self.model, 'is_loaded_in_8bit', False), 'loaded_in_4bit': getattr(self.model, 'is_loaded_in_4bit', False)} if (kwargs['loaded_in_8bit'] or kwargs['loaded_in_4bit']) and (not is_bnb_available()): raise ImportError('To use AdaLora with 8-bit quantization, please install the `bitsandbytes` package. You can install it with `pip install bitsandbytes`.') quantization_config = get_quantization_config(self.model, method='gptq') if quantization_config is not None: kwargs['gptq_quantization_config'] = quantization_config if not isinstance(target, AdaLoraLayer): new_module = self._create_new_module(lora_config, adapter_name, target, **kwargs) if adapter_name not in self.active_adapters: new_module.requires_grad_(False) self._replace_module(parent, target_name, new_module, target) else: target.update_layer(adapter_name, lora_config.init_r, lora_config.lora_alpha, lora_config.lora_dropout, lora_config.init_lora_weights) @staticmethod def _create_new_module(lora_config, adapter_name, target, **kwargs): if is_bnb_available(): import bitsandbytes as bnb from .bnb import SVDLinear8bitLt if is_bnb_4bit_available(): from .bnb import SVDLinear4bit gptq_quantization_config = kwargs.get('gptq_quantization_config', None) AutoGPTQQuantLinear = get_auto_gptq_quant_linear(gptq_quantization_config) loaded_in_8bit = kwargs.pop('loaded_in_8bit', False) loaded_in_4bit = kwargs.pop('loaded_in_4bit', False) if isinstance(target, BaseTunerLayer): target_base_layer = target.get_base_layer() else: target_base_layer = target if loaded_in_8bit and isinstance(target_base_layer, bnb.nn.Linear8bitLt): kwargs.update({'has_fp16_weights': target_base_layer.state.has_fp16_weights, 'memory_efficient_backward': target_base_layer.state.memory_efficient_backward, 'threshold': target_base_layer.state.threshold, 'index': target_base_layer.index}) new_module = SVDLinear8bitLt(target, adapter_name, **kwargs) elif loaded_in_4bit and is_bnb_4bit_available() and isinstance(target_base_layer, bnb.nn.Linear4bit): fourbit_kwargs = kwargs.copy() fourbit_kwargs.update({'compute_dtype': target_base_layer.compute_dtype, 'compress_statistics': target_base_layer.weight.compress_statistics, 'quant_type': target_base_layer.weight.quant_type}) new_module = SVDLinear4bit(target, adapter_name, **fourbit_kwargs) elif AutoGPTQQuantLinear is not None and isinstance(target, AutoGPTQQuantLinear): new_module = SVDQuantLinear(target, adapter_name, **kwargs) else: if isinstance(target_base_layer, torch.nn.Linear): if kwargs['fan_in_fan_out']: warnings.warn('fan_in_fan_out is set to True but the target module is `torch.nn.Linear`. Setting fan_in_fan_out to False.') kwargs['fan_in_fan_out'] = lora_config.fan_in_fan_out = False elif isinstance(target_base_layer, Conv1D): if not kwargs['fan_in_fan_out']: warnings.warn('fan_in_fan_out is set to False but the target module is `Conv1D`. Setting fan_in_fan_out to True.') kwargs['fan_in_fan_out'] = lora_config.fan_in_fan_out = True else: raise ValueError(f'Target module {target} is not supported. Currently, only `torch.nn.Linear` and `Conv1D` are supported.') new_module = SVDLinear(target, adapter_name, **kwargs) return new_module @staticmethod def _prepare_adapter_config(peft_config, model_config): if peft_config.target_modules is None: if model_config['model_type'] not in TRANSFORMERS_MODELS_TO_ADALORA_TARGET_MODULES_MAPPING: raise ValueError('Please specify `target_modules` in `peft_config`') peft_config.target_modules = TRANSFORMERS_MODELS_TO_ADALORA_TARGET_MODULES_MAPPING[model_config['model_type']] return peft_config def __getattr__(self, name: str): try: return super().__getattr__(name) except AttributeError: if name == 'model': raise return getattr(self.model, name) def forward(self, *args, **kwargs): outputs = self.model.forward(*args, **kwargs) if getattr(outputs, 'loss', None) is not None and isinstance(outputs.loss, torch.Tensor): orth_reg_weight = self.peft_config[self.trainable_adapter_name].orth_reg_weight if orth_reg_weight <= 0: raise ValueError('orth_reg_weight should be greater than 0. ') regu_loss = 0 num_param = 0 for (n, p) in self.model.named_parameters(): if ('lora_A' in n or 'lora_B' in n) and self.trainable_adapter_name in n: if p.shape == torch.Size([0]): with gather_params_ctx(p, fwd_module=self): para_cov = p @ p.T if 'lora_A' in n else p.T @ p else: para_cov = p @ p.T if 'lora_A' in n else p.T @ p I = torch.eye(*para_cov.size(), out=torch.empty_like(para_cov)) I.requires_grad = False num_param += 1 regu_loss += torch.norm(para_cov - I, p='fro') if num_param > 0: regu_loss = regu_loss / num_param else: regu_loss = 0 outputs.loss += orth_reg_weight * regu_loss return outputs def resize_modules_by_rank_pattern(self, rank_pattern, adapter_name): lora_config = self.peft_config[adapter_name] for (name, rank_idx) in rank_pattern.items(): if isinstance(rank_idx, list): rank = sum(rank_idx) elif isinstance(rank_idx, torch.Tensor): rank_idx = rank_idx.view(-1) rank = rank_idx.sum().item() else: raise ValueError('Unexpected type of rank_idx') key = '.'.join(name.split('.')[0:-2]) if adapter_name in name else '.'.join(name.split('.')[0:-1]) (_, target, _) = _get_submodules(self.model, key) lora_E_weights = target.lora_E[adapter_name][rank_idx] lora_A_weights = target.lora_A[adapter_name][rank_idx] lora_B_weights = target.lora_B[adapter_name][:, rank_idx] ranknum = target.ranknum[adapter_name] target.update_layer(adapter_name, rank, lora_config.lora_alpha, lora_config.lora_dropout, lora_config.init_lora_weights) with torch.no_grad(): if rank > 0: target.lora_E[adapter_name].copy_(lora_E_weights) target.lora_A[adapter_name].copy_(lora_A_weights) target.lora_B[adapter_name].copy_(lora_B_weights) target.ranknum[adapter_name].copy_(ranknum) def resize_state_dict_by_rank_pattern(self, rank_pattern, state_dict, adapter_name): for (name, rank_idx) in rank_pattern.items(): rank = sum(rank_idx) prefix = '.'.join(name.split('.')[0:-2]) if adapter_name in name else '.'.join(name.split('.')[0:-1]) for layer in ['lora_E', 'lora_A', 'lora_B']: key = f'base_model.model.{prefix}.{layer}.{adapter_name}' if layer != 'lora_B': state_dict[key] = state_dict[key][rank_idx] if rank != state_dict[key].shape[0] else state_dict[key] else: state_dict[key] = state_dict[key][:, rank_idx] if rank != state_dict[key].shape[1] else state_dict[key] return state_dict def update_and_allocate(self, global_step): lora_config = self.peft_config[self.trainable_adapter_name] if global_step < lora_config.total_step - lora_config.tfinal: (_, rank_pattern) = self.rankallocator.update_and_allocate(self.model, global_step) if rank_pattern: lora_config.rank_pattern = rank_pattern elif global_step == lora_config.total_step - lora_config.tfinal: (_, rank_pattern) = self.rankallocator.update_and_allocate(self.model, global_step, force_mask=True) lora_config.rank_pattern = rank_pattern self.rankallocator.reset_ipt() elif global_step > lora_config.total_step - lora_config.tfinal: self.rankallocator.mask_using_rank_pattern(self.model, lora_config.rank_pattern) else: return None def add_weighted_adapter(self, *args, **kwargs): raise TypeError(f'{self.__class__.__name__} does not support add_weighted_adapter method.') # File: peft-main/src/peft/tuners/adaption_prompt/config.py from collections import namedtuple from dataclasses import dataclass, field from peft.config import PeftConfig from peft.utils import PeftType from .utils import llama_compute_query_states @dataclass class AdaptionPromptConfig(PeftConfig): target_modules: str = field(default=None, metadata={'help': 'Name of the attention submodules to insert adaption prompts into.'}) adapter_len: int = field(default=None, metadata={'help': 'Number of adapter tokens to insert'}) adapter_layers: int = field(default=None, metadata={'help': 'Number of adapter layers (from the top)'}) def __post_init__(self): self.peft_type = PeftType.ADAPTION_PROMPT @property def is_adaption_prompt(self) -> bool: return True ModelTypeConfig = namedtuple('ModelTypeConfig', ['compute_query_states', 'target_modules', 'k_proj_layer', 'v_proj_layer', 'o_proj_layer']) TRANSFORMERS_MODEL_CONFIG = {'llama': ModelTypeConfig(compute_query_states=llama_compute_query_states, target_modules='self_attn', k_proj_layer='k_proj', v_proj_layer='v_proj', o_proj_layer='o_proj'), 'mistral': ModelTypeConfig(compute_query_states=llama_compute_query_states, target_modules='self_attn', k_proj_layer='k_proj', v_proj_layer='v_proj', o_proj_layer='o_proj')} def prepare_config(peft_config: AdaptionPromptConfig, model) -> AdaptionPromptConfig: if model.config.model_type not in TRANSFORMERS_MODEL_CONFIG: raise ValueError("Unsupported model type for adaption prompt: '{model.config.model_type}'.") model_config = TRANSFORMERS_MODEL_CONFIG[model.config.model_type] if peft_config.target_modules is None: peft_config.target_modules = model_config.target_modules return peft_config # File: peft-main/src/peft/tuners/adaption_prompt/layer.py import math import torch import torch.nn as nn import torch.nn.functional as F from .config import TRANSFORMERS_MODEL_CONFIG class AdaptedAttention(nn.Module): def __init__(self, model_type: str, adapter_len: int, model): assert not isinstance(model, AdaptedAttention) super().__init__() self.model_type = model_type self.model = model self.adapter_len = adapter_len device = next(model.parameters()).device target_dtype = model.q_proj.weight.dtype if model.q_proj.weight.dtype not in [torch.int8, torch.uint8] else torch.float32 self.adaption_prompt = nn.Parameter(torch.empty(1, adapter_len, self.model.hidden_size, device=device, dtype=target_dtype).normal_()) self.adaption_gate = nn.Parameter(torch.zeros(1, device=device, dtype=target_dtype)) def forward(self, **kwargs): if kwargs.get('output_attention', False): raise NotImplementedError('output_attention is not currently supported.') (output, _, past_key_value) = self.model(**kwargs) bsz = output.shape[0] q_len = output.shape[1] embed_dim = output.shape[2] k_proj_layer = TRANSFORMERS_MODEL_CONFIG[self.model_type].k_proj_layer v_proj_layer = TRANSFORMERS_MODEL_CONFIG[self.model_type].v_proj_layer o_proj_layer = TRANSFORMERS_MODEL_CONFIG[self.model_type].o_proj_layer factor = self.model.k_proj.in_features // self.model.k_proj.out_features if k_proj_layer == v_proj_layer: (_, key, value) = getattr(self.model, k_proj_layer)(self.adaption_prompt).split(embed_dim, dim=2) else: key = getattr(self.model, k_proj_layer)(self.adaption_prompt) value = getattr(self.model, v_proj_layer)(self.adaption_prompt) adapter_k = key.view(1, self.adapter_len, self.model.num_heads // factor, self.model.head_dim).repeat(bsz, 1, 1, 1).transpose(1, 2) adapter_v = value.view(1, self.adapter_len, self.model.num_heads // factor, self.model.head_dim).repeat(bsz, 1, 1, 1).transpose(1, 2) adapter_k = torch.repeat_interleave(adapter_k, repeats=factor, dim=1) adapter_v = torch.repeat_interleave(adapter_v, repeats=factor, dim=1) compute_query_states = TRANSFORMERS_MODEL_CONFIG[self.model_type].compute_query_states query_states = compute_query_states(model=self.model, **kwargs) previous_dtype = query_states.dtype scores = torch.matmul(query_states, adapter_k.transpose(2, 3).to(previous_dtype)) / math.sqrt(self.model.head_dim) scores = self.adaption_gate * F.softmax(scores, dim=-1, dtype=torch.float32).to(previous_dtype) adapter_output = torch.matmul(scores, adapter_v).transpose(1, 2).reshape(bsz, q_len, -1) if o_proj_layer is not None: adapter_output = getattr(self.model, o_proj_layer)(adapter_output) output = output + adapter_output output = output.to(previous_dtype) return (output, None, past_key_value) # File: peft-main/src/peft/tuners/adaption_prompt/model.py from typing import Dict, List import torch.nn as nn from peft.utils import _freeze_adapter, _get_submodules from .config import AdaptionPromptConfig, prepare_config from .layer import AdaptedAttention from .utils import is_adaption_prompt_trainable class AdaptionPromptModel(nn.Module): def __init__(self, model, configs: Dict, adapter_name: str): super().__init__() self.model = model self.peft_config: Dict[str, AdaptionPromptConfig] = {} self._parents: Dict[str, List[nn.Module]] = {} self._cached_adapters: Dict[str, List] = {} self._active_adapter = None self._enabled = True self.forward = self.model.forward self.add_adapter(adapter_name, configs[adapter_name]) self._mark_only_adaption_prompts_as_trainable(self.model) def add_adapter(self, adapter_name: str, config: AdaptionPromptConfig) -> None: config = prepare_config(config, self.model) if adapter_name in self.peft_config: raise ValueError(f"Adapter with name '{adapter_name}' already exists.") parents = [] for (name, _) in self.model.named_modules(): if name.endswith(config.target_modules): (par, _, _) = _get_submodules(self.model, name) parents.append(par) if len(parents) < config.adapter_layers: raise ValueError(f"Config specifies more adapter layers '{config.adapter_layers}' than the model has '{len(parents)}'.") parents = parents[-config.adapter_layers:] self._parents[adapter_name] = parents if self._active_adapter is not None and self._enabled: self._remove_adapted_attentions(self._active_adapter) self._active_adapter = adapter_name self.peft_config[adapter_name] = config self._create_adapted_attentions(config, parents) if not self._enabled: self._remove_adapted_attentions(self._active_adapter) if config.inference_mode: _freeze_adapter(self.model, adapter_name) def set_adapter(self, adapter_name: str) -> None: if self._active_adapter == adapter_name: return if adapter_name not in self.peft_config: raise ValueError(f"Adapter with name '{adapter_name}' does not exist.") if self._enabled: self._remove_adapted_attentions(self._active_adapter) self._set_adapted_attentions(adapter_name) self._active_adapter = adapter_name def enable_adapter_layers(self): self._enabled = True self._set_adapted_attentions(self._active_adapter) def disable_adapter_layers(self): self._enabled = False self._remove_adapted_attentions(self._active_adapter) def _create_adapted_attentions(self, config: AdaptionPromptConfig, parents: List[nn.Module]) -> None: for par in parents: attn = AdaptedAttention(model_type=self.model.config.model_type, adapter_len=config.adapter_len, model=getattr(par, config.target_modules)) setattr(par, config.target_modules, attn) def _set_adapted_attentions(self, adapter_name: str) -> None: cached = self._cached_adapters[adapter_name] del self._cached_adapters[adapter_name] config = self.peft_config[adapter_name] for (i, par) in enumerate(self._parents[adapter_name]): setattr(par, config.target_modules, cached[i]) def _remove_adapted_attentions(self, adapter_name: str) -> None: config = self.peft_config[adapter_name] adapted_attentions = [] for par in self._parents[adapter_name]: attn = getattr(par, config.target_modules) adapted_attentions.append(attn) setattr(par, config.target_modules, attn.model) self._cached_adapters[adapter_name] = adapted_attentions def _mark_only_adaption_prompts_as_trainable(self, model: nn.Module) -> None: for (n, p) in model.named_parameters(): if not is_adaption_prompt_trainable(n): p.requires_grad = False def __getattr__(self, name: str): try: return super().__getattr__(name) except AttributeError: if name == 'model': raise return getattr(self.model, name) # File: peft-main/src/peft/tuners/adaption_prompt/utils.py import inspect import torch import torch.nn as nn def llama_rotate_half(x: torch.Tensor) -> torch.Tensor: x1 = x[..., :x.shape[-1] // 2] x2 = x[..., x.shape[-1] // 2:] return torch.cat((-x2, x1), dim=-1) def llama_apply_rotary_pos_emb(q, cos, sin, position_ids): if len(cos.shape) == 4: gather_indices = position_ids[:, None, :, None] gather_indices = gather_indices.repeat(1, cos.shape[1], 1, cos.shape[3]) cos = torch.gather(cos.repeat(gather_indices.shape[0], 1, 1, 1), 2, gather_indices) sin = torch.gather(sin.repeat(gather_indices.shape[0], 1, 1, 1), 2, gather_indices) else: cos = cos[position_ids].unsqueeze(1) sin = sin[position_ids].unsqueeze(1) q_embed = q * cos + llama_rotate_half(q) * sin return q_embed def llama_compute_query_states(model: nn.Module, **kwargs) -> torch.Tensor: hidden_states = kwargs.get('hidden_states') position_ids = kwargs.get('position_ids') past_key_value = kwargs.get('past_key_value') (bsz, q_len, _) = hidden_states.size() query_states = model.q_proj(hidden_states).view(bsz, q_len, model.num_heads, model.head_dim).transpose(1, 2) factor = model.k_proj.in_features // model.k_proj.out_features value_states = model.v_proj(hidden_states).view(bsz, q_len, model.num_heads // factor, model.head_dim).transpose(1, 2) seq_len = q_len if past_key_value is not None: if isinstance(past_key_value, tuple): seq_len += past_key_value[0].shape[-2] else: seq_len += past_key_value.get_seq_length(model.layer_idx) if 'position_ids' not in inspect.signature(model.rotary_emb.forward).parameters: (cos, sin) = model.rotary_emb(value_states, seq_len=seq_len) return llama_apply_rotary_pos_emb(query_states, cos, sin, position_ids) past_seen_tokens = 0 if position_ids is None: if past_key_value is None: new_cache_positions = torch.arange(q_len, q_len + q_len, device=value_states.device) else: past_seen_tokens = past_key_value.get_usable_length(q_len, model.layer_idx) new_cache_positions = torch.arange(past_seen_tokens, past_seen_tokens + q_len, device=value_states.device) position_ids = new_cache_positions.unsqueeze(0) rotary_emb_kwargs = {'position_ids': position_ids} if 'seq_len' in inspect.signature(model.rotary_emb.forward).parameters: rotary_emb_kwargs['seq_len'] = q_len + past_seen_tokens (cos, sin) = model.rotary_emb(value_states, **rotary_emb_kwargs) if len(cos.shape) == 3: cos = cos.unsqueeze(1) sin = sin.unsqueeze(1) return query_states * cos + llama_rotate_half(query_states) * sin def is_adaption_prompt_trainable(params: str) -> bool: return params.split('.')[-1].startswith('adaption_') # File: peft-main/src/peft/tuners/boft/config.py from dataclasses import dataclass, field from typing import List, Optional, Union from peft.config import PeftConfig from peft.utils import PeftType @dataclass class BOFTConfig(PeftConfig): boft_block_size: int = field(default=4, metadata={'help': 'BOFT block size across different layers.', 'note': 'You can only specify either boft_block_size or boft_block_num, but not both simultaneously, because boft_block_size x boft_block_num = layer dimension.'}) boft_block_num: int = field(default=0, metadata={'help': 'Number of BOFT blocks per injected layer.', 'note': 'You can only specify either boft_block_size or boft_block_num, but not both simultaneously, because boft_block_size x boft_block_num = layer dimension.'}) boft_n_butterfly_factor: int = field(default=1, metadata={'help': 'Number of butterfly factors.', 'note': ('for example, boft_n_butterfly_factor=2, the effective block size of OFT becomes twice as big and the number of blocks become half.', 'note: for boft_n_butterfly_factor=1, BOFT is the same as vanilla OFT.')}) target_modules: Optional[Union[List[str], str]] = field(default=None, metadata={'help': 'List of module names or regex expression of the module names to replace with BOFT.', 'example': "For example, ['q', 'v'] or '.*decoder.*(SelfAttention|EncDecAttention).*(q|v)$' "}) boft_dropout: float = field(default=0.0, metadata={'help': 'BOFT multiplicative dropout'}) fan_in_fan_out: bool = field(default=False, metadata={'help': 'Set this to True if the layer to replace stores weight like (fan_in, fan_out)'}) bias: str = field(default='none', metadata={'help': "Bias type for BOFT. Can be 'none', 'all' or 'boft_only'"}) modules_to_save: Optional[List[str]] = field(default=None, metadata={'help': 'List of modules apart from BOFT layers to be set as trainable and saved in the final checkpoint. ', 'note': ('For example, in Sequence Classification or Token Classification tasks, ', 'the final layer `classifier/score` are randomly initialized and as such need to be trainable and saved.')}) init_weights: bool = field(default=True, metadata={'help': ("Whether to initialize the weights of the BOFT layers with their default initialization. Don't change ", "this setting, except if you know exactly what you're doing.")}) layers_to_transform: Optional[Union[List[int], int]] = field(default=None, metadata={'help': 'The layer indexes to transform, is this argument is specified, PEFT will transform only the layers indexes that are specified inside this list. If a single integer is passed, PEFT will transform only the layer at this index.'}) layers_pattern: Optional[str] = field(default=None, metadata={'help': 'The layer pattern name, used only if `layers_to_transform` is different to None and if the layer pattern is not in the common layers pattern.'}) def __post_init__(self): self.peft_type = PeftType.BOFT self.target_modules = set(self.target_modules) if isinstance(self.target_modules, list) else self.target_modules if self.boft_block_size == 0 and self.boft_block_num == 0: raise ValueError('You must specify either boft_block_size or boft_block_num.') if not (self.boft_block_size != 0) ^ (self.boft_block_num != 0): raise ValueError(f'You can only specify either boft_block_size ({self.boft_block_size}) or boft_block_num ({self.boft_block_num}), but not both simultaneously, because boft_block_size x boft_block_num != in_features.') # File: peft-main/src/peft/tuners/boft/layer.py from __future__ import annotations import math import os import warnings from contextlib import contextmanager from typing import Any, Optional, Union import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Function from peft.tuners.tuners_utils import BaseTunerLayer, check_adapters_to_merge _FBD_CUDA = None @contextmanager def patch_environment(**kwargs): existing_vars = {} for (key, value) in kwargs.items(): key = key.upper() if key in os.environ: existing_vars[key] = os.environ[key] os.environ[key] = str(value) yield for key in kwargs: key = key.upper() if key in existing_vars: os.environ[key] = existing_vars[key] else: os.environ.pop(key, None) def get_fbd_cuda(): global _FBD_CUDA if _FBD_CUDA is not None: return _FBD_CUDA from torch.utils.cpp_extension import load curr_dir = os.path.dirname(__file__) try: with patch_environment(CC='gcc', CXX='gcc'): fbd_cuda = load(name='fbd_cuda', sources=[f'{curr_dir}/fbd/fbd_cuda.cpp', f'{curr_dir}/fbd/fbd_cuda_kernel.cu'], verbose=True) except Exception as e: warnings.warn(f'Failed to load the CUDA extension: {e}, check if ninja is available.') warnings.warn('Setting boft_n_butterfly_factor to 1 to speed up the finetuning process.') fbd_cuda = None _FBD_CUDA = fbd_cuda return _FBD_CUDA class FastBlockDiag(Function): @staticmethod def forward(ctx, input): output = get_fbd_cuda().forward(input)[0] ctx.save_for_backward(input) return output @staticmethod def backward(ctx, grad_output): (input,) = ctx.saved_tensors grad_input = get_fbd_cuda().backward(grad_output, input)[0] return grad_input class MultiplicativeDropoutLayer(nn.Module): def __init__(self, p=0.0): super().__init__() self.p = p def forward(self, x): if self.training: if x.shape[-1] != x.shape[-2]: raise ValueError('The last two dimensions of input should be the same!') (N, D, H, _) = x.shape n_random = torch.randint(0, N, (1,)).item() num_to_replace = int(self.p * D) num_zeros = D - num_to_replace mask = torch.cat([torch.ones(num_to_replace, device=x.device), torch.zeros(num_zeros, device=x.device)]) mask = mask[torch.randperm(D)].view(1, D, 1, 1) full_mask = torch.zeros(N, D, 1, 1, device=x.device) full_mask[n_random] = mask eye_matrix = torch.eye(H, device=x.device).repeat(N, D, 1, 1) x = (1 - full_mask) * x + full_mask * eye_matrix return x class BOFTLayer(BaseTunerLayer): adapter_layer_names = ('boft_R', 'boft_s') other_param_names = ('boft_block_size', 'boft_block_num', 'boft_dropout') def __init__(self, base_layer: nn.Module, **kwargs) -> None: self.base_layer = base_layer self.boft_block_size = {} self.boft_block_num = {} self.boft_dropout = nn.ModuleDict({}) self.boft_R = nn.ParameterDict({}) self.boft_s = nn.ParameterDict({}) self._disable_adapters = False self.merged_adapters = [] self.kwargs = kwargs base_layer = self.get_base_layer() if isinstance(base_layer, nn.Linear): (in_features, out_features) = (base_layer.in_features, base_layer.out_features) elif isinstance(base_layer, nn.Conv2d): (in_features, out_features) = (base_layer.in_channels, base_layer.out_channels) else: raise ValueError(f'Unsupported layer type {type(base_layer)}') self.in_features = in_features self.out_features = out_features def set_scale(self, adapter, scale): if adapter not in self.scaling: return warnings.warn('Scaling operation for BOFT not supported! Automatically set scale to 1.') def scale_layer(self, scale: float) -> None: if scale == 1: return for active_adapter in self.active_adapters: if active_adapter not in self.boft_R.keys(): continue warnings.warn('Scaling operation for BOFT not supported! Automatically set scale to 1.') def unscale_layer(self, scale=None) -> None: for active_adapter in self.active_adapters: if active_adapter not in self.boft_R.keys(): continue warnings.warn('Unscaling operation for BOFT not supported! Keeping scale to 1.') def update_layer(self, adapter_name, boft_block_size, boft_block_num, boft_n_butterfly_factor, boft_dropout, init_weights): boft_n_butterfly_factor = boft_n_butterfly_factor - 1 if boft_n_butterfly_factor < 0: raise ValueError(f'You can only specify boft_n_butterfly_factor {boft_n_butterfly_factor + 1} to be a positive integer number.') if boft_dropout > 0.0: boft_dropout_layer = MultiplicativeDropoutLayer(p=boft_dropout) else: boft_dropout_layer = nn.Identity() self.boft_dropout.update(nn.ModuleDict({adapter_name: boft_dropout_layer})) if boft_block_size == 0 and boft_block_num != 0: if self.in_features % boft_block_num != 0: raise ValueError(f'in_features ({self.in_features}) must be divisible by boft_block_num ({boft_block_num})!') if boft_n_butterfly_factor != 0: if boft_n_butterfly_factor > int(math.log2(boft_block_num)): raise ValueError(f'Invalid combination of boft_n_butterfly_factor ({boft_n_butterfly_factor + 1}) and boft_block_num ({boft_block_num})!') if boft_block_num % 2 ** boft_n_butterfly_factor != 0: raise ValueError(f'boft_block_num ({boft_block_num}) must be a multiple of 2 raised to the power of boft_n_butterfly_factor ({boft_n_butterfly_factor + 1})!') boft_block_size = int(self.in_features // boft_block_num) elif boft_block_size != 0 and boft_block_num == 0: if self.in_features % boft_block_size != 0: raise ValueError(f'in_features ({self.in_features}) must be divisible by boft_block_size ({boft_block_size})!') if boft_n_butterfly_factor != 0: if self.in_features < boft_block_size * 2 ** boft_n_butterfly_factor: raise ValueError(f'Invalid combination of in_features ({self.in_features}), boft_n_butterfly_factor ({boft_n_butterfly_factor + 1}) and boft_block_size ({boft_block_size})!') if self.in_features % (boft_block_size * 2 ** boft_n_butterfly_factor) != 0: raise ValueError(f'Invalid combination of in_features ({self.in_features}), boft_n_butterfly_factor ({boft_n_butterfly_factor + 1}) and boft_block_size ({boft_block_size})!') boft_block_num = int(self.in_features // boft_block_size) else: raise ValueError(f'You can only specify either boft_block_size ({boft_block_size}) or boft_block_num ({boft_block_num}), but not both simultaneously or setting bothto be 0, because boft_block_size x boft_block_num != in_features.') if boft_n_butterfly_factor != 0: if boft_block_num % 2 != 0: raise ValueError(f'boft_block_num ({boft_block_num}) must be an even number!') if boft_block_size % 2 != 0: raise ValueError(f'boft_block_size ({boft_block_size}) must be an even number!') P = torch.empty((boft_n_butterfly_factor + 1, self.in_features, self.in_features)) for i in range(boft_n_butterfly_factor + 1): perm = self.block_butterfly_perm(self.in_features, int(boft_block_num / 2 ** i), int(boft_block_size / 2), boft_n_butterfly_factor) perm_mat = self.perm2mat(perm) P[i] = perm_mat self.register_buffer('boft_P', P, persistent=False) self.boft_R[adapter_name] = nn.Parameter(torch.zeros(boft_n_butterfly_factor + 1, boft_block_num, boft_block_size, boft_block_size)) self.boft_s[adapter_name] = nn.Parameter(torch.ones(int(self.out_features), 1)) self.reset_boft_parameters(adapter_name, init_weights) self.boft_block_size[adapter_name] = boft_block_size self.boft_block_num[adapter_name] = boft_block_num self._move_adapter_to_device_of_base_layer(adapter_name) self.set_adapter(self.active_adapters) def reset_boft_parameters(self, adapter_name, init_weights): if init_weights is False: nn.init.normal_(self.boft_R[adapter_name], mean=0.0, std=0.1) nn.init.normal_(self.boft_s[adapter_name], mean=1.0, std=0.1) return if adapter_name in self.boft_R.keys(): if init_weights is True: nn.init.zeros_(self.boft_R[adapter_name]) nn.init.ones_(self.boft_s[adapter_name]) else: raise ValueError(f'Unknown initialization init_weights={init_weights!r}') def perm2mat(self, indices): n = len(indices) perm_mat = torch.zeros((n, n)) for (i, idx) in enumerate(indices): perm_mat[i, idx] = 1 return perm_mat def block_butterfly_perm(self, n, b, r=3, n_butterfly_factor=1): if n_butterfly_factor == 0: return torch.arange(n) if b * r * 2 > n: raise ValueError('Invalid number of blocks!') block_size = int(n // b) indices = torch.arange(n) def sort_block(b, r): step = b / r initial_order = torch.arange(b) sorted_order = torch.empty(b, dtype=torch.long) evens = torch.arange(0, step, 2) odds = torch.arange(1, step, 2) sorted_seq = torch.cat((evens, odds), dim=0) for (i, pos) in enumerate(sorted_seq): sorted_order[int(i * r):int(i * r + r)] = initial_order[int(pos * r):int(pos * r + r)] return sorted_order sorted_order = sort_block(block_size, r) for i in range(0, n, block_size): block_end = i + block_size tmp_indices = indices[i:block_end] indices[i:block_end] = tmp_indices[sorted_order] return indices def cayley_batch(self, data): (b, r, c) = data.shape skew_mat = 0.5 * (data - data.transpose(1, 2)) id_mat = torch.eye(r, device=data.device).unsqueeze(0).expand(b, r, c) Q = torch.linalg.solve(id_mat + skew_mat, id_mat - skew_mat, left=False) return Q class Linear(nn.Module, BOFTLayer): def __init__(self, base_layer, adapter_name: str, boft_block_size: int=8, boft_block_num: int=0, boft_n_butterfly_factor: int=0, boft_dropout: float=0.1, fan_in_fan_out: bool=False, init_weights: Union[bool, str]=True, is_target_conv_1d_layer: bool=False, **kwargs) -> None: super().__init__() BOFTLayer.__init__(self, base_layer, **kwargs) self.fan_in_fan_out = fan_in_fan_out self._active_adapter = adapter_name if not get_fbd_cuda(): self.fbd_cuda_available = False boft_n_butterfly_factor = 1 else: self.fbd_cuda_available = True self.update_layer(adapter_name, boft_block_size, boft_block_num, boft_n_butterfly_factor, boft_dropout, init_weights) self.is_target_conv_1d_layer = is_target_conv_1d_layer def merge(self, safe_merge: bool=False, adapter_names: Optional[list[str]]=None) -> None: adapter_names = check_adapters_to_merge(self, adapter_names) if not adapter_names: return for active_adapter in adapter_names: if active_adapter in self.boft_R.keys(): base_layer = self.get_base_layer() if safe_merge: orig_weight = base_layer.weight.data.clone() (butterfly_oft_mat, boft_s) = self.get_delta_weight(active_adapter) orig_weight = torch.transpose(orig_weight, 0, 1) orig_weight = torch.mm(butterfly_oft_mat, orig_weight) orig_weight = torch.transpose(orig_weight, 0, 1) orig_weight = orig_weight * boft_s if not torch.isfinite(orig_weight).all(): raise ValueError(f'NaNs detected in the merged weights. The adapter {active_adapter} seems to be broken') self.base_layer.weight.data = orig_weight.contiguous() else: (butterfly_oft_mat, boft_s) = self.get_delta_weight(active_adapter) orig_weight = base_layer.weight.data.clone() orig_weight = torch.transpose(orig_weight, 0, 1) orig_weight = torch.mm(butterfly_oft_mat, orig_weight) orig_weight = torch.transpose(orig_weight, 0, 1) orig_weight = orig_weight * boft_s self.base_layer.weight.data = orig_weight.contiguous() self.merged_adapters.append(active_adapter) def unmerge(self) -> None: if not self.merged: warnings.warn('Already unmerged. Nothing to do.') return while len(self.merged_adapters) > 0: active_adapter = self.merged_adapters.pop() if active_adapter in self.boft_R.keys(): (butterfly_oft_mat, boft_s) = self.get_delta_weight(active_adapter) orig_weight = self.get_base_layer().weight.data.clone() orig_weight = torch.transpose(orig_weight, 0, 1) orig_weight = torch.mm(butterfly_oft_mat.t(), orig_weight) orig_weight = torch.transpose(orig_weight, 0, 1) self.get_base_layer().weight.data = orig_weight * (1 / boft_s) def get_delta_weight(self, adapter) -> tuple[torch.Tensor, torch.Tensor]: boft_R = self.boft_R[adapter] boft_s = self.boft_s[adapter] (N, D, H, _) = boft_R.shape boft_R = boft_R.view(N * D, H, H) orth_rotate_butterfly = self.cayley_batch(boft_R) orth_rotate_butterfly = orth_rotate_butterfly.view(N, D, H, H) if self.fbd_cuda_available: block_diagonal_butterfly = FastBlockDiag.apply(orth_rotate_butterfly) else: orth_rotate_butterfly = orth_rotate_butterfly.squeeze(0) block_diagonal_butterfly = torch.block_diag(*torch.unbind(orth_rotate_butterfly)) block_diagonal_butterfly = block_diagonal_butterfly.unsqueeze(0) boft_P = self.boft_P.to(block_diagonal_butterfly.device) butterfly_oft_mat_batch = torch.bmm(block_diagonal_butterfly, boft_P.permute(0, 2, 1)) butterfly_oft_mat_batch = torch.bmm(boft_P, butterfly_oft_mat_batch) butterfly_oft_mat = butterfly_oft_mat_batch[0] for i in range(1, butterfly_oft_mat_batch.shape[0]): butterfly_oft_mat = butterfly_oft_mat_batch[i] @ butterfly_oft_mat return (butterfly_oft_mat, boft_s) def forward(self, x: torch.Tensor, *args: Any, **kwargs: Any) -> torch.Tensor: previous_dtype = x.dtype if self.disable_adapters: if self.merged: self.unmerge() result = self.base_layer(x, *args, **kwargs) elif self.merged: result = self.base_layer(x, *args, **kwargs) else: boft_rotation = torch.eye(self.in_features, device=x.device, dtype=previous_dtype) boft_scale = torch.ones((int(self.out_features), 1), device=x.device, dtype=previous_dtype) for active_adapter in self.active_adapters: if active_adapter not in self.boft_R.keys(): continue boft_R = self.boft_R[active_adapter] boft_s = self.boft_s[active_adapter] dropout = self.boft_dropout[active_adapter] (N, D, H, _) = boft_R.shape boft_R = boft_R.view(N * D, H, H) orth_rotate_butterfly = self.cayley_batch(boft_R) orth_rotate_butterfly = orth_rotate_butterfly.view(N, D, H, H) orth_rotate_butterfly = dropout(orth_rotate_butterfly) if self.fbd_cuda_available: block_diagonal_butterfly = FastBlockDiag.apply(orth_rotate_butterfly) else: orth_rotate_butterfly = orth_rotate_butterfly.squeeze(0) block_diagonal_butterfly = torch.block_diag(*torch.unbind(orth_rotate_butterfly)) block_diagonal_butterfly = block_diagonal_butterfly.unsqueeze(0) boft_P = self.boft_P.to(x) block_diagonal_butterfly = block_diagonal_butterfly.to(x) butterfly_oft_mat_batch = torch.bmm(block_diagonal_butterfly, boft_P.permute(0, 2, 1)) butterfly_oft_mat_batch = torch.bmm(boft_P, butterfly_oft_mat_batch) butterfly_oft_mat = butterfly_oft_mat_batch[0] for i in range(1, butterfly_oft_mat_batch.shape[0]): butterfly_oft_mat = butterfly_oft_mat_batch[i] @ butterfly_oft_mat boft_rotation = butterfly_oft_mat @ boft_rotation boft_scale = boft_s * boft_scale x = x.to(self.get_base_layer().weight.data.dtype) orig_weight = self.get_base_layer().weight.data orig_weight = torch.transpose(orig_weight, 0, 1) boft_rotation = boft_rotation.to(previous_dtype) orig_weight = orig_weight.to(previous_dtype) rotated_weight = torch.mm(boft_rotation, orig_weight) rotated_weight = torch.transpose(rotated_weight, 0, 1) scaled_rotated_weight = rotated_weight * boft_scale scaled_rotated_weight = scaled_rotated_weight.to(previous_dtype) if self.base_layer.bias is not None: self.base_layer.bias = self.base_layer.bias.to(previous_dtype) result = F.linear(input=x, weight=scaled_rotated_weight, bias=self.base_layer.bias) result = result.to(previous_dtype) return result def __repr__(self) -> str: rep = super().__repr__() return 'boft.' + rep class Conv2d(nn.Module, BOFTLayer): def __init__(self, base_layer: nn.Module, adapter_name: str, boft_block_size: int=8, boft_block_num: int=0, boft_n_butterfly_factor: int=0, boft_dropout: float=0.1, init_weights: Union[bool, str]=True, **kwargs) -> None: super().__init__() BOFTLayer.__init__(self, base_layer) self._active_adapter = adapter_name if not get_fbd_cuda(): self.fbd_cuda_available = False boft_n_butterfly_factor = 1 else: self.fbd_cuda_available = True self.update_layer(adapter_name, boft_block_size, boft_block_num, boft_n_butterfly_factor, boft_dropout, init_weights) def update_layer(self, adapter_name, boft_block_size, boft_block_num, boft_n_butterfly_factor, boft_dropout, init_weights): boft_n_butterfly_factor = boft_n_butterfly_factor - 1 if boft_n_butterfly_factor < 0: raise ValueError(f'You can only specify boft_n_butterfly_factor {boft_n_butterfly_factor + 1} to be a positive integer number.') if boft_dropout > 0.0: boft_dropout_layer = MultiplicativeDropoutLayer(p=boft_dropout) else: boft_dropout_layer = nn.Identity() self.boft_dropout.update(nn.ModuleDict({adapter_name: boft_dropout_layer})) base_layer = self.get_base_layer() conv_filter_dim = self.in_features * base_layer.kernel_size[0] * base_layer.kernel_size[0] if not (boft_block_size != 0) ^ (boft_block_num != 0): raise ValueError(f'You can only specify either boft_block_size ({boft_block_size}) or boft_block_num ({boft_block_num}), but not both simultaneously, because boft_block_size x boft_block_num != in_features.') if boft_block_size == 0 and boft_block_num != 0: if conv_filter_dim % boft_block_num != 0: raise ValueError(f'Convolutional kernel dimension ({conv_filter_dim}) must be divisible by boft_block_num ({boft_block_num})!') if boft_n_butterfly_factor != 0: if boft_n_butterfly_factor > int(math.log2(boft_block_num)): raise ValueError(f'Invalid combination of boft_n_butterfly_factor ({boft_n_butterfly_factor + 1}) and boft_block_num ({boft_block_num})!') if boft_block_num % 2 ** boft_n_butterfly_factor != 0: raise ValueError(f'boft_block_num ({boft_block_num}) must be a multiple of 2 raised to the power of boft_n_butterfly_factor ({boft_n_butterfly_factor + 1})!') boft_block_size = int(conv_filter_dim // boft_block_num) elif boft_block_size != 0 and boft_block_num == 0: if conv_filter_dim % boft_block_size != 0: raise ValueError(f'Convolutional kernel dimension ({conv_filter_dim}) must be divisible by boft_block_size ({boft_block_size})!') if boft_n_butterfly_factor != 0: if conv_filter_dim < boft_block_size * 2 ** boft_n_butterfly_factor: raise ValueError(f'Invalid combination of convolutional kernel dimension ({conv_filter_dim}), boft_n_butterfly_factor ({boft_n_butterfly_factor + 1}) and boft_block_size ({boft_block_size})!') if conv_filter_dim % (boft_block_size * 2 ** boft_n_butterfly_factor) != 0: raise ValueError(f'Invalid combination of convolutional kernel dimension ({conv_filter_dim}), boft_n_butterfly_factor ({boft_n_butterfly_factor + 1}) and boft_block_size ({boft_block_size})!') boft_block_num = int(conv_filter_dim // boft_block_size) else: raise ValueError('Unknown error!') if boft_n_butterfly_factor != 0: if boft_block_num % 2 != 0: raise ValueError(f'boft_block_num ({boft_block_num}) must be an even number!') if boft_block_size % 2 != 0: raise ValueError(f'boft_block_size ({boft_block_size}) must be an even number!') P = torch.empty((boft_n_butterfly_factor + 1, conv_filter_dim, conv_filter_dim)) for i in range(boft_n_butterfly_factor + 1): perm = self.block_butterfly_perm(conv_filter_dim, int(boft_block_num / 2 ** i), int(boft_block_size / 2), boft_n_butterfly_factor) perm_mat = self.perm2mat(perm) P[i] = perm_mat self.register_buffer('boft_P', P, persistent=False) self.boft_R[adapter_name] = nn.Parameter(torch.zeros(boft_n_butterfly_factor + 1, boft_block_num, boft_block_size, boft_block_size)) self.boft_s[adapter_name] = nn.Parameter(torch.ones(1, int(self.out_features))) self.reset_boft_parameters(adapter_name, init_weights) self.boft_block_size[adapter_name] = boft_block_size self.boft_block_num[adapter_name] = boft_block_num self._move_adapter_to_device_of_base_layer(adapter_name) self.set_adapter(self.active_adapters) def merge(self, safe_merge: bool=False, adapter_names: Optional[list[str]]=None) -> None: adapter_names = check_adapters_to_merge(self, adapter_names) if not adapter_names: return for active_adapter in adapter_names: if active_adapter in self.boft_R.keys(): base_layer = self.get_base_layer() if safe_merge: orig_weight = base_layer.weight.data.clone() (butterfly_oft_mat, boft_s) = self.get_delta_weight(active_adapter) orig_weight = orig_weight.view(self.in_features * base_layer.kernel_size[0] * base_layer.kernel_size[0], self.out_features) orig_weight = torch.mm(butterfly_oft_mat, orig_weight) orig_weight = orig_weight * boft_s orig_weight = orig_weight.view(self.out_features, self.in_features, base_layer.kernel_size[0], base_layer.kernel_size[0]) self.base_layer.weight.data = orig_weight.contiguous() else: (butterfly_oft_mat, boft_s) = self.get_delta_weight(active_adapter) orig_weight = base_layer.weight.data.clone() orig_weight = orig_weight.view(self.in_features * base_layer.kernel_size[0] * base_layer.kernel_size[0], self.out_features) orig_weight = torch.mm(butterfly_oft_mat, orig_weight) orig_weight = orig_weight * boft_s orig_weight = orig_weight.view(self.out_features, self.in_features, base_layer.kernel_size[0], base_layer.kernel_size[0]) self.base_layer.weight.data = orig_weight.contiguous() self.merged_adapters.append(active_adapter) def unmerge(self) -> None: if not self.merged: warnings.warn('Already unmerged. Nothing to do.') return while len(self.merged_adapters) > 0: active_adapter = self.merged_adapters.pop() if active_adapter in self.boft_R.keys(): (butterfly_oft_mat, boft_s) = self.get_delta_weight(active_adapter) orig_weight = self.get_base_layer().weight.data.clone() orig_weight = orig_weight.view(self.in_features * self.get_base_layer().kernel_size[0] * self.get_base_layer().kernel_size[0], self.out_features) orig_weight = torch.mm(butterfly_oft_mat.t(), orig_weight) orig_weight = orig_weight * (1 / boft_s) orig_weight = orig_weight.view(self.out_features, self.in_features, self.get_base_layer().kernel_size[0], self.get_base_layer().kernel_size[0]) self.get_base_layer().weight.data = orig_weight def get_delta_weight(self, adapter) -> tuple[torch.Tensor, torch.Tensor]: boft_R = self.boft_R[adapter] boft_s = self.boft_s[adapter] (N, D, H, _) = boft_R.shape boft_R = boft_R.view(N * D, H, H) orth_rotate_butterfly = self.cayley_batch(boft_R) orth_rotate_butterfly = orth_rotate_butterfly.view(N, D, H, H) if self.fbd_cuda_available: block_diagonal_butterfly = FastBlockDiag.apply(orth_rotate_butterfly) else: orth_rotate_butterfly = orth_rotate_butterfly.squeeze(0) block_diagonal_butterfly = torch.block_diag(*torch.unbind(orth_rotate_butterfly)) block_diagonal_butterfly = block_diagonal_butterfly.unsqueeze(0) boft_P = self.boft_P.to(block_diagonal_butterfly.device) butterfly_oft_mat_batch = torch.bmm(block_diagonal_butterfly, boft_P.permute(0, 2, 1)) butterfly_oft_mat_batch = torch.bmm(boft_P, butterfly_oft_mat_batch) butterfly_oft_mat = butterfly_oft_mat_batch[0] for i in range(1, butterfly_oft_mat_batch.shape[0]): butterfly_oft_mat = butterfly_oft_mat_batch[i] @ butterfly_oft_mat return (butterfly_oft_mat, boft_s) def forward(self, x: torch.Tensor, *args: Any, **kwargs: Any) -> torch.Tensor: previous_dtype = x.dtype if self.disable_adapters: if self.merged: self.unmerge() result = self.base_layer(x, *args, **kwargs) elif self.merged: result = self.base_layer(x, *args, **kwargs) else: boft_rotation = torch.eye(self.in_features * self.base_layer.kernel_size[0] * self.base_layer.kernel_size[0], device=x.device, dtype=x.dtype) boft_scale = torch.ones((1, int(self.out_features)), device=x.device, dtype=x.dtype) for active_adapter in self.active_adapters: if active_adapter not in self.boft_R.keys(): continue boft_R = self.boft_R[active_adapter] boft_s = self.boft_s[active_adapter] dropout = self.boft_dropout[active_adapter] (N, D, H, _) = boft_R.shape boft_R = boft_R.view(N * D, H, H) orth_rotate_butterfly = self.cayley_batch(boft_R) orth_rotate_butterfly = orth_rotate_butterfly.view(N, D, H, H) orth_rotate_butterfly = dropout(orth_rotate_butterfly) if self.fbd_cuda_available: block_diagonal_butterfly = FastBlockDiag.apply(orth_rotate_butterfly) else: orth_rotate_butterfly = orth_rotate_butterfly.squeeze(0) block_diagonal_butterfly = torch.block_diag(*torch.unbind(orth_rotate_butterfly)) block_diagonal_butterfly = block_diagonal_butterfly.unsqueeze(0) boft_P = self.boft_P.to(x) block_diagonal_butterfly = block_diagonal_butterfly.to(x) butterfly_oft_mat_batch = torch.bmm(block_diagonal_butterfly, boft_P.permute(0, 2, 1)) butterfly_oft_mat_batch = torch.bmm(boft_P, butterfly_oft_mat_batch) butterfly_oft_mat = butterfly_oft_mat_batch[0] for i in range(1, butterfly_oft_mat_batch.shape[0]): butterfly_oft_mat = butterfly_oft_mat_batch[i] @ butterfly_oft_mat boft_rotation = butterfly_oft_mat @ boft_rotation boft_scale = boft_s * boft_scale x = x.to(self.base_layer.weight.data.dtype) orig_weight = self.base_layer.weight.data orig_weight = orig_weight.view(self.in_features * self.base_layer.kernel_size[0] * self.base_layer.kernel_size[0], self.out_features) rotated_weight = torch.mm(boft_rotation, orig_weight) scaled_rotated_weight = rotated_weight * boft_scale scaled_rotated_weight = scaled_rotated_weight.view(self.out_features, self.in_features, self.base_layer.kernel_size[0], self.base_layer.kernel_size[0]) result = F.conv2d(input=x, weight=scaled_rotated_weight, bias=self.base_layer.bias, padding=self.base_layer.padding[0], stride=self.base_layer.stride[0]) result = result.to(previous_dtype) return result def __repr__(self) -> str: rep = super().__repr__() return 'boft.' + rep # File: peft-main/src/peft/tuners/boft/model.py import warnings from dataclasses import asdict from enum import Enum from typing import List, Optional import torch from torch import nn from tqdm import tqdm from peft.tuners.tuners_utils import BaseTuner, BaseTunerLayer, check_target_module_exists, onload_layer from peft.utils import TRANSFORMERS_MODELS_TO_LORA_TARGET_MODULES_MAPPING, ModulesToSaveWrapper, _get_submodules from .config import BOFTConfig from .layer import BOFTLayer, Conv2d, Linear class BOFTModel(BaseTuner): prefix: str = 'boft_' def __init__(self, model, config, adapter_name) -> None: super().__init__(model, config, adapter_name) def _check_new_adapter_config(self, config: BOFTConfig) -> None: if len(self.peft_config) > 1 and config.bias != 'none': raise ValueError(f"{self.__class__.__name__} supports only 1 adapter with bias. When using multiple adapters, set bias to 'none' for all adapters.") @staticmethod def _check_target_module_exists(boft_config, key): return check_target_module_exists(boft_config, key) def _create_and_replace(self, boft_config, adapter_name, target, target_name, parent, current_key, **optional_kwargs): if current_key is None: raise ValueError("Current Key shouldn't be `None`") bias = hasattr(target, 'bias') and target.bias is not None kwargs = {'boft_block_size': boft_config.boft_block_size, 'boft_block_num': boft_config.boft_block_num, 'boft_n_butterfly_factor': boft_config.boft_n_butterfly_factor, 'boft_dropout': boft_config.boft_dropout, 'fan_in_fan_out': boft_config.fan_in_fan_out, 'init_weights': boft_config.init_weights} kwargs['bias'] = bias if not isinstance(target, BOFTLayer): new_module = self._create_new_module(boft_config, adapter_name, target, **kwargs) if adapter_name not in self.active_adapters: new_module.requires_grad_(False) self._replace_module(parent, target_name, new_module, target) else: target.update_layer(adapter_name, boft_block_size=boft_config.boft_block_size, boft_block_num=boft_config.boft_block_num, boft_n_butterfly_factor=boft_config.boft_n_butterfly_factor, boft_dropout=boft_config.boft_dropout, init_weights=boft_config.init_weights) def _replace_module(self, parent, child_name, new_module, child): setattr(parent, child_name, new_module) if hasattr(child, 'base_layer'): child = child.base_layer if not hasattr(new_module, 'base_layer'): new_module.weight = child.weight if hasattr(child, 'bias'): new_module.bias = child.bias if getattr(child, 'state', None) is not None: if hasattr(new_module, 'base_layer'): new_module.base_layer.state = child.state else: new_module.state = child.state new_module.to(child.weight.device) for (name, module) in new_module.named_modules(): if self.prefix in name: module.to(child.weight.device) def _mark_only_adapters_as_trainable(self, model: nn.Module) -> None: for (n, p) in model.named_parameters(): if self.prefix not in n: p.requires_grad = False for active_adapter in self.active_adapters: bias = self.peft_config[active_adapter].bias if bias == 'none': continue if bias == 'all': for (n, p) in model.named_parameters(): if 'bias' in n: p.requires_grad = True elif bias == 'boft_only': for (name, m) in model.named_modules(): if isinstance(m, BOFTLayer) and hasattr(m, 'bias') and (m.bias is not None): m.bias.requires_grad = True else: raise NotImplementedError(f'Requested bias: {bias}, is not implemented.') @staticmethod def _create_new_module(boft_config, adapter_name, target, **kwargs): if isinstance(target, BaseTunerLayer): target_base_layer = target.get_base_layer() else: target_base_layer = target if isinstance(target_base_layer, torch.nn.Linear): if kwargs['fan_in_fan_out']: warnings.warn('fan_in_fan_out is set to True but the target module is `torch.nn.Linear`. Setting fan_in_fan_out to False.') kwargs['fan_in_fan_out'] = boft_config.fan_in_fan_out = False new_module = Linear(target, adapter_name, **kwargs) elif isinstance(target_base_layer, torch.nn.Conv2d): new_module = Conv2d(target, adapter_name, **kwargs) else: raise ValueError(f'Target module {target} is not supported. Currently, only `torch.nn.Linear` and `torch.nn.Conv2d` are supported.') return new_module def __getattr__(self, name: str): try: return super().__getattr__(name) except AttributeError: if name == 'model': raise return getattr(self.model, name) def get_peft_config_as_dict(self, inference: bool=False): config_dict = {} for (key, value) in self.peft_config.items(): config = {k: v.value if isinstance(v, Enum) else v for (k, v) in asdict(value).items()} if inference: config['inference_mode'] = True config_dict[key] = config return config def _set_adapter_layers(self, enabled=True): for module in self.model.modules(): if isinstance(module, (BaseTunerLayer, ModulesToSaveWrapper)): module.enable_adapters(enabled) def enable_adapter_layers(self): self._set_adapter_layers(enabled=True) def disable_adapter_layers(self): for active_adapter in self.active_adapters: val = self.peft_config[active_adapter].bias if val != 'none': msg = f"Careful, disabling adapter layers with bias configured to be '{val}' does not produce the same output as the the base model would without adaption." warnings.warn(msg) self._set_adapter_layers(enabled=False) def set_adapter(self, adapter_name): for module in self.model.modules(): if isinstance(module, BOFTLayer): if module.merged: warnings.warn('Adapter cannot be set when the model is merged. Unmerging the model first.') module.unmerge() module.set_adapter(adapter_name) self.active_adapter = adapter_name @staticmethod def _prepare_adapter_config(peft_config, model_config): if peft_config.target_modules is None: if model_config['model_type'] not in TRANSFORMERS_MODELS_TO_LORA_TARGET_MODULES_MAPPING: raise ValueError('Please specify `target_modules` in `peft_config`') peft_config.target_modules = set(TRANSFORMERS_MODELS_TO_LORA_TARGET_MODULES_MAPPING[model_config['model_type']]) return peft_config def _unload_and_optionally_merge(self, merge=True, progressbar: bool=False, safe_merge: bool=False, adapter_names: Optional[List[str]]=None): if merge: self._check_merge_allowed() key_list = [key for (key, _) in self.model.named_modules() if self.prefix not in key] desc = 'Unloading ' + ('and merging ' if merge else '') + 'model' for key in tqdm(key_list, disable=not progressbar, desc=desc): try: (parent, target, target_name) = _get_submodules(self.model, key) except AttributeError: continue with onload_layer(target): if hasattr(target, 'base_layer'): if merge: target.merge(safe_merge=safe_merge, adapter_names=adapter_names) self._replace_module(parent, target_name, target.get_base_layer(), target) elif isinstance(target, ModulesToSaveWrapper): new_module = target.modules_to_save[target.active_adapter] if hasattr(new_module, 'base_layer'): if merge: new_module.merge(safe_merge=safe_merge, adapter_names=adapter_names) new_module = new_module.get_base_layer() setattr(parent, target_name, new_module) return self.model def delete_adapter(self, adapter_name: str) -> None: if adapter_name not in list(self.peft_config.keys()): raise ValueError(f'Adapter {adapter_name} does not exist') del self.peft_config[adapter_name] key_list = [key for (key, _) in self.model.named_modules() if self.prefix not in key] new_adapter = None for key in key_list: (_, target, _) = _get_submodules(self.model, key) if isinstance(target, BOFTLayer): target.delete_adapter(adapter_name) if new_adapter is None: new_adapter = target.active_adapters[:] self.active_adapter = new_adapter or [] def merge_and_unload(self, progressbar: bool=False, safe_merge: bool=False, adapter_names: Optional[List[str]]=None) -> torch.nn.Module: return self._unload_and_optionally_merge(progressbar=progressbar, safe_merge=safe_merge, adapter_names=adapter_names) def unload(self) -> torch.nn.Module: return self._unload_and_optionally_merge(merge=False) # File: peft-main/src/peft/tuners/fourierft/config.py from __future__ import annotations from dataclasses import dataclass, field from typing import Optional, Union from peft.config import PeftConfig from peft.utils import PeftType @dataclass class FourierFTConfig(PeftConfig): n_frequency: int = field(default=1000, metadata={'help': "Num of learnable frequencies for the Discrete Fourier Transform. 'n_frequency' is an integer that isgreater than 0 and less than or equal to d^2 (assuming the weight W has dimensions of d by d).Additionally, it is the number of trainable parameters required to update each delta W weight.'n_frequency' will affect the performance and efficiency for PEFT. Specifically, it has little impact ontraining speed, but higher values of it (typically) result in larger GPU memory costs and better accuracy.With the same `target_modules`, the number of parameters of LoRA is (2*d*r/n_frequency) times that of FourierFT.The following examples of settings regarding 'n_frequency' can be used as reference for users. For NLUtasks with the RoBERTa-large model, adopting 'n_frequency': 1000 can almost achieve similar results as'r': 8 in LoRA. At this time, the number of parameters of LoRA is about 16 times that of FourierFT.For image classification tasks with Vit-large models, adopting 'n_frequency': 3000 can almost achievesimilar results as 'r': 16 in LoRA, where the number of parameters of LoRA is about 11 times that of FourierFT."}) scaling: float = field(default=150.0, metadata={'help': "The scaling value for the delta W matrix. This is an important hyperparameter used for scaling, similar to the'lora_alpha' parameter in the LoRA method. 'scaling' can be determined during the hyperparameter search process.However, if users want to skip this process, one can refer to the settings in the following scenarios.This parameter can be set to 100.0 or 150.0 for both RoBERTa-base and RoBERTa-large models across all NLU (GLUE) tasks.This parameter can be set to 300.0 for both LLaMA family models for all instruction tuning.This parameter can be set to 300.0 for both ViT-base and ViT-large models across all image classification tasks."}) random_loc_seed: Optional[int] = field(default=777, metadata={'help': 'Seed for the random location of the frequencies.'}) fan_in_fan_out: bool = field(default=False, metadata={'help': 'Set this to True if the layer to replace stores weight like (fan_in, fan_out)'}) target_modules: Optional[Union[list[str], str]] = field(default=None, metadata={'help': "List of module names or regex expression of the module names to replace with FourierFT.For example, ['q', 'v'] or '.*decoder.*(SelfAttention|EncDecAttention).*(q|v)$'. Only linear layers are supported."}) bias: str = field(default='none', metadata={'help': "Bias type for FourierFT. Can be 'none', 'all' or 'fourier_only'."}) modules_to_save: Optional[list[str]] = field(default=None, metadata={'help': 'List of modules apart from FourierFT layers to be set as trainable and saved in the final checkpoint. For example, in Sequence Classification or Token Classification tasks, the final layer `classifier/score` are randomly initialized and as such need to be trainable and saved.'}) layers_to_transform: Optional[Union[list[int], int]] = field(default=None, metadata={'help': 'The layer indexes to transform, is this argument is specified, PEFT will transform only the layers indexes that are specified inside this list. If a single integer is passed, PEFT will transform only the layer at this index.'}) layers_pattern: Optional[str] = field(default=None, metadata={'help': 'The layer pattern name, used only if `layers_to_transform` is different to None and if the layer pattern is not in the common layers pattern.'}) n_frequency_pattern: Optional[dict] = field(default_factory=dict, metadata={'help': 'The mapping from layer names or regexp expression to n_frequency which are different from the default specified.For example, `{model.decoder.layers.0.encoder_attn.k_proj: 500`}.'}) init_weights: bool = field(default=False, metadata={'help': 'The initialization of the Fourier weights. Set this to False if the spectrum should be initialized to a standard normal distribution.Set this to True if the spectrum should be initialized to zeros.'}) def __post_init__(self): self.peft_type = PeftType.FOURIERFT self.target_modules = set(self.target_modules) if isinstance(self.target_modules, list) else self.target_modules if isinstance(self.target_modules, str) and self.layers_to_transform is not None: raise ValueError('`layers_to_transform` cannot be used when `target_modules` is a str.') if isinstance(self.target_modules, str) and self.layers_pattern is not None: raise ValueError('`layers_pattern` cannot be used when `target_modules` is a str.') # File: peft-main/src/peft/tuners/fourierft/layer.py import warnings from typing import Any, List, Optional, Union import torch import torch.nn as nn import torch.nn.functional as F from transformers.pytorch_utils import Conv1D from peft.tuners.tuners_utils import BaseTunerLayer, check_adapters_to_merge class FourierFTLayer(BaseTunerLayer): adapter_layer_names = ('fourierft_spectrum',) other_param_names = ('fourierft_n_frequency', 'fourierft_scaling', 'fourierft_random_loc_seed') def __init__(self, base_layer: nn.Module, **kwargs) -> None: self.base_layer = base_layer self.fourierft_n_frequency = {} self.fourierft_scaling = {} self.fourierft_spectrum = nn.ParameterDict({}) self.indices = {} self.fourierft_random_loc_seed = {} self._disable_adapters = False self.merged_adapters = [] self.kwargs = kwargs base_layer = self.get_base_layer() if isinstance(base_layer, nn.Linear): (self.in_features, self.out_features) = (base_layer.in_features, base_layer.out_features) elif isinstance(base_layer, Conv1D): (self.in_features, self.out_features) = base_layer.weight.ds_shape if hasattr(base_layer.weight, 'ds_shape') else base_layer.weight.shape else: raise ValueError(f'Unsupported layer type {type(base_layer)}') def update_layer(self, adapter_name, n_frequency, scaling, init_weights, random_loc_seed): if n_frequency <= 0: raise ValueError(f'`n_frequency` should be a positive integer value but the value passed is {n_frequency}') if n_frequency > self.in_features * self.out_features: raise ValueError(f'`n_frequency` should be less than or equal to the product of the input and output dimensions but the value passed is {n_frequency} and the product is {self.in_features * self.out_features}') self.fourierft_n_frequency[adapter_name] = n_frequency self.fourierft_random_loc_seed[adapter_name] = random_loc_seed self.indices[adapter_name] = torch.randperm(self.out_features * self.in_features, generator=torch.Generator().manual_seed(self.fourierft_random_loc_seed[adapter_name]))[:n_frequency] self.indices[adapter_name] = torch.stack([self.indices[adapter_name] // self.in_features, self.indices[adapter_name] % self.in_features], dim=0) self.fourierft_scaling[adapter_name] = scaling self.fourierft_spectrum[adapter_name] = nn.Parameter(torch.randn(n_frequency), requires_grad=True) if init_weights: self.reset_fourier_parameters(adapter_name) self._move_adapter_to_device_of_base_layer(adapter_name) self.set_adapter(self.active_adapters) @torch.no_grad() def reset_fourier_parameters(self, adapter_name): if adapter_name in self.fourierft_spectrum.keys(): nn.init.zeros_(self.fourierft_spectrum[adapter_name]) def get_delta_weight(self, adapter) -> torch.Tensor: spectrum = self.fourierft_spectrum[adapter] indices = self.indices[adapter].to(spectrum.device) dense_spectrum = torch.zeros(self.out_features, self.in_features, device=spectrum.device, dtype=spectrum.dtype) dense_spectrum[indices[0, :], indices[1, :]] = spectrum delta_weight = torch.fft.ifft2(dense_spectrum).real * self.fourierft_scaling[adapter] return delta_weight class FourierFTLinear(nn.Module, FourierFTLayer): def __init__(self, base_layer, adapter_name: str, n_frequency: int=1000, scaling: float=150.0, fan_in_fan_out: bool=False, init_weights: Union[bool, str]=False, random_loc_seed: int=777, **kwargs) -> None: super().__init__() FourierFTLayer.__init__(self, base_layer, **kwargs) self.fan_in_fan_out = fan_in_fan_out self._active_adapter = adapter_name self.update_layer(adapter_name, n_frequency, scaling, init_weights, random_loc_seed) def merge(self, safe_merge: bool=False, adapter_names: Optional[List[str]]=None) -> None: adapter_names = check_adapters_to_merge(self, adapter_names) if not adapter_names: return for active_adapter in adapter_names: if active_adapter in self.fourierft_spectrum.keys(): base_layer = self.get_base_layer() if safe_merge: orig_weights = base_layer.weight.data.clone() orig_weights += self.get_delta_weight(active_adapter) if not torch.isfinite(orig_weights).all(): raise ValueError(f'NaNs detected in the merged weights. The adapter {active_adapter} seems to be broken') base_layer.weight.data = orig_weights else: base_layer.weight.data += self.get_delta_weight(active_adapter) self.merged_adapters.append(active_adapter) def unmerge(self) -> None: if not self.merged: warnings.warn('Already unmerged. Nothing to do.') return while len(self.merged_adapters) > 0: active_adapter = self.merged_adapters.pop() if active_adapter in self.fourierft_spectrum.keys(): self.get_base_layer().weight.data -= self.get_delta_weight(active_adapter) def get_delta_weight(self, adapter) -> torch.Tensor: return super().get_delta_weight(adapter) def forward(self, x: torch.Tensor, *args: Any, **kwargs: Any) -> torch.Tensor: previous_dtype = x.dtype if self.disable_adapters: if self.merged: self.unmerge() result = self.base_layer(x, *args, **kwargs) elif self.merged: result = self.base_layer(x, *args, **kwargs) else: result = self.base_layer(x, *args, **kwargs) for active_adapter in self.active_adapters: if active_adapter not in self.fourierft_spectrum.keys(): continue delta_w = self.get_delta_weight(active_adapter) x = x.to(delta_w.dtype) result = result + F.linear(x, delta_w) result = result.to(previous_dtype) return result def __repr__(self) -> str: rep = super().__repr__() return 'fourierft.' + rep # File: peft-main/src/peft/tuners/fourierft/model.py from __future__ import annotations import re import warnings from dataclasses import asdict from enum import Enum from itertools import chain from typing import Optional import torch from tqdm import tqdm from transformers.pytorch_utils import Conv1D from peft.tuners.tuners_utils import BaseTuner, BaseTunerLayer, check_target_module_exists from peft.utils import TRANSFORMERS_MODELS_TO_FOURIERFT_TARGET_MODULES_MAPPING, ModulesToSaveWrapper, _get_submodules from .config import FourierFTConfig from .layer import FourierFTLayer, FourierFTLinear class FourierFTModel(BaseTuner): prefix: str = 'fourierft_' def __init__(self, model, config, adapter_name) -> None: super().__init__(model, config, adapter_name) def _check_new_adapter_config(self, config: FourierFTConfig) -> None: if len(self.peft_config) > 1 and config.bias != 'none': raise ValueError(f"{self.__class__.__name__} supports only 1 adapter with bias. When using multiple adapters, set bias to 'none' for all adapters.") @staticmethod def _check_target_module_exists(fourierft_config, key): return check_target_module_exists(fourierft_config, key) def _create_and_replace(self, fourierft_config, adapter_name, target, target_name, parent, current_key, **optional_kwargs): if current_key is None: raise ValueError("Current Key shouldn't be `None`") pattern_keys = list(chain(fourierft_config.n_frequency_pattern.keys())) target_name_key = next(filter(lambda key: re.match(f'.*\\.{key}$', current_key), pattern_keys), current_key) n_frequency = fourierft_config.n_frequency_pattern.get(target_name_key, fourierft_config.n_frequency) scaling = fourierft_config.scaling random_loc_seed = fourierft_config.random_loc_seed bias = hasattr(target, 'bias') and target.bias is not None kwargs = {'n_frequency': n_frequency, 'scaling': scaling, 'fan_in_fan_out': fourierft_config.fan_in_fan_out, 'init_weights': fourierft_config.init_weights, 'random_loc_seed': fourierft_config.random_loc_seed} kwargs['bias'] = bias if isinstance(target, FourierFTLayer): target.update_layer(adapter_name, n_frequency, scaling, fourierft_config.init_weights, random_loc_seed) else: new_module = self._create_new_module(fourierft_config, adapter_name, target, **kwargs) if adapter_name != self.active_adapter: new_module.requires_grad_(False) self._replace_module(parent, target_name, new_module, target) def _replace_module(self, parent, child_name, new_module, child): setattr(parent, child_name, new_module) if hasattr(child, 'base_layer'): child = child.base_layer if not hasattr(new_module, 'base_layer'): new_module.weight = child.weight if hasattr(child, 'bias'): new_module.bias = child.bias if getattr(child, 'state', None) is not None: if hasattr(new_module, 'base_layer'): new_module.base_layer.state = child.state else: new_module.state = child.state new_module.to(child.weight.device) for (name, module) in new_module.named_modules(): if 'fourierft_' in name: module.to(child.weight.device) def _mark_only_adapters_as_trainable(self, model: torch.nn.Module) -> None: for (n, p) in model.named_parameters(): if self.prefix not in n: p.requires_grad = False for active_adapter in self.active_adapters: bias = self.peft_config[active_adapter].bias if bias == 'none': continue if bias == 'all': for (n, p) in model.named_parameters(): if 'bias' in n: p.requires_grad = True elif bias == 'fourier_only': for m in model.modules(): if isinstance(m, FourierFTLayer) and hasattr(m, 'bias') and (m.bias is not None): m.bias.requires_grad = True else: raise NotImplementedError(f'Requested bias: {bias}, is not implemented.') @staticmethod def _create_new_module(fourierft_config, adapter_name, target, **kwargs): if isinstance(target, BaseTunerLayer): target_base_layer = target.get_base_layer() else: target_base_layer = target if isinstance(target_base_layer, torch.nn.Linear): if kwargs['fan_in_fan_out']: warnings.warn('fan_in_fan_out is set to True but the target module is `torch.nn.Linear`. Setting fan_in_fan_out to False.') kwargs['fan_in_fan_out'] = fourierft_config.fan_in_fan_out = False elif isinstance(target_base_layer, Conv1D): kwargs['is_target_conv_1d_layer'] = True if not kwargs['fan_in_fan_out']: warnings.warn('fan_in_fan_out is set to False but the target module is `Conv1D`. Setting fan_in_fan_out to True.') kwargs['fan_in_fan_out'] = fourierft_config.fan_in_fan_out = True else: raise ValueError(f'Target module {target} is not supported. Currently, only the following modules are supported: `torch.nn.Linear`.') new_module = FourierFTLinear(target, adapter_name, **kwargs) return new_module def __getattr__(self, name: str): try: return super().__getattr__(name) except AttributeError: if name == 'model': raise return getattr(self.model, name) def get_peft_config_as_dict(self, inference: bool=False): config_dict = {} for (key, value) in self.peft_config.items(): config = {k: v.value if isinstance(v, Enum) else v for (k, v) in asdict(value).items()} if inference: config['inference_mode'] = True config_dict[key] = config return config def _set_adapter_layers(self, enabled: bool=True) -> None: for module in self.model.modules(): if isinstance(module, (BaseTunerLayer, ModulesToSaveWrapper)): module.enable_adapters(enabled) def enable_adapter_layers(self) -> None: self._set_adapter_layers(enabled=True) def disable_adapter_layers(self) -> None: for active_adapter in self.active_adapters: val = self.peft_config[active_adapter].bias if val != 'none': msg = f"Careful, disabling adapter layers with bias configured to be '{val}' does not produce the same output as the the base model would without adaption." warnings.warn(msg) self._set_adapter_layers(enabled=False) def set_adapter(self, adapter_name: str | list[str]) -> None: for module in self.model.modules(): if isinstance(module, FourierFTLayer): if module.merged: warnings.warn('Adapter cannot be set when the model is merged. Unmerging the model first.') module.unmerge() module.set_adapter(adapter_name) self.active_adapter = adapter_name @staticmethod def _prepare_adapter_config(peft_config, model_config): if peft_config.target_modules is None: if model_config['model_type'] not in TRANSFORMERS_MODELS_TO_FOURIERFT_TARGET_MODULES_MAPPING: raise ValueError('Please specify `target_modules` in `peft_config`') peft_config.target_modules = set(TRANSFORMERS_MODELS_TO_FOURIERFT_TARGET_MODULES_MAPPING[model_config['model_type']]) return peft_config def _unload_and_optionally_merge(self, merge=True, progressbar: bool=False, safe_merge: bool=False, adapter_names: Optional[list[str]]=None): key_list = [key for (key, _) in self.model.named_modules() if self.prefix not in key] desc = 'Unloading ' + ('and merging ' if merge else '') + 'model' for key in tqdm(key_list, disable=not progressbar, desc=desc): try: (parent, target, target_name) = _get_submodules(self.model, key) except AttributeError: continue if hasattr(target, 'base_layer'): if merge: target.merge(safe_merge=safe_merge, adapter_names=adapter_names) self._replace_module(parent, target_name, target.get_base_layer(), target) elif isinstance(target, ModulesToSaveWrapper): setattr(parent, target_name, target.modules_to_save[target.active_adapter]) return self.model def delete_adapter(self, adapter_name: str): if adapter_name not in list(self.peft_config.keys()): raise ValueError(f'Adapter {adapter_name} does not exist') del self.peft_config[adapter_name] key_list = [key for (key, _) in self.model.named_modules() if 'fourierft' not in key] new_adapter = None for key in key_list: (_, target, _) = _get_submodules(self.model, key) if isinstance(target, FourierFTLayer): target.delete_adapter(adapter_name) if new_adapter is None: new_adapter = target.active_adapter[:] self.active_adapter = new_adapter or [] def merge_and_unload(self, progressbar: bool=False, safe_merge: bool=False, adapter_names: Optional[list[str]]=None) -> torch.nn.Module: return self._unload_and_optionally_merge(progressbar=progressbar, safe_merge=safe_merge, adapter_names=adapter_names) def unload(self) -> torch.nn.Module: return self._unload_and_optionally_merge(merge=False) # File: peft-main/src/peft/tuners/hra/config.py from dataclasses import dataclass, field from typing import List, Optional, Union from peft.config import PeftConfig from peft.utils import PeftType @dataclass class HRAConfig(PeftConfig): r: int = field(default=8, metadata={'help': 'The rank of HRA across different layers.', 'note': "It is best to set 'r' to an even number; otherwise, the default initialization method will not work."}) apply_GS: bool = field(default=False, metadata={'help': 'Whether to apply Gram-Schmidt orthogonalization or not.'}) target_modules: Optional[Union[List[str], str]] = field(default=None, metadata={'help': 'List of module names or regex expression of the module names to replace with HRA.', 'example': "For example, ['q', 'v'] or '.*decoder.*(SelfAttention|EncDecAttention).*(q|v)$' "}) init_weights: bool = field(default=True, metadata={'help': "Whether to initialize the weights of the HRA layers with their default initialization. Don't change this setting, except if you know exactly what you're doing."}) layers_to_transform: Optional[Union[List[int], int]] = field(default=None, metadata={'help': 'The layer indexes to transform, is this argument is specified, PEFT will transform only the layers indexes that are specified inside this list. If a single integer is passed, PEFT will transform only the layer at this index.'}) layers_pattern: Optional[str] = field(default=None, metadata={'help': 'The layer pattern name, used only if `layers_to_transform` is different to None and if the layer pattern is not in the common layers pattern.'}) bias: str = field(default='none', metadata={'help': "Bias type for HRA. Can be 'none', 'all' or 'hra_only'"}) modules_to_save: Optional[List[str]] = field(default=None, metadata={'help': 'List of modules apart from HRA layers to be set as trainable and saved in the final checkpoint. For example, in Sequence Classification or Token Classification tasks, the final layer `classifier/score` are randomly initialized and as such need to be trainable and saved.'}) def __post_init__(self): self.peft_type = PeftType.HRA self.target_modules = set(self.target_modules) if isinstance(self.target_modules, list) else self.target_modules if isinstance(self.target_modules, str) and self.layers_to_transform is not None: raise ValueError('`layers_to_transform` cannot be used when `target_modules` is a str.') if isinstance(self.target_modules, str) and self.layers_pattern is not None: raise ValueError('`layers_pattern` cannot be used when `target_modules` is a str.') # File: peft-main/src/peft/tuners/hra/layer.py import math import warnings from typing import Any, List, Optional, Union import torch import torch.nn as nn import torch.nn.functional as F from peft.tuners.tuners_utils import BaseTunerLayer, check_adapters_to_merge class HRALayer(BaseTunerLayer): adapter_layer_names = ('hra_u',) other_param_names = ('hra_r', 'hra_apply_GS') def __init__(self, base_layer: nn.Module, **kwargs) -> None: self.base_layer = base_layer self.hra_r = {} self.hra_apply_GS = {} self.hra_u = nn.ParameterDict({}) self._disable_adapters = False self.merged_adapters = [] self.kwargs = kwargs base_layer = self.get_base_layer() if isinstance(base_layer, nn.Linear): (self.in_features, self.out_features) = (base_layer.in_features, base_layer.out_features) elif isinstance(base_layer, nn.Conv2d): (self.in_features, self.out_features) = (base_layer.in_channels, base_layer.out_channels) else: raise ValueError(f'Unsupported layer type {type(base_layer)}') def update_layer(self, adapter_name: str, r: int, apply_GS: bool, init_weights: bool, **kwargs) -> None: if r <= 0: raise ValueError(f'`r` should be a positive integer value but the value passed is {r}') self.hra_r[adapter_name] = r self.hra_apply_GS[adapter_name] = apply_GS base_layer = self.get_base_layer() if isinstance(base_layer, nn.Linear): self.hra_u[adapter_name] = nn.Parameter(torch.empty(self.in_features, r), requires_grad=True) elif isinstance(base_layer, nn.Conv2d): self.hra_u[adapter_name] = nn.Parameter(torch.empty(self.in_features * base_layer.kernel_size[0] * base_layer.kernel_size[0], r), requires_grad=True) else: raise TypeError(f'HRA is not implemented for base layers of type {type(base_layer).__name__}') if init_weights: self.reset_hra_parameters(adapter_name) else: self.reset_hra_parameters_random(adapter_name) self._move_adapter_to_device_of_base_layer(adapter_name) self.set_adapter(self.active_adapters) def reset_hra_parameters(self, adapter_name: str): if self.hra_r[adapter_name] % 2 != 0: warnings.warn('The symmetric initialization can NOT be performed when r is odd!') nn.init.kaiming_uniform_(self.hra_u[adapter_name], a=math.sqrt(5)) else: shape = self.hra_u[adapter_name].shape half_u = torch.zeros(shape[0], shape[1] // 2) nn.init.kaiming_uniform_(half_u, a=math.sqrt(5)) self.hra_u[adapter_name] = nn.Parameter(torch.repeat_interleave(half_u, 2, dim=1)) def reset_hra_parameters_random(self, adapter_name: str): nn.init.kaiming_uniform_(self.hra_u[adapter_name], a=math.sqrt(5)) def scale_layer(self, scale: float) -> None: if scale == 1: return for active_adapter in self.active_adapters: if active_adapter not in self.hra_u.keys(): continue warnings.warn('Scaling operation for HRA not supported! Automatically set scale to 1.') def unscale_layer(self, scale=None) -> None: for active_adapter in self.active_adapters: if active_adapter not in self.hra_u.keys(): continue warnings.warn('Unscaling operation for HRA not supported! Keeping scale at 1.') class HRALinear(nn.Module, HRALayer): def __init__(self, base_layer, adapter_name: str, r: int=0, apply_GS: bool=False, init_weights: Union[bool, str]=True, **kwargs) -> None: super().__init__() HRALayer.__init__(self, base_layer, **kwargs) self._active_adapter = adapter_name self.update_layer(adapter_name, r, apply_GS, init_weights, **kwargs) def merge(self, safe_merge: bool=False, adapter_names: Optional[List[str]]=None) -> None: adapter_names = check_adapters_to_merge(self, adapter_names) if not adapter_names: return for active_adapter in adapter_names: if active_adapter in self.hra_u.keys(): base_layer = self.get_base_layer() if safe_merge: orig_weight = base_layer.weight.data.clone() delta_weight = self.get_delta_weight(active_adapter) orig_weight = torch.mm(orig_weight, delta_weight) if not torch.isfinite(orig_weight).all(): raise ValueError(f'NaNs detected in the merged weights. The adapter {active_adapter} seems to be broken') self.base_layer.weight.data = orig_weight else: delta_weight = self.get_delta_weight(active_adapter) self.base_layer.weight.data = torch.mm(self.base_layer.weight.data, delta_weight) self.merged_adapters.append(active_adapter) def unmerge(self) -> None: if not self.merged: warnings.warn('Already unmerged. Nothing to do.') return while len(self.merged_adapters) > 0: active_adapter = self.merged_adapters.pop() if active_adapter in self.hra_u.keys(): orig_weight = self.get_base_layer().weight.data.clone() delta_weight = self.get_delta_weight(active_adapter, reverse=True) self.get_base_layer().weight.data = torch.mm(orig_weight, delta_weight) def get_delta_weight(self, adapter_name: str, reverse: bool=False) -> torch.Tensor: rank = self.hra_r[adapter_name] apply_GS = self.hra_apply_GS[adapter_name] opt_u = self.hra_u[adapter_name] shape = opt_u.shape if apply_GS: weight = [(opt_u[:, 0] / opt_u[:, 0].norm()).view(-1, 1)] for i in range(1, rank): ui = opt_u[:, i].view(-1, 1) for j in range(i): ui = ui - weight[j].t() @ ui * weight[j] weight.append((ui / ui.norm()).view(-1, 1)) weight = torch.cat(weight, dim=1) weight = torch.eye(shape[0], device=opt_u.device, dtype=opt_u.dtype) - 2 * weight @ weight.t() else: opt_u = opt_u / opt_u.norm(dim=0) weight = torch.eye(shape[0], device=opt_u.device, dtype=opt_u.dtype) if reverse: indices = range(rank - 1, -1, -1) else: indices = range(rank) for i in indices: ui = opt_u[:, i].view(-1, 1) weight = weight @ (torch.eye(shape[0], device=opt_u.device, dtype=opt_u.dtype) - 2 * ui @ ui.t()) return weight def forward(self, x: torch.Tensor, *args: Any, **kwargs: Any) -> torch.Tensor: previous_dtype = x.dtype if self.disable_adapters: if self.merged: self.unmerge() result = self.base_layer(x, *args, **kwargs) elif self.merged: result = self.base_layer(x, *args, **kwargs) else: new_weight = torch.eye(self.in_features, device=x.device) for active_adapter in self.active_adapters: if active_adapter not in self.hra_u.keys(): continue delta_weight = self.get_delta_weight(active_adapter) new_weight = torch.mm(new_weight, delta_weight) x = x.to(self.get_base_layer().weight.data.dtype) orig_weight = self.get_base_layer().weight.data new_weight = torch.mm(orig_weight, new_weight) result = F.linear(input=x, weight=new_weight, bias=self.base_layer.bias) result = result.to(previous_dtype) return result def __repr__(self) -> str: rep = super().__repr__() return 'hra.' + rep class HRAConv2d(nn.Module, HRALayer): def __init__(self, base_layer, adapter_name: str, r: int=0, apply_GS: bool=False, init_weights: Union[bool, str]=True, **kwargs): super().__init__() HRALayer.__init__(self, base_layer) self._active_adapter = adapter_name self.update_layer(adapter_name, r, apply_GS, init_weights, **kwargs) def merge(self, safe_merge: bool=False, adapter_names: Optional[List[str]]=None) -> None: adapter_names = check_adapters_to_merge(self, adapter_names) if not adapter_names: return for active_adapter in adapter_names: if active_adapter in self.hra_u.keys(): base_layer = self.get_base_layer() if safe_merge: orig_weight = base_layer.weight.data.clone() orig_weight = orig_weight.view(self.out_features, self.in_features * self.base_layer.kernel_size[0] * self.base_layer.kernel_size[0]) delta_weight = self.get_delta_weight(active_adapter) orig_weight = torch.mm(orig_weight, delta_weight) orig_weight = orig_weight.view(self.out_features, self.in_features, self.base_layer.kernel_size[0], self.base_layer.kernel_size[0]) if not torch.isfinite(orig_weight).all(): raise ValueError(f'NaNs detected in the merged weights. The adapter {active_adapter} seems to be broken') self.base_layer.weight.data = orig_weight else: orig_weight = base_layer.weight.data orig_weight = orig_weight.view(self.out_features, self.in_features * self.base_layer.kernel_size[0] * self.base_layer.kernel_size[0]) delta_weight = self.get_delta_weight(active_adapter) orig_weight = torch.mm(orig_weight, delta_weight) orig_weight = orig_weight.view(self.out_features, self.in_features, self.base_layer.kernel_size[0], self.base_layer.kernel_size[0]) self.base_layer.weight.data = orig_weight self.merged_adapters.append(active_adapter) def unmerge(self) -> None: if not self.merged: warnings.warn('Already unmerged. Nothing to do.') return while len(self.merged_adapters) > 0: active_adapter = self.merged_adapters.pop() if active_adapter in self.hra_u.keys(): orig_weight = self.get_base_layer().weight.data.clone() orig_weight = orig_weight.view(self.out_features, self.in_features * self.base_layer.kernel_size[0] * self.base_layer.kernel_size[0]) delta_weight = self.get_delta_weight(active_adapter, reverse=True) orig_weight = torch.mm(orig_weight, delta_weight) orig_weight = orig_weight.view(self.out_features, self.in_features, self.base_layer.kernel_size[0], self.base_layer.kernel_size[0]) self.get_base_layer().weight.data = orig_weight def get_delta_weight(self, adapter_name: str, reverse: bool=False) -> torch.Tensor: rank = self.hra_r[adapter_name] apply_GS = self.hra_apply_GS[adapter_name] opt_u = self.hra_u[adapter_name] shape = opt_u.shape if apply_GS: weight = [(opt_u[:, 0] / opt_u[:, 0].norm()).view(-1, 1)] for i in range(1, rank): ui = opt_u[:, i].view(-1, 1) for j in range(i): ui = ui - weight[j].t() @ ui * weight[j] weight.append((ui / ui.norm()).view(-1, 1)) weight = torch.cat(weight, dim=1) weight = torch.eye(shape[0], device=opt_u.device, dtype=opt_u.dtype) - 2 * weight @ weight.t() else: opt_u = opt_u / opt_u.norm(dim=0) weight = torch.eye(shape[0], device=opt_u.device, dtype=opt_u.dtype) if reverse: indices = range(rank - 1, -1, -1) else: indices = range(rank) for i in indices: ui = opt_u[:, i].view(-1, 1) weight = weight @ (torch.eye(shape[0], device=opt_u.device, dtype=opt_u.dtype) - 2 * ui @ ui.t()) return weight def forward(self, x: torch.Tensor, *args: Any, **kwargs: Any) -> torch.Tensor: previous_dtype = x.dtype if self.disable_adapters: if self.merged: self.unmerge() result = self.base_layer(x, *args, **kwargs) elif self.merged: result = self.base_layer(x, *args, **kwargs) else: new_weight = torch.eye(self.in_features * self.base_layer.kernel_size[0] * self.base_layer.kernel_size[0], device=x.device) for active_adapter in self.active_adapters: if active_adapter not in self.hra_u.keys(): continue delta_weight = self.get_delta_weight(active_adapter) new_weight = torch.mm(new_weight, delta_weight) x = x.to(self.base_layer.weight.data.dtype) orig_weight = self.base_layer.weight.data orig_weight = orig_weight.view(self.out_features, self.in_features * self.base_layer.kernel_size[0] * self.base_layer.kernel_size[0]) new_weight = torch.mm(orig_weight, new_weight) new_weight = new_weight.view(self.out_features, self.in_features, self.base_layer.kernel_size[0], self.base_layer.kernel_size[0]) result = F.conv2d(input=x, weight=new_weight, bias=self.base_layer.bias, padding=self.base_layer.padding[0], stride=self.base_layer.stride[0]) result = result.to(previous_dtype) return result def __repr__(self) -> str: rep = super().__repr__() return 'hra.' + rep # File: peft-main/src/peft/tuners/hra/model.py import warnings from dataclasses import asdict from enum import Enum from typing import List, Optional import torch from torch import nn from tqdm import tqdm from peft.tuners.tuners_utils import BaseTuner, BaseTunerLayer, check_target_module_exists from peft.utils import TRANSFORMERS_MODELS_TO_LORA_TARGET_MODULES_MAPPING, ModulesToSaveWrapper, _get_submodules from .config import HRAConfig from .layer import HRAConv2d, HRALayer, HRALinear class HRAModel(BaseTuner): prefix: str = 'hra_' def _check_new_adapter_config(self, config: HRAConfig) -> None: if len(self.peft_config) > 1 and config.bias != 'none': raise ValueError(f"{self.__class__.__name__} supports only 1 adapter with bias. When using multiple adapters, set bias to 'none' for all adapters.") @staticmethod def _check_target_module_exists(hra_config, key): return check_target_module_exists(hra_config, key) def _create_and_replace(self, hra_config, adapter_name, target, target_name, parent, current_key, **optional_kwargs): if current_key is None: raise ValueError("Current Key shouldn't be `None`") bias = hasattr(target, 'bias') and target.bias is not None kwargs = {'r': hra_config.r, 'apply_GS': hra_config.apply_GS, 'init_weights': hra_config.init_weights} kwargs['bias'] = bias if not isinstance(target, HRALayer): new_module = self._create_new_module(hra_config, adapter_name, target, **kwargs) if adapter_name not in self.active_adapters: new_module.requires_grad_(False) self._replace_module(parent, target_name, new_module, target) else: target.update_layer(adapter_name, r=hra_config.r, apply_GS=hra_config.apply_GS, init_weights=hra_config.init_weights) def _replace_module(self, parent, child_name, new_module, child): setattr(parent, child_name, new_module) if hasattr(child, 'base_layer'): child = child.base_layer if not hasattr(new_module, 'base_layer'): new_module.weight = child.weight if hasattr(child, 'bias'): new_module.bias = child.bias if getattr(child, 'state', None) is not None: if hasattr(new_module, 'base_layer'): new_module.base_layer.state = child.state else: new_module.state = child.state new_module.to(child.weight.device) for (name, module) in new_module.named_modules(): if self.prefix in name: module.to(child.weight.device) def _mark_only_adapters_as_trainable(self, model: nn.Module) -> None: for (n, p) in model.named_parameters(): if self.prefix not in n: p.requires_grad = False for active_adapter in self.active_adapters: bias = self.peft_config[active_adapter].bias if bias == 'none': continue if bias == 'all': for (n, p) in model.named_parameters(): if 'bias' in n: p.requires_grad = True elif bias == 'hra_only': for (name, m) in model.named_modules(): if isinstance(m, HRALayer) and hasattr(m, 'bias') and (m.bias is not None): m.bias.requires_grad = True else: raise NotImplementedError(f'Requested bias: {bias}, is not implemented.') @staticmethod def _create_new_module(hra_config, adapter_name, target, **kwargs): if isinstance(target, BaseTunerLayer): target_base_layer = target.get_base_layer() else: target_base_layer = target if isinstance(target_base_layer, torch.nn.Linear): new_module = HRALinear(target, adapter_name, **kwargs) elif isinstance(target_base_layer, torch.nn.Conv2d): new_module = HRAConv2d(target, adapter_name, **kwargs) else: raise ValueError(f'Target module {target} is not supported. Currently, only `torch.nn.Linear` and `torch.nn.Conv2d` are supported.') return new_module def __getattr__(self, name: str): try: return super().__getattr__(name) except AttributeError: if name == 'base_model': raise return getattr(self.model, name) def get_peft_config_as_dict(self, inference: bool=False): config_dict = {} for (key, value) in self.peft_config.items(): config = {k: v.value if isinstance(v, Enum) else v for (k, v) in asdict(value).items()} if inference: config['inference_mode'] = True config_dict[key] = config return config def _set_adapter_layers(self, enabled=True): for module in self.model.modules(): if isinstance(module, (BaseTunerLayer, ModulesToSaveWrapper)): module.enable_adapters(enabled) def enable_adapter_layers(self): self._set_adapter_layers(enabled=True) def disable_adapter_layers(self): for active_adapter in self.active_adapters: val = self.peft_config[active_adapter].bias if val != 'none': msg = f"Careful, disabling adapter layers with bias configured to be '{val}' does not produce the same output as the the base model would without adaption." warnings.warn(msg) self._set_adapter_layers(enabled=False) def set_adapter(self, adapter_name): for module in self.model.modules(): if isinstance(module, HRALayer): if module.merged: warnings.warn('Adapter cannot be set when the model is merged. Unmerging the model first.') module.unmerge() module.set_adapter(adapter_name) self.active_adapter = adapter_name @staticmethod def _prepare_adapter_config(peft_config, model_config): if peft_config.target_modules is None: if model_config['model_type'] not in TRANSFORMERS_MODELS_TO_LORA_TARGET_MODULES_MAPPING: raise ValueError('Please specify `target_modules` in `peft_config`') peft_config.target_modules = set(TRANSFORMERS_MODELS_TO_LORA_TARGET_MODULES_MAPPING[model_config['model_type']]) return peft_config def _unload_and_optionally_merge(self, merge=True, progressbar: bool=False, safe_merge: bool=False, adapter_names: Optional[List[str]]=None): self._unloading_checks(adapter_names) key_list = [key for (key, _) in self.model.named_modules() if self.prefix not in key] desc = 'Unloading ' + ('and merging ' if merge else '') + 'model' for key in tqdm(key_list, disable=not progressbar, desc=desc): try: (parent, target, target_name) = _get_submodules(self.model, key) except AttributeError: continue if hasattr(target, 'base_layer'): if merge: target.merge(safe_merge=safe_merge, adapter_names=adapter_names) self._replace_module(parent, target_name, target.get_base_layer(), target) elif isinstance(target, ModulesToSaveWrapper): setattr(parent, target_name, target.modules_to_save[target.active_adapter]) return self.model def delete_adapter(self, adapter_name: str) -> None: if adapter_name not in list(self.peft_config.keys()): raise ValueError(f'Adapter {adapter_name} does not exist') del self.peft_config[adapter_name] key_list = [key for (key, _) in self.model.named_modules() if self.prefix not in key] new_adapter = None for key in key_list: (_, target, _) = _get_submodules(self.model, key) if isinstance(target, HRALayer): target.delete_adapter(adapter_name) if new_adapter is None: new_adapter = target.active_adapters[:] self.active_adapter = new_adapter or [] def merge_and_unload(self, progressbar: bool=False, safe_merge: bool=False, adapter_names: Optional[List[str]]=None) -> torch.nn.Module: return self._unload_and_optionally_merge(progressbar=progressbar, safe_merge=safe_merge, adapter_names=adapter_names) def unload(self) -> torch.nn.Module: return self._unload_and_optionally_merge(merge=False) # File: peft-main/src/peft/tuners/ia3/__init__.py from peft.import_utils import is_bnb_4bit_available, is_bnb_available from .config import IA3Config from .layer import Conv2d, IA3Layer, Linear from .model import IA3Model __all__ = ['Conv2d', 'IA3Config', 'IA3Layer', 'IA3Model', 'Linear'] def __getattr__(name): if name == 'Linear8bitLt' and is_bnb_available(): from .bnb import Linear8bitLt return Linear8bitLt if name == 'Linear4bit' and is_bnb_4bit_available(): from .bnb import Linear4bit return Linear4bit raise AttributeError(f'module {__name__} has no attribute {name}') # File: peft-main/src/peft/tuners/ia3/bnb.py from typing import Any import torch from peft.import_utils import is_bnb_4bit_available, is_bnb_available from .layer import IA3Layer if is_bnb_available(): class Linear8bitLt(torch.nn.Module, IA3Layer): def __init__(self, base_layer: torch.nn.Module, adapter_name: str, is_feedforward: bool, init_ia3_weights: bool=True, **kwargs) -> None: super().__init__() IA3Layer.__init__(self, base_layer, is_feedforward=is_feedforward) self.get_base_layer().weight.requires_grad = False self._active_adapter = adapter_name self.update_layer(adapter_name, init_ia3_weights) def forward(self, x: torch.Tensor, *args: Any, **kwargs: Any) -> torch.Tensor: if self.disable_adapters: return self.base_layer(x) ia3_scaling = 1 for active_adapter in self.active_adapters: if active_adapter not in self.ia3_l.keys(): continue ia3_scaling *= self.ia3_l[active_adapter].flatten() requires_conversion = not torch.is_autocast_enabled() and x.dtype != torch.float32 if requires_conversion: x = x.float() if self.is_feedforward: result = self.base_layer(x * ia3_scaling) expected_dtype = result.dtype else: result = self.base_layer(x) expected_dtype = result.dtype result = result * ia3_scaling if requires_conversion: result = result.to(expected_dtype) return result def __repr__(self) -> str: rep = super().__repr__() return 'ia3.' + rep if is_bnb_4bit_available(): class Linear4bit(torch.nn.Module, IA3Layer): def __init__(self, base_layer: torch.nn.Module, adapter_name: str, is_feedforward: bool, init_ia3_weights: bool=True, **kwargs) -> None: super().__init__() IA3Layer.__init__(self, base_layer, is_feedforward=is_feedforward) self.get_base_layer().weight.requires_grad = False self._active_adapter = adapter_name self.update_layer(adapter_name, init_ia3_weights) def forward(self, x: torch.Tensor, *args: Any, **kwargs: Any) -> torch.Tensor: if self.disable_adapters: return self.base_layer(x) ia3_scaling = 1 for active_adapter in self.active_adapters: if active_adapter not in self.ia3_l.keys(): continue ia3_scaling *= self.ia3_l[active_adapter].flatten() requires_conversion = not torch.is_autocast_enabled() and x.dtype != torch.float32 if requires_conversion: x = x.float() if self.is_feedforward: result = self.base_layer(x * ia3_scaling) expected_dtype = result.dtype else: result = self.base_layer(x) expected_dtype = result.dtype result = result * ia3_scaling result = result.clone() if requires_conversion: result = result.to(expected_dtype) return result def __repr__(self) -> str: rep = super().__repr__() return 'ia3.' + rep # File: peft-main/src/peft/tuners/ia3/config.py from dataclasses import dataclass, field from typing import List, Optional, Union from peft.config import PeftConfig from peft.utils import PeftType @dataclass class IA3Config(PeftConfig): target_modules: Optional[Union[List[str], str]] = field(default=None, metadata={'help': "List of module names or regex expression of the module names to replace with (IA)³.For example, ['q', 'v'] or '.*decoder.*(SelfAttention|EncDecAttention).*(q|v)$'.This can also be a wildcard 'all-linear' which matches all linear/Conv1D layers except the output layer.If not specified, modules will be chosen according to the model architecture, If the architecture is not known, an error will be raised -- in this case, you should specify the target modules manually."}) feedforward_modules: Optional[Union[List[str], str]] = field(default=None, metadata={'help': "List of module names or a regex expression of module names which are feedforwardFor example, ['output.dense']"}) fan_in_fan_out: bool = field(default=False, metadata={'help': 'Set this to True if the layer to replace stores weight like (fan_in, fan_out)'}) modules_to_save: Optional[List[str]] = field(default=None, metadata={'help': 'List of modules apart from (IA)^3 layers to be set as trainable and saved in the final checkpoint. For example, in Sequence Classification or Token Classification tasks, the final layer `classifier/score` are randomly initialized and as such need to be trainable and saved.'}) init_ia3_weights: bool = field(default=True, metadata={'help': 'Whether to initialize the vectors in the (IA)^3 layers.'}) def __post_init__(self): self.peft_type = PeftType.IA3 self.target_modules = set(self.target_modules) if isinstance(self.target_modules, list) else self.target_modules self.feedforward_modules = set(self.feedforward_modules) if isinstance(self.feedforward_modules, list) else self.feedforward_modules if isinstance(self.feedforward_modules, set) and isinstance(self.target_modules, set): if not self.feedforward_modules.issubset(self.target_modules): raise ValueError('`feedforward_modules` should be a subset of `target_modules`') # File: peft-main/src/peft/tuners/ia3/layer.py import warnings from typing import Any, List, Optional import torch import torch.nn as nn from transformers.pytorch_utils import Conv1D from peft.tuners.tuners_utils import BaseTunerLayer, check_adapters_to_merge from peft.utils import transpose class IA3Layer(BaseTunerLayer): adapter_layer_names = ('ia3_l',) def __init__(self, base_layer: nn.Module, is_feedforward: bool, **kwargs) -> None: self.base_layer = base_layer self.ia3_l = nn.ParameterDict({}) self._disable_adapters = False self.merged_adapters = [] self.is_feedforward = is_feedforward base_layer = self.get_base_layer() if isinstance(base_layer, nn.Linear): (in_features, out_features) = (base_layer.in_features, base_layer.out_features) elif isinstance(base_layer, nn.Conv2d): (in_features, out_features) = (base_layer.in_channels, base_layer.out_channels) elif isinstance(base_layer, nn.Embedding): (in_features, out_features) = (base_layer.num_embeddings, base_layer.embedding_dim) elif isinstance(base_layer, Conv1D): (in_features, out_features) = base_layer.weight.ds_shape if hasattr(base_layer.weight, 'ds_shape') else base_layer.weight.shape else: raise ValueError(f'Unsupported layer type {type(base_layer)}') self.in_features = in_features self.out_features = out_features def update_layer(self, adapter_name, init_ia3_weights): if self.is_feedforward: weight = torch.randn((1, self.in_features)) else: weight = torch.randn((self.out_features, 1)) self.ia3_l[adapter_name] = nn.Parameter(weight) if init_ia3_weights: self.reset_ia3_parameters(adapter_name) self._move_adapter_to_device_of_base_layer(adapter_name) self.set_adapter(self.active_adapters) def reset_ia3_parameters(self, adapter_name): if adapter_name in self.ia3_l.keys(): nn.init.constant_(self.ia3_l[adapter_name], 1.0) class Linear(nn.Module, IA3Layer): def __init__(self, base_layer: nn.Module, adapter_name: str, fan_in_fan_out: bool=False, is_feedforward: bool=False, is_target_conv_1d_layer: bool=False, init_ia3_weights: bool=True, **kwargs) -> None: super().__init__() IA3Layer.__init__(self, base_layer, is_feedforward=is_feedforward) self.fan_in_fan_out = fan_in_fan_out self.is_target_conv_1d_layer = is_target_conv_1d_layer self._active_adapter = adapter_name self.update_layer(adapter_name, init_ia3_weights) def merge(self, safe_merge: bool=False, adapter_names: Optional[List[str]]=None) -> None: adapter_names = check_adapters_to_merge(self, adapter_names) if not adapter_names: return for active_adapter in adapter_names: if active_adapter in self.ia3_l.keys(): base_layer = self.get_base_layer() ia3_l = transpose(self.ia3_l[active_adapter].data, self.fan_in_fan_out) orig_dtype = base_layer.weight.data.dtype if safe_merge: orig_weights = base_layer.weight.data orig_weights = torch.mul(orig_weights, ia3_l) if not torch.isfinite(orig_weights).all(): raise ValueError(f'NaNs detected in the merged weights. The adapter {active_adapter} seems to be broken') base_layer.weight.data = orig_weights.to(orig_dtype) else: base_layer.weight.data = torch.mul(base_layer.weight.data, ia3_l).to(orig_dtype) if not self.is_feedforward and base_layer.bias is not None: scaling = self.ia3_l[active_adapter].reshape(base_layer.bias.shape) orig_dtype = base_layer.bias.data.dtype base_layer.bias.data = torch.mul(base_layer.bias.data, scaling.data).to(orig_dtype) self.merged_adapters.append(active_adapter) def unmerge(self) -> None: if not self.merged: warnings.warn('Already unmerged. Nothing to do.') return warnings.warn('Unmerge result can be inaccurate for (IA)^3.') while len(self.merged_adapters) > 0: active_adapter = self.merged_adapters.pop() if active_adapter in self.ia3_l.keys(): base_layer = self.get_base_layer() ia3_l = transpose(self.ia3_l[active_adapter].data, self.fan_in_fan_out) + 1e-08 orig_dtype = base_layer.weight.data.dtype base_layer.weight.data = torch.div(base_layer.weight.data, ia3_l).to(orig_dtype) if not self.is_feedforward and base_layer.bias is not None: scaling = self.ia3_l[active_adapter].reshape(base_layer.bias.shape) orig_dtype = base_layer.bias.data.dtype base_layer.bias.data = torch.div(base_layer.bias.data, scaling.data + 1e-08).to(orig_dtype) def forward(self, x: torch.Tensor, *args: Any, **kwargs: Any) -> torch.Tensor: dtype = previous_dtype = x.dtype if self.disable_adapters: if self.merged: self.unmerge() result = self.base_layer(x, *args, **kwargs) elif self.merged: result = self.base_layer(x, *args, **kwargs) else: ia3_scaling = 1 for active_adapter in self.active_adapters: if active_adapter not in self.ia3_l.keys(): continue dtype = self.ia3_l[active_adapter].dtype ia3_scaling *= self.ia3_l[active_adapter].flatten() if self.is_feedforward: x = x.to(dtype) interm = (x * ia3_scaling).to(previous_dtype) result = self.base_layer(interm, *args, **kwargs) else: result = self.base_layer(x, *args, **kwargs) result_dtype = result.dtype result = (result * ia3_scaling).to(result_dtype) return result class Conv2d(nn.Module, IA3Layer): def __init__(self, base_layer: nn.Module, adapter_name: str, fan_in_fan_out: bool=False, is_feedforward: bool=False, init_ia3_weights: bool=True, **kwargs) -> None: super().__init__() IA3Layer.__init__(self, base_layer, is_feedforward=is_feedforward) self.fan_in_fan_out = fan_in_fan_out self._active_adapter = adapter_name self.update_layer(adapter_name, init_ia3_weights) def update_layer(self, adapter_name, init_ia3_weights): if self.is_feedforward: weight = torch.randn((1, self.in_features, 1, 1)) else: weight = torch.randn((1, self.out_features, 1, 1)) self.ia3_l[adapter_name] = nn.Parameter(weight) if init_ia3_weights: self.reset_ia3_parameters(adapter_name) self._move_adapter_to_device_of_base_layer(adapter_name) self.set_adapter(self.active_adapters) def merge(self, safe_merge: bool=False, adapter_names: Optional[List[str]]=None) -> None: adapter_names = check_adapters_to_merge(self, adapter_names) if not adapter_names: return for active_adapter in adapter_names: if active_adapter in self.ia3_l.keys(): base_layer = self.get_base_layer() ia3_scaling = self.ia3_l[active_adapter].data if not self.is_feedforward: ia3_scaling = ia3_scaling.permute(1, 0, 2, 3) if safe_merge: output_weight = torch.mul(base_layer.weight.data, ia3_scaling).clone() if not torch.isfinite(output_weight).all(): raise ValueError(f'NaNs detected in the merged weights. The adapter {active_adapter} seems to be broken') base_layer.weight.data = output_weight else: base_layer.weight.data = torch.mul(base_layer.weight.data, ia3_scaling) if not self.is_feedforward and base_layer.bias is not None: scaling = self.ia3_l[active_adapter].reshape(base_layer.bias.shape) base_layer.bias.data = torch.mul(base_layer.bias.data, scaling.data) self.merged_adapters.append(active_adapter) def unmerge(self) -> None: if not self.merged: warnings.warn('Already unmerged. Nothing to do.') return warnings.warn('Unmerge result can be inaccurate for (IA)^3.') while len(self.merged_adapters) > 0: active_adapter = self.merged_adapters.pop() if active_adapter in self.ia3_l.keys(): base_layer = self.get_base_layer() ia3_scaling = self.ia3_l[active_adapter].data if not self.is_feedforward: ia3_scaling = ia3_scaling.permute(1, 0, 2, 3) base_layer.weight.data = torch.div(base_layer.weight.data, ia3_scaling + 1e-08) if not self.is_feedforward and base_layer.bias is not None: scaling = self.ia3_l[active_adapter].reshape(base_layer.bias.shape) base_layer.bias.data = torch.mul(base_layer.bias.data, scaling.data) def forward(self, x: torch.Tensor, *args: Any, **kwargs: Any) -> torch.Tensor: dtype = previous_dtype = x.dtype if self.disable_adapters: if self.merged: self.unmerge() result = self.base_layer(x, *args, **kwargs) elif self.merged: result = self.base_layer(x, *args, **kwargs) else: ia3_scaling = 1 for active_adapter in self.active_adapters: if active_adapter not in self.ia3_l.keys(): continue dtype = self.ia3_l[active_adapter].dtype ia3_scaling *= self.ia3_l[active_adapter] if self.is_feedforward: x = x.to(dtype) interm = (x * ia3_scaling).to(self.get_base_layer().weight.dtype) result = self.base_layer(interm, *args, **kwargs) else: result = self.base_layer(x, *args, **kwargs) result = result.to(dtype) * ia3_scaling result = result.to(previous_dtype) return result # File: peft-main/src/peft/tuners/ia3/model.py from __future__ import annotations import re import warnings from dataclasses import asdict, replace from enum import Enum from typing import Optional import torch from torch import nn from transformers.pytorch_utils import Conv1D from peft.import_utils import is_bnb_4bit_available, is_bnb_available from peft.tuners.tuners_utils import BaseTuner, BaseTunerLayer, check_target_module_exists from peft.utils import TRANSFORMERS_MODELS_TO_IA3_FEEDFORWARD_MODULES_MAPPING, TRANSFORMERS_MODELS_TO_IA3_TARGET_MODULES_MAPPING, ModulesToSaveWrapper, _freeze_adapter, _get_submodules from .layer import Conv2d, IA3Layer, Linear class IA3Model(BaseTuner): prefix: str = 'ia3_' def __init__(self, model, config, adapter_name): super().__init__(model, config, adapter_name) @staticmethod def _create_new_module(ia3_config, adapter_name, target, **kwargs): if is_bnb_available(): import bitsandbytes as bnb from .bnb import Linear8bitLt if is_bnb_4bit_available(): from .bnb import Linear4bit loaded_in_8bit = kwargs.pop('loaded_in_8bit', False) loaded_in_4bit = kwargs.pop('loaded_in_4bit', False) is_feedforward = kwargs.pop('is_feedforward', False) if isinstance(target, BaseTunerLayer): target_base_layer = target.get_base_layer() else: target_base_layer = target if loaded_in_8bit and isinstance(target_base_layer, bnb.nn.Linear8bitLt): eightbit_kwargs = kwargs.copy() eightbit_kwargs.update({'has_fp16_weights': target_base_layer.state.has_fp16_weights, 'memory_efficient_backward': target_base_layer.state.memory_efficient_backward, 'threshold': target_base_layer.state.threshold, 'index': target_base_layer.index}) new_module = Linear8bitLt(target, adapter_name, is_feedforward=is_feedforward, **eightbit_kwargs) elif loaded_in_4bit and isinstance(target_base_layer, bnb.nn.Linear4bit): fourbit_kwargs = kwargs.copy() fourbit_kwargs.update({'compute_dtype': target_base_layer.compute_dtype, 'compress_statistics': target_base_layer.weight.compress_statistics, 'quant_type': target_base_layer.weight.quant_type}) new_module = Linear4bit(target, adapter_name, is_feedforward=is_feedforward, **fourbit_kwargs) elif isinstance(target, torch.nn.Conv2d): new_module = Conv2d(target, adapter_name, is_feedforward=is_feedforward, **kwargs) elif isinstance(target_base_layer, torch.nn.Linear): if kwargs['fan_in_fan_out']: warnings.warn('fan_in_fan_out is set to True but the target module is `torch.nn.Linear`. Setting fan_in_fan_out to False.') kwargs['fan_in_fan_out'] = ia3_config.fan_in_fan_out = False new_module = Linear(target, adapter_name, is_feedforward=is_feedforward, **kwargs) elif isinstance(target_base_layer, Conv1D): if not kwargs['fan_in_fan_out']: warnings.warn('fan_in_fan_out is set to False but the target module is `Conv1D`. Setting fan_in_fan_out to True.') kwargs['fan_in_fan_out'] = ia3_config.fan_in_fan_out = True new_module = Linear(target, adapter_name, is_feedforward=is_feedforward, is_target_conv_1d_layer=True, **kwargs) else: raise ValueError(f'Target module {target} is not supported. Currently, only `torch.nn.Linear`, `torch.nn.Conv2d`, and `Conv1D` are supported.') return new_module @staticmethod def _check_target_module_exists(ia3_config, key): return check_target_module_exists(ia3_config, key) def _mark_only_adapters_as_trainable(self, model: nn.Module) -> None: for (n, p) in model.named_parameters(): if self.prefix not in n: p.requires_grad = False def _create_and_replace(self, ia3_config, adapter_name, target, target_name, parent, current_key): is_feedforward = self._check_target_module_feedforward(ia3_config, current_key) kwargs = {'fan_in_fan_out': ia3_config.fan_in_fan_out, 'init_ia3_weights': ia3_config.init_ia3_weights, 'is_feedforward': is_feedforward, 'loaded_in_8bit': getattr(self.model, 'is_loaded_in_8bit', False), 'loaded_in_4bit': getattr(self.model, 'is_loaded_in_4bit', False)} if isinstance(target, IA3Layer): target.update_layer(adapter_name, ia3_config.init_ia3_weights) else: new_module = self._create_new_module(ia3_config, adapter_name, target, **kwargs) if adapter_name not in self.active_adapters: new_module.requires_grad_(False) self._replace_module(parent, target_name, new_module, target) @staticmethod def _check_target_module_feedforward(ia3_config, key) -> bool: if isinstance(ia3_config.feedforward_modules, str): is_feedforward = bool(re.fullmatch(ia3_config.feedforward_modules, key)) else: is_feedforward = any((key.endswith(target_key) for target_key in ia3_config.feedforward_modules)) return is_feedforward def _replace_module(self, parent, child_name, new_module, child): setattr(parent, child_name, new_module) if hasattr(child, 'base_layer'): child = child.base_layer if not hasattr(new_module, 'base_layer'): new_module.weight = child.weight if hasattr(child, 'bias'): new_module.bias = child.bias if getattr(child, 'state', None) is not None: if hasattr(new_module, 'base_layer'): new_module.base_layer.state = child.state else: new_module.state = child.state new_module.to(child.weight.device) for (name, module) in new_module.named_modules(): if self.prefix in name: module.to(child.weight.device) def __getattr__(self, name: str): try: return super().__getattr__(name) except AttributeError: if name == 'model': raise return getattr(self.model, name) def get_peft_config_as_dict(self, inference: bool=False): config_dict = {} for (key, value) in self.peft_config.items(): config = {k: v.value if isinstance(v, Enum) else v for (k, v) in asdict(value).items()} if inference: config['inference_mode'] = True config_dict[key] = config return config def _set_adapter_layers(self, enabled=True): for module in self.model.modules(): if isinstance(module, (IA3Layer, ModulesToSaveWrapper)): module.enable_adapters(enabled) def enable_adapter_layers(self) -> None: self._set_adapter_layers(enabled=True) def disable_adapter_layers(self) -> None: self._set_adapter_layers(enabled=False) def set_adapter(self, adapter_name: str | list[str]) -> None: for module in self.model.modules(): if isinstance(module, IA3Layer): if module.merged: warnings.warn('Adapter cannot be set when the model is merged. Unmerging the model first.') module.unmerge() module.set_adapter(adapter_name) self.active_adapter = adapter_name @staticmethod def _prepare_adapter_config(peft_config, model_config): if peft_config.target_modules is None: if model_config['model_type'] not in TRANSFORMERS_MODELS_TO_IA3_TARGET_MODULES_MAPPING: raise ValueError('Please specify `target_modules` in `peft_config`') peft_config.target_modules = set(TRANSFORMERS_MODELS_TO_IA3_TARGET_MODULES_MAPPING[model_config['model_type']]) if peft_config.feedforward_modules is None: if model_config['model_type'] not in TRANSFORMERS_MODELS_TO_IA3_FEEDFORWARD_MODULES_MAPPING: raise ValueError('Please specify `feedforward_modules` in `peft_config`') peft_config.feedforward_modules = set(TRANSFORMERS_MODELS_TO_IA3_FEEDFORWARD_MODULES_MAPPING[model_config['model_type']]) return peft_config def _unload_and_optionally_merge(self, merge: bool=True, safe_merge: bool=False, adapter_names: Optional[list[str]]=None): if getattr(self.model, 'is_loaded_in_8bit', False): raise ValueError('Cannot merge ia3 layers when the model is loaded in 8-bit mode') if getattr(self.model, 'is_loaded_in_4bit', False): raise ValueError('Cannot merge ia3 layers when the model is loaded in 4-bit mode') self._unloading_checks(adapter_names) key_list = [key for (key, _) in self.model.named_modules() if self.prefix not in key] for key in key_list: try: (parent, target, target_name) = _get_submodules(self.model, key) except AttributeError: continue if hasattr(target, 'base_layer'): if merge: target.merge(safe_merge=safe_merge, adapter_names=adapter_names) self._replace_module(parent, target_name, target.get_base_layer(), target) elif isinstance(target, ModulesToSaveWrapper): new_module = target.modules_to_save[target.active_adapter] if hasattr(new_module, 'base_layer'): if merge: new_module.merge(safe_merge=safe_merge, adapter_names=adapter_names) new_module = new_module.get_base_layer() setattr(parent, target_name, new_module) return self.model def merge_and_unload(self, safe_merge: bool=False, adapter_names: Optional[list[str]]=None) -> torch.nn.Module: return self._unload_and_optionally_merge(safe_merge=safe_merge, adapter_names=adapter_names) def unload(self) -> torch.nn.Module: return self._unload_and_optionally_merge(merge=False) def delete_adapter(self, adapter_name: str) -> None: if adapter_name not in self.peft_config: raise ValueError(f'Adapter {adapter_name} does not exist') del self.peft_config[adapter_name] key_list = [key for (key, _) in self.model.named_modules() if self.prefix not in key] new_adapter = None for key in key_list: (_, target, _) = _get_submodules(self.model, key) if isinstance(target, IA3Layer): target.delete_adapter(adapter_name) if new_adapter is None: new_adapter = target.active_adapters[:] self.active_adapter = new_adapter or [] def _check_add_weighted_adapter(self, adapters: list[str]) -> tuple[str, str]: for adapter in adapters: if adapter not in self.peft_config: raise ValueError(f'Adapter {adapter} does not exist') modules_to_save_wrappers = [module for module in self.modules() if isinstance(module, ModulesToSaveWrapper)] if any((sum((adapter in wrapper.modules_to_save for adapter in adapters)) > 1 for wrapper in modules_to_save_wrappers)): raise ValueError('Cannot add weighted adapters targeting the same module with modules_to_save.') target_module_types = {type(self.peft_config[adapter].target_modules) for adapter in adapters} feedforward_module_types = {type(self.peft_config[adapter].feedforward_modules) for adapter in adapters} if len(target_module_types) > 1 or len(feedforward_module_types) > 1: raise ValueError('All adapter configs should have the same type for target and feedforward modules.') if str in target_module_types: new_target_modules = '|'.join((f'({self.peft_config[adapter].target_modules})' for adapter in adapters)) else: new_target_modules = set.union(*(self.peft_config[adapter].target_modules for adapter in adapters)) if str in feedforward_module_types: new_feedforward_modules = '|'.join((f'({self.peft_config[adapter].feedforward_modules})' for adapter in adapters)) else: new_feedforward_modules = set.union(*(self.peft_config[adapter].feedforward_modules for adapter in adapters)) return (new_target_modules, new_feedforward_modules) def add_weighted_adapter(self, adapters: list[str], weights: list[float], adapter_name: str) -> None: if adapter_name in list(self.peft_config.keys()): return (new_target_modules, new_feedforward_modules) = self._check_add_weighted_adapter(adapters=adapters) self.peft_config[adapter_name] = replace(self.peft_config[adapters[0]], target_modules=new_target_modules, feedforward_modules=new_feedforward_modules) self.inject_adapter(self.model, adapter_name) _freeze_adapter(self.model, adapter_name) key_list = [key for (key, _) in self.model.named_modules() if self.prefix not in key] for key in key_list: (_, target, _) = _get_submodules(self.model, key) if isinstance(target, IA3Layer): if adapter_name in target.ia3_l: target_ia3_l = target.ia3_l[adapter_name] else: continue target_ia3_l.data = target_ia3_l.data.zero_() for (adapter, weight) in zip(adapters, weights): if adapter in target.ia3_l: current_adapter_ia3_l = target.ia3_l[adapter] else: continue target_ia3_l.data += current_adapter_ia3_l.data * weight # File: peft-main/src/peft/tuners/ln_tuning/config.py from __future__ import annotations from dataclasses import dataclass, field from typing import Optional, Union from peft.config import PeftConfig from peft.utils import PeftType @dataclass class LNTuningConfig(PeftConfig): target_modules: Optional[Union[list[str], str]] = field(default=None, metadata={'help': "List of module names or regex expression of the module names to replace with LNTuning.For example, '.*decoder.*' or '.*encoder.*'. If not specified, modules will be chosen according to the model architecture, If the architecture is not known, an error will be raised -- in this case, you shoud specify the target modules manually."}) modules_to_save: Optional[Union[list[str], str]] = field(default=None, metadata={'help': 'List of modules to be set as trainable and saved in the final checkpoint. For example, in Sequence Classification or Token Classification tasks, the final layer `classifier/score` are randomly initialized and as such need to be trainable and saved.'}) def __post_init__(self): self.peft_type = PeftType.LN_TUNING # File: peft-main/src/peft/tuners/ln_tuning/layer.py import warnings from copy import deepcopy from typing import List, Optional import torch import torch.nn as nn from peft.tuners.tuners_utils import BaseTunerLayer, check_adapters_to_merge class LNTuningLayer(nn.Module, BaseTunerLayer): adapter_layer_names = ('ln_tuning_layers',) def __init__(self, base_layer: nn.Module, adapter_name: str): super().__init__() self.base_layer = base_layer self.ln_tuning_layers = nn.ModuleDict({}) self.update_layer(self.base_layer, adapter_name) self._active_adapter = adapter_name self.merged_adapters = [] def update_layer(self, layer: nn.Module, adapter_name: str): self.ln_tuning_layers[adapter_name] = deepcopy(layer) def enable_adapters(self, enabled: bool) -> None: if enabled: self.set_adapter(self.active_adapters) self._disable_adapters = False else: if self.merged: self.unmerge() for layer_name in self.adapter_layer_names: layer = getattr(self, layer_name) layer.requires_grad_(False) self._disable_adapters = True def merge(self, adapter_names: Optional[List[str]]=None): adapter_names = check_adapters_to_merge(self, adapter_names) if not adapter_names: return if len(adapter_names) > 1: raise ValueError(f'Trying to merge {len(adapter_names)} adapters, but LN tuning does not allow merging more than one adapter at a time') merged_adapters = set(self.merged_adapters) if merged_adapters: warnings.warn(f'Already merged with {merged_adapters}. Unmerging first.') self.unmerge() (self.base_layer, self.ln_tuning_layers[adapter_names[0]]) = (self.ln_tuning_layers[adapter_names[0]], self.base_layer) self.merged_adapters.append(adapter_names[0]) def unmerge(self): if not self.merged: warnings.warn('Already unmerged. Nothing to do.') return merged_name = self.merged_adapters.pop() (self.base_layer, self.ln_tuning_layers[merged_name]) = (self.ln_tuning_layers[merged_name], self.base_layer) def forward(self, x: torch.Tensor, *args, **kwargs) -> torch.Tensor: if self.disable_adapters: if self.merged: self.unmerge() result = self.base_layer(x, *args, **kwargs) elif self.merged: result = self.base_layer(x, *args, **kwargs) else: if len(self.active_adapters) != 1: raise ValueError(f'Trying to run forward with {len(self.active_adapters)} active adapters, but LN tuning does not allow inference with more than one adapter at a time') active_adapter = self.active_adapters[0] result = self.ln_tuning_layers[active_adapter](x, *args, **kwargs) return result def __repr__(self) -> str: rep = super().__repr__() return 'ln_tuning.' + rep # File: peft-main/src/peft/tuners/ln_tuning/model.py from __future__ import annotations import warnings from typing import Optional from torch import nn from torch.nn.modules import Module from tqdm import tqdm from peft.config import PeftConfig from peft.tuners.tuners_utils import BaseTuner, _get_submodules, check_target_module_exists from peft.utils import TRANSFORMERS_MODELS_TO_LNTUNING_TARGET_MODULES_MAPPING, ModulesToSaveWrapper from .layer import LNTuningLayer class LNTuningModel(BaseTuner): prefix: str = 'ln_tuning_' def __init__(self, model, config, adapter_name) -> None: super().__init__(model, config, adapter_name) def __getattr__(self, name: str): try: return super().__getattr__(name) except AttributeError: if name == 'model': raise return getattr(self.model, name) @staticmethod def _prepare_adapter_config(peft_config: PeftConfig, model_config: dict) -> PeftConfig: if peft_config.target_modules is None: if model_config['model_type'] not in TRANSFORMERS_MODELS_TO_LNTUNING_TARGET_MODULES_MAPPING: raise ValueError('Please specify `target_modules` in `peft_config`') peft_config.target_modules = set(TRANSFORMERS_MODELS_TO_LNTUNING_TARGET_MODULES_MAPPING[model_config['model_type']]) return peft_config def _create_and_replace(self, peft_config: PeftConfig, adapter_name: str, target: Module, target_name: str, parent: Module, current_key: str) -> None: new_module = self._create_new_module(peft_config, target, adapter_name) if adapter_name != self.active_adapter: new_module.requires_grad_(False) self._replace_module(parent, target_name, new_module, target) def _create_new_module(self, peft_config: PeftConfig, target: Module, adapter_name: str) -> Module: if not isinstance(target, LNTuningLayer): new_module = LNTuningLayer(target, adapter_name) else: new_module = target new_module.update_layer(target.base_layer, adapter_name) return new_module def _replace_module(self, parent: Module, child_name: str, new_module: Module, child: Module) -> None: setattr(parent, child_name, new_module) if hasattr(child, 'base_layer'): child = child.base_layer if getattr(child, 'state', None) is not None: if hasattr(new_module, 'base_layer'): new_module.base_layer.state = child.state else: new_module.state = child.state new_module.to(child.weight.device) for (name, module) in new_module.named_modules(): weight = child.qweight if hasattr(child, 'qweight') else child.weight module.to(weight.device) def _mark_only_adapters_as_trainable(self, model: Module): for (n, p) in model.named_parameters(): if self.prefix not in n: p.requires_grad = False else: p.requires_grad = True def _check_target_module_exists(self, peft_config: PeftConfig, key: str) -> bool: return check_target_module_exists(peft_config, key) def _set_adapter_layers(self, enabled: bool) -> None: for module in self.model.modules(): if isinstance(module, (LNTuningLayer, ModulesToSaveWrapper)): module.enable_adapters(enabled) def enable_adapter_layers(self) -> None: self._set_adapter_layers(enabled=True) def disable_adapter_layers(self) -> None: self._set_adapter_layers(enabled=False) def set_adapter(self, adapter_name: str) -> None: for module in self.model.modules(): if isinstance(module, LNTuningLayer): if module.merged: warnings.warn('Adapter cannot be set when the model is merged. Unmerging the model first.') module.unmerge() module.set_adapter(adapter_name) self.active_adapter = adapter_name def _unload_and_optionally_merge(self, merge=True, progressbar: bool=False, safe_merge: bool=False, adapter_names: Optional[list[str]]=None): self._unloading_checks(adapter_names) key_list = [key for (key, _) in self.model.named_modules() if self.prefix not in key] desc = 'Unloading adapters ' + ('and merging ' if merge else '') + 'model' for key in tqdm(key_list, disable=not progressbar, desc=desc): try: (parent, target, target_name) = _get_submodules(self.model, key) except AttributeError: continue if hasattr(target, 'base_layer'): if merge: target.merge(adapter_names) self._replace_module(parent, target_name, target.get_base_layer(), target) return self.model def unload(self): return self._unload_and_optionally_merge(merge=False) def merge_and_unload(self, progressbar: bool=False, safe_merge: bool=False, adapter_names: Optional[list[str]]=None) -> nn.Module: return self._unload_and_optionally_merge(merge=True) # File: peft-main/src/peft/tuners/loha/config.py from dataclasses import dataclass, field from typing import List, Optional, Union from peft.tuners.lycoris_utils import LycorisConfig from peft.utils import PeftType @dataclass class LoHaConfig(LycorisConfig): r: int = field(default=8, metadata={'help': 'LoHa rank'}) alpha: int = field(default=8, metadata={'help': 'LoHa alpha'}) rank_dropout: float = field(default=0.0, metadata={'help': 'The dropout probability for rank dimension during training'}) module_dropout: float = field(default=0.0, metadata={'help': 'The dropout probability for disabling LoHa modules during training'}) use_effective_conv2d: bool = field(default=False, metadata={'help': 'Use parameter effective decomposition for Conv2d 3x3 with ksize > 1 ("Proposition 3" from FedPara paper)'}) target_modules: Optional[Union[List[str], str]] = field(default=None, metadata={'help': "List of module names or regex expression of the module names to replace with LoHa.For example, ['q', 'v'] or '.*decoder.*(SelfAttention|EncDecAttention).*(q|v)$' This can also be a wildcard 'all-linear' which matches all linear/Conv1D layers except the output layer."}) init_weights: bool = field(default=True, metadata={'help': "Whether to initialize the weights of the LoHa layers with their default initialization. Don't change this setting, except if you know exactly what you're doing."}) layers_to_transform: Optional[Union[List[int], int]] = field(default=None, metadata={'help': 'The layer indexes to transform, is this argument is specified, PEFT will transform only the layers indexes that are specified inside this list. If a single integer is passed, PEFT will transform only the layer at this index.'}) layers_pattern: Optional[str] = field(default=None, metadata={'help': 'The layer pattern name, used only if `layers_to_transform` is different to None and if the layer pattern is not in the common layers pattern.'}) modules_to_save: Optional[List[str]] = field(default=None, metadata={'help': 'List of modules apart from LoHA layers to be set as trainable and saved in the final checkpoint. For example, in Sequence Classification or Token Classification tasks, the final layer `classifier/score` are randomly initialized and as such need to be trainable and saved.'}) def __post_init__(self): self.peft_type = PeftType.LOHA self.target_modules = set(self.target_modules) if isinstance(self.target_modules, list) else self.target_modules # File: peft-main/src/peft/tuners/loha/layer.py import math from typing import Any, Set, Tuple import torch import torch.nn as nn import torch.nn.functional as F from peft.tuners.lycoris_utils import LycorisLayer class LoHaLayer(nn.Module, LycorisLayer): adapter_layer_names = ('hada_w1_a', 'hada_w1_b', 'hada_w2_a', 'hada_w2_b', 'hada_t1', 'hada_t2') def __init__(self, base_layer: nn.Module): super().__init__() LycorisLayer.__init__(self, base_layer) self.hada_w1_a = nn.ParameterDict({}) self.hada_w1_b = nn.ParameterDict({}) self.hada_w2_a = nn.ParameterDict({}) self.hada_w2_b = nn.ParameterDict({}) self.hada_t1 = nn.ParameterDict({}) self.hada_t2 = nn.ParameterDict({}) @property def _available_adapters(self) -> Set[str]: return {*self.hada_w1_a, *self.hada_w1_b, *self.hada_w2_a, *self.hada_w2_b, *self.hada_t1, *self.hada_t2} def create_adapter_parameters(self, adapter_name: str, r: int, shape: Tuple[int, ...]): if len(shape) == 4: self.hada_t1[adapter_name] = nn.Parameter(torch.empty(r, r, shape[2], shape[3])) self.hada_w1_a[adapter_name] = nn.Parameter(torch.empty(r, shape[0])) self.hada_w1_b[adapter_name] = nn.Parameter(torch.empty(r, shape[1])) self.hada_t2[adapter_name] = nn.Parameter(torch.empty(r, r, shape[2], shape[3])) self.hada_w2_a[adapter_name] = nn.Parameter(torch.empty(r, shape[0])) self.hada_w2_b[adapter_name] = nn.Parameter(torch.empty(r, shape[1])) else: self.hada_w1_a[adapter_name] = nn.Parameter(torch.empty(shape[0], r)) self.hada_w1_b[adapter_name] = nn.Parameter(torch.empty(r, shape[1])) self.hada_w2_a[adapter_name] = nn.Parameter(torch.empty(shape[0], r)) self.hada_w2_b[adapter_name] = nn.Parameter(torch.empty(r, shape[1])) def reset_adapter_parameters(self, adapter_name: str): if adapter_name in self.hada_w1_a.keys(): nn.init.kaiming_uniform_(self.hada_w1_a[adapter_name], a=math.sqrt(5)) nn.init.kaiming_uniform_(self.hada_w1_b[adapter_name], a=math.sqrt(5)) nn.init.kaiming_uniform_(self.hada_w2_a[adapter_name], a=math.sqrt(5)) nn.init.zeros_(self.hada_w2_b[adapter_name]) if adapter_name in self.hada_t1.keys(): nn.init.kaiming_uniform_(self.hada_t1[adapter_name], a=math.sqrt(5)) nn.init.kaiming_uniform_(self.hada_t2[adapter_name], a=math.sqrt(5)) def reset_adapter_parameters_random(self, adapter_name: str): if adapter_name in self.hada_w1_a.keys(): nn.init.kaiming_uniform_(self.hada_w1_a[adapter_name], a=math.sqrt(5)) nn.init.kaiming_uniform_(self.hada_w1_b[adapter_name], a=math.sqrt(5)) nn.init.kaiming_uniform_(self.hada_w2_a[adapter_name], a=math.sqrt(5)) nn.init.kaiming_uniform_(self.hada_w2_b[adapter_name], a=math.sqrt(5)) if adapter_name in self.hada_t1.keys(): nn.init.kaiming_uniform_(self.hada_t1[adapter_name], a=math.sqrt(5)) nn.init.kaiming_uniform_(self.hada_t2[adapter_name], a=math.sqrt(5)) def update_layer(self, adapter_name: str, r: int, alpha: float, rank_dropout: float, module_dropout: float, init_weights: bool, use_effective_conv2d: bool=False, **kwargs) -> None: if r <= 0: raise ValueError(f'`r` should be a positive integer value but the value passed is {r}') self.r[adapter_name] = r self.alpha[adapter_name] = alpha self.scaling[adapter_name] = alpha / r self.rank_dropout[adapter_name] = rank_dropout self.module_dropout[adapter_name] = module_dropout base_layer = self.get_base_layer() if isinstance(base_layer, nn.Linear): shape = tuple(base_layer.weight.shape) elif isinstance(base_layer, nn.Conv2d): use_effective_conv2d = use_effective_conv2d and base_layer.kernel_size != (1, 1) if use_effective_conv2d: shape = (base_layer.out_channels, base_layer.in_channels, *base_layer.kernel_size) else: shape = (base_layer.out_channels, base_layer.in_channels * base_layer.kernel_size[0] * base_layer.kernel_size[1]) else: raise TypeError(f'LoHa is not implemented for base layers of type {type(base_layer).__name__}') self.create_adapter_parameters(adapter_name, r, shape) if init_weights: self.reset_adapter_parameters(adapter_name) else: self.reset_adapter_parameters_random(adapter_name) self._move_adapter_to_device_of_base_layer(adapter_name) self.set_adapter(self.active_adapters) def get_delta_weight(self, adapter_name: str) -> torch.Tensor: if adapter_name in self.hada_t1.keys(): weight = make_weight_cp(self.hada_t1[adapter_name], self.hada_w1_a[adapter_name], self.hada_w1_b[adapter_name], self.hada_t2[adapter_name], self.hada_w2_a[adapter_name], self.hada_w2_b[adapter_name], scale=torch.tensor(self.scaling[adapter_name])) else: weight = make_weight(self.hada_w1_a[adapter_name], self.hada_w1_b[adapter_name], self.hada_w2_a[adapter_name], self.hada_w2_b[adapter_name], scale=torch.tensor(self.scaling[adapter_name])) base_layer = self.get_base_layer() weight = weight.reshape(base_layer.weight.shape) rank_dropout = self.rank_dropout[adapter_name] if self.training and rank_dropout: drop = (torch.rand(weight.size(0)) > rank_dropout).to(weight.dtype) drop = drop.view(-1, *[1] * len(weight.shape[1:])).to(weight.device) drop /= drop.mean() weight *= drop return weight def forward(self, x: torch.Tensor, *args, **kwargs) -> torch.Tensor: previous_dtype = x.dtype if self.disable_adapters: if self.merged: self.unmerge() result = self.base_layer(x, *args, **kwargs) elif self.merged: result = self.base_layer(x, *args, **kwargs) else: result = self.base_layer(x, *args, **kwargs) for active_adapter in self.active_adapters: if active_adapter not in self._available_adapters: continue module_dropout = self.module_dropout[active_adapter] if not self.training or (self.training and torch.rand(1) > module_dropout): result = result + self._get_delta_activations(active_adapter, x, *args, **kwargs) result = result.to(previous_dtype) return result class Linear(LoHaLayer): def __init__(self, base_layer: nn.Module, adapter_name: str='default', r: int=0, alpha: float=0.0, rank_dropout: float=0.0, module_dropout: float=0.0, init_weights: bool=True, **kwargs): super().__init__(base_layer) self._active_adapter = adapter_name self.update_layer(adapter_name, r, alpha, rank_dropout, module_dropout, init_weights, **kwargs) def _get_delta_activations(self, adapter_name: str, input: torch.Tensor, *args: Any, **kwargs: Any) -> torch.Tensor: delta_weight = self.get_delta_weight(adapter_name) return F.linear(input, delta_weight) def __repr__(self) -> str: rep = super().__repr__() return 'loha.' + rep class Conv2d(LoHaLayer): def __init__(self, base_layer: nn.Module, adapter_name: str='default', r: int=0, alpha: float=0.0, rank_dropout: float=0.0, module_dropout: float=0.0, use_effective_conv2d: bool=False, init_weights: bool=True, **kwargs): super().__init__(base_layer) self._active_adapter = adapter_name self.update_layer(adapter_name, r, alpha, rank_dropout, module_dropout, init_weights, use_effective_conv2d, **kwargs) def _get_delta_activations(self, adapter_name: str, input: torch.Tensor, *args: Any, **kwargs: Any) -> torch.Tensor: delta_weight = self.get_delta_weight(adapter_name) base_layer = self.get_base_layer() return F.conv2d(input, delta_weight, stride=base_layer.stride, padding=base_layer.padding, dilation=base_layer.dilation, groups=base_layer.groups) def __repr__(self) -> str: rep = super().__repr__() return 'loha.' + rep class HadaWeight(torch.autograd.Function): @staticmethod def forward(ctx, w1a, w1b, w2a, w2b, scale=torch.tensor(1)): ctx.save_for_backward(w1a, w1b, w2a, w2b, scale) diff_weight = w1a @ w1b * (w2a @ w2b) * scale return diff_weight @staticmethod def backward(ctx, grad_out): (w1a, w1b, w2a, w2b, scale) = ctx.saved_tensors grad_out = grad_out * scale temp = grad_out * (w2a @ w2b) grad_w1a = temp @ w1b.T grad_w1b = w1a.T @ temp temp = grad_out * (w1a @ w1b) grad_w2a = temp @ w2b.T grad_w2b = w2a.T @ temp del temp return (grad_w1a, grad_w1b, grad_w2a, grad_w2b, None) class HadaWeightCP(torch.autograd.Function): @staticmethod def forward(ctx, t1, w1a, w1b, t2, w2a, w2b, scale=torch.tensor(1)): ctx.save_for_backward(t1, w1a, w1b, t2, w2a, w2b, scale) rebuild1 = torch.einsum('i j k l, j r, i p -> p r k l', t1, w1b, w1a) rebuild2 = torch.einsum('i j k l, j r, i p -> p r k l', t2, w2b, w2a) return rebuild1 * rebuild2 * scale @staticmethod def backward(ctx, grad_out): (t1, w1a, w1b, t2, w2a, w2b, scale) = ctx.saved_tensors grad_out = grad_out * scale temp = torch.einsum('i j k l, j r -> i r k l', t2, w2b) rebuild = torch.einsum('i j k l, i r -> r j k l', temp, w2a) grad_w = rebuild * grad_out del rebuild grad_w1a = torch.einsum('r j k l, i j k l -> r i', temp, grad_w) grad_temp = torch.einsum('i j k l, i r -> r j k l', grad_w, w1a.T) del grad_w, temp grad_w1b = torch.einsum('i r k l, i j k l -> r j', t1, grad_temp) grad_t1 = torch.einsum('i j k l, j r -> i r k l', grad_temp, w1b.T) del grad_temp temp = torch.einsum('i j k l, j r -> i r k l', t1, w1b) rebuild = torch.einsum('i j k l, i r -> r j k l', temp, w1a) grad_w = rebuild * grad_out del rebuild grad_w2a = torch.einsum('r j k l, i j k l -> r i', temp, grad_w) grad_temp = torch.einsum('i j k l, i r -> r j k l', grad_w, w2a.T) del grad_w, temp grad_w2b = torch.einsum('i r k l, i j k l -> r j', t2, grad_temp) grad_t2 = torch.einsum('i j k l, j r -> i r k l', grad_temp, w2b.T) del grad_temp return (grad_t1, grad_w1a, grad_w1b, grad_t2, grad_w2a, grad_w2b, None) def make_weight(w1a, w1b, w2a, w2b, scale): return HadaWeight.apply(w1a, w1b, w2a, w2b, scale) def make_weight_cp(t1, w1a, w1b, t2, w2a, w2b, scale): return HadaWeightCP.apply(t1, w1a, w1b, t2, w2a, w2b, scale) # File: peft-main/src/peft/tuners/loha/model.py import re from itertools import chain from typing import Dict, Type, Union import torch from torch import nn from peft.tuners.lycoris_utils import LycorisConfig, LycorisTuner from .layer import Conv2d, Linear, LoHaLayer class LoHaModel(LycorisTuner): prefix: str = 'hada_' layers_mapping: Dict[Type[torch.nn.Module], Type[LoHaLayer]] = {torch.nn.Conv2d: Conv2d, torch.nn.Linear: Linear} def _create_and_replace(self, config: LycorisConfig, adapter_name: str, target: Union[LoHaLayer, nn.Module], target_name: str, parent: nn.Module, current_key: str) -> None: pattern_keys = list(chain(config.rank_pattern.keys(), config.alpha_pattern.keys())) target_name_key = next(filter(lambda key: re.match(f'(.*\\.)?{key}$', current_key), pattern_keys), target_name) kwargs = config.to_dict() kwargs['r'] = config.rank_pattern.get(target_name_key, config.r) kwargs['alpha'] = config.alpha_pattern.get(target_name_key, config.alpha) if isinstance(target, LoHaLayer): target.update_layer(adapter_name, **kwargs) else: new_module = self._create_new_module(config, adapter_name, target, **kwargs) self._replace_module(parent, target_name, new_module, target) # File: peft-main/src/peft/tuners/lokr/config.py from dataclasses import dataclass, field from typing import List, Optional, Union from peft.tuners.lycoris_utils import LycorisConfig from peft.utils import PeftType @dataclass class LoKrConfig(LycorisConfig): r: int = field(default=8, metadata={'help': 'LoKr rank'}) alpha: int = field(default=8, metadata={'help': 'LoKr alpha'}) rank_dropout: float = field(default=0.0, metadata={'help': 'The dropout probability for rank dimension during training'}) module_dropout: float = field(default=0.0, metadata={'help': 'The dropout probability for disabling LoKr modules during training'}) use_effective_conv2d: bool = field(default=False, metadata={'help': 'Use parameter effective decomposition for Conv2d 3x3 with ksize > 1 ("Proposition 3" from FedPara paper)'}) decompose_both: bool = field(default=False, metadata={'help': 'Perform rank decomposition of left kronecker product matrix.'}) decompose_factor: int = field(default=-1, metadata={'help': 'Kronecker product decomposition factor.'}) target_modules: Optional[Union[List[str], str]] = field(default=None, metadata={'help': "List of module names or regex expression of the module names to replace with LoKr.For example, ['q', 'v'] or '.*decoder.*(SelfAttention|EncDecAttention).*(q|v)$' This can also be a wildcard 'all-linear' which matches all linear/Conv1D layers except the output layer."}) init_weights: bool = field(default=True, metadata={'help': "Whether to initialize the weights of the LoKr layers with their default initialization. Don't change this setting, except if you know exactly what you're doing."}) layers_to_transform: Optional[Union[List[int], int]] = field(default=None, metadata={'help': 'The layer indexes to transform, is this argument is specified, PEFT will transform only the layers indexes that are specified inside this list. If a single integer is passed, PEFT will transform only the layer at this index.'}) layers_pattern: Optional[str] = field(default=None, metadata={'help': 'The layer pattern name, used only if `layers_to_transform` is different to None and if the layer pattern is not in the common layers pattern.'}) modules_to_save: Optional[List[str]] = field(default=None, metadata={'help': 'List of modules apart from LoKr layers to be set as trainable and saved in the final checkpoint. For example, in Sequence Classification or Token Classification tasks, the final layer `classifier/score` are randomly initialized and as such need to be trainable and saved.'}) def __post_init__(self): self.peft_type = PeftType.LOKR # File: peft-main/src/peft/tuners/lokr/layer.py import math from typing import Any, Optional, Set, Tuple, Union import torch import torch.nn as nn import torch.nn.functional as F from peft.tuners.lycoris_utils import LycorisLayer class LoKrLayer(nn.Module, LycorisLayer): adapter_layer_names = ('lokr_w1', 'lokr_w1_a', 'lokr_w1_b', 'lokr_w2', 'lokr_w2_a', 'lokr_w2_b', 'lokr_t2') def __init__(self, base_layer: nn.Module) -> None: super().__init__() LycorisLayer.__init__(self, base_layer) self.lokr_w1 = nn.ParameterDict({}) self.lokr_w1_a = nn.ParameterDict({}) self.lokr_w1_b = nn.ParameterDict({}) self.lokr_w2 = nn.ParameterDict({}) self.lokr_w2_a = nn.ParameterDict({}) self.lokr_w2_b = nn.ParameterDict({}) self.lokr_t2 = nn.ParameterDict({}) @property def _available_adapters(self) -> Set[str]: return {*self.lokr_w1, *self.lokr_w1_a, *self.lokr_w1_b, *self.lokr_w2, *self.lokr_w2_a, *self.lokr_w2_b, *self.lokr_t2} def create_adapter_parameters(self, adapter_name: str, r: int, shape, use_w1: bool, use_w2: bool, use_effective_conv2d: bool): if use_w1: self.lokr_w1[adapter_name] = nn.Parameter(torch.empty(shape[0][0], shape[1][0])) else: self.lokr_w1_a[adapter_name] = nn.Parameter(torch.empty(shape[0][0], r)) self.lokr_w1_b[adapter_name] = nn.Parameter(torch.empty(r, shape[1][0])) if len(shape) == 4: if use_w2: self.lokr_w2[adapter_name] = nn.Parameter(torch.empty(shape[0][1], shape[1][1], *shape[2:])) elif use_effective_conv2d: self.lokr_t2[adapter_name] = nn.Parameter(torch.empty(r, r, shape[2], shape[3])) self.lokr_w2_a[adapter_name] = nn.Parameter(torch.empty(r, shape[0][1])) self.lokr_w2_b[adapter_name] = nn.Parameter(torch.empty(r, shape[1][1])) else: self.lokr_w2_a[adapter_name] = nn.Parameter(torch.empty(shape[0][1], r)) self.lokr_w2_b[adapter_name] = nn.Parameter(torch.empty(r, shape[1][1] * shape[2] * shape[3])) elif use_w2: self.lokr_w2[adapter_name] = nn.Parameter(torch.empty(shape[0][1], shape[1][1])) else: self.lokr_w2_a[adapter_name] = nn.Parameter(torch.empty(shape[0][1], r)) self.lokr_w2_b[adapter_name] = nn.Parameter(torch.empty(r, shape[1][1])) def reset_adapter_parameters(self, adapter_name: str): if adapter_name in self.lokr_w1: nn.init.zeros_(self.lokr_w1[adapter_name]) else: nn.init.zeros_(self.lokr_w1_a[adapter_name]) nn.init.kaiming_uniform_(self.lokr_w1_b[adapter_name], a=math.sqrt(5)) if adapter_name in self.lokr_w2: nn.init.kaiming_uniform_(self.lokr_w2[adapter_name], a=math.sqrt(5)) else: nn.init.kaiming_uniform_(self.lokr_w2_a[adapter_name], a=math.sqrt(5)) nn.init.kaiming_uniform_(self.lokr_w2_b[adapter_name], a=math.sqrt(5)) if adapter_name in self.lokr_t2: nn.init.kaiming_uniform_(self.lokr_t2[adapter_name], a=math.sqrt(5)) def reset_adapter_parameters_random(self, adapter_name: str): if adapter_name in self.lokr_w1: nn.init.kaiming_uniform_(self.lokr_w1[adapter_name], a=math.sqrt(5)) else: nn.init.kaiming_uniform_(self.lokr_w1_a[adapter_name], a=math.sqrt(5)) nn.init.kaiming_uniform_(self.lokr_w1_b[adapter_name], a=math.sqrt(5)) if adapter_name in self.lokr_w2: nn.init.kaiming_uniform_(self.lokr_w2[adapter_name], a=math.sqrt(5)) else: nn.init.kaiming_uniform_(self.lokr_w2_a[adapter_name], a=math.sqrt(5)) nn.init.kaiming_uniform_(self.lokr_w2_b[adapter_name], a=math.sqrt(5)) if adapter_name in self.lokr_t2: nn.init.kaiming_uniform_(self.lokr_t2[adapter_name], a=math.sqrt(5)) def update_layer(self, adapter_name: str, r: int, alpha: float, rank_dropout: float, module_dropout: float, init_weights: bool, use_effective_conv2d: bool, decompose_both: bool, decompose_factor: int, **kwargs) -> None: if r <= 0: raise ValueError(f'`r` should be a positive integer value but the value passed is {r}') self.r[adapter_name] = r self.alpha[adapter_name] = alpha self.scaling[adapter_name] = alpha / r self.rank_dropout[adapter_name] = rank_dropout self.module_dropout[adapter_name] = module_dropout base_layer = self.get_base_layer() if isinstance(base_layer, nn.Linear): (in_dim, out_dim) = (base_layer.in_features, base_layer.out_features) (in_m, in_n) = factorization(in_dim, decompose_factor) (out_l, out_k) = factorization(out_dim, decompose_factor) shape = ((out_l, out_k), (in_m, in_n)) use_w1 = not (decompose_both and r < max(shape[0][0], shape[1][0]) / 2) use_w2 = not r < max(shape[0][1], shape[1][1]) / 2 use_effective_conv2d = False elif isinstance(base_layer, nn.Conv2d): (in_dim, out_dim) = (base_layer.in_channels, base_layer.out_channels) k_size = base_layer.kernel_size (in_m, in_n) = factorization(in_dim, decompose_factor) (out_l, out_k) = factorization(out_dim, decompose_factor) shape = ((out_l, out_k), (in_m, in_n), *k_size) use_w1 = not (decompose_both and r < max(shape[0][0], shape[1][0]) / 2) use_w2 = r >= max(shape[0][1], shape[1][1]) / 2 use_effective_conv2d = use_effective_conv2d and base_layer.kernel_size != (1, 1) else: raise TypeError(f'LoKr is not implemented for base layers of type {type(base_layer).__name__}') self.create_adapter_parameters(adapter_name, r, shape, use_w1, use_w2, use_effective_conv2d) if init_weights: self.reset_adapter_parameters(adapter_name) else: self.reset_adapter_parameters_random(adapter_name) self._move_adapter_to_device_of_base_layer(adapter_name) self.set_adapter(self.active_adapters) def get_delta_weight(self, adapter_name: str) -> torch.Tensor: if adapter_name in self.lokr_w1: w1 = self.lokr_w1[adapter_name] else: w1 = self.lokr_w1_a[adapter_name] @ self.lokr_w1_b[adapter_name] if adapter_name in self.lokr_w2: w2 = self.lokr_w2[adapter_name] elif adapter_name in self.lokr_t2: w2 = make_weight_cp(self.lokr_t2[adapter_name], self.lokr_w2_a[adapter_name], self.lokr_w2_b[adapter_name]) else: w2 = self.lokr_w2_a[adapter_name] @ self.lokr_w2_b[adapter_name] weight = make_kron(w1, w2) weight = weight.reshape(self.get_base_layer().weight.shape) rank_dropout = self.rank_dropout[adapter_name] if self.training and rank_dropout: drop = (torch.rand(weight.size(0)) > rank_dropout).float() drop = drop.view(-1, *[1] * len(weight.shape[1:])).to(weight.device) drop /= drop.mean() weight *= drop return weight def forward(self, x: torch.Tensor, *args, **kwargs) -> torch.Tensor: previous_dtype = x.dtype if self.disable_adapters: if self.merged: self.unmerge() result = self.base_layer(x, *args, **kwargs) elif self.merged: result = self.base_layer(x, *args, **kwargs) else: result = self.base_layer(x, *args, **kwargs) for active_adapter in self.active_adapters: if active_adapter not in self._available_adapters: continue module_dropout = self.module_dropout[active_adapter] if not self.training or (self.training and torch.rand(1) > module_dropout): result = result + self._get_delta_activations(active_adapter, x, *args, **kwargs) result = result.to(previous_dtype) return result class Linear(LoKrLayer): def __init__(self, base_layer: nn.Module, device: Optional[Union[str, torch.device]]=None, dtype: Optional[torch.dtype]=None, adapter_name: str='default', r: int=0, alpha: float=0.0, rank_dropout: float=0.0, module_dropout: float=0.0, init_weights: bool=True, **kwargs): super().__init__(base_layer) self._active_adapter = adapter_name self.update_layer(adapter_name, r, alpha, rank_dropout, module_dropout, init_weights, **kwargs) def _get_delta_activations(self, adapter_name: str, input: torch.Tensor, *args: Any, **kwargs: Any) -> torch.Tensor: delta_weight = self.get_delta_weight(adapter_name) return F.linear(input, delta_weight) def __repr__(self) -> str: rep = super().__repr__() return 'lokr.' + rep class Conv2d(LoKrLayer): def __init__(self, base_layer: nn.Module, device: Optional[Union[str, torch.device]]=None, dtype: Optional[torch.dtype]=None, adapter_name: str='default', r: int=0, alpha: float=0.0, rank_dropout: float=0.0, module_dropout: float=0.0, use_effective_conv2d: bool=False, init_weights: bool=True, **kwargs): super().__init__(base_layer) self._active_adapter = adapter_name self.update_layer(adapter_name, r, alpha, rank_dropout, module_dropout, init_weights, use_effective_conv2d, **kwargs) def _get_delta_activations(self, adapter_name: str, input: torch.Tensor, *args: Any, **kwargs: Any) -> torch.Tensor: delta_weight = self.get_delta_weight(adapter_name) base_layer = self.get_base_layer() return F.conv2d(input, delta_weight, stride=base_layer.stride, padding=base_layer.padding, dilation=base_layer.dilation, groups=base_layer.groups) def __repr__(self) -> str: rep = super().__repr__() return 'lokr.' + rep def factorization(dimension: int, factor: int=-1) -> Tuple[int, int]: if factor > 0 and dimension % factor == 0: m = factor n = dimension // factor return (m, n) if factor == -1: factor = dimension (m, n) = (1, dimension) length = m + n while m < n: new_m = m + 1 while dimension % new_m != 0: new_m += 1 new_n = dimension // new_m if new_m + new_n > length or new_m > factor: break else: (m, n) = (new_m, new_n) if m > n: (n, m) = (m, n) return (m, n) def make_weight_cp(t, wa, wb): rebuild2 = torch.einsum('i j k l, i p, j r -> p r k l', t, wa, wb) return rebuild2 def make_kron(w1, w2, scale=1.0): if len(w2.shape) == 4: w1 = w1.unsqueeze(2).unsqueeze(2) w2 = w2.contiguous() rebuild = torch.kron(w1, w2) return rebuild * scale # File: peft-main/src/peft/tuners/lokr/model.py import re from itertools import chain from typing import Dict, Type, Union import torch from torch import nn from peft.tuners.lycoris_utils import LycorisConfig, LycorisTuner from .layer import Conv2d, Linear, LoKrLayer class LoKrModel(LycorisTuner): prefix: str = 'lokr_' layers_mapping: Dict[Type[torch.nn.Module], Type[LoKrLayer]] = {torch.nn.Conv2d: Conv2d, torch.nn.Linear: Linear} def _create_and_replace(self, config: LycorisConfig, adapter_name: str, target: Union[LoKrLayer, nn.Module], target_name: str, parent: nn.Module, current_key: str) -> None: pattern_keys = list(chain(config.rank_pattern.keys(), config.alpha_pattern.keys())) target_name_key = next(filter(lambda key: re.match(f'(.*\\.)?{key}$', current_key), pattern_keys), target_name) kwargs = config.to_dict() kwargs['r'] = config.rank_pattern.get(target_name_key, config.r) kwargs['alpha'] = config.alpha_pattern.get(target_name_key, config.alpha) if isinstance(target, LoKrLayer): target.update_layer(adapter_name, **kwargs) else: new_module = self._create_new_module(config, adapter_name, target, **kwargs) self._replace_module(parent, target_name, new_module, target) # File: peft-main/src/peft/tuners/lora/__init__.py from peft.import_utils import is_bnb_4bit_available, is_bnb_available, is_eetq_available from .config import LoftQConfig, LoraConfig, LoraRuntimeConfig from .gptq import QuantLinear from .layer import Conv2d, Embedding, Linear, LoraLayer from .model import LoraModel __all__ = ['LoraConfig', 'LoraRuntimeConfig', 'LoftQConfig', 'Conv2d', 'Embedding', 'LoraLayer', 'Linear', 'LoraModel', 'QuantLinear'] def __getattr__(name): if name == 'Linear8bitLt' and is_bnb_available(): from .bnb import Linear8bitLt return Linear8bitLt if name == 'Linear4bit' and is_bnb_4bit_available(): from .bnb import Linear4bit return Linear4bit if name == 'EetqLoraLinear' and is_eetq_available(): from .eetq import EetqLoraLinear return EetqLoraLinear raise AttributeError(f'module {__name__} has no attribute {name}') # File: peft-main/src/peft/tuners/lora/aqlm.py from typing import Any, Optional import torch from peft.import_utils import is_aqlm_available from peft.tuners.lora.layer import LoraLayer from peft.tuners.tuners_utils import BaseTunerLayer if is_aqlm_available(): from aqlm import QuantizedLinear class AqlmLoraLinear(torch.nn.Module, LoraLayer): def __init__(self, base_layer, adapter_name: str, r: int=0, lora_alpha: int=1, lora_dropout: float=0.0, init_lora_weights: bool=True, use_rslora: bool=False, **kwargs): super().__init__() LoraLayer.__init__(self, base_layer) self._active_adapter = adapter_name self.update_layer(adapter_name, r, lora_alpha, lora_dropout, init_lora_weights, use_rslora) def forward(self, x: torch.Tensor): result = self.base_layer(x) if self.disable_adapters: return result for active_adapter in self.active_adapters: if active_adapter not in self.lora_A.keys(): continue lora_A = self.lora_A[active_adapter] lora_B = self.lora_B[active_adapter] dropout = self.lora_dropout[active_adapter] scaling = self.scaling[active_adapter] requires_conversion = not torch.is_autocast_enabled() if requires_conversion: expected_dtype = result.dtype x = x.to(lora_A.weight.dtype) output = lora_B(lora_A(dropout(x))) if requires_conversion: output = output.to(expected_dtype) output = output * scaling result += output return result def __repr__(self) -> str: rep = super().__repr__() return 'lora.' + rep def dispatch_aqlm(target: torch.nn.Module, adapter_name: str, **kwargs: Any) -> Optional[torch.nn.Module]: new_module = None if isinstance(target, BaseTunerLayer): target_base_layer = target.get_base_layer() else: target_base_layer = target if is_aqlm_available() and isinstance(target_base_layer, QuantizedLinear): new_module = AqlmLoraLinear(target, adapter_name, **kwargs) target.qweight = target_base_layer.codes return new_module # File: peft-main/src/peft/tuners/lora/awq.py import importlib.metadata as importlib_metadata from typing import Any, Optional import packaging.version import torch from peft.import_utils import is_auto_awq_available from peft.tuners.lora.layer import LoraLayer from peft.tuners.tuners_utils import BaseTunerLayer if is_auto_awq_available(): from awq.modules.linear import WQLinear_GEMM class AwqLoraLinear(torch.nn.Module, LoraLayer): def __init__(self, base_layer, adapter_name, r: int=0, lora_alpha: int=1, lora_dropout: float=0.0, init_lora_weights: bool=True, use_rslora: bool=False, **kwargs): super().__init__() LoraLayer.__init__(self, base_layer) self.quant_linear_module = base_layer self._active_adapter = adapter_name self.update_layer(adapter_name, r, lora_alpha, lora_dropout, init_lora_weights, use_rslora) def forward(self, x: torch.Tensor): result = self.quant_linear_module(x) if self.disable_adapters: return result for active_adapter in self.active_adapters: if active_adapter not in self.lora_A.keys(): continue lora_A = self.lora_A[active_adapter] lora_B = self.lora_B[active_adapter] dropout = self.lora_dropout[active_adapter] scaling = self.scaling[active_adapter] requires_conversion = not torch.is_autocast_enabled() if requires_conversion: expected_dtype = result.dtype x = x.to(lora_A.weight.dtype) output = lora_B(lora_A(dropout(x))) if requires_conversion: output = output.to(expected_dtype) output = output * scaling result = result + output return result def __repr__(self) -> str: rep = super().__repr__() return 'lora.' + rep def dispatch_awq(target: torch.nn.Module, adapter_name: str, **kwargs: Any) -> Optional[torch.nn.Module]: new_module = None if isinstance(target, BaseTunerLayer): target_base_layer = target.get_base_layer() else: target_base_layer = target if is_auto_awq_available() and isinstance(target_base_layer, WQLinear_GEMM): AUTOAWQ_MINIMUM_VERSION = packaging.version.parse('0.2.0') version_autoawq = packaging.version.parse(importlib_metadata.version('autoawq')) if AUTOAWQ_MINIMUM_VERSION > version_autoawq: raise ImportError(f'Found an incompatible version of auto-awq. Found version {version_autoawq}, but only versions above {AUTOAWQ_MINIMUM_VERSION} are supported for PEFT.') new_module = AwqLoraLinear(target, adapter_name, **kwargs) target.qweight = target_base_layer.qweight return new_module # File: peft-main/src/peft/tuners/lora/bnb.py from __future__ import annotations import warnings from typing import Any, Optional import bitsandbytes as bnb import torch from peft.import_utils import is_bnb_4bit_available, is_bnb_available from peft.tuners.tuners_utils import BaseTunerLayer, check_adapters_to_merge from peft.utils.integrations import dequantize_bnb_weight from peft.utils.other import transpose from .layer import LoraLayer if is_bnb_available(): class Linear8bitLt(torch.nn.Module, LoraLayer): def __init__(self, base_layer: torch.nn.Module, adapter_name: str, r: int=0, lora_alpha: int=1, lora_dropout: float=0.0, init_lora_weights: bool=True, use_rslora: bool=False, use_dora: bool=False, **kwargs) -> None: super().__init__() LoraLayer.__init__(self, base_layer) self.fan_in_fan_out = False self._active_adapter = adapter_name self.update_layer(adapter_name, r, lora_alpha=lora_alpha, lora_dropout=lora_dropout, init_lora_weights=init_lora_weights, use_rslora=use_rslora, use_dora=use_dora) def merge(self, safe_merge: bool=False, adapter_names: Optional[list[str]]=None) -> None: adapter_names = check_adapters_to_merge(self, adapter_names) if not adapter_names: return for active_adapter in adapter_names: if active_adapter not in self.lora_A.keys(): continue warnings.warn('Merge lora module to 8-bit linear may get different generations due to rounding errors.') lora_data = self.get_delta_weight(active_adapter) weight = self.get_base_layer().weight state = self.get_base_layer().state if state.SCB is None: state.SCB = weight.SCB output = dequantize_bnb_weight(weight, state=state) if not self.use_dora[active_adapter]: w_data = output.to(lora_data.dtype).to(lora_data.device) + lora_data else: weight_norm = self.lora_magnitude_vector[active_adapter].get_weight_norm(output, lora_data, scaling=1).detach() self._cache_store(f'{active_adapter}-weight_norm', weight_norm) dora_factor = self.lora_magnitude_vector[active_adapter].weight / weight_norm w_data = dora_factor.view(-1, 1) * (output + lora_data) if safe_merge and (not torch.isfinite(w_data).all()): raise ValueError(f'NaNs detected in the merged weights. The adapter {active_adapter} seems to be broken') self.get_base_layer().weight = bnb.nn.Int8Params(w_data.to('cpu'), requires_grad=False, has_fp16_weights=weight.has_fp16_weights).to(weight.device) state.reset_grads() self.merged_adapters.append(active_adapter) def unmerge(self) -> None: if not self.merged: warnings.warn('Already unmerged. Nothing to do.') return while len(self.merged_adapters) > 0: active_adapter = self.merged_adapters.pop() if active_adapter not in self.lora_A.keys(): continue warnings.warn('Unmerge lora module to 8-bit linear may get different generations due to rounding errors.') lora_data = self.get_delta_weight(active_adapter) weight = self.get_base_layer().weight state = self.get_base_layer().state if state.SCB is None: state.SCB = weight.SCB output = dequantize_bnb_weight(weight, state=state) if not self.use_dora[active_adapter]: w_data = output.to(lora_data.dtype).to(lora_data.device) - lora_data else: weight_norm = self._cache_pop(f'{active_adapter}-weight_norm') dora_factor = self.lora_magnitude_vector[active_adapter].weight / weight_norm w_data = output.data / dora_factor.view(-1, 1) - lora_data self.get_base_layer().weight = bnb.nn.Int8Params(w_data.to('cpu'), requires_grad=False, has_fp16_weights=weight.has_fp16_weights).to(weight.device) state.reset_grads() def get_delta_weight(self, adapter): return transpose(self.lora_B[adapter].weight @ self.lora_A[adapter].weight, False) * self.scaling[adapter] def _mixed_batch_forward(self, x: torch.Tensor, *args: Any, adapter_names: list[str], **kwargs: Any) -> torch.Tensor: result = self.base_layer(x, *args, **kwargs) unique_adapters = set(adapter_names) sub_batch_indices_list = [] for adapter in unique_adapters: sub_batch_indices_list.append([index for (index, item) in enumerate(adapter_names) if item == adapter]) for (i, active_adapter) in enumerate(unique_adapters): if active_adapter == '__base__': continue if active_adapter not in self.lora_A.keys(): continue lora_A = self.lora_A[active_adapter] lora_B = self.lora_B[active_adapter] dropout = self.lora_dropout[active_adapter] scaling = self.scaling[active_adapter] requires_conversion = not torch.is_autocast_enabled() if requires_conversion: expected_dtype = result.dtype compute_dtype = lora_A.weight.dtype if x.dtype != compute_dtype: x = x.to(compute_dtype) sub_batch = x[sub_batch_indices_list[i]] output = lora_B(lora_A(dropout(sub_batch))) * scaling if requires_conversion: output = output.to(expected_dtype) result[sub_batch_indices_list[i]] += output return result def forward(self, x: torch.Tensor, *args, **kwargs) -> torch.Tensor: self._check_forward_args(x, *args, **kwargs) adapter_names = kwargs.pop('adapter_names', None) if self.disable_adapters: if self.merged: self.unmerge() result = self.base_layer(x, *args, **kwargs) elif adapter_names is not None: result = self._mixed_batch_forward(x, *args, adapter_names=adapter_names, **kwargs) elif self.merged: result = self.base_layer(x, *args, **kwargs) else: result = self.base_layer(x, *args, **kwargs) for active_adapter in self.active_adapters: if active_adapter not in self.lora_A.keys(): continue lora_A = self.lora_A[active_adapter] lora_B = self.lora_B[active_adapter] dropout = self.lora_dropout[active_adapter] scaling = self.scaling[active_adapter] requires_conversion = not torch.is_autocast_enabled() if requires_conversion: expected_dtype = result.dtype compute_dtype = lora_A.weight.dtype if x.dtype != compute_dtype: x = x.to(compute_dtype) if not self.use_dora[active_adapter]: output = lora_B(lora_A(dropout(x))) * scaling else: x = dropout(x) output = self.lora_magnitude_vector[active_adapter](x, lora_A=lora_A, lora_B=lora_B, scaling=scaling, base_layer=self.get_base_layer()) if requires_conversion: output = output.to(expected_dtype) result = result + output return result def __repr__(self) -> str: rep = super().__repr__() return 'lora.' + rep def dispatch_bnb_8bit(target: torch.nn.Module, adapter_name: str, **kwargs): new_module = None if isinstance(target, BaseTunerLayer): target_base_layer = target.get_base_layer() else: target_base_layer = target loaded_in_8bit = kwargs.get('loaded_in_8bit', False) if loaded_in_8bit and isinstance(target_base_layer, bnb.nn.Linear8bitLt): eightbit_kwargs = kwargs.copy() eightbit_kwargs.update({'has_fp16_weights': target.state.has_fp16_weights, 'memory_efficient_backward': target.state.memory_efficient_backward, 'threshold': target.state.threshold, 'index': target.index}) new_module = Linear8bitLt(target, adapter_name, **eightbit_kwargs) return new_module if is_bnb_4bit_available(): class Linear4bit(torch.nn.Module, LoraLayer): def __init__(self, base_layer: torch.nn.Module, adapter_name: str, r: int=0, lora_alpha: int=1, lora_dropout: float=0.0, init_lora_weights: bool=True, use_rslora: bool=False, use_dora: bool=False, **kwargs) -> None: super().__init__() LoraLayer.__init__(self, base_layer) self.fan_in_fan_out = False self._active_adapter = adapter_name self.update_layer(adapter_name, r, lora_alpha=lora_alpha, lora_dropout=lora_dropout, init_lora_weights=init_lora_weights, use_rslora=use_rslora, use_dora=use_dora) def merge(self, safe_merge: bool=False, adapter_names: Optional[list[str]]=None) -> None: adapter_names = check_adapters_to_merge(self, adapter_names) if not adapter_names: return for active_adapter in adapter_names: if active_adapter not in self.lora_A.keys(): continue warnings.warn('Merge lora module to 4-bit linear may get different generations due to rounding errors.') weight = self.get_base_layer().weight kwargs = weight.__dict__ lora_data = self.get_delta_weight(active_adapter) output = dequantize_bnb_weight(weight, state=weight.quant_state) if not self.use_dora[active_adapter]: w_data = output + lora_data else: weight_norm = self.lora_magnitude_vector[active_adapter].get_weight_norm(output, lora_data, scaling=1).detach() self._cache_store(f'{active_adapter}-weight_norm', weight_norm) dora_factor = self.lora_magnitude_vector[active_adapter].weight / weight_norm w_data = dora_factor.view(-1, 1) * (output + lora_data) if safe_merge and (not torch.isfinite(w_data).all()): raise ValueError(f'NaNs detected in the merged weights. The adapter {active_adapter} seems to be broken') if 'bnb_quantized' in kwargs: kwargs['bnb_quantized'] = False kwargs['requires_grad'] = False kwargs.pop('data', None) self.get_base_layer().weight = bnb.nn.Params4bit(w_data.to('cpu'), **kwargs).to(weight.device) self.merged_adapters.append(active_adapter) def unmerge(self) -> None: if not self.merged: warnings.warn('Already unmerged. Nothing to do.') return while len(self.merged_adapters) > 0: active_adapter = self.merged_adapters.pop() if active_adapter not in self.lora_A.keys(): continue warnings.warn('Unmerge lora module to 4-bit linear may get different generations due to rounding errors.') lora_data = self.get_delta_weight(active_adapter) weight = self.get_base_layer().weight kwargs = weight.__dict__ output = dequantize_bnb_weight(weight, state=weight.quant_state) if not self.use_dora[active_adapter]: w_data = output - lora_data else: weight_norm = self._cache_pop(f'{active_adapter}-weight_norm') dora_factor = self.lora_magnitude_vector[active_adapter].weight / weight_norm w_data = output.data / dora_factor.view(-1, 1) - lora_data if 'bnb_quantized' in kwargs: kwargs['bnb_quantized'] = False kwargs['requires_grad'] = False kwargs.pop('data', None) self.get_base_layer().weight = bnb.nn.Params4bit(w_data.to('cpu'), **kwargs).to(weight.device) def get_delta_weight(self, adapter): return transpose(self.lora_B[adapter].weight @ self.lora_A[adapter].weight, False) * self.scaling[adapter] def _mixed_batch_forward(self, x: torch.Tensor, *args: Any, adapter_names: list[str], **kwargs: Any) -> torch.Tensor: result = self.base_layer(x, *args, **kwargs) unique_adapters = set(adapter_names) sub_batch_indices_list = [] for adapter in unique_adapters: sub_batch_indices_list.append([index for (index, item) in enumerate(adapter_names) if item == adapter]) for (i, active_adapter) in enumerate(unique_adapters): if active_adapter == '__base__': continue if active_adapter not in self.lora_A.keys(): continue lora_A = self.lora_A[active_adapter] lora_B = self.lora_B[active_adapter] dropout = self.lora_dropout[active_adapter] scaling = self.scaling[active_adapter] requires_conversion = not torch.is_autocast_enabled() if requires_conversion: expected_dtype = result.dtype x = x.to(lora_A.weight.dtype) sub_batch = x[sub_batch_indices_list[i]] output = lora_B(lora_A(dropout(sub_batch))) * scaling if requires_conversion: output = output.to(expected_dtype) result[sub_batch_indices_list[i]] += output return result def forward(self, x: torch.Tensor, *args, **kwargs) -> torch.Tensor: self._check_forward_args(x, *args, **kwargs) adapter_names = kwargs.pop('adapter_names', None) if self.disable_adapters: if self.merged: self.unmerge() result = self.base_layer(x, *args, **kwargs) elif adapter_names is not None: result = self._mixed_batch_forward(x, *args, adapter_names=adapter_names, **kwargs) elif self.merged: result = self.base_layer(x, *args, **kwargs) else: result = self.base_layer(x, *args, **kwargs) result = result.clone() for active_adapter in self.active_adapters: if active_adapter not in self.lora_A.keys(): continue lora_A = self.lora_A[active_adapter] lora_B = self.lora_B[active_adapter] dropout = self.lora_dropout[active_adapter] scaling = self.scaling[active_adapter] requires_conversion = not torch.is_autocast_enabled() if requires_conversion: expected_dtype = result.dtype x = x.to(lora_A.weight.dtype) if not self.use_dora[active_adapter]: output = lora_B(lora_A(dropout(x))) * scaling else: x = dropout(x) output = self.lora_magnitude_vector[active_adapter](x, lora_A=lora_A, lora_B=lora_B, scaling=scaling, base_layer=self.get_base_layer()) if requires_conversion: output = output.to(expected_dtype) result = result + output return result def __repr__(self) -> str: rep = super().__repr__() return 'lora.' + rep def dispatch_bnb_4bit(target: torch.nn.Module, adapter_name: str, **kwargs): new_module = None if isinstance(target, BaseTunerLayer): target_base_layer = target.get_base_layer() else: target_base_layer = target loaded_in_4bit = kwargs.get('loaded_in_4bit', False) if loaded_in_4bit and is_bnb_4bit_available() and isinstance(target_base_layer, bnb.nn.Linear4bit): fourbit_kwargs = kwargs.copy() fourbit_kwargs.update({'compute_dtype': target_base_layer.compute_dtype, 'compress_statistics': target_base_layer.weight.compress_statistics, 'quant_type': target_base_layer.weight.quant_type}) new_module = Linear4bit(target, adapter_name, **fourbit_kwargs) return new_module # File: peft-main/src/peft/tuners/lora/config.py from __future__ import annotations import warnings from dataclasses import dataclass, field from typing import Literal, Optional, Union from torch import nn from peft.config import PeftConfig from peft.utils import PeftType @dataclass class LoraRuntimeConfig: ephemeral_gpu_offload: bool = field(default=False, metadata={'help': 'Whether to use ephemeral GPU offloading for models partially kept in CPU memory. Ephemeral GPU offloading result in the data involved in intense operations being momentarily copied over to the GPU, and the results copied back to CPU. There is a momentary VRAM overhead, but operations are generally orders of magnitude faster compared to performing them on the CPU. This is useful when parts of the model and/or components (such as adapters) are kept in CPU memory until they are needed. Rather than perform expensive operations on small data, the data is transferred to the GPU on-demand, the operation(s) performed, and the results moved back to CPU memory. Currently only affects DoRA initialization.'}) @dataclass class LoftQConfig: loftq_bits: int = field(default=4, metadata={'help': 'Quantization bits for LoftQ'}) loftq_iter: int = field(default=1, metadata={'help': 'Alternating iterations for LoftQ'}) @dataclass class LoraConfig(PeftConfig): r: int = field(default=8, metadata={'help': 'Lora attention dimension'}) target_modules: Optional[Union[list[str], str]] = field(default=None, metadata={'help': "List of module names or regex expression of the module names to replace with LoRA.For example, ['q', 'v'] or '.*decoder.*(SelfAttention|EncDecAttention).*(q|v)$'.This can also be a wildcard 'all-linear' which matches all linear/Conv1D layers except the output layer.If not specified, modules will be chosen according to the model architecture, If the architecture is not known, an error will be raised -- in this case, you should specify the target modules manually."}) lora_alpha: int = field(default=8, metadata={'help': 'Lora alpha'}) lora_dropout: float = field(default=0.0, metadata={'help': 'Lora dropout'}) fan_in_fan_out: bool = field(default=False, metadata={'help': 'Set this to True if the layer to replace stores weight like (fan_in, fan_out)'}) bias: Literal['none', 'all', 'lora_only'] = field(default='none', metadata={'help': "Bias type for Lora. Can be 'none', 'all' or 'lora_only'"}) use_rslora: bool = field(default=False, metadata={'help': "When set to True, uses Rank-Stabilized LoRA which sets the adapter scaling factor to `lora_alpha/math.sqrt(r)`, since it was proven to work better. Otherwise, it will use the original default value of `lora_alpha/r`."}) modules_to_save: Optional[list[str]] = field(default=None, metadata={'help': 'List of modules apart from LoRA layers to be set as trainable and saved in the final checkpoint. For example, in Sequence Classification or Token Classification tasks, the final layer `classifier/score` are randomly initialized and as such need to be trainable and saved.'}) init_lora_weights: bool | Literal['gaussian', 'olora', 'pissa', 'pissa_niter_[number of iters]', 'loftq'] = field(default=True, metadata={'help': "How to initialize the weights of the LoRA layers. Passing `'True'` (default) results in the default initialization from the reference implementation from Microsoft. Passing `'gaussian'` results in Gaussian initialization scaled by the LoRA rank for linear and layers. Setting the initialization to `'False'` leads to completely random initialization and *is discouraged.*Passing `'olora'` results in OLoRA initialization.Passing `'pissa'` results in PiSSA initialization.Passing `'pissa_niter_[number of iters]'` initiates Fast-SVD-based PiSSA initialization, where [number of iters] indicates the number of subspace iterations to perform fsvd, and must be a nonnegative integer.Pass `'loftq'` to use LoftQ initialization"}) layers_to_transform: Optional[Union[list[int], int]] = field(default=None, metadata={'help': 'The layer indexes to transform, is this argument is specified, PEFT will transform only the layers indexes that are specified inside this list. If a single integer is passed, PEFT will transform only the layer at this index. This only works when target_modules is a list of str.'}) layers_pattern: Optional[Union[list[str], str]] = field(default=None, metadata={'help': 'The layer pattern name, used only if `layers_to_transform` is different to None and if the layer pattern is not in the common layers pattern.This only works when target_modules is a list of str.'}) rank_pattern: Optional[dict] = field(default_factory=dict, metadata={'help': 'The mapping from layer names or regexp expression to ranks which are different from the default rank specified by `r`. For example, `{model.decoder.layers.0.encoder_attn.k_proj: 8`}'}) alpha_pattern: Optional[dict] = field(default_factory=dict, metadata={'help': 'The mapping from layer names or regexp expression to alphas which are different from the default alpha specified by `lora_alpha`. For example, `{model.decoder.layers.0.encoder_attn.k_proj: 32`}'}) megatron_config: Optional[dict] = field(default=None, metadata={'help': "The TransformerConfig from Megatron. It is used to create LoRA's parallel linear layer.You can get it like this, `core_transformer_config_from_args(get_args())`, these two functions being from Megatron.You need to specify this parameter when you want to apply LoRA to the ColumnParallelLinear and RowParallelLinear layers of megatron.It should be noted that we may not be able to use the `save_pretrained` and `from_pretrained` functions, because TransformerConfig may not necessarily be serialized.But when using megatron, we can use `get_peft_model_state_dict` function and megatron's framework, they can also save and load models and configurations."}) megatron_core: Optional[str] = field(default='megatron.core', metadata={'help': "The core module from Megatron, it is used to create LoRA's parallel linear layer. It only needs to be passed in when you need to use your own modified megatron core module. Otherwise, it will use the default value `megatron.core`. "}) loftq_config: Union[LoftQConfig, dict] = field(default_factory=dict, metadata={'help': "The configuration of LoftQ. If this is passed, then LoftQ will be used to quantize the backbone weights and initialize Lora layers. Also set `init_lora_weights='loftq'` in this case."}) use_dora: bool = field(default=False, metadata={'help': "Enable 'Weight-Decomposed Low-Rank Adaptation' (DoRA). This technique decomposes the updates of the weights into two parts, magnitude and direction. Direction is handled by normal LoRA, whereas the magnitude is handled by a separate learnable parameter. This can improve the performance of LoRA, especially at low ranks. Right now, DoRA only supports linear and Conv2D layers. DoRA introduces a biggeroverhead than pure LoRA, so it is recommended to merge weights for inference."}) layer_replication: Optional[list[tuple[int, int]]] = field(default=None, metadata={'help': 'This enables using LoRA to effectively expand a transformer model to a larger size by repeating some layers. The transformation handles models (currently Llama, Bert or Falcon compatible architectures) with a module list in the model which it modifies to expand the number of modules. Base weights are shared so the memory usage is close to the original model. The intended use is these base weights remain fixed during finetuning but each layer has a separate LoRA adapter so the layers can be specialed via the adapter layers fit during fine tuning.The format is a list of [start, end) pairs which specify the layer ranges to stack. For example:\n Original model has 5 layers labelled by their position in the model: `[0, 1, 2, 3, 4]`\n layer_replication: `[[0, 4], [2, 5]]`\n Final model will have this arrangement of original layers: `[0, 1, 2, 3, 2, 3, 4]`\nThis format is based on what is used for pass-through merges in mergekit. It makes it simple to select sequential ranges of a model and stack them while reusing layers at either end of each sequence.'}) runtime_config: LoraRuntimeConfig = field(default_factory=LoraRuntimeConfig, metadata={'help': 'Runtime configurations'}) def to_dict(self): rv = super().to_dict() rv.pop('runtime_config') return rv def __post_init__(self): self.peft_type = PeftType.LORA self.target_modules = set(self.target_modules) if isinstance(self.target_modules, list) else self.target_modules if isinstance(self.target_modules, str) and self.layers_to_transform is not None: raise ValueError('`layers_to_transform` cannot be used when `target_modules` is a str.') if isinstance(self.target_modules, str) and self.layers_pattern is not None: raise ValueError('`layers_pattern` cannot be used when `target_modules` is a str.') if self.use_dora and self.megatron_config: raise ValueError('DoRA does not support megatron_core, please set `use_dora=False`.') if self.init_lora_weights == 'loftq': import importlib if not importlib.util.find_spec('scipy'): raise ImportError("The required package 'scipy' is not installed. Please install it to continue.") if self.loftq_config is None: raise ValueError("`loftq_config` must be specified when `init_lora_weights` is 'loftq'.") if self.use_rslora and (self.rank_pattern or self.alpha_pattern) and (isinstance(self.init_lora_weights, str) and self.init_lora_weights.startswith('pissa') or self.init_lora_weights == 'olora'): msg = "Using Rank-Stabilized LoRA with rank_pattern/alpha_pattern and post-training conversion of modified base weights (PiSSA, OLoRA) means that you won't be able to pass `path_initial_model_for_weight_conversion` to `save_pretrained` to restore the initial values of the base weights; if you intend to do this, please ensure not to use rslora or rank_pattern/alpha_pattern." warnings.warn(msg) if self.loftq_config and (not isinstance(self.loftq_config, dict)): self.loftq_config = vars(self.loftq_config) self._custom_modules: Optional[dict[type[nn.Mmodule], type[nn.Module]]] = None def _register_custom_module(self, mapping: dict[type[nn.Mmodule], type[nn.Module]]) -> None: if self._custom_modules is None: self._custom_modules = {} self._custom_modules.update(mapping) # File: peft-main/src/peft/tuners/lora/dora.py from copy import deepcopy import torch import torch.nn.functional as F from torch import nn from peft.utils.integrations import dequantize_module_weight, gather_params_ctx from peft.utils.other import transpose class DoraLinearLayer(nn.Module): def __init__(self, fan_in_fan_out): super().__init__() self.fan_in_fan_out = fan_in_fan_out def get_weight_norm(self, weight, lora_weight, scaling) -> torch.Tensor: weight = transpose(weight, self.fan_in_fan_out) weight = weight + scaling * lora_weight weight_norm = torch.linalg.norm(weight, dim=1).to(weight.dtype) return weight_norm def update_layer(self, *, base_layer, lora_A, lora_B, scaling, place_on_cpu=False) -> None: dtype_is_fp16 = lora_A.dtype == torch.float16 if dtype_is_fp16: lora_A = lora_A.float() lora_B = lora_B.float() with gather_params_ctx(base_layer.parameters()): if base_layer.__class__.__name__ == 'Linear4bit': base_layer = deepcopy(base_layer) weight = dequantize_module_weight(base_layer) if weight.data.ndim == 4: lora_weight = torch.mm(lora_B.flatten(start_dim=1), lora_A.flatten(start_dim=1)) lora_weight = lora_weight.reshape(weight.shape) else: lora_weight = lora_B @ lora_A if dtype_is_fp16: lora_weight = lora_weight.half() weight_norm = self.get_weight_norm(weight.to(lora_A.device), lora_weight, scaling) if place_on_cpu: weight_norm = weight_norm.to('cpu') self.weight = nn.Parameter(weight_norm, requires_grad=True) def forward(self, x, *, lora_A, lora_B, scaling, base_layer): lora_result = lora_B(lora_A(x)) x_eye = torch.eye(lora_A.weight.shape[1], device=lora_A.weight.device, dtype=x.dtype) lora_weight = lora_B(lora_A(x_eye)).T magnitude = self.weight weight = dequantize_module_weight(base_layer) weight = weight.to(x.dtype) weight_norm = self.get_weight_norm(weight, lora_weight.detach(), scaling) weight_norm = weight_norm.detach() mag_norm_scale = (magnitude / weight_norm).view(1, -1) result_dora = (mag_norm_scale - 1) * F.linear(x, transpose(weight, self.fan_in_fan_out)) + mag_norm_scale * lora_result * scaling return result_dora def __repr__(self) -> str: rep = super().__repr__() return 'lora.dora.' + rep class DoraEmbeddingLayer(DoraLinearLayer): def forward(self, x, *, lora_A, lora_B, scaling, base_layer, embed_fn): lora_weight = (lora_A @ lora_B).T magnitude = self.weight weight = base_layer.weight weight_norm = self.get_weight_norm(weight, lora_weight.detach(), scaling) weight_norm = weight_norm.detach() mag_norm_scale = magnitude / weight_norm result_dora = mag_norm_scale * (embed_fn(x, lora_A) @ lora_B) * scaling return (mag_norm_scale, result_dora) def __repr__(self) -> str: rep = super().__repr__() return 'lora.dora.' + rep class DoraConv2dLayer(DoraLinearLayer): def get_weight_norm(self, weight, lora_weight, scaling) -> torch.Tensor: weight = weight + scaling * lora_weight weight_norm = weight.norm(p=2, dim=(1, 2, 3), keepdim=True).transpose(1, 0) return weight_norm def forward(self, x, *, lora_A, lora_B, scaling, base_layer): weight = base_layer.weight lora_weight = torch.mm(lora_B.weight.flatten(start_dim=1), lora_A.weight.flatten(start_dim=1)) lora_weight = lora_weight.reshape(weight.shape) magnitude = self.weight weight_norm = self.get_weight_norm(weight, lora_weight.detach(), scaling) weight_norm = weight_norm.detach() mag_norm_scale = magnitude / weight_norm result_dora = (mag_norm_scale - 1) * F.conv2d(x, weight, bias=None, stride=base_layer.stride, padding=base_layer.padding, dilation=base_layer.dilation, groups=base_layer.groups) + mag_norm_scale * lora_B(lora_A(x)) * scaling return result_dora def __repr__(self) -> str: rep = super().__repr__() return 'lora.dora.' + rep # File: peft-main/src/peft/tuners/lora/eetq.py from typing import Any, List, Optional import torch from peft.import_utils import is_eetq_available from peft.tuners.lora.layer import LoraLayer from peft.tuners.tuners_utils import BaseTunerLayer if is_eetq_available(): from eetq import EetqLinear class EetqLoraLinear(torch.nn.Module, LoraLayer): def __init__(self, base_layer, adapter_name, r: int=0, lora_alpha: int=1, lora_dropout: float=0.0, init_lora_weights: bool=True, use_rslora: bool=False, **kwargs): super().__init__() LoraLayer.__init__(self, base_layer) self.quant_linear_module = base_layer self._active_adapter = adapter_name self.update_layer(adapter_name, r, lora_alpha, lora_dropout, init_lora_weights, use_rslora) def forward(self, x: torch.Tensor): result = self.quant_linear_module(x) if self.disable_adapters: return result for active_adapter in self.active_adapters: if active_adapter not in self.lora_A.keys(): continue lora_A = self.lora_A[active_adapter] lora_B = self.lora_B[active_adapter] dropout = self.lora_dropout[active_adapter] scaling = self.scaling[active_adapter] requires_conversion = not torch.is_autocast_enabled() if requires_conversion: expected_dtype = result.dtype x = x.to(lora_A.weight.dtype) output = lora_B(lora_A(dropout(x))) if requires_conversion: output = output.to(expected_dtype) output = output * scaling result = result + output return result def merge(self, safe_merge: bool=False, adapter_names: Optional[List[str]]=None) -> None: raise AttributeError('Merging LoRA layers is not supported for Eetq layers.') def unmerge(self) -> None: raise AttributeError('Unmerging LoRA layers is not supported for Eetq layers.') def __repr__(self) -> str: rep = super().__repr__() return 'lora.' + rep def dispatch_eetq(target: torch.nn.Module, adapter_name: str, **kwargs: Any) -> Optional[torch.nn.Module]: new_module = None if isinstance(target, BaseTunerLayer): target_base_layer = target.get_base_layer() else: target_base_layer = target if is_eetq_available() and isinstance(target_base_layer, EetqLinear): new_module = EetqLoraLinear(target, adapter_name, **kwargs) target.weight = target_base_layer.weight if hasattr(target, 'bias'): target.bias = target_base_layer.bias return new_module # File: peft-main/src/peft/tuners/lora/gptq.py from typing import Any, Optional import torch from peft.tuners.lora.layer import LoraLayer from peft.tuners.tuners_utils import BaseTunerLayer from peft.utils import get_auto_gptq_quant_linear class QuantLinear(torch.nn.Module, LoraLayer): def __init__(self, base_layer, adapter_name: str, r: int=0, lora_alpha: int=1, lora_dropout: float=0.0, init_lora_weights: bool=True, use_rslora: bool=False, use_dora: bool=False, **kwargs): super().__init__() LoraLayer.__init__(self, base_layer) if use_dora: raise ValueError(f'{self.__class__.__name__} does not support DoRA yet, please set it to False') self.quant_linear_module = base_layer self._active_adapter = adapter_name self.update_layer(adapter_name, r, lora_alpha=lora_alpha, lora_dropout=lora_dropout, init_lora_weights=init_lora_weights, use_rslora=use_rslora, use_dora=use_dora) def forward(self, x: torch.Tensor): result = self.quant_linear_module(x) if self.disable_adapters: return result for active_adapter in self.active_adapters: if active_adapter not in self.lora_A.keys(): continue lora_A = self.lora_A[active_adapter] lora_B = self.lora_B[active_adapter] dropout = self.lora_dropout[active_adapter] scaling = self.scaling[active_adapter] requires_conversion = not torch.is_autocast_enabled() if requires_conversion: expected_dtype = result.dtype x = x.to(lora_A.weight.dtype) output = lora_B(lora_A(dropout(x))) if requires_conversion: output = output.to(expected_dtype) output = output * scaling result += output return result def __repr__(self) -> str: rep = super().__repr__() return 'lora.' + rep def dispatch_gptq(target: torch.nn.Module, adapter_name: str, **kwargs: Any) -> Optional[torch.nn.Module]: new_module = None if isinstance(target, BaseTunerLayer): target_base_layer = target.get_base_layer() else: target_base_layer = target gptq_quantization_config = kwargs.get('gptq_quantization_config', None) AutoGPTQQuantLinear = get_auto_gptq_quant_linear(gptq_quantization_config) if AutoGPTQQuantLinear is not None and isinstance(target_base_layer, AutoGPTQQuantLinear): new_module = QuantLinear(target, adapter_name, **kwargs) target.qweight = target_base_layer.qweight return new_module # File: peft-main/src/peft/tuners/lora/hqq.py from __future__ import annotations import copy import warnings from typing import Any, Optional import torch from peft.import_utils import is_hqq_available from peft.tuners.tuners_utils import BaseTunerLayer, check_adapters_to_merge from peft.utils.other import transpose from .layer import LoraLayer if is_hqq_available(): from hqq.core.quantize import HQQLinear class HqqLoraLinear(torch.nn.Module, LoraLayer): def __init__(self, base_layer: torch.nn.Module, adapter_name: str, r: int=0, lora_alpha: int=1, lora_dropout: float=0.0, init_lora_weights: bool=True, use_rslora: bool=False, use_dora: bool=False, **kwargs) -> None: super().__init__() LoraLayer.__init__(self, base_layer) self.fan_in_fan_out = False self._active_adapter = adapter_name self.update_layer(adapter_name, r, lora_alpha=lora_alpha, lora_dropout=lora_dropout, init_lora_weights=init_lora_weights, use_rslora=use_rslora, use_dora=use_dora) def merge(self, safe_merge: bool=False, adapter_names: Optional[list[str]]=None) -> None: adapter_names = check_adapters_to_merge(self, adapter_names) if not adapter_names: return for active_adapter in adapter_names: if active_adapter not in self.lora_A.keys(): continue layer = self.get_base_layer() quant_config = {**copy.deepcopy(layer.quant_config), 'offload_meta': layer.offload_meta} lora_data = self.get_delta_weight(active_adapter) output = layer.dequantize() if not self.use_dora[active_adapter]: w_data = output + lora_data else: weight_norm = self._get_weight_norm(output, lora_data, scaling=1).detach() self._cache_store(f'{active_adapter}-weight_norm', weight_norm) dora_factor = self.lora_magnitude_vector[active_adapter] / weight_norm w_data = dora_factor.view(-1, 1) * (output + lora_data) if safe_merge and (not torch.isfinite(w_data).all()): raise ValueError(f'NaNs detected in the merged weights. The adapter {active_adapter} seems to be broken') new_hqq_layer = HQQLinear(None, quant_config, compute_dtype=layer.compute_dtype, device=layer.device) quant_config.pop('offload_meta', None) new_hqq_layer.quantize(w_data, **quant_config) self.base_layer = new_hqq_layer self.merged_adapters.append(active_adapter) def unmerge(self) -> None: if not self.merged: warnings.warn('Already unmerged. Nothing to do.') return while len(self.merged_adapters) > 0: active_adapter = self.merged_adapters.pop() if active_adapter not in self.lora_A.keys(): continue lora_data = self.get_delta_weight(active_adapter) layer = self.get_base_layer() quant_config = {**copy.deepcopy(layer.quant_config), 'offload_meta': layer.offload_meta} output = layer.dequantize() if not self.use_dora[active_adapter]: w_data = output - lora_data else: weight_norm = self._cache_pop(f'{active_adapter}-weight_norm') dora_factor = self.lora_magnitude_vector[active_adapter] / weight_norm w_data = output.data / dora_factor.view(-1, 1) - lora_data new_hqq_layer = HQQLinear(None, quant_config, compute_dtype=layer.compute_dtype, device=layer.device) quant_config.pop('offload_meta', None) new_hqq_layer.quantize(w_data, **quant_config) self.base_layer = new_hqq_layer def get_delta_weight(self, adapter): return transpose(self.lora_B[adapter].weight @ self.lora_A[adapter].weight, False) * self.scaling[adapter] def _mixed_batch_forward(self, x: torch.Tensor, *args: Any, adapter_names: list[str], **kwargs: Any) -> torch.Tensor: result = self.base_layer(x, *args, **kwargs) unique_adapters = set(adapter_names) sub_batch_indices_list = [] for adapter in unique_adapters: sub_batch_indices_list.append([index for (index, item) in enumerate(adapter_names) if item == adapter]) for (i, active_adapter) in enumerate(unique_adapters): if active_adapter == '__base__': continue if active_adapter not in self.lora_A.keys(): continue lora_A = self.lora_A[active_adapter] lora_B = self.lora_B[active_adapter] dropout = self.lora_dropout[active_adapter] scaling = self.scaling[active_adapter] requires_conversion = not torch.is_autocast_enabled() if requires_conversion: expected_dtype = result.dtype compute_dtype = lora_A.weight.dtype if x.dtype != compute_dtype: x = x.to(compute_dtype) sub_batch = x[sub_batch_indices_list[i]] output = lora_B(lora_A(dropout(sub_batch))) * scaling if requires_conversion: output = output.to(expected_dtype) result[sub_batch_indices_list[i]] += output return result def forward(self, x: torch.Tensor, *args, **kwargs) -> torch.Tensor: self._check_forward_args(x, *args, **kwargs) adapter_names = kwargs.pop('adapter_names', None) if self.disable_adapters: if self.merged: self.unmerge() result = self.base_layer(x, *args, **kwargs) elif adapter_names is not None: result = self._mixed_batch_forward(x, *args, adapter_names=adapter_names, **kwargs) elif self.merged: result = self.base_layer(x, *args, **kwargs) else: result = self.base_layer(x, *args, **kwargs) for active_adapter in self.active_adapters: if active_adapter not in self.lora_A.keys(): continue lora_A = self.lora_A[active_adapter] lora_B = self.lora_B[active_adapter] dropout = self.lora_dropout[active_adapter] scaling = self.scaling[active_adapter] requires_conversion = not torch.is_autocast_enabled() if requires_conversion: expected_dtype = result.dtype compute_dtype = lora_A.weight.dtype if x.dtype != compute_dtype: x = x.to(compute_dtype) if not self.use_dora[active_adapter]: output = lora_B(lora_A(dropout(x))) * scaling else: output = self._apply_dora(x, lora_A, lora_B, scaling, active_adapter) if requires_conversion: output = output.to(expected_dtype) result = result + output return result def __repr__(self) -> str: rep = super().__repr__() return 'lora.' + rep def dispatch_hqq(target: torch.nn.Module, adapter_name: str, **kwargs): new_module = None if isinstance(target, BaseTunerLayer): target_base_layer = target.get_base_layer() else: target_base_layer = target if is_hqq_available() and isinstance(target_base_layer, HQQLinear): new_module = HqqLoraLinear(target_base_layer, adapter_name, **kwargs) return new_module # File: peft-main/src/peft/tuners/lora/layer.py from __future__ import annotations import math import warnings from typing import Any, Optional, Union import torch import torch.nn as nn import torch.nn.functional as F from accelerate.utils.imports import is_xpu_available from torch import svd_lowrank from transformers.pytorch_utils import Conv1D from peft.tuners.tuners_utils import BaseTunerLayer, check_adapters_to_merge from peft.utils.integrations import dequantize_module_weight, gather_params_ctx, get_bnb_param_type from peft.utils.other import transpose from .config import LoraConfig from .dora import DoraConv2dLayer, DoraEmbeddingLayer, DoraLinearLayer class LoraLayer(BaseTunerLayer): adapter_layer_names = ('lora_A', 'lora_B', 'lora_embedding_A', 'lora_embedding_B') other_param_names = ('r', 'lora_alpha', 'scaling', 'lora_dropout') def __init__(self, base_layer: nn.Module, ephemeral_gpu_offload: bool=False, **kwargs) -> None: self.base_layer = base_layer self.r = {} self.lora_alpha = {} self.scaling = {} self.lora_dropout = nn.ModuleDict({}) self.lora_A = nn.ModuleDict({}) self.lora_B = nn.ModuleDict({}) self.lora_embedding_A = nn.ParameterDict({}) self.lora_embedding_B = nn.ParameterDict({}) self._disable_adapters = False self.merged_adapters = [] self.use_dora: dict[str, bool] = {} self.lora_magnitude_vector = torch.nn.ModuleDict() self._caches: dict[str, Any] = {} self.ephemeral_gpu_offload: bool = ephemeral_gpu_offload self.kwargs = kwargs base_layer = self.get_base_layer() if isinstance(base_layer, nn.Linear): (in_features, out_features) = (base_layer.in_features, base_layer.out_features) elif isinstance(base_layer, nn.Conv2d): (in_features, out_features) = (base_layer.in_channels, base_layer.out_channels) elif isinstance(base_layer, nn.Embedding): (in_features, out_features) = (base_layer.num_embeddings, base_layer.embedding_dim) elif isinstance(base_layer, Conv1D): (in_features, out_features) = base_layer.weight.ds_shape if hasattr(base_layer.weight, 'ds_shape') else base_layer.weight.shape elif hasattr(base_layer, 'infeatures') and hasattr(base_layer, 'outfeatures'): (in_features, out_features) = (base_layer.infeatures, base_layer.outfeatures) elif hasattr(base_layer, 'input_size') and hasattr(base_layer, 'output_size'): (in_features, out_features) = (base_layer.input_size, base_layer.output_size) elif hasattr(base_layer, 'codebooks') and base_layer.__class__.__name__ == 'QuantizedLinear': (in_features, out_features) = (base_layer.in_features, base_layer.out_features) elif hasattr(base_layer, 'w_bit') and base_layer.__class__.__name__ == 'WQLinear_GEMM': (in_features, out_features) = (base_layer.in_features, base_layer.out_features) elif base_layer.__class__.__name__ == 'EetqLinear': (in_features, out_features) = (base_layer.in_features, base_layer.out_features) elif hasattr(base_layer, 'W_q') and base_layer.__class__.__name__ == 'HQQLinear': (in_features, out_features) = (base_layer.in_features, base_layer.out_features) else: if hasattr(base_layer, 'in_features') and hasattr(base_layer, 'out_features'): (in_features, out_features) = (base_layer.in_features, base_layer.out_features) else: (in_features, out_features) = (None, None) warnings.warn(f"Unsupported layer type '{type(base_layer)}' encountered, proceed at your own risk.", UserWarning) self.in_features = in_features self.out_features = out_features def update_layer(self, adapter_name, r, lora_alpha, lora_dropout, init_lora_weights, use_rslora, use_dora: bool=False): if r <= 0: raise ValueError(f'`r` should be a positive integer value but the value passed is {r}') self.r[adapter_name] = r self.lora_alpha[adapter_name] = lora_alpha if lora_dropout > 0.0: lora_dropout_layer = nn.Dropout(p=lora_dropout) else: lora_dropout_layer = nn.Identity() self.lora_dropout.update(nn.ModuleDict({adapter_name: lora_dropout_layer})) self.lora_A[adapter_name] = nn.Linear(self.in_features, r, bias=False) self.lora_B[adapter_name] = nn.Linear(r, self.out_features, bias=False) if use_rslora: self.scaling[adapter_name] = lora_alpha / math.sqrt(r) else: self.scaling[adapter_name] = lora_alpha / r if isinstance(init_lora_weights, str) and init_lora_weights.startswith('pissa'): with gather_params_ctx(self.get_base_layer().weight): self.pissa_init(adapter_name, init_lora_weights) elif isinstance(init_lora_weights, str) and init_lora_weights.lower() == 'olora': with gather_params_ctx(self.get_base_layer().weight): self.olora_init(adapter_name) elif init_lora_weights == 'loftq': with gather_params_ctx(self.get_base_layer().weight): self.loftq_init(adapter_name) elif init_lora_weights: self.reset_lora_parameters(adapter_name, init_lora_weights) self._move_adapter_to_device_of_base_layer(adapter_name) if use_dora: self.dora_init(adapter_name) self.use_dora[adapter_name] = True else: self.use_dora[adapter_name] = False self.set_adapter(self.active_adapters) def reset_lora_parameters(self, adapter_name, init_lora_weights): if init_lora_weights is False: return if adapter_name in self.lora_A.keys(): if init_lora_weights is True: nn.init.kaiming_uniform_(self.lora_A[adapter_name].weight, a=math.sqrt(5)) elif init_lora_weights.lower() == 'gaussian': nn.init.normal_(self.lora_A[adapter_name].weight, std=1 / self.r[adapter_name]) else: raise ValueError(f'Unknown initialization init_lora_weights={init_lora_weights!r}') nn.init.zeros_(self.lora_B[adapter_name].weight) if adapter_name in self.lora_embedding_A.keys(): nn.init.zeros_(self.lora_embedding_A[adapter_name]) nn.init.normal_(self.lora_embedding_B[adapter_name]) def olora_init(self, adapter_name): base_layer = self.get_base_layer() orig_weight = base_layer.weight bnb_param_type = get_bnb_param_type(orig_weight) dtype = orig_weight.dtype if bnb_param_type: weight_tensor = dequantize_module_weight(base_layer) elif dtype in [torch.float32, torch.float16, torch.bfloat16]: weight_tensor = orig_weight else: raise TypeError(f'Unsupported data type for the base layer. Got {dtype}.') scale_factor = self.scaling[adapter_name] r = self.r[adapter_name] weight_tensor = weight_tensor.to(torch.float32) (Q, R) = torch.linalg.qr(weight_tensor.data) (Qr, Rr) = (Q[:, :r], R[:r]) self.lora_A[adapter_name].weight.data = Rr.contiguous() self.lora_B[adapter_name].weight.data = Qr.contiguous() weight_tensor.data -= scale_factor * self.lora_B[adapter_name].weight @ self.lora_A[adapter_name].weight if bnb_param_type == '4bit': weight_tensor = orig_weight.__class__(weight_tensor, quant_type=orig_weight.quant_type, quant_storage=orig_weight.quant_storage, compress_statistics=orig_weight.compress_statistics, module=orig_weight.module).to(orig_weight.device) base_layer.weight = weight_tensor elif bnb_param_type == '8bit': weight_tensor = orig_weight.__class__(weight_tensor, requires_grad=orig_weight.requires_grad, has_fp16_weights=orig_weight.has_fp16_weights).to(orig_weight.device) base_layer.weight = weight_tensor else: weight_tensor = weight_tensor.to(dtype) base_layer.weight.data = weight_tensor def pissa_init(self, adapter_name, init_lora_weights): weight = self.get_base_layer().weight dtype = weight.dtype if dtype not in [torch.float32, torch.float16, torch.bfloat16]: raise TypeError('Please initialize PiSSA under float32, float16, or bfloat16. Subsequently, re-quantize the residual model to help minimize quantization errors.') weight = weight.to(torch.float32) if init_lora_weights == 'pissa': (V, S, Uh) = torch.linalg.svd(weight.data, full_matrices=False) Vr = V[:, :self.r[adapter_name]] Sr = S[:self.r[adapter_name]] Sr /= self.scaling[adapter_name] Uhr = Uh[:self.r[adapter_name]] elif len(init_lora_weights.split('_niter_')) == 2: (Vr, Sr, Ur) = svd_lowrank(weight.data, self.r[adapter_name], niter=int(init_lora_weights.split('_niter_')[-1])) Sr /= self.scaling[adapter_name] Uhr = Ur.t() else: raise ValueError(f"init_lora_weights should be 'pissa' or 'pissa_niter_[number of iters]', got {init_lora_weights} instead.") lora_A = torch.diag(torch.sqrt(Sr)) @ Uhr lora_B = Vr @ torch.diag(torch.sqrt(Sr)) self.lora_A[adapter_name].weight.data = lora_A self.lora_B[adapter_name].weight.data = lora_B weight = weight.data - self.scaling[adapter_name] * lora_B @ lora_A weight = weight.to(dtype) self.get_base_layer().weight.data = weight def loftq_init(self, adapter_name): from peft.utils.loftq_utils import loftq_init weight = self.get_base_layer().weight kwargs = {'num_bits': self.kwargs.get('loftq_bits', 4), 'reduced_rank': self.r[adapter_name], 'num_iter': self.kwargs.get('loftq_iter', 1)} (qweight, lora_A, lora_B) = loftq_init(weight, **kwargs) if adapter_name in self.lora_A.keys(): self.lora_A[adapter_name].weight.data = lora_A self.lora_B[adapter_name].weight.data = lora_B if adapter_name in self.lora_embedding_A.keys(): self.lora_embedding_A[adapter_name].weight.data = lora_A self.lora_embedding_B[adapter_name].weight.data = lora_B self.get_base_layer().weight.data = qweight def dora_init(self, adapter_name: str) -> None: if not self.lora_magnitude_vector: self.adapter_layer_names = self.adapter_layer_names[:] + ('lora_magnitude_vector',) dora_layer = DoraLinearLayer(fan_in_fan_out=getattr(self, 'fan_in_fan_out', False)) lora_A = self.lora_A[adapter_name].weight lora_B = self.lora_B[adapter_name].weight place_on_cpu = self.ephemeral_gpu_offload and (lora_A.device.type == 'cpu' or lora_B.device.type == 'cpu') if self.ephemeral_gpu_offload: if lora_A.device.type in ['cuda', 'xpu']: lora_B = lora_B.to(lora_A.device) else: if lora_B.device.type not in ['cuda', 'xpu']: if is_xpu_available(): lora_B = lora_B.to('xpu') else: lora_B = lora_B.to('cuda') lora_A = lora_A.to(lora_B.device) scaling = self.scaling[adapter_name] dora_layer.update_layer(base_layer=self.get_base_layer(), lora_A=lora_A, lora_B=lora_B, scaling=scaling, place_on_cpu=place_on_cpu) self.lora_magnitude_vector[adapter_name] = dora_layer def _cache_store(self, key: str, value: Any) -> None: self._caches[key] = value def _cache_pop(self, key: str) -> Any: value = self._caches.pop(key) return value def set_scale(self, adapter, scale): if adapter not in self.scaling: return self.scaling[adapter] = scale * self.lora_alpha[adapter] / self.r[adapter] def scale_layer(self, scale: float) -> None: if scale == 1: return for active_adapter in self.active_adapters: if active_adapter not in self.lora_A.keys(): continue self.scaling[active_adapter] *= scale def unscale_layer(self, scale=None) -> None: for active_adapter in self.active_adapters: if active_adapter not in self.lora_A.keys(): continue if scale is None: self.scaling[active_adapter] = self.lora_alpha[active_adapter] / self.r[active_adapter] else: self.scaling[active_adapter] /= scale def _check_forward_args(self, x, *args, **kwargs): adapter_names = kwargs.get('adapter_names', None) if adapter_names is None: return if len(x) != len(adapter_names): msg = f'Length of `adapter_names` should be the same as the number of inputs, but got {len(adapter_names)} and {len(x)} respectively.' raise ValueError(msg) if self.merged: msg = 'Cannot pass `adapter_names` when there are merged adapters, please call `unmerge_adapter` first.' raise ValueError(msg) unique_adapters = set(self.active_adapters) for adapter_name in unique_adapters: if self.use_dora.get(adapter_name, False): msg = 'Cannot pass `adapter_names` when DoRA is enabled.' raise ValueError(msg) def _mixed_batch_forward(self, x: torch.Tensor, *args: Any, adapter_names: list[str], **kwargs: Any) -> torch.Tensor: result = self.base_layer(x, *args, **kwargs) torch_result_dtype = result.dtype unique_adapters = set(adapter_names) sub_batch_indices_list = [] for adapter in unique_adapters: sub_batch_indices_list.append([index for (index, item) in enumerate(adapter_names) if item == adapter]) for (i, active_adapter) in enumerate(unique_adapters): if active_adapter == '__base__': continue if active_adapter not in self.lora_A.keys(): continue lora_A = self.lora_A[active_adapter] lora_B = self.lora_B[active_adapter] dropout = self.lora_dropout[active_adapter] scaling = self.scaling[active_adapter] sub_batch = x[sub_batch_indices_list[i]].to(lora_A.weight.dtype) lora_output = lora_B(lora_A(dropout(sub_batch))) * scaling result[sub_batch_indices_list[i]] += lora_output.to(torch_result_dtype) return result class Linear(nn.Module, LoraLayer): def __init__(self, base_layer, adapter_name: str, r: int=0, lora_alpha: int=1, lora_dropout: float=0.0, fan_in_fan_out: bool=False, is_target_conv_1d_layer: bool=False, init_lora_weights: Union[bool, str]=True, use_rslora: bool=False, use_dora: bool=False, **kwargs) -> None: super().__init__() LoraLayer.__init__(self, base_layer, **kwargs) self.fan_in_fan_out = fan_in_fan_out self._active_adapter = adapter_name self.update_layer(adapter_name, r, lora_alpha=lora_alpha, lora_dropout=lora_dropout, init_lora_weights=init_lora_weights, use_rslora=use_rslora, use_dora=use_dora) self.is_target_conv_1d_layer = is_target_conv_1d_layer def merge(self, safe_merge: bool=False, adapter_names: Optional[list[str]]=None) -> None: adapter_names = check_adapters_to_merge(self, adapter_names) if not adapter_names: return for active_adapter in adapter_names: if active_adapter in self.lora_A.keys(): base_layer = self.get_base_layer() if safe_merge: orig_weights = base_layer.weight.data.clone() delta_weight = self.get_delta_weight(active_adapter) if not self.use_dora[active_adapter]: orig_weights += delta_weight else: weight_norm = self.lora_magnitude_vector[active_adapter].get_weight_norm(orig_weights, transpose(delta_weight, self.fan_in_fan_out), scaling=1).detach() self._cache_store(f'{active_adapter}-weight_norm', weight_norm) dora_factor = self.lora_magnitude_vector[active_adapter].weight / weight_norm dora_factor = transpose(dora_factor.view(-1, 1), self.fan_in_fan_out) orig_weights = dora_factor * (orig_weights + delta_weight) if not torch.isfinite(orig_weights).all(): raise ValueError(f'NaNs detected in the merged weights. The adapter {active_adapter} seems to be broken') base_layer.weight.data = orig_weights else: delta_weight = self.get_delta_weight(active_adapter) if not self.use_dora[active_adapter]: base_layer.weight.data += delta_weight else: weight_norm = self.lora_magnitude_vector[active_adapter].get_weight_norm(base_layer.weight, transpose(delta_weight, self.fan_in_fan_out), scaling=1).detach() self._cache_store(f'{active_adapter}-weight_norm', weight_norm) dora_factor = self.lora_magnitude_vector[active_adapter].weight / weight_norm dora_factor = transpose(dora_factor.view(-1, 1), self.fan_in_fan_out) new_weight = dora_factor * (base_layer.weight.data + delta_weight) base_layer.weight.data = new_weight self.merged_adapters.append(active_adapter) def unmerge(self) -> None: if not self.merged: warnings.warn('Already unmerged. Nothing to do.') return while len(self.merged_adapters) > 0: active_adapter = self.merged_adapters.pop() if active_adapter in self.lora_A.keys(): weight = self.get_base_layer().weight delta_weight = self.get_delta_weight(active_adapter) if not self.use_dora[active_adapter]: weight.data -= delta_weight else: weight_norm = self._cache_pop(f'{active_adapter}-weight_norm') dora_factor = self.lora_magnitude_vector[active_adapter].weight / weight_norm weight_orig = weight.data / dora_factor.view(-1, 1) - delta_weight weight.data = weight_orig def get_delta_weight(self, adapter) -> torch.Tensor: device = self.lora_B[adapter].weight.device dtype = self.lora_B[adapter].weight.dtype cast_to_fp32 = device.type == 'cpu' and (dtype == torch.float16 or dtype == torch.bfloat16) weight_A = self.lora_A[adapter].weight weight_B = self.lora_B[adapter].weight if cast_to_fp32: weight_A = weight_A.float() weight_B = weight_B.float() output_tensor = transpose(weight_B @ weight_A, self.fan_in_fan_out) * self.scaling[adapter] if cast_to_fp32: output_tensor = output_tensor.to(dtype=dtype) self.lora_A[adapter].weight.data = weight_A.to(dtype) self.lora_B[adapter].weight.data = weight_B.to(dtype) return output_tensor def forward(self, x: torch.Tensor, *args: Any, **kwargs: Any) -> torch.Tensor: self._check_forward_args(x, *args, **kwargs) adapter_names = kwargs.pop('adapter_names', None) if self.disable_adapters: if self.merged: self.unmerge() result = self.base_layer(x, *args, **kwargs) elif adapter_names is not None: result = self._mixed_batch_forward(x, *args, adapter_names=adapter_names, **kwargs) elif self.merged: result = self.base_layer(x, *args, **kwargs) else: result = self.base_layer(x, *args, **kwargs) torch_result_dtype = result.dtype for active_adapter in self.active_adapters: if active_adapter not in self.lora_A.keys(): continue lora_A = self.lora_A[active_adapter] lora_B = self.lora_B[active_adapter] dropout = self.lora_dropout[active_adapter] scaling = self.scaling[active_adapter] x = x.to(lora_A.weight.dtype) if not self.use_dora[active_adapter]: result = result + lora_B(lora_A(dropout(x))) * scaling else: x = dropout(x) result = result + self.lora_magnitude_vector[active_adapter](x, lora_A=lora_A, lora_B=lora_B, scaling=scaling, base_layer=self.get_base_layer()) result = result.to(torch_result_dtype) return result def __repr__(self) -> str: rep = super().__repr__() return 'lora.' + rep class Embedding(nn.Module, LoraLayer): def __init__(self, base_layer: nn.Module, adapter_name: str, r: int=0, lora_alpha: int=1, lora_dropout: float=0.0, init_lora_weights: Union[bool, str]=True, use_rslora: bool=False, use_dora: bool=False, **kwargs) -> None: super().__init__() LoraLayer.__init__(self, base_layer) self._active_adapter = adapter_name self.update_layer(adapter_name, r, lora_alpha=lora_alpha, lora_dropout=lora_dropout, init_lora_weights=init_lora_weights, use_rslora=use_rslora, use_dora=use_dora) def update_layer(self, adapter_name, r, lora_alpha, lora_dropout, init_lora_weights, use_rslora, use_dora): if r <= 0: raise ValueError(f'`r` should be a positive integer value but the value passed is {r}') self.r[adapter_name] = r self.lora_alpha[adapter_name] = lora_alpha if lora_dropout > 0.0: lora_dropout_layer = nn.Dropout(p=lora_dropout) else: lora_dropout_layer = nn.Identity() self.lora_dropout[adapter_name] = lora_dropout_layer weight_A = torch.randn((r, self.in_features)) weight_B = torch.randn((self.out_features, r)) self.lora_embedding_A[adapter_name] = nn.Parameter(weight_A) self.lora_embedding_B[adapter_name] = nn.Parameter(weight_B) if use_rslora: self.scaling[adapter_name] = lora_alpha / math.sqrt(r) else: self.scaling[adapter_name] = lora_alpha / r if init_lora_weights == 'loftq': self.loftq_init(adapter_name) elif init_lora_weights: self.reset_lora_parameters(adapter_name, init_lora_weights) self._move_adapter_to_device_of_base_layer(adapter_name) if use_dora: self.dora_init(adapter_name) self.use_dora[adapter_name] = True else: self.use_dora[adapter_name] = False self.set_adapter(self.active_adapters) def dora_init(self, adapter_name: str) -> None: if self.lora_magnitude_vector is None: self.adapter_layer_names = self.adapter_layer_names[:] + ('lora_magnitude_vector',) dora_layer = DoraEmbeddingLayer(fan_in_fan_out=True) lora_embedding_A = self.lora_embedding_A[adapter_name] lora_embedding_B = self.lora_embedding_B[adapter_name] scaling = self.scaling[adapter_name] dora_layer.update_layer(base_layer=self.get_base_layer(), lora_A=lora_embedding_A, lora_B=lora_embedding_B, scaling=scaling) self.lora_magnitude_vector[adapter_name] = dora_layer def merge(self, safe_merge: bool=False, adapter_names: Optional[list[str]]=None) -> None: adapter_names = check_adapters_to_merge(self, adapter_names) if not adapter_names: return for active_adapter in adapter_names: if active_adapter in self.lora_embedding_A.keys(): base_layer = self.get_base_layer() if safe_merge: orig_weights = base_layer.weight.data.clone() orig_weights += self.get_delta_weight(active_adapter) if not torch.isfinite(orig_weights).all(): raise ValueError(f'NaNs detected in the merged weights. The adapter {active_adapter} seems to be broken') base_layer.weight.data = orig_weights else: base_layer.weight.data += self.get_delta_weight(active_adapter) self.merged_adapters.append(active_adapter) def unmerge(self) -> None: if not self.merged: warnings.warn('Already unmerged. Nothing to do.') return while len(self.merged_adapters) > 0: active_adapter = self.merged_adapters.pop() if active_adapter in self.lora_embedding_A.keys(): self.get_base_layer().weight.data -= self.get_delta_weight(active_adapter) def get_delta_weight(self, adapter) -> torch.Tensor: device = self.lora_embedding_B[adapter].device dtype = self.lora_embedding_A[adapter].dtype cast_to_fp32 = device.type == 'cpu' and (dtype == torch.float16 or dtype == torch.bfloat16) weight_A = self.lora_embedding_A[adapter] weight_B = self.lora_embedding_B[adapter] if cast_to_fp32: weight_A = weight_A.float() weight_B = weight_B.float() output_tensor = transpose(weight_B @ weight_A, True) * self.scaling[adapter] if cast_to_fp32: output_tensor = output_tensor.to(dtype=dtype) self.lora_embedding_A[adapter] = weight_A.to(dtype) self.lora_embedding_B[adapter] = weight_B.to(dtype) return output_tensor def _mixed_batch_forward(self, x: torch.Tensor, *args: Any, adapter_names: list[str], **kwargs: Any) -> torch.Tensor: result = self.base_layer(x, *args, **kwargs) unique_adapters = set(adapter_names) sub_batch_indices_list = [] for adapter in unique_adapters: sub_batch_indices_list.append([index for (index, item) in enumerate(adapter_names) if item == adapter]) for (i, active_adapter) in enumerate(unique_adapters): if active_adapter == '__base__': continue if active_adapter not in self.lora_embedding_A.keys(): continue embedding_A = self.lora_embedding_A[active_adapter].T embedding_B = self.lora_embedding_B[active_adapter].T scaling = self.scaling[active_adapter] sub_batch = x[sub_batch_indices_list[i]] after_A = self._embed(sub_batch, embedding_A) result[sub_batch_indices_list[i]] += after_A @ embedding_B * scaling return result def _embed(self, input: torch.Tensor, weight: torch.Tensor) -> torch.Tensor: base_layer = self.get_base_layer() return F.embedding(input, weight, padding_idx=base_layer.padding_idx, max_norm=base_layer.max_norm, norm_type=base_layer.norm_type, scale_grad_by_freq=base_layer.scale_grad_by_freq, sparse=base_layer.sparse) def forward(self, x: torch.Tensor, *args: Any, **kwargs: Any) -> torch.Tensor: self._check_forward_args(x, *args, **kwargs) adapter_names = kwargs.pop('adapter_names', None) if self.disable_adapters: if self.merged: self.unmerge() result = self.base_layer(x, *args, **kwargs) elif adapter_names is not None: result = self._mixed_batch_forward(x, *args, adapter_names=adapter_names, **kwargs) elif self.merged: result = self.base_layer(x, *args, **kwargs) else: result = self.base_layer(x, *args, **kwargs) torch_result_dtype = result.dtype for active_adapter in self.active_adapters: if active_adapter not in self.lora_embedding_A: continue embedding_A = self.lora_embedding_A[active_adapter].T embedding_B = self.lora_embedding_B[active_adapter].T scaling = self.scaling[active_adapter] if not self.use_dora[active_adapter]: after_A = self._embed(x, embedding_A) result = result + after_A @ embedding_B * scaling else: (mag_norm_scale, dora_result) = self.lora_magnitude_vector[active_adapter](x, lora_A=embedding_A, lora_B=embedding_B, scaling=scaling, base_layer=self.get_base_layer(), embed_fn=self._embed) result = mag_norm_scale * result + dora_result result = result.to(torch_result_dtype) return result def __repr__(self) -> str: rep = super().__repr__() return 'lora.' + rep class Conv2d(nn.Module, LoraLayer): def __init__(self, base_layer: nn.Module, adapter_name: str, r: int=0, lora_alpha: int=1, lora_dropout: float=0.0, init_lora_weights: Union[bool, str]=True, use_rslora: bool=False, use_dora: bool=False, **kwargs) -> None: super().__init__() LoraLayer.__init__(self, base_layer) self._active_adapter = adapter_name self.update_layer(adapter_name, r, lora_alpha=lora_alpha, lora_dropout=lora_dropout, init_lora_weights=init_lora_weights, use_rslora=use_rslora, use_dora=use_dora) def update_layer(self, adapter_name, r, lora_alpha, lora_dropout, init_lora_weights, use_rslora, use_dora): if r <= 0: raise ValueError(f'`r` should be a positive integer value but the value passed is {r}') self.r[adapter_name] = r self.lora_alpha[adapter_name] = lora_alpha if lora_dropout > 0.0: lora_dropout_layer = nn.Dropout(p=lora_dropout) else: lora_dropout_layer = nn.Identity() self.lora_dropout[adapter_name] = lora_dropout_layer base_layer = self.get_base_layer() kernel_size = base_layer.kernel_size stride = base_layer.stride padding = base_layer.padding self.lora_A[adapter_name] = nn.Conv2d(self.in_features, r, kernel_size, stride, padding, bias=False) self.lora_B[adapter_name] = nn.Conv2d(r, self.out_features, (1, 1), (1, 1), bias=False) if use_rslora: self.scaling[adapter_name] = lora_alpha / math.sqrt(r) else: self.scaling[adapter_name] = lora_alpha / r if init_lora_weights == 'loftq': self.loftq_init(adapter_name) elif init_lora_weights: self.reset_lora_parameters(adapter_name, init_lora_weights) self._move_adapter_to_device_of_base_layer(adapter_name) if use_dora: self.dora_init(adapter_name) self.use_dora[adapter_name] = True else: self.use_dora[adapter_name] = False self.set_adapter(self.active_adapters) def dora_init(self, adapter_name: str) -> None: if self.lora_magnitude_vector is None: self.adapter_layer_names = self.adapter_layer_names[:] + ('lora_magnitude_vector',) dora_layer = DoraConv2dLayer(fan_in_fan_out=False) lora_A = self.lora_A[adapter_name].weight lora_B = self.lora_B[adapter_name].weight scaling = self.scaling[adapter_name] dora_layer.update_layer(base_layer=self.get_base_layer(), lora_A=lora_A, lora_B=lora_B, scaling=scaling) self.lora_magnitude_vector[adapter_name] = dora_layer def merge(self, safe_merge: bool=False, adapter_names: Optional[list[str]]=None) -> None: adapter_names = check_adapters_to_merge(self, adapter_names) if not adapter_names: return for active_adapter in adapter_names: if active_adapter in self.lora_A.keys(): base_layer = self.get_base_layer() if safe_merge: orig_weights = base_layer.weight.data.clone() delta_weight = self.get_delta_weight(active_adapter) if not self.use_dora[active_adapter]: orig_weights += delta_weight else: weight_norm = self.lora_magnitude_vector[active_adapter].get_weight_norm(orig_weights, delta_weight, scaling=1).detach() self._cache_store(f'{active_adapter}-weight_norm', weight_norm) dora_factor = self.lora_magnitude_vector[active_adapter].weight / weight_norm orig_weights = dora_factor.view(-1, 1, 1, 1) * (orig_weights + delta_weight) if not torch.isfinite(orig_weights).all(): raise ValueError(f'NaNs detected in the merged weights. The adapter {active_adapter} seems to be broken') base_layer.weight.data = orig_weights else: delta_weight = self.get_delta_weight(active_adapter) if not self.use_dora[active_adapter]: base_layer.weight.data += delta_weight else: weight_norm = self.lora_magnitude_vector[active_adapter].get_weight_norm(base_layer.weight, delta_weight, scaling=1).detach() self._cache_store(f'{active_adapter}-weight_norm', weight_norm) dora_factor = self.lora_magnitude_vector[active_adapter].weight / weight_norm new_weight = dora_factor.view(-1, 1, 1, 1) * (base_layer.weight.data + delta_weight) base_layer.weight.data = new_weight self.merged_adapters.append(active_adapter) def unmerge(self) -> None: if not self.merged: warnings.warn('Already unmerged. Nothing to do.') return while len(self.merged_adapters) > 0: active_adapter = self.merged_adapters.pop() if active_adapter in self.lora_A.keys(): weight = self.get_base_layer().weight delta_weight = self.get_delta_weight(active_adapter) if not self.use_dora[active_adapter]: weight.data -= delta_weight else: weight_norm = self._cache_pop(f'{active_adapter}-weight_norm') dora_factor = self.lora_magnitude_vector[active_adapter].weight / weight_norm weight_orig = weight.data / dora_factor.view(-1, 1, 1, 1) - delta_weight weight.data = weight_orig def get_delta_weight(self, adapter) -> torch.Tensor: device = self.lora_B[adapter].weight.device dtype = self.lora_A[adapter].weight.dtype cast_to_fp32 = device.type == 'cpu' and (dtype == torch.float16 or dtype == torch.bfloat16) weight_A = self.lora_A[adapter].weight weight_B = self.lora_B[adapter].weight if cast_to_fp32: weight_A = weight_A.float() weight_B = weight_B.float() if self.get_base_layer().weight.size()[2:4] == (1, 1): output_tensor = (weight_B.squeeze(3).squeeze(2) @ weight_A.squeeze(3).squeeze(2)).unsqueeze(2).unsqueeze(3) * self.scaling[adapter] else: output_tensor = F.conv2d(weight_A.permute(1, 0, 2, 3), weight_B).permute(1, 0, 2, 3) * self.scaling[adapter] if cast_to_fp32: output_tensor = output_tensor.to(dtype=dtype) self.lora_A[adapter].weight.data = weight_A.to(dtype) self.lora_B[adapter].weight.data = weight_B.to(dtype) return output_tensor def forward(self, x: torch.Tensor, *args, **kwargs) -> torch.Tensor: self._check_forward_args(x, *args, **kwargs) adapter_names = kwargs.pop('adapter_names', None) if self.disable_adapters: if self.merged: self.unmerge() result = self.base_layer(x, *args, **kwargs) elif adapter_names is not None: result = self._mixed_batch_forward(x, *args, adapter_names=adapter_names, **kwargs) elif self.merged: result = self.base_layer(x, *args, **kwargs) else: result = self.base_layer(x, *args, **kwargs) torch_result_dtype = result.dtype for active_adapter in self.active_adapters: if active_adapter not in self.lora_A.keys(): continue lora_A = self.lora_A[active_adapter] lora_B = self.lora_B[active_adapter] dropout = self.lora_dropout[active_adapter] scaling = self.scaling[active_adapter] x = x.to(lora_A.weight.dtype) if not self.use_dora[active_adapter]: result = result + lora_B(lora_A(dropout(x))) * scaling else: x = dropout(x) result = result + self.lora_magnitude_vector[active_adapter](x, lora_A=lora_A, lora_B=lora_B, scaling=scaling, base_layer=self.get_base_layer()) result = result.to(torch_result_dtype) return result def __repr__(self) -> str: rep = super().__repr__() return 'lora.' + rep def dispatch_default(target: torch.nn.Module, adapter_name: str, lora_config: LoraConfig, **kwargs) -> Optional[torch.nn.Module]: new_module = None if isinstance(target, BaseTunerLayer): target_base_layer = target.get_base_layer() else: target_base_layer = target if isinstance(target_base_layer, torch.nn.Embedding): embedding_kwargs = kwargs.copy() embedding_kwargs.pop('fan_in_fan_out', None) embedding_kwargs.update(lora_config.loftq_config) new_module = Embedding(target, adapter_name, **embedding_kwargs) elif isinstance(target_base_layer, torch.nn.Conv2d): kwargs.update(lora_config.loftq_config) new_module = Conv2d(target, adapter_name, **kwargs) elif isinstance(target_base_layer, torch.nn.Linear): if kwargs['fan_in_fan_out']: warnings.warn('fan_in_fan_out is set to True but the target module is `torch.nn.Linear`. Setting fan_in_fan_out to False.') kwargs['fan_in_fan_out'] = lora_config.fan_in_fan_out = False kwargs.update(lora_config.loftq_config) new_module = Linear(target, adapter_name, **kwargs) elif isinstance(target_base_layer, Conv1D): if not kwargs['fan_in_fan_out']: warnings.warn('fan_in_fan_out is set to False but the target module is `Conv1D`. Setting fan_in_fan_out to True.') kwargs['fan_in_fan_out'] = lora_config.fan_in_fan_out = True kwargs.update(lora_config.loftq_config) new_module = Linear(target, adapter_name, is_target_conv_1d_layer=True, **kwargs) return new_module # File: peft-main/src/peft/tuners/lora/model.py from __future__ import annotations import math import operator import re import warnings from contextlib import contextmanager from dataclasses import asdict, replace from enum import Enum from functools import partial, reduce from itertools import chain from typing import Literal, Optional import torch from torch import nn from tqdm import tqdm from peft.import_utils import is_bnb_4bit_available, is_bnb_available from peft.tuners.tuners_utils import BaseTuner, BaseTunerLayer, check_target_module_exists, onload_layer, replicate_layers from peft.utils import TRANSFORMERS_MODELS_TO_LORA_TARGET_MODULES_MAPPING, ModulesToSaveWrapper, _freeze_adapter, _get_submodules, get_peft_model_state_dict, get_quantization_config from peft.utils.merge_utils import dare_linear, dare_ties, magnitude_prune, task_arithmetic, ties from .aqlm import dispatch_aqlm from .awq import dispatch_awq from .config import LoraConfig from .eetq import dispatch_eetq from .gptq import dispatch_gptq from .hqq import dispatch_hqq from .layer import Conv2d, LoraLayer, dispatch_default from .tp_layer import dispatch_megatron def _adapter_names_pre_forward_hook(target, args, kwargs, adapter_names): kwargs['adapter_names'] = adapter_names return (args, kwargs) class LoraModel(BaseTuner): prefix: str = 'lora_' def __init__(self, model, config, adapter_name) -> None: super().__init__(model, config, adapter_name) def _check_new_adapter_config(self, config: LoraConfig) -> None: if len(self.peft_config) > 1 and config.bias != 'none': raise ValueError(f"{self.__class__.__name__} supports only 1 adapter with bias. When using multiple adapters, set bias to 'none' for all adapters.") @staticmethod def _check_target_module_exists(lora_config, key): return check_target_module_exists(lora_config, key) def _prepare_model(self, peft_config: LoraConfig, model: nn.Module): if peft_config.layer_replication: replicate_layers(model, peft_config.layer_replication) def _create_and_replace(self, lora_config, adapter_name, target, target_name, parent, current_key): if current_key is None: raise ValueError("Current Key shouldn't be `None`") pattern_keys = list(chain(lora_config.rank_pattern.keys(), lora_config.alpha_pattern.keys())) target_name_key = next(filter(lambda key: re.match(f'.*\\.{key}$', current_key), pattern_keys), current_key) r = lora_config.rank_pattern.get(target_name_key, lora_config.r) alpha = lora_config.alpha_pattern.get(target_name_key, lora_config.lora_alpha) kwargs = {'r': r, 'lora_alpha': alpha, 'lora_dropout': lora_config.lora_dropout, 'fan_in_fan_out': lora_config.fan_in_fan_out, 'init_lora_weights': lora_config.init_lora_weights, 'use_rslora': lora_config.use_rslora, 'use_dora': lora_config.use_dora, 'ephemeral_gpu_offload': lora_config.runtime_config.ephemeral_gpu_offload, 'loaded_in_8bit': getattr(self.model, 'is_loaded_in_8bit', False), 'loaded_in_4bit': getattr(self.model, 'is_loaded_in_4bit', False)} quant_methods = ['gptq', 'aqlm', 'awq'] for quant_method in quant_methods: quantization_config = get_quantization_config(self.model, method=quant_method) if quantization_config is not None: kwargs[f'{quant_method}_quantization_config'] = quantization_config from peft.tuners.adalora import AdaLoraLayer if isinstance(target, LoraLayer) and (not isinstance(target, AdaLoraLayer)): target.update_layer(adapter_name, r, lora_alpha=alpha, lora_dropout=lora_config.lora_dropout, init_lora_weights=lora_config.init_lora_weights, use_rslora=lora_config.use_rslora, use_dora=lora_config.use_dora) else: new_module = self._create_new_module(lora_config, adapter_name, target, **kwargs) if adapter_name not in self.active_adapters: new_module.requires_grad_(False) self._replace_module(parent, target_name, new_module, target) def _replace_module(self, parent, child_name, new_module, child): setattr(parent, child_name, new_module) if hasattr(child, 'base_layer'): child = child.base_layer if not hasattr(new_module, 'base_layer'): if hasattr(new_module, 'W_q'): new_module.W_q = child.W_q else: new_module.weight = child.weight if hasattr(child, 'bias'): new_module.bias = child.bias if getattr(child, 'state', None) is not None: if hasattr(new_module, 'base_layer'): new_module.base_layer.state = child.state else: new_module.state = child.state new_module.to(child.weight.device) for (name, module) in new_module.named_modules(): if self.prefix in name or 'ranknum' in name: weight = child.qweight if hasattr(child, 'qweight') else child.W_q if hasattr(child, 'W_q') else child.weight if hasattr(child, 'weight') else next(child.parameters()) module.to(weight.device) def _mark_only_adapters_as_trainable(self, model: nn.Module) -> None: for (n, p) in model.named_parameters(): if self.prefix not in n: p.requires_grad = False for active_adapter in self.active_adapters: bias = self.peft_config[active_adapter].bias if bias == 'none': continue if bias == 'all': for (n, p) in model.named_parameters(): if 'bias' in n: p.requires_grad = True elif bias == 'lora_only': for m in model.modules(): if isinstance(m, LoraLayer) and hasattr(m, 'bias') and (m.bias is not None): m.bias.requires_grad = True else: raise NotImplementedError(f'Requested bias: {bias}, is not implemented.') @staticmethod def _create_new_module(lora_config, adapter_name, target, **kwargs): dispatchers = [] if lora_config._custom_modules: def dynamic_dispatch_func(target, adapter_name, lora_config, **kwargs): new_module = None if isinstance(target, BaseTunerLayer): target_base_layer = target.get_base_layer() else: target_base_layer = target for (key, custom_cls) in lora_config._custom_modules.items(): if isinstance(target_base_layer, key): new_module = custom_cls(target, adapter_name, **kwargs) break return new_module dispatchers.append(dynamic_dispatch_func) if is_bnb_available(): from .bnb import dispatch_bnb_8bit dispatchers.append(dispatch_bnb_8bit) if is_bnb_4bit_available(): from .bnb import dispatch_bnb_4bit dispatchers.append(dispatch_bnb_4bit) dispatchers.extend([dispatch_eetq, dispatch_aqlm, dispatch_awq, dispatch_gptq, dispatch_hqq, dispatch_megatron, dispatch_default]) new_module = None for dispatcher in dispatchers: new_module = dispatcher(target, adapter_name, lora_config=lora_config, **kwargs) if new_module is not None: break if new_module is None: raise ValueError(f'Target module {target} is not supported. Currently, only the following modules are supported: `torch.nn.Linear`, `torch.nn.Embedding`, `torch.nn.Conv2d`, `transformers.pytorch_utils.Conv1D`.') return new_module def __getattr__(self, name: str): try: return super().__getattr__(name) except AttributeError: if name == 'model': raise return getattr(self.model, name) def get_peft_config_as_dict(self, inference: bool=False): config_dict = {} for (key, value) in self.peft_config.items(): config = {k: v.value if isinstance(v, Enum) else v for (k, v) in asdict(value).items()} if inference: config['inference_mode'] = True config_dict[key] = config return config def _set_adapter_layers(self, enabled: bool=True) -> None: for module in self.model.modules(): if isinstance(module, (BaseTunerLayer, ModulesToSaveWrapper)): module.enable_adapters(enabled) def enable_adapter_layers(self) -> None: self._set_adapter_layers(enabled=True) def disable_adapter_layers(self) -> None: for active_adapter in self.active_adapters: val = self.peft_config[active_adapter].bias if val != 'none': msg = f"Careful, disabling adapter layers with bias configured to be '{val}' does not produce the same output as the the base model would without adaption." warnings.warn(msg) self._set_adapter_layers(enabled=False) def set_adapter(self, adapter_name: str | list[str]) -> None: for module in self.model.modules(): if isinstance(module, LoraLayer): if module.merged: warnings.warn('Adapter cannot be set when the model is merged. Unmerging the model first.') module.unmerge() module.set_adapter(adapter_name) self.active_adapter = adapter_name @contextmanager def _enable_peft_forward_hooks(self, *args, **kwargs): adapter_names = kwargs.pop('adapter_names', None) if adapter_names is None: yield return if self.training: raise ValueError('Cannot pass `adapter_names` when the model is in training mode.') hook_handles = [] for module in self.modules(): if isinstance(module, LoraLayer): pre_forward = partial(_adapter_names_pre_forward_hook, adapter_names=adapter_names) handle = module.register_forward_pre_hook(pre_forward, with_kwargs=True) hook_handles.append(handle) yield for handle in hook_handles: handle.remove() def _check_merge_allowed(self): super()._check_merge_allowed() if getattr(self.model, 'quantization_method', None) == 'gptq': raise ValueError('Cannot merge LORA layers when the model is gptq quantized') if self.peft_config.get('layer_replication'): raise ValueError('Cannot merge LORA layers when base model layers are replicated') @staticmethod def _prepare_adapter_config(peft_config, model_config): if peft_config.target_modules is None: if model_config['model_type'] not in TRANSFORMERS_MODELS_TO_LORA_TARGET_MODULES_MAPPING: raise ValueError('Please specify `target_modules` in `peft_config`') peft_config.target_modules = set(TRANSFORMERS_MODELS_TO_LORA_TARGET_MODULES_MAPPING[model_config['model_type']]) return peft_config def _unload_and_optionally_merge(self, merge=True, progressbar: bool=False, safe_merge: bool=False, adapter_names: Optional[list[str]]=None): if merge: self._check_merge_allowed() key_list = [key for (key, _) in self.model.named_modules() if self.prefix not in key] desc = 'Unloading ' + ('and merging ' if merge else '') + 'model' for key in tqdm(key_list, disable=not progressbar, desc=desc): try: (parent, target, target_name) = _get_submodules(self.model, key) except AttributeError: continue with onload_layer(target): if hasattr(target, 'base_layer'): if merge: target.merge(safe_merge=safe_merge, adapter_names=adapter_names) self._replace_module(parent, target_name, target.get_base_layer(), target) elif isinstance(target, ModulesToSaveWrapper): new_module = target.modules_to_save[target.active_adapter] if hasattr(new_module, 'base_layer'): if merge: new_module.merge(safe_merge=safe_merge, adapter_names=adapter_names) new_module = new_module.get_base_layer() setattr(parent, target_name, new_module) return self.model def _check_add_weighted_adapter(self, adapters: list[str], combination_type: str, svd_rank: int | None) -> tuple[str, int, str]: for adapter in adapters: if adapter not in list(self.peft_config.keys()): raise ValueError(f'Adapter {adapter} does not exist') modules_to_save_wrappers = [module for module in self.modules() if isinstance(module, ModulesToSaveWrapper)] problematic_wrappers = [wrapper for wrapper in modules_to_save_wrappers if sum((adapter in wrapper.modules_to_save for adapter in adapters)) > 1] if problematic_wrappers: raise ValueError(f'Cannot add weighted adapters if they target the same module with modules_to_save, but found {len(problematic_wrappers)} such instance(s).') combination_type = 'linear' if len(adapters) == 1 else combination_type adapters_ranks = [self.peft_config[adapter].r for adapter in adapters] if combination_type in ('linear', 'ties', 'dare_ties', 'dare_linear', 'magnitude_prune'): if len(set(adapters_ranks)) != 1: raise ValueError('All adapters must have the same r value when using combination_type linear, ties, dare_ties or dare_linear.') new_rank = adapters_ranks[0] elif combination_type == 'cat': new_rank = sum(adapters_ranks) elif combination_type.endswith('svd'): new_rank = svd_rank or max(adapters_ranks) else: raise ValueError(f'Invalid combination_type: {combination_type}') target_module_types = [type(self.peft_config[adapter].target_modules) for adapter in adapters] if not target_module_types: raise ValueError(f'Found no adapter matching the names in {adapters}') if len(set(target_module_types)) > 1: raise ValueError('all adapter configs should follow the same target modules type. Combining adapters with `target_modules` type being a mix of list/set and string is not supported.') if target_module_types[0] is str: new_target_modules = '|'.join((f'({self.peft_config[adapter].target_modules})' for adapter in adapters)) elif target_module_types[0] is set: new_target_modules = reduce(operator.or_, (self.peft_config[adapter].target_modules for adapter in adapters)) else: raise TypeError(f'Invalid type {target_module_types[0]} found in target_modules') return (combination_type, new_rank, new_target_modules) def add_weighted_adapter(self, adapters: list[str], weights: list[float], adapter_name: str, combination_type: str='svd', svd_rank: int | None=None, svd_clamp: int | None=None, svd_full_matrices: bool=True, svd_driver: str | None=None, density: float | None=None, majority_sign_method: Literal['total', 'frequency']='total') -> None: if adapter_name in list(self.peft_config.keys()): return (combination_type, new_rank, new_target_modules) = self._check_add_weighted_adapter(adapters=adapters, combination_type=combination_type, svd_rank=svd_rank) self.peft_config[adapter_name] = replace(self.peft_config[adapters[0]], r=new_rank, lora_alpha=new_rank, target_modules=new_target_modules) self.inject_adapter(self.model, adapter_name) _freeze_adapter(self.model, adapter_name) key_list = [key for (key, _) in self.model.named_modules() if self.prefix not in key] for key in key_list: (_, target, _) = _get_submodules(self.model, key) if isinstance(target, LoraLayer): if adapter_name in target.lora_A: target_lora_A = target.lora_A[adapter_name].weight target_lora_B = target.lora_B[adapter_name].weight elif adapter_name in target.lora_embedding_A: target_lora_A = target.lora_embedding_A[adapter_name] target_lora_B = target.lora_embedding_B[adapter_name] else: continue target_lora_A.data = target_lora_A.data * 0.0 target_lora_B.data = target_lora_B.data * 0.0 if combination_type == 'cat': (loras_A, loras_B) = ([], []) for (adapter, weight) in zip(adapters, weights): if adapter in target.lora_A: current_adapter_lora_A = target.lora_A[adapter].weight current_adapter_lora_B = target.lora_B[adapter].weight elif adapter in target.lora_embedding_A: current_adapter_lora_A = target.lora_embedding_A[adapter] current_adapter_lora_B = target.lora_embedding_B[adapter] else: continue loras_A.append(current_adapter_lora_A.data * weight * target.scaling[adapter]) loras_B.append(current_adapter_lora_B.data) if len(loras_A) == 0: raise ValueError('No matching LoRAs found. Please raise an issue on GitHub.') loras_A = torch.cat(loras_A, dim=0) loras_B = torch.cat(loras_B, dim=1) target_lora_A.data[:loras_A.shape[0], :] = loras_A target_lora_B.data[:, :loras_B.shape[1]] = loras_B elif combination_type in ['svd', 'ties_svd', 'dare_linear_svd', 'dare_ties_svd', 'magnitude_prune_svd']: (target_lora_A.data, target_lora_B.data) = self._svd_generalized_task_arithmetic_weighted_adapter(combination_type, adapters, weights, new_rank, target, target_lora_A, target_lora_B, density, majority_sign_method, svd_clamp, full_matrices=svd_full_matrices, driver=svd_driver) elif combination_type in ['linear', 'ties', 'dare_linear', 'dare_ties', 'magnitude_prune']: (target_lora_A.data, target_lora_B.data) = self._generalized_task_arithmetic_weighted_adapter(combination_type, adapters, weights, target, density, majority_sign_method) def _svd_generalized_task_arithmetic_weighted_adapter(self, combination_type, adapters, weights, new_rank, target, target_lora_A, target_lora_B, density, majority_sign_method, clamp=None, full_matrices=True, driver=None): valid_adapters = [] valid_weights = [] is_embedding = any((adapter in target.lora_embedding_A for adapter in adapters)) for (adapter, weight) in zip(adapters, weights): if adapter in target.lora_A or adapter in target.lora_embedding_A: valid_adapters.append(adapter) valid_weights.append(weight * target.scaling[adapter]) if len(valid_adapters) == 0: raise ValueError('No matching LoRAs found. Please raise an issue on Github.') delta_weight = [target.get_delta_weight(adapter) for adapter in valid_adapters] valid_weights = torch.tensor(valid_weights).to(delta_weight[0].device) if combination_type == 'svd': delta_weight = task_arithmetic(delta_weight, valid_weights) elif combination_type == 'ties_svd': delta_weight = ties(delta_weight, valid_weights, density, majority_sign_method) elif combination_type == 'dare_linear_svd': delta_weight = dare_linear(delta_weight, valid_weights, density) elif combination_type == 'dare_ties_svd': delta_weight = dare_ties(delta_weight, valid_weights, density, majority_sign_method) elif combination_type == 'magnitude_prune_svd': delta_weight = magnitude_prune(delta_weight, valid_weights, density) else: raise ValueError(f'Invalid value passed to combination type: {combination_type}') conv2d = isinstance(target, Conv2d) if conv2d: conv2d_1x1 = target.weight.size()[2:4] == (1, 1) if not conv2d_1x1: delta_weight = delta_weight.flatten(start_dim=1) else: delta_weight = delta_weight.squeeze() if hasattr(target, 'fan_in_fan_out') and target.fan_in_fan_out or is_embedding: delta_weight = delta_weight.T (U, S, Vh) = torch.linalg.svd(delta_weight, full_matrices=full_matrices, driver=driver) U = U[:, :new_rank] S = S[:new_rank] U = U @ torch.diag(S) Vh = Vh[:new_rank, :] if clamp is not None: dist = torch.cat([U.flatten(), Vh.flatten()]) hi_val = torch.quantile(dist, clamp) low_val = -hi_val U = U.clamp(low_val, hi_val) Vh = Vh.clamp(low_val, hi_val) if conv2d: U = U.reshape(target_lora_B.data.shape) Vh = Vh.reshape(target_lora_A.data.shape) return (Vh, U) def _generalized_task_arithmetic_weighted_adapter(self, combination_type, adapters, weights, target, density, majority_sign_method): valid_weights = [] lora_A_deltas = [] lora_B_deltas = [] for (adapter, weight) in zip(adapters, weights): if adapter in target.lora_A: current_adapter_lora_A = target.lora_A[adapter].weight current_adapter_lora_B = target.lora_B[adapter].weight elif adapter in target.lora_embedding_A: current_adapter_lora_A = target.lora_embedding_A[adapter] current_adapter_lora_B = target.lora_embedding_B[adapter] else: continue valid_weights.append(math.sqrt(weight * target.scaling[adapter])) lora_A_deltas.append(current_adapter_lora_A.data) lora_B_deltas.append(current_adapter_lora_B.data) valid_weights = torch.tensor(valid_weights).to(lora_A_deltas[0].device) lora_deltas = [lora_A_deltas, lora_B_deltas] dtype = lora_A_deltas[0].dtype for (i, task_tensors) in enumerate(lora_deltas): if combination_type == 'linear': lora_deltas[i] = task_arithmetic(task_tensors, valid_weights) elif combination_type == 'ties': lora_deltas[i] = ties(task_tensors, valid_weights, density, majority_sign_method) elif combination_type == 'dare_linear': lora_deltas[i] = dare_linear(task_tensors, valid_weights, density) elif combination_type == 'dare_ties': lora_deltas[i] = dare_ties(task_tensors, valid_weights, density, majority_sign_method) elif combination_type == 'magnitude_prune': lora_deltas[i] = magnitude_prune(task_tensors, valid_weights, density) else: raise ValueError('Invalid combination type') lora_deltas = [delta.to(dtype) for delta in lora_deltas] return lora_deltas def delete_adapter(self, adapter_name: str) -> None: if adapter_name not in list(self.peft_config.keys()): raise ValueError(f'Adapter {adapter_name} does not exist') del self.peft_config[adapter_name] key_list = [key for (key, _) in self.model.named_modules() if self.prefix not in key] new_adapter = None for key in key_list: (_, target, _) = _get_submodules(self.model, key) if isinstance(target, LoraLayer): target.delete_adapter(adapter_name) if new_adapter is None: new_adapter = target.active_adapters[:] self.active_adapter = new_adapter or [] def merge_and_unload(self, progressbar: bool=False, safe_merge: bool=False, adapter_names: Optional[list[str]]=None) -> torch.nn.Module: return self._unload_and_optionally_merge(progressbar=progressbar, safe_merge=safe_merge, adapter_names=adapter_names) def unload(self) -> torch.nn.Module: return self._unload_and_optionally_merge(merge=False) def subtract_mutated_init(self, output_state_dict: dict[str, torch.Tensor], adapter_name: str, kwargs=None): for (name, param) in self.model.named_parameters(): if (param.data.dtype != torch.float32 and param.data.dtype != torch.float16 and (param.data.dtype != torch.bfloat16)) and adapter_name.startswith('pissa'): warnings.warn('Note that Quant(W_res) + AB != Quant(W) + \\Delta(AB); the converted LoRA, when combined with W or Quant(W), may introduce a certain gap in the fine-tuned model. Therefore, we recommend directly using the Quant(W_res) in conjunction with the PiSSA adapter. ') mutated_init_state_dict = get_peft_model_state_dict(self, state_dict=kwargs.get('state_dict', None), adapter_name=adapter_name) tensors_lora = {} for name in output_state_dict.keys(): if 'lora_A' in name: tensors_lora[name] = torch.cat([output_state_dict[name], mutated_init_state_dict['.'.join(name.split('.')[1:])]], dim=0) elif 'lora_B' in name: tensors_lora[name] = torch.cat([output_state_dict[name], -mutated_init_state_dict['.'.join(name.split('.')[1:])]], dim=1) return tensors_lora # File: peft-main/src/peft/tuners/lora/tp_layer.py from __future__ import annotations import importlib import math import warnings from typing import Any, Optional, Union import torch import torch.nn as nn import torch.nn.init as init from peft.tuners.tuners_utils import BaseTunerLayer, check_adapters_to_merge from peft.utils import transpose from peft.utils.integrations import gather_params_ctx from .layer import LoraLayer class LoraParallelLinear(nn.Module, LoraLayer): def __init__(self, base_layer, adapter_name: str, backend, r: int=0, lora_alpha: int=1, lora_dropout: float=0.0, fan_in_fan_out: bool=False, is_target_conv_1d_layer: bool=False, init_lora_weights: Union[bool, str]=True, use_rslora: bool=False, use_dora: bool=False, **kwargs): super().__init__() LoraLayer.__init__(self, base_layer=base_layer, **kwargs) if use_dora: raise ValueError(f'{self.__class__.__name__} does not support DoRA yet, please set it to False') self.backend = backend self.is_parallel_a = isinstance(base_layer, backend.RowParallelLinear) self.fan_in_fan_out = fan_in_fan_out self._active_adapter = adapter_name megatron_config = kwargs['megatron_config'] parallel_linear_kwargs = {'megatron_config': megatron_config} init_method = init.xavier_normal_ if hasattr(megatron_config, 'init_method'): init_method = megatron_config.init_method input_is_parallel = True gather_output = False if isinstance(base_layer, self.backend.RowParallelLinear): input_is_parallel = base_layer.input_is_parallel else: gather_output = base_layer.gather_output self.update_layer(adapter_name, r, lora_alpha=lora_alpha, lora_dropout=lora_dropout, init_lora_weights=init_lora_weights, use_rslora=use_rslora, use_dora=use_dora, init_method=init_method, input_is_parallel=input_is_parallel, gather_output=gather_output, **parallel_linear_kwargs) if is_target_conv_1d_layer: raise ValueError(f'{self.__class__.__name__} does not support target_conv_1d_layer yet, please set it to False') self.is_target_conv_1d_layer = False def update_layer(self, adapter_name, r, lora_alpha, lora_dropout, init_lora_weights, use_rslora, use_dora=False, init_method=init.xavier_normal_, input_is_parallel=True, gather_output=False, **parallel_linear_kwargs): if r <= 0: raise ValueError(f'`r` should be a positive integer value but the value passed is {r}') self.r[adapter_name] = r self.lora_alpha[adapter_name] = lora_alpha if lora_dropout > 0.0: lora_dropout_layer = nn.Dropout(p=lora_dropout) else: lora_dropout_layer = nn.Identity() self.lora_dropout[adapter_name] = lora_dropout_layer megatron_config = parallel_linear_kwargs['megatron_config'] megatron_config.params_dtype = torch.float32 if self.is_parallel_a: lora_a = self.backend.RowParallelLinear(input_size=self.in_features, output_size=r, bias=False, input_is_parallel=input_is_parallel, skip_bias_add=True, init_method=init_method, config=megatron_config) lora_b = nn.Linear(in_features=r, out_features=self.out_features, bias=False, dtype=torch.float32) else: lora_a = nn.Linear(in_features=self.in_features, out_features=r, bias=False, dtype=torch.float32) lora_b = self.backend.ColumnParallelLinear(input_size=r, output_size=self.out_features, bias=False, gather_output=gather_output, init_method=init_method, config=megatron_config) self.lora_A[adapter_name] = lora_a self.lora_B[adapter_name] = lora_b if use_rslora: self.scaling[adapter_name] = lora_alpha / math.sqrt(r) else: self.scaling[adapter_name] = lora_alpha / r if isinstance(init_lora_weights, str) and init_lora_weights.startswith('pissa'): with gather_params_ctx(self.get_base_layer().weight): self.pissa_init(adapter_name, init_lora_weights) elif isinstance(init_lora_weights, str) and init_lora_weights.lower() == 'olora': with gather_params_ctx(self.get_base_layer().weight): self.olora_init(adapter_name) elif init_lora_weights == 'loftq': with gather_params_ctx(self.get_base_layer().weight): self.loftq_init(adapter_name) elif init_lora_weights: self.reset_lora_parameters(adapter_name, init_lora_weights) self._move_adapter_to_device_of_base_layer(adapter_name) if use_dora: self.dora_init(adapter_name) self.use_dora[adapter_name] = True else: self.use_dora[adapter_name] = False self.set_adapter(self.active_adapters) def forward(self, x: torch.Tensor, *args: Any, **kwargs: Any): self._check_forward_args(x, *args, **kwargs) adapter_names = kwargs.pop('adapter_names', None) if self.disable_adapters: if self.merged: self.unmerge() (result, bias) = self.base_layer(x, *args, **kwargs) elif adapter_names is not None: raise ValueError(f'{self.__class__.__name__} does not support mixed_batch_forward yet.') elif self.merged: (result, bias) = self.base_layer(x, *args, **kwargs) else: (result, bias) = self.base_layer(x, *args, **kwargs) torch_result_dtype = result.dtype for active_adapter in self.active_adapters: if active_adapter not in self.lora_A.keys(): continue lora_A = self.lora_A[active_adapter] lora_B = self.lora_B[active_adapter] dropout = self.lora_dropout[active_adapter] scaling = self.scaling[active_adapter] x = x.to(lora_A.weight.dtype) if not self.use_dora[active_adapter]: lora_result = lora_A(dropout(x)) if isinstance(lora_result, tuple): lora_result = lora_result[0] lora_result = lora_B(lora_result) if isinstance(lora_result, tuple): lora_result = lora_result[0] lora_result = lora_result * scaling result = result + lora_result else: x = dropout(x) result = result + self.lora_magnitude_vector[active_adapter](x, lora_A=lora_A, lora_B=lora_B, scaling=scaling, base_layer=self.get_base_layer()) result = result.to(torch_result_dtype) return (result, bias) def merge(self, safe_merge: bool=False, adapter_names: Optional[list[str]]=None) -> None: adapter_names = check_adapters_to_merge(self, adapter_names) if not adapter_names: return for active_adapter in adapter_names: if active_adapter in self.lora_A.keys(): base_layer = self.get_base_layer() if safe_merge: orig_weights = base_layer.weight.data.clone() delta_weight = self.get_delta_weight(active_adapter) if not self.use_dora[active_adapter]: orig_weights = orig_weights + delta_weight else: weight_norm = self.lora_magnitude_vector[active_adapter].get_weight_norm(orig_weights, transpose(delta_weight, self.fan_in_fan_out), scaling=1).detach() self._cache_store(f'{active_adapter}-weight_norm', weight_norm) dora_factor = self.lora_magnitude_vector[active_adapter].weight / weight_norm dora_factor = transpose(dora_factor.view(-1, 1), self.fan_in_fan_out) orig_weights = dora_factor * (orig_weights + delta_weight) if not torch.isfinite(orig_weights).all(): raise ValueError(f'NaNs detected in the merged weights. The adapter {active_adapter} seems to be broken') base_layer.weight.data = orig_weights else: delta_weight = self.get_delta_weight(active_adapter) if not self.use_dora[active_adapter]: base_layer.weight.data = base_layer.weight.data + delta_weight else: weight_norm = self.lora_magnitude_vector[active_adapter].get_weight_norm(base_layer.weight, transpose(delta_weight, self.fan_in_fan_out), scaling=1).detach() self._cache_store(f'{active_adapter}-weight_norm', weight_norm) dora_factor = self.lora_magnitude_vector[active_adapter].weight / weight_norm dora_factor = transpose(dora_factor.view(-1, 1), self.fan_in_fan_out) new_weight = dora_factor * (base_layer.weight.data + delta_weight) base_layer.weight.data = new_weight self.merged_adapters.append(active_adapter) def unmerge(self) -> None: if not self.merged: warnings.warn('Already unmerged. Nothing to do.') return while len(self.merged_adapters) > 0: active_adapter = self.merged_adapters.pop() if active_adapter in self.lora_A.keys(): weight = self.get_base_layer().weight delta_weight = self.get_delta_weight(active_adapter) if not self.use_dora[active_adapter]: weight.data -= delta_weight else: weight_norm = self._cache_pop(f'{active_adapter}-weight_norm') dora_factor = self.lora_magnitude_vector[active_adapter].weight / weight_norm weight_orig = weight.data / dora_factor.view(-1, 1) - delta_weight weight.data = weight_orig def get_delta_weight(self, adapter) -> torch.Tensor: device = self.lora_B[adapter].weight.device dtype = self.lora_B[adapter].weight.dtype cast_to_fp32 = device.type == 'cpu' and (dtype == torch.float16 or dtype == torch.bfloat16) weight_A = self.lora_A[adapter].weight weight_B = self.lora_B[adapter].weight if cast_to_fp32: weight_A = weight_A.float() weight_B = weight_B.float() output_tensor = transpose(weight_B @ weight_A, self.fan_in_fan_out) * self.scaling[adapter] if cast_to_fp32: output_tensor = output_tensor.to(dtype=dtype) self.lora_A[adapter].weight.data = weight_A.to(dtype) self.lora_B[adapter].weight.data = weight_B.to(dtype) return output_tensor def __repr__(self) -> str: rep = super().__repr__() return 'lora.' + rep def dispatch_megatron(target: torch.nn.Module, adapter_name: str, lora_config, **kwargs: Any) -> Optional[torch.nn.Module]: new_module = None if isinstance(target, BaseTunerLayer): target_base_layer = target.get_base_layer() else: target_base_layer = target if lora_config.megatron_config: megatron_core = importlib.import_module(lora_config.megatron_core) else: megatron_core = None if megatron_core and isinstance(target_base_layer, (megatron_core.tensor_parallel.ColumnParallelLinear, megatron_core.tensor_parallel.RowParallelLinear)): megatron_kwargs = kwargs.copy() megatron_config = lora_config.megatron_config if isinstance(megatron_config, dict): transformer_config_class = megatron_core.transformer.transformer_config.TransformerConfig megatron_config = transformer_config_class(**lora_config.megatron_config) megatron_kwargs['megatron_config'] = megatron_config if megatron_kwargs['fan_in_fan_out']: warnings.warn('fan_in_fan_out is set to True but the target module is `ColumnParallelLinear` or `RowParallelLinear`. Setting fan_in_fan_out to False.') megatron_kwargs['fan_in_fan_out'] = lora_config.fan_in_fan_out = False new_module = LoraParallelLinear(base_layer=target, adapter_name=adapter_name, backend=megatron_core.tensor_parallel, **megatron_kwargs) return new_module # File: peft-main/src/peft/tuners/lycoris_utils.py from __future__ import annotations import warnings from abc import abstractmethod from dataclasses import dataclass, field from typing import Any, Optional, Union import torch import torch.nn as nn from tqdm import tqdm from peft.config import PeftConfig from peft.utils import ModulesToSaveWrapper, _get_submodules from .tuners_utils import BaseTuner, BaseTunerLayer, check_adapters_to_merge, check_target_module_exists @dataclass class LycorisConfig(PeftConfig): rank_pattern: Optional[dict] = field(default_factory=dict, metadata={'help': 'The mapping from layer names or regexp expression to ranks which are different from the default rank specified by `r`. For example, `{model.decoder.layers.0.encoder_attn.k_proj: 8`}'}) alpha_pattern: Optional[dict] = field(default_factory=dict, metadata={'help': 'The mapping from layer names or regexp expression to alphas which are different from the default alpha specified by `alpha`. For example, `{model.decoder.layers.0.encoder_attn.k_proj: 32`}'}) class LycorisLayer(BaseTunerLayer): other_param_names = ('r', 'alpha', 'scaling', 'rank_dropout', 'module_dropout') def __init__(self, base_layer: nn.Module) -> None: self.base_layer = base_layer self.r = {} self.alpha = {} self.scaling = {} self.rank_dropout = {} self.module_dropout = {} self._disable_adapters = False self.merged_adapters = [] @property @abstractmethod def _available_adapters(self) -> set[str]: ... def _init_empty_weights(self, cls, *args, **kwargs) -> None: kwargs = kwargs.copy() final_device = kwargs.pop('device', 'cpu') cls.__init__(self, *args, device='meta', **kwargs) self.to_empty(device=final_device) @abstractmethod def create_adapter_parameters(self, adapter_name: str, r: int, **kwargs): ... @abstractmethod def _get_delta_activations(self, adapter_name: str, x: torch.Tensor, *args: Any, **kwargs: Any) -> torch.Tensor: @abstractmethod def get_delta_weight(self, adapter_name: str) -> torch.Tensor: ... def merge(self, safe_merge: bool=False, adapter_names: Optional[list[str]]=None) -> None: adapter_names = check_adapters_to_merge(self, adapter_names) if not adapter_names: return for active_adapter in adapter_names: if active_adapter in self._available_adapters: base_layer = self.get_base_layer() if safe_merge: orig_weights = base_layer.weight.data.clone() orig_weights += self.get_delta_weight(active_adapter) if not torch.isfinite(orig_weights).all(): raise ValueError(f'NaNs detected in the merged weights. The adapter {active_adapter} seems to be broken') base_layer.weight.data = orig_weights else: base_layer.weight.data += self.get_delta_weight(active_adapter) self.merged_adapters.append(active_adapter) @abstractmethod def reset_adapter_parameters(self, adapter_name: str): ... def set_scale(self, adapter, scale): if adapter not in self._available_adapters: return self.scaling[adapter] = scale * self.alpha[adapter] / self.r[adapter] def scale_layer(self, scale: float) -> None: if scale == 1: return for active_adapter in self.active_adapters: if active_adapter not in self._available_adapters: continue self.scaling[active_adapter] *= scale def unmerge(self) -> None: if not self.merged: warnings.warn('Already unmerged. Nothing to do.') return while len(self.merged_adapters) > 0: active_adapter = self.merged_adapters.pop() if active_adapter in self._available_adapters: self.get_base_layer().weight.data -= self.get_delta_weight(active_adapter) def unscale_layer(self, scale=None) -> None: for active_adapter in self.active_adapters: if active_adapter not in self._available_adapters: continue if scale is None: self.scaling[active_adapter] = self.alpha[active_adapter] / self.r[active_adapter] else: self.scaling[active_adapter] /= scale @abstractmethod def update_layer(self, adapter_name: str, r: int, alpha: float, **kwargs): ... class LycorisTuner(BaseTuner): prefix: str layers_mapping: dict[type[torch.nn.Module], type[LycorisLayer]] def __init__(self, model, config, adapter_name): super().__init__(model, config, adapter_name) def __getattr__(self, name: str): try: return super().__getattr__(name) except AttributeError: if name == 'model': raise return getattr(self.model, name) @staticmethod def _check_target_module_exists(config, key): return check_target_module_exists(config, key) @abstractmethod def _create_and_replace(self, config: LycorisConfig, adapter_name: str, target: Union[LycorisLayer, nn.Module], target_name, parent, current_key): ... @classmethod def _create_new_module(cls, config: LycorisConfig, adapter_name: str, target: nn.Module, **kwargs) -> LycorisLayer: new_module_cls = None for (subtype, target_cls) in cls.layers_mapping.items(): if hasattr(target, 'base_layer') and isinstance(target.get_base_layer(), subtype) and isinstance(target, BaseTunerLayer): new_module_cls = target_cls break elif isinstance(target, subtype): new_module_cls = target_cls break if new_module_cls is None: supported_modules = ', '.join((layer.__name__ for layer in cls.layers_mapping.keys())) raise ValueError(f'Target module of type {type(target)} not supported, currently only adapters for {supported_modules} are supported') if isinstance(target, BaseTunerLayer): target_base_layer = target.get_base_layer() else: target_base_layer = target if isinstance(target_base_layer, torch.nn.Conv2d): new_module = new_module_cls(target, adapter_name=adapter_name, **kwargs) elif isinstance(target_base_layer, torch.nn.Linear): new_module = new_module_cls(target, adapter_name=adapter_name, **kwargs) else: supported_modules = ', '.join((layer.__name__ for layer in cls.layers_mapping.keys())) raise ValueError(f'Target module of type {type(target)} not supported, currently only adapters for {supported_modules} are supported') return new_module def _mark_only_adapters_as_trainable(self, model: nn.Module) -> None: for (n, p) in model.named_parameters(): if self.prefix not in n: p.requires_grad = False @staticmethod def _prepare_adapter_config(peft_config, model_config): if peft_config.target_modules is None: raise ValueError('Please specify `target_modules` in `peft_config`') return peft_config def _replace_module(self, parent, child_name, new_module, child): setattr(parent, child_name, new_module) if not hasattr(new_module, 'base_layer'): new_module.weight = child.weight if hasattr(child, 'bias'): new_module.bias = child.bias if getattr(child, 'state', None) is not None: if hasattr(new_module, 'base_layer'): new_module.base_layer.state = child.state else: new_module.state = child.state new_module.to(child.weight.device) for (name, module) in new_module.named_modules(): if self.prefix in name: module.to(child.weight.device) def _set_adapter_layers(self, enabled=True): for module in self.model.modules(): if isinstance(module, (BaseTunerLayer, ModulesToSaveWrapper)): module.enable_adapters(enabled) def _unload_and_optionally_merge(self, merge: bool=True, progressbar: bool=False, safe_merge: bool=False, adapter_names: Optional[list[str]]=None): if merge: if getattr(self.model, 'quantization_method', None) == 'gptq': raise ValueError('Cannot merge LOHA layers when the model is gptq quantized') self._unloading_checks(adapter_names) key_list = [key for (key, _) in self.model.named_modules() if self.prefix not in key] desc = 'Unloading ' + ('and merging ' if merge else '') + 'model' for key in tqdm(key_list, disable=not progressbar, desc=desc): try: (parent, target, target_name) = _get_submodules(self.model, key) except AttributeError: continue if hasattr(target, 'base_layer'): if merge: target.merge(safe_merge=safe_merge, adapter_names=adapter_names) self._replace_module(parent, target_name, target.get_base_layer(), target) elif isinstance(target, ModulesToSaveWrapper): new_module = target.modules_to_save[target.active_adapter] if hasattr(new_module, 'base_layer'): if merge: new_module.merge(safe_merge=safe_merge, adapter_names=adapter_names) new_module = new_module.get_base_layer() setattr(parent, target_name, new_module) return self.model def enable_adapter_layers(self) -> None: self._set_adapter_layers(enabled=True) def disable_adapter_layers(self) -> None: self._set_adapter_layers(enabled=False) def merge_and_unload(self, progressbar: bool=False, safe_merge: bool=False, adapter_names: Optional[list[str]]=None) -> torch.nn.Module: return self._unload_and_optionally_merge(progressbar=progressbar, safe_merge=safe_merge, adapter_names=adapter_names) def unload(self) -> torch.nn.Module: return self._unload_and_optionally_merge(merge=False) def set_adapter(self, adapter_name: str | list[str]) -> None: for module in self.model.modules(): if isinstance(module, LycorisLayer): if module.merged: warnings.warn('Adapter cannot be set when the model is merged. Unmerging the model first.') module.unmerge() module.set_adapter(adapter_name) self.active_adapter = adapter_name def delete_adapter(self, adapter_name: str) -> None: if adapter_name not in list(self.peft_config.keys()): raise ValueError(f'Adapter {adapter_name} does not exist') del self.peft_config[adapter_name] key_list = [key for (key, _) in self.model.named_modules() if self.prefix not in key] new_adapter = None for key in key_list: (_, target, _) = _get_submodules(self.model, key) if isinstance(target, LycorisLayer): target.delete_adapter(adapter_name) if new_adapter is None: new_adapter = target.active_adapters[:] self.active_adapter = new_adapter or [] # File: peft-main/src/peft/tuners/mixed/model.py from __future__ import annotations import warnings from typing import Any, Optional, Union from torch import nn from tqdm import tqdm from peft.tuners import adalora, loha, lokr, lora, oft from peft.tuners.tuners_utils import BaseTuner, BaseTunerLayer, check_target_module_exists from peft.utils import TRANSFORMERS_MODELS_TO_LORA_TARGET_MODULES_MAPPING, ModulesToSaveWrapper, PeftType, _get_submodules, get_auto_gptq_quant_linear COMPATIBLE_TUNER_TYPES = (PeftType.LORA, PeftType.LOHA, PeftType.LOKR, PeftType.ADALORA, PeftType.OFT) PREFIXES = [lora.LoraModel.prefix, lokr.LoKrModel.prefix, loha.LoHaModel.prefix, oft.OFTModel.prefix] Configs = Union[lora.LoraConfig, loha.LoHaConfig, lokr.LoKrConfig, adalora.AdaLoraConfig, oft.OFTConfig] Layers = (lora.layer.LoraLayer, loha.layer.LoHaLayer, lokr.layer.LoKrLayer, adalora.layer.AdaLoraLayer, oft.OFTLayer) class MixedModel(BaseTuner): def __init__(self, model: nn.Module, config: Configs, adapter_name: str) -> None: super().__init__(model, config, adapter_name) def _check_new_adapter_config(self, config: Configs) -> None: if not isinstance(config, Configs.__args__): raise ValueError(f'{self.__class__.__name__} only supports {COMPATIBLE_TUNER_TYPES} configs, but got {type(config)}.') biases = (getattr(config, 'bias', None) for config in self.peft_config) biases = [bias for bias in biases if bias not in (None, 'none')] if len(biases) > 1: raise ValueError(f"{self.__class__.__name__} supports only 1 adapter with bias. When using multiple adapters, set bias to 'none' for all adapters.") @staticmethod def _check_target_module_exists(config: Configs, key: str): return check_target_module_exists(config, key) def _create_and_replace(self, config: Configs, *args: Any, **kwargs: Any) -> None: if isinstance(config, adalora.AdaLoraConfig): adalora.AdaLoraModel._create_and_replace(self, config, *args, **kwargs) elif isinstance(config, lora.LoraConfig): lora.LoraModel._create_and_replace(self, config, *args, **kwargs) elif isinstance(config, loha.LoHaConfig): loha.LoHaModel._create_and_replace(self, config, *args, **kwargs) elif isinstance(config, lokr.LoKrConfig): lokr.LoKrModel._create_and_replace(self, config, *args, **kwargs) elif isinstance(config, oft.OFTConfig): oft.OFTModel._create_and_replace(self, config, *args, **kwargs) else: raise ValueError(f'Unsupported config type {type(config)}, should be one of {COMPATIBLE_TUNER_TYPES}.') def _replace_module(self, parent, child_name, new_module, child) -> None: setattr(parent, child_name, new_module) if hasattr(child, 'base_layer'): child = child.get_base_layer() elif hasattr(child, 'quant_linear_module'): child = child.quant_linear_module if not hasattr(new_module, 'base_layer'): new_module.weight = child.weight if hasattr(child, 'bias'): new_module.bias = child.bias if getattr(child, 'state', None) is not None: if hasattr(new_module, 'base_layer'): new_module.base_layer.state = child.state else: new_module.state = child.state new_module.to(child.weight.device) for (name, module) in new_module.named_modules(): if any((prefix in name for prefix in PREFIXES)): module.to(child.weight.device) if 'ranknum' in name: module.to(child.weight.device) def _mark_only_adapters_as_trainable(self, model: nn.Module) -> None: for (n, p) in model.named_parameters(): if not any((prefix in n for prefix in PREFIXES)): p.requires_grad = False for active_adapter in self.active_adapters: bias = getattr(self.peft_config[active_adapter], 'bias', 'none') if bias == 'none': continue if bias == 'all': for (n, p) in model.named_parameters(): if 'bias' in n: p.requires_grad = True elif bias == 'lora_only': for m in model.modules(): if isinstance(m, Layers) and hasattr(m, 'bias') and (m.bias is not None): m.bias.requires_grad = True else: raise ValueError(f'Requested bias: {bias}, is not implemented.') @staticmethod def _create_new_module(config, adapter_name, target, **kwargs): gptq_quantization_config = kwargs.get('gptq_quantization_config', None) AutoGPTQQuantLinear = get_auto_gptq_quant_linear(gptq_quantization_config) if gptq_quantization_config is not None or AutoGPTQQuantLinear is not None: raise ValueError(f'GPTQ quantization not supported for {config.peft_type.value} (yet).') loaded_in_8bit = kwargs.pop('loaded_in_8bit', False) loaded_in_4bit = kwargs.pop('loaded_in_4bit', False) if loaded_in_8bit or loaded_in_4bit: raise ValueError(f'8bit and 4bit quantization not supported for {config.peft_type.value} (yet).') if isinstance(config, adalora.AdaLoraConfig): new_module = adalora.AdaLoraModel._create_new_module(config, adapter_name, target, **kwargs) elif isinstance(config, lora.LoraConfig): new_module = lora.LoraModel._create_new_module(config, adapter_name, target, **kwargs) elif isinstance(config, loha.LoHaConfig): new_module = loha.LoHaModel._create_new_module(config, adapter_name, target, **kwargs) elif isinstance(config, lokr.LoKrConfig): new_module = lokr.LoKrModel._create_new_module(config, adapter_name, target, **kwargs) elif isinstance(config, oft.OFTConfig): new_module = oft.OFTModel._create_new_module(config, adapter_name, target, **kwargs) else: raise ValueError(f'Unknown config type {type(config)}, should be one of {COMPATIBLE_TUNER_TYPES}.') return new_module def __getattr__(self, name: str): try: return super().__getattr__(name) except AttributeError: if name == 'model': raise return getattr(self.model, name) def _set_adapter_layers(self, enabled=True): for module in self.model.modules(): if isinstance(module, (BaseTunerLayer, ModulesToSaveWrapper)): module.enable_adapters(enabled) def enable_adapter_layers(self): self._set_adapter_layers(enabled=True) def disable_adapter_layers(self): for active_adapter in self.active_adapters: val = getattr(self.peft_config[active_adapter], 'bias', 'none') if val != 'none': msg = f"Careful, disabling adapter layers with bias configured to be '{val}' does not produce the same output as the the base model would without adaption." warnings.warn(msg) self._set_adapter_layers(enabled=False) def set_adapter(self, adapter_name: Union[str, list[str]]) -> None: for module in self.model.modules(): if isinstance(module, Layers): if module.merged: warnings.warn('Adapter cannot be set when the model is merged. Unmerging the model first.') module.unmerge() module.set_adapter(adapter_name) self.active_adapter = adapter_name @staticmethod def _prepare_adapter_config(peft_config, model_config): if peft_config.target_modules is None: if model_config['model_type'] not in TRANSFORMERS_MODELS_TO_LORA_TARGET_MODULES_MAPPING: raise ValueError('Please specify `target_modules` in `peft_config`') peft_config.target_modules = set(TRANSFORMERS_MODELS_TO_LORA_TARGET_MODULES_MAPPING[model_config['model_type']]) return peft_config def _unload_and_optionally_merge(self, merge=True, progressbar: bool=False, safe_merge: bool=False, adapter_names: Optional[list[str]]=None): if merge: if getattr(self.model, 'quantization_method', None) == 'gptq': raise ValueError('Cannot merge layers when the model is gptq quantized') def merge_recursively(module): path = [] layer = module while hasattr(layer, 'base_layer'): path.append(layer) layer = layer.base_layer for (layer_before, layer_after) in zip(path[:-1], path[1:]): layer_after.merge(safe_merge=safe_merge, adapter_names=adapter_names) layer_before.base_layer = layer_after.base_layer module.merge(safe_merge=safe_merge, adapter_names=adapter_names) key_list = [key for (key, _) in self.model.named_modules() if not any((prefix in key for prefix in PREFIXES))] desc = 'Unloading ' + ('and merging ' if merge else '') + 'model' for key in tqdm(key_list, disable=not progressbar, desc=desc): try: (parent, target, target_name) = _get_submodules(self.model, key) except AttributeError: continue if hasattr(target, 'base_layer'): if merge: merge_recursively(target) self._replace_module(parent, target_name, target.get_base_layer(), target) elif isinstance(target, ModulesToSaveWrapper): new_module = target.modules_to_save[target.active_adapter] if hasattr(new_module, 'base_layer'): if merge: new_module.merge(safe_merge=safe_merge, adapter_names=adapter_names) new_module = new_module.get_base_layer() setattr(parent, target_name, new_module) return self.model def add_weighted_adapter(self, *args: Any, **kwargs: Any) -> None: raise NotImplementedError(f'Weighted adapters are not supported for {self.__class__.__name__} (yet).') def delete_adapter(self, adapter_name: Union[str, list[str]]) -> None: if isinstance(adapter_name, str): adapter_names = [adapter_name] else: adapter_names = adapter_name mismatched = set(adapter_names) - set(self.peft_config.keys()) if mismatched: raise ValueError(f'Adapter(s) {sorted(mismatched)} not found, available adapters: {sorted(self.peft_config.keys())}') for adapter_name in adapter_names: del self.peft_config[adapter_name] key_list = [key for (key, _) in self.model.named_modules() if not any((prefix in key for prefix in PREFIXES))] new_adapter = None for key in key_list: (_, target, _) = _get_submodules(self.model, key) if isinstance(target, BaseTunerLayer): target.delete_adapter(adapter_name) if new_adapter is None: new_adapter = target.active_adapters[:] self.active_adapter = new_adapter or [] def merge_and_unload(self, progressbar: bool=False, safe_merge: bool=False, adapter_names: Optional[list[str]]=None) -> nn.Module: return self._unload_and_optionally_merge(progressbar=progressbar, safe_merge=safe_merge, adapter_names=adapter_names) def unload(self) -> nn.Module: return self._unload_and_optionally_merge(merge=False) def generate(self, *args: Any, **kwargs: Any): return self.model.generate(*args, **kwargs) # File: peft-main/src/peft/tuners/multitask_prompt_tuning/config.py import enum from dataclasses import dataclass, field from typing import Optional, Union from peft.tuners.prompt_tuning import PromptTuningConfig from peft.utils import PeftType class MultitaskPromptTuningInit(str, enum.Enum): TEXT = 'TEXT' RANDOM = 'RANDOM' AVERAGE_SOURCE_TASKS = 'AVERAGE_SOURCE_TASKS' EXACT_SOURCE_TASK = 'EXACT_SOURCE_TASK' ONLY_SOURCE_SHARED = 'ONLY_SOURCE_SHARED' @dataclass class MultitaskPromptTuningConfig(PromptTuningConfig): prompt_tuning_init: Union[MultitaskPromptTuningInit, str] = field(default=MultitaskPromptTuningInit.RANDOM, metadata={'help': 'How to initialize the prompt tuning parameters. Can be one of TEXT, RANDOM, AVERAGE_SOURCE_TASKS, EXACT_SOURCE_TASK, ONLY_SOURCE_SHARED.'}) prompt_tuning_init_state_dict_path: Optional[str] = field(default=None, metadata={'help': 'The path of source state dict. This is required when training the downstream target prompt from the pretrained source prompt'}) prompt_tuning_init_task: Optional[int] = field(default=0, metadata={'help': 'source task id for initialization'}) num_ranks: Optional[int] = field(default=1, metadata={'help': 'ranks'}) num_tasks: Optional[int] = field(default=1, metadata={'help': 'number of tasks'}) def __post_init__(self): self.peft_type = PeftType.MULTITASK_PROMPT_TUNING # File: peft-main/src/peft/tuners/multitask_prompt_tuning/model.py import torch from peft.tuners.prompt_tuning import PromptEmbedding from peft.utils import TaskType from peft.utils.save_and_load import torch_load from .config import MultitaskPromptTuningConfig, MultitaskPromptTuningInit class MultitaskPromptEmbedding(PromptEmbedding): def __init__(self, config: MultitaskPromptTuningConfig, word_embeddings): super().__init__(config, word_embeddings) self.num_tasks = config.num_tasks self.num_ranks = config.num_ranks self.num_virtual_tokens = config.num_virtual_tokens self.num_transformer_submodules = config.num_transformer_submodules if self.num_transformer_submodules is None: self.num_transformer_submodules = 2 if config.task_type == TaskType.SEQ_2_SEQ_LM else 1 self.token_dim = config.token_dim total_virtual_tokens = self.num_virtual_tokens * self.num_transformer_submodules self.prefix_task_cols = torch.nn.Parameter(torch.normal(mean=0, std=0.02, size=(self.num_tasks, total_virtual_tokens, self.num_ranks))) self.prefix_task_rows = torch.nn.Parameter(torch.normal(mean=0, std=0.02, size=(self.num_tasks, self.num_ranks, self.token_dim))) if config.prompt_tuning_init in [MultitaskPromptTuningInit.AVERAGE_SOURCE_TASKS, MultitaskPromptTuningInit.EXACT_SOURCE_TASK, MultitaskPromptTuningInit.ONLY_SOURCE_SHARED]: if config.prompt_tuning_init_state_dict_path is None: raise ValueError(f'prompt_tuning_init_state_dict_path needs to be specified with {config.prompt_tuning_init} init method') if config.prompt_tuning_init_state_dict_path.endswith('.safetensors'): from safetensors.torch import load_file state_dict: dict = load_file(config.prompt_tuning_init_state_dict_path) else: state_dict: dict = torch_load(config.prompt_tuning_init_state_dict_path, map_location=word_embeddings.weight.device) if config.prompt_tuning_init in [MultitaskPromptTuningInit.AVERAGE_SOURCE_TASKS, MultitaskPromptTuningInit.EXACT_SOURCE_TASK]: prefix_task_cols_: torch.Tensor = state_dict['prefix_task_cols'] prefix_task_rows_: torch.Tensor = state_dict['prefix_task_rows'] if config.prompt_tuning_init == MultitaskPromptTuningInit.AVERAGE_SOURCE_TASKS: prefix_task_cols_ = prefix_task_cols_.mean(0, keepdim=True) prefix_task_rows_ = prefix_task_rows_.mean(0, keepdim=True) elif config.prompt_tuning_init == MultitaskPromptTuningInit.EXACT_SOURCE_TASK: prefix_task_cols_ = prefix_task_cols_[config.prompt_tuning_init_task, ...].unsqueeze(0) prefix_task_rows_ = prefix_task_rows_[config.prompt_tuning_init_task, ...].unsqueeze(0) state_dict = {'embedding.weight': state_dict['prompt_embeddings'], 'prefix_task_cols': prefix_task_cols_, 'prefix_task_rows': prefix_task_rows_} self.load_state_dict(state_dict, strict=True) elif config.prompt_tuning_init == MultitaskPromptTuningInit.ONLY_SOURCE_SHARED: state_dict = {'embedding.weight': state_dict['prompt_embeddings']} self.load_state_dict(state_dict, strict=False) def forward(self, indices, task_ids): if task_ids is None: raise ValueError('task_ids cannot be None') prompt_embeddings = self.embedding(indices) task_cols = torch.index_select(self.prefix_task_cols, 0, task_ids) task_rows = torch.index_select(self.prefix_task_rows, 0, task_ids) task_prompts = torch.matmul(task_cols, task_rows) prompt_embeddings *= task_prompts return prompt_embeddings # File: peft-main/src/peft/tuners/oft/config.py from dataclasses import dataclass, field from typing import List, Optional, Union from peft.tuners.lycoris_utils import LycorisConfig from peft.utils import PeftType @dataclass class OFTConfig(LycorisConfig): r: int = field(default=8, metadata={'help': 'OFT rank'}) module_dropout: float = field(default=0.0, metadata={'help': 'The dropout probability for disabling OFT modules during training'}) target_modules: Optional[Union[List[str], str]] = field(default=None, metadata={'help': "List of module names or regex expression of the module names to replace with OFT.For example, ['q', 'v'] or '.*decoder.*(SelfAttention|EncDecAttention).*(q|v)$' This can also be a wildcard 'all-linear' which matches all linear/Conv1D layers except the output layer."}) init_weights: bool = field(default=True, metadata={'help': "Whether to initialize the weights of the OFT layers with their default initialization. Don't change this setting, except if you know exactly what you're doing."}) layers_to_transform: Optional[Union[List[int], int]] = field(default=None, metadata={'help': 'The layer indexes to transform, is this argument is specified, PEFT will transform only the layers indexes that are specified inside this list. If a single integer is passed, PEFT will transform only the layer at this index.'}) layers_pattern: Optional[str] = field(default=None, metadata={'help': 'The layer pattern name, used only if `layers_to_transform` is different to None and if the layer pattern is not in the common layers pattern.'}) modules_to_save: Optional[List[str]] = field(default=None, metadata={'help': 'List of modules apart from OFT layers to be set as trainable and saved in the final checkpoint. For example, in Sequence Classification or Token Classification tasks, the final layer `classifier/score` are randomly initialized and as such need to be trainable and saved.'}) coft: bool = field(default=False, metadata={'help': 'Whether to use the constrained variant of OFT or not.'}) eps: float = field(default=6e-05, metadata={'help': 'The control strength of COFT. The freedom of rotation. Only has an effect if `coft` is set to True.'}) block_share: bool = field(default=False, metadata={'help': 'Whether to share the OFT parameters between blocks or not.'}) def __post_init__(self): self.peft_type = PeftType.OFT self.target_modules = set(self.target_modules) if isinstance(self.target_modules, list) else self.target_modules # File: peft-main/src/peft/tuners/oft/layer.py import math import warnings from typing import Any, List, Optional, Set, Tuple import torch import torch.nn as nn from peft.tuners.lycoris_utils import LycorisLayer, check_adapters_to_merge class OFTLayer(nn.Module, LycorisLayer): adapter_layer_names = ('oft_r',) def __init__(self, base_layer: nn.Module): super().__init__() LycorisLayer.__init__(self, base_layer) self.oft_r = nn.ParameterDict({}) self.coft = {} self.eps = {} self.block_share = {} @property def _available_adapters(self) -> Set[str]: return {*self.oft_r} def create_adapter_parameters(self, adapter_name: str, r: int, shape: Tuple[int, ...], block_share: bool): if block_share: self.oft_r[adapter_name] = nn.Parameter(torch.empty(1, math.ceil(shape[0] / r), math.ceil(shape[0] / r))) else: self.oft_r[adapter_name] = nn.Parameter(torch.empty(r, math.ceil(shape[0] / r), math.ceil(shape[0] / r))) def reset_adapter_parameters(self, adapter_name: str): nn.init.zeros_(self.oft_r[adapter_name]) def reset_adapter_parameters_random(self, adapter_name: str): nn.init.kaiming_uniform_(self.oft_r[adapter_name], a=math.sqrt(5)) def update_layer(self, adapter_name: str, r: int, module_dropout: float, init_weights: bool, coft: bool=False, eps: float=6e-05, block_share: bool=False, **kwargs) -> None: if r <= 0: raise ValueError(f'`r` should be a positive integer value but the value passed is {r}') self.r[adapter_name] = r self.module_dropout[adapter_name] = module_dropout self.coft[adapter_name] = coft self.block_share[adapter_name] = block_share base_layer = self.get_base_layer() if isinstance(base_layer, nn.Linear): shape = tuple(base_layer.weight.shape) elif isinstance(base_layer, nn.Conv2d): shape = (base_layer.out_channels, base_layer.in_channels * base_layer.kernel_size[0] * base_layer.kernel_size[1]) else: raise TypeError(f'OFT is not implemented for base layers of type {type(base_layer).__name__}') self.eps[adapter_name] = eps * math.ceil(shape[0] / r) * math.ceil(shape[0] / r) self.create_adapter_parameters(adapter_name, r, shape, block_share) if init_weights: self.reset_adapter_parameters(adapter_name) else: self.reset_adapter_parameters_random(adapter_name) self._move_adapter_to_device_of_base_layer(adapter_name) self.set_adapter(self.active_adapters) def unscale_layer(self, scale=None) -> None: pass def merge(self, safe_merge: bool=False, adapter_names: Optional[List[str]]=None) -> None: adapter_names = check_adapters_to_merge(self, adapter_names) if not adapter_names: return for active_adapter in adapter_names: if active_adapter in self._available_adapters: base_layer = self.get_base_layer() orig_weights = base_layer.weight.data if isinstance(base_layer, nn.Linear): orig_weights = torch.transpose(orig_weights, 0, 1) elif isinstance(base_layer, nn.Conv2d): orig_weights = orig_weights.view([base_layer.out_channels, base_layer.in_channels * base_layer.kernel_size[0] * base_layer.kernel_size[1]]) orig_weights = torch.transpose(orig_weights, 0, 1) delta_weight = self.get_delta_weight(active_adapter) if orig_weights.shape[1] != delta_weight.shape[1]: delta_weight = delta_weight[:orig_weights.shape[1], :orig_weights.shape[1]] new_weights = torch.mm(orig_weights, delta_weight) if isinstance(base_layer, nn.Linear): new_weights = torch.transpose(new_weights, 0, 1) elif isinstance(base_layer, nn.Conv2d): new_weights = torch.transpose(new_weights, 0, 1) new_weights = new_weights.view([base_layer.out_channels, base_layer.in_channels, base_layer.kernel_size[0], base_layer.kernel_size[1]]) if safe_merge and (not torch.isfinite(new_weights).all()): raise ValueError(f'NaNs detected in the merged weights. The adapter {active_adapter} seems to be broken') base_layer.weight.data = new_weights.contiguous() self.merged_adapters.append(active_adapter) def unmerge(self) -> None: if not self.merged: warnings.warn('Already unmerged. Nothing to do.') return while len(self.merged_adapters) > 0: active_adapter = self.merged_adapters.pop() if active_adapter in self._available_adapters: base_layer = self.get_base_layer() new_weights = base_layer.weight.data if isinstance(base_layer, nn.Linear): new_weights = torch.transpose(new_weights, 0, 1) elif isinstance(base_layer, nn.Conv2d): new_weights = new_weights.view([base_layer.out_channels, base_layer.in_channels * base_layer.kernel_size[0] * base_layer.kernel_size[1]]) new_weights = torch.transpose(new_weights, 0, 1) delta_weight = self.get_delta_weight(active_adapter) if new_weights.shape[1] != delta_weight.shape[1]: delta_weight = delta_weight[:new_weights.shape[1], :new_weights.shape[1]] delta_inv = torch.inverse(delta_weight) orig_weights = torch.mm(new_weights, delta_inv) if isinstance(base_layer, nn.Linear): orig_weights = torch.transpose(orig_weights, 0, 1) elif isinstance(base_layer, nn.Conv2d): orig_weights = torch.transpose(orig_weights, 0, 1) orig_weights = orig_weights.reshape([base_layer.out_channels, base_layer.in_channels, base_layer.kernel_size[0], base_layer.kernel_size[1]]) base_layer.weight.data = orig_weights.contiguous() def get_delta_weight(self, adapter_name: str) -> torch.Tensor: rank = self.r[adapter_name] coft = self.coft[adapter_name] eps = self.eps[adapter_name] opt_r = self.oft_r[adapter_name] if coft: with torch.no_grad(): opt_r.copy_(self._project_batch(opt_r, eps=eps)) orth_rotate = self._cayley_batch(opt_r) weight = self._block_diagonal(orth_rotate, rank) return weight def _cayley_batch(self, data: torch.Tensor) -> torch.Tensor: (b, r, c) = data.shape skew = 0.5 * (data - data.transpose(1, 2)) I = torch.eye(r, device=data.device).unsqueeze(0).expand(b, r, c) Q = torch.bmm(I - skew, torch.inverse(I + skew)) return Q def _block_diagonal(self, oft_r: torch.Tensor, rank: int) -> torch.Tensor: if oft_r.shape[0] == 1: blocks = [oft_r[0, ...] for i in range(rank)] else: blocks = [oft_r[i, ...] for i in range(rank)] A = torch.block_diag(*blocks) return A def _project_batch(self, oft_r, eps=1e-05): eps = eps * 1 / torch.sqrt(torch.tensor(oft_r.shape[0])) I = torch.zeros((oft_r.size(1), oft_r.size(1)), device=oft_r.device, dtype=oft_r.dtype).unsqueeze(0).expand_as(oft_r) diff = oft_r - I norm_diff = torch.norm(oft_r - I, dim=(1, 2), keepdim=True) mask = (norm_diff <= eps).bool() out = torch.where(mask, oft_r, I + eps * (diff / norm_diff)) return out def forward(self, x: torch.Tensor, *args, **kwargs) -> torch.Tensor: previous_dtype = x.dtype if self.disable_adapters: if self.merged: self.unmerge() result = self.base_layer(x, *args, **kwargs) elif self.merged: result = self.base_layer(x, *args, **kwargs) else: result = self.base_layer(x, *args, **kwargs) if len(result.shape) == 4: result = result.permute(0, 2, 3, 1) base_layer = self.get_base_layer() base_bias = base_layer.bias if base_bias is not None: result = result - base_bias.data for active_adapter in self.active_adapters: if active_adapter not in self._available_adapters: continue module_dropout = self.module_dropout[active_adapter] if not self.training or (self.training and torch.rand(1) > module_dropout): result = self._get_delta_activations(active_adapter, result, *args, **kwargs) if base_bias is not None: result = result + base_bias.data if len(result.shape) == 4: result = result.permute(0, 3, 1, 2) result = result.to(previous_dtype) return result class Linear(OFTLayer): def __init__(self, base_layer: nn.Module, adapter_name: str='default', r: int=0, module_dropout: float=0.0, init_weights: bool=True, **kwargs): super().__init__(base_layer) self._active_adapter = adapter_name self.update_layer(adapter_name, r, module_dropout, init_weights, **kwargs) def _get_delta_activations(self, adapter_name: str, input: torch.Tensor, *args: Any, **kwargs: Any) -> torch.Tensor: delta_weight = self.get_delta_weight(adapter_name) base_layer = self.get_base_layer() base_weight = base_layer.weight.data delta_weight = delta_weight[:base_weight.shape[0], :base_weight.shape[0]] return torch.matmul(input, delta_weight) def __repr__(self) -> str: rep = super().__repr__() return 'oft.' + rep class Conv2d(OFTLayer): def __init__(self, base_layer: nn.Module, adapter_name: str='default', r: int=0, module_dropout: float=0.0, init_weights: bool=True, **kwargs): super().__init__(base_layer) self._active_adapter = adapter_name self.update_layer(adapter_name, r, module_dropout, init_weights, **kwargs) def _get_delta_activations(self, adapter_name: str, input: torch.Tensor, *args: Any, **kwargs: Any) -> torch.Tensor: delta_weight = self.get_delta_weight(adapter_name) base_layer = self.get_base_layer() base_weight = base_layer.weight.data delta_weight = delta_weight[:base_weight.shape[0], :base_weight.shape[0]] return torch.matmul(input, delta_weight) def __repr__(self) -> str: rep = super().__repr__() return 'oft.' + rep # File: peft-main/src/peft/tuners/oft/model.py import re from typing import Dict, Type, Union import torch from torch import nn from peft.tuners.lycoris_utils import LycorisConfig, LycorisTuner from .layer import Conv2d, Linear, OFTLayer class OFTModel(LycorisTuner): prefix: str = 'oft_' layers_mapping: Dict[Type[torch.nn.Module], Type[OFTLayer]] = {torch.nn.Conv2d: Conv2d, torch.nn.Linear: Linear} def _create_and_replace(self, config: LycorisConfig, adapter_name: str, target: Union[OFTLayer, nn.Module], target_name: str, parent: nn.Module, current_key: str) -> None: pattern_keys = list(config.rank_pattern.keys()) target_name_key = next(filter(lambda key: re.match(f'(.*\\.)?{key}$', current_key), pattern_keys), target_name) kwargs = config.to_dict() kwargs['r'] = config.rank_pattern.get(target_name_key, config.r) if isinstance(target, OFTLayer): target.update_layer(adapter_name, **kwargs) else: new_module = self._create_new_module(config, adapter_name, target, **kwargs) self._replace_module(parent, target_name, new_module, target) # File: peft-main/src/peft/tuners/p_tuning/config.py import enum from dataclasses import dataclass, field from typing import Union from peft.config import PromptLearningConfig from peft.utils import PeftType class PromptEncoderReparameterizationType(str, enum.Enum): MLP = 'MLP' LSTM = 'LSTM' @dataclass class PromptEncoderConfig(PromptLearningConfig): encoder_reparameterization_type: Union[str, PromptEncoderReparameterizationType] = field(default=PromptEncoderReparameterizationType.MLP, metadata={'help': 'How to reparameterize the prompt encoder'}) encoder_hidden_size: int = field(default=None, metadata={'help': 'The hidden size of the prompt encoder'}) encoder_num_layers: int = field(default=2, metadata={'help': 'The number of layers of the prompt encoder'}) encoder_dropout: float = field(default=0.0, metadata={'help': 'The dropout of the prompt encoder'}) def __post_init__(self): self.peft_type = PeftType.P_TUNING # File: peft-main/src/peft/tuners/p_tuning/model.py import warnings import torch from .config import PromptEncoderConfig, PromptEncoderReparameterizationType class PromptEncoder(torch.nn.Module): def __init__(self, config): super().__init__() self.token_dim = config.token_dim self.input_size = self.token_dim self.output_size = self.token_dim self.hidden_size = config.encoder_hidden_size self.total_virtual_tokens = config.num_virtual_tokens * config.num_transformer_submodules self.encoder_type = config.encoder_reparameterization_type self.embedding = torch.nn.Embedding(self.total_virtual_tokens, self.token_dim) if not config.inference_mode: if self.encoder_type == PromptEncoderReparameterizationType.LSTM: lstm_dropout = config.encoder_dropout num_layers = config.encoder_num_layers self.lstm_head = torch.nn.LSTM(input_size=self.input_size, hidden_size=self.hidden_size, num_layers=num_layers, dropout=lstm_dropout, bidirectional=True, batch_first=True) self.mlp_head = torch.nn.Sequential(torch.nn.Linear(self.hidden_size * 2, self.hidden_size * 2), torch.nn.ReLU(), torch.nn.Linear(self.hidden_size * 2, self.output_size)) elif self.encoder_type == PromptEncoderReparameterizationType.MLP: encoder_num_layers_default = PromptEncoderConfig.encoder_num_layers if config.encoder_num_layers != encoder_num_layers_default: warnings.warn(f'for {self.encoder_type.value}, the argument `encoder_num_layers` is ignored. Exactly {encoder_num_layers_default} MLP layers are used.') layers = [torch.nn.Linear(self.input_size, self.hidden_size), torch.nn.ReLU(), torch.nn.Linear(self.hidden_size, self.hidden_size), torch.nn.ReLU(), torch.nn.Linear(self.hidden_size, self.output_size)] self.mlp_head = torch.nn.Sequential(*layers) else: raise ValueError('Prompt encoder type not recognized. Please use one of MLP (recommended) or LSTM.') def forward(self, indices): input_embeds = self.embedding(indices) if self.encoder_type == PromptEncoderReparameterizationType.LSTM: output_embeds = self.mlp_head(self.lstm_head(input_embeds)[0]) elif self.encoder_type == PromptEncoderReparameterizationType.MLP: output_embeds = self.mlp_head(input_embeds) else: raise ValueError('Prompt encoder type not recognized. Please use one of MLP (recommended) or LSTM.') return output_embeds # File: peft-main/src/peft/tuners/poly/config.py from dataclasses import dataclass, field from typing import List, Literal, Optional, Union from peft.config import PeftConfig from peft.utils import PeftType @dataclass class PolyConfig(PeftConfig): r: int = field(default=8, metadata={'help': 'Lora attention dimension'}) target_modules: Optional[Union[List[str], str]] = field(default=None, metadata={'help': "List of module names or regex expression of the module names to replace with Poly.For example, ['q', 'v'] or '.*decoder.*(SelfAttention|EncDecAttention).*(q|v)$' "}) modules_to_save: Optional[List[str]] = field(default=None, metadata={'help': 'List of modules apart from Poly layers to be set as trainable and saved in the final checkpoint. For example, in Sequence Classification or Token Classification tasks, the final layer `classifier/score` are randomly initialized and as such need to be trainable and saved.'}) init_weights: bool = field(default=True, metadata={'help': "Whether to initialize the weights of the Poly layers with their default initialization. Don't change this setting, except if you know exactly what you're doing."}) poly_type: Literal['poly'] = field(default='poly', metadata={'help': 'Type of Poly modules to be used. Currently only "poly" is supported.'}) n_tasks: int = field(default=1, metadata={'help': 'Number of tasks in multitasking scenario.'}) n_skills: int = field(default=4, metadata={'help': 'Number of skills (LoRA) in each Poly layer.'}) n_splits: int = field(default=1, metadata={'help': 'Number of splits within each LoRA of a Poly layer.'}) def __post_init__(self): self.peft_type = PeftType.POLY self.target_modules = set(self.target_modules) if isinstance(self.target_modules, list) else self.target_modules # File: peft-main/src/peft/tuners/poly/layer.py import math from typing import Any import torch import torch.nn as nn from peft.tuners.tuners_utils import BaseTunerLayer from .config import PolyConfig from .router import get_router class PolyLayer(BaseTunerLayer): adapter_layer_names = ('poly_lora_A', 'poly_lora_B', 'poly_router') other_param_names = ('r', 'n_tasks', 'n_skills', 'n_splits') def __init__(self, base_layer: nn.Module, **kwargs): self.base_layer = base_layer self.r = {} self.n_tasks = {} self.n_skills = {} self.n_splits = {} self.poly_type = {} self.poly_router = nn.ModuleDict() self.poly_lora_A = nn.ParameterDict() self.poly_lora_B = nn.ParameterDict() self.kwargs = kwargs base_layer = self.get_base_layer() if isinstance(base_layer, nn.Linear): (in_features, out_features) = (base_layer.in_features, base_layer.out_features) else: raise ValueError(f'Unsupported layer type {type(base_layer)}') self.in_features = in_features self.out_features = out_features def update_layer(self, adapter_name, poly_config): if poly_config.r <= 0: raise ValueError(f'`r` should be a positive integer value but the value passed is {poly_config.r}') self.r[adapter_name] = poly_config.r self.n_tasks[adapter_name] = poly_config.n_tasks self.n_skills[adapter_name] = poly_config.n_skills self.n_splits[adapter_name] = poly_config.n_splits self.poly_type[adapter_name] = poly_config.poly_type self.poly_lora_A[adapter_name] = nn.Parameter(torch.empty(poly_config.n_splits, poly_config.n_skills, self.in_features // poly_config.n_splits, poly_config.r)) self.poly_lora_B[adapter_name] = nn.Parameter(torch.empty(poly_config.n_splits, poly_config.n_skills, poly_config.r, self.out_features // poly_config.n_splits)) self.poly_router[adapter_name] = get_router(poly_config) self.reset_poly_parameters(adapter_name, init_weights=poly_config.init_weights) self._move_adapter_to_device_of_base_layer(adapter_name) self.set_adapter(self.active_adapters) def reset_poly_parameters(self, adapter_name, init_weights): if adapter_name in self.poly_lora_A.keys(): (n_splits, n_skills, d, r) = self.poly_lora_A[adapter_name].shape for skill in range(n_skills): for split in range(n_splits): param = torch.empty((r, d)) torch.nn.init.kaiming_uniform_(param, a=math.sqrt(5)) self.poly_lora_A[adapter_name].data[split, skill, :, :] = param.T if init_weights: torch.nn.init.zeros_(self.poly_lora_B[adapter_name]) else: (n_splits, n_skills, r, d) = self.poly_lora_B[adapter_name].shape for skill in range(n_skills): for split in range(n_splits): param = torch.empty((d, r)) torch.nn.init.kaiming_uniform_(param, a=math.sqrt(5)) self.poly_lora_B[adapter_name].data[split, skill, :, :] = param.T self.poly_router[adapter_name].reset() class Linear(nn.Module, PolyLayer): def __init__(self, base_layer, adapter_name: str, poly_config: PolyConfig, **kwargs) -> None: super().__init__() PolyLayer.__init__(self, base_layer, **kwargs) self._active_adapter = adapter_name self.update_layer(adapter_name, poly_config) def forward(self, x: torch.Tensor, *args: Any, task_ids: torch.Tensor=None, **kwargs: Any) -> torch.Tensor: previous_dtype = x.dtype if self.disable_adapters: result = self.base_layer(x, *args, **kwargs) else: result = self.base_layer(x, *args, **kwargs) for active_adapter in self.active_adapters: if active_adapter not in self.poly_lora_A.keys(): continue r = self.r[active_adapter] poly_router = self.poly_router[active_adapter] poly_lora_A = self.poly_lora_A[active_adapter] poly_lora_B = self.poly_lora_B[active_adapter] mixing_weights = poly_router(task_ids=task_ids, input_ids=x) (bs, n_splits, n_skills) = mixing_weights.size() A = torch.einsum('bqs,qsdr->bqdr', (mixing_weights, poly_lora_A)) B = torch.einsum('bqs,qsrd->bqrd', (mixing_weights, poly_lora_B)) A = A.reshape(bs, self.in_features, r) B = B.transpose(1, 2).reshape(bs, r, self.out_features) x = x.to(A.dtype) result += x.bmm(A).bmm(B) / r result = result.to(previous_dtype) return result def __repr__(self) -> str: rep = super().__repr__() return 'poly.' + rep # File: peft-main/src/peft/tuners/poly/model.py from contextlib import contextmanager from dataclasses import asdict from enum import Enum from typing import Any import torch from torch import nn from peft.tuners.tuners_utils import BaseTuner, BaseTunerLayer, check_target_module_exists from peft.utils import TRANSFORMERS_MODELS_TO_LORA_TARGET_MODULES_MAPPING, ModulesToSaveWrapper from .config import PolyConfig from .layer import Linear, PolyLayer class PolyModel(BaseTuner): prefix: str = 'poly_' def __init__(self, model, config, adapter_name) -> None: super().__init__(model, config, adapter_name) @staticmethod def _check_target_module_exists(poly_config, key): return check_target_module_exists(poly_config, key) def _create_and_replace(self, poly_config: PolyConfig, adapter_name: str, target: nn.Module, target_name: str, parent: nn.Module, **optional_kwargs: Any): if isinstance(target, PolyLayer): target.update_layer(adapter_name, poly_config) else: new_module = self._create_new_module(poly_config, adapter_name, target) if adapter_name not in self.active_adapters: new_module.requires_grad_(False) self._replace_module(parent, target_name, new_module, target) def _replace_module(self, parent, child_name, new_module, child): setattr(parent, child_name, new_module) if hasattr(child, 'base_layer'): child = child.base_layer if not hasattr(new_module, 'base_layer'): new_module.weight = child.weight if hasattr(child, 'bias'): new_module.bias = child.bias if getattr(child, 'state', None) is not None: if hasattr(new_module, 'base_layer'): new_module.base_layer.state = child.state else: new_module.state = child.state new_module.to(child.weight.device) for (name, module) in new_module.named_modules(): if self.prefix in name or 'ranknum' in name: weight = child.qweight if hasattr(child, 'qweight') else child.weight module.to(weight.device) def _mark_only_adapters_as_trainable(self, model: nn.Module) -> None: for (n, p) in model.named_parameters(): if self.prefix not in n: p.requires_grad = False @staticmethod def _create_new_module(poly_config, adapter_name, target, **kwargs): if isinstance(target, BaseTunerLayer): target_base_layer = target.get_base_layer() else: target_base_layer = target if isinstance(target_base_layer, torch.nn.Linear): return Linear(target, adapter_name, poly_config, **kwargs) else: raise ValueError(f'Target module {target} is not supported. Currently, only the following modules are supported: `torch.nn.Linear`.') def __getattr__(self, name: str): try: return super().__getattr__(name) except AttributeError: if name == 'model': raise return getattr(self.model, name) def get_peft_config_as_dict(self, inference: bool=False): config_dict = {} for (key, value) in self.peft_config.items(): config = {k: v.value if isinstance(v, Enum) else v for (k, v) in asdict(value).items()} if inference: config['inference_mode'] = True config_dict[key] = config return config def _set_adapter_layers(self, enabled=True): for module in self.model.modules(): if isinstance(module, (PolyLayer, ModulesToSaveWrapper)): module.enable_adapters(enabled) def enable_adapter_layers(self): self._set_adapter_layers(enabled=True) def disable_adapter_layers(self): self._set_adapter_layers(enabled=False) def set_adapter(self, adapter_name): for module in self.model.modules(): if isinstance(module, PolyLayer): module.set_adapter(adapter_name) def _prepare_adapter_config(self, peft_config, model_config): if peft_config.target_modules is None: if model_config['model_type'] not in TRANSFORMERS_MODELS_TO_LORA_TARGET_MODULES_MAPPING: raise ValueError('Please specify `target_modules` in `peft_config`') peft_config.target_modules = set(TRANSFORMERS_MODELS_TO_LORA_TARGET_MODULES_MAPPING[model_config['model_type']]) return peft_config def _register_pre_hooks(self, task_ids): if task_ids is None: return [] def pre_hook(_, args, kwargs): kwargs['task_ids'] = task_ids return (args, kwargs) handles = [] for module in self.model.modules(): if isinstance(module, Linear): handle = module.register_forward_pre_hook(pre_hook, with_kwargs=True) handles.append(handle) return handles @contextmanager def _manage_pre_hooks(self, task_ids): handles = self._register_pre_hooks(task_ids) try: yield finally: for handle in handles: handle.remove() def forward(self, *args, task_ids=None, **kwargs): with self._manage_pre_hooks(task_ids): return self.model(*args, **kwargs) def generate(self, *args, task_ids=None, **kwargs): with self._manage_pre_hooks(task_ids): return self.model.generate(*args, **kwargs) # File: peft-main/src/peft/tuners/poly/router.py from abc import ABC, abstractmethod import torch from torch import nn from torch.distributions.relaxed_bernoulli import RelaxedBernoulli from .config import PolyConfig EPS = 1e-12 def get_router(poly_config: PolyConfig) -> nn.Module: if poly_config.poly_type == 'poly': return PolyRouter(poly_config) else: raise ValueError(f'Unsupported poly_type: {poly_config.poly_type}. Currently, only the following types are supported: `poly`.') class Router(nn.Module, ABC): @abstractmethod def reset(self): ... @abstractmethod def forward(self, task_ids: torch.Tensor, input_ids: torch.Tensor): ... class PolyRouter(Router): def __init__(self, poly_config: PolyConfig): super().__init__() self.poly_type = poly_config.poly_type self.n_tasks = poly_config.n_tasks self.n_skills = poly_config.n_skills self.n_splits = poly_config.n_splits self.module_logits = nn.Parameter(torch.empty((self.n_tasks, self.n_splits * self.n_skills))) def reset(self): torch.nn.init.uniform_(self.module_logits, -0.001, 0.001) def forward(self, task_ids: torch.Tensor, input_ids: torch.Tensor): if task_ids is None: raise ValueError('task_ids should not be None.') if task_ids.max().item() >= self.n_tasks: raise ValueError(f'Only {self.n_tasks} tasks available. Found task id = {task_ids.max().item()}') task_ids = task_ids.to(self.module_logits.device) module_logits = self.module_logits[task_ids] module_logits = module_logits.view(-1, self.n_splits, self.n_skills) if self.training: module_logits = RelaxedBernoulli(temperature=1.0, logits=module_logits).rsample() else: module_logits = torch.sigmoid(module_logits) module_weights = module_logits / (module_logits.sum(dim=-1, keepdim=True) + EPS) return module_weights # File: peft-main/src/peft/tuners/prefix_tuning/config.py from dataclasses import dataclass, field from peft.config import PromptLearningConfig from peft.utils import PeftType @dataclass class PrefixTuningConfig(PromptLearningConfig): encoder_hidden_size: int = field(default=None, metadata={'help': 'The hidden size of the encoder'}) prefix_projection: bool = field(default=False, metadata={'help': 'Whether to project the prefix tokens'}) def __post_init__(self): self.peft_type = PeftType.PREFIX_TUNING # File: peft-main/src/peft/tuners/prefix_tuning/model.py import torch class PrefixEncoder(torch.nn.Module): def __init__(self, config): super().__init__() self.prefix_projection = config.prefix_projection token_dim = config.token_dim num_layers = config.num_layers encoder_hidden_size = config.encoder_hidden_size num_virtual_tokens = config.num_virtual_tokens if self.prefix_projection and (not config.inference_mode): self.embedding = torch.nn.Embedding(num_virtual_tokens, token_dim) self.transform = torch.nn.Sequential(torch.nn.Linear(token_dim, encoder_hidden_size), torch.nn.Tanh(), torch.nn.Linear(encoder_hidden_size, num_layers * 2 * token_dim)) else: self.embedding = torch.nn.Embedding(num_virtual_tokens, num_layers * 2 * token_dim) def forward(self, prefix: torch.Tensor): if self.prefix_projection: prefix_tokens = self.embedding(prefix) past_key_values = self.transform(prefix_tokens) else: past_key_values = self.embedding(prefix) return past_key_values # File: peft-main/src/peft/tuners/prompt_tuning/config.py import enum from dataclasses import dataclass, field from typing import Optional, Union from peft.config import PromptLearningConfig from peft.utils import PeftType class PromptTuningInit(str, enum.Enum): TEXT = 'TEXT' RANDOM = 'RANDOM' @dataclass class PromptTuningConfig(PromptLearningConfig): prompt_tuning_init: Union[PromptTuningInit, str] = field(default=PromptTuningInit.RANDOM, metadata={'help': 'How to initialize the prompt tuning parameters'}) prompt_tuning_init_text: Optional[str] = field(default=None, metadata={'help': 'The text to use for prompt tuning initialization. Only used if prompt_tuning_init is `TEXT`'}) tokenizer_name_or_path: Optional[str] = field(default=None, metadata={'help': 'The tokenizer to use for prompt tuning initialization. Only used if prompt_tuning_init is `TEXT`'}) tokenizer_kwargs: Optional[dict] = field(default=None, metadata={'help': 'The keyword arguments to pass to `AutoTokenizer.from_pretrained`. Only used if prompt_tuning_init is `TEXT`'}) def __post_init__(self): self.peft_type = PeftType.PROMPT_TUNING if self.prompt_tuning_init == PromptTuningInit.TEXT and (not self.tokenizer_name_or_path): raise ValueError(f"When prompt_tuning_init='{PromptTuningInit.TEXT.value}', tokenizer_name_or_path can't be {self.tokenizer_name_or_path}.") if self.prompt_tuning_init == PromptTuningInit.TEXT and self.prompt_tuning_init_text is None: raise ValueError(f"When prompt_tuning_init='{PromptTuningInit.TEXT.value}', prompt_tuning_init_text can't be {self.prompt_tuning_init_text}.") if self.tokenizer_kwargs and self.prompt_tuning_init != PromptTuningInit.TEXT: raise ValueError(f"tokenizer_kwargs only valid when using prompt_tuning_init='{PromptTuningInit.TEXT.value}'.") # File: peft-main/src/peft/tuners/prompt_tuning/model.py import math import torch from peft.utils.integrations import gather_params_ctx from .config import PromptTuningInit class PromptEmbedding(torch.nn.Module): def __init__(self, config, word_embeddings): super().__init__() total_virtual_tokens = config.num_virtual_tokens * config.num_transformer_submodules self.embedding = torch.nn.Embedding(total_virtual_tokens, config.token_dim) if config.prompt_tuning_init == PromptTuningInit.TEXT and (not config.inference_mode): from transformers import AutoTokenizer tokenizer_kwargs = config.tokenizer_kwargs or {} tokenizer = AutoTokenizer.from_pretrained(config.tokenizer_name_or_path, **tokenizer_kwargs) init_text = config.prompt_tuning_init_text init_token_ids = tokenizer(init_text)['input_ids'] num_text_tokens = len(init_token_ids) if num_text_tokens > total_virtual_tokens: init_token_ids = init_token_ids[:total_virtual_tokens] elif num_text_tokens < total_virtual_tokens: num_reps = math.ceil(total_virtual_tokens / num_text_tokens) init_token_ids = init_token_ids * num_reps init_token_ids = init_token_ids[:total_virtual_tokens] init_token_ids = torch.LongTensor(init_token_ids).to(word_embeddings.weight.device) with gather_params_ctx(word_embeddings.parameters()): word_embedding_weights = word_embeddings(init_token_ids).detach().clone() word_embedding_weights = word_embedding_weights.to(torch.float32) self.embedding.weight = torch.nn.Parameter(word_embedding_weights) def forward(self, indices): prompt_embeddings = self.embedding(indices) return prompt_embeddings # File: peft-main/src/peft/tuners/tuners_utils.py from __future__ import annotations import copy import logging import os import re import textwrap import warnings from abc import ABC, abstractmethod from contextlib import contextmanager from typing import Any, Optional, Union import torch from accelerate.hooks import AlignDevicesHook from accelerate.utils import named_module_tensors, offload_state_dict from torch import nn from transformers import PreTrainedModel from transformers.pytorch_utils import Conv1D from peft.utils import INCLUDE_LINEAR_LAYERS_SHORTHAND from peft.utils.constants import DUMMY_MODEL_CONFIG, DUMMY_TARGET_MODULES, EMBEDDING_LAYER_NAMES, MIN_TARGET_MODULES_FOR_OPTIMIZATION, SEQ_CLS_HEAD_NAMES from peft.utils.peft_types import PeftType, TaskType from ..config import PeftConfig from ..utils import ModulesToSaveWrapper, _get_submodules from ._buffer_dict import BufferDict logger = logging.getLogger(__name__) @contextmanager def onload_layer(layer): offloaded_modules = [] for (name, module) in layer.named_modules(): if name in ['', 'base_layer']: continue if hasattr(module, '_hf_hook') and isinstance(module._hf_hook, AlignDevicesHook) and module._hf_hook.offload: module._hf_hook.pre_forward(module) offloaded_modules.append(module) base_layer_offload = False if hasattr(layer, 'base_layer') and (hasattr(layer.base_layer, '_hf_hook') and isinstance(layer.base_layer._hf_hook, AlignDevicesHook) and layer.base_layer._hf_hook.offload): if torch.device('meta') in layer.base_layer._hf_hook.original_devices.values() and hasattr(layer.base_layer._hf_hook.weights_map, 'dataset'): index = layer.base_layer._hf_hook.weights_map.dataset.index module_name = list(dict(layer.base_layer._hf_hook.weights_map.dataset).keys())[0] file_name = index[module_name]['safetensors_file'] base_name_arr = [] for i in os.path.split(file_name): if '--' in i: base_name_arr.append(i) break base_name_arr.append(i) base_name = os.path.join(*base_name_arr) safetensors_filename = base_name + '-merged' layer.base_layer._hf_hook.pre_forward(layer.base_layer) base_layer_offload = True yield for module in offloaded_modules: module._hf_hook.post_forward(module, torch.tensor([])) if base_layer_offload: layer.base_layer._hf_hook.weights_map = {name: param.to('cpu') for (name, param) in named_module_tensors(layer.base_layer)} if torch.device('meta') in layer.base_layer._hf_hook.original_devices.values() and hasattr(layer.base_layer._hf_hook.weights_map, 'dataset'): offload_state_dict(safetensors_filename, layer.base_layer._hf_hook.weights_map) layer.base_layer._hf_hook.post_forward(layer.base_layer, torch.tensor([])) class BaseTuner(nn.Module, ABC): def __init__(self, model, peft_config: Union[PeftConfig, dict[str, PeftConfig]], adapter_name: str) -> None: super().__init__() self.model = model self.targeted_module_names: list[str] = [] if not hasattr(self, 'peft_config'): self.peft_config = {adapter_name: peft_config} if isinstance(peft_config, PeftConfig) else peft_config else: logger.info('Already found a `peft_config` attribute in the model. This will lead to having multiple adapters in the model. Make sure to know what you are doing!') if isinstance(peft_config, PeftConfig): self.peft_config[adapter_name] = peft_config else: self.peft_config.update(peft_config) self.active_adapter: str | list[str] = adapter_name self._pre_injection_hook(self.model, self.peft_config[adapter_name], adapter_name) if peft_config != PeftType.XLORA or peft_config[adapter_name] != PeftType.XLORA: self.inject_adapter(self.model, adapter_name) self.model.peft_config = self.peft_config @property def active_adapters(self) -> list[str]: if isinstance(self.active_adapter, str): return [self.active_adapter] return self.active_adapter def forward(self, *args: Any, **kwargs: Any): return self.model.forward(*args, **kwargs) def _pre_injection_hook(self, model: nn.Module, config: PeftConfig, adapter_name: str) -> None: pass @abstractmethod def _prepare_adapter_config(self, peft_config: PeftConfig, model_config: dict) -> PeftConfig: ... def _prepare_model(self, peft_config: PeftConfig, model: nn.Module): pass @abstractmethod def _check_target_module_exists(peft_config: PeftConfig, key: str) -> bool: ... @abstractmethod def _create_and_replace(self, peft_config: PeftConfig, adapter_name: str, target: nn.Module, target_name: str, parent: nn.Module, current_key: str) -> None: ... @abstractmethod def _mark_only_adapters_as_trainable(self, model: nn.Module): ... @abstractmethod def disable_adapter_layers(self) -> None: ... @abstractmethod def enable_adapter_layers(self) -> None: ... def _check_new_adapter_config(self, config: PeftConfig) -> None: pass def _cast_adapter_dtype(self, adapter_name: str, autocast_adapter_dtype: bool=True) -> None: if not autocast_adapter_dtype: return dtypes_to_convert_to_fp32 = {torch.float16, torch.bfloat16} for module in self.model.modules(): if not isinstance(module, BaseTunerLayer): continue for submodule in module.modules(): if not isinstance(submodule, (nn.ModuleDict, nn.ParameterDict, BufferDict)): continue if adapter_name not in submodule: continue if isinstance(submodule[adapter_name], nn.Parameter): if submodule[adapter_name].dtype in dtypes_to_convert_to_fp32: submodule[adapter_name].data = submodule[adapter_name].data.to(torch.float32) continue if isinstance(submodule[adapter_name], torch.Tensor): if submodule[adapter_name].dtype in dtypes_to_convert_to_fp32: submodule[adapter_name] = submodule[adapter_name].to(torch.float32) continue for param in submodule[adapter_name].parameters(): if param.dtype in dtypes_to_convert_to_fp32: param.data = param.data.to(torch.float32) def _check_merge_allowed(self): example_code = textwrap.dedent('\n ```python\n from transformers import AutoModelForCausalLM\n\n # Load original tied model\n model = AutoModelForCausalLM.from_pretrained("google/gemma-2-2b-it", tie_word_embeddings=False)\n\n # Set the randomly initialized lm_head to the previously tied embeddings\n model.lm_head.weight.data = model.model.embed_tokens.weight.data.clone()\n\n # Save the untied model\n untied_model_dir = "dir/for/untied/model"\n model.save_pretrained(untied_model_dir)\n model.config.save_pretrained(untied_model_dir)\n\n # Now use the original model but in untied format\n model = AutoModelForCausalLM.from_pretrained(untied_model_dir)\n ```\n ') tied_target_modules = self._get_tied_target_modules(self.model) if tied_target_modules: warnings.warn(f'Model with `tie_word_embeddings=True` and the tied_target_modules={tied_target_modules!r} are part of the adapter. This can lead to complications. You can opt to merge the adapter after cloning the weights (to untie the embeddings). You can untie the embeddings by loading the model with `tie_word_embeddings=False`. For example:' + example_code) def inject_adapter(self, model: nn.Module, adapter_name: str, autocast_adapter_dtype: bool=True) -> None: peft_config = self.peft_config[adapter_name] self._check_new_adapter_config(peft_config) _check_for_modules_to_save = getattr(peft_config, 'modules_to_save', None) is not None _has_modules_to_save = False model_config = self.get_model_config(model) peft_config = self._prepare_adapter_config(peft_config, model_config) self._prepare_model(peft_config, model) is_target_modules_in_base_model = False key_list = [key for (key, _) in model.named_modules()] if getattr(peft_config, 'target_modules', None) == DUMMY_TARGET_MODULES: key_list = [] is_target_modules_in_base_model = True peft_config = _maybe_include_all_linear_layers(peft_config, model) if isinstance(peft_config.target_modules, (list, set)) and len(peft_config.target_modules) >= MIN_TARGET_MODULES_FOR_OPTIMIZATION: names_no_target = [name for name in key_list if not any((name.endswith(suffix) for suffix in peft_config.target_modules))] new_target_modules = _find_minimal_target_modules(peft_config.target_modules, names_no_target) if len(new_target_modules) < len(peft_config.target_modules): peft_config.target_modules = new_target_modules for key in key_list: if _check_for_modules_to_save and any((key.endswith(f'{module_to_save}') for module_to_save in peft_config.modules_to_save)): (parent, target, target_name) = _get_submodules(model, key) if not isinstance(target, ModulesToSaveWrapper): new_module = ModulesToSaveWrapper(target, adapter_name) setattr(parent, target_name, new_module) else: target.update(adapter_name) _has_modules_to_save = True continue if not self._check_target_module_exists(peft_config, key): continue self.targeted_module_names.append(key) is_target_modules_in_base_model = True (parent, target, target_name) = _get_submodules(model, key) self._create_and_replace(peft_config, adapter_name, target, target_name, parent, current_key=key) tied_target_modules = self._get_tied_target_modules(model=model) if tied_target_modules: warnings.warn(f'Model with `tie_word_embeddings=True` and the tied_target_modules={tied_target_modules!r} are part of the adapter. This can lead to complications, for example when merging the adapter or converting your model to formats other than safetensors. See for example https://github.com/huggingface/peft/issues/2018.') if not is_target_modules_in_base_model and hasattr(peft_config, 'target_modules'): raise ValueError(f'Target modules {peft_config.target_modules} not found in the base model. Please check the target modules and try again.') self.set_adapter(self.active_adapters) self._mark_only_adapters_as_trainable(model) if self.peft_config[adapter_name].inference_mode: for (n, p) in model.named_parameters(): if adapter_name in n: p.requires_grad = False if _has_modules_to_save: if not hasattr(model, 'modules_to_save'): model.modules_to_save = set(peft_config.modules_to_save) else: model.modules_to_save.update(set(peft_config.modules_to_save)) def merge_adapter(self, adapter_names: Optional[list[str]]=None) -> None: self._check_merge_allowed() for module in self.model.modules(): if isinstance(module, BaseTunerLayer): with onload_layer(module): module.merge(adapter_names=adapter_names) def unmerge_adapter(self): for module in self.model.modules(): if isinstance(module, BaseTunerLayer): with onload_layer(module): module.unmerge() def _unloading_checks(self, adapter_names: Optional[list[str]]): adapters_to_consider = adapter_names or self.active_adapters is_modules_to_save_available = any((self.peft_config[adapter].modules_to_save for adapter in adapters_to_consider)) if is_modules_to_save_available and len(adapters_to_consider) > 1: raise ValueError('Cannot unload multiple adapters that specify `modules_to_save`.') @staticmethod def get_model_config(model: nn.Module) -> dict: model_config = getattr(model, 'config', DUMMY_MODEL_CONFIG) if hasattr(model_config, 'to_dict'): model_config = model_config.to_dict() return model_config def _get_tied_target_modules(self, model: nn.Module) -> list[str]: tied_target_modules = [] model_config = self.get_model_config(model) if model_config.get('tie_word_embeddings'): for target_module in self.targeted_module_names: if target_module in EMBEDDING_LAYER_NAMES: tied_target_modules.append(target_module) return tied_target_modules class BaseTunerLayer(ABC): adapter_layer_names: tuple[str, ...] = () other_param_names: tuple[str, ...] = () _disable_adapters: bool = False _active_adapter: str | list[str] = 'default' merged_adapters: list[str] = [] def get_base_layer(self) -> nn.Module: base_layer = self while hasattr(base_layer, 'base_layer'): base_layer = base_layer.base_layer return base_layer @property def weight(self) -> torch.Tensor: base_layer = self.get_base_layer() if hasattr(base_layer, 'qweight'): weight = base_layer.qweight else: weight = base_layer.weight return weight @property def bias(self) -> torch.Tensor: base_layer = self.get_base_layer() return base_layer.bias def merge(self, safe_merge: bool=False, adapter_names: Optional[list[str]]=None) -> None: raise NotImplementedError def unmerge(self) -> None: raise NotImplementedError @property def merged(self) -> bool: return bool(self.merged_adapters) @property def disable_adapters(self) -> bool: return self._disable_adapters @property def active_adapter(self) -> str | list[str]: return self._active_adapter def _get_available_adapters(self) -> set[str]: adapters = set() for layer_name in self.adapter_layer_names: module = getattr(self, layer_name) if not isinstance(module, (nn.ModuleDict, nn.ParameterDict)): continue adapters.update(set(module.keys())) return adapters @property def active_adapters(self): if isinstance(self.active_adapter, str): return [self.active_adapter] return self.active_adapter def enable_adapters(self, enabled: bool) -> None: if enabled: self.set_adapter(self.active_adapters) self._disable_adapters = False else: for layer_name in self.adapter_layer_names: layer = getattr(self, layer_name) layer.requires_grad_(False) self._disable_adapters = True def set_adapter(self, adapter_names: str | list[str]) -> None: if isinstance(adapter_names, str): adapter_names = [adapter_names] for layer_name in self.adapter_layer_names: module_dict = getattr(self, layer_name) for (key, layer) in module_dict.items(): if key in adapter_names: layer.requires_grad_(True) else: layer.requires_grad_(False) self._active_adapter = adapter_names def _all_available_adapter_names(self) -> list[str]: adapter_names = set() for name in self.adapter_layer_names + self.other_param_names: attr = getattr(self, name) if hasattr(attr, 'keys'): adapter_names.update(attr.keys()) return sorted(adapter_names) def delete_adapter(self, adapter_name: str) -> None: for attr in self.adapter_layer_names + self.other_param_names: if adapter_name in getattr(self, attr): del getattr(self, attr)[adapter_name] if adapter_name in self.active_adapters: active_adapters = self.active_adapters[:] active_adapters.remove(adapter_name) if active_adapters: self.set_adapter(active_adapters) else: remaining_adapters = self._all_available_adapter_names() if not remaining_adapters: self.set_adapter([]) else: new_active_adapter = remaining_adapters[0] warnings.warn(f'Adapter {adapter_name} was active which is now deleted. Setting active adapter to {new_active_adapter}.') self.set_adapter(remaining_adapters[0]) def _move_adapter_to_device_of_base_layer(self, adapter_name: str, device: Optional[torch.device]=None) -> None: if device is None: for weight_name in ('weight', 'qweight'): weight = getattr(self.get_base_layer(), weight_name, None) if weight is not None: device = weight.device dtype = weight.dtype break else: return for adapter_layer_name in self.adapter_layer_names + self.other_param_names: adapter_layer = getattr(self, adapter_layer_name, None) if not isinstance(adapter_layer, (nn.ModuleDict, nn.ParameterDict, BufferDict)): continue if adapter_name not in adapter_layer: continue if weight.dtype.is_floating_point or weight.dtype.is_complex: adapter_layer[adapter_name] = adapter_layer[adapter_name].to(device, dtype=dtype) else: adapter_layer[adapter_name] = adapter_layer[adapter_name].to(device) def _find_minimal_target_modules(target_modules: list[str] | set[str], other_module_names: list[str] | set[str]) -> set[str]: if isinstance(target_modules, str) or not target_modules: raise ValueError('target_modules should be a list or set of strings.') target_modules = set(target_modules) if '' in target_modules: raise ValueError('target_modules should not contain an empty string.') other_module_names = set(other_module_names) if not target_modules.isdisjoint(other_module_names): msg = 'target_modules and other_module_names contain common elements, this should not happen, please open a GitHub issue at https://github.com/huggingface/peft/issues with the code to reproduce this issue' raise ValueError(msg) def generate_suffixes(s): parts = s.split('.') return ['.'.join(parts[i:]) for i in range(len(parts))][::-1] other_module_suffixes = {suffix for item in other_module_names for suffix in generate_suffixes(item)} target_modules_suffix_map = {item: generate_suffixes(item) for item in target_modules} required_suffixes = set() for (item, suffixes) in target_modules_suffix_map.items(): for suffix in suffixes: if suffix in required_suffixes or suffix in other_module_suffixes: continue if not any((item.endswith(req_suffix) for req_suffix in required_suffixes)): required_suffixes.add(suffix) break if not required_suffixes: return set(target_modules) return required_suffixes def check_target_module_exists(config, key: str) -> bool | re.Match[str] | None: if isinstance(config.target_modules, str): target_module_found = re.fullmatch(config.target_modules, key) elif key in config.target_modules: target_module_found = True else: target_module_found = any((key.endswith(f'.{target_key}') for target_key in config.target_modules)) layer_indexes = getattr(config, 'layers_to_transform', None) layers_pattern = getattr(config, 'layers_pattern', None) is_using_layer_indexes = layer_indexes is not None and (len(layer_indexes) != 0 if isinstance(layer_indexes, list) else True) if is_using_layer_indexes and target_module_found: layer_index = None if layers_pattern is None or len(layers_pattern) == 0: layer_index = re.match('.*\\.[^.]*\\.(\\d+)\\.', key) else: layers_pattern = [layers_pattern] if isinstance(layers_pattern, str) else layers_pattern for pattern in layers_pattern: layer_index = re.match(f'.*\\.{pattern}\\.(\\d+)\\.', key) if layer_index is not None: break if layer_index is None: target_module_found = False else: layer_index = int(layer_index.group(1)) if isinstance(layer_indexes, int): target_module_found = layer_index == layer_indexes else: target_module_found = layer_index in layer_indexes return target_module_found def inspect_matched_modules(tuner: BaseTuner, adapter_name: str='default') -> dict: config = tuner.peft_config[adapter_name] key_list = [key for (key, _) in tuner.model.named_modules()] module_dict = {'matched': [], 'unmatched': []} for key in key_list: if tuner._check_target_module_exists(config, key): module_dict['matched'].append(key) else: module_dict['unmatched'].append(key) return module_dict def _maybe_include_all_linear_layers(peft_config: PeftConfig, model: nn.Module) -> PeftConfig: if not hasattr(peft_config, 'target_modules'): return peft_config if not (isinstance(peft_config.target_modules, str) and peft_config.target_modules.lower() == INCLUDE_LINEAR_LAYERS_SHORTHAND): return peft_config if not isinstance(model, PreTrainedModel): raise ValueError(f'Only instances of PreTrainedModel support `target_modules={INCLUDE_LINEAR_LAYERS_SHORTHAND!r}`') linear_classes = (torch.nn.Linear, Conv1D) linear_module_names = set() for (name, module) in model.named_modules(): if isinstance(module, linear_classes): names = name.rsplit('.', 1)[-1] linear_module_names.add(names) module_names_to_exclude = set() output_emb = model.get_output_embeddings() if output_emb is not None: last_module_name = [name for (name, module) in model.named_modules() if module is output_emb][0] module_names_to_exclude.add(last_module_name) elif peft_config.task_type == TaskType.SEQ_CLS: for name in SEQ_CLS_HEAD_NAMES: cls_head = getattr(model, name, None) if cls_head is not None: last_module_name = [name for (name, module) in model.named_modules() if module is cls_head][0] module_names_to_exclude.add(last_module_name) break linear_module_names -= module_names_to_exclude peft_config.target_modules = linear_module_names return peft_config def check_adapters_to_merge(module: BaseTunerLayer, adapter_names: Optional[list[str]]=None) -> list[str]: if adapter_names is None: adapter_names = module.active_adapters if isinstance(adapter_names, str): raise ValueError(f'adapter_names should be a list of strings, got {adapter_names!r}.') if module.merged: merged_adapters = set(module.merged_adapters) adapter_names = [name for name in adapter_names if name not in merged_adapters] if adapter_names: warnings.warn(f"Already following adapters were merged {','.join(module.merged_adapters)}. You are now additionally merging {','.join(adapter_names)}.") else: warnings.warn('All adapters are already merged, nothing to do.') return adapter_names def clone_module(module: nn.Module, share_weights=False): clone = copy.deepcopy(module) def _share_weights(src: nn.Module, dst: nn.Module): for (name, param) in src.named_parameters(recurse=False): dst.register_parameter(name, param) if share_weights: for (name, submodule) in module.named_modules(): _share_weights(submodule, clone.get_submodule(name)) return clone def replicate_layers(model: nn.Module, layer_map: list[tuple[int, int]]): while hasattr(model, 'model'): model = model.model if hasattr(model, 'bert'): model = model.bert model_type = None layers: nn.ModuleList = None if hasattr(model, 'layers'): model_type = 'llama' layers = model.layers elif hasattr(model, 'encoder') and hasattr(model.encoder, 'layer'): model_type = 'bert' layers = model.encoder.layer elif hasattr(model, 'h'): model_type = 'falcon' layers = model.h if not model_type or not isinstance(layers, nn.ModuleList): raise ValueError('Could not locate the layers attribute in the model. Expected Llama, Bert or Falcon compatible architectures.') new_layers = [] for (start, end) in layer_map: for i in range(start, end): current_idx = len(new_layers) new_layers.append(clone_module(layers[i], share_weights=True)) for submodule in new_layers[-1].modules(): if hasattr(submodule, 'layer_idx'): submodule.layer_idx = current_idx layers = nn.ModuleList(new_layers) if model_type == 'llama': model.layers = layers elif model_type == 'bert': model.encoder.layer = layers elif model_type == 'falcon': model.h = layers else: raise ValueError('Unexpected model type, need to handle post-processing of layers.') if hasattr(model.config, 'num_hidden_layers'): model.config.num_hidden_layers = len(new_layers) # File: peft-main/src/peft/tuners/vblora/config.py from dataclasses import dataclass, field from typing import List, Optional, Union from peft.config import PeftConfig from peft.utils import PeftType @dataclass class VBLoRAConfig(PeftConfig): r: int = field(default=4, metadata={'help': 'The rank of incremental matrices.'}) num_vectors: int = field(default=256, metadata={'help': 'Number of vectors in the vector bank. Use higher values when the model size increases.'}) vector_length: int = field(default=256, metadata={'help': 'The length of the vectors in the vector bank. The length of the vectors should be divisible by the hidden dimension of the model.'}) topk: int = field(default=2, metadata={'help': 'The K value for top-K selection. A larger value of K increases the size of the saved model. In practice, setting K=2 typically provides the best performance and parameter efficiency. For more details, refer to the discussion in the paper.'}) target_modules: Optional[Union[List[str], str]] = field(default=None, metadata={'help': "List of module names or regex expression of the module names to replace with LoRA.For example, ['q', 'v'] or '.*decoder.*(SelfAttention|EncDecAttention).*(q|v)$'.This can also be a wildcard 'all-linear' which matches all linear/Conv1D layers except the output layer.If not specified, modules will be chosen according to the model architecture, If the architecture is not known, an error will be raised -- in this case, you should specify the target modules manually."}) save_only_topk_weights: bool = field(default=False, metadata={'help': 'Whether to only save the topk weights. Setting `save_only_topk_weights = True` significantly reduces storage space. However, models saved in this mode can be used for merging or inference only, not for resuming training.'}) vblora_dropout: float = field(default=0.0, metadata={'help': 'VBLoRA dropout'}) fan_in_fan_out: bool = field(default=False, metadata={'help': 'Set this to True if the layer to replace stores weight like (fan_in, fan_out)'}) bias: str = field(default='none', metadata={'help': "Bias type for VBLoRA. Can be 'none', 'all' or 'vblora_only'"}) modules_to_save: Optional[List[str]] = field(default=None, metadata={'help': 'List of modules apart from VBLoRA layers to be set as trainable and saved in the final checkpoint. For example, in Sequence Classification or Token Classification tasks, the final layer `classifier/score` are randomly initialized and as such need to be trainable and saved.'}) init_vector_bank_bound: float = field(default=0.02, metadata={'help': 'The vector bank is initialized with a uniform distribution between -init_vector_bank_bound and init_vector_bank_bound. Avoid initializing the vector bank with all zeros to prevent zero gradients. A small value, such as 0.02, is typically effective. Initializing with a large value may cause training instability.'}) init_logits_std: float = field(default=0.1, metadata={'help': 'The logits are initialized with a normal distribution with a standard deviation of init_logits_std. Default value 0.1 typically works well.'}) layers_to_transform: Optional[Union[List[int], int]] = field(default=None, metadata={'help': 'The layer indexes to transform, is this argument is specified, PEFT will transform only the layers indexes that are specified inside this list. If a single integer is passed, PEFT will transform only the layer at this index. This only works when target_modules is a list of str.'}) layers_pattern: Optional[Union[List[str], str]] = field(default=None, metadata={'help': 'The layer pattern name, used only if `layers_to_transform` is different to None and if the layer pattern is not in the common layers pattern.This only works when target_modules is a list of str.'}) def __post_init__(self): self.peft_type = PeftType.VBLORA self.target_modules = set(self.target_modules) if isinstance(self.target_modules, list) else self.target_modules # File: peft-main/src/peft/tuners/vblora/layer.py import warnings from typing import List, Optional, Tuple import torch import torch.nn as nn import torch.nn.functional as F from transformers.pytorch_utils import Conv1D from peft.tuners.tuners_utils import BaseTunerLayer, check_adapters_to_merge from peft.utils.other import transpose class VBLoRALayer(BaseTunerLayer): adapter_layer_names = ('vblora_logits_A', 'vblora_logits_B', 'vblora_vector_bank') def __init__(self, base_layer: nn.Module, **kwargs): self.base_layer = base_layer self.r = {} self.topk = {} self.vblora_dropout = nn.ModuleDict({}) self.vblora_logits_A = nn.ParameterDict({}) self.vblora_logits_B = nn.ParameterDict({}) self._disable_adapters = False self.merged_adapters = [] base_layer = self.get_base_layer() if isinstance(base_layer, nn.Linear): (in_features, out_features) = (base_layer.in_features, base_layer.out_features) elif isinstance(base_layer, Conv1D): (in_features, out_features) = base_layer.weight.ds_shape if hasattr(base_layer.weight, 'ds_shape') else base_layer.weight.shape self.in_features = in_features self.out_features = out_features self.kwargs = kwargs @property def merged(self) -> bool: return bool(self.merged_adapters) def update_layer(self, adapter_name: str, vblora_vector_bank, r: int, topk: int, num_vectors: int, vector_length: float, vblora_dropout: float=0.0, init_logits_std: float=0.01): if r <= 0: raise ValueError(f'`r` {r} should be a positive integer value') if topk <= 0: raise ValueError(f'`topk` {topk} should be a positive integer value') if self.in_features % vector_length != 0: raise ValueError(f'`in_features` {self.in_features} must be divisible by `vector_length` {vector_length}') if self.out_features % vector_length != 0: raise ValueError(f'`out_features` {self.out_features} must be divisible by `vector_length` {vector_length}') self.r[adapter_name] = r self.topk[adapter_name] = topk if vblora_dropout > 0.0: vblora_dropout_layer = nn.Dropout(p=vblora_dropout) else: vblora_dropout_layer = nn.Identity() self.vblora_dropout.update(nn.ModuleDict({adapter_name: vblora_dropout_layer})) self.vblora_logits_A[adapter_name] = nn.Parameter(torch.zeros(r, self.in_features // vector_length, num_vectors), requires_grad=True) self.vblora_logits_B[adapter_name] = nn.Parameter(torch.zeros(self.out_features // vector_length, r, num_vectors), requires_grad=True) self.vblora_vector_bank = vblora_vector_bank self.reset_vblora_logits(adapter_name, init_logits_std) self._move_adapter_to_device_of_base_layer(adapter_name) self.set_adapter(self.active_adapters) def reset_vblora_logits(self, adapter_name, init_logits_std): if adapter_name in self.vblora_logits_A.keys(): with torch.no_grad(): nn.init.normal_(self.vblora_logits_A[adapter_name], 0, init_logits_std) nn.init.normal_(self.vblora_logits_B[adapter_name], 0, init_logits_std) class Linear(nn.Linear, VBLoRALayer): def __init__(self, base_layer, vblora_vector_bank, adapter_name: str, r: int, num_vectors: int, vector_length: int, topk: int=2, vblora_dropout: float=0.0, init_logits_std: float=0.01, fan_in_fan_out: bool=False, is_target_conv_1d_layer: bool=False, **kwargs) -> None: super(nn.Linear, self).__init__() VBLoRALayer.__init__(self, base_layer, **kwargs) self.fan_in_fan_out = fan_in_fan_out self._active_adapter = adapter_name self.update_layer(adapter_name, vblora_vector_bank, r, topk, num_vectors, vector_length, vblora_dropout, init_logits_std) self.is_target_conv_1d_layer = is_target_conv_1d_layer def merge(self, safe_merge: bool=False, adapter_names: Optional[List[str]]=None) -> None: adapter_names = check_adapters_to_merge(self, adapter_names) if not adapter_names: return for active_adapter in adapter_names: if active_adapter in self.vblora_logits_A.keys(): base_layer = self.get_base_layer() if safe_merge: orig_weights = base_layer.weight.data.clone() orig_weights += self.get_delta_weight(active_adapter) if not torch.isfinite(orig_weights).all(): raise ValueError(f'NaNs detected in the merged weights. The adapter {active_adapter} seems to be broken') base_layer.weight.data = orig_weights else: base_layer.weight.data += self.get_delta_weight(active_adapter) self.merged_adapters.append(active_adapter) def unmerge(self) -> None: if not self.merged: warnings.warn('Already unmerged. Nothing to do.') return while len(self.merged_adapters) > 0: active_adapter = self.merged_adapters.pop() if active_adapter in self.vblora_logits_A.keys(): self.get_base_layer().weight.data -= self.get_delta_weight(active_adapter) def _get_low_rank_matrix(self, logits: torch.tensor, vblora_vector_bank, topk) -> torch.Tensor: (top_k_logits, indices) = logits.topk(topk, dim=-1) topk_weights = F.softmax(top_k_logits, dim=-1) return (topk_weights.unsqueeze(-1) * vblora_vector_bank[indices]).sum(-2) def _get_lora_matrices(self, adapter, cast_to_fp32=False) -> Tuple[torch.Tensor, torch.Tensor]: vblora_logits_A = self.vblora_logits_A[adapter] vblora_logits_B = self.vblora_logits_B[adapter] if self.training and vblora_logits_A[0, 0].isinf().any(): raise RuntimeError('Found infinity values in VB-LoRA logits. Ensure training was not resumed from a `save_only_topk_weights` model.') vblora_vector_bank = self.vblora_vector_bank[adapter].to(vblora_logits_A.device) topk = self.topk[adapter] if cast_to_fp32: vblora_logits_A = vblora_logits_A.float() vblora_logits_B = vblora_logits_B.float() vblora_vector_bank = vblora_vector_bank.float() A = self._get_low_rank_matrix(vblora_logits_A, vblora_vector_bank, topk).reshape(vblora_logits_A.shape[0], -1) B = self._get_low_rank_matrix(vblora_logits_B, vblora_vector_bank, topk).transpose(1, 2).reshape(-1, vblora_logits_B.shape[1]) return (A, B) def get_delta_weight(self, adapter) -> torch.Tensor: device = self.vblora_logits_A[adapter].device dtype = self.vblora_logits_A[adapter].dtype cast_to_fp32 = device.type == 'cpu' and dtype == torch.float16 (A, B) = self._get_lora_matrices(adapter, cast_to_fp32) output_tensor = transpose(B @ A, self.fan_in_fan_out) return output_tensor def forward(self, x: torch.Tensor, *args, **kwargs) -> torch.Tensor: previous_dtype = x.dtype if self.disable_adapters: if self.merged: self.unmerge() result = self.base_layer(x, *args, **kwargs) elif self.merged: result = self.base_layer(x, *args, **kwargs) else: result = self.base_layer(x, *args, **kwargs) for active_adapter in self.active_adapters: if active_adapter not in self.vblora_logits_A.keys(): continue (A, B) = self._get_lora_matrices(active_adapter) x = x.to(self.vblora_vector_bank[active_adapter].dtype) dropout = self.vblora_dropout[active_adapter] result = result + F.linear(F.linear(dropout(x), A), B) result = result.to(previous_dtype) return result # File: peft-main/src/peft/tuners/vblora/model.py from __future__ import annotations import warnings from dataclasses import asdict from enum import Enum from typing import Optional import torch import torch.nn as nn from tqdm import tqdm from transformers.pytorch_utils import Conv1D from peft.tuners.tuners_utils import BaseTuner, BaseTunerLayer, check_target_module_exists from peft.utils import TRANSFORMERS_MODELS_TO_VBLORA_TARGET_MODULES_MAPPING, ModulesToSaveWrapper, _get_submodules from .config import VBLoRAConfig from .layer import Linear, VBLoRALayer class VBLoRAModel(BaseTuner): prefix: str = 'vblora_' def __init__(self, model, config, adapter_name) -> None: super().__init__(model, config, adapter_name) def _init_vblora_vector_bank(self, config: VBLoRAConfig, adapter_name: str) -> None: vblora_vector_bank = torch.zeros(config.num_vectors, config.vector_length) torch.nn.init.uniform_(vblora_vector_bank, -config.init_vector_bank_bound, config.init_vector_bank_bound) self.vblora_vector_bank[adapter_name] = vblora_vector_bank def _pre_injection_hook(self, model: nn.Module, config: VBLoRAConfig, adapter_name: str) -> None: self.vblora_vector_bank = nn.ParameterDict({}) def _check_new_adapter_config(self, config: VBLoRAConfig) -> None: if len(self.peft_config) > 1 and config.bias != 'none': raise ValueError(f"{self.__class__.__name__} supports only 1 adapter with bias. When using multiple adapters, set bias to 'none' for all adapters.") @staticmethod def _check_target_module_exists(vblora_config, key): return check_target_module_exists(vblora_config, key) def _create_and_replace(self, vblora_config, adapter_name, target, target_name, parent, current_key): if current_key is None: raise ValueError("Current Key shouldn't be `None`") bias = hasattr(target, 'bias') and target.bias is not None kwargs = {'fan_in_fan_out': vblora_config.fan_in_fan_out, 'bias': bias} self._init_vblora_vector_bank(vblora_config, adapter_name) if isinstance(target, Linear): target.update_layer(adapter_name=adapter_name, vblora_vector_bank=self.vblora_vector_bank, r=vblora_config.r, topk=vblora_config.topk, num_vectors=vblora_config.num_vectors, vector_length=vblora_config.vector_length, vblora_dropout=vblora_config.vblora_dropout, init_logits_std=vblora_config.init_logits_std) else: new_module = self._create_new_module(vblora_config=vblora_config, vblora_vector_bank=self.vblora_vector_bank, adapter_name=adapter_name, target=target, **kwargs) if adapter_name not in self.active_adapter: new_module.requires_grad_(False) self._replace_module(parent, target_name, new_module, target) @staticmethod def _replace_module(parent, child_name, new_module, child): setattr(parent, child_name, new_module) if hasattr(child, 'base_layer'): child = child.base_layer if not hasattr(new_module, 'base_layer'): new_module.weight = child.weight if hasattr(child, 'bias'): new_module.bias = child.bias if getattr(child, 'state', None) is not None: if hasattr(new_module, 'base_layer'): new_module.base_layer.state = child.state else: new_module.state = child.state new_module.to(child.weight.device) for (name, module) in new_module.named_modules(): if 'vblora_' in name: module.to(child.weight.device) def _mark_only_adapters_as_trainable(self, model: nn.Module) -> None: for (n, p) in model.named_parameters(): if self.prefix not in n: p.requires_grad = False for active_adapter in self.active_adapters: bias = self.peft_config[active_adapter].bias if bias == 'none': continue if bias == 'all': for (n, p) in model.named_parameters(): if 'bias' in n: p.requires_grad = True elif bias == 'vblora_only': for m in model.modules(): if isinstance(m, VBLoRALayer) and hasattr(m, 'bias') and (m.bias is not None): m.bias.requires_grad = True else: raise NotImplementedError(f'Requested bias: {bias}, is not implemented.') @staticmethod def _create_new_module(vblora_config, vblora_vector_bank, adapter_name, target, **kwargs): if isinstance(target, BaseTunerLayer): target_base_layer = target.get_base_layer() else: target_base_layer = target if isinstance(target_base_layer, torch.nn.Linear): if kwargs['fan_in_fan_out']: warnings.warn('fan_in_fan_out is set to True but the target module is `torch.nn.Linear`. Setting fan_in_fan_out to False.') kwargs['fan_in_fan_out'] = vblora_config.fan_in_fan_out = False elif isinstance(target_base_layer, Conv1D): kwargs['is_target_conv_1d_layer'] = True if not kwargs['fan_in_fan_out']: warnings.warn('fan_in_fan_out is set to False but the target module is `Conv1D`. Setting fan_in_fan_out to True.') kwargs['fan_in_fan_out'] = vblora_config.fan_in_fan_out = True else: raise ValueError(f'Target module {target} is not supported. Currently, only the following modules are supported: `torch.nn.Linear`, `transformers.pytorch_utils.Conv1D`.') new_module = Linear(base_layer=target, vblora_vector_bank=vblora_vector_bank, adapter_name=adapter_name, r=vblora_config.r, num_vectors=vblora_config.num_vectors, vector_length=vblora_config.vector_length, topk=vblora_config.topk, vblora_dropout=vblora_config.vblora_dropout, init_logits_std=vblora_config.init_logits_std, **kwargs) return new_module def __getattr__(self, name: str): try: return super().__getattr__(name) except AttributeError: if name == 'model': raise return getattr(self.model, name) def get_peft_config_as_dict(self, inference: bool=False): config_dict = {} for (key, value) in self.peft_config.items(): config = {k: v.value if isinstance(v, Enum) else v for (k, v) in asdict(value).items()} if inference: config['inference_mode'] = True config_dict[key] = config return config def _set_adapter_layers(self, enabled: bool=True) -> None: for module in self.model.modules(): if isinstance(module, (BaseTunerLayer, ModulesToSaveWrapper)): module.enable_adapters(enabled) def enable_adapter_layers(self) -> None: self._set_adapter_layers(enabled=True) def disable_adapter_layers(self) -> None: for active_adapter in self.active_adapters: val = self.peft_config[active_adapter].bias if val != 'none': msg = f"Careful, disabling adapter layers with bias configured to be '{val}' does not produce the same output as the the base model would without adaption." warnings.warn(msg) self._set_adapter_layers(enabled=False) def set_adapter(self, adapter_name: str | list[str]) -> None: for module in self.model.modules(): if isinstance(module, VBLoRALayer): if module.merged: warnings.warn('Adapter cannot be set when the model is merged. Unmerging the model first.') module.unmerge() module.set_adapter(adapter_name) self.active_adapter = adapter_name @staticmethod def _prepare_adapter_config(peft_config, model_config): if peft_config.target_modules is None: if model_config['model_type'] not in TRANSFORMERS_MODELS_TO_VBLORA_TARGET_MODULES_MAPPING: raise ValueError('Please specify `target_modules` in `peft_config`') peft_config.target_modules = set(TRANSFORMERS_MODELS_TO_VBLORA_TARGET_MODULES_MAPPING[model_config['model_type']]) return peft_config def _unload_and_optionally_merge(self, merge=True, progressbar: bool=False, safe_merge: bool=False, adapter_names: Optional[list[str]]=None): key_list = [key for (key, _) in self.model.named_modules() if self.prefix not in key] desc = 'Unloading ' + ('and merging ' if merge else '') + 'model' for key in tqdm(key_list, disable=not progressbar, desc=desc): try: (parent, target, target_name) = _get_submodules(self.model, key) except AttributeError: continue if hasattr(target, 'base_layer'): if merge: target.merge(safe_merge=safe_merge, adapter_names=adapter_names) self._replace_module(parent, target_name, target.get_base_layer(), target) elif isinstance(target, ModulesToSaveWrapper): setattr(parent, target_name, target.modules_to_save[target.active_adapter]) return self.model def delete_adapter(self, adapter_name: str) -> None: if adapter_name not in list(self.peft_config.keys()): raise ValueError(f'Adapter {adapter_name} does not exist') del self.peft_config[adapter_name] key_list = [key for (key, _) in self.model.named_modules() if self.prefix not in key] new_adapter = None for key in key_list: (_, target, _) = _get_submodules(self.model, key) if isinstance(target, VBLoRALayer): target.delete_adapter(adapter_name) if new_adapter is None: new_adapter = target.active_adapter[:] self.active_adapter = new_adapter or [] def merge_and_unload(self, progressbar: bool=False, safe_merge: bool=False, adapter_names: Optional[list[str]]=None) -> torch.nn.Module: return self._unload_and_optionally_merge(progressbar=progressbar, safe_merge=safe_merge, adapter_names=adapter_names) def unload(self): return self._unload_and_optionally_merge(merge=False) def get_nb_savable_parameters(self, adapter='default') -> tuple[int, int]: logits_params = 0 vector_bank_params = 0 other_params = 0 for (name, param) in self.named_parameters(): if 'vblora_logits' in name: logits_params += param.numel() elif 'vblora_vector_bank' in name: vector_bank_params += param.numel() elif param.requires_grad: other_params += param.numel() if self.peft_config[adapter].save_only_topk_weights: num_vectors = self.peft_config[adapter].num_vectors factor = 1 if num_vectors < 2 ** 8: factor = 0.25 elif num_vectors < 2 ** 15: factor = 0.5 elif num_vectors < 2 ** 31: factor = 1 else: factor = 2 topk_weight_params = logits_params / self.peft_config[adapter].num_vectors * (self.peft_config[adapter].topk - 1) topk_indices_params = logits_params / self.peft_config[adapter].num_vectors * self.peft_config[adapter].topk * factor vblora_params = int(vector_bank_params + topk_weight_params + topk_indices_params) else: vblora_params = vector_bank_params + logits_params return (vblora_params, other_params) def print_savable_parameters(self) -> None: (vblora_params, other_params) = self.get_nb_savable_parameters() print(f'VB-LoRA params to-be-saved (float32-equivalent): {vblora_params:,d} || total params to-be-saved: {vblora_params + other_params:,d}') # File: peft-main/src/peft/tuners/vera/config.py import warnings from dataclasses import dataclass, field from typing import List, Optional, Union from peft.config import PeftConfig from peft.utils import PeftType @dataclass class VeraConfig(PeftConfig): r: int = field(default=256, metadata={'help': 'Vera attention dimension'}) target_modules: Optional[Union[List[str], str]] = field(default=None, metadata={'help': "List of module names or regex expression of the module names to replace with Vera.For example, ['q', 'v'] or '.*decoder.*(SelfAttention|EncDecAttention).*(q|v)$'. Only linear layers are supported."}) projection_prng_key: int = field(default=0, metadata={'help': 'Vera PRNG init key. Used for initialising vera_A and vera_B for new models or when loading a checkpoint that did not include these projections.'}) save_projection: bool = field(default=True, metadata={'help': 'Whether to save the vera_A / vera_B projections in the state dict alongside per layer lambda_b / lambda_d weights. This will increase the size of the checkpoint, but guarantee that we can reload the checkpoint on all system configurations.'}) vera_dropout: float = field(default=0.0, metadata={'help': 'Vera dropout'}) d_initial: float = field(default=0.1, metadata={'help': 'Initial init value for d vector.'}) fan_in_fan_out: bool = field(default=False, metadata={'help': 'Set this to True if the layer to replace stores weight like (fan_in, fan_out)'}) bias: str = field(default='none', metadata={'help': "Bias type for Vera. Can be 'none', 'all' or 'vera_only'"}) modules_to_save: Optional[List[str]] = field(default=None, metadata={'help': 'List of modules apart from Vera layers to be set as trainable and saved in the final checkpoint. For example, in Sequence Classification or Token Classification tasks, the final layer `classifier/score` are randomly initialized and as such need to be trainable and saved.'}) init_weights: bool = field(default=True, metadata={'help': "Whether to initialize the weights of the Vera layers with their default initialization. Don't change this setting, except if you know exactly what you're doing."}) layers_to_transform: Optional[Union[List[int], int]] = field(default=None, metadata={'help': 'The layer indexes to transform, is this argument is specified, PEFT will transform only the layers indexes that are specified inside this list. If a single integer is passed, PEFT will transform only the layer at this index.'}) layers_pattern: Optional[str] = field(default=None, metadata={'help': 'The layer pattern name, used only if `layers_to_transform` is different to None and if the layer pattern is not in the common layers pattern.'}) def __post_init__(self): self.peft_type = PeftType.VERA self.target_modules = set(self.target_modules) if isinstance(self.target_modules, list) else self.target_modules if not self.save_projection: warnings.warn('Specified to not save vera_A and vera_B within the state dictionary, instead they will be restored using the PRNG key store in `config.projection_prng_key`. Consider setting `config.save_projection` to `True` to guarantee restoring the checkpoint correctly on all system configurations.') # File: peft-main/src/peft/tuners/vera/layer.py import warnings from typing import List, Optional import torch import torch.nn as nn import torch.nn.functional as F from transformers.pytorch_utils import Conv1D from peft.tuners.tuners_utils import BaseTunerLayer, check_adapters_to_merge from peft.utils.other import transpose from .._buffer_dict import BufferDict class VeraLayer(BaseTunerLayer): adapter_layer_names = ('vera_lambda_b', 'vera_lambda_d') other_param_names = ('vera_A', 'vera_B') def __init__(self, base_layer: nn.Module, **kwargs): self.base_layer = base_layer self.r = {} self.vera_dropout = nn.ModuleDict({}) self.vera_lambda_b = nn.ParameterDict({}) self.vera_lambda_d = nn.ParameterDict({}) self.vera_A: Optional[BufferDict] = None self.vera_B: Optional[BufferDict] = None self._disable_adapters = False self.merged_adapters = [] base_layer = self.get_base_layer() if isinstance(base_layer, nn.Linear): (in_features, out_features) = (base_layer.in_features, base_layer.out_features) elif isinstance(base_layer, Conv1D): (in_features, out_features) = base_layer.weight.ds_shape if hasattr(base_layer.weight, 'ds_shape') else base_layer.weight.shape self.in_features = in_features self.out_features = out_features self.kwargs = kwargs @property def merged(self) -> bool: return bool(self.merged_adapters) def update_layer(self, adapter_name, vera_A: BufferDict, vera_B: BufferDict, r, vera_dropout, init_weights, d_initial: float=0.1): if r <= 0: raise ValueError(f'`r` should be a positive integer value but the value passed is {r}') self.r[adapter_name] = r if vera_dropout > 0.0: vera_dropout_layer = nn.Dropout(p=vera_dropout) else: vera_dropout_layer = nn.Identity() self.vera_dropout.update(nn.ModuleDict({adapter_name: vera_dropout_layer})) self.vera_lambda_b[adapter_name] = nn.Parameter(torch.ones(self.out_features), requires_grad=True) self.vera_lambda_d[adapter_name] = nn.Parameter(torch.randn(r), requires_grad=True) self.vera_A = vera_A self.vera_B = vera_B if adapter_name not in vera_A: if len(self.vera_A) < 1: raise ValueError('The `vera_A` and `vera_B` buffers are empty. This should not happen. Please report this issue.') vera_A_param = list(self.vera_A.values())[0] vera_B_param = list(self.vera_B.values())[0] error_tmpl = '{} has a size of {} but {} or greater is required; this probably happened because an additional VeRA adapter was added after the first one with incompatible shapes.' if vera_A_param.shape[1] < self.in_features: raise ValueError(error_tmpl.format('vera_A', vera_A_param.shape[1], self.in_features)) if vera_B_param.shape[0] < self.out_features: raise ValueError(error_tmpl.format('vera_B', vera_B_param.shape[0], self.out_features)) error_tmpl = '{} has a size of {} but {} or greater is required; this probably happened because an additional VeRA adapter with a lower rank was added after the first one; loading the adapters in reverse order may solve this.' if vera_A_param.shape[0] < self.r[adapter_name]: raise ValueError(error_tmpl.format('vera_A', vera_A_param.shape[0], self.r[adapter_name])) if vera_B_param.shape[1] < self.r[adapter_name]: raise ValueError(error_tmpl.format('vera_B', vera_B_param.shape[1], self.r[adapter_name])) self.vera_A[adapter_name] = vera_A_param self.vera_B[adapter_name] = vera_B_param if init_weights: self.reset_vera_parameters(adapter_name, d_initial=d_initial) self._move_adapter_to_device_of_base_layer(adapter_name) self.set_adapter(self.active_adapters) def reset_vera_parameters(self, adapter_name, d_initial: float=0.1): if adapter_name in self.vera_lambda_d.keys(): with torch.no_grad(): nn.init.zeros_(self.vera_lambda_d[adapter_name]).fill_(d_initial) nn.init.zeros_(self.vera_lambda_b[adapter_name]) class Linear(nn.Linear, VeraLayer): def __init__(self, base_layer, vera_A: BufferDict, vera_B: BufferDict, adapter_name: str, r: int=0, vera_dropout: float=0.0, fan_in_fan_out: bool=False, is_target_conv_1d_layer: bool=False, init_weights: bool=True, d_initial: float=0.1, **kwargs) -> None: super(nn.Linear, self).__init__() VeraLayer.__init__(self, base_layer, **kwargs) self.fan_in_fan_out = fan_in_fan_out self._active_adapter = adapter_name self.update_layer(adapter_name, vera_A, vera_B, r, vera_dropout, init_weights, d_initial=d_initial) self.is_target_conv_1d_layer = is_target_conv_1d_layer def merge(self, safe_merge: bool=False, adapter_names: Optional[List[str]]=None) -> None: adapter_names = check_adapters_to_merge(self, adapter_names) if not adapter_names: return for active_adapter in adapter_names: if active_adapter in self.vera_lambda_d.keys(): base_layer = self.get_base_layer() if safe_merge: orig_weights = base_layer.weight.data.clone() orig_weights += self.get_delta_weight(active_adapter) if not torch.isfinite(orig_weights).all(): raise ValueError(f'NaNs detected in the merged weights. The adapter {active_adapter} seems to be broken') base_layer.weight.data = orig_weights else: base_layer.weight.data += self.get_delta_weight(active_adapter) self.merged_adapters.append(active_adapter) def unmerge(self) -> None: if not self.merged: warnings.warn('Already unmerged. Nothing to do.') return while len(self.merged_adapters) > 0: active_adapter = self.merged_adapters.pop() if active_adapter in self.vera_lambda_d.keys(): self.get_base_layer().weight.data -= self.get_delta_weight(active_adapter) def get_delta_weight(self, adapter) -> torch.Tensor: vera_A = self.vera_A[adapter] vera_B = self.vera_B[adapter] device = vera_B.device dtype = vera_B.dtype cast_to_fp32 = device.type == 'cpu' and (dtype == torch.float16 or dtype == torch.bfloat16) lambda_d = self.vera_lambda_d[adapter] lambda_b = self.vera_lambda_b[adapter] if cast_to_fp32: vera_A = vera_A.float() vera_B = vera_B.float() lambda_d = lambda_d.float() lambda_b = lambda_b.float() sliced_A = vera_A[:, :self.in_features] sliced_B = vera_B[:self.out_features, :] lambda_b = lambda_b.unsqueeze(-1) lambda_d = lambda_d.unsqueeze(-1) output_tensor = transpose(lambda_b * sliced_B @ (lambda_d * sliced_A), self.fan_in_fan_out) if cast_to_fp32: output_tensor = output_tensor.to(dtype=dtype) self.vera_lambda_d[adapter].data = lambda_d.to(dtype) self.vera_lambda_b[adapter].data = lambda_b.to(dtype) return output_tensor def forward(self, x: torch.Tensor, *args, **kwargs) -> torch.Tensor: previous_dtype = x.dtype if self.disable_adapters: if self.merged: self.unmerge() result = self.base_layer(x, *args, **kwargs) elif self.merged: result = self.base_layer(x, *args, **kwargs) else: result = self.base_layer(x, *args, **kwargs) for active_adapter in self.active_adapters: if active_adapter not in self.vera_lambda_d.keys(): continue lambda_d = self.vera_lambda_d[active_adapter] lambda_b = self.vera_lambda_b[active_adapter] vera_A = self.vera_A[active_adapter] vera_B = self.vera_B[active_adapter] sliced_A = vera_A[:, :self.in_features] sliced_B = vera_B[:self.out_features, :] dropout = self.vera_dropout[active_adapter] x = x.to(lambda_d.dtype) result = result + lambda_b * F.linear(lambda_d * F.linear(dropout(x), sliced_A), sliced_B) result = result.to(previous_dtype) return result def __repr__(self) -> str: rep = super().__repr__() return 'vera.' + rep # File: peft-main/src/peft/tuners/vera/model.py from __future__ import annotations import math import warnings from dataclasses import asdict from enum import Enum from typing import Optional, Union import torch import torch.nn as nn from torch.nn.init import _calculate_correct_fan from tqdm import tqdm from transformers.pytorch_utils import Conv1D from peft.tuners.tuners_utils import BaseTuner, BaseTunerLayer, check_target_module_exists from peft.utils import TRANSFORMERS_MODELS_TO_VERA_TARGET_MODULES_MAPPING, ModulesToSaveWrapper, _get_submodules from .._buffer_dict import BufferDict from ..tuners_utils import _maybe_include_all_linear_layers from .config import VeraConfig from .layer import Linear, VeraLayer def _kaiming_init(tensor_or_shape: Union[torch.Tensor, tuple[int, ...]], generator: torch.Generator) -> torch.Tensor: if isinstance(tensor_or_shape, tuple): tensor = torch.empty(tensor_or_shape) else: tensor = tensor_or_shape fan = _calculate_correct_fan(tensor, 'fan_in') gain = math.sqrt(2) std = gain / math.sqrt(fan) bound = math.sqrt(3.0) * std with torch.no_grad(): return tensor.uniform_(-bound, bound, generator=generator) class VeraModel(BaseTuner): prefix: str = 'vera_lambda' def __init__(self, model, config, adapter_name) -> None: super().__init__(model, config, adapter_name) def _find_dim(self, config) -> tuple[int, int]: model_config = self.get_model_config(self.model) peft_config = self._prepare_adapter_config(config, model_config) peft_config = _maybe_include_all_linear_layers(peft_config, self.model) largest_shape = None for (key, module) in self.model.named_modules(): if not self._check_target_module_exists(peft_config, key): continue if isinstance(module, (nn.Linear, Conv1D)): module_shape = tuple(module.weight.shape) if isinstance(module, Conv1D): module_shape = module_shape[::-1] else: continue if largest_shape is None: largest_shape = module_shape continue if module_shape != largest_shape: largest_shape = tuple((max(a, b) for (a, b) in zip(largest_shape, module_shape))) if largest_shape is None: msg = 'No layers types compatible with VeRA were found. Please check `peft_config.target_modules`.' raise ValueError(msg) return largest_shape def _init_vera_A_vera_B(self, config: VeraConfig, adapter_name: str) -> None: (linear_out_dim, linear_in_dim) = self._find_dim(config) self.vera_A = BufferDict({}, persistent=config.save_projection) self.vera_B = BufferDict({}, persistent=config.save_projection) generator = torch.Generator(device='cpu').manual_seed(config.projection_prng_key) vera_A = _kaiming_init((config.r, linear_in_dim), generator=generator) vera_B = _kaiming_init((linear_out_dim, config.r), generator=generator) self.vera_A[adapter_name] = vera_A self.vera_B[adapter_name] = vera_B def _pre_injection_hook(self, model: nn.Module, config: VeraConfig, adapter_name: str) -> None: self._init_vera_A_vera_B(config, adapter_name) def _check_new_adapter_config(self, config: VeraConfig) -> None: if len(self.peft_config) > 1 and config.bias != 'none': raise ValueError(f"{self.__class__.__name__} supports only 1 adapter with bias. When using multiple adapters, set bias to 'none' for all adapters.") for existing_config in self.peft_config.values(): if existing_config is config: continue if existing_config.projection_prng_key != config.projection_prng_key: raise ValueError(f'Vera PRNG initialisation key must be the same for all adapters. Got config.projection_prng_key={config.projection_prng_key!r} but previous config had {existing_config.projection_prng_key}.') save_project_unique_values = sorted({config.save_projection for config in self.peft_config.values()}) if len(save_project_unique_values) > 1: raise ValueError(f'VeRA projection weights must be saved for all adapters or none, but got multiple different values: {save_project_unique_values}') @staticmethod def _check_target_module_exists(vera_config, key): return check_target_module_exists(vera_config, key) def _create_and_replace(self, vera_config, adapter_name, target, target_name, parent, current_key, **optional_kwargs): if current_key is None: raise ValueError("Current Key shouldn't be `None`") r = vera_config.r bias = hasattr(target, 'bias') and target.bias is not None kwargs = {'r': r, 'vera_dropout': vera_config.vera_dropout, 'fan_in_fan_out': vera_config.fan_in_fan_out, 'init_weights': vera_config.init_weights} kwargs['bias'] = bias if isinstance(target, Linear): target.update_layer(adapter_name, self.vera_A, self.vera_B, r, vera_config.vera_dropout, vera_config.init_weights, d_initial=vera_config.d_initial) else: new_module = self._create_new_module(vera_config, self.vera_A, self.vera_B, adapter_name, target, **kwargs) if adapter_name not in self.active_adapter: new_module.requires_grad_(False) self._replace_module(parent, target_name, new_module, target) @staticmethod def _replace_module(parent, child_name, new_module, child): setattr(parent, child_name, new_module) if hasattr(child, 'base_layer'): child = child.base_layer if not hasattr(new_module, 'base_layer'): new_module.weight = child.weight if hasattr(child, 'bias'): new_module.bias = child.bias if getattr(child, 'state', None) is not None: if hasattr(new_module, 'base_layer'): new_module.base_layer.state = child.state else: new_module.state = child.state new_module.to(child.weight.device) for (name, module) in new_module.named_modules(): if 'vera_' in name: module.to(child.weight.device) def _mark_only_adapters_as_trainable(self, model: nn.Module) -> None: for (n, p) in model.named_parameters(): if self.prefix not in n: p.requires_grad = False for active_adapter in self.active_adapters: bias = self.peft_config[active_adapter].bias if bias == 'none': continue if bias == 'all': for (n, p) in model.named_parameters(): if 'bias' in n: p.requires_grad = True elif bias == 'vera_only': for m in model.modules(): if isinstance(m, VeraLayer) and hasattr(m, 'bias') and (m.bias is not None): m.bias.requires_grad = True else: raise NotImplementedError(f'Requested bias: {bias}, is not implemented.') @staticmethod def _create_new_module(vera_config, vera_A, vera_B, adapter_name, target, **kwargs): bias = kwargs.pop('bias', False) if isinstance(target, BaseTunerLayer): target_base_layer = target.get_base_layer() else: target_base_layer = target if isinstance(target_base_layer, torch.nn.Linear): if kwargs['fan_in_fan_out']: warnings.warn('fan_in_fan_out is set to True but the target module is `torch.nn.Linear`. Setting fan_in_fan_out to False.') kwargs['fan_in_fan_out'] = vera_config.fan_in_fan_out = False elif isinstance(target_base_layer, Conv1D): kwargs['is_target_conv_1d_layer'] = True if not kwargs['fan_in_fan_out']: warnings.warn('fan_in_fan_out is set to False but the target module is `Conv1D`. Setting fan_in_fan_out to True.') kwargs['fan_in_fan_out'] = vera_config.fan_in_fan_out = True else: raise ValueError(f'Target module {target} is not supported. Currently, only the following modules are supported: `torch.nn.Linear`, `transformers.pytorch_utils.Conv1D`.') new_module = Linear(target, vera_A, vera_B, adapter_name, bias=bias, d_initial=vera_config.d_initial, **kwargs) return new_module def __getattr__(self, name: str): try: return super().__getattr__(name) except AttributeError: if name == 'model': raise return getattr(self.model, name) def get_peft_config_as_dict(self, inference: bool=False): config_dict = {} for (key, value) in self.peft_config.items(): config = {k: v.value if isinstance(v, Enum) else v for (k, v) in asdict(value).items()} if inference: config['inference_mode'] = True config_dict[key] = config return config def _set_adapter_layers(self, enabled=True): for module in self.model.modules(): if isinstance(module, (BaseTunerLayer, ModulesToSaveWrapper)): module.enable_adapters(enabled) def enable_adapter_layers(self): self._set_adapter_layers(enabled=True) def disable_adapter_layers(self): for active_adapter in self.active_adapters: val = self.peft_config[active_adapter].bias if val != 'none': msg = f"Careful, disabling adapter layers with bias configured to be '{val}' does not produce the same output as the the base model would without adaption." warnings.warn(msg) self._set_adapter_layers(enabled=False) def set_adapter(self, adapter_name): for module in self.model.modules(): if isinstance(module, VeraLayer): if module.merged: warnings.warn('Adapter cannot be set when the model is merged. Unmerging the model first.') module.unmerge() module.set_adapter(adapter_name) self.active_adapter = adapter_name @staticmethod def _prepare_adapter_config(peft_config, model_config): if peft_config.target_modules is None: if model_config['model_type'] not in TRANSFORMERS_MODELS_TO_VERA_TARGET_MODULES_MAPPING: raise ValueError('Please specify `target_modules` in `peft_config`') peft_config.target_modules = set(TRANSFORMERS_MODELS_TO_VERA_TARGET_MODULES_MAPPING[model_config['model_type']]) return peft_config def _unload_and_optionally_merge(self, merge=True, progressbar: bool=False, safe_merge: bool=False, adapter_names: Optional[list[str]]=None): key_list = [key for (key, _) in self.model.named_modules() if 'vera' not in key] desc = 'Unloading ' + ('and merging ' if merge else '') + 'model' for key in tqdm(key_list, disable=not progressbar, desc=desc): try: (parent, target, target_name) = _get_submodules(self.model, key) except AttributeError: continue if hasattr(target, 'base_layer'): if merge: target.merge(safe_merge=safe_merge, adapter_names=adapter_names) self._replace_module(parent, target_name, target.get_base_layer(), target) elif isinstance(target, ModulesToSaveWrapper): setattr(parent, target_name, target.modules_to_save[target.active_adapter]) return self.model def delete_adapter(self, adapter_name: str): if adapter_name not in list(self.peft_config.keys()): raise ValueError(f'Adapter {adapter_name} does not exist') del self.peft_config[adapter_name] key_list = [key for (key, _) in self.model.named_modules() if 'vera' not in key] new_adapter = None for key in key_list: (_, target, _) = _get_submodules(self.model, key) if isinstance(target, VeraLayer): target.delete_adapter(adapter_name) if new_adapter is None: new_adapter = target.active_adapter[:] self.active_adapter = new_adapter or [] def merge_and_unload(self, progressbar: bool=False, safe_merge: bool=False, adapter_names: Optional[list[str]]=None): return self._unload_and_optionally_merge(progressbar=progressbar, safe_merge=safe_merge, adapter_names=adapter_names) def unload(self): return self._unload_and_optionally_merge(merge=False) # File: peft-main/src/peft/tuners/xlora/classifier.py from __future__ import annotations import builtins from typing import Optional, Union import torch import torch.nn as nn from .config import XLoraConfig Number = Union[builtins.int, builtins.float, builtins.bool] class TemperatureScaledSoftmax(nn.Module): def __init__(self, temperature=1.0): super().__init__() self.temperature = temperature self.softmax = nn.Softmax(dim=-1) def forward(self, logits): scaled_logits = logits / self.temperature return self.softmax(scaled_logits) class XLoraClassifier(nn.Module): def __init__(self, model: nn.Module, config: XLoraConfig, n_classes: int, n_layers: int, device: torch.device): super().__init__() self.n_classes = n_classes self.n_layers = n_layers self.config = config self.log_scalings = [] self.softmax = TemperatureScaledSoftmax(temperature=self.config.softmax_temperature) self.override_scaling_pass_value: Number = config.scaling_pass_value self.scalings_logging = False self.dtype = next(model.parameters()).dtype add_dropout = config.xlora_dropout_p > 0.0 layers = [] if self.config.xlora_depth == 1: if config.layerwise_scalings: last = nn.Linear(config.hidden_size, n_classes * n_layers, bias=True).to(device).to(self.dtype) else: last = nn.Linear(config.hidden_size, n_classes, bias=True).to(device).to(self.dtype) else: if self.config.xlora_depth <= 0: raise ValueError('X-LoRA depth must be strictly positive.') layers.append(nn.Linear(config.hidden_size, config.xlora_size, bias=True).to(device).to(self.dtype)) layers.append(nn.ReLU()) if add_dropout: layers.append(nn.Dropout(p=config.xlora_dropout_p)) for _ in range(config.xlora_depth - 2): layers.append(nn.Linear(config.xlora_size, config.xlora_size, bias=True).to(device).to(self.dtype)) layers.append(nn.ReLU()) if add_dropout: layers.append(nn.Dropout(p=config.xlora_dropout_p)) if config.layerwise_scalings: last = nn.Linear(config.xlora_size, n_classes * n_layers, bias=True).to(device).to(self.dtype) else: last = nn.Linear(config.xlora_size, n_classes, bias=True).to(device).to(self.dtype) self.layers = nn.Sequential(*layers, last) def make_dummy_scalings(self, input_ids: Optional[torch.LongTensor]=None, inputs_embeds: Optional[torch.FloatTensor]=None, *args, **kwargs) -> torch.Tensor: if input_ids is not None: batch_size = input_ids.shape[0] device = input_ids.device seq_len = input_ids.shape[1] else: batch_size = inputs_embeds.shape[0] device = inputs_embeds.device seq_len = inputs_embeds.shape[1] return torch.full((batch_size, seq_len, self.n_layers, self.n_classes), self.override_scaling_pass_value).to(device=device, dtype=self.dtype) def forward(self, result, input_ids: Optional[torch.LongTensor]=None, inputs_embeds: Optional[torch.FloatTensor]=None, *args, **kwargs) -> torch.Tensor: if input_ids is not None: batch_size = input_ids.shape[0] seq_len = input_ids.shape[1] else: batch_size = inputs_embeds.shape[0] seq_len = inputs_embeds.shape[1] hidden_states = result.hidden_states hidden_state = hidden_states[-1] logits = self.layers.forward(hidden_state) if not self.config.layerwise_scalings: logits = logits.unsqueeze(2) logits = logits.expand(-1, -1, self.n_layers, -1) scalings = logits.reshape(batch_size, seq_len, self.n_layers, self.n_classes) if self.config.enable_softmax: scalings = self.softmax(scalings) if self.scalings_logging: self.log_scalings.append(scalings) return scalings def _get_bucketed_scalings(self) -> dict[int, tuple[list[int], list[torch.Tensor]]]: seqlens_map: dict[int, tuple[list[int], list[torch.Tensor]]] = {} for (i, scaling) in enumerate(self.log_scalings): seq_len = scaling.shape[1] if seq_len not in seqlens_map: seqlens_map[seq_len] = ([i], [scaling]) else: seqlens_map[seq_len][0].append(i) seqlens_map[seq_len][1].append(scaling) return seqlens_map def _set_override_scaling_pass_value(self, value: Union[Number, None]): if value is None: self.override_scaling_pass_value = 1 / self.n_classes else: self.override_scaling_pass_value = value self.config.scaling_pass_value = self.override_scaling_pass_value # File: peft-main/src/peft/tuners/xlora/config.py from __future__ import annotations import warnings from dataclasses import dataclass from typing import Optional from peft.config import PeftConfig from peft.utils.peft_types import PeftType @dataclass class XLoraConfig(PeftConfig): hidden_size: int = None adapters: dict[str, str] = None enable_softmax: bool = True enable_softmax_topk: bool = False layerwise_scalings: bool = False xlora_depth: int = 1 xlora_size: int = 2048 xlora_dropout_p: float = 0.2 use_trainable_adapters: bool = False softmax_temperature: float = 1.0 top_k_lora: Optional[int] = None scaling_pass_value: float = 0.0 global_scaling_weight: float = 1.0 def __post_init__(self): self.peft_type = PeftType.XLORA if self.hidden_size is None: warnings.warn('No value was provided for `hidden_size`. This will be set to 4096 by default, please ensure that this is correct.') self.hidden_size = 4096 if self.adapters is None: warnings.warn('No value was provided for for `adapters`. This will be set to empty, please ensure that this is correct.') self.adapters = {} if self.enable_softmax_topk and self.top_k_lora is None: warnings.warn('`enable_softmax_topk` enabled `top_k_lora` is not set') if self.enable_softmax_topk and self.enable_softmax: warnings.warn('`enable_softmax_topk` and `enable_softmax` are both enabled. This will result in worse performance.') if self.top_k_lora is not None and self.top_k_lora < 1: warnings.warn('`top_k_lora` value must be at least 1.') # File: peft-main/src/peft/tuners/xlora/layer.py from __future__ import annotations from typing import Any, Callable, Optional import torch import torch.nn as nn from torch import Tensor from peft.tuners import lora from .config import XLoraConfig class XLoraLayer: def __init__(self, model: nn.Module, target: lora.LoraLayer, target_forward: Callable[..., Any], layer_number: int, config: XLoraConfig) -> None: self.model = model self.target_forward = target_forward self.target = target self.layer_number = layer_number self.config = config '' @staticmethod def apply_scalings_to_x(x: torch.Tensor, scalings_layer: torch.Tensor, adapter: int) -> torch.Tensor: scalings = scalings_layer[:, :, adapter].unsqueeze(-1) return x * scalings '' def get_maybe_topk_scalings(self, scalings) -> torch.Tensor: xlora_scalings: Tensor = scalings[:, :, self.layer_number, :] if self.config.top_k_lora is not None: (_, topk_indices) = torch.topk(xlora_scalings, k=self.config.top_k_lora, dim=-1) mask = torch.zeros_like(xlora_scalings, dtype=torch.bool) mask.scatter_(-1, topk_indices, True) xlora_scalings = xlora_scalings * mask.to(xlora_scalings.dtype) if self.config.enable_softmax_topk: nonzero_mask = xlora_scalings != 0 softmax_res_nonzero = torch.softmax(xlora_scalings[nonzero_mask], dim=-1) xlora_scalings[nonzero_mask] = softmax_res_nonzero return xlora_scalings class XLoraLinearLayer(XLoraLayer): def __init__(self, model: nn.Module, target: lora.Linear, target_forward: Callable[..., Any], layer_number: int, config: XLoraConfig) -> None: super().__init__(model, target, target_forward, layer_number, config) def forward(self, x: Tensor, *args: Any, scalings: Optional[Tensor]=None, **kwargs: Any) -> Tensor: previous_dtype = x.dtype if scalings is not None: xlora_scalings = self.get_maybe_topk_scalings(scalings) result = self.target.base_layer(x, *args, **kwargs) if not self.target.merged: for (adapter_n, active_adapter) in enumerate(self.target.active_adapters): if self.target.use_dora[active_adapter]: raise ValueError('X-LoRA currently does not support LoRA layers with DoRA') if active_adapter not in self.target.lora_A.keys(): continue lora_A = self.target.lora_A[active_adapter] lora_B = self.target.lora_B[active_adapter] dropout = self.target.lora_dropout[active_adapter] scaling = self.target.scaling[active_adapter] x = x.to(lora_A.weight.dtype) if scalings is not None: x_mod = self.apply_scalings_to_x(x, xlora_scalings, adapter_n) scaling_weight = self.config.global_scaling_weight else: x_mod = x scaling_weight = 1 result += lora_B(lora_A(dropout(x_mod))) * scaling * scaling_weight result = result.to(previous_dtype) return result class XLoraEmbeddingLayer(XLoraLayer): def __init__(self, model: nn.Module, target: lora.Embedding, target_forward: Callable[..., Any], layer_number: int, config: XLoraConfig) -> None: super().__init__(model, target, target_forward, layer_number, config) def forward(self, x: Tensor, *args: Any, scalings: Optional[Tensor]=None, **kwargs: Any) -> Tensor: if scalings is not None: xlora_scalings = self.get_maybe_topk_scalings(scalings) result = self.target.base_layer(x, *args, **kwargs) if not self.target.merged: for (adapter_n, active_adapter) in enumerate(self.target.active_adapters): if self.target.use_dora.get(active_adapter, False): raise ValueError('X-LoRA currently does not support LoRA layers with DoRA') if active_adapter not in self.target.lora_embedding_A: continue embedding_A = self.target.lora_embedding_A[active_adapter].T embedding_B = self.target.lora_embedding_B[active_adapter].T scaling = self.target.scaling[active_adapter] after_A = self.target._embed(x, embedding_A) if scalings is not None: after_A_mod = self.apply_scalings_to_x(after_A, xlora_scalings, adapter_n) scaling_weight = self.config.global_scaling_weight else: after_A_mod = after_A scaling_weight = 1 result += after_A_mod @ embedding_B * scaling * scaling_weight return result class XLoraConv2dLayer(XLoraLayer): def __init__(self, model: nn.Module, target: lora.Conv2d, target_forward: Callable[..., Any], layer_number: int, config: XLoraConfig) -> None: super().__init__(model, target, target_forward, layer_number, config) def forward(self, x: Tensor, *args: Any, scalings: Optional[Tensor]=None, **kwargs: Any) -> Tensor: previous_dtype = x.dtype if scalings is not None: xlora_scalings = self.get_maybe_topk_scalings(scalings) result = self.target.base_layer(x, *args, **kwargs) if not self.target.merged: for (adapter_n, active_adapter) in enumerate(self.target.active_adapters): if self.target.use_dora[active_adapter]: raise ValueError('X-LoRA currently does not support LoRA layers with DoRA') if active_adapter not in self.target.lora_A.keys(): continue lora_A = self.target.lora_A[active_adapter] lora_B = self.target.lora_B[active_adapter] dropout = self.target.lora_dropout[active_adapter] scaling = self.target.scaling[active_adapter] x = x.to(lora_A.weight.dtype) if scalings is not None: x_mod = self.apply_scalings_to_x(x, xlora_scalings, adapter_n) scaling_weight = self.config.global_scaling_weight else: x_mod = x scaling_weight = 1 result += lora_B(lora_A(dropout(x_mod))) * scaling * scaling_weight result = result.to(previous_dtype) return result # File: peft-main/src/peft/tuners/xlora/model.py from __future__ import annotations import copy from contextlib import contextmanager from functools import partial from typing import Optional, Union import torch import torch.nn as nn from peft.tuners.lora.layer import LoraLayer from peft.tuners.lora.model import LoraModel from peft.tuners.tuners_utils import BaseTuner from peft.utils.constants import DUMMY_TARGET_MODULES from peft.utils.save_and_load import set_peft_model_state_dict from .. import lora from .classifier import XLoraClassifier from .config import XLoraConfig from .layer import XLoraConv2dLayer, XLoraEmbeddingLayer, XLoraLinearLayer def convert_layers_to_xlora(base: nn.Module, xloramodel: nn.Module, config: XLoraConfig) -> tuple[int, torch.device | None]: total_swapped = 0 all_layers = [] device = None for module in base.modules(): if isinstance(module, lora.Linear): device = module.lora_A[next(iter(module.lora_A))].weight.device new_layer = XLoraLinearLayer(model=xloramodel, target=module, target_forward=module.forward, layer_number=total_swapped, config=config) all_layers.append(new_layer) module.forward = new_layer.forward total_swapped += 1 elif isinstance(module, lora.Embedding): device = module.lora_embedding_A[next(iter(module.lora_embedding_A))].device new_layer = XLoraEmbeddingLayer(model=xloramodel, target=module, target_forward=module.forward, layer_number=total_swapped, config=config) all_layers.append(new_layer) module.forward = new_layer.forward total_swapped += 1 elif isinstance(module, lora.Conv2d): device = module.lora_A[next(iter(module.lora_A))].weight.device new_layer = XLoraConv2dLayer(model=xloramodel, target=module, target_forward=module.forward, layer_number=total_swapped, config=config) all_layers.append(new_layer) module.forward = new_layer.forward total_swapped += 1 return (total_swapped, device) def _load_adapter_into_lora_model(lora_model: LoraModel, adapter_name: str, model_id: str, torch_device: Optional[str]=None, ephemeral_gpu_offload: bool=False, autocast_adapter_dtype: bool=True, subfolder: Optional[str]=None, **kwargs): from peft.peft_model import PeftModel from peft.tuners.lora.config import LoraConfig from peft.utils.other import infer_device from peft.utils.save_and_load import load_peft_weights (hf_hub_download_kwargs, kwargs) = PeftModel._split_kwargs(kwargs) if torch_device is None: torch_device = infer_device() if adapter_name not in lora_model.peft_config: lora_peft_config = LoraConfig.from_pretrained(model_id, ephemeral_gpu_offload=ephemeral_gpu_offload, subfolder=subfolder, **hf_hub_download_kwargs) lora_peft_config.inference_mode = False lora_model.peft_config[adapter_name] = lora_peft_config lora_model.inject_adapter(lora_model.model, adapter_name) adapter_weights = load_peft_weights(model_id, device=torch_device, subfolder=subfolder, **hf_hub_download_kwargs) new_adapter_weights = {} for old_key in adapter_weights.keys(): key: str = old_key while not (key.startswith('model.') and (not key.startswith('model.model.'))): key = key[key.find('.') + 1:] key = 'model.' + key new_adapter_weights[key] = adapter_weights[old_key] ignore_mismatched_sizes = kwargs.get('ignore_mismatched_sizes', False) load_result = set_peft_model_state_dict(lora_model, new_adapter_weights, adapter_name=adapter_name, ignore_mismatched_sizes=ignore_mismatched_sizes) if len(load_result.unexpected_keys) > 0: raise ValueError(f'Got unexpected keys! Please raise an issue and tag @EricLBuehler.\n\nunexpected_keys={load_result.unexpected_keys}') if hasattr(lora_model, '_cast_adapter_dtype'): lora_model._cast_adapter_dtype(adapter_name=adapter_name, autocast_adapter_dtype=autocast_adapter_dtype) class XLoraModel(BaseTuner): def __init__(self, model: nn.Module, config: Union[dict[str, XLoraConfig], XLoraConfig], adapter_name: str, torch_device: Optional[str]=None, ephemeral_gpu_offload: bool=False, autocast_adapter_dtype: bool=True, **kwargs) -> None: nn.Module.__init__(self) if isinstance(config, dict): conf = config[adapter_name] else: conf = config base_lora_config = copy.copy(conf) base_lora_config.target_modules = DUMMY_TARGET_MODULES base_lora_config.layer_replication = None base_lora_config.bias = 'none' lora_model = LoraModel(model, base_lora_config, adapter_name) self.xlora_config = conf self.lora_model = lora_model peft_config = conf if hasattr(model.config, 'use_cache') and model.config.use_cache: raise ValueError('`use_cache` must be False') adapters_items = peft_config.adapters.items() if hasattr(self.xlora_config, '_subfolders'): adapters_items = zip(peft_config.adapters.items(), self.xlora_config._subfolders) else: adapters_items = peft_config.adapters.items() if hasattr(self.xlora_config, '_subfolders'): for (i, (_adapter_name, model_id), subfolder) in enumerate(adapters_items): _load_adapter_into_lora_model(lora_model=self.lora_model, adapter_name=str(i), model_id=model_id, torch_device=torch_device, ephemeral_gpu_offload=ephemeral_gpu_offload, autocast_adapter_dtype=autocast_adapter_dtype, subfolder=subfolder, **kwargs) else: for (i, (_adapter_name, model_id)) in enumerate(adapters_items): _load_adapter_into_lora_model(lora_model=self.lora_model, adapter_name=str(i), model_id=model_id, torch_device=torch_device, ephemeral_gpu_offload=ephemeral_gpu_offload, autocast_adapter_dtype=autocast_adapter_dtype, subfolder=None, **kwargs) self.lora_model.set_adapter(list(peft_config.adapters.keys())) self._maybe_freeze_all_adapters() (total_swapped, device) = convert_layers_to_xlora(model, self, peft_config) n_classes = len(peft_config.adapters) xlora_classifier = XLoraClassifier(model, peft_config, n_classes, total_swapped, device) self.internal_xlora_classifier = xlora_classifier self.internal_xlora_scalings = None self.disabled = False def _maybe_freeze_all_adapters(self): self.eval() if not self.xlora_config.use_trainable_adapters: for (name, param) in self.named_parameters(): if 'lora_' in name: param.requires_grad = False def generate(self, *args, **kwargs): res = self.lora_model.generate(*args, **kwargs) self._maybe_freeze_all_adapters() return res @contextmanager def _enable_peft_forward_hooks(self, *generate_args, **generate_kwargs): def scalings_injection_hook(target, args, kwargs, scalings): kwargs['scalings'] = scalings return (args, kwargs) handles_to_remove = None def pre_forward(module, *args, **kwargs): nonlocal handles_to_remove args_real = args[0] kwargs_real = args[1] kwargs_real.update(kwargs) dummy_scalings = self.internal_xlora_classifier.make_dummy_scalings(*args_real, **kwargs_real) hook_handles = [] for module in self.modules(): if isinstance(module, LoraLayer): pre_forward = partial(scalings_injection_hook, scalings=dummy_scalings) handle = module.register_forward_pre_hook(pre_forward, with_kwargs=True) hook_handles.append(handle) with torch.no_grad(): self.lora_model.disable_adapter_layers() try: scaling_pass_kwargs = kwargs_real.copy() scaling_pass_kwargs['output_hidden_states'] = True scaling_pass_kwargs['return_dict'] = True try: base_output = self.lora_model.model.forward(*args_real, **scaling_pass_kwargs) finally: for handle in hook_handles: handle.remove() finally: self.lora_model.enable_adapter_layers() xlora_scalings = self.internal_xlora_classifier(*args_real, result=base_output, **kwargs_real) hook_handles = [] for module in self.modules(): if isinstance(module, LoraLayer): pre_forward = partial(scalings_injection_hook, scalings=xlora_scalings) handle = module.register_forward_pre_hook(pre_forward, with_kwargs=True) hook_handles.append(handle) handles_to_remove = hook_handles if not self.disabled: forward_handle = self.lora_model.model.register_forward_pre_hook(pre_forward, with_kwargs=True) yield if not self.disabled: for handle in handles_to_remove: handle.remove() forward_handle.remove() def __getattr__(self, name: str): try: return super().__getattr__(name) except AttributeError: if name == 'lora_model': raise return getattr(self.lora_model, name) @staticmethod def _prepare_adapter_config(peft_config, _model_config): return peft_config '' def _mark_only_adapters_as_trainable(self) -> None: ... '' def enable_adapter_layers(self) -> None: self.disabled = False '' def disable_adapter_layers(self) -> None: self.disabled = True def _create_and_replace(self, lora_config, adapter_name, target, target_name, parent, current_key): pass @staticmethod def _check_target_module_exists(lora_config, key): return False def forward(self, *args, **kwargs): return self.lora_model.model(*args, **kwargs) def set_topk_lora(self, value: Optional[int]): classifier: XLoraClassifier = self.internal_xlora_classifier classifier.config.top_k_lora = value def set_global_scaling_weight(self, weight: float): classifier: XLoraClassifier = self.internal_xlora_classifier classifier.config.global_scaling_weight = weight def set_scaling_pass_value(self, value: float | None): classifier: XLoraClassifier = self.internal_xlora_classifier classifier._set_override_scaling_pass_value(value) def get_global_scaling_weight(self) -> float: classifier: XLoraClassifier = self.internal_xlora_classifier return classifier.config.global_scaling_weight def get_latest_scalings(self) -> Optional[torch.Tensor]: return self.internal_xlora_scalings def get_scalings_log(self) -> list[torch.Tensor]: classifier: XLoraClassifier = self.internal_xlora_classifier return classifier.log_scalings.copy() def enable_scalings_logging(self): classifier: XLoraClassifier = self.internal_xlora_classifier classifier.scalings_logging = True def disable_scalings_logging(self): classifier: XLoraClassifier = self.internal_xlora_classifier classifier.scalings_logging = False def clear_scalings_log(self): classifier: XLoraClassifier = self.internal_xlora_classifier classifier.log_scalings.clear() def get_bucketed_scalings_log(self) -> dict[int, tuple[list[int], list[torch.Tensor]]]: classifier: XLoraClassifier = self.internal_xlora_classifier return classifier._get_bucketed_scalings()